Sample records for model watershed program

  1. Evaluating watershed protection programs in New York City's Cannonsville Reservoir source watershed using SWAT-HS

    NASA Astrophysics Data System (ADS)

    Hoang, L.; Mukundan, R.; Moore, K. E.; Owens, E. M.; Steenhuis, T. S.

    2017-12-01

    New York City (NYC)'s reservoirs supply over one billion gallons of drinking water each day to over nine million consumers in NYC and upstate communities. The City has invested more than $1.5 billion in watershed protection programs to maintain a waiver from filtration for the Catskill and Delaware Systems. In the last 25 years, the NYC Department of Environmental Protection (NYCDEP) has implemented programs in cooperation with upstate communities that include nutrient management, crop rotations, improvement of barnyards and manure storage, implementing tertiary treatment for Phosphorus (P) in wastewater treatment plants, and replacing failed septic systems in an effort to reduce P loads to water supply reservoirs. There have been several modeling studies evaluating the effect of agricultural Best Management Practices (BMPs) on P control in the Cannonsville watershed in the Delaware System. Although these studies showed that BMPs would reduce dissolved P losses, they were limited to farm-scale or watershed-scale estimates of reduction factors without consideration of the dynamic nature of overland flow and P losses from variable source areas. Recently, we developed the process-based SWAT-Hillslope (SWAT-HS) model, a modified version of the Soil and Water Assessment Tool (SWAT) that can realistically predict variable source runoff processes. The objective of this study is to use the SWAT-HS model to evaluate watershed protection programs addressing both point and non-point sources of P. SWAT-HS predicts streamflow very well for the Cannonsville watershed with a daily Nash Sutcliffe Efficiency (NSE) of 0.85 at the watershed outlet and NSE values ranging from 0.56 - 0.82 at five other locations within the watershed. Based on good hydrological prediction, we applied the model to predict P loads using detailed P inputs that change over time due to the implementation of watershed protection programs. Results from P model predictions provide improved projections of P loads and form a basis for evaluating the cumulative and individual effects of watershed protection programs.

  2. Application of Coupled Human-Natural Systems Model for Assessing Trade-Offs Between Watershed Ecosystem Services in Veracruz, Mexico

    NASA Astrophysics Data System (ADS)

    Mayer, A. S.; Jones, K.; Berry, Z. C.; Congalton, R.; Kolka, R. K.; López-Ramírez, S.; Manson, R.; Muñoz Villers, L.; Saenz, L.; Salcone, J.; Von Thaden Ugalde, J.; Asbjornsen, H.

    2016-12-01

    Trade-offs between ecosystem services (ES) occur due to management choices that impact the type, magnitude, and relative mix of services provided by ecosystems. Trade-offs arise when the provision of one ES is reduced as a consequence of increased use of another ES. Here, we assess ES tradeoffs with a coupled human-natural systems (CHNS) model, in response to payments for watershed services (PWS) programs in two watersheds in Veracruz, Mexico. An econometric component of the CHNS model is used to determine the effect of the PWS programs on a given land use-land cover (LULC). Eight LULC categories, corresponding to 95% of the watershed area, are used to force LULC feedbacks within the CHNS model. The LULC can transition from the present category to another, given the outcome of landowner participation in the PWS programs. Biophysical sub-models of watershed discharge and water quality, carbon storage, and biodiversity conservation are used to estimate values of ES indicators at the watershed scale. These biophysical models are derived from qualitative and quantitative observations in the study watersheds. Using these models, we gain first-approximation insights into ES tradeoffs and the sensitivity of estimated tradeoffs to model structure—serving as a critical platform for informing hypotheses about PWS program design and ES tradeoffs. With a CHNS model in place, and data collected collected from our field experiments, we explore first, baseline implications for ES of existing PWS programs in Xalapa, Veracruz; and second, we develop scenarios of potential PWS program pathways, with or without climate change projection forcings in order to improve our understanding of changes in ES distribution, magnitude and biophysical tradeoffs. Finally, the econometric component is parameterized with economic variables and indicators identified with local stakeholders in order to asses economic implications of ES tradeoffs. Outputs from the model provide important information to the local and national agencies involved in PWS program design in the study watersheds. This first tier model will be used to inform development of a more integrated process-based model using primary watershed socioeconomic and ecohydrological data, as well as household level data on participation in the PWS programs and spillover effects of PWS.

  3. Development of Land Segmentation, Stream-Reach Network, and Watersheds in Support of Hydrological Simulation Program-Fortran (HSPF) Modeling, Chesapeake Bay Watershed, and Adjacent Parts of Maryland, Delaware, and Virginia

    USGS Publications Warehouse

    Martucci, Sarah K.; Krstolic, Jennifer L.; Raffensperger, Jeff P.; Hopkins, Katherine J.

    2006-01-01

    The U.S. Geological Survey, U.S. Environmental Protection Agency Chesapeake Bay Program Office, Interstate Commission on the Potomac River Basin, Maryland Department of the Environment, Virginia Department of Conservation and Recreation, Virginia Department of Environmental Quality, and the University of Maryland Center for Environmental Science are collaborating on the Chesapeake Bay Regional Watershed Model, using Hydrological Simulation Program - FORTRAN to simulate streamflow and concentrations and loads of nutrients and sediment to Chesapeake Bay. The model will be used to provide information for resource managers. In order to establish a framework for model simulation, digital spatial datasets were created defining the discretization of the model region (including the Chesapeake Bay watershed, as well as the adjacent parts of Maryland, Delaware, and Virginia outside the watershed) into land segments, a stream-reach network, and associated watersheds. Land segmentation was based on county boundaries represented by a 1:100,000-scale digital dataset. Fifty of the 254 counties and incorporated cities in the model region were divided on the basis of physiography and topography, producing a total of 309 land segments. The stream-reach network for the Chesapeake Bay watershed part of the model region was based on the U.S. Geological Survey Chesapeake Bay SPARROW (SPAtially Referenced Regressions On Watershed attributes) model stream-reach network. Because that network was created only for the Chesapeake Bay watershed, the rest of the model region uses a 1:500,000-scale stream-reach network. Streams with mean annual streamflow of less than 100 cubic feet per second were excluded based on attributes from the dataset. Additional changes were made to enhance the data and to allow for inclusion of stream reaches with monitoring data that were not part of the original network. Thirty-meter-resolution Digital Elevation Model data were used to delineate watersheds for each stream reach. State watershed boundaries replaced the Digital Elevation Model-derived watersheds where coincident. After a number of corrections, the watersheds were coded to indicate major and minor basin, mean annual streamflow, and each watershed's unique identifier as well as that of the downstream watershed. Land segments and watersheds were intersected to create land-watershed segments for the model.

  4. EPA'S WATERSHED MANAGEMENT AND MODELING RESEARCH PROGRAM

    EPA Science Inventory

    Watershed management presumes that community groups can best solve many water quality and ecosystem problems at the watershed level rather than at the individual site, receiving waterbody, or discharger level. After assessing and ranking watershed problems, and setting environ...

  5. Assessing the effects of regional payment for watershed services program on water quality using an intervention analysis model.

    PubMed

    Lu, Yan; He, Tian

    2014-09-15

    Much attention has been recently paid to ex-post assessments of socioeconomic and environmental benefits of payment for ecosystem services (PES) programs on poverty reduction, water quality, and forest protection. To evaluate the effects of a regional PES program on water quality, we selected chemical oxygen demand (COD) and ammonia-nitrogen (NH3-N) as indicators of water quality. Statistical methods and an intervention analysis model were employed to assess whether the PES program produced substantial changes in water quality at 10 water-quality sampling stations in the Shaying River watershed, China during 2006-2011. Statistical results from paired-sample t-tests and box plots of COD and NH3-N concentrations at the 10 stations showed that the PES program has played a positive role in improving water quality and reducing trans-boundary water pollution in the Shaying River watershed. Using the intervention analysis model, we quantitatively evaluated the effects of the intervention policy, i.e., the watershed PES program, on water quality at the 10 stations. The results suggest that this method could be used to assess the environmental benefits of watershed or water-related PES programs, such as improvements in water quality, seasonal flow regulation, erosion and sedimentation, and aquatic habitat. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Engaging Watershed Stakeholders for Cost-Effective Environmental Management Planning with "Watershed Manager"

    ERIC Educational Resources Information Center

    Williams, Jeffery R.; Smith, Craig M.; Roe, Josh D.; Leatherman, John C.; Wilson, Robert M.

    2012-01-01

    "Watershed Manager" is a spreadsheet-based model that is used in extension education programs for learning about and selecting cost-effective watershed management practices to reduce soil, nitrogen, and phosphorus losses from cropland. It can facilitate Watershed Restoration and Protection Strategy (WRAPS) stakeholder groups' development…

  7. ERD WATERSHED AND WATER QUALITY MODEL DEVELOPMENT AND TECHNICAL SUPPORT PROGRAM

    EPA Science Inventory

    The ERD has a long history in providing model research and development and technical support to Regions, States and the Office of Water for watersheds/water quality ecosystem research. The ERD efforts are described in major subtasks comprising the Program. Briefly, these are:

  8. Modeling conservation practices in APEX: From the field to the watershed

    USDA-ARS?s Scientific Manuscript database

    The evaluation of USDA conservation programs is required as part of the Conservation Effects Assessment Project (CEAP). The Agricultural Policy/Environmental eXtender (APEX) model was applied to the St. Joseph River Watershed, one of CEAP’s benchmark watersheds. Using a previously calibrated and val...

  9. pyLIDEM: A Python-Based Tool to Delineate Coastal Watersheds Using LIDAR Data

    NASA Astrophysics Data System (ADS)

    O'Banion, R.; Alameddine, I.; Gronewold, A.; Reckhow, K.

    2008-12-01

    Accurately identifying the boundary of a watershed is one of the most fundamental and important steps in any hydrological assessment. Representative applications include defining a study area, predicting overland flow, estimating groundwater infiltration, modeling pollutant accumulation and wash-off rates, and evaluating effectiveness of pollutant mitigation measures. The United States Environmental Protection Agency (USEPA) Total Maximum Daily Load (TMDL) program, the most comprehensive water quality management program in the United States (US), is just one example of an application in which accurate and efficient watershed delineation tools play a critical role. For example, many impaired water bodies currently being addressed through the TMDL program drain small coastal watersheds with relatively flat terrain, making watershed delineation particularly challenging. Most of these TMDL studies use 30-meter digital elevation models (DEMs) that rarely capture all of the small elevation changes in coastal watersheds, leading to errors not only in watershed boundary delineation, but in subsequent model predictions (such as watershed runoff flow and pollutant deposition rate predictions) for which watershed attributes are key inputs. Manually delineating these low-relief coastal watersheds through the use of expert knowledge of local water flow patterns, often produces relatively accurate (and often more accurate) watershed boundaries as compared to the boundaries generated by the 30-meter DEMs. Yet, manual delineation is a costly and time consuming procedure that is often not opted for. There is a growing need, therefore, particularly to address the ongoing needs of the TMDL program (and similar environmental management programs), for software tools which can utilize high resolution topography data to more accurately delineate coastal watersheds. Here, we address this need by developing pyLIDEM (python LIdar DEM), a python-based tool which processes bare earth high-resolution Light Detection and Ranging (LIDAR) data, generates fine scale DEMs, and delineates watershed boundaries for a given pour point. Because LIDAR data are typically distributed in large sets of predefined tiles, our tool is capable of combining only the minimum number of bare earth LIDAR tiles required to delineate a watershed of interest. Our tool then processes the LIDAR data into Triangulated Irregular Networks, generates DEMs at user- specified cell sizes, and creates the required files needed to delineate watersheds within ArcGIS. To make pyLIDEM more accessible to the modeling community, we have bundled it within an ArcGIS toolbox, which also allows users to run it directly from an ArcGIS platform. We assess pyLIDEM functionality and accuracy by delineating several impaired small coastal watersheds in the Newport River Estuary in Eastern North Carolina using LIDAR data collected for the North Carolina Flood Mapping Program. We then compare the pyLIDAR-based watershed boundaries with those generated manually and with those generated using the 30-meter DEMs, and find that the pyLIDAR-based boundaries are more accurate than the 30-meter DEMs, and provide a significant time savings compared to manual delineation, particularly in cases where multiple watersheds need to be delineated for a single project.

  10. A risk explicit interval linear programming model for uncertainty-based environmental economic optimization in the Lake Fuxian watershed, China.

    PubMed

    Zhang, Xiaoling; Huang, Kai; Zou, Rui; Liu, Yong; Yu, Yajuan

    2013-01-01

    The conflict of water environment protection and economic development has brought severe water pollution and restricted the sustainable development in the watershed. A risk explicit interval linear programming (REILP) method was used to solve integrated watershed environmental-economic optimization problem. Interval linear programming (ILP) and REILP models for uncertainty-based environmental economic optimization at the watershed scale were developed for the management of Lake Fuxian watershed, China. Scenario analysis was introduced into model solution process to ensure the practicality and operability of optimization schemes. Decision makers' preferences for risk levels can be expressed through inputting different discrete aspiration level values into the REILP model in three periods under two scenarios. Through balancing the optimal system returns and corresponding system risks, decision makers can develop an efficient industrial restructuring scheme based directly on the window of "low risk and high return efficiency" in the trade-off curve. The representative schemes at the turning points of two scenarios were interpreted and compared to identify a preferable planning alternative, which has the relatively low risks and nearly maximum benefits. This study provides new insights and proposes a tool, which was REILP, for decision makers to develop an effectively environmental economic optimization scheme in integrated watershed management.

  11. A Risk Explicit Interval Linear Programming Model for Uncertainty-Based Environmental Economic Optimization in the Lake Fuxian Watershed, China

    PubMed Central

    Zou, Rui; Liu, Yong; Yu, Yajuan

    2013-01-01

    The conflict of water environment protection and economic development has brought severe water pollution and restricted the sustainable development in the watershed. A risk explicit interval linear programming (REILP) method was used to solve integrated watershed environmental-economic optimization problem. Interval linear programming (ILP) and REILP models for uncertainty-based environmental economic optimization at the watershed scale were developed for the management of Lake Fuxian watershed, China. Scenario analysis was introduced into model solution process to ensure the practicality and operability of optimization schemes. Decision makers' preferences for risk levels can be expressed through inputting different discrete aspiration level values into the REILP model in three periods under two scenarios. Through balancing the optimal system returns and corresponding system risks, decision makers can develop an efficient industrial restructuring scheme based directly on the window of “low risk and high return efficiency” in the trade-off curve. The representative schemes at the turning points of two scenarios were interpreted and compared to identify a preferable planning alternative, which has the relatively low risks and nearly maximum benefits. This study provides new insights and proposes a tool, which was REILP, for decision makers to develop an effectively environmental economic optimization scheme in integrated watershed management. PMID:24191144

  12. Retrospective Review of Watershed Characteristics and a Framework for Future Research in the Sarasota Bay Watershed, Florida

    USGS Publications Warehouse

    Kish, George R.; Harrison, Arnell S.; Alderson, Mark

    2008-01-01

    The U.S. Geological Survey, in cooperation with the Sarasota Bay Estuary Program conducted a retrospective review of characteristics of the Sarasota Bay watershed in west-central Florida. This report describes watershed characteristics, surface- and ground-water processes, and the environmental setting of the Sarasota Bay watershed. Population growth during the last 50 years is transforming the Sarasota Bay watershed from rural and agriculture to urban and suburban. The transition has resulted in land-use changes that influence surface- and ground-water processes in the watershed. Increased impervious cover decreases recharge to ground water and increases overland runoff and the pollutants carried in the runoff. Soil compaction resulting from agriculture, construction, and recreation activities also decreases recharge to ground water. Conventional approaches to stormwater runoff have involved conveyances and large storage areas. Low-impact development approaches, designed to provide recharge near the precipitation point-of-contact, are being used increasingly in the watershed. Simple pollutant loading models applied to the Sarasota Bay watershed have focused on large-scale processes and pollutant loads determined from empirical values and mean event concentrations. Complex watershed models and more intensive data-collection programs can provide the level of information needed to quantify (1) the effects of lot-scale land practices on runoff, storage, and ground-water recharge, (2) dry and wet season flux of nutrients through atmospheric deposition, (3) changes in partitioning of water and contaminants as urbanization alters predevelopment rainfall-runoff relations, and (4) linkages between watershed models and lot-scale models to evaluate the effect of small-scale changes over the entire Sarasota Bay watershed. As urbanization in the Sarasota Bay watershed continues, focused research on water-resources issues can provide information needed by water-resources managers to ensure the future health of the watershed.

  13. The Water, Energy, and Biogeochemical Model (WEBMOD): A TOPMODEL application developed within the Modular Modeling System

    NASA Astrophysics Data System (ADS)

    Webb, R. M.; Wolock, D. M.; Linard, J. I.; Wieczorek, M. E.

    2004-12-01

    Process-based flow and transport simulation models can help increase understanding of how hydrologic flow paths affect biogeochemical mixing and reactions in watersheds. This presentation describes the Water, Energy, and Biogeochemical Model (WEBMOD), a new model designed to simulate water and chemical transport in both pristine and agricultural watersheds. WEBMOD simulates streamflow using TOPMODEL algorithms and also simulates irrigation, canopy interception, snowpack, and tile-drain flow; these are important processes for successful multi-year simulations of agricultural watersheds. In addition, the hydrologic components of the model are linked to the U.S. Geological Survey's (USGS) geochemical model PHREEQC such that solute chemistry for the hillslopes and streams also are computed. Model development, execution, and calibration take place within the USGS Modular Modeling System. WEBMOD is being validated at ten research watersheds. Five of these watersheds are nearly pristine and comprise the USGS Water, Energy, and Biogeochemical Budget (WEBB) Program field sites: Loch Vale, Colorado; Trout Lake, Wisconsin; Sleepers River, Vermont; Panola Mountain, Georgia; and the Luquillo Experimental Forest, Puerto Rico. The remaining five watersheds contain intensely cultivated fields being studied by USGS National Water Quality Assessment Program: Merced River, California; Granger Drain, Washington; Maple Creek, Nebraska; Sugar Creek, Indiana; and Morgan Creek, Delaware. Model calibration improved understanding of observed variations in soil moisture, solute concentrations, and stream discharge at the five WEBB watersheds and is now being set up to simulate the processes at the five agricultural watersheds that are now ending their first year of data collection.

  14. Compilation of watershed models for tributaries to the Great Lakes, United States, as of 2010, and identification of watersheds for future modeling for the Great Lakes Restoration Initiative

    USGS Publications Warehouse

    Coon, William F.; Murphy, Elizabeth A.; Soong, David T.; Sharpe, Jennifer B.

    2011-01-01

    As part of the Great Lakes Restoration Initiative (GLRI) during 2009–10, the U.S. Geological Survey (USGS) compiled a list of existing watershed models that had been created for tributaries within the United States that drain to the Great Lakes. Established Federal programs that are overseen by the National Oceanic and Atmospheric Administration (NOAA) and the U.S. Army Corps of Engineers (USACE) are responsible for most of the existing watershed models for specific tributaries. The NOAA Great Lakes Environmental Research Laboratory (GLERL) uses the Large Basin Runoff Model to provide data for the management of water levels in the Great Lakes by estimating United States and Canadian inflows to the Great Lakes from 121 large watersheds. GLERL also simulates streamflows in 34 U.S. watersheds by a grid-based model, the Distributed Large Basin Runoff Model. The NOAA National Weather Service uses the Sacramento Soil Moisture Accounting model to predict flows at river forecast sites. The USACE created or funded the creation of models for at least 30 tributaries to the Great Lakes to better understand sediment erosion, transport, and aggradation processes that affect Federal navigation channels and harbors. Many of the USACE hydrologic models have been coupled with hydrodynamic and sediment-transport models that simulate the processes in the stream and harbor near the mouth of the modeled tributary. Some models either have been applied or have the capability of being applied across the entire Great Lakes Basin; they are (1) the SPAtially Referenced Regressions On Watershed attributes (SPARROW) model, which was developed by the USGS; (2) the High Impact Targeting (HIT) and Digital Watershed models, which were developed by the Institute of Water Research at Michigan State University; (3) the Long-Term Hydrologic Impact Assessment (L–THIA) model, which was developed by researchers at Purdue University; and (4) the Water Erosion Prediction Project (WEPP) model, which was developed by the National Soil Erosion Research Laboratory of the U.S. Department of Agriculture. During 2010, the USGS used the Precipitation-Runoff Modeling System (PRMS) to create a hydrologic model for the Lake Michigan Basin to assess the probable effects of climate change on future groundwater and surface-water resources. The Water Availability Tool for Environmental Resources (WATER) model and the Analysis of Flows In Networks of CHannels (AFINCH) program also were used to support USGS GLRI projects that required estimates of streamflows throughout the Great Lakes Basin. This information on existing watershed models, along with an assessment of geologic, soils, and land-use data across the Great Lakes Basin and the identification of problems that exist in selected tributary watersheds that could be addressed by a watershed model, was used to identify three watersheds in the Great Lakes Basin for future modeling by the USGS. These watersheds are the Kalamazoo River Basin in Michigan, the Tonawanda Creek Basin in New York, and the Bad River Basin in Wisconsin. These candidate watersheds have hydrogeologic, land-type, and soil characteristics that make them distinct from each other, but that are representative of other tributary watersheds within the Great Lakes Basin. These similarities in the characteristics among nearby watersheds will enhance the usefulness of a model by improving the likelihood that parameter values from a previously modeled watershed could reliably be used in the creation of a model of another watershed in the same region. The software program Hydrological Simulation Program–Fortran (HSPF) was selected to simulate the hydrologic, sedimentary, and water-quality processes in these selected watersheds. HSPF is a versatile, process-based, continuous-simulation model that has been used extensively by the scientific community, has the ongoing technical support of the U.S. Environmental Protection Agency and USGS, and provides a means to evaluate the effects that land-use changes or management practices might have on the simulated processes.

  15. Remote sensing inputs to National Model Implementation Program for water resources quality improvement

    NASA Technical Reports Server (NTRS)

    Eidenshink, J. C.; Schmer, F. A.

    1979-01-01

    The Lake Herman watershed in southeastern South Dakota has been selected as one of seven water resources systems in the United States for involvement in the National Model Implementation Program (MIP). MIP is a pilot program initiated to illustrate the effectiveness of existing water resources quality improvement programs. The Remote Sensing Institute (RSI) at South Dakota State University has produced a computerized geographic information system for the Lake Herman watershed. All components necessary for the monitoring and evaluation process were included in the data base. The computerized data were used to produce thematic maps and tabular data for the land cover and soil classes within the watershed. These data are being utilized operationally by SCS resource personnel for planning and management purposes.

  16. APPLICATION OF THE HSPF MODEL TO THE SOUTH FORK OF THE BROAD RIVER WATERSHED IN NORTHEASTERN GEORGIA

    EPA Science Inventory

    The Hydrological Simulation Program-Fortran (HSPF) is a comprehensive watershed model which simulates hydrology and water quality at user-specified temporal and spatial scales. Well-established model calibration and validation procedures are followed when adjusting model paramete...

  17. Watershed modeling of dissolved oxygen and biochemical oxygen demand using a hydrological simulation Fortran program.

    PubMed

    Liu, Zhijun; Kieffer, Janna M; Kingery, William L; Huddleston, David H; Hossain, Faisal

    2007-11-01

    Several inland water bodies in the St. Louis Bay watershed have been identified as being potentially impaired due to low level of dissolved oxygen (DO). In order to calculate the total maximum daily loads (TMDL), a standard watershed model supported by U.S. Environmental Protection Agency, Hydrological Simulation Program Fortran (HSPF), was used to simulate water temperature, DO, and bio-chemical oxygen demand (BOD). Both point and non-point sources of BOD were included in watershed modeling. The developed model was calibrated at two time periods: 1978 to 1986 and 2000 to 2001 with simulated DO closely matched the observed data and captured the seasonal variations. The model represented the general trend and average condition of observed BOD. Water temperature and BOD decay are the major factors that affect DO simulation, whereas nutrient processes, including nitrification, denitrification, and phytoplankton cycle, have slight impacts. The calibrated water quality model provides a representative linkage between the sources of BOD and in-stream DO\\BOD concentrations. The developed input parameters in this research could be extended to similar coastal watersheds for TMDL determination and Best Management Practice (BMP) evaluation.

  18. Sediment calibration strategies of Phase 5 Chesapeake Bay watershed model

    USGS Publications Warehouse

    Wu, J.; Shenk, G.W.; Raffensperger, Jeff P.; Moyer, D.; Linker, L.C.; ,

    2005-01-01

    Sediment is a primary constituent of concern for Chesapeake Bay due to its effect on water clarity. Accurate representation of sediment processes and behavior in Chesapeake Bay watershed model is critical for developing sound load reduction strategies. Sediment calibration remains one of the most difficult components of watershed-scale assessment. This is especially true for Chesapeake Bay watershed model given the size of the watershed being modeled and complexity involved in land and stream simulation processes. To obtain the best calibration, the Chesapeake Bay program has developed four different strategies for sediment calibration of Phase 5 watershed model, including 1) comparing observed and simulated sediment rating curves for different parts of the hydrograph; 2) analyzing change of bed depth over time; 3) relating deposition/scour to total annual sediment loads; and 4) calculating "goodness-of-fit' statistics. These strategies allow a more accurate sediment calibration, and also provide some insightful information on sediment processes and behavior in Chesapeake Bay watershed.

  19. Investigating the Sensitivity of Streamflow and Water Quality to Climate Change and Urbanization in 20 U.S. Watersheds

    NASA Astrophysics Data System (ADS)

    Johnson, T. E.; Weaver, C. P.; Butcher, J.; Parker, A.

    2011-12-01

    Watershed modeling was conducted in 20 large (15,000-60,000 km2), U.S. watersheds to address gaps in our knowledge of the sensitivity of U.S. streamflow, nutrient (N and P) and sediment loading to potential future climate change, and methodological challenges associated with integrating existing tools (e.g., climate models, watershed models) and datasets to address these questions. Climate change scenarios are based on dynamically downscaled (50x50 km2) output from four of the GCMs used in the Intergovernmental Panel on Climate Change (IPCC) 4th Assessment Report for the period 2041-2070 archived by the North American Regional Climate Change Assessment Program (NARCCAP). To explore the potential interaction of climate change and urbanization, model simulations also include urban and residential development scenarios for each of the 20 study watersheds. Urban and residential development scenarios were acquired from EPA's national-scale Integrated Climate and Land Use Scenarios (ICLUS) project. Watershed modeling was conducted using the Hydrologic Simulation Program-FORTRAN (HSPF) and Soil and Water Assessment Tool (SWAT) models. Here we present a summary of results for 5 of the study watersheds; the Minnesota River, the Susquehanna River, the Apalachicola-Chattahoochee-Flint, the Salt/Verde/San Pedro, and the Willamette River Basins. This set of results provide an overview of the response to climate change in different regions of the U.S., the different sensitivities of different streamflow and water quality endpoints, and illustrate a number of methodological issues including the sensitivities and uncertainties associated with use of different watershed models, approaches for downscaling climate change projections, and interaction between climate change and other forcing factors, specifically urbanization and changes in atmospheric CO2 concentration.

  20. THE COMPARISON OF TWO WATERSHEDS USING A WATERSHED NUTRIENT LOADING MODEL

    EPA Science Inventory

    Monitoring data, collected from the Yaquina River, Oregon, from 1999 through 2002 were used as the basis for developing the nutrient flux model as part of a larger agency program for quantifying nutrient processes. The PNWL nitrate loading model indicates that the nitrate load is...

  1. Estimation of pollutant loads considering dam operation in Han River Basin by BASINS/Hydrological Simulation Program-FORTRAN.

    PubMed

    Jung, Kwang-Wook; Yoon, Choon-G; Jang, Jae-Ho; Kong, Dong-Soo

    2008-01-01

    Effective watershed management often demands qualitative and quantitative predictions of the effect of future management activities as arguments for policy makers and administration. The BASINS geographic information system was developed to compute total maximum daily loads, which are helpful to establish hydrological process and water quality modeling system. In this paper the BASINS toolkit HSPF model is applied in 20,271 km(2) large watershed of the Han River Basin is used for applicability of HSPF and BMPs scenarios. For proper evaluation of watershed and stream water quality, comprehensive estimation methods are necessary to assess large amounts of point source and nonpoint-source (NPS) pollution based on the total watershed area. In this study, The Hydrological Simulation Program-FORTRAN (HSPF) was estimated to simulate watershed pollutant loads containing dam operation and applied BMPs scenarios for control NPS pollution. The 8-day monitoring data (about three years) were used in the calibration and verification processes. Model performance was in the range of "very good" and "good" based on percent difference. The water-quality simulation results were encouraging for this large sizable watershed with dam operation practice and mixed land uses; HSPF proved adequate, and its application is recommended to simulate watershed processes and BMPs evaluation. IWA Publishing 2008.

  2. Real-time implementations of image segmentation algorithms on shared memory multicore architecture: a survey (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Akil, Mohamed

    2017-05-01

    The real-time processing is getting more and more important in many image processing applications. Image segmentation is one of the most fundamental tasks image analysis. As a consequence, many different approaches for image segmentation have been proposed. The watershed transform is a well-known image segmentation tool. The watershed transform is a very data intensive task. To achieve acceleration and obtain real-time processing of watershed algorithms, parallel architectures and programming models for multicore computing have been developed. This paper focuses on the survey of the approaches for parallel implementation of sequential watershed algorithms on multicore general purpose CPUs: homogeneous multicore processor with shared memory. To achieve an efficient parallel implementation, it's necessary to explore different strategies (parallelization/distribution/distributed scheduling) combined with different acceleration and optimization techniques to enhance parallelism. In this paper, we give a comparison of various parallelization of sequential watershed algorithms on shared memory multicore architecture. We analyze the performance measurements of each parallel implementation and the impact of the different sources of overhead on the performance of the parallel implementations. In this comparison study, we also discuss the advantages and disadvantages of the parallel programming models. Thus, we compare the OpenMP (an application programming interface for multi-Processing) with Ptheads (POSIX Threads) to illustrate the impact of each parallel programming model on the performance of the parallel implementations.

  3. Water quality trading opportunities in two sub-watersheds in the northern Lake Okeechobee watershed.

    PubMed

    Corrales, Juliana; Naja, G Melodie; Bhat, Mahadev G; Miralles-Wilhelm, Fernando

    2017-07-01

    For decades, the increase of nutrient enrichment has threatened the ecological integrity and economic sustainability of many rivers, lakes, and coastal waters, including Lake Okeechobee, the second largest freshwater lake in the contiguous United States. Water quality trading programs have been an area of active development to both, reduce nutrient pollution and minimize abatement costs. The objective of this study was to apply a comprehensive modeling framework, integrating a hydrologic-water quality model with an economic model, to assess and compare the cost-effectiveness of a water quality trading program over a command-and-control approach in order to reduce phosphorus loadings to Lake Okeechobee. The Upper Kissimmee (UK) and Taylor Creek/Nubbin Slough (TCNS) sub-watersheds, identified as major sources of total phosphorus (TP) loadings to the lake, were selected for this analysis. The effect of different caps on the market potential was assessed while considering four factors: the least-cost abatement solutions, credit prices, potential cost savings, and credit supply and demand. Hypothetical trading scenarios were also developed, using the optimal caps selected for the two sub-watersheds. In both sub-watersheds, a phosphorus credit trading program was less expensive than the conventional command-and-control approach. While attaining cost-effectiveness, keeping optimal credit prices, and fostering market competition, phosphorus reduction targets of 46% and 32% were selected as the most appropriate caps in the UK and TCNS sub-watersheds, respectively. Wastewater treatment facilities and urban areas in the UK, and concentrated animal feeding operations in the TCNS sub-watershed were identified as potential credit buyers, whereas improved pastures were identified as the major credit sellers in both sub-watersheds. The estimated net cost savings resulting from implementing a phosphorus trading program in the UK and TCNS sub-watersheds were 76% ($ 34.9 million per year) and 45% ($ 3.2 million per year), respectively. It is important to note that the realization of the environmental and economic benefits of this market-based alternative is also contingent on other important factors, such as the market structure, the specific program rules, the risk perception, and the education and outreach to develop trusted relationships among regulatory agencies, the public sector, and other stakeholders. Nevertheless, this research provided the foundation for stakeholders to better understand whether water quality trading has the potential to work in the Lake Okeechobee watershed and to facilitate the development of a pilot program. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Selected achievements, science directions, and new opportunities for the WEBB small watershed research program

    USGS Publications Warehouse

    Glynn, Pierre D.; Larsen, Matthew C.; Greene, Earl A.; Buss, Heather L.; Clow, David W.; Hunt, Randall J.; Mast, M. Alisa; Murphy, Sheila F.; Peters, Norman E.; Sebestyen, Stephen D.; Shanley, James B.; Walker, John F.

    2009-01-01

    Over nearly two decades, the Water, Energy, and Biogeochemical Budgets (WEBB) small watershed research program of the U.S. Geological Survey (USGS) has documented how water and solute fluxes, nutrient, carbon, and mercury dynamics, and weathering and sediment transport respond to natural and humancaused drivers, including climate, climate change, and atmospheric deposition. Together with a continued and increasing focus on the effects of climate change, more investigations are needed that examine ecological effects (e.g., evapotranspiration, nutrient uptake) and responses (e.g., species abundances, biodiversity) that are coupled with the physical and chemical processes historically observed in the WEBB program. Greater use of remote sensing, geographic modeling, and habitat/watershed modeling tools is needed, as is closer integration with the USGS-led National Phenology Network. Better understanding of process and system response times is needed. The analysis and observation of land-use and climate change effects over time should be improved by pooling data obtained by the WEBB program during the last two decades with data obtained earlier and (or) concurrently from other research and monitoring studies conducted at or near the five WEBB watershed sites. These data can be supplemented with historical and paleo-environmental information, such as could be obtained from tree rings and lake cores. Because of the relatively pristine nature and small size of its watersheds, the WEBB program could provide process understanding and basic data to better characterize and quantify ecosystem services and to develop and apply indicators of ecosystem health. In collaboration with other Federal and State watershed research programs, the WEBB program has an opportunity to contribute to tracking the short-term dynamics and long-term evolution of ecosystem services and health indicators at a multiplicity of scales across the landscape. 

  5. Comparison of HSPF and PRMS model simulated flows using different temporal and spatial scales in the Black Hills, South Dakota

    USGS Publications Warehouse

    Chalise, D. R.; Haj, Adel E.; Fontaine, T.A.

    2018-01-01

    The hydrological simulation program Fortran (HSPF) [Hydrological Simulation Program Fortran version 12.2 (Computer software). USEPA, Washington, DC] and the precipitation runoff modeling system (PRMS) [Precipitation Runoff Modeling System version 4.0 (Computer software). USGS, Reston, VA] models are semidistributed, deterministic hydrological tools for simulating the impacts of precipitation, land use, and climate on basin hydrology and streamflow. Both models have been applied independently to many watersheds across the United States. This paper reports the statistical results assessing various temporal (daily, monthly, and annual) and spatial (small versus large watershed) scale biases in HSPF and PRMS simulations using two watersheds in the Black Hills, South Dakota. The Nash-Sutcliffe efficiency (NSE), Pearson correlation coefficient (r">rr), and coefficient of determination (R2">R2R2) statistics for the daily, monthly, and annual flows were used to evaluate the models’ performance. Results from the HSPF models showed that the HSPF consistently simulated the annual flows for both large and small basins better than the monthly and daily flows, and the simulated flows for the small watershed better than flows for the large watershed. In comparison, the PRMS model results show that the PRMS simulated the monthly flows for both the large and small watersheds better than the daily and annual flows, and the range of statistical error in the PRMS models was greater than that in the HSPF models. Moreover, it can be concluded that the statistical error in the HSPF and the PRMSdaily, monthly, and annual flow estimates for watersheds in the Black Hills was influenced by both temporal and spatial scale variability.

  6. Managing Watersheds as Couple Human-Natural Systems: A Review of Research Opportunities

    NASA Astrophysics Data System (ADS)

    Cai, X.

    2011-12-01

    Many watersheds around the world are impaired with severe social and environmental problems due to heavy anthropogenic stresses. Humans have transformed hydrological and biochemical processes in watersheds from a stationary to non-stationary status through direct (e.g., water withdrawals) and indirect (e.g., altering vegetation and land cover) interferences. It has been found that in many watersheds that socio-economic drivers, which have caused increasingly intensive alteration of natural processes, have even overcome natural variability to become the dominant factor affecting the behavior of watershed systems. Reversing this trend requires an understanding of the drivers of this intensification trajectory, and needs tremendous policy reform and investment. As stressed by several recent National Research Council (NRC) reports, watershed management will pose an enormous challenge in the coming decades. Correspondingly, the focus of research has started an evolution from the management of reservoir, stormwater and aquifer systems to the management of integrated watershed systems, to which policy instruments designed to make more rational economic use of water resources are likely to be applied. To provide a few examples: reservoir operation studies have moved from a local to a watershed scale in order to consider upstream best management practices in soil conservation and erosion control and downstream ecological flow requirements and water rights; watersheds have been modeled as integrated hydrologic-economic systems with multidisciplinary modeling efforts, instead of traditional isolated physical systems. Today's watershed management calls for a re-definition of watersheds from isolated natural systems to coupled human-natural systems (CHNS), which are characterized by the interactions between human activities and natural processes, crossing various spatial and temporal scales within the context of a watershed. The importance of the conceptual innovation has been evidenced by 1) institutional innovation for integrated watershed management; 2) real-world management practices involving multidisciplinary expertise; 3) growing role of economics in systems analysis; 4) enhanced research programs such as the CHNS program and Water, Sustainability and Climate (WSC) program at the US National Science Foundation (NSF). Furthermore, recent scientific and technological developments are expected to accommodate integrated watershed system analysis approaches, such as: 1) increasing availability of distributed digital datasets especially from remote sensing products (e.g. digital watersheds); 2) distributed and semi-distributed watershed hydrologic modeling; 3) enhanced hydroclimatic monitoring and forecast; 4) identified evidences of vulnerability and threshold behavior of watersheds; and 5) continuing improvements in computational and optimization algorithms. Managing watersheds as CHNS will be critical for watershed sustainability, which ensures that human societies will benefit forever from the watershed through development of harmonious relationships between human and natural systems. This presentation will provide a review of the research opportunities that take advantage of the concept of CHNS and associated scientific, technological and institutional innovations/developments.

  7. HSPF Toolkit: a New Tool for Stormwater Management at the Watershed Scale

    EPA Science Inventory

    The Hydrological Simulation Program - FORTRAN (HSPF) is a comprehensive watershed model endorsed by US EPA for simulating point and nonpoint source pollutants. The model is used for developing total maximum daily load (TMDL) plans for impaired water bodies; as such, HSPF is the c...

  8. The U.S. Geological Survey Coal Hydrology Program and the potential of hydrologic models for impact assessments

    USGS Publications Warehouse

    Doyle, W. Harry

    1981-01-01

    A requirement of Public Law 95-87, the Surface Mining Control and Reclamation Act of 1977, is the understanding of the hydrology in actual and proposed surface-mined areas. Surface-water data for small specific-sites and for larger areas such as adjacent and general areas are needed also to satisfy the hydrologic requirements of the Act. The Act specifies that surface-water modeling techniques may be used to generate the data and information. The purpose of this report is to describe how this can be achieved for smaller watersheds. This report also characterizes 12 ' state-of-the-art ' strip-mining assessment models that are to be tested with data from two data-intensive studies involving small watersheds in Tennessee and Indiana. Watershed models are best applied to small watersheds with specific-site data. Extending the use of modeling techniques to larger watersheds remains relatively untested, and to date the upper limits for application have not been established. The U.S. Geological Survey is currently collecting regional hydrologic data in the major coal provinces of the United States and this data will be used to help satisfy the ' general-area ' data requirements of the Act. This program is reviewed and described in this report. (USGS)

  9. Hydrologic and water quality sensitivity to climate and land ...

    EPA Pesticide Factsheets

    This page describes a current EPA ORD project. No project report or other download is available at this time. Please see the section Next Steps below for a timeline of anticipated products of this work. Background: Projected changes in climate during the next century could cause or contribute to increased flooding, drought, water quality degradation, and ecosystem impairment. The effects of climate change in different watersheds will vary due to regional differences in climate change, physiographic setting, and interaction with land-use, pollutant sources, and water management in different locations. EPA is conducting watershed modeling to develop hydrologic and water quality change scenarios for 20 relatively large U.S. watersheds. Watershed modeling will be conducted using the Hydrologic Simulation Program-FORTRAN (HSPF) and Soil Water Assessment Tool (SWAT) watershed models. Study areas range from about 10,000-15,000 square miles in size, and will cover nearly every ecoregion in the United States and a range of hydro-climatic conditions. A range of hydrologic and water quality endpoints will be determined for each watershed simulation. Endpoints will be selected to inform upon a range of stream flow, water quality, aquatic ecosystem, and EPA program management goals and targets. Model simulations will be conducted to evaluate a range of projected future (2040-2070) changes in climate and land-use. Simulations will include baseline conditions,

  10. CTUIR Grande Ronde River Watershed Restoration Program McCoy Creek/McIntyre Creek Road Crossing, 1995-1999 Progress Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Childs, Allen B.

    2000-08-01

    The Confederated Tribes of the Umatilla Indian Reservation (CTUIR) and Bonneville Power Administration (BPA) entered into a contract agreement beginning in 1996 to fund watershed restoration and enhancement actions and contribute to recovery of fish and wildlife resources and water quality in the Grande Ronde River Basin. The CTUIR's habitat program is closely coordinated with the Grande Ronde Model Watershed Program and multiple agencies and organizations within the basin. The CTUIR has focused during the past 4 years in the upper portions of the Grande Ronde Subbasin (upstream of LaGrande, Oregon) on several major project areas in the Meadow, McCoy,more » and McIntyre Creek watersheds and along the mainstem Grande Ronde River. This Annual Report provides an overview of individual projects and accomplishments.« less

  11. P2S--Coupled simulation with the Precipitation-Runoff Modeling System (PRMS) and the Stream Temperature Network (SNTemp) Models

    USGS Publications Warehouse

    Markstrom, Steven L.

    2012-01-01

    A software program, called P2S, has been developed which couples the daily stream temperature simulation capabilities of the U.S. Geological Survey Stream Network Temperature model with the watershed hydrology simulation capabilities of the U.S. Geological Survey Precipitation-Runoff Modeling System. The Precipitation-Runoff Modeling System is a modular, deterministic, distributed-parameter, physical-process watershed model that simulates hydrologic response to various combinations of climate and land use. Stream Network Temperature was developed to help aquatic biologists and engineers predict the effects of changes that hydrology and energy have on water temperatures. P2S will allow scientists and watershed managers to evaluate the effects of historical climate and projected climate change, landscape evolution, and resource management scenarios on watershed hydrology and in-stream water temperature.

  12. Evaluation results of the GlobalWatershed GK-12 Fellowship Program - a model for increased science literacy and partnership

    NASA Astrophysics Data System (ADS)

    Mayer, A. S.; Vye, E.

    2016-12-01

    The Michigan Tech GlobalWatershed GK-12 Fellowship program bridges the gap between K-12 learning institutions and the scientific community with a focus on watershed research. Michigan Tech graduate students (fellows) work in tandem with teachers on the development of relevant hands-on, inquiry based lesson plans and activities based on their doctoral research projects in watershed science. By connecting students and teachers to state of the art academic research in watershed science, teachers are afforded a meaningful way in which to embed scientific research as a component of K-12 curricula, while mentoring fellows on the most pertinent and essential topics for lesson plan development. Fellows fulfill their vital responsibility of communicating their academic research to a broader public while fostering improved teaching and communication skills. A goal of the project is to increase science literacy among students so they may understand, communicate and participate in decisions made at local, regional, and global levels. The project largely works with schools located in Michigan's western Upper Peninsula but also partners with K-12 systems in Sonora, Mexico. While focusing on local and regional issues, the international element of the project helps expand student, teacher, and fellow worldviews and global awareness of watershed issues and creates meaningful partnerships. Lesson plans are available online and teacher workshops are held regularly to disseminate the wealth of information and resources available to the broader public. Evaluation results indicate that fellows' skill and confidence in their ability to communicate science increased as a results of their participation of the program, as well as their desire to communicate science in their future careers. Teachers' confidence in their capacity to present watershed science to their students increased, along with their understanding of how scientific research contributes to understanding of water-related issues. The GlobalWatershed GK-12 Fellowship program serves as a model for broadening scientific impacts among a wider public through shared communication and partnership.

  13. Spatially-Distributed Cost-Effectiveness Analysis Framework to Control Phosphorus from Agricultural Diffuse Pollution.

    PubMed

    Geng, Runzhe; Wang, Xiaoyan; Sharpley, Andrew N; Meng, Fande

    2015-01-01

    Best management practices (BMPs) for agricultural diffuse pollution control are implemented at the field or small-watershed scale. However, the benefits of BMP implementation on receiving water quality at multiple spatial is an ongoing challenge. In this paper, we introduce an integrated approach that combines risk assessment (i.e., Phosphorus (P) index), model simulation techniques (Hydrological Simulation Program-FORTRAN), and a BMP placement tool at various scales to identify the optimal location for implementing multiple BMPs and estimate BMP effectiveness after implementation. A statistically significant decrease in nutrient discharge from watersheds is proposed to evaluate the effectiveness of BMPs, strategically targeted within watersheds. Specifically, we estimate two types of cost-effectiveness curves (total pollution reduction and proportion of watersheds improved) for four allocation approaches. Selection of a ''best approach" depends on the relative importance of the two types of effectiveness, which involves a value judgment based on the random/aggregated degree of BMP distribution among and within sub-watersheds. A statistical optimization framework is developed and evaluated in Chaohe River Watershed located in the northern mountain area of Beijing. Results show that BMP implementation significantly (p >0.001) decrease P loss from the watershed. Remedial strategies where BMPs were targeted to areas of high risk of P loss, deceased P loads compared with strategies where BMPs were randomly located across watersheds. Sensitivity analysis indicated that aggregated BMP placement in particular watershed is the most cost-effective scenario to decrease P loss. The optimization approach outlined in this paper is a spatially hierarchical method for targeting nonpoint source controls across a range of scales from field to farm, to watersheds, to regions. Further, model estimates showed targeting at multiple scales is necessary to optimize program efficiency. The integrated model approach described that selects and places BMPs at varying levels of implementation, provides a new theoretical basis and technical guidance for diffuse pollution management in agricultural watersheds.

  14. Fish Passage Assessment: Big Canyon Creek Watershed, Technical Report 2004.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christian, Richard

    2004-02-01

    This report presents the results of the fish passage assessment as outlined as part of the Protect and Restore the Big Canyon Creek Watershed project as detailed in the CY2003 Statement of Work (SOW). As part of the Northwest Power Planning Council's Columbia Basin Fish and Wildlife Program (FWP), this project is one of Bonneville Power Administration's (BPA) many efforts at off-site mitigation for damage to salmon and steelhead runs, their migration, and wildlife habitat caused by the construction and operation of federal hydroelectric dams on the Columbia River and its tributaries. The proposed restoration activities within the Big Canyonmore » Creek watershed follow the watershed restoration approach mandated by the Fisheries and Watershed Program. Nez Perce Tribal Fisheries/Watershed Program vision focuses on protecting, restoring, and enhancing watersheds and treaty resources within the ceded territory of the Nez Perce Tribe under the Treaty of 1855 with the United States Federal Government. The program uses a holistic approach, which encompasses entire watersheds, ridge top to ridge top, emphasizing all cultural aspects. We strive toward maximizing historic ecosystem productive health, for the restoration of anadromous and resident fish populations. The Nez Perce Tribal Fisheries/Watershed Program (NPTFWP) sponsors the Protect and Restore the Big Canyon Creek Watershed project. The NPTFWP has the authority to allocate funds under the provisions set forth in their contract with BPA. In the state of Idaho vast numbers of relatively small obstructions, such as road culverts, block thousands of miles of habitat suitable for a variety of fish species. To date, most agencies and land managers have not had sufficient, quantifiable data to adequately address these barrier sites. The ultimate objective of this comprehensive inventory and assessment was to identify all barrier crossings within the watershed. The barriers were then prioritized according to the amount of habitat blocked at each site and the fish life history stages impacted. This assessment protocol will hopefully prove useful to other agencies and become a model for use in other watersheds.« less

  15. Watershed Stewardship Education Program--A Multidisciplinary Extension Education Program for Oregon's Watershed Councils.

    ERIC Educational Resources Information Center

    Conway, Flaxen D. L.; Godwin, Derek; Cloughesy, Mike; Nierenberg, Tara

    2003-01-01

    The Watershed Stewardship Education Program (WSEP) is a multidisciplinary Oregon Extension designed to help watershed councils, landowners, and others work effectively together on water management. Components include practical, easy-to-use educational materials, training in effective collaboration, a Master Watershed Stewards program, and advanced…

  16. Stochastic Watershed Models for Risk Based Decision Making

    NASA Astrophysics Data System (ADS)

    Vogel, R. M.

    2017-12-01

    Over half a century ago, the Harvard Water Program introduced the field of operational or synthetic hydrology providing stochastic streamflow models (SSMs), which could generate ensembles of synthetic streamflow traces useful for hydrologic risk management. The application of SSMs, based on streamflow observations alone, revolutionized water resources planning activities, yet has fallen out of favor due, in part, to their inability to account for the now nearly ubiquitous anthropogenic influences on streamflow. This commentary advances the modern equivalent of SSMs, termed `stochastic watershed models' (SWMs) useful as input to nearly all modern risk based water resource decision making approaches. SWMs are deterministic watershed models implemented using stochastic meteorological series, model parameters and model errors, to generate ensembles of streamflow traces that represent the variability in possible future streamflows. SWMs combine deterministic watershed models, which are ideally suited to accounting for anthropogenic influences, with recent developments in uncertainty analysis and principles of stochastic simulation

  17. LOADING SIMULATION PROGRAM C

    EPA Pesticide Factsheets

    LSPC is the Loading Simulation Program in C++, a watershed modeling system that includes streamlined Hydrologic Simulation Program Fortran (HSPF) algorithms for simulating hydrology, sediment, and general water quality

  18. Assessment of runoff and sediment yields using the AnnAGNPS model in a Three-Gorge watershed of China.

    PubMed

    Hua, Lizhong; He, Xiubin; Yuan, Yongping; Nan, Hongwei

    2012-05-01

    Soil erosion has been recognized as one of the major threats to our environment and water quality worldwide, especially in China. To mitigate nonpoint source water quality problems caused by soil erosion, best management practices (BMPs) and/or conservation programs have been adopted. Watershed models, such as the Annualized Agricultural Non-Point Source Pollutant Loading model (AnnAGNPS), have been developed to aid in the evaluation of watershed response to watershed management practices. The model has been applied worldwide and proven to be a very effective tool in identifying the critical areas which had serious erosion, and in aiding in decision-making processes for adopting BMPs and/or conservation programs so that cost/benefit can be maximized and non-point source pollution control can be achieved in the most efficient way. The main goal of this study was to assess the characteristics of soil erosion, sediment and sediment delivery of a watershed so that effective conservation measures can be implemented. To achieve the overall objective of this study, all necessary data for the 4,184 km(2) Daning River watershed in the Three-Gorge region of the Yangtze River of China were assembled. The model was calibrated using observed monthly runoff from 1998 to 1999 (Nash-Sutcliffe coefficient of efficiency of 0.94 and R(2) of 0.94) and validated using the observed monthly runoff from 2003 to 2005 (Nash-Sutcliffe coefficient of efficiency of 0.93 and R(2) of 0.93). Additionally, the model was validated using annual average sediment of 2000-2002 (relative error of -0.34) and 2003-2004 (relative error of 0.18) at Wuxi station. Post validation simulation showed that approximately 48% of the watershed was under the soil loss tolerance released by the Ministry of Water Resources of China (500 t·km(-2)·y(-1)). However, 8% of the watershed had soil erosion of exceeding 5,000 t·km(-2)·y(-1). Sloping areas and low coverage areas are the main source of soil loss in the watershed.

  19. Assessment of Runoff and Sediment Yields Using the AnnAGNPS Model in a Three-Gorge Watershed of China

    PubMed Central

    Hua, Lizhong; He, Xiubin; Yuan, Yongping; Nan, Hongwei

    2012-01-01

    Soil erosion has been recognized as one of the major threats to our environment and water quality worldwide, especially in China. To mitigate nonpoint source water quality problems caused by soil erosion, best management practices (BMPs) and/or conservation programs have been adopted. Watershed models, such as the Annualized Agricultural Non-Point Source Pollutant Loading model (AnnAGNPS), have been developed to aid in the evaluation of watershed response to watershed management practices. The model has been applied worldwide and proven to be a very effective tool in identifying the critical areas which had serious erosion, and in aiding in decision-making processes for adopting BMPs and/or conservation programs so that cost/benefit can be maximized and non-point source pollution control can be achieved in the most efficient way. The main goal of this study was to assess the characteristics of soil erosion, sediment and sediment delivery of a watershed so that effective conservation measures can be implemented. To achieve the overall objective of this study, all necessary data for the 4,184 km2 Daning River watershed in the Three-Gorge region of the Yangtze River of China were assembled. The model was calibrated using observed monthly runoff from 1998 to 1999 (Nash-Sutcliffe coefficient of efficiency of 0.94 and R2 of 0.94) and validated using the observed monthly runoff from 2003 to 2005 (Nash-Sutcliffe coefficient of efficiency of 0.93 and R2 of 0.93). Additionally, the model was validated using annual average sediment of 2000–2002 (relative error of −0.34) and 2003–2004 (relative error of 0.18) at Wuxi station. Post validation simulation showed that approximately 48% of the watershed was under the soil loss tolerance released by the Ministry of Water Resources of China (500 t·km−2·y−1). However, 8% of the watershed had soil erosion of exceeding 5,000 t·km−2·y−1. Sloping areas and low coverage areas are the main source of soil loss in the watershed. PMID:22754480

  20. Watershed Watch: Using undergraduate student-driven inquiry-based research projects as a means of engaging undeclared students in the biogeosciences

    NASA Astrophysics Data System (ADS)

    Rock, B. N.; Hale, S.; Graham, K.; Hayden, L. B.

    2009-12-01

    Watershed Watch (NSF 0525433) engages early undergraduate students from two-year and four-year colleges in student-driven full inquiry-based instruction in the biogeosciences. Program goals for Watershed Watch are to test if inquiry-rich student-driven projects sufficiently engage undeclared students (or noncommittal STEM majors) to declare a STEM major (or remain with their STEM major). The program is a partnership between two four-year campuses - the University of New Hampshire (UNH), and Elizabeth City State University (ECSU, in North Carolina); and two two-year campuses - Great Bay Community College (GBCC, in New Hampshire) and the College of the Albemarle (COA, in North Carolina). The program focuses on two watersheds: the Merrimack Ricer Watershed in New Hampshire and Massachusetts, and the Pasquotank River Watershed in Virginia and North Carolina. Both the terrestrial and aquatic components of both watersheds are evaluated using the student-driven projects. A significant component of this program is an intensive two-week Summer Research Institute (SRI), in which undeclared freshmen and sophomores investigate various aspects of their local watershed. Two Summer Research Institutes have been held on the UNH campus (2006 and 2008) and two on the ECSU campus (2007 and 2009). Students develop their own research questions and study design, collect and analyze data, and produce a scientific oral or poster presentation on the last day of the SRI. The course objectives, curriculum and schedule are presented as a model for dissemination for other institutions and programs seeking to develop inquiry-rich programs or courses designed to attract students into biogeoscience disciplines. Data from self-reported student feedback indicate the most important factors explaining high-levels of student motivation and research excellence in the program are: 1) working with committed, energetic, and enthusiastic faculty mentors, and 2) faculty mentors demonstrating high degrees of teamwork and coordination. The past four Summer Research Institutes have engaged over 100 entry-level undergraduate students in the process of learning science by doing it, and approximately 50% of those participating have declared majors in a wide range of science fields. A total of eight Watershed Watch students have presented findings from their SRI research projects at AGU meetings in 2007, 2008, and 2009. This presentation will highlight the lessons learned over the past four years in the Watershed Watch program.

  1. Hydrological Modeling of the Jiaoyi Watershed (China) Using HSPF Model

    PubMed Central

    Yan, Chang-An; Zhang, Wanchang; Zhang, Zhijie

    2014-01-01

    A watershed hydrological model, hydrological simulation program-Fortran (HSPF), was applied to simulate the spatial and temporal variation of hydrological processes in the Jiaoyi watershed of Huaihe River Basin, the heaviest shortage of water resources and polluted area in China. The model was calibrated using the years 2001–2004 and validated with data from 2005 to 2006. Calibration and validation results showed that the model generally simulated mean monthly and daily runoff precisely due to the close matching hydrographs between simulated and observed runoff, as well as the excellent evaluation indicators such as Nash-Sutcliffe efficiency (NSE), coefficient of correlation (R 2), and the relative error (RE). The similar simulation results between calibration and validation period showed that all the calibrated parameters had a certain representation in Jiaoyi watershed. Additionally, the simulation in rainy months was more accurate than the drought months. Another result in this paper was that HSPF was also capable of estimating the water balance components reasonably and realistically in space through the whole watershed. The calibrated model can be used to explore the effects of climate change scenarios and various watershed management practices on the water resources and water environment in the basin. PMID:25013863

  2. Quantification of BMPs Selection and Spatial Placement Impact on Water Quality Controlling Plans in Lower Bear River Watershed, Utah

    NASA Astrophysics Data System (ADS)

    Salha, A. A.; Stevens, D. K.

    2016-12-01

    The aim of the watershed-management program in Box Elder County, Utah set by Utah Division of Water Quality (UDEQ) is to evaluate the effectiveness and spatial placement of the implemented best-management practices (BMP) for controlling nonpoint-source contamination at watershed scale. The need to evaluate the performance of BMPs would help future policy and program decisions making as desired end results. The environmental and costs benefits of BMPs in Lower Bear River watershed have seldom been measured beyond field experiments. Yet, implemented practices have rarely been evaluated at the watershed scale where the combined effects of variable soils, climatic conditions, topography and land use/covers and management conditions may significantly change anticipated results and reductions loads. Such evaluation requires distributed watershed models that are necessary for quantifying and reproducing the movement of water, sediments and nutrients. Soil and Water Assessment Tool (SWAT) model is selected as a watershed level tool to identify contaminant nonpoint sources (critical zones) and areas of high pollution risks. Water quality concerns have been documented and are primarily attributed to high phosphorus and total suspended sediment concentrations caused by agricultural and farming practices (required load is 460 kg/day of total phosphorus based on 0.075 mg/l and an average of total suspended solids of 90 mg/l). Input data such as digital elevation model (DEM), land use/Land cover (LULC), soils, and climate data for 10 years (2000-2010) is utilized along with observed water quality at the watershed outlet (USGS) and some discrete monitoring points within the watershed. Statistical and spatial analysis of scenarios of management practices (BMP's) are not implemented (before implementation), during implementation, and after BMP's have been studied to determine whether water quality of the two main water bodies has improved as required by the LBMR watershed's TMDL and if the BMPs are cost-effectively targeting the critical zones.

  3. WC WAVE - Integrating Diverse Hydrological-Modeling Data and Services Into an Interoperable Geospatial Infrastructure

    NASA Astrophysics Data System (ADS)

    Hudspeth, W. B.; Baros, S.; Barrett, H.; Savickas, J.; Erickson, J.

    2015-12-01

    WC WAVE (Western Consortium for Watershed Analysis, Visualization and Exploration) is a collaborative research project between the states of Idaho, Nevada, and New Mexico that is funded under the National Science Foundation's Experimental Program to Stimulate Competitive Research (EPSCoR). The goal of the project is to understand and document the effects of climate change on interactions between precipitation, vegetation growth, soil moisture and other landscape properties. These interactions are modeled within a framework we refer to as a virtual watershed (VW), a computer infrastructure that simulates watershed dynamics by linking scientific modeling, visualization, and data management components into a coherent whole. Developed and hosted at the Earth Data Analysis Center, University of New Mexico, the virtual watershed has a number of core functions which include: a) streamlined access to data required for model initialization and boundary conditions; b) the development of analytic scenarios through interactive visualization of available data and the storage of model configuration options; c) coupling of hydrological models through the rapid assimilation of model outputs into the data management system for access and use by sequent models. The WC-WAVE virtual watershed accomplishes these functions by provision of large-scale vector and raster data discovery, subsetting, and delivery via Open Geospatial Consortium (OGC) and REST web service standards. Central to the virtual watershed is the design and use of an innovative array of metadata elements that permits the stepwise coupling of diverse hydrological models (e.g. ISNOBAL, PRMS, CASiMiR) and input data to rapidly assess variation in outcomes under different climatic conditions. We present details on the architecture and functionality of the virtual watershed, results from three western U.S. watersheds, and discuss the realized benefits to watershed science of employing this integrated solution.

  4. Stream Flow Prediction by Remote Sensing and Genetic Programming

    NASA Technical Reports Server (NTRS)

    Chang, Ni-Bin

    2009-01-01

    A genetic programming (GP)-based, nonlinear modeling structure relates soil moisture with synthetic-aperture-radar (SAR) images to present representative soil moisture estimates at the watershed scale. Surface soil moisture measurement is difficult to obtain over a large area due to a variety of soil permeability values and soil textures. Point measurements can be used on a small-scale area, but it is impossible to acquire such information effectively in large-scale watersheds. This model exhibits the capacity to assimilate SAR images and relevant geoenvironmental parameters to measure soil moisture.

  5. Publically accessible decision support system of the spatially referenced regressions on watershed attributes (SPARROW) model and model enhancements in South Carolina

    Treesearch

    Celeste Journey; Anne B. Hoos; David E. Ladd; John W. brakebill; Richard A. Smith

    2016-01-01

    The U.S. Geological Survey (USGS) National Water Quality Assessment program has developed a web-based decision support system (DSS) to provide free public access to the steady-stateSPAtially Referenced Regressions On Watershed attributes (SPARROW) model simulation results on nutrient conditions in streams and rivers and to offer scenario testing capabilities for...

  6. Users manual for an expert system (HSPEXP) for calibration of the hydrological simulation program; Fortran

    USGS Publications Warehouse

    Lumb, A.M.; McCammon, R.B.; Kittle, J.L.

    1994-01-01

    Expert system software was developed to assist less experienced modelers with calibration of a watershed model and to facilitate the interaction between the modeler and the modeling process not provided by mathematical optimization. A prototype was developed with artificial intelligence software tools, a knowledge engineer, and two domain experts. The manual procedures used by the domain experts were identified and the prototype was then coded by the knowledge engineer. The expert system consists of a set of hierarchical rules designed to guide the calibration of the model through a systematic evaluation of model parameters. When the prototype was completed and tested, it was rewritten for portability and operational use and was named HSPEXP. The watershed model Hydrological Simulation Program--Fortran (HSPF) is used in the expert system. This report is the users manual for HSPEXP and contains a discussion of the concepts and detailed steps and examples for using the software. The system has been tested on watersheds in the States of Washington and Maryland, and the system correctly identified the model parameters to be adjusted and the adjustments led to improved calibration.

  7. DEVELOP Chesapeake Bay Watershed Hydrology - UAV Sensor Web

    NASA Astrophysics Data System (ADS)

    Holley, S. D.; Baruah, A.

    2008-12-01

    The Chesapeake Bay is the largest estuary in the United States, with a watershed extending through six states and the nation's capital. Urbanization and agriculture practices have led to an excess runoff of nutrients and sediment into the bay. Nutrients and sediment loading stimulate the growth of algal blooms associated with various problems including localized dissolved oxygen deficiencies, toxic algal blooms and death of marine life. The Chesapeake Bay Program, among other stakeholder organizations, contributes greatly to the restoration efforts of the Chesapeake Bay. These stakeholders contribute in many ways such as monitoring the water quality, leading clean-up projects, and actively restoring native habitats. The first stage of the DEVELOP Chesapeake Bay Coastal Management project, relating to water quality, contributed to the restoration efforts by introducing NASA satellite-based water quality data products to the stakeholders as a complement to their current monitoring methods. The second stage, to be initiated in the fall 2008 internship term, will focus on the impacts of land cover variability within the Chesapeake Bay Watershed. Multiple student led discussions with members of the Land Cover team at the Chesapeake Bay Program Office in the DEVELOP GSFC 2008 summer term uncovered the need for remote sensing data for hydrological mapping in the watershed. The Chesapeake Bay Program expressed in repeated discussions on Land Cover mapping that significant portions of upper river areas, streams, and the land directly interfacing those waters are not accurately depicted in the watershed model. Without such hydrological mapping correlated with land cover data the model will not be useful in depicting source areas of nutrient loading which has an ecological and economic impact in and around the Chesapeake Bay. The fall 2008 DEVELOP team will examine the use of UAV flown sensors in connection with in-situ and Earth Observation satellite data. To maximize the web of data, students will also examine the NASA's research into self organizing neural-networks to ensure the data is correlated in such a manner as to support the sensor web connections. Additionally, students will learn the operation and functionality of the Chesapeake Bay Program's watershed model to examine and determine the potential for integration of the sensor web data into the watershed model.

  8. TMDL MODEL EVALUATION AND RESEARCH NEEDS

    EPA Science Inventory

    This review examines the modeling research needs to support environmental decision-making for the 303(d) requirements for development of total maximum daily loads (TMDLs) and related programs such as 319 Nonpoint Source Program activities, watershed management, stormwater permits...

  9. Using NEXRAD and Rain Gauge Precipitation Data for Hydrologic Calibration of SWAT in a Northeastern Watershed

    USDA-ARS?s Scientific Manuscript database

    The value of watershed-scale, hydrologic/water quality models to ecosystem management is increasingly evident as more programs adopt these tools to evaluate the effectiveness of different management scenarios and their impact on the environment. Quality of precipitation data is critical for appropri...

  10. Relationships Among Watershed Condition, Nutrients, and Algae in New England Streams Affected by Urbanization

    EPA Science Inventory

    We examined algal metrics as indicators of altered watershed land cover and nutrients to inform their potential use in monitoring programs. Multiple regression models, in which impervious cover explained the most variation, indicated concentrations <0.202 mg/l NO3 and <0.015 mg/l...

  11. MODELING OF THE MISSISSIPPI SOUND AND ADJOINING RIVERS, BAYS, AND SHELF WATERS

    EPA Science Inventory

    The Gulf of Mexico and its coastal watersheds are a complex ecosystem that is receiving negative impacts from human activities both in the Gulf and its watersheds. The Gulf of Mexico Program (GMP), as a multi-agency effort, is working with the Gulf States, citizens, and private ...

  12. Modeling the influence of climate change on watershed systems: Adaptation through targeted practices

    NASA Astrophysics Data System (ADS)

    Dudula, John; Randhir, Timothy O.

    2016-10-01

    Climate change may influence hydrologic processes of watersheds (IPCC, 2013) and increased runoff may cause flooding, eroded stream banks, widening of stream channels, increased pollutant loading, and consequently impairment of aquatic life. The goal of this study was to quantify the potential impacts of climate change on watershed hydrologic processes and to evaluate scale and effectiveness of management practices for adaptation. We simulate baseline watershed conditions using the Hydrological Simulation Program Fortran (HSPF) simulation model to examine the possible effects of changing climate on watershed processes. We also simulate the effects of adaptation and mitigation through specific best management strategies for various climatic scenarios. With continuing low-flow conditions and vulnerability to climate change, the Ipswich watershed is the focus of this study. We quantify fluxes in runoff, evapotranspiration, infiltration, sediment load, and nutrient concentrations under baseline and climate change scenarios (near and far future). We model adaptation options for mitigating climate effects on watershed processes using bioretention/raingarden Best Management Practices (BMPs). It was observed that climate change has a significant impact on watershed runoff and carefully designed and maintained BMPs at subwatershed scale can be effective in mitigating some of the problems related to stormwater runoff. Policy options include implementation of BMPs through education and incentives for scale-dependent and site specific bioretention units/raingardens to increase the resilience of the watershed system to current and future climate change.

  13. Implications of Modeling Uncertainty for Water Quality Decision Making

    NASA Astrophysics Data System (ADS)

    Shabman, L.

    2002-05-01

    The report, National Academy of Sciences report, "Assessing the TMDL Approach to Water Quality Management" endorsed the "watershed" and "ambient water quality focused" approach" to water quality management called for in the TMDL program. The committee felt that available data and models were adequate to move such a program forward, if the EPA and all stakeholders better understood the nature of the scientific enterprise and its application to the TMDL program. Specifically, the report called for a greater acknowledgement of model prediction uncertinaity in making and implementing TMDL plans. To assure that such uncertinaity was addressed in water quality decision making the committee called for a commitment to "adaptive implementation" of water quality management plans. The committee found that the number and complexity of the interactions of multiple stressors, combined with model prediction uncertinaity means that we need to avoid the temptation to make assurances that specific actions will result in attainment of particular water quality standards. Until the work on solving a water quality problem begins, analysts and decision makers cannot be sure what the correct solutions are, or even what water quality goals a community should be seeking. In complex systems we need to act in order to learn; adaptive implementation is a concurrent process of action and learning. Learning requires (1) continued monitoring of the waterbody to determine how it responds to the actions taken and (2) carefully designed experiments in the watershed. If we do not design learning into what we attempt we are not doing adaptive implementation. Therefore, there needs to be an increased commitment to monitoring and experiments in watersheds that will lead to learning. This presentation will 1) explain the logic for adaptive implementation; 2) discuss the ways that water quality modelers could characterize and explain model uncertinaity to decision makers; 3) speculate on the implications of the adaptive implementation for setting of water quality standards, for design of watershed monitoring programs and for the regulatory rules governing the TMDL program implementation.

  14. Evaluating the impact of field-scale management strategies on sediment transport to the watershed outlet.

    PubMed

    Sommerlot, Andrew R; Pouyan Nejadhashemi, A; Woznicki, Sean A; Prohaska, Michael D

    2013-10-15

    Non-point source pollution from agricultural lands is a significant contributor of sediment pollution in United States lakes and streams. Therefore, quantifying the impact of individual field management strategies at the watershed-scale provides valuable information to watershed managers and conservation agencies to enhance decision-making. In this study, four methods employing some of the most cited models in field and watershed scale analysis were compared to find a practical yet accurate method for evaluating field management strategies at the watershed outlet. The models used in this study including field-scale model (the Revised Universal Soil Loss Equation 2 - RUSLE2), spatially explicit overland sediment delivery models (SEDMOD), and a watershed-scale model (Soil and Water Assessment Tool - SWAT). These models were used to develop four modeling strategies (methods) for the River Raisin watershed: Method 1) predefined field-scale subbasin and reach layers were used in SWAT model; Method 2) subbasin-scale sediment delivery ratio was employed; Method 3) results obtained from the field-scale RUSLE2 model were incorporated as point source inputs to the SWAT watershed model; and Method 4) a hybrid solution combining analyses from the RUSLE2, SEDMOD, and SWAT models. Method 4 was selected as the most accurate among the studied methods. In addition, the effectiveness of six best management practices (BMPs) in terms of the water quality improvement and associated cost were assessed. Economic analysis was performed using Method 4, and producer requested prices for BMPs were compared with prices defined by the Environmental Quality Incentives Program (EQIP). On a per unit area basis, producers requested higher prices than EQIP in four out of six BMP categories. Meanwhile, the true cost of sediment reduction at the field and watershed scales was greater than EQIP in five of six BMP categories according to producer requested prices. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. An interval chance-constrained fuzzy modeling approach for supporting land-use planning and eco-environment planning at a watershed level.

    PubMed

    Ou, Guoliang; Tan, Shukui; Zhou, Min; Lu, Shasha; Tao, Yinghui; Zhang, Zuo; Zhang, Lu; Yan, Danping; Guan, Xingliang; Wu, Gang

    2017-12-15

    An interval chance-constrained fuzzy land-use allocation (ICCF-LUA) model is proposed in this study to support solving land resource management problem associated with various environmental and ecological constraints at a watershed level. The ICCF-LUA model is based on the ICCF (interval chance-constrained fuzzy) model which is coupled with interval mathematical model, chance-constrained programming model and fuzzy linear programming model and can be used to deal with uncertainties expressed as intervals, probabilities and fuzzy sets. Therefore, the ICCF-LUA model can reflect the tradeoff between decision makers and land stakeholders, the tradeoff between the economical benefits and eco-environmental demands. The ICCF-LUA model has been applied to the land-use allocation of Wujiang watershed, Guizhou Province, China. The results indicate that under highly land suitable conditions, optimized area of cultivated land, forest land, grass land, construction land, water land, unused land and landfill in Wujiang watershed will be [5015, 5648] hm 2 , [7841, 7965] hm 2 , [1980, 2056] hm 2 , [914, 1423] hm 2 , [70, 90] hm 2 , [50, 70] hm 2 and [3.2, 4.3] hm 2 , the corresponding system economic benefit will be between 6831 and 7219 billion yuan. Consequently, the ICCF-LUA model can effectively support optimized land-use allocation problem in various complicated conditions which include uncertainties, risks, economic objective and eco-environmental constraints. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. 75 FR 48989 - Federal Interagency Steering Committee on Multimedia Environmental Modeling

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-12

    ..., ISCMEM Chair, U.S. Geological Survey, National Research Program, Branch of Regional Research, Eastern..., optimization modeling, reactive transport modeling, and watershed and distributed water quality modeling...

  17. Updates to watershed modeling in the Potholes Reservoir basin, Washington-a supplement to Scientific Investigation Report 2009-5081

    USGS Publications Warehouse

    Mastin, Mark

    2012-01-01

    A previous collaborative effort between the U.S. Geological Survey and the Bureau of Reclamation resulted in a watershed model for four watersheds that discharge into Potholes Reservoir, Washington. Since the model was constructed, two new meteorological sites have been established that provide more reliable real-time information. The Bureau of Reclamation was interested in incorporating this new information into the existing watershed model developed in 2009, and adding measured snowpack information to update simulated results and to improve forecasts of runoff. This report includes descriptions of procedures to aid a user in making model runs, including a description of the Object User Interface for the watershed model with details on specific keystrokes to generate model runs for the contributing basins. A new real-time, data-gathering computer program automates the creation of the model input files and includes the new meteorological sites. The 2009 watershed model was updated with the new sites and validated by comparing simulated results to measured data. As in the previous study, the updated model (2012 model) does a poor job of simulating individual storms, but a reasonably good job of simulating seasonal runoff volumes. At three streamflow-gaging stations, the January 1 to June 30 retrospective forecasts of runoff volume for years 2010 and 2011 were within 40 percent of the measured runoff volume for five of the six comparisons, ranging from -39.4 to 60.3 percent difference. A procedure for collecting measured snowpack data and using the data in the watershed model for forecast model runs, based on the Ensemble Streamflow Prediction method, is described, with an example that uses 2004 snow-survey data.

  18. Experimental Watershed Study Designs: A Tool for Advancing Process Understanding and Management of Mixed-Land-Use Watersheds

    NASA Astrophysics Data System (ADS)

    Hubbart, J. A.; Kellner, R. E.; Zeiger, S. J.

    2016-12-01

    Advancements in watershed management are both a major challenge, and urgent need of this century. The experimental watershed study (EWS) approach provides critical baseline and long-term information that can improve decision-making, and reduce misallocation of mitigation investments. Historically, the EWS approach was used in wildland watersheds to quantitatively characterize basic landscape alterations (e.g. forest harvest, road building). However, in recent years, EWS is being repurposed in contemporary multiple-land-use watersheds comprising a mosaic of land use practices such as urbanizing centers, industry, agriculture, and rural development. The EWS method provides scalable and transferrable results that address the uncertainties of development, while providing a scientific basis for total maximum daily load (TMDL) targets in increasing numbers of Clean Water Act 303(d) listed waters. Collaborative adaptive management (CAM) programs, designed to consider the needs of many stakeholders, can also benefit from EWS-generated information, which can be used for best decision making, and serve as a guidance tool throughout the CAM program duration. Of similar importance, long-term EWS monitoring programs create a model system to show stakeholders how investing in rigorous scientific research initiatives improves decision-making, thereby increasing management efficiencies through more focused investments. The evolution from classic wildland EWS designs to contemporary EWS designs in multiple-land-use watersheds will be presented while illustrating how such an approach can encourage innovation, cooperation, and trust among watershed stakeholders working to reach the common goal of improving and sustaining hydrologic regimes and water quality.

  19. A framework for assessing cumulative effects in watersheds: an introduction to Canadian case studies.

    PubMed

    Dubé, Monique G; Duinker, Peter; Greig, Lorne; Carver, Martin; Servos, Mark; McMaster, Mark; Noble, Bram; Schreier, Hans; Jackson, Lee; Munkittrick, Kelly R

    2013-07-01

    From 2008 to 2013, a series of studies supported by the Canadian Water Network were conducted in Canadian watersheds in an effort to improve methods to assess cumulative effects. These studies fit under a common framework for watershed cumulative effects assessment (CEA). This article presents an introduction to the Special Series on Watershed CEA in IEAM including the framework and its impetus, a brief introduction to each of the articles in the series, challenges, and a path forward. The framework includes a regional water monitoring program that produces 3 core outputs: an accumulated state assessment, stressor-response relationships, and development of predictive cumulative effects scenario models. The framework considers core values, indicators, thresholds, and use of consistent terminology. It emphasizes that CEA requires 2 components, accumulated state quantification and predictive scenario forecasting. It recognizes both of these components must be supported by a regional, multiscale monitoring program. Copyright © 2013 SETAC.

  20. Fena Valley Reservoir watershed and water-balance model updates and expansion of watershed modeling to southern Guam

    USGS Publications Warehouse

    Rosa, Sarah N.; Hay, Lauren E.

    2017-12-01

    In 2014, the U.S. Geological Survey, in cooperation with the U.S. Department of Defense’s Strategic Environmental Research and Development Program, initiated a project to evaluate the potential impacts of projected climate-change on Department of Defense installations that rely on Guam’s water resources. A major task of that project was to develop a watershed model of southern Guam and a water-balance model for the Fena Valley Reservoir. The southern Guam watershed model provides a physically based tool to estimate surface-water availability in southern Guam. The U.S. Geological Survey’s Precipitation Runoff Modeling System, PRMS-IV, was used to construct the watershed model. The PRMS-IV code simulates different parts of the hydrologic cycle based on a set of user-defined modules. The southern Guam watershed model was constructed by updating a watershed model for the Fena Valley watersheds, and expanding the modeled area to include all of southern Guam. The Fena Valley watershed model was combined with a previously developed, but recently updated and recalibrated Fena Valley Reservoir water-balance model.Two important surface-water resources for the U.S. Navy and the citizens of Guam were modeled in this study; the extended model now includes the Ugum River watershed and improves upon the previous model of the Fena Valley watersheds. Surface water from the Ugum River watershed is diverted and treated for drinking water, and the Fena Valley watersheds feed the largest surface-water reservoir on Guam. The southern Guam watershed model performed “very good,” according to the criteria of Moriasi and others (2007), in the Ugum River watershed above Talofofo Falls with monthly Nash-Sutcliffe efficiency statistic values of 0.97 for the calibration period and 0.93 for the verification period (a value of 1.0 represents perfect model fit). In the Fena Valley watershed, monthly simulated streamflow volumes from the watershed model compared reasonably well with the measured values for the gaging stations on the Almagosa, Maulap, and Imong Rivers—tributaries to the Fena Valley Reservoir—with Nash-Sutcliffe efficiency values of 0.87 or higher. The southern Guam watershed model simulated the total volume of the critical dry season (January to May) streamflow for the entire simulation period within –0.54 percent at the Almagosa River, within 6.39 percent at the Maulap River, and within 6.06 percent at the Imong River.The recalibrated water-balance model of the Fena Valley Reservoir generally simulated monthly reservoir storage volume with reasonable accuracy. For the calibration and verification periods, errors in end-of-month reservoir-storage volume ranged from 6.04 percent (284.6 acre-feet or 92.7 million gallons) to –5.70 percent (–240.8 acre-feet or –78.5 million gallons). Monthly simulation bias ranged from –0.48 percent for the calibration period to 0.87 percent for the verification period; relative error ranged from –0.60 to 0.88 percent for the calibration and verification periods, respectively. The small bias indicated that the model did not consistently overestimate or underestimate reservoir storage volume.In the entirety of southern Guam, the watershed model has a “satisfactory” to “very good” rating when simulating monthly mean streamflow for all but one of the gaged watersheds during the verification period. The southern Guam watershed model uses a more sophisticated climate-distribution scheme than the older model to make use of the sparse climate data, as well as includes updated land-cover parameters and the capability to simulate closed depression areas.The new Fena Valley Reservoir water-balance model is useful as an updated tool to forecast short-term changes in the surface-water resources of Guam. Furthermore, the now spatially complete southern Guam watershed model can be used to evaluate changes in streamflow and recharge owing to climate or land-cover changes. These are substantial improvements to the previous models of the Fena Valley watershed and Reservoir. Datasets associated with this report are available as a U.S. Geological Survey data release (Rosa and Hay, 2017; DOI:10.5066/F7HH6HV4).

  1. Spatial multiobjective optimization of agricultural conservation practices using a SWAT model and an evolutionary algorithm.

    PubMed

    Rabotyagov, Sergey; Campbell, Todd; Valcu, Adriana; Gassman, Philip; Jha, Manoj; Schilling, Keith; Wolter, Calvin; Kling, Catherine

    2012-12-09

    Finding the cost-efficient (i.e., lowest-cost) ways of targeting conservation practice investments for the achievement of specific water quality goals across the landscape is of primary importance in watershed management. Traditional economics methods of finding the lowest-cost solution in the watershed context (e.g.,(5,12,20)) assume that off-site impacts can be accurately described as a proportion of on-site pollution generated. Such approaches are unlikely to be representative of the actual pollution process in a watershed, where the impacts of polluting sources are often determined by complex biophysical processes. The use of modern physically-based, spatially distributed hydrologic simulation models allows for a greater degree of realism in terms of process representation but requires a development of a simulation-optimization framework where the model becomes an integral part of optimization. Evolutionary algorithms appear to be a particularly useful optimization tool, able to deal with the combinatorial nature of a watershed simulation-optimization problem and allowing the use of the full water quality model. Evolutionary algorithms treat a particular spatial allocation of conservation practices in a watershed as a candidate solution and utilize sets (populations) of candidate solutions iteratively applying stochastic operators of selection, recombination, and mutation to find improvements with respect to the optimization objectives. The optimization objectives in this case are to minimize nonpoint-source pollution in the watershed, simultaneously minimizing the cost of conservation practices. A recent and expanding set of research is attempting to use similar methods and integrates water quality models with broadly defined evolutionary optimization methods(3,4,9,10,13-15,17-19,22,23,25). In this application, we demonstrate a program which follows Rabotyagov et al.'s approach and integrates a modern and commonly used SWAT water quality model(7) with a multiobjective evolutionary algorithm SPEA2(26), and user-specified set of conservation practices and their costs to search for the complete tradeoff frontiers between costs of conservation practices and user-specified water quality objectives. The frontiers quantify the tradeoffs faced by the watershed managers by presenting the full range of costs associated with various water quality improvement goals. The program allows for a selection of watershed configurations achieving specified water quality improvement goals and a production of maps of optimized placement of conservation practices.

  2. Improving student comprehension of the interconnectivity of the hydrologic cycle with a novel 'hydrology toolbox', integrated watershed model, and companion textbook

    NASA Astrophysics Data System (ADS)

    Huning, L. S.; Margulis, S. A.

    2013-12-01

    Concepts in introductory hydrology courses are often taught in the context of process-based modeling that ultimately is integrated into a watershed model. In an effort to reduce the learning curve associated with applying hydrologic concepts to real-world applications, we developed and incorporated a 'hydrology toolbox' that complements a new, companion textbook into introductory undergraduate hydrology courses. The hydrology toolbox contains the basic building blocks (functions coded in MATLAB) for an integrated spatially-distributed watershed model that makes hydrologic topics (e.g. precipitation, snow, radiation, evaporation, unsaturated flow, infiltration, groundwater, and runoff) more user-friendly and accessible for students. The toolbox functions can be used in a modular format so that students can study individual hydrologic processes and become familiar with the hydrology toolbox. This approach allows such courses to emphasize understanding and application of hydrologic concepts rather than computer coding or programming. While topics in introductory hydrology courses are often introduced and taught independently or semi-independently, they are inherently interconnected. These toolbox functions are therefore linked together at the end of the course to reinforce a holistic understanding of how these hydrologic processes are measured, interconnected, and modeled. They are integrated into a spatially-distributed watershed model or numerical laboratory where students can explore a range of topics such as rainfall-runoff modeling, urbanization, deforestation, watershed response to changes in parameters or forcings, etc. Model output can readily be visualized and analyzed by students to understand watershed response in a real river basin or a simple 'toy' basin. These tools complement the textbook, each of which has been well received by students in multiple hydrology courses with various disciplinary backgrounds. The same governing equations that students have studied in the textbook and used in the toolbox have been encapsulated in the watershed model. Therefore, the combination of the hydrology toolbox, integrated watershed model, and textbook tends to eliminate the potential disconnect between process-based modeling and an 'off-the-shelf' watershed model.

  3. Analysis of sensitivity of simulated recharge to selected parameters for seven watersheds modeled using the precipitation-runoff modeling system

    USGS Publications Warehouse

    Ely, D. Matthew

    2006-01-01

    Recharge is a vital component of the ground-water budget and methods for estimating it range from extremely complex to relatively simple. The most commonly used techniques, however, are limited by the scale of application. One method that can be used to estimate ground-water recharge includes process-based models that compute distributed water budgets on a watershed scale. These models should be evaluated to determine which model parameters are the dominant controls in determining ground-water recharge. Seven existing watershed models from different humid regions of the United States were chosen to analyze the sensitivity of simulated recharge to model parameters. Parameter sensitivities were determined using a nonlinear regression computer program to generate a suite of diagnostic statistics. The statistics identify model parameters that have the greatest effect on simulated ground-water recharge and that compare and contrast the hydrologic system responses to those parameters. Simulated recharge in the Lost River and Big Creek watersheds in Washington State was sensitive to small changes in air temperature. The Hamden watershed model in west-central Minnesota was developed to investigate the relations that wetlands and other landscape features have with runoff processes. Excess soil moisture in the Hamden watershed simulation was preferentially routed to wetlands, instead of to the ground-water system, resulting in little sensitivity of any parameters to recharge. Simulated recharge in the North Fork Pheasant Branch watershed, Wisconsin, demonstrated the greatest sensitivity to parameters related to evapotranspiration. Three watersheds were simulated as part of the Model Parameter Estimation Experiment (MOPEX). Parameter sensitivities for the MOPEX watersheds, Amite River, Louisiana and Mississippi, English River, Iowa, and South Branch Potomac River, West Virginia, were similar and most sensitive to small changes in air temperature and a user-defined flow routing parameter. Although the primary objective of this study was to identify, by geographic region, the importance of the parameter value to the simulation of ground-water recharge, the secondary objectives proved valuable for future modeling efforts. The value of a rigorous sensitivity analysis can (1) make the calibration process more efficient, (2) guide additional data collection, (3) identify model limitations, and (4) explain simulated results.

  4. Applying the SWAT hydrologic model on a watershed containing forested karst.

    Treesearch

    Devendra M. Amatya; Amy E. Edwards

    2009-01-01

    The US Forest Service Center for Forested Wetlands Research is working on a South Carolina Department of Health and Environmental Control (SC DHEC)'s Section 319 Grant Program funded Total Maximum Daily Load (TMDL) project for the watershed of Chapel Branch Creek (CBC) draining to Lake Marion in Santee, South Carolina (Fig. 1)....

  5. Volunteer Watershed Health Monitoring by Local Stakeholders: New Mexico Watershed Watch

    ERIC Educational Resources Information Center

    Fleming, William

    2003-01-01

    Volunteers monitor watershed health in more than 700 programs in the US, involving over 400,000 local stakeholders. New Mexico Watershed Watch is a student-based watershed monitoring program sponsored by the state's Department of Game and Fish which provides high school teachers and students with instruction on methods for water quality…

  6. Watershed models for decision support in the Yakima River basin, Washington

    USGS Publications Warehouse

    Mastin, M.C.; Vaccaro, J.J.

    2002-01-01

    A Decision Support System (DSS) is being developed by the U.S. Geological Survey and the Bureau of Reclamation as part of a long-term project, the Watershed and River Systems Management Program. The goal of the program is to apply the DSS to U.S. Bureau of Reclamation projects in the western United States. The DSS was applied to the Reclamation's Yakima Project in the Yakima River Basin in eastern Washington. An important component of the DSS is the physical hydrology modeling. For the application to the Yakima River Basin, the physical hydrology component consisted of constructing four watershed models using the U.S. Geological Survey's Precipitation-Runoff Modeling System within the Modular Modeling System. The implementation of these models is described. To facilitate calibration of the models, mean annual streamflow also was estimated for ungaged subbasins. The models were calibrated for water years 1950-94 and tested for water years 1995-98. The integration of the models in the DSS for real-time water-management operations using an interface termed the Object User Interface is also described. The models were incorporated in the DSS for use in long-term to short-term planning and have been used in a real-time operational mode since water year 1999.

  7. Testing the effects of in-stream sediment sources and sinks on simulated watershed sediment yield using the coupled U.S. Army Corps of Engineers GSSHA Model and SEDLIB Sediment Transport Library

    NASA Astrophysics Data System (ADS)

    Floyd, I. E.; Downer, C. W.; Brown, G.; Pradhan, N. R.

    2017-12-01

    The Gridded Surface Subsurface Hydrologic Analysis (GSSHA) model is the US Army Corps of Engineers' (USACE)'s only fully coupled overland/in-stream sediment transport model. While the overland sediment transport formulation in GSSHA is considered state of the art, the existing in-stream sediment transport formulation is less robust. A major omission in the formulation of the existing GSSHA in-stream model is the lack of in-stream sources of fine materials. In this effort, we enhanced the in-stream sediment transport capacity of GSSHA by linking GSSHA to the SEDLIB sediment transport library. SEDLIB was developed at the Coastal and Hydraulics Laboratory (CHL) under the System Wide Water Resources Program (SWWRP) and Flood and Coastal (F&C) research program. It is designed to provide a library of sediment flux formulations for hydraulic and hydrologic models, such as GSSHA. This new version of GSSHA, with the updated in-stream sediment transport simulation capability afforded by the linkage to SEDLIB, was tested in against observations in an experimental watershed that had previously been used as a test bed for GSSHA. The results show a significant improvement in the ability to model in-stream sources of fine sediment. This improved capability will broaden the applicability of GSSHA to larger watersheds and watersheds with complex sediment dynamics, such as those subjected to fire hydrology.

  8. Coupling a continuous watershed-scale microbial fate and transport model with a stochastic dose-response model to estimate risk of illness in an urban watershed.

    PubMed

    Liao, Hehuan; Krometis, Leigh-Anne H; Kline, Karen

    2016-05-01

    Within the United States, elevated levels of fecal indicator bacteria (FIB) remain the leading cause of surface water-quality impairments requiring formal remediation plans under the federal Clean Water Act's Total Maximum Daily Load (TMDL) program. The sufficiency of compliance with numerical FIB criteria as the targeted endpoint of TMDL remediation plans may be questionable given poor correlations between FIB and pathogenic microorganisms and varying degrees of risk associated with exposure to different fecal pollution sources (e.g. human vs animal). The present study linked a watershed-scale FIB fate and transport model with a dose-response model to continuously predict human health risks via quantitative microbial risk assessment (QMRA), for comparison to regulatory benchmarks. This process permitted comparison of risks associated with different fecal pollution sources in an impaired urban watershed in order to identify remediation priorities. Results indicate that total human illness risks were consistently higher than the regulatory benchmark of 36 illnesses/1000 people for the study watershed, even when the predicted FIB levels were in compliance with the Escherichia coli geometric mean standard of 126CFU/100mL. Sanitary sewer overflows were associated with the greatest risk of illness. This is of particular concern, given increasing indications that sewer leakage is ubiquitous in urban areas, yet not typically fully accounted for during TMDL development. Uncertainty analysis suggested the accuracy of risk estimates would be improved by more detailed knowledge of site-specific pathogen presence and densities. While previous applications of the QMRA process to impaired waterways have mostly focused on single storm events or hypothetical situations, the continuous modeling framework presented in this study could be integrated into long-term water quality management planning, especially the United States' TMDL program, providing greater clarity to watershed stakeholders and decision-makers. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Impact of Parameter Uncertainty Assessment of Critical SWAT Output Simulations

    USDA-ARS?s Scientific Manuscript database

    Watershed models are increasingly being utilized to evaluate alternate management scenarios for improving water quality. The concern for using these tools in extensive programs such as the National Total Maximum Daily Load (TMDL) program is that the certainty of model results and efficacy of managem...

  10. Soil and Water Assessment Tool model predictions of annual maximum pesticide concentrations in high vulnerability watersheds.

    PubMed

    Winchell, Michael F; Peranginangin, Natalia; Srinivasan, Raghavan; Chen, Wenlin

    2018-05-01

    Recent national regulatory assessments of potential pesticide exposure of threatened and endangered species in aquatic habitats have led to increased need for watershed-scale predictions of pesticide concentrations in flowing water bodies. This study was conducted to assess the ability of the uncalibrated Soil and Water Assessment Tool (SWAT) to predict annual maximum pesticide concentrations in the flowing water bodies of highly vulnerable small- to medium-sized watersheds. The SWAT was applied to 27 watersheds, largely within the midwest corn belt of the United States, ranging from 20 to 386 km 2 , and evaluated using consistent input data sets and an uncalibrated parameterization approach. The watersheds were selected from the Atrazine Ecological Exposure Monitoring Program and the Heidelberg Tributary Loading Program, both of which contain high temporal resolution atrazine sampling data from watersheds with exceptionally high vulnerability to atrazine exposure. The model performance was assessed based upon predictions of annual maximum atrazine concentrations in 1-d and 60-d durations, predictions critical in pesticide-threatened and endangered species risk assessments when evaluating potential acute and chronic exposure to aquatic organisms. The simulation results showed that for nearly half of the watersheds simulated, the uncalibrated SWAT model was able to predict annual maximum pesticide concentrations within a narrow range of uncertainty resulting from atrazine application timing patterns. An uncalibrated model's predictive performance is essential for the assessment of pesticide exposure in flowing water bodies, the majority of which have insufficient monitoring data for direct calibration, even in data-rich countries. In situations in which SWAT over- or underpredicted the annual maximum concentrations, the magnitude of the over- or underprediction was commonly less than a factor of 2, indicating that the model and uncalibrated parameterization approach provide a capable method for predicting the aquatic exposure required to support pesticide regulatory decision making. Integr Environ Assess Manag 2018;14:358-368. © 2017 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC). © 2017 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC).

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    A. M. Sexton,; A. M. Sadeghi,; X. Zhang,

    The value of watershed-scale, hydrologic and water quality models to ecosystem management is increasingly evident as more programs adopt these tools to evaluate the effectiveness of different management scenarios and their impact on the environment. Quality of precipitation data is critical for appropriate application of watershed models. In small watersheds, where no dense rain gauge network is available, modelers are faced with a dilemma to choose between different data sets. In this study, we used the German Branch (GB) watershed (~50 km 2), which is included in the USDA Conservation Effects Assessment Project (CEAP), to examine the implications of usingmore » surface rain gauge and next-generation radar (NEXRAD) precipitation data sets on the performance of the Soil and Water Assessment Tool (SWAT). The GB watershed is located in the Coastal Plain of Maryland on the eastern shore of Chesapeake Bay. Stream flow estimation results using surface rain gauge data seem to indicate the importance of using rain gauges within the same direction as the storm pattern with respect to the watershed. In the absence of a spatially representative network of rain gauges within the watershed, NEXRAD data produced good estimates of stream flow at the outlet of the watershed. Three NEXRAD datasets, including (1)*non-corrected (NC), (2) bias-corrected (BC), and (3) inverse distance weighted (IDW) corrected NEXRAD data, were produced. Nash-Sutcliffe efficiency coefficients for daily stream flow simulation using these three NEXRAD data ranged from 0.46 to 0.58 during calibration and from 0.68 to 0.76 during validation. Overall, correcting NEXRAD with rain gauge data is promising to produce better hydrologic modeling results. Given the multiple precipitation datasets and corresponding simulations, we explored the combination of the multiple simulations using Bayesian model averaging.« less

  12. Modeling and Analysis of the Water Cycle: Seasonal and Event Variability at the Walnut River Research Watershed

    NASA Astrophysics Data System (ADS)

    Miller, M. A.; Miller, N. L.; Sale, M. J.; Springer, E. P.; Wesely, M. L.; Bashford, K. E.; Conrad, M. E.; Costigan, K. R.; Kemball-Cook, S.; King, A. W.; Klazura, G. E.; Lesht, B. M.; Machavaram, M. V.; Sultan, M.; Song, J.; Washington-Allen, R.

    2001-12-01

    A multi-laboratory Department of Energy (DOE) team (Argonne National Laboratory, Brookhaven National Laboratory, Los Alamos National Laboratory, Lawrence Berkeley National Laboratory, Oak Ridge National Laboratory) has begun an investigation of hydrometeorological processes at the Whitewater subbasin of the Walnut River Watershed in Kansas. The Whitewater sub-basin is viewed as a DOE long-term hydrologic research watershed and resides within the well-instrumented Atmospheric Radiation Measurement/Cloud Radiation Atmosphere Testbed (ARM/CART) and the proposed Arkansas-Red River regional hydrologic testbed. The focus of this study is the development and evaluation of coupled regional to watershed scale models that simulate atmospheric, land surface, and hydrologic processes as systems with linkages and feedback mechanisms. This pilot is the precursor to the proposed DOE Water Cycle Dynamics Prediction Program. An important new element is the introduction of water isotope budget equations into mesoscale and hydrologic modeling. Two overarching hypotheses are part of this pilot study: (1) Can the predictability of the regional water balance be improved using high-resolution model simulations that are constrained and validated using new water isotope and hydrospheric water measurements? (2) Can water isotopic tracers be used to segregate different pathways through the water cycle and predict a change in regional climate patterns? Initial results of the pilot will be presented along with a description and copies of the proposed DOE Water Cycle Dynamics Prediction Program.

  13. An improved risk-explicit interval linear programming model for pollution load allocation for watershed management.

    PubMed

    Xia, Bisheng; Qian, Xin; Yao, Hong

    2017-11-01

    Although the risk-explicit interval linear programming (REILP) model has solved the problem of having interval solutions, it has an equity problem, which can lead to unbalanced allocation between different decision variables. Therefore, an improved REILP model is proposed. This model adds an equity objective function and three constraint conditions to overcome this equity problem. In this case, pollution reduction is in proportion to pollutant load, which supports balanced development between different regional economies. The model is used to solve the problem of pollution load allocation in a small transboundary watershed. Compared with the REILP original model result, our model achieves equity between the upstream and downstream pollutant loads; it also overcomes the problem of greatest pollution reduction, where sources are nearest to the control section. The model provides a better solution to the problem of pollution load allocation than previous versions.

  14. Assessing the Value of the Enviroscape Watershed Learning Module

    ERIC Educational Resources Information Center

    Edwards, Warren Patrick

    2013-01-01

    Scope and Method of Study: The researcher's evaluation of the West Atlanta Watershed Alliance's (WAWA) programs highlighted that few if any of the offered educational programs included a program evaluation, especially the most promising, the Enviroscape® Watershed learning module. The education programs that were customized and developed by the…

  15. Remote Sensing/gis Integration for Site Planning and Resource Management

    NASA Technical Reports Server (NTRS)

    Fellows, J. D.

    1982-01-01

    The development of an interactive/batch gridded information system (array of cells georeferenced to USGS quad sheets) and interfacing application programs (e.g., hydrologic models) is discussed. This system allows non-programer users to request any data set(s) stored in the data base by inputing any random polygon's (watershed, political zone) boundary points. The data base information contained within this polygon can be used to produce maps, statistics, and define model parameters for the area. Present/proposed conditions for the area may be compared by inputing future usage (land cover, soils, slope, etc.). This system, known as the Hydrologic Analysis Program (HAP), is especially effective in the real time analysis of proposed land cover changes on runoff hydrographs and graphics/statistics resource inventories of random study area/watersheds.

  16. Integrated Inquiry.

    ERIC Educational Resources Information Center

    Trautmann, Nancy M.; Carlsen, William S.; Krasny, Marianne E.; Cunningham, Christine M.

    2000-01-01

    Introduces the Environmental Inquiry (EI) program which focuses on five topics: watershed dynamics, environmental toxicology, ecology of invasive species, biodegradations, and urban ecosystem modeling. (YDS)

  17. Comparison of SWAT Model Water Balance Calibration Using NEXRAD and Surface Rain Gauge Data

    USDA-ARS?s Scientific Manuscript database

    The value of watershed-scale, water quality models to ecosystem management is increasingly evident as more programs adopt these tools to help assess the effectiveness of different management scenarios on the environment. The USDA-Conservation Effects Assessment Project (CEAP) is one such program whi...

  18. Watershed characteristics and water-quality trends and loads in 12 watersheds in Gwinnett County, Georgia

    USGS Publications Warehouse

    Joiner, John K.; Aulenbach, Brent T.; Landers, Mark N.

    2014-01-01

    The U.S. Geological Survey, in cooperation with Gwinnett County Department of Water Resources, established a Long-Term Trend Monitoring (LTTM) program in 1996. The LTTM program is a comprehensive, long-term, water-quantity and water-quality monitoring program designed to document and analyze the hydrologic and water-quality conditions of selected watersheds of Gwinnett County, Georgia. Water-quality monitoring initially began in six watersheds and was expanded to another six watersheds in 2001. As part of the LTTM program, streamflow, precipitation, water temperature, specific conductance, and turbidity were measured continuously at the 12 watershed monitoring stations for water years 2004–09. In addition, discrete water-quality samples were collected seasonally from May through October (summer) and November through April (winter), including one base-flow and three stormflow event composite samples, during the study period. Samples were analyzed for nutrients (nitrogen and phosphorus), total organic carbon, trace elements (total lead and total zinc), total dissolved solids, and total suspended sediment (total suspended solids and suspended-sediment concentrations). The sampling scheme was designed to identify variations in water quality both hydrologically and seasonally. The 12 watersheds were characterized for basin slope, population density, land use for 2009, and the percentage of impervious area from 2000 to 2009. Precipitation in water years 2004–09 was about 18 percent below average, and the county experienced exceptional drought conditions and below average runoff in water years 2007 and 2008. Watershed water yields, the percentage of precipitation that results in runoff, typically are lower in low precipitation years and are higher for watersheds with the highest percentages of impervious areas. A comparison of base-flow and stormflow water-quality samples indicates that turbidity and concentrations of total ammonia plus organic nitrogen, total nitrogen, total phosphorus, total organic carbon, total lead, total zinc, total suspended solids, and suspended-sediment concentrations increased with increasing discharge at all watersheds. Specific conductance, however, decreased during stormflow at all watersheds, and total dissolved solids concentrations decreased during stormflow at a few of the watersheds. Total suspended solids and suspended-sediment concentrations typically were two orders of magnitude higher in stormflow samples, turbidities were about 1.5 orders of magnitude higher, total phosphorus and total zinc were about one order of magnitude higher, and total ammonia plus organic nitrogen, total nitrogen, total organic carbon, and total lead were about twofold higher than in base-flow samples. Seasonal patterns and long-term trends in flow-adjusted water-quality concentrations were identified for five representative constituents—total nitrogen, total phosphorus, total zinc, total dissolved solids, and total suspended solids. Seasonal patterns for all five constituents were fairly similar, with higher concentrations in the summer and lower concentrations in the winter. Significant linear long-term trends in stormflow composite concentrations were identified for 36 of the 60 constituent-watershed combinations (5 constituents multiplied by 12 watersheds) for the period of record through water year 2011. Significant trends typically were decreasing for total nitrogen, total phosphorus, total suspended solids, and total zinc and increasing for total dissolved solids. Total dissolved solids and total suspended solids trends had the largest magnitude changes per year. Stream water loads were estimated for 10 water-quality constituents. These estimates represent the cumulative effects of watershed characteristics, hydrologic processes, biogeochemical processes, climatic variability, and human influences on watershed water quality. Yields, in load per unit area, were used to compare loads from watersheds with different sizes. A load estimation approach developed for the Gwinnett County LTTM program that incorporates storm-event composited samples was used with some minor modifications. This approach employs the commonly used regression-model method. Concentrations were modeled as a function of discharge, time, season, and turbidity to improve model predictions and reduce errors in load estimates. Total suspended solids annual loads have been identified in Gwinnett County’s Watershed Protection Plan for target performance criterion. The amount of annual runoff is the primary factor in determining the amount of annual constituent loads. Below average runoff during water years 2004–09, especially during water years 2006–08, resulted in corresponding below average loads. Variations in constituent yields between watersheds appeared to be related to various watershed characteristics. Suspended sediment (total suspended solids and suspended-sediment concentrations) along with constituents transported predominately in solid phase (total phosphorus, total organic carbon, total lead, and total zinc) and total dissolved solids typically had higher yields from watersheds that had high percentages of impervious areas or high basin slope. High total nitrogen yields were also associated with watersheds with high percentages of impervious areas. Low total nitrogen, total suspended solids, total lead, and total zinc yields appear to be associated with watersheds that have a low percentage of high-density development. Total suspended solids yields were lower in drought years, water years 2007–08, from the combined effects of less runoff and the result of fewer, lower magnitude storms, which likely resulted in less surface erosion and lower stream sediment transport.

  19. Nonstationarities in Catchment Response According to Basin and Rainfall Characteristics: Application to Korean Watershed

    NASA Astrophysics Data System (ADS)

    Kwon, Hyun-Han; Kim, Jin-Guk; Jung, Il-Won

    2015-04-01

    It must be acknowledged that application of rainfall-runoff models to simulate rainfall-runoff processes are successful in gauged watershed. However, there still remain some issues that will need to be further discussed. In particular, the quantitive representation of nonstationarity issue in basin response (e.g. concentration time, storage coefficient and roughness) along with ungauged watershed needs to be studied. In this regard, this study aims to investigate nonstationarity in basin response so as to potentially provide useful information in simulating runoff processes in ungauged watershed. For this purpose, HEC-1 rainfall-runoff model was mainly utilized. In addition, this study combined HEC-1 model with Bayesian statistical model to estimate uncertainty of the parameters which is called Bayesian HEC-1 (BHEC-1). The proposed rainfall-runofall model is applied to various catchments along with various rainfall patterns to understand nonstationarities in catchment response. Further discussion about the nonstationarity in catchment response and possible regionalization of the parameters for ungauged watershed are discussed. KEYWORDS: Nonstationary, Catchment response, Uncertainty, Bayesian Acknowledgement This research was supported by a Grant (13SCIPA01) from Smart Civil Infrastructure Research Program funded by the Ministry of Land, Infrastructure and Transport (MOLIT) of Korea government and the Korea Agency for Infrastructure Technology Advancement (KAIA).

  20. Data-base development for water-quality modeling of the Patuxent River basin, Maryland

    USGS Publications Warehouse

    Fisher, G.T.; Summers, R.M.

    1987-01-01

    Procedures and rationale used to develop a data base and data management system for the Patuxent Watershed Nonpoint Source Water Quality Monitoring and Modeling Program of the Maryland Department of the Environment and the U.S. Geological Survey are described. A detailed data base and data management system has been developed to facilitate modeling of the watershed for water quality planning purposes; statistical analysis; plotting of meteorologic, hydrologic and water quality data; and geographic data analysis. The system is Maryland 's prototype for development of a basinwide water quality management program. A key step in the program is to build a calibrated and verified water quality model of the basin using the Hydrological Simulation Program--FORTRAN (HSPF) hydrologic model, which has been used extensively in large-scale basin modeling. The compilation of the substantial existing data base for preliminary calibration of the basin model, including meteorologic, hydrologic, and water quality data from federal and state data bases and a geographic information system containing digital land use and soils data is described. The data base development is significant in its application of an integrated, uniform approach to data base management and modeling. (Lantz-PTT)

  1. Watershed Modeling Applications with the Open-Access Modular Distributed Watershed Educational Toolbox (MOD-WET) and Introductory Hydrology Textbook

    NASA Astrophysics Data System (ADS)

    Huning, L. S.; Margulis, S. A.

    2014-12-01

    Traditionally, introductory hydrology courses focus on hydrologic processes as independent or semi-independent concepts that are ultimately integrated into a watershed model near the end of the term. When an "off-the-shelf" watershed model is introduced in the curriculum, this approach can result in a potential disconnect between process-based hydrology and the inherent interconnectivity of processes within the water cycle. In order to curb this and reduce the learning curve associated with applying hydrologic concepts to complex real-world problems, we developed the open-access Modular Distributed Watershed Educational Toolbox (MOD-WET). The user-friendly, MATLAB-based toolbox contains the same physical equations for hydrological processes (i.e. precipitation, snow, radiation, evaporation, unsaturated flow, infiltration, groundwater, and runoff) that are presented in the companion e-textbook (http://aqua.seas.ucla.edu/margulis_intro_to_hydro_textbook.html) and taught in the classroom. The modular toolbox functions can be used by students to study individual hydrologic processes. These functions are integrated together to form a simple spatially-distributed watershed model, which reinforces a holistic understanding of how hydrologic processes are interconnected and modeled. Therefore when watershed modeling is introduced, students are already familiar with the fundamental building blocks that have been unified in the MOD-WET model. Extensive effort has been placed on the development of a highly modular and well-documented code that can be run on a personal computer within the commonly-used MATLAB environment. MOD-WET was designed to: 1) increase the qualitative and quantitative understanding of hydrological processes at the basin-scale and demonstrate how they vary with watershed properties, 2) emphasize applications of hydrologic concepts rather than computer programming, 3) elucidate the underlying physical processes that can often be obscured with a complicated "off-the-shelf" watershed model in an introductory hydrology course, and 4) reduce the learning curve associated with analyzing meaningful real-world problems. The open-access MOD-WET and e-textbook have already been successfully incorporated within our undergraduate curriculum.

  2. A study of remote sensing as applied to regional and small watersheds. Volume 2: Supporting technical details. [using computerized simulation models

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The Stanford Watershed Model, the Kentucky Watershed Model and OPSET program, and the NASA-IBM system for simulation and analysis of watersheds are described in terms of their applications to the study of remote sensing of water resources. Specific calibration processes and input and output parameters that are instrumental in the simulations are explained for the following kinds of data: (1) hourly precipitation data; (2) daily discharge data; (3) flood hydrographs; (4) temperature and evaporation data; and (5) snowmelt data arrays. The Sensitivity Analysis Task, which provides a method for evaluation of any of the separate simulation runs in the form of performance indices, is also reported. The method is defined and a summary of results is given which indicates the values obtained in the simulation runs performed for Town Creek, Alabama; Alamosa Creek, Colorado; and Pearl River, Louisiana. The results are shown in tabular and plot graph form. For Vol. 1, see N74-27813.

  3. Data visualization, time-series analysis, and mass-balance modeling of hydrologic and water-quality data for the McTier Creek watershed, South Carolina, 2007-2009

    USGS Publications Warehouse

    Benedict, Stephen T.; Conrads, Paul; Feaster, Toby D.; Journey, Celeste A.; Golden, Heather E.; Knightes, Christopher D.; Davis, Gary M.; Bradley, Paul M.

    2012-01-01

    The McTier Creek watershed is located in the headwaters of the Edisto River Basin, which is in the Coastal Plain region of South Carolina. The Edisto ecosystem has some of the highest recorded fish-tissue mercury concentrations in the United States. In an effort to advance the understanding of the fate and transport of mercury in stream ecosystems, the U.S. Geological Survey, as part of its National Water-Quality Assessment Program, initiated a field investigation of mercury in the McTier Creek watershed in 2006. The initial efforts of the investigation included the collection of extensive hydrologic and water-quality field data, along with the development of several hydrologic and water-quality models. This series of measured and modeled data forms the primary source of information for this investigation to assess the fate and transport of mercury within the McTier Creek watershed.

  4. Effect of detention basin release rates on flood flows - Application of a model to the Blackberry Creek Watershed in Kane County, Illinois

    USGS Publications Warehouse

    Soong, David T.; Murphy, Elizabeth A.; Straub, Timothy D.

    2009-01-01

    The effects of stormwater detention basins with specified release rates are examined on the watershed scale with a Hydrological Simulation Program - FORTRAN (HSPF) continuous-simulation model. Modeling procedures for specifying release rates from detention basins with orifice and weir discharge configurations are discussed in this report. To facilitate future detention modeling as a tool for watershed management, a chart relating watershed impervious area to detention volume is presented. The report also presents a case study of the Blackberry Creek watershed in Kane County, Ill., a rapidly urbanizing area seeking to avoid future flood damages from increased urbanization, to illustrate the effects of various detention basin release rates on flood peaks and volumes and flood frequencies. The case study compares flows simulated with a 1996 land-use HSPF model to those simulated with four different 2020 projected land-use HSPF model scenarios - no detention, and detention basins with release rates of 0.08, 0.10, and 0.12 cubic feet per second per acre (ft3/s-acre), respectively. Results of the simulations for 15 locations, which included the downstream ends of all tributaries and various locations along the main stem, showed that a release rate of 0.10 ft3/s-acre, in general, can maintain postdevelopment 100-year peak-flood discharge at a similar magnitude to that of 1996 land-use conditions. Although the release rate is designed to reduce the 100-year peak flow, reduction of the 2-year peak flow is also achieved for a smaller proportion of the peak. Results also showed that the 0.10 ft3/s-acre release rate was less effective in watersheds with relatively high percentages of preexisting (1996) development than in watersheds with less preexisting development.

  5. Chesapeake Bay recovery and factors affecting trends: Long-termmonitoring, indicators, and insights

    USGS Publications Warehouse

    Tango, Peter J.; Batiuk, Richard A.

    2016-01-01

    Monitoring the outcome of restoration efforts is the only way to identify the status of a recovery and the most effective management strategies. In this paper, we discuss Chesapeake Bay and watershed recovery and factors influencing water quality trends. For over 30 years, the Chesapeake Bay Program Partnership’s long-term tidal and watershed water quality monitoring networks have measured physical, chemical and biological parameters throughout the bay and its surrounding watershed underpinning an adaptive management process to drive ecosystem recovery. There are many natural and anthropogenic factors operating and interacting to affect the watershed and bay water quality recovery responses to management actions. Across habitats and indicators, the bay and its watershed continue to express a diverse spatial and temporal fabric of multiscale conditions, stressors and trends that show a range of health conditions and impairments, as well as evidence of progress and degradation. Recurrent independent reviews of the monitoring program have driven a culture of continued adaptation of the monitoring networks to reflect ever evolving management information needs. The adherence to bay and watershed-wide consistent monitoring protocols provides monitoring data supporting analyses and development of scientific syntheses that underpin indicator and model development, regulatory assessments, targeting of management actions, evaluation of management effectiveness, and directing of priorities and policies.

  6. Incorporating Climate Change Predictions into Watershed Restoration and Protection Strategies (WRAPS) in the Upper Mississippi River Basin

    NASA Astrophysics Data System (ADS)

    Burke, M. P.; Foreman, C. S.

    2014-12-01

    Development of the Watershed Restoration and Protection Strategies (WRAPS) for the Pine and Leech Lake River Watersheds is underway in Minnesota. Project partners participating in this effort include the Minnesota Pollution Control Agency (MPCA), Crow Wing Soil and Water Conservation District (SWCD), Cass County, and other local partners. These watersheds are located in the Northern Lakes and Forest ecoregion of Minnesota and drain to the Upper Mississippi River. To support the Pine and Leech Lake River WRAPS, watershed-scale hydrologic and water-quality models were developed with Hydrological Simulation Program-FORTRAN (HSPF). The HSPF model applications simulate hydrology (discharge, stage), as well as a number of water quality constituents (sediment, temperature, organic and inorganic nitrogen, total ammonia, organic and inorganic phosphorus, dissolved oxygen and biochemical oxygen demand, and algae) continuously for the period 1995-2009 and provide predictions at points of interest within the watersheds, such as observation gages, management boundaries, compliance points, and impaired water body endpoints. The model applications were used to evaluate phosphorus loads to surface waters under resource management scenarios, which were based on water quality threats that were identified at stakeholder meetings. Simulations of land use changes including conversion of forests to agriculture, shoreline development, and full build-out of cities show a watershed-wide phosphorus increases of up to 80%. The retention of 1.1 inches of runoff from impervious surfaces was not enough to mitigate the projected phosphorus load increases. Changes in precipitation projected by climate change models led to a 20% increase in annual watershed phosphorus loads. The scenario results will inform the implementation strategies selected for the WRAPS.

  7. Development of total maximum daily loads for bacteria impaired watershed using the comprehensive hydrology and water quality simulation model.

    PubMed

    Kim, Sang M; Brannan, Kevin M; Zeckoski, Rebecca W; Benham, Brian L

    2014-01-01

    The objective of this study was to develop bacteria total maximum daily loads (TMDLs) for the Hardware River watershed in the Commonwealth of Virginia, USA. The TMDL program is an integrated watershed management approach required by the Clean Water Act. The TMDLs were developed to meet Virginia's water quality standard for bacteria at the time, which stated that the calendar-month geometric mean concentration of Escherichia coli should not exceed 126 cfu/100 mL, and that no single sample should exceed a concentration of 235 cfu/100 mL. The bacteria impairment TMDLs were developed using the Hydrological Simulation Program-FORTRAN (HSPF). The hydrology and water quality components of HSPF were calibrated and validated using data from the Hardware River watershed to ensure that the model adequately simulated runoff and bacteria concentrations. The calibrated and validated HSPF model was used to estimate the contributions from the various bacteria sources in the Hardware River watershed to the in-stream concentration. Bacteria loads were estimated through an extensive source characterization process. Simulation results for existing conditions indicated that the majority of the bacteria came from livestock and wildlife direct deposits and pervious lands. Different source reduction scenarios were evaluated to identify scenarios that meet both the geometric mean and single sample maximum E. coli criteria with zero violations. The resulting scenarios required extreme and impractical reductions from livestock and wildlife sources. Results from studies similar to this across Virginia partially contributed to a reconsideration of the standard's applicability to TMDL development.

  8. Implementing watershed investment programs to restore fire-adapted forests for watershed services

    NASA Astrophysics Data System (ADS)

    Springer, A. E.

    2013-12-01

    Payments for ecosystems services and watershed investment programs have created new solutions for restoring upland fire-adapted forests to support downstream surface-water and groundwater uses. Water from upland forests supports not only a significant percentage of the public water supplies in the U.S., but also extensive riparian, aquatic, and groundwater dependent ecosystems. Many rare, endemic, threatened, and endangered species are supported by the surface-water and groundwater generated from the forested uplands. In the Ponderosa pine forests of the Southwestern U.S., post Euro-American settlement forest management practices, coupled with climate change, has significantly impacted watershed functionality by increasing vegetation cover and associated evapotranspiration and decreasing runoff and groundwater recharge. A large Collaborative Forest Landscape Restoration Program project known as the Four Forests Restoration Initiative is developing landscape scale processes to make the forests connected to these watersheds more resilient. However, there are challenges in financing the initial forest treatments and subsequent maintenance treatments while garnering supportive public opinion to forest thinning projects. A solution called the Flagstaff Watershed Protection Project is utilizing City tax dollars collected through a public bond to finance forest treatments. Exit polling from the bond election documented the reasons for the 73 % affirmative vote on the bond measure. These forest treatments have included in their actions restoration of associated ephemeral stream channels and spring ecosystems, but resources still need to be identified for these actions. A statewide strategy for developing additional forest restoration resources outside of the federal financing is being explored by state and local business and governmental leaders. Coordination, synthesis, and modeling supported by a NSF Water Sustainability and Climate project has been instrumental in facilitating the forest restoration and watershed health decision making processes.

  9. The watershed and river systems management program

    USGS Publications Warehouse

    Markstrom, S.L.; Frevert, D.; Leavesley, G.H.; ,

    2005-01-01

    The Watershed and River System Management Program (WaRSMP), a joint effort between the U.S. Geological Survey (USGS) and the U.S. Bureau of Reclamation (Reclamation), is focused on research and development of decision support systems and their application to achieve an equitable balance among diverse water resource management demands. Considerations include: (1) legal and political constraints; (2) stake holder and consensus-building; (3) sound technical knowledge; (4) flood control, consumptive use, and hydropower; (5) water transfers; (6) irrigation return flows and water quality; (7) recreation; (8) habitat for endangered species; (9) water supply and proration; (10) near-surface groundwater; and (11) water ownership, accounting, and rights. To address the interdisciplinary and multi-stake holder needs of real-time watershed management, WaRSMP has developed a decision support system toolbox. The USGS Object User Interface facilitates the coupling of Reclamation's RiverWare reservoir operations model with the USGS Modular Modeling and Precipitation Runoff Modeling Systems through a central database. This integration is accomplished through the use of Model and Data Management Interfaces. WaRSMP applications include Colorado River Main stem and Gunnison Basin, the Yakima Basin, the Middle Rio Grande Basin, the Truckee-Carson Basin, and the Umatilla Basin.

  10. Site-specific critical acid load estimates for forest soils in the Osborn Creek watershed, Michigan

    Treesearch

    Trevor Hobbs; Jason Lynch; Randy Kolka

    2017-01-01

    Anthropogenic acid deposition has the potential to accelerate leaching of soil cations, and in turn, deplete nutrients essential to forest vegetation. The critical load concept, employing a simple mass balance (SMB) approach, is often used to model this process. In an evaluation under the U.S. Forest Service Watershed Condition Framework program, soils in all 6th level...

  11. Improved daily precipitation nitrate and ammonium concentration models for the Chesapeake Bay Watershed.

    PubMed

    Grimm, J W; Lynch, J A

    2005-06-01

    Daily precipitation nitrate and ammonium concentration models were developed for the Chesapeake Bay Watershed (USA) using a linear least-squares regression approach and precipitation chemistry data from 29 National Atmospheric Deposition Program/National Trends Network (NADP/NTN) sites. Only weekly samples that comprised a single precipitation event were used in model development. The most significant variables in both ammonium and nitrate models included: precipitation volume, the number of days since the last event, a measure of seasonality, latitude, and the proportion of land within 8km covered by forest or devoted to industry and transportation. Additional variables included in the nitrate model were the proportion of land within 0.8km covered by water and/or forest. Local and regional ammonia and nitrogen oxide emissions were not as well correlated as land cover. Modeled concentrations compared very well with event chemistry data collected at six NADP/AirMoN sites within the Chesapeake Bay Watershed. Wet deposition estimates were also consistent with observed deposition at selected sites. Accurately describing the spatial distribution of precipitation volume throughout the watershed is important in providing critical estimates of wet-fall deposition of ammonium and nitrate.

  12. Programs for Watershed-Plus phase for rainfed regions in India

    NASA Astrophysics Data System (ADS)

    Ramachandran, Kausalya; Ramakrishna, Y. S.

    2006-12-01

    Watershed-based development is the strategy for sustainable growth in the vast rain-fed regions of India since 1980s to enhance agricultural production, conservation of natural resources and raising rural livelihood of farming communities. Although soil and water conservation was initially the primary objective of watershed program that saw large public investment since inception, later its focus shifted to principles of equity and enhancing rural livelihood opportunities and more recently to sustainable development since mid-1990s. At present a major emphasis under watershed program is the regeneration of degraded fragile lands in rain-fed regions. Several noteworthy watershed programs have been carried out since inception that have yielded sterling results while many others have yielded little by way of unbalanced development because of improper characterization of watersheds and poor project planning and implementation. Tools of Geomatics like satellite data, GIS and GPS besides conventional ones like field survey, topographical and cadastral maps along with traditional multi-disciplinary methods like PRA, soil and water analysis, socio-economic survey etc. provide insight into characterization of watersheds, project formulation and proper implementation of such development programs. The present paper illustrates the methodology for characterization of watersheds using the tools of Geomatics on one hand, besides exhibiting its utility for scaling-out the program benefits like sustaining higher agricultural productivity, enhancing irrigation efficiency, equity, enhanced rural livelihood opportunities, women empowerment, drought-proofing etc. during Watershed-Plus phase in the coming decades, on the other.

  13. Modeling Best Management Practices (BMPs) with HSPF

    EPA Science Inventory

    The Hydrological Simulation Program-Fortran (HSPF) is a semi-distributed watershed model, which simulates hydrology and water quality processes at user-specified spatial and temporal scales. Although HSPF is a comprehensive and highly flexible model, a number of investigators not...

  14. The Shenandoah Watershed Study: 20 years of Catchment Hydrogeochemistry

    NASA Astrophysics Data System (ADS)

    Galloway, J.

    2002-05-01

    The Shenandoah Watershed Study (SWAS) is a cooperative program between the Department of Environmental Sciences at the University of Virginia and the National Park Service. The scientific objective of the SWAS program is to improve understanding of processes and factors that govern hydrobiogeochemical conditions in forested watersheds of the Shenandoah National Park (SNP), VA, and the central Appalachian Mountain region. The SWAS program was initiated in 1979, with the establishment of water quality monitoring on two streams. The current SWAS network involves 14 primary study watersheds, in which a combination of discharge gauging, quarterly and weekly water quality sampling, and episodic storm-flow sampling take place. In addition, a number of extensive water quality surveys, fish population surveys, soil surveys, vegetation surveys, and plot-scale manipulations have been conducted in the SWAS watersheds in support of basic research in watershed science. The SWAS program is presently coordinated with the Virginia Trout Stream Sensitivity Study (VTSSS), which extends the watershed-based research to an additional 51 native brook trout streams located on public lands throughout western Virginia. During the past two decades the SWAS program has developed a uniquely comprehensive watershed database for SNP resource managers, while making major contributions to scientific understanding of surface water acidification and the biogeochemistry of forested mountain watersheds. The SWAS program is characterized by long-term continuity of sampling, a wide range of temporal resolution, and the availability of data from multiple watersheds within the landscape. These attributes enable both detection of long-term trends in response to chronic anthropogenic influences (e.g., acidic deposition) and interpretation of transient natural disturbances (e.g., pest outbreaks, fire, etc.). The spatial redundancy of the network provides insight into the regional homogeneity of observed changes and understanding of landscape controls (especially geologic setting) on watershed processes. This poster will present an overview of the critical findings of this 20-year research program.

  15. Watershed Watch: The Importance of Mentors in Student-driven Full Inquiry Undergraduate Research Projects as the Foundation for an Introductory Course in Biogeoscience

    NASA Astrophysics Data System (ADS)

    Rock, B. N.; Hale, S. R.; Graham, K. J.; Hayden, L.; Barber, L.; Perry, C.; Schloss, J.; Sullivan, E.; Yuan, J.; Abebe, E.; Mitchell, L.; Abrams, E.; Gagnon, M.

    2008-12-01

    Watershed Watch (NSF 0525433) engages early undergraduate students from two-year and four-year colleges in student-driven full inquiry-based instruction in the biogeosciences. Program goals for Watershed Watch are to test if inquiry-rich student-driven projects sufficiently engage undeclared students (or noncommittal STEM majors) to declare a STEM major (or remain with their STEM major). A significant component of this program is an intensive two-week Summer course, in which undeclared freshmen research various aspects of a local watershed. Students develop their own research questions and study design, collect and analyze data, and produce a scientific or an oral poster presentation. The course objectives, curriculum and schedule are presented as a model for dissemination for other institutions and programs seeking to develop inquiry-rich courses designed to attract students into biogeoscience disciplines. Data from self-reported student feedback indicated the most important factors explaining high-levels of student motivation and research excellence in the course are 1) working with committed, energetic, and enthusiastic faculty mentors; and 2) faculty mentors demonstrating high degrees of teamwork and coordination.

  16. Spatially-Distributed Cost–Effectiveness Analysis Framework to Control Phosphorus from Agricultural Diffuse Pollution

    PubMed Central

    Geng, Runzhe; Wang, Xiaoyan; Sharpley, Andrew N.; Meng, Fande

    2015-01-01

    Best management practices (BMPs) for agricultural diffuse pollution control are implemented at the field or small-watershed scale. However, the benefits of BMP implementation on receiving water quality at multiple spatial is an ongoing challenge. In this paper, we introduce an integrated approach that combines risk assessment (i.e., Phosphorus (P) index), model simulation techniques (Hydrological Simulation Program–FORTRAN), and a BMP placement tool at various scales to identify the optimal location for implementing multiple BMPs and estimate BMP effectiveness after implementation. A statistically significant decrease in nutrient discharge from watersheds is proposed to evaluate the effectiveness of BMPs, strategically targeted within watersheds. Specifically, we estimate two types of cost-effectiveness curves (total pollution reduction and proportion of watersheds improved) for four allocation approaches. Selection of a ‘‘best approach” depends on the relative importance of the two types of effectiveness, which involves a value judgment based on the random/aggregated degree of BMP distribution among and within sub-watersheds. A statistical optimization framework is developed and evaluated in Chaohe River Watershed located in the northern mountain area of Beijing. Results show that BMP implementation significantly (p >0.001) decrease P loss from the watershed. Remedial strategies where BMPs were targeted to areas of high risk of P loss, deceased P loads compared with strategies where BMPs were randomly located across watersheds. Sensitivity analysis indicated that aggregated BMP placement in particular watershed is the most cost-effective scenario to decrease P loss. The optimization approach outlined in this paper is a spatially hierarchical method for targeting nonpoint source controls across a range of scales from field to farm, to watersheds, to regions. Further, model estimates showed targeting at multiple scales is necessary to optimize program efficiency. The integrated model approach described that selects and places BMPs at varying levels of implementation, provides a new theoretical basis and technical guidance for diffuse pollution management in agricultural watersheds. PMID:26313561

  17. 76 FR 68499 - Draft WaterSMART Cooperative Watershed Management Program Funding Opportunity Announcement

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-04

    ... local watersheds through collaborative conservation. We plan to publish a final announcement as soon as... watershed needs. Through this program, we provide Federal leadership and assistance on; Efficient use of...

  18. Watershed Landscape Ecology: Interdisciplinary and Field-based Learning in the Northeast Creek Watershed, Mount Desert Island, Maine

    NASA Astrophysics Data System (ADS)

    Hall, S. R.; Anderson, J.; Rajakaruna, N.; Cass, D.

    2014-12-01

    At the College of the Atlantic, Bar Harbor, Maine, undergraduate students have the opportunity to design their own curriculum within a major of "Human Ecology." To enable students to have early research experiences, we developed a field-based interdisciplinary program for students to learn and practice field methods in a variety of disciplines, Earth Science, Botany, Chemistry, and Wildlife Biology at three specific field sites within a single watershed on Mt. Desert Island. As the Northeast Creek watershed was the site of previous water quality studies, this program of courses enabled continued monitoring of portions of the watershed. The program includes 4 new courses: Critical Zone 1, Critical Zone 2, Wildlife Biology, and Botany. In Critical Zone 1 students are introduced to general topics in Earth Science and learn to use ArcGIS to make basic maps. In Critical Zone 2, Wildlife Biology, and Botany, students are in the field every week using classic field tools and methods. All three of these courses use the same three general field areas: two with working farms at the middle and lower portion of the watershed and one uninhabited forested property in the higher relief headwaters of the watershed. Students collect daily surface water chemistry data at five stream sites within the watershed, complete basic geologic bedrock and geomorphic mapping, conduct wildlife surveys, botanical surveys, and monitor weather patterns at each of the main sites. Beyond the class data collected and synthesized, students also complete group independent study projects at focused field sites, some of which have turned into much larger research projects. This program is an opportunity for students and faculty with varied interests and expertise to work together to study a specific field locality over multiple years. We see this model as enhancing a number of positive education components: field-based learning, teamwork, problem solving, interdisciplinary discussion, multiple faculty interaction, student mentoring, and original research. In the future we see the possibility of welcoming even more interdisciplinary work including rigorous studies spanning the arts and humanities.

  19. Hydrology and water quality in 13 watersheds in Gwinnett County, Georgia, 2001–15

    USGS Publications Warehouse

    Aulenbach, Brent T.; Joiner, John K.; Painter, Jaime A.

    2017-02-23

    The U.S. Geological Survey (USGS), in cooperation with Gwinnett County Department of Water Resources, established a Long-Term Trend Monitoring (LTTM) program in 1996. The LTTM program is a comprehensive, long-term, water-quantity and water-quality monitoring program designed to document and analyze the hydrologic and water-quality conditions of selected watersheds in Gwinnett County, Georgia. Water-quality monitoring initially began in six watersheds and currently [2016] includes 13 watersheds.As part of the LTTM program, streamflow, precipitation, water temperature, specific conductance, and turbidity were measured every 15 minutes for water years 2001–15 at 12 of the 13 watershed monitoring stations and for water years 2010–15 at the other watershed. In addition, discrete water-quality samples were collected seasonally from May through October (summer) and November through April (winter), including one base-flow and three stormflow event composite samples, during the study period. Samples were analyzed for nutrients (nitrogen and phosphorus), total organic carbon, trace elements (total lead and total zinc), total dissolved solids, and total suspended sediment (total suspended solids and suspended-sediment concentrations). The sampling scheme was designed to identify variations in water quality both hydrologically and seasonally.The 13 watersheds were characterized for basin slope, population density, land use for 2012, and the percentage of impervious area from 2000 to 2014. Several droughts occurred during the study period—water years 2002, 2007–08, and 2011–12. Watersheds with the highest percentage of impervious areas had the highest runoff ratios, which is the portion of precipitation that occurs as runoff. Watershed base-flow indexes, the ratio of base-flow runoff to total runoff, were inversely correlated with watershed impervious area.Flood-frequency estimates were computed for 13 streamgages in the study area that have 10 or more years of annual peak flow data through water year 2015, using the expected moments algorithm to fit a Pearson Type III distribution to logarithms of annual peak flows. Kendall’s tau nonparametric test was used to determine the statistical significance of trends in the annual peak flows, with none of the 13 streamgages exhibiting significant trends.A comparison of base-flow and stormflow water-quality samples indicates that turbidity and concentrations of total ammonia plus organic nitrogen, total nitrogen, total phosphorus, total organic carbon, total lead, total zinc, total suspended solids, and suspended-sediment concentrations increased with increasing discharge at all watersheds. Specific conductance decreased during stormflow at all watersheds, and total dissolved solids concentrations decreased during stormflow at a few of the watersheds. Total suspended solids and suspended-sediment concentrations typically were two orders of magnitude higher in stormflow samples, turbidities were about 1.5 orders of magnitude higher, total phosphorus and total zinc were about one order of magnitude higher, and total ammonia plus organic nitrogen, total nitrogen, total organic carbon, and total lead were about twofold higher than in base-flow samples.Seasonality and long-term trends were identified for the period water years 2001–15 for 10 constituents—total nitrogen, total nitrate plus nitrite, total phosphorus, dissolved phosphorus, total organic carbon, total suspended solids, suspended-sediment concentration, total lead, total zinc, and total dissolved solids. Seasonal patterns were present in most watersheds for all constituents except total dissolved solids, and the watersheds had fairly similar patterns of higher concentrations in the summer and lower concentrations in the winter. A linear long-term trend analysis of residual concentrations from the flow-only load estimation model (without time-trend terms) identified significant trends in 67 of the 130 constituent-watershed combinations. Seventy percent of the significant trends were negative. Total organic carbon and total dissolved solids had predominantly positive trends. Total phosphorus, total suspended solids, suspended-sediment concentration, total lead, and total zinc had only negative trends. The other three constituents exhibited fewer trends, both positive and negative.Streamwater loads were estimated annually for the 13-year period water years 2003–15 for the same 10 constituents in the trend analysis. Loads were estimated using a regression-model-based approach developed by the USGS for the Gwinnett County LTTM program that accommodates the use of storm-event composited samples. Concentrations were modeled as a function of discharge, base flow, time, season, and turbidity to improve model predictions and reduce errors in load estimates. Total suspended solids annual loads have been identified in Gwinnett County’s Watershed Protection Plan for target performance criterion.Although the amount of annual runoff was the primary factor in variations in annual loads, climatic conditions (classified as dry, average, or wet) affected annual loads beyond what was attributed to climatic-related variations in annual runoff. Significant negative trends in loads were estimated for the combined area of the watersheds for all constituents except dissolved phosphorus, total organic carbon, and total dissolved solids. The trend analysis indicated that total suspended solids and suspended-sediment concentration loads in the study area were decreasing by 57,000 and 87,000 pounds per day per year, respectively.Variations in constituent yields between watersheds appeared to be related to various watershed characteristics. Suspended sediment (as either total suspended solids or suspended-sediment concentrations), along with constituents transported predominately in solid phase (total phosphorus, total organic carbon, total lead, and total zinc), and total dissolved solids typically had higher yields from watersheds that had high percentages of impervious areas or high basin slope. High total nitrogen yields were also associated with watersheds with high percentages of impervious areas. Low total nitrogen, total suspended solids, total lead, and total zinc yields appeared to be associated with watersheds that had a low percentage of high-density development.

  20. ENHANCING HSPF MODEL CHANNEL HYDRAULIC REPRESENTATION

    EPA Science Inventory

    The Hydrological Simulation Program - FORTRAN (HSPF) is a comprehensive watershed model, which employs depth-area-volume-flow relationships known as hydraulic function table (FTABLE) to represent stream channel cross-sections and reservoirs. An accurate FTABLE determination for a...

  1. Watershed Restoration Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Julie Thompson; Betsy Macfarlan

    2007-09-27

    In 2003, the U.S. Department of Energy issued the Eastern Nevada Landscape Coalition (ENLC) funding to implement ecological restoration in Gleason Creek and Smith Valley Watersheds. This project was made possible by congressionally directed funding that was provided through the US Department of Energy, Energy Efficiency and Renewable Energy, Office of the Biomass Program. The Ely District Bureau of Land Management (Ely BLM) manages these watersheds and considers them priority areas within the Ely BLM district. These three entities collaborated to address the issues and concerns of Gleason Creek and Smith Valley and prepared a restoration plan to improve themore » watersheds’ ecological health and resiliency. The restoration process began with watershed-scale vegetation assessments and state and transition models to focus on restoration sites. Design and implementation of restoration treatments ensued and were completed in January 2007. This report describes the restoration process ENLC undertook from planning to implementation of two watersheds in semi-arid Eastern Nevada.« less

  2. East Fork Watershed Cooperative: Toward better system-scale ...

    EPA Pesticide Factsheets

    The East Fork Watershed Cooperative is a group intent on understanding how to best manage water quality in a large mixed-use Midwestern watershed system. The system contains a reservoir that serves as a source of drinking water and is popular for water recreation. The reservoir is experience harmful algal blooms. The system including the reservoir has become a significant case study for EPA ORD research and development. The Cooperative includes affiliates from the USACE, the OHIO EPA, the USGS, the USDA, and local Soil and Water Conservation districts as well as utility operators and water quality protection offices. The presentation includes a description of the water quality monitoring and modeling program in the watershed, followed by the results of using the watershed model to estimate the costs associated with nutrient reduction to Harsha Lake, and then ends with an explanation of temporal changes observed for important factors controlling harmful algae in Harsha Lake and how this lake relates to other reservoirs in the Ohio River Basin. This presentation is an invited contribution to the Ohio River Basin Water Quality Workshop sponsored by the US ACE and the US EPA. The presentation describes the activities of the East Fork Watershed Cooperative and the knowledge it has gained to help better manage a case study watershed system over the last few years. The East Fork of the Little Miami River is the focal watershed. It is a significant tributary to the Lit

  3. Climate Sensitivity of Water Yield for a Small Boreal Headwater Watershed in North-Central Minnesota

    NASA Astrophysics Data System (ADS)

    Nieber, J. L.; Hess, J.; Sebestyen, S. D.

    2017-12-01

    We calibrated the Hydrologic Simulation Program Fortran (HSPF) model to a 9.7 ha forested watershed, designated S2, located at the Marcell experimental forest in north-central Minnesota. The S2 watershed, like the other five experimental watersheds at the same location have been monitored since 1955. The watershed is composed of forested upland hillslopes that connect to a 3.2 ha raised bog area. Streamflow is measured at a v-notch weir at the outlet of the bog area. The HSPF model was calibrated to outflow for water years 1991 to 1995 (NSEdaily=0.80), and validated for water years 1996 to 2000 (NSEdaily=0.71). Watershed sensitivity to climate and water budget reaction to climate change scenarios were evaluated using, first, a simple empirical elasticity measure between runoff and precipitation utilizing the long-term monitoring records. Elasticity between these two variables in the S2 watershed was e(q) = 2.05, meaning for each 1% change in precipitation, there is a 2.05% change in runoff. A two parameter elasticity measure using precipitation and temperature was also used to predict how climate shifts in temperature and precipitation will impact runoff in the watershed. Annual estimated water budget was plotted with temperature and precipitation deviation from average to produce a 3-D map depicting the watershed two parameter elasticity. Watershed sensitivity was also evaluated using the HSPF model with climate inputs derived from an ensemble of 22 downscaled climate models reflecting the least and most extreme carbon emission scenarios. For the HSPF model inputs, observed daily temperature and precipitation data were adjusted using monthly shifts in average precipitation and temperature derived from the climate models to arrive at daily weather time series for the periods 2020-2050 and 2070-2100. For the HSPF outputs, the least and most extreme carbon emission scenarios showed a decrease in water yield of 9% and 11%, respectively in the 2020-2050 period and 9% and 43% respectively in the 2070-2100 period. The reduction in water yield is explained by increasing ET rates, even though precipitation increases and groundwater recharge decreases. All scenarios and time periods show an increase in flows for December through March and a decrease for May through October.

  4. HYDROLOGY AND SEDIMENT MODELING USING THE BASINS NON-POINT SOURCE MODEL

    EPA Science Inventory

    The Non-Point Source Model (Hydrologic Simulation Program-Fortran, or HSPF) within the EPA Office of Water's BASINS watershed modeling system was used to simulate streamflow and total suspended solids within Contentnea Creek, North Carolina, which is a tributary of the Neuse Rive...

  5. 76 FR 19683 - Conservation Program Recipient Reporting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-08

    ... regulation that has application or plan due dates after October 1, 2010. The Watershed Operations and Flood Prevention Program, Emergency Watersheds Protection Program, Healthy Forests Reserve Program, Agricultural Management Assistance Program, and the Conservation Stewardship Program have application or plan due dates...

  6. Continuous hydrologic simulation and flood-frequency, hydraulic, and flood-hazard analysis of the Blackberry Creek watershed, Kane County, Illinois

    USGS Publications Warehouse

    Soong, David T.; Straub, Timothy D.; Murphy, Elizabeth A.

    2006-01-01

    Results of hydrologic model, flood-frequency, hydraulic model, and flood-hazard analysis of the Blackberry Creek watershed in Kane County, Illinois, indicate that the 100-year and 500-year flood plains range from approximately 25 acres in the tributary F watershed (a headwater subbasin at the northeastern corner of the watershed) to almost 1,800 acres in Blackberry Creek main stem. Based on 1996 land-cover data, most of the land in the 100-year and 500-year flood plains was cropland, forested and wooded land, and grassland. A relatively small percentage of urban land was in the flood plains. The Blackberry Creek watershed has undergone rapid urbanization in recent decades. The population and urbanized lands in the watershed are projected to double from the 1990 condition by 2020. Recently, flood-induced damage has occurred more frequently in urbanized areas of the watershed. There are concerns about the effect of urbanization on flood peaks and volumes, future flood-mitigation plans, and potential effects on the water quality and stream habitats. This report describes the procedures used in developing the hydrologic models, estimating the flood-peak discharge magnitudes and recurrence intervals for flood-hazard analysis, developing the hydraulic model, and the results of the analysis in graphical and tabular form. The hydrologic model, Hydrological Simulation Program-FORTRAN (HSPF), was used to perform the simulation of continuous water movements through various patterns of land uses in the watershed. Flood-frequency analysis was applied to an annual maximum series to determine flood quantiles in subbasins for flood-hazard analysis. The Hydrologic Engineering Center-River Analysis System (HEC-RAS) hydraulic model was used to determine the 100-year and 500-year flood elevations, and to determine the 100-year floodway. The hydraulic model was calibrated and verified using high water marks and observed inundation maps for the July 17-18, 1996, flood event. Digital maps of the 100-year and 500-year flood plains and the 100-year floodway for each tributary and the main stem of Blackberry Creek were compiled.

  7. ENHANCING HYDROLOGICAL SIMULATION PROGRAM - FORTRAN MODEL CHANNEL HYDRAULIC REPRESENTATION

    EPA Science Inventory

    The Hydrological Simulation Program– FORTRAN (HSPF) is a comprehensive watershed model that employs depth-area - volume - flow relationships known as the hydraulic function table (FTABLE) to represent the hydraulic characteristics of stream channel cross-sections and reservoirs. ...

  8. Long-term forest watershed studies in the Southwest: recycled for wildfire and prescribed fire

    Treesearch

    Daniel G. Neary; Gerald J. Gottfried; Peter F. Ffolliott; Boris Poff

    2012-01-01

    A hydrologic research network was established in Arizona in the 1950s and 1960s called the Arizona Watershed Program (Baker et al. 1999). It consisted of a number of public agencies and private groups interested in obtaining more water for future economic growth while maintaining the State's watersheds in good condition. As part of the Program. paired watershed...

  9. 75 FR 11837 - Chesapeake Bay Watershed Initiative

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-12

    ... DEPARTMENT OF AGRICULTURE Commodity Credit Corporation Chesapeake Bay Watershed Initiative AGENCY...: Notice of availability of program funds for the Chesapeake Bay Watershed Initiative. SUMMARY: The... through the Chesapeake Bay Watershed Initiative for agricultural producers in the Chesapeake Bay watershed...

  10. Projected 2050 Model Simulations for the Chesapeake Bay Program

    EPA Science Inventory

    The Chesapeake Bay Program as has been tasked with assessing how changes in climate systems are expected to alter key variables and processes within the Watershed in concurrence with land use changes. EPA’s Office of Research and Development will be conducting historic and...

  11. An inexact log-normal distribution-based stochastic chance-constrained model for agricultural water quality management

    NASA Astrophysics Data System (ADS)

    Wang, Yu; Fan, Jie; Xu, Ye; Sun, Wei; Chen, Dong

    2018-05-01

    In this study, an inexact log-normal-based stochastic chance-constrained programming model was developed for solving the non-point source pollution issues caused by agricultural activities. Compared to the general stochastic chance-constrained programming model, the main advantage of the proposed model is that it allows random variables to be expressed as a log-normal distribution, rather than a general normal distribution. Possible deviations in solutions caused by irrational parameter assumptions were avoided. The agricultural system management in the Erhai Lake watershed was used as a case study, where critical system factors, including rainfall and runoff amounts, show characteristics of a log-normal distribution. Several interval solutions were obtained under different constraint-satisfaction levels, which were useful in evaluating the trade-off between system economy and reliability. The applied results show that the proposed model could help decision makers to design optimal production patterns under complex uncertainties. The successful application of this model is expected to provide a good example for agricultural management in many other watersheds.

  12. Applying EXCEL Solver to a watershed management goal-programming problem

    Treesearch

    J. E. de Steiguer

    2000-01-01

    This article demonstrates the application of EXCEL® spreadsheet linear programming (LP) solver to a watershed management multiple use goal programming (GP) problem. The data used to demonstrate the application are from a published study for a watershed in northern Colorado. GP has been used by natural resource managers for many years. However, the GP solution by means...

  13. Economic total maximum daily load for watershed-based pollutant trading.

    PubMed

    Zaidi, A Z; deMonsabert, S M

    2015-04-01

    Water quality trading (WQT) is supported by the US Environmental Protection Agency (USEPA) under the framework of its total maximum daily load (TMDL) program. An innovative approach is presented in this paper that proposes post-TMDL trade by calculating pollutant rights for each pollutant source within a watershed. Several water quality trading programs are currently operating in the USA with an objective to achieve overall pollutant reduction impacts that are equivalent or better than TMDL scenarios. These programs use trading ratios for establishing water quality equivalence among pollutant reductions. The inbuilt uncertainty in modeling the effects of pollutants in a watershed from both the point and nonpoint sources on receiving waterbodies makes WQT very difficult. A higher trading ratio carries with it increased mitigation costs, but cannot ensure the attainment of the required water quality with certainty. The selection of an applicable trading ratio, therefore, is not a simple process. The proposed approach uses an Economic TMDL optimization model that determines an economic pollutant reduction scenario that can be compared with actual TMDL allocations to calculate selling/purchasing rights for each contributing source. The methodology is presented using the established TMDLs for the bacteria (fecal coliform) impaired Muddy Creek subwatershed WAR1 in Rockingham County, Virginia, USA. Case study results show that an environmentally and economically superior trading scenario can be realized by using Economic TMDL model or any similar model that considers the cost of TMDL allocations.

  14. Design to monitor trend in abundance and presence of American beaver (Castor canadensis) at the national forest scale.

    PubMed

    Beck, Jeffrey L; Dauwalter, Daniel C; Gerow, Kenneth G; Hayward, Gregory D

    2010-05-01

    Wildlife conservationists design monitoring programs to assess population dynamics, project future population states, and evaluate the impacts of management actions on populations. Because agency mandates and conservation laws call for monitoring data to elicit management responses, it is imperative to design programs that match the administrative scale for which management decisions are made. We describe a program to monitor population trends in American beaver (Castor canadensis) on the US Department of Agriculture, Black Hills National Forest (BHNF) in southwestern South Dakota and northeastern Wyoming, USA. Beaver have been designated as a management indicator species on the BHNF because of their association with riparian and aquatic habitats and its status as a keystone species. We designed our program to monitor the density of beaver food caches (abundance) within sampling units with beaver and the proportion of sampling units with beavers present at the scale of a national forest. We designated watersheds as sampling units in a stratified random sampling design that we developed based on habitat modeling results. Habitat modeling indicated that the most suitable beaver habitat was near perennial water, near aspen (Populus tremuloides) and willow (Salix spp.), and in low gradient streams at lower elevations. Results from the initial monitoring period in October 2007 allowed us to assess costs and logistical considerations, validate our habitat model, and conduct power analyses to assess whether our sampling design could detect the level of declines in beaver stated in the monitoring objectives. Beaver food caches were located in 20 of 52 sampled watersheds. Monitoring 20 to 25 watersheds with beaver should provide sufficient power to detect 15-40% declines in the beaver food cache index as well as a twofold decline in the odds of beaver being present in watersheds. Indices of abundance, such as the beaver food cache index, provide a practical measure of population status to conduct long-term monitoring across broad landscapes such as national forests.

  15. Spatial analysis of land use and shallow groundwater vulnerability in the watershed adjacent to Assateague Island National Seashore, Maryland and Virginia, USA

    USGS Publications Warehouse

    LaMotte, A.E.; Greene, E.A.

    2007-01-01

    Spatial relations between land use and groundwater quality in the watershed adjacent to Assateague Island National Seashore, Maryland and Virginia, USA were analyzed by the use of two spatial models. One model used a logit analysis and the other was based on geostatistics. The models were developed and compared on the basis of existing concentrations of nitrate as nitrogen in samples from 529 domestic wells. The models were applied to produce spatial probability maps that show areas in the watershed where concentrations of nitrate in groundwater are likely to exceed a predetermined management threshold value. Maps of the watershed generated by logistic regression and probability kriging analysis showing where the probability of nitrate concentrations would exceed 3 mg/L (>0.50) compared favorably. Logistic regression was less dependent on the spatial distribution of sampled wells, and identified an additional high probability area within the watershed that was missed by probability kriging. The spatial probability maps could be used to determine the natural or anthropogenic factors that best explain the occurrence and distribution of elevated concentrations of nitrate (or other constituents) in shallow groundwater. This information can be used by local land-use planners, ecologists, and managers to protect water supplies and identify land-use planning solutions and monitoring programs in vulnerable areas. ?? 2006 Springer-Verlag.

  16. Evaluation of a method for comparing phosphorus loads from barnyards and croplands in Otter Creek Watershed, Wisconsin

    USGS Publications Warehouse

    Wierl, Judy A.; Giddings, Elise M.P.; Bannerman, Roger T.

    1998-01-01

    Control of phosphorus from rural nonpoint sources is a major focus of current efforts to improve and protect water resources in Wisconsin and is recommended in almost every priority watershed plan prepared for the State's Nonpoint Source (NFS) Program. Barnyards and crop- lands usually are identified as the primary rural sources of phosphorus. Numerous questions have arisen about which of these two sources to control and about the method currently being used by the NFS program to compare phosphorus loads from barnyards and croplands. To evaluate the method, the U.S. Geological Survey (USGS). in cooperation with the Wisconsin Department of Natural Resources, used phosphorus-load and sediment-load data from streams and phosphorus concentrations in soils from the Otter Creek Watershed (located in the Sheboygan River Basin: fig. 1) in conjunction with two computer-based models. 

  17. 40 CFR 141.716 - Source toolbox components.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... for Microbial Toolbox Components § 141.716 Source toolbox components. (a) Watershed control program. Systems receive 0.5-log Cryptosporidium treatment credit for implementing a watershed control program that meets the requirements of this section. (1) Systems that intend to apply for the watershed control...

  18. 40 CFR 141.716 - Source toolbox components.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... for Microbial Toolbox Components § 141.716 Source toolbox components. (a) Watershed control program. Systems receive 0.5-log Cryptosporidium treatment credit for implementing a watershed control program that meets the requirements of this section. (1) Systems that intend to apply for the watershed control...

  19. 40 CFR 141.716 - Source toolbox components.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... for Microbial Toolbox Components § 141.716 Source toolbox components. (a) Watershed control program. Systems receive 0.5-log Cryptosporidium treatment credit for implementing a watershed control program that meets the requirements of this section. (1) Systems that intend to apply for the watershed control...

  20. COST-EFFECTIVE ALLOCATION OF WATERSHED MANAGEMENT PRACTICES USING A GENETIC ALGORITHM

    EPA Science Inventory

    Implementation of conservation programs are perceived as being crucial for restoring and protecting waters and watersheds from non-point source pollution. Success of these programs depends to a great extent on planning tools that can assist the watershed management process. Here-...

  1. Optimization Tool For Allocation Of Watershed Management Practices For Sediment And Nutrient Control

    EPA Science Inventory

    Implementation of conservation programs are perceived as being crucial for restoring and protecting waters and watersheds from nonpoint source pollution. Success of these programs depends to a great extent on planning tools that can assist the watershed management process. Herein...

  2. The Watershed Report Card.

    ERIC Educational Resources Information Center

    Kelly, Allyson

    1996-01-01

    Outlines the history and development of the Watershed Report Card, an integrated program that educates Ontario participants about the holistic nature of a watershed and fosters community stewardship of the local ecosystem. The program consists of the inventory level, assessment and monitoring level, and remediation level. Emphasizes partnerships…

  3. USDA-ARS Southeast Watershed Laboratory at Tifton, GA:Index Site Design for the Suwannee Basin

    NASA Astrophysics Data System (ADS)

    Bosch, D.; Strickland, T.; Sheridan, J.; Lowrance, R.; Truman, C.; Hubbard, R.; Potter, T.; Wauchope, D.; Vellidis, G.; Thomas, D.

    2001-12-01

    The Southeast Watershed Hydrology Research Center (SEWHRC) was established in 1966 by order of the U.S. Senate "to identify and characterize those elements that control the flow of water from watersheds in the southeast". A 129 sq.mi. area within the headwaters of Little River Watershed (LRW) in central south Georgia was instrumented to provide data for evaluating and characterizing Coastal Plain hydrologic processes and for development and testing of prediction methodologies for use in ungaged watersheds in regions of low topographic relief. Pesticide analytical capabilities were added in 1976, and inorganic chemistry and sediment transport research were expanded. In 1980, the Center was renamed as the Southeast Watershed Research Laboratory (SEWRL), and laboratories were constructed for nutrient analysis and soil physics. A pesticide analysis laboratory was constructed in 1987. In the early 1990s, a hydraulics laboratory was established for sediment and chemical transport studies, and research on riparian buffers was expanded. The SEWRL research program continues to focus on hydrologic and environmental concerns. Major components of the program are hydrology, pesticides behavior, buffer systems, animal waste management, erosion, remote sensing of watershed condition, and relationships between site-specific agricultural management (BMPs) and small-to-large watershed response. SEWRL's program will be expanded over the next five years to include two additional watersheds comparable in size and instrumentation to the LRW; nesting the LRW within the full Little River drainage and subsequently...all three watersheds within the full Suwannee Basin; and mapping and quantifying irrigation water removals within the Suwannee Basin. We will instrument the three intensive study watersheds and the full Suwannee Basin to provide real-time characterization of precipitation, soil moisture, hydrologic flow, and water quality at a range of spatial and temporal scales. We will couple this information with research on BMP improvement in order to evaluate the relationships between land use, weather and climate, water quantity, water quality, and the impacts of BMP implementation on agricultural profitability. The specific objectives of this expansion are to develop: (a) conceptual understanding of responses in natural resource and environmental systems based on physical, chemical, and biological processes; (b) methodologies to direct optimal use of soil and water resources in the production of quality food and fiber while maintaining short- and long-term productivity requirements, ecosystem stability, and environmental quality; and (c) models and information based systems to guide responsible management decisions for action and regulatory agencies at field, farm, and small and large watershed scales.

  4. 7 CFR 635.7 - Procedures for granting equitable relief.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Program (CSP); (3) Emergency Watershed Protection, Floodplain Easement Component (EWP-FPE); (4) Environmental Quality Incentives Program (EQIP); (5) Farm and Ranch Lands Protection Program (FRPP); (6... Program (WBP); (9) Watershed Protection and Flood Prevention Program, (WPFPP) (long-term contracts only...

  5. 7 CFR 635.7 - Procedures for granting equitable relief.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Program (CSP); (3) Emergency Watershed Protection, Floodplain Easement Component (EWP-FPE); (4) Environmental Quality Incentives Program (EQIP); (5) Farm and Ranch Lands Protection Program (FRPP); (6... Program (WBP); (9) Watershed Protection and Flood Prevention Program, (WPFPP) (long-term contracts only...

  6. 7 CFR 635.7 - Procedures for granting equitable relief.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Program (CSP); (3) Emergency Watershed Protection, Floodplain Easement Component (EWP-FPE); (4) Environmental Quality Incentives Program (EQIP); (5) Farm and Ranch Lands Protection Program (FRPP); (6... Program (WBP); (9) Watershed Protection and Flood Prevention Program, (WPFPP) (long-term contracts only...

  7. 7 CFR 635.7 - Procedures for granting equitable relief.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Program (CSP); (3) Emergency Watershed Protection, Floodplain Easement Component (EWP-FPE); (4) Environmental Quality Incentives Program (EQIP); (5) Farm and Ranch Lands Protection Program (FRPP); (6... Program (WBP); (9) Watershed Protection and Flood Prevention Program, (WPFPP) (long-term contracts only...

  8. 7 CFR 635.7 - Procedures for granting equitable relief.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Program (CSP); (3) Emergency Watershed Protection, Floodplain Easement Component (EWP-FPE); (4) Environmental Quality Incentives Program (EQIP); (5) Farm and Ranch Lands Protection Program (FRPP); (6... Program (WBP); (9) Watershed Protection and Flood Prevention Program, (WPFPP) (long-term contracts only...

  9. Database of small research watersheds for the territory of former Soviet Union as a source of data for improving hydrological models and their parameterizations in different geographical conditions

    NASA Astrophysics Data System (ADS)

    Lebedeva, Liudmila; Semenova, Olga

    2013-04-01

    One of widely claimed problems in modern modelling hydrology is lack of available information to investigate hydrological processes and improve their representation in the models. In spite of this, one hardly might confidently say that existing "traditional" data sources have been already fully analyzed and made use of. There existed the network of research watersheds in USSR called water-balance stations where comprehensive and extensive hydrometeorological measurements were conducted according to more or less single program during the last 40-60 years. The program (where not ceased) includes observations of discharges in several, often nested and homogeneous, small watersheds, meteorological elements, evaporation, soil temperature and moisture, snow depths, etc. The network covered different climatic and landscape zones and was established in the middle of the last century with the aim of investigation of the runoff formation in different conditions. Until recently the long-term observational data accompanied by descriptions and maps had existed only in hard copies. It partly explains why these datasets are not enough exploited yet and very rarely or even never were used for the purposes of hydrological modelling although they seem to be much more promising than implementation of the completely new measuring techniques not detracting from its importance. The goal of the presented work is development of a database of observational data and supportive materials from small research watersheds across the territory of the former Soviet Union. The first version of the database will include the following information for 12 water-balance stations across Russia, Ukraine, Kazahstan and Turkmenistan: daily values of discharges (one or several watersheds), air temperature, humidity, precipitation (one or several gauges), soil and snow state variables, soil and snow evaporation. The stations will cover desert and semi desert, steppe and forest steppe, forest, permafrost and mountainous zones. Supportive material will include maps of watershed boundaries and location of observational sites. Text descriptions of the data, measuring techniques and hydrometeorological conditions related to each of the water-balance station will accompany the datasets. The database is supposed to be expanded with time in number of the stations (by 20) and available data series for each of them. It will be uploaded to the internet with open access to everyone interested in. Such a database allows one to test hydrological models and separate modules for their adequacy and workability in different conditions and can serve as a base for models comparison and evaluation. Special profit of the database will gain models that don't rely on calibration but on the adequate process representation and use of the observable parameters. One of such models, process-based Hydrograph model, will be tested against the data from every watershed from the developed database. The aim of the Hydrograph model application to the as many as possible number of research data-rich watersheds in different climatic zones is both amending the algorithms and creation and adjustment of the model parameters that allow using the model across the geographic spectrum.

  10. Use of the Biotic Ligand Model to predict metal toxicity to aquatic biota in areas of differing geology

    USGS Publications Warehouse

    Smith, Kathleen S.

    2005-01-01

    This work evaluates the use of the biotic ligand model (BLM), an aquatic toxicity model, to predict toxic effects of metals on aquatic biota in areas underlain by different rock types. The chemical composition of water, soil, and sediment is largely derived from the composition of the underlying rock. Geologic source materials control key attributes of water chemistry that affect metal toxicity to aquatic biota, including: 1) potentially toxic elements, 2) alkalinity, 3) total dissolved solids, and 4) soluble major elements, such as Ca and Mg, which contribute to water hardness. Miller (2002) compiled chemical data for water samples collected in watersheds underlain by ten different rock types, and in a mineralized area in western Colorado. He found that each rock type has a unique range of water chemistry. In this study, the ten rock types were grouped into two general categories, igneous and sedimentary. Water collected in watersheds underlain by sedimentary rock has higher mean pH, alkalinity, and calcium concentrations than water collected in watersheds underlain by igneous rock. Water collected in the mineralized area had elevated concentrations of calcium and sulfate in addition to other chemical constituents. Miller's water-chemistry data were used in the BLM (computer program) to determine copper and zinc toxicity to Daphnia magna. Modeling results show that waters from watersheds underlain by different rock types have characteristic ranges of predicted LC 50 values (a measurement of aquatic toxicity) for copper and zinc, with watersheds underlain by igneous rock having lower predicted LC 50 values than watersheds underlain by sedimentary rock. Lower predicted LC 50 values suggest that aquatic biota in watersheds underlain by igneous rock may be more vulnerable to copper and zinc inputs than aquatic biota in watersheds underlain by sedimentary rock. For both copper and zinc, there is a trend of increasing predicted LC 50 values with increasing dissolved organic carbon (DOC) concentrations. Predicted copper LC 50 values are extremely sensitive to DOC concentrations, whereas alkalinity appears to have an influence on zinc toxicity at alkalinities in excess of about 100 mg/L CaCO 3 . These findings show promise for coupling the BLM (computer program) with measured water-chemistry data to predict metal toxicity to aquatic biota in different geologic settings and under different scenarios. This approach may ultimately be a useful tool for mine-site planning, mitigation and remediation strategies, and ecological risk assessment.

  11. Sensitivity, Calibration, and Validation of SWAT in the Choptank River Basin

    USDA-ARS?s Scientific Manuscript database

    The value of watershed-scale, water quality models to ecosystem management is increasingly evident as more programs adopt these tools to help assess the effectiveness of different management scenarios on the environment. The USDA-Conservation Effects Assessment Project (CEAP) is one such program whi...

  12. An index approach to performance-based payments for water quality.

    PubMed

    Maille, Peter; Collins, Alan R

    2012-05-30

    In this paper we describe elements of a field research project that presented farmers with economic incentives to control nitrate runoff. The approach used is novel in that payments are based on ambient water quality and water quantity produced by a watershed rather than proxies for water quality conservation. Also, payments are made based on water quality relative to a control watershed, and therefore, account for stochastic fluctuations in background nitrate levels. Finally, the program pays farmers as a group to elicit team behavior. We present our approach to modeling that allowed us to estimate prices for water and resulting payment levels. We then compare these preliminary estimates to the actual values recorded over 33 months of fieldwork. We find that our actual payments were 29% less than our preliminary estimates, due in part to the failure of our ecological model to estimate discharge accurately. Despite this shortfall, the program attracted the participation of 53% of the farmers in the watershed, and resulted in substantial nitrate abatement activity. Given this favorable response, we propose that research efforts focus on implementing field trials of group-level performance-based payments. Ideally these programs would be low risk and control for naturally occurring contamination. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Evaluating the Least Cost Selection of Agricultural Management Practices in the Five Mile Creek area of Fort Cobb Watershed, Oklahoma, USA

    NASA Astrophysics Data System (ADS)

    Rasoulzadeh Gharibdousti, S.; Stoecker, A.; Storm, D.

    2017-12-01

    One of the main causes of water quality impairment in the United States is human induced Non-Point Source (NPS) pollution through intensive agriculture. The Fort Cobb Reservoir (FCR) watershed located in west-central Oklahoma, United States is a rural agricultural catchment with known issues of NPS pollution including suspended solids, siltation, nutrients, and pesticides. Recently, several Best Management Practices (BMPs) have been implemented in the watershed (such as no-tillage and cropland to grassland conversion) to improve water quality. The objective in this study is to estimate the most cost effective selection and placement of BMPs on farmlands to mitigate soil erosion and the delivery of sediment and nutrient loads to the FCR from Five Mile Creek (FMC) area of the FCR watershed. We employed the Soil and Water Assessment Tool (SWAT) to develop the hydrological model of the study area. The watershed was delineated using the 10 m National Elevation Dataset and divided into 43 sub-basins with an average area of 8 km2. Through a combination of Soil Survey Geographic Database- SSURGO soil data, the US Department of Agriculture crop layer and the slope information, the watershed was further divided into 15,217 hydrologic response units (HRUs). The historical climate pattern in the watershed was represented by two different weather stations. The model was calibrated for the 1991 - 2000 period and validated over the 2001 - 2010 period against the monthly USGS observations of streamflow and suspended sediment concentration recorded at the watershed outlet. Model parametrization resulted in satisfactory values for the R2 (0.64, 0.35) and NS (0.61, 0.34) in calibration period and an excellent model performance (R2 = 0.79, 0.38; NS = 0.75, 0.43) in validation period for streamflow and sediment concentration respectively. We have selected 20 BMPs to estimate their efficacy in terms of water, sediment, and crop yields. Linear Programming (LP) was used to determine the cost minimizing choice of BMPs for each HRU that meets sediment and nutrient loads targets for the watershed. The model is capable of providing precise information for stakeholders to prioritize ecologically sound and economically feasible BMPs that are capable of mitigating human induced impacts at the watershed scale.

  14. Integrated Modeling Approach for Verifying Water Storage Services for a Payment for Environmental Service Programs

    NASA Astrophysics Data System (ADS)

    Hendricks, G.; Shukla, S.; Guzha, A. C.

    2013-12-01

    Hydrologic models have been used for improved understanding of how an ecosystem's hydrologic response to human intervention and may provide substantial insight into the viability of payment for environmental services (PES) programs. Little is currently known about how hydrologic models can contribute to the design and evaluation of PES programs. Increased water storage is a desired environmental service (ES) for the Florida Everglades' watershed to reduce nutrient loads and excessive flows to lakes and estuaries in the region. We present monitoring and modeling results to verify the water storage PES for two ranch sites (wetland and watershed scales) located in the Northern Everglades region located north of the Lake Okeechobee (LO). Verification of the water storage PES using at least 3 years of hydrologic data was inconclusive due to variable rainfall during pre- and post-PES periods. An integrated surface and groundwater model, MIKE-SHE/MIKE11, was used to help verify the water storage service as well as predict ecological responses for different water storage scenarios (different levels of storage). The hydrological model was calibrated and validated using field measurements and was able to effectively simulate the surface and groundwater levels for the watershed (Nash Sutcliffe Efficiency, NSE = 0.54 to 0.82) and for surface water levels within wetlands (NSE = 0.54 to 0.84). Scenario analyses for storage levels showed an inverse relationship between board heights for water control structures and flows at the watershed outlet. Changes in flow were marginal when board heights approached a maximum indicating movement of water into subsurface storage. Combining simulation results with field measurements showed reduced flows and increased subsurface storage (2 cm/yr.), a desired outcome for protecting LO and estuarine systems from excessive flows. Simulated wetland water levels were combined with LIDAR-based topography to predict inundation for wetlands at the two PES sites for exploring the addition of biodiversity related ES. Simulations showed that effects of increased storage on enhanced hydro-periods and biodiversity was limited to the wetlands close to the drainage ditches. Results for a variety of water management scenarios showed that modeling can be used as an effective tool for optimizing the ES for a desired PES scheme. Measured and predicted surface flows from watershed and wetland water levels for different scenarios are currently being combined with ecological measurements to develop hydro-ecological models that predict the effects of enhanced water storage on ecological diversity.

  15. Watershed Scale Monitoring and Modeling of Natural Organic Matter (NOM) Generation and Transport

    NASA Astrophysics Data System (ADS)

    Adams, R.; Rees, P. L.; Reckhow, D. A.; Castellon, C. M.

    2006-05-01

    This study describes a coupled watershed scale monitoring campaign, laboratory study, and hydrological modeling study which has been focused on determining the sources and transport mechanisms for Natural Organic Matter (NOM), in a small, mostly forested New England watershed. For some time, the state conservation authorities and a large metropolitan water authority have been concerned that the level of naturally-occurring disinfection byproducts in drinking water supplied by a large surface water reservoir (Watchusett Reservoir, MA) have been increasing over time. The resulting study has attempted to investigate how these compounds, which are mostly formed by the chlorination process at the water treatment plant, are related to NOM precursor compounds which are generated from organic matter and transported by runoff processes in the watershed of the Watchusett Reservoir. The laboratory study measures disinfection byproduct formation potential (DBPFP) through chlorination of raw water samples obtained through field monitoring. Samples are analysed for trihalomethanes (THMs), and haloacetic acids (HAAs). Samples are also analysed for dissolved organic carbon (DOC) and ultraviolet absorbance at 254 nm (UV254). The samples have been collected from as many components of the hydrological cycle as possible in one of the subcatchments of Watchusett Reservoir (Stillwater River). To date the samples include, stream runoff, water impounded naturally in small ponds by beaver dams, rainfall, snow, throughfall (drainage from tree canopies) and samples pumped from shallow suction lysimeters which were installed to monitor soil water in the riparian zone. The current monitoring program began in late-Summer 2005, however infrequent stream samples are available dating back to 2000 from an earlier research project and water quality monitoring by various regulatory authorities. The monitoring program has been designed to capture as much seasonal variation in water chemistry as possible and also to capture a large spring snowmelt event. The modeling study has been designed to provide a method of estimating the export of NOM and DBPFP precursor compounds by running a series of simple macromodels. One of these models has already been developed for DOC transport based on a variant of the popular TOPMODEL hydrological model. Currently, historical daily streamflow and precipitation data have been used to calibrate the hydrological model, and the results from the current and previous monitoring programs are being used to improve the representation of DOM generation in the model. The ultimate aim is to produce a modeling tool which can be used to investigate changes both in land-use and climate in the watershed and the resulting effects on the export of NOM and DBPFP compounds into the reservoir.

  16. Modeling post-wildfire hydrological processes with ParFlow

    NASA Astrophysics Data System (ADS)

    Escobar, I. S.; Lopez, S. R.; Kinoshita, A. M.

    2017-12-01

    Wildfires alter the natural processes within a watershed, such as surface runoff, evapotranspiration rates, and subsurface water storage. Post-fire hydrologic models are typically one-dimensional, empirically-based models or two-dimensional, conceptually-based models with lumped parameter distributions. These models are useful for modeling and predictions at the watershed outlet; however, do not provide detailed, distributed hydrologic processes at the point scale within the watershed. This research uses ParFlow, a three-dimensional, distributed hydrologic model to simulate post-fire hydrologic processes by representing the spatial and temporal variability of soil burn severity (via hydrophobicity) and vegetation recovery. Using this approach, we are able to evaluate the change in post-fire water components (surface flow, lateral flow, baseflow, and evapotranspiration). This work builds upon previous field and remote sensing analysis conducted for the 2003 Old Fire Burn in Devil Canyon, located in southern California (USA). This model is initially developed for a hillslope defined by a 500 m by 1000 m lateral extent. The subsurface reaches 12.4 m and is assigned a variable cell thickness to explicitly consider soil burn severity throughout the stages of recovery and vegetation regrowth. We consider four slope and eight hydrophobic layer configurations. Evapotranspiration is used as a proxy for vegetation regrowth and is represented by the satellite-based Simplified Surface Energy Balance (SSEBOP) product. The pre- and post-fire surface runoff, subsurface storage, and surface storage interactions are evaluated at the point scale. Results will be used as a basis for developing and fine-tuning a watershed-scale model. Long-term simulations will advance our understanding of post-fire hydrological partitioning between water balance components and the spatial variability of watershed processes, providing improved guidance for post-fire watershed management. In reference to the presenter, Isabel Escobar: Research is funded by the NASA-DIRECT STEM Program. Travel expenses for this presentation is funded by CSU-LSAMP. CSU-LSAMP is supported by the National Science Foundation under Grant # HRD-1302873 and the CSU Office of Chancellor.

  17. Application of two hydrologic models with different runoff mechanisms to a hillslope dominated watershed in the northeastern US: A comparison of HSPF and SMR

    USGS Publications Warehouse

    Johnson, M.S.; Coon, W.F.; Mehta, V.K.; Steenhuis, T.S.; Brooks, E.S.; Boll, J.

    2003-01-01

    Differences in the simulation of hydrologic processes by watershed models directly affect the accuracy of results. Surface runoff generation can be simulated as either: (1) infiltration-excess (or Hortonian) overland flow, or (2) saturation-excess overland flow. This study compared the Hydrological Simulation Program - FORTRAN (HSPF) and the Soil Moisture Routing (SMR) models, each representing one of these mechanisms. These two models were applied to a 102 km2 watershed in the upper part of the Irondequoit Creek basin in central New York State over a seven-year simulation period. The models differed in both the complexity of simulating snowmelt and baseflow processes as well as the detail in which the geographic information was preserved by each model. Despite their differences in structure and representation of hydrologic processes, the two models simulated streamflow with almost equal accuracy. Since streamflow is an integral response and depends mainly on the watershed water balance, this was not unexpected. Model efficiency values for the seven-year simulation period were 0.67 and 0.65 for SMR and HSPF, respectively. HSPF simulated winter streamflow slightly better than SMR as a result of its complex snowmelt routine, whereas SMR simulated summer flows better than HSPF as a result of its runoff and baseflow processes. An important difference between model results was the ability to predict the spatial distribution of soil moisture content. HSPF aggregates soil moisture content, which is generally related to a specific pervious land unit across the entire watershed, whereas SMR predictions of moisture content distribution are geographically specific and matched field observations reasonably well. Important is that the saturated area was predicted well by SMR and confirmed the validity of using saturation-excess mechanisms for this hillslope dominated watershed. ?? 2003 Elsevier B.V. All rights reserved.

  18. COMMUNITY-BASED WATERSHED MANAGEMENT: CREATING A TOOL FOR PROGRAM EVALUATION AND DESIGN

    EPA Science Inventory

    The criteria will be assembled into a manual to be used by community organizers, academics, managers, or policy makers in evaluating community-based watershed management initiatives and in designing new watershed management programs. The case study will also be added to the b...

  19. Master Watershed Stewards.

    ERIC Educational Resources Information Center

    Comer, Gary L.

    The Master Watershed Stewards (MWS) Program is a pilot project (developed through the cooperation of the Ohio State University Extension Logan and Hardin County Offices and the Indian Lake Watershed Project) offering the opportunity for communities to get involved at the local level to protect their water quality. The program grew out of the…

  20. Procedures for Delineating and Characterizing Watersheds for Stream and River Monitoring Programs (Final Report)

    EPA Science Inventory

    EPA has released the document, Procedures for Delineating and Characterizing Watersheds for Stream and River Monitoring Programs (EPA/600/R-17/448F). This manual describes how states and tribes can delineate and characterize watersheds. It explains how to delineate water...

  1. Status, trends, and changes in freshwater inflows to bay systems in the Corpus Christi Bay National Estuary Program study area

    USGS Publications Warehouse

    Asquith, W.H.; Mosier, J. G.; Bush, P.W.

    1997-01-01

    The watershed simulation model Hydrologic Simulation Program—Fortran (HSPF) was used to generate simulated flow (runoff) from the 13 watersheds to the six bay systems because adequate gaged streamflow data from which to estimate freshwater inflows are not available; only about 23 percent of the adjacent contributing watershed area is gaged. The model was calibrated for the gaged parts of three watersheds—that is, selected input parameters (meteorologic and hydrologic properties and conditions) that control runoff were adjusted in a series of simulations until an adequate match between model-generated flows and a set (time series) of gaged flows was achieved. The primary model input is rainfall and evaporation data and the model output is a time series of runoff volumes. After calibration, simulations driven by daily rainfall for a 26-year period (1968–93) were done for the 13 watersheds to obtain runoff under current (1983–93), predevelopment (pre-1940 streamflow and pre-urbanization), and future (2010) land-use conditions for estimating freshwater inflows and for comparing runoff under the three land-use conditions; and to obtain time series of runoff from which to estimate time series of freshwater inflows for trend analysis.

  2. Modeling Cover Crop Effectiveness on Maryland's Eastern Shore

    USDA-ARS?s Scientific Manuscript database

    The value of watershed-scale, hydrologic/water quality models to ecosystem management is increasingly evident as more programs adopt these tools to evaluate the effectiveness of different management scenarios and their impact on the environment. Quality of precipitation data is critical for appropri...

  3. Simulation of conservation practices using the APEX model

    USDA-ARS?s Scientific Manuscript database

    Information on agricultural Best Management Practices (BMPs) and their effectiveness in controlling agricultural non-point source pollution is crucial in developing Clean Water Act programs such as the Total Maximum Daily Loads for impaired watersheds. A modeling study was conducted to evaluate var...

  4. Comparison of Flow Calibration Using NEXRAD and Surface Rain Gauge Data in ArcSWAT

    USDA-ARS?s Scientific Manuscript database

    The value of watershed-scale, water quality models to ecosystem management is increasingly evident as more programs adopt these tools to help assess the effectiveness of different management scenarios on the environment. The USDA-Conservation Effects Assessment Project (CEAP) is one such program whi...

  5. Public-Private Partnerships Working Beyond Scale Challenges toward Water Quality Improvements from Private Lands

    NASA Astrophysics Data System (ADS)

    Enloe, Stephanie K.; Schulte, Lisa A.; Tyndall, John C.

    2017-10-01

    In recognition that Iowa agriculture must maintain long-term production of food, fiber, clean water, healthy soil, and robust rural economies, Iowa recently devised a nutrient reduction strategy to set objectives for water quality improvements. To demonstrate how watershed programs and farmers can reduce nutrient and sediment pollution in Iowa waters, the Iowa Water Quality Initiative selected the Boone River Watershed Nutrient Management Initiative as one of eight demonstration projects. For over a decade, diverse public, private, and non-profit partner organizations have worked in the Boone River Watershed to engage farmers in water quality management efforts. To evaluate social dynamics in the Boone River Watershed and provide partners with actionable recommendations, we conducted and analyzed semi-structured interviews with 33 program leaders, farmers, and local agronomists. We triangulated primary interview data with formal analysis of Boone River Watershed documents such as grant applications, progress reports, and outreach materials. Our evaluation suggests that while multi-stakeholder collaboration has enabled partners to overcome many of the traditional barriers to watershed programming, scale mismatches caused by external socio-economic and ecological forces still present substantial obstacles to programmatic resilience. Public funding restrictions and timeframes, for example, often cause interruptions to adaptive management of water quality monitoring and farmer engagement. We present our findings within a resilience framework to demonstrate how multi-stakeholder collaboration can help sustain adaptive watershed programs to improve socio-ecological function in agricultural watersheds such as the Boone River Watershed.

  6. Enhancements to TauDEM to support Rapid Watershed Delineation Services

    NASA Astrophysics Data System (ADS)

    Sazib, N. S.; Tarboton, D. G.

    2015-12-01

    Watersheds are widely recognized as the basic functional unit for water resources management studies and are important for a variety of problems in hydrology, ecology, and geomorphology. Nevertheless, delineating a watershed spread across a large region is still cumbersome due to the processing burden of working with large Digital Elevation Model. Terrain Analysis Using Digital Elevation Models (TauDEM) software supports the delineation of watersheds and stream networks from within desktop Geographic Information Systems. A rich set of watershed and stream network attributes are computed. However limitations of the TauDEM desktop tools are (1) it supports only one type of raster (tiff format) data (2) requires installation of software for parallel processing, and (3) data have to be in projected coordinate system. This paper presents enhancements to TauDEM that have been developed to extend its generality and support web based watershed delineation services. The enhancements of TauDEM include (1) reading and writing raster data with the open-source geospatial data abstraction library (GDAL) not limited to the tiff data format and (2) support for both geographic and projected coordinates. To support web services for rapid watershed delineation a procedure has been developed for sub setting the domain based on sub-catchments, with preprocessed data prepared for each catchment stored. This allows the watershed delineation to function locally, while extending to the full extent of watersheds using preprocessed information. Additional capabilities of this program includes computation of average watershed properties and geomorphic and channel network variables such as drainage density, shape factor, relief ratio and stream ordering. The updated version of TauDEM increases the practical applicability of it in terms of raster data type, size and coordinate system. The watershed delineation web service functionality is useful for web based software as service deployments that alleviate the need for users to install and work with desktop GIS software.

  7. Use of geochemical mass balance modelling to evaluate the role of weathering in determining stream chemistry in five mid-Atlantic watersheds on different lithologies

    USGS Publications Warehouse

    O'Brien, Anne K.; Rice, Karen C.; Bricker, Owen P.; Kennedy, Margaret M.; Anderson, R. Todd

    1997-01-01

    The importance of mineral weathering was assessed and compared for five mid-Atlantic watersheds receiving similar atmospheric inputs but underlain by differing bedrock. Annual solute mass balances and volume-weighted mean solute concentrations were calculated for each watershed for each year of record. In addition, primary and secondary mineralogy were determined for each of the watersheds through analysis of soil samples and thin sections using petrographic, scanning electron microscope, electron microprobe and X-ray diffraction techniques. Mineralogical data were also compiled from the literature. These data were input to NETPATH, a geochemical program that calculates the masses of minerals that react with precipitation to produce stream water chemistry. The feasibilities of the weathering scenarios calculated by NETPATH were evaluated based on relative abundances and reactivities of minerals in the watershed. In watersheds underlain by reactive bedrocks, weathering reactions explained the stream base cation loading. In the acid-sensitive watersheds on unreactive bedrock, calculated weathering scenarios were not consistent with the abundance of reactive minerals in the underlying bedrock, and alternative sources of base cations are discussed.

  8. Summary of the land-use inventory for the nonpoint-source evaluation monitoring watersheds in Wisconsin

    USGS Publications Warehouse

    Wierl, J.A.; Rappold, K.F.; Amerson, F.U.

    1996-01-01

    In 1992, the Wisconsin Department of Natural Resources (WDNR) in cooperation with the U.S. Geological Survey initiated a land-use inventory to identify sources of pollutants and track the land-management changes for eight evaluation monitoring watersheds established as part of the WDNR's Nonpoint Source Program. Each evaluation monitoring watershed is within a WDNR priority watershed. The U.S. Geological Survey is responsible for collection of water-quality data in the evaluation monitoring watersheds. An initial inventory was completed for each of the WDNR priority watersheds before nonpoint-source plans were developed for the control of nonpoint pollution. The land-use inventory described in this report expands upon the initial inventory by including nonpoint pollution sources that were not identified and also by updating changes in landuse and land-management practices. New sources of nonpoint pollution, not identified in the initial inventory, could prove to be important when monitored and modeled data are analyzed. This effort to inventory the evaluation monitoring watersheds will help with the interpretation of future land-use and water-quality data. This report describes landuse inventory methods, presents results of the inventory, and lists proposed future activities.

  9. The Watershed and River Systems Management Program: Decision Support for Water- and Environmental-Resource Management

    NASA Astrophysics Data System (ADS)

    Leavesley, G.; Markstrom, S.; Frevert, D.; Fulp, T.; Zagona, E.; Viger, R.

    2004-12-01

    Increasing demands for limited fresh-water supplies, and increasing complexity of water-management issues, present the water-resource manager with the difficult task of achieving an equitable balance of water allocation among a diverse group of water users. The Watershed and River System Management Program (WARSMP) is a cooperative effort between the U.S. Geological Survey (USGS) and the Bureau of Reclamation (BOR) to develop and deploy a database-centered, decision-support system (DSS) to address these multi-objective, resource-management problems. The decision-support system couples the USGS Modular Modeling System (MMS) with the BOR RiverWare tools using a shared relational database. MMS is an integrated system of computer software that provides a research and operational framework to support the development and integration of a wide variety of hydrologic and ecosystem models, and their application to water- and ecosystem-resource management. RiverWare is an object-oriented reservoir and river-system modeling framework developed to provide tools for evaluating and applying water-allocation and management strategies. The modeling capabilities of MMS and Riverware include simulating watershed runoff, reservoir inflows, and the impacts of resource-management decisions on municipal, agricultural, and industrial water users, environmental concerns, power generation, and recreational interests. Forecasts of future climatic conditions are a key component in the application of MMS models to resource-management decisions. Forecast methods applied in MMS include a modified version of the National Weather Service's Extended Streamflow Prediction Program (ESP) and statistical downscaling from atmospheric models. The WARSMP DSS is currently operational in the Gunnison River Basin, Colorado; Yakima River Basin, Washington; Rio Grande Basin in Colorado and New Mexico; and Truckee River Basin in California and Nevada.

  10. Combining lake and watershed characteristics with Landsat TM data for remote estimation of regional lake clarity

    USGS Publications Warehouse

    McCullough, Ian M.; Loftin, Cyndy; Sader, Steven A.

    2012-01-01

    Water clarity is a reliable indicator of lake productivity and an ideal metric of regional water quality. Clarity is an indicator of other water quality variables including chlorophyll-a, total phosphorus and trophic status; however, unlike these metrics, clarity can be accurately and efficiently estimated remotely on a regional scale. Remote sensing is useful in regions containing a large number of lakes that are cost prohibitive to monitor regularly using traditional field methods. Field-assessed lakes generally are easily accessible and may represent a spatially irregular, non-random sample of a region. We developed a remote monitoring program for Maine lakes >8 ha (1511 lakes) to supplement existing field monitoring programs. We combined Landsat 5 Thematic Mapper (TM) and Landsat 7 Enhanced Thematic Mapper Plus (ETM+) brightness values for TM bands 1 (blue) and 3 (red) to estimate water clarity (secchi disk depth) during 1990–2010. Although similar procedures have been applied to Minnesota and Wisconsin lakes, neither state incorporates physical lake variables or watershed characteristics that potentially affect clarity into their models. Average lake depth consistently improved model fitness, and the proportion of wetland area in lake watersheds also explained variability in clarity in some cases. Nine regression models predicted water clarity (R2 = 0.69–0.90) during 1990–2010, with separate models for eastern (TM path 11; four models) and western Maine (TM path 12; five models that captured differences in topography and landscape disturbance. Average absolute difference between model-estimated and observed secchi depth ranged 0.65–1.03 m. Eutrophic and mesotrophic lakes consistently were estimated more accurately than oligotrophic lakes. Our results show that TM bands 1 and 3 can be used to estimate regional lake water clarity outside the Great Lakes Region and that the accuracy of estimates is improved with additional model variables that reflect physical lake characteristics and watershed conditions.

  11. Effectiveness of conservation reserve program buffers in the Chesapeake Bay Watershed: 2017 annual report

    USDA-ARS?s Scientific Manuscript database

    Riparian buffers play an important role in watershed strategies to clean up the Chesapeake Bay, with over 20,000 riparian buffers implemented in the Chesapeake Bay watershed under USDA’S Conservation Reserve Enhancement Program (CREP). This annual report documents an on-going, multi-agency effort to...

  12. Sustainability of Water Resources in the Upstream Watershed- Based Community Engagement and Multistakeholder Cooperation

    NASA Astrophysics Data System (ADS)

    Brotosusilo, Agus; Utari, Dyah; Agung Satria, Afrizal

    2016-02-01

    The communities engagement become the backbone of the conservation in the Citanduy upstream watershed. It functioning as a major deal and the first one in keeping his own Watershed. This paper based on Community Engagement Grants (CEGs). Program Society-based empowerment approach is also emphasized in the viewpoint of environmental law that is useful to set governance and sanctions in watershed management. The type of activity to be undertaken are the expansion of awareness programs communities of the existence and condition of the watershed Citanduy, the formation of a cadre of conservationists environment that is primarily directed to children and women, the institutionalization of customary law environment, and afforestation by planting 100,000 prolific trees, tree conservationists, and Sunda endemic tree in the land surrounding the watershed upstream Citanduy. The Program involves several partners and stakeholders who helped in substance and operational support activities in the field.. Result of program shows that Community Engagement Grants need cooperation among stakeholders by positioning the community as main subject of changing, not as subject who does not understand their needs to change.

  13. Study of nonpoint source nutrient loading in the Patuxent River basin, Maryland

    USGS Publications Warehouse

    Preston, S.D.

    1997-01-01

    Study of nonpoint-source (NPS) nutrient loading in Maryland has focused on the Patuxent watershed because of its importance and representativeness of conditions in the State. Evaluation of NPS nutrient loading has been comprehensive and has included long-term monitoring, detailed watershed modeling, and synoptic sampling studies. A large amount of information has been compiled for the watershed and that information is being used to identify primary controls and efficient management strategies for NPS nutrient loading. Results of the Patuxent NPS study have identified spatial trends in water quality that appear to be related to basin charcteristics such as land use, physiography, andgeology. Evaluation of the data compiled by the study components is continuing and is expected to provide more detailed assessments of the reasons for spatial trends. In particular, ongoing evaluation of the watershed model output is expected to provide detailed information on the relative importance of nutrient sources and transport pathways across the entire watershed. Planned future directions of NPS evaluation in the State of Maryland include continued study of water quality in the Patuxent watershed and a shift in emphasis to a statewide approach. Eventually, the statewide approach will become the primary approach usedby the State to evaluate NPS loading. The information gained in the Patuxent study and the tools developed will represent valuable assets indeveloping the statewide NPS assessment program.

  14. A coupled hydrologic and biogeochemical model for assessing watershed responses to climate and land use

    EPA Science Inventory

    This seminar for Oregon State University’s Water Resources Graduate Program will describe the use of a spatially-distributed ecohydrological model, VELMA, for quantifying how alternative land use and climate scenarios affect tradeoffs among important ecosystem services. Sp...

  15. STREAM TEMPERATURE SIMULATION OF FORESTED RIPARIAN AREAS: II. MODEL APPLICATION

    EPA Science Inventory

    The SHADE-HSPF modeling system described in a companion paper has been tested and applied to the Upper Grande Ronde (UGR) watershed in northeast Oregon. Sensitivities of stream temperature to the heat balance parameters in Hydrologic Simulation Program-FORTRAN (HSPF) and the ripa...

  16. Developing a top-down land-use management procedure for fish habitat enhancement

    NASA Astrophysics Data System (ADS)

    Chiang, Li-Chi; Lin, Yu-Pin; Wu, Chen-Huan

    2013-04-01

    Land-use change can influence stream ecosystem and alter instream physical, chemical and biological habitat. For example, urbanization usually contributes to increasing sediment loadings to streams and inappropriate agricultural management results in degradation of stream water quality. Watershed model is an effective way to forecast the watershed response to different land-use change scenarios. We developed a top-down approach from the watershed scale to the microscale by combining the habitat model, land-use change model and watershed hydrological model. This approach can assist land-use planner to make optimal decisions with fish habitat enhancement. The study was conducted in Datuan Stream, located in Tamsui District, New Taipei City and the target species is monk goby (Sicyopterus japonicus). The spatially explicit land-use change model, CLUE-s was first applied to project several future land-use scenarios and the Soil and Water Assessment Tool (SWAT) was then applied to simulate streamflow for different land-use scenarios. The simulated streamflow were used as input data for simulating river habitat, where Habitat Suitability Analysis is one of the most important processes. The relationship between target species and multiple environmental factors of habitat was first developed using the Habitat suitability index (HSI). In this study, we used fish presence probabilities for each velocity and water depth to establish different HSI functions under 4 flow conditions (slack, riffle, pool and run) using genetic programming (GP). The physical habitat model, River 2D, was then applied to simulate the river section and calculate weighted usable area (WUA). Based on the WUA results for different land-use scenarios, we further evaluated the relationships between WUA and land-use/landscape patterns using a spatial pattern analysis program, Fragstats. The results showed that by using the habitat model for classified flows, the habitat suitability curve which reflects different activities of fish (ex: spawning, preying) is more practical. Moreover, the proposed land-use management procedure can be useful for future land-use planning with fish habitat conservation.

  17. 40 CFR 141.71 - Criteria for avoiding filtration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Filtration and Disinfection § 141.71... water. (2) The public water system must maintain a watershed control program which minimizes the... determine whether the watershed control program is adequate to meet this goal. The adequacy of a program to...

  18. Quantifying Urban Watershed Stressor Gradients and Evaluating How Different Land Cover Datasets Affect Stream Management.

    PubMed

    Smucker, Nathan J; Kuhn, Anne; Charpentier, Michael A; Cruz-Quinones, Carlos J; Elonen, Colleen M; Whorley, Sarah B; Jicha, Terri M; Serbst, Jonathan R; Hill, Brian H; Wehr, John D

    2016-03-01

    Watershed management and policies affecting downstream ecosystems benefit from identifying relationships between land cover and water quality. However, different data sources can create dissimilarities in land cover estimates and models that characterize ecosystem responses. We used a spatially balanced stream study (1) to effectively sample development and urban stressor gradients while representing the extent of a large coastal watershed (>4400 km(2)), (2) to document differences between estimates of watershed land cover using 30-m resolution national land cover database (NLCD) and <1-m resolution land cover data, and (3) to determine if predictive models and relationships between water quality and land cover differed when using these two land cover datasets. Increased concentrations of nutrients, anions, and cations had similarly significant correlations with increased watershed percent impervious cover (IC), regardless of data resolution. The NLCD underestimated percent forest for 71/76 sites by a mean of 11 % and overestimated percent wetlands for 71/76 sites by a mean of 8 %. The NLCD almost always underestimated IC at low development intensities and overestimated IC at high development intensities. As a result of underestimated IC, regression models using NLCD data predicted mean background concentrations of NO3 (-) and Cl(-) that were 475 and 177 %, respectively, of those predicted when using finer resolution land cover data. Our sampling design could help states and other agencies seeking to create monitoring programs and indicators responsive to anthropogenic impacts. Differences between land cover datasets could affect resource protection due to misguided management targets, watershed development and conservation practices, or water quality criteria.

  19. Water and nonpoint source pollution estimation in the watershed with limited data availability based on hydrological simulation and regression model.

    PubMed

    Huiliang, Wang; Zening, Wu; Caihong, Hu; Xinzhong, Du

    2015-09-01

    Nonpoint source (NPS) pollution is considered as the main reason for water quality deterioration; thus, to quantify the NPS loads reliably is the key to implement watershed management practices. In this study, water quality and NPS loads from a watershed with limited data availability were studied in a mountainous area in China. Instantaneous water discharge was measured through the velocity-area method, and samples were taken for water quality analysis in both flood and nonflood days in 2010. The streamflow simulated by Hydrological Simulation Program-Fortran (HSPF) from 1995 to 2013 and a regression model were used to estimate total annual loads of various water quality parameters. The concentrations of total phosphorus (TP) and total nitrogen (TN) were much higher during the flood seasons, but the concentrations of ammonia nitrogen (NH3-N) and nitrate nitrogen (NO3-N) were lower during the flood seasons. Nevertheless, only TP concentration was positively correlated with the flow rate. The fluctuation of annual load from this watershed was significant. Statistical results indicated the significant contribution of pollutant fluxes during flood seasons to annual fluxes. The loads of TP, TN, NH3-N, and NO3-N in the flood seasons were accounted for 58-85, 60-82, 63-88, 64-81% of the total annual loads, respectively. This study presented a new method for estimation of the water and NPS loads in the watershed with limited data availability, which simplified data collection to watershed model and overcame the scale problem of field experiment method.

  20. The Impact of a Professional Development Program on Teachers' Understandings about Watersheds, Water Quality, and Stream Monitoring.

    ERIC Educational Resources Information Center

    Shepardson, Daniel P.; Harbor, Jon; Cooper, Barbara; McDonald, Jim

    2002-01-01

    Professional development programs should provide teachers with experiences that develop their knowledge and skills to integrate environmental field studies into their school curriculum. Reports on a professional development model that engaged teachers in designing and conducting local environmental science research projects. (Author/YDS)

  1. Ecohydrologic coevolution in drylands: relative roles of vegetation, soil depth and runoff connectivity on ecosystem shifts.

    NASA Astrophysics Data System (ADS)

    Saco, P. M.; Moreno de las Heras, M.; Willgoose, G. R.

    2014-12-01

    Watersheds are widely recognized as the basic functional unit for water resources management studies and are important for a variety of problems in hydrology, ecology, and geomorphology. Nevertheless, delineating a watershed spread across a large region is still cumbersome due to the processing burden of working with large Digital Elevation Model. Terrain Analysis Using Digital Elevation Models (TauDEM) software supports the delineation of watersheds and stream networks from within desktop Geographic Information Systems. A rich set of watershed and stream network attributes are computed. However limitations of the TauDEM desktop tools are (1) it supports only one type of raster (tiff format) data (2) requires installation of software for parallel processing, and (3) data have to be in projected coordinate system. This paper presents enhancements to TauDEM that have been developed to extend its generality and support web based watershed delineation services. The enhancements of TauDEM include (1) reading and writing raster data with the open-source geospatial data abstraction library (GDAL) not limited to the tiff data format and (2) support for both geographic and projected coordinates. To support web services for rapid watershed delineation a procedure has been developed for sub setting the domain based on sub-catchments, with preprocessed data prepared for each catchment stored. This allows the watershed delineation to function locally, while extending to the full extent of watersheds using preprocessed information. Additional capabilities of this program includes computation of average watershed properties and geomorphic and channel network variables such as drainage density, shape factor, relief ratio and stream ordering. The updated version of TauDEM increases the practical applicability of it in terms of raster data type, size and coordinate system. The watershed delineation web service functionality is useful for web based software as service deployments that alleviate the need for users to install and work with desktop GIS software.

  2. Watershed monitoring and modelling and USA regulatory compliance.

    PubMed

    Turner, B G; Boner, M C

    2004-01-01

    The aim of the Columbus program was to implement a comprehensive watershed monitoring-network including water chemistry, aquatic biology and alternative sensors to establish water environment health and methods for determining future restoration progress and early warning for protection of drinking water supplies. The program was implemented to comply with USA regulatory requirements including Total Maximum Daily Load (TMDL) rules of the Clean Water Act (CWA) and Source Water Assessment and Protection (SWAP) rules under the Safe Drinking Water Act (SDWA). The USEPA Office of Research and Development and the Water Environment Research Foundation provided quality assurance oversight. The results obtained demonstrated that significant wet weather data is necessary to establish relationships between land use, water chemistry, aquatic biology and sensor data. These measurements and relationships formed the basis for calibrating the US EPA BASINS Model, prioritizing watershed health and determination of compliance with water quality standards. Conclusions specify priorities of cost-effective drainage system controls that attenuate stormwater flows and capture flushed pollutants. A network of permanent long-term real-time monitoring using combination of continuous sensor measurements, water column sampling and aquatic biology surveys and a regional organization is prescribed to protect drinking water supplies and measure progress towards water quality targets.

  3. A systematic assessment of watershed-scale nonpoint source pollution during rainfall-runoff events in the Miyun Reservoir watershed.

    PubMed

    Qiu, Jiali; Shen, Zhenyao; Wei, Guoyuan; Wang, Guobo; Xie, Hui; Lv, Guanping

    2018-03-01

    The assessment of peak flow rate, total runoff volume, and pollutant loads during rainfall process are very important for the watershed management and the ecological restoration of aquatic environment. Real-time measurements of rainfall-runoff and pollutant loads are always the most reliable approach but are difficult to carry out at all desired location in the watersheds considering the large consumption of material and financial resources. An integrated environmental modeling approach for the estimation of flash streamflow that combines the various hydrological and quality processes during rainstorms within the agricultural watersheds is essential to develop targeted management strategies for the endangered drinking water. This study applied the Hydrological Simulation Program-Fortran (HSPF) to simulate the spatial and temporal variation in hydrological processes and pollutant transport processes during rainstorm events in the Miyun Reservoir watershed, a drinking water resource area in Beijing. The model performance indicators ensured the acceptable applicability of the HSPF model to simulate flow and pollutant loads in the studied watershed and to establish a relationship between land use and the parameter values. The proportion of soil and land use was then identified as the influencing factors of the pollution intensities. The results indicated that the flush concentrations were much higher than those observed during normal flow periods and considerably exceeded the limits of Class III Environmental Quality Standards for Surface Water (GB3838-2002) for the secondary protection zones of the drinking water resource in China. Agricultural land and leached cinnamon soils were identified as the key sources of sediment, nutrients, and fecal coliforms. Precipitation volume was identified as a driving factor that determined the amount of runoff and pollutant loads during rainfall processes. These results are useful to improve the streamflow predictions, provide useful information for the identification of highly polluted areas, and aid the development of integrated watershed management system in the drinking water resource area.

  4. Estimating hydrologic budgets for six Persian Gulf watersheds, Iran

    NASA Astrophysics Data System (ADS)

    Hosseini, Majid; Ghafouri, Mohammad; Tabatabaei, MahmoudReza; Goodarzi, Masoud; Mokarian, Zeinab

    2017-10-01

    Estimation of the major components of the hydrologic budget is important for determining the impacts on the water supply and quality of either planned or proposed land management projects, vegetative changes, groundwater withdrawals, and reservoir management practices and plans. As acquisition of field data is costly and time consuming, models have been created to test various land use practices and their concomitant effects on the hydrologic budget of watersheds. To simulate such management scenarios realistically, a model should be able to simulate the individual components of the hydrologic budget. The main objective of this study is to perform the SWAT2012 model for estimation of hydrological budget in six subbasin of Persian Gulf watershed; Golgol, Baghan, Marghab Shekastian, Tangebirim and Daragah, which are located in south and south west of Iran during 1991-2009. In order to evaluate the performance of the model, hydrological data, soil map, land use map and digital elevation model (DEM) are obtained and prepared for each catchment to run the model. SWAT-CUP with SUFI2 program was used for simulation, uncertainty and validation with 95 Percent Prediction Uncertainty. Coefficient of determination ( R 2) and Nash-Sutcliffe coefficient (NS) were used for evaluation of the model simulation results. Comparison of measured and predicted values demonstrated that each component of the model gave reasonable output and that the interaction among components was realistic. The study has produced a technique with reliable capability for annual and monthly water budget components in Persian Gulf watershed.

  5. Spatiotemporal patterns and source attribution of nitrogen pollution in a typical headwater agricultural watershed in Southeastern China.

    PubMed

    Chen, Wenjun; He, Bin; Nover, Daniel; Duan, Weili; Luo, Chuan; Zhao, Kaiyan; Chen, Wen

    2018-01-01

    Excessive nitrogen (N) discharge from agriculture causes widespread problems in aquatic ecosystems. Knowledge of spatiotemporal patterns and source attribution of N pollution is critical for nutrient management programs but is poorly studied in headwaters with various small water bodies and mini-point pollution sources. Taking a typical small watershed in the low mountains of Southeastern China as an example, N pollution and source attribution were studied for a multipond system around a village using the Hydrological Simulation Program-Fortran (HSPF) model. The results exhibited distinctive spatio-seasonal variations with an overall seriousness rank for the three indicators: total nitrogen (TN) > nitrate/nitrite nitrogen (NO x - -N) > ammonia nitrogen (NH 3 -N), according to the Chinese Surface Water Quality Standard. TN pollution was severe for the entire watershed, while NO x - -N pollution was significant for ponds and ditches far from the village, and the NH 3 -N concentrations were acceptable except for the ponds near the village in summer. Although food and cash crop production accounted for the largest source of N loads, we discovered that mini-point pollution sources, including animal feeding operations, rural residential sewage, and waste, together contributed as high as 47% of the TN and NH 3 -N loads in ponds and ditches. So, apart from eco-fertilizer programs and concentrated animal feeding operations, the importance of environmental awareness building for resource management is highlighted for small farmers in headwater agricultural watersheds. As a first attempt to incorporate multipond systems into the process-based modeling of nonpoint source (NPS) pollution, this work can inform other hydro-environmental studies on scattered and small water bodies. The results are also useful to water quality improvement for entire river basins.

  6. Model My Watershed - A Robust Online App to Enable Citizen Scientists to Model Watershed Hydrology and Water Quality at Regulatory-Level Standards

    NASA Astrophysics Data System (ADS)

    Daniels, M.; Kerlin, S.; Arscott, D.

    2017-12-01

    Citizen-based watershed monitoring has historically lacked scientific rigor and geographic scope due to limitation in access to watershed-level data and the high level skills and resources required to adequately model watershed dynamics. Public access to watershed information is currently routed through a variety of governmental data portals and often requires advanced geospatial skills to collect and present in useable forms. At the same time, tremendous financial resources are being invested in watershed restoration and management efforts, and often these resources pass through local stakeholder groups such as conservation NGO, watershed interest groups, and local municipalities without extensive hydrologic knowledge or access to sophisticated modeling resources. Even governmental agencies struggle to understand how to best steer or prioritize restoration investments. A new app, Model My Watershed, was built to improve access to watershed data and modeling capabilities in a fast, accessible, free web-app format. Working across the contiguous United States, the Model My Watershed app provides land cover, soils, aerial imagery and relief, watershed delineation, and stream network delineation. Users can model watersheds or areas of interest and create management scenarios to evaluate implementation of land cover changes and best management practice implementation with both hydrologic and water quality outputs that meet TMDL regulatory standards.

  7. Nitrogen Flux in Watersheds: The Role of Soil Distributions and Climate in Nitrogen Flux to the Coastal Ecosystems

    NASA Astrophysics Data System (ADS)

    Showers, W. J.; Reyes, M. M.; Genna, B. J.

    2009-12-01

    Quantifying the flux of nitrate from different landscape sources in watersheds is important to understand the increased flux of nitrogen to coastal ecosystems. Recent technological advances in chemical sensor networks has demonstrated that chemical variability in aquatic environments are chronically under-sampled, and that many nutrient monitoring programs with monthly or daily sampling rates are inadequate to characterize the dominate seasonal, daily or semi-diurnal fluxes in watersheds. The RiverNet program has measured the nitrate flux in the Neuse River Basin, NC on a 15 minute interval over the past eight years. Significant diurnal variation has been observed in nitrate concentrations during high and low flow periods associated with waste water treatment plants in urban watersheds that are not present in agricultural watersheds. Discharge and N flux in the basin also has significant inter-annual variations associated with El Nino oscillations modified by the North Atlantic oscillation. Positive JMA and NAO indexes are associated with increased groundwater levels, nutrient fluxes, and estuary fish kills. To understand how climate oscillation affect discharge and nutrient fluxes, we have monitored runoff/drainages and groundwater inputs adjacent to a large waste application field over the past 4 years, and used the nitrate inputs as a tracer. Surface water run off is well correlated to precipitation patterns and is the largest nutrient flux into the river. Groundwater inputs are variable spatially and temporally, and are controlled by geology and groundwater levels. Hydric soil spatial distributions are an excellent predictor of nutrient transport across landscapes, and is related to the distribution of biogeochemical “hotspots” The isotopic composition of oxygen and nitrogen in dissolved nitrate indicate that sources change with discharge state, and that atmospherically deposited nitrogen is only important to river fluxes in forested and urban watersheds. These results also indicate that the contribution of wastewater treatment plants from urban watersheds has been greatly under-estimated in current models. Prediction of future changes in discharge and nutrient flux by the modeling of climate oscillations has important implications for water resources policy and drought management for public policy and utility managers.

  8. Do investments in wildfire risk reduction lead to downstream watershed service outcomes? An integrated wildfire-erosion-economic analysis of return on investment from fuel treatments in Colorado

    NASA Astrophysics Data System (ADS)

    Wilson, C.; Jones, K.; Addington, R.; Cannon, J.; Cheng, T.; Gannon, B.; Kampf, S. K.; Saavedra, F.; Wei, Y.; Wolk, B.

    2016-12-01

    Large, severe wildfires negatively impact forested watersheds in the Western United States and jeopardize critical ecosystem services. Specifically, severe wildfires increase overland flow and runoff that contains sediment and debris, and cause other natural hazards such as floods. High erosion from burned watersheds can fill water supply reservoirs and clog water filtration systems, which has direct costs to water utilities in the form of increased water treatment costs and damage to infrastructure. With increasing wildfire risk due to global climate change and other factors, municipal water providers and users have been investing in management practices to reduce high-severity wildfire risk and increase source water security. In this research we integrate wildfire and erosion prediction models to estimate the return on investment from wildfire fuel treatments in the Upper South Platte watershed, southwest of Denver, Colorado. Denver Water and the U.S. Forest Service created the Forest-To-Faucets Partnership, one of the first payments for watershed services (PWS) programs in the United States. To date they have spent more than $30 million in the Upper South Platte to restore forests and conduct fuel reduction work across landownerships. However, due to the lack of appropriate analytical tools, it is still unclear what returns are being achieved with these investments, aside from the total number of acres treated. In this analysis we consider three treatment scenarios - current fuel treatment investments, a series of investments based on prioritization criteria, and investments based on accessibility - and model potential burn probability, fire severity and erosion. We then estimate the economic benefits of avoiding runoff using past expenditures by Denver Water and compare these to treatment costs. This research directly informs management practices in the Upper South Platte watershed and provides a framework that can inform decisions to optimize location, size, and type of wildfire treatments that maximize financial returns on investments, enhancing the resilience of forested watersheds to fire risk. More broadly, this project illustrates the evolution of PWS programs towards a more intensive analytical approach to estimating return on investments by linking ecological and economic outcomes.

  9. Representation of regional urban development conditions using a watershed-based gradient study design

    USGS Publications Warehouse

    Terziotti, Silvia; McMahon, Gerard; Bell, Amanda H.

    2012-01-01

    As part of the U.S. Geological Survey National Water-Quality Assessment Program, the effects of urbanization on stream ecosystems (EUSE) have been intensively investigated in nine metropolitan areas in the United States, including Boston, Massachusetts; Atlanta, Georgia; Birmingham, Alabama; Raleigh, North Carolina; Salt Lake City, Utah; Denver, Colorado; Dallas–Fort Worth, Texas; Portland, Oregon; and Milwaukee–Green Bay, Wisconsin. Each of the EUSE study area watersheds was associated with one ecological region of the United States. This report evaluates whether each metropolitan area can be generalized across the ecological regions (ecoregions) within which the EUSE study watersheds are located. Seven characteristics of the EUSE watersheds that affect stream ecosystems were examined to determine the similarities in the same seven characteristics of the watersheds in the entire ecoregion. Land cover (percentage developed, forest and shrubland, and herbaceous and cultivated classes), average annual temperature, average annual precipitation, average surface elevation, and average percentage slope were selected as human-influenced, climate, and topography characteristics. Three findings emerged from this comparison that have implications for the use of EUSE data in models used to predict stream ecosystem condition. One is that the predominant or "background" land-cover type (either forested or agricultural land) in each ecoregion also is the predominant land-cover type within the associated EUSE study watersheds. The second finding is that in all EUSE study areas, the watersheds account for the range of developed land conditions that exist in the corresponding ecoregion watersheds. However, six of the nine EUSE study area watersheds have significantly different distributions of developed land from the ecoregion watersheds. Finally, in seven of the nine EUSE/ecoregion comparisons, the distributions of the values of climate variables in the EUSE watersheds are different from the distributions for watersheds in the corresponding ecoregions.

  10. Demonstration of the Water Erosion Prediction Project (WEPP) internet interface and services

    USDA-ARS?s Scientific Manuscript database

    The Water Erosion Prediction Project (WEPP) model is a process-based FORTRAN computer simulation program for prediction of runoff and soil erosion by water at hillslope profile, field, and small watershed scales. To effectively run the WEPP model and interpret results additional software has been de...

  11. Climate change and watershed mercury export: a multiple projection and model analysis

    USGS Publications Warehouse

    Golden, Heather E.; Knightes, Christopher D.; Conrads, Paul; Feaster, Toby D.; Davis, Gary M.; Benedict, Stephen T.; Bradley, Paul M.

    2013-01-01

    Future shifts in climatic conditions may impact watershed mercury (Hg) dynamics and transport. An ensemble of watershed models was applied in the present study to simulate and evaluate the responses of hydrological and total Hg (THg) fluxes from the landscape to the watershed outlet and in-stream THg concentrations to contrasting climate change projections for a watershed in the southeastern coastal plain of the United States. Simulations were conducted under stationary atmospheric deposition and land cover conditions to explicitly evaluate the effect of projected precipitation and temperature on watershed Hg export (i.e., the flux of Hg at the watershed outlet). Based on downscaled inputs from 2 global circulation models that capture extremes of projected wet (Community Climate System Model, Ver 3 [CCSM3]) and dry (ECHAM4/HOPE-G [ECHO]) conditions for this region, watershed model simulation results suggest a decrease of approximately 19% in ensemble-averaged mean annual watershed THg fluxes using the ECHO climate-change model and an increase of approximately 5% in THg fluxes with the CCSM3 model. Ensemble-averaged mean annual ECHO in-stream THg concentrations increased 20%, while those of CCSM3 decreased by 9% between the baseline and projected simulation periods. Watershed model simulation results using both climate change models suggest that monthly watershed THg fluxes increase during the summer, when projected flow is higher than baseline conditions. The present study's multiple watershed model approach underscores the uncertainty associated with climate change response projections and their use in climate change management decisions. Thus, single-model predictions can be misleading, particularly in developmental stages of watershed Hg modeling.

  12. [Watershed water environment pollution models and their applications: a review].

    PubMed

    Zhu, Yao; Liang, Zhi-Wei; Li, Wei; Yang, Yi; Yang, Mu-Yi; Mao, Wei; Xu, Han-Li; Wu, Wei-Xiang

    2013-10-01

    Watershed water environment pollution model is the important tool for studying watershed environmental problems. Through the quantitative description of the complicated pollution processes of whole watershed system and its parts, the model can identify the main sources and migration pathways of pollutants, estimate the pollutant loadings, and evaluate their impacts on water environment, providing a basis for watershed planning and management. This paper reviewed the watershed water environment models widely applied at home and abroad, with the focuses on the models of pollutants loading (GWLF and PLOAD), water quality of received water bodies (QUAL2E and WASP), and the watershed models integrated pollutant loadings and water quality (HSPF, SWAT, AGNPS, AnnAGNPS, and SWMM), and introduced the structures, principles, and main characteristics as well as the limitations in practical applications of these models. The other models of water quality (CE-QUAL-W2, EFDC, and AQUATOX) and watershed models (GLEAMS and MIKE SHE) were also briefly introduced. Through the case analysis on the applications of single model and integrated models, the development trend and application prospect of the watershed water environment pollution models were discussed.

  13. Watershed System Model: The Essentials to Model Complex Human-Nature System at the River Basin Scale

    NASA Astrophysics Data System (ADS)

    Li, Xin; Cheng, Guodong; Lin, Hui; Cai, Ximing; Fang, Miao; Ge, Yingchun; Hu, Xiaoli; Chen, Min; Li, Weiyue

    2018-03-01

    Watershed system models are urgently needed to understand complex watershed systems and to support integrated river basin management. Early watershed modeling efforts focused on the representation of hydrologic processes, while the next-generation watershed models should represent the coevolution of the water-land-air-plant-human nexus in a watershed and provide capability of decision-making support. We propose a new modeling framework and discuss the know-how approach to incorporate emerging knowledge into integrated models through data exchange interfaces. We argue that the modeling environment is a useful tool to enable effective model integration, as well as create domain-specific models of river basin systems. The grand challenges in developing next-generation watershed system models include but are not limited to providing an overarching framework for linking natural and social sciences, building a scientifically based decision support system, quantifying and controlling uncertainties, and taking advantage of new technologies and new findings in the various disciplines of watershed science. The eventual goal is to build transdisciplinary, scientifically sound, and scale-explicit watershed system models that are to be codesigned by multidisciplinary communities.

  14. Predicting nitrogen loading with land-cover composition: how can watershed size affect model performance?

    PubMed

    Zhang, Tao; Yang, Xiaojun

    2013-01-01

    Watershed-wide land-cover proportions can be used to predict the in-stream non-point source pollutant loadings through regression modeling. However, the model performance can vary greatly across different study sites and among various watersheds. Existing literature has shown that this type of regression modeling tends to perform better for large watersheds than for small ones, and that such a performance variation has been largely linked with different interwatershed landscape heterogeneity levels. The purpose of this study is to further examine the previously mentioned empirical observation based on a set of watersheds in the northern part of Georgia (USA) to explore the underlying causes of the variation in model performance. Through the combined use of the neutral landscape modeling approach and a spatially explicit nutrient loading model, we tested whether the regression model performance variation over the watershed groups ranging in size is due to the different watershed landscape heterogeneity levels. We adopted three neutral landscape modeling criteria that were tied with different similarity levels in watershed landscape properties and used the nutrient loading model to estimate the nitrogen loads for these neutral watersheds. Then we compared the regression model performance for the real and neutral landscape scenarios, respectively. We found that watershed size can affect the regression model performance both directly and indirectly. Along with the indirect effect through interwatershed heterogeneity, watershed size can directly affect the model performance over the watersheds varying in size. We also found that the regression model performance can be more significantly affected by other physiographic properties shaping nitrogen delivery effectiveness than the watershed land-cover heterogeneity. This study contrasts with many existing studies because it goes beyond hypothesis formulation based on empirical observations and into hypothesis testing to explore the fundamental mechanism.

  15. Hydrologic modeling of two glaciated watersheds in Northeast Pennsylvania

    USGS Publications Warehouse

    Srinivasan, M.S.; Hamlett, J.M.; Day, R.L.; Sams, J.I.; Petersen, G.W.

    1998-01-01

    A hydrologic modeling study, using the Hydrologic Simulation Program - FORTRAN (HSPF), was conducted in two glaciated watersheds, Purdy Creek and Ariel Creek in northeastern Pennsylvania. Both watersheds have wetlands and poorly drained soils due to low hydraulic conductivity and presence of fragipans. The HSPF model was calibrated in the Purdy Creek watershed and verified in the Ariel Creek watershed for June 1992 to December 1993 period. In Purdy Creek, the total volume of observed streamflow during the entire simulation period was 13.36 x 106 m3 and the simulated streamflow volume was 13.82 x 106 m3 (5 percent difference). For the verification simulation in Ariel Creek, the difference between the total observed and simulated flow volumes was 17 percent. Simulated peak flow discharges were within two hours of the observed for 30 of 46 peak flow events (discharge greater than 0.1 m3/sec) in Purdy Creek and 27 of 53 events in Ariel Creek. For 22 of the 46 events in Purdy Creek and 24 of 53 in Ariel Creek, the differences between the observed and simulated peak discharge rates were less than 30 percent. These 22 events accounted for 63 percent of total volume of streamflow observed during the selected 46 peak flow events in Purdy Creek. In Ariel Creek, these 24 peak flow events accounted for 62 percent of the total flow observed during all peak flow events. Differences in observed and simulated peak flow rates and volumes (on a percent basis) were greater during the snowmelt runoff events and summer periods than for other times.A hydrologic modeling study, using the Hydrologic Simulation Program - FORTRAN (HSPF), was conducted in two glaciated watersheds, Purdy Creek and Ariel Creek in northeastern Pennsylvania. Both watersheds have wetlands and poorly drained soils due to low hydraulic conductivity and presence of fragipans. The HSPF model was calibrated in the Purdy Creek watershed and verified in the Ariel Creek watershed for June 1992 to December 1993 period. In Purdy Creek, the total volume of observed streamflow during the entire simulation period was 13.36??106 m3 and the simulated streamflow volume was 13.82??106 m3 (5 percent difference). For the verification simulation in Ariel Creek, the difference between the total observed and simulated flow volumes was 17 percent. Simulated peak flow discharges were within two hours of the observed for 30 of 46 peak flow events (discharge greater than 0.1 m3/sec) in Purdy Creek and 27 of 53 events in Ariel Creek. For 22 of the 46 events in Purdy Creek and 24 of 53 in Ariel Creek, the differences between the observed and simulated peak discharge rates were less than 30 percent. These 22 events accounted for 63 percent of total volume of streamflow observed during the selected 46 peak flow events in Purdy Creek. In Ariel Creek, these 24 peak flow events accounted for 62 percent of the total flow observed during all peak flow events. Differences in observed and simulated peak flow rates and volumes (on a percent basis) were greater during the snowmelt runoff events and summer periods than for other times.

  16. Potential climate-induced runoff changes and associated uncertainty in four Pacific Northwest estuaries

    USGS Publications Warehouse

    Steele, Madeline O.; Chang, Heejun; Reusser, Deborah A.; Brown, Cheryl A.; Jung, Il-Won

    2012-01-01

    As part of a larger investigation into potential effects of climate change on estuarine habitats in the Pacific Northwest, we estimated changes in freshwater inputs into four estuaries: Coquille River estuary, South Slough of Coos Bay, and Yaquina Bay in Oregon, and Willapa Bay in Washington. We used the U.S. Geological Survey's Precipitation Runoff Modeling System (PRMS) to model watershed hydrological processes under current and future climatic conditions. This model allowed us to explore possible shifts in coastal hydrologic regimes at a range of spatial scales. All modeled watersheds are located in rainfall-dominated coastal areas with relatively insignificant base flow inputs, and their areas vary from 74.3 to 2,747.6 square kilometers. The watersheds also vary in mean elevation, ranging from 147 meters in the Willapa to 1,179 meters in the Coquille. The latitudes of watershed centroids range from 43.037 degrees north latitude in the Coquille River estuary to 46.629 degrees north latitude in Willapa Bay. We calibrated model parameters using historical climate grid data downscaled to one-sixteenth of a degree by the Climate Impacts Group, and historical runoff from sub-watersheds or neighboring watersheds. Nash Sutcliffe efficiency values for daily flows in calibration sub-watersheds ranged from 0.71 to 0.89. After calibration, we forced the PRMS models with four North American Regional Climate Change Assessment Program climate models: Canadian Regional Climate Model-(National Center for Atmospheric Research) Community Climate System Model version 3, Canadian Regional Climate Model-Canadian Global Climate Model version 3, Hadley Regional Model version 3-Hadley Centre Climate Model version 3, and Regional Climate Model-Canadian Global Climate Model version 3. These are global climate models (GCMs) downscaled with regional climate models that are embedded within the GCMs, and all use the A2 carbon emission scenario developed by the Intergovernmental Panel on Climate Change. With these climate-forcing outputs, we derived the mean change in flow from the period encompassing the 1980s (1971-1995) to the period encompassing the 2050s (2041-2065). Specifically, we calculated percent change in mean monthly flow rate, coefficient of variation, top 5 percent of flow, and 7-day low flow. The trends with the most agreement among climate models and among watersheds were increases in autumn mean monthly flows, especially in October and November, decreases in summer monthly mean flow, and increases in the top 5 percent of flow. We also estimated variance in PRMS outputs owing to parameter uncertainty and the selection of climate model using Latin hypercube sampling. This analysis showed that PRMS low-flow simulations are more uncertain than medium or high flow simulations, and that variation among climate models was a larger source of uncertainty than the hydrological model parameters. These results improve our understanding of how climate change may affect the saltwater-freshwater balance in Pacific Northwest estuaries, with implications for their sensitive ecosystems.

  17. Comparing Data Input Requirements of Statistical vs. Process-based Watershed Models Applied for Prediction of Fecal Indicator and Pathogen Levels in Recreational Beaches

    EPA Science Inventory

    Same day prediction of fecal indicator bacteria (FIB) concentrations and bather protection from the risk of exposure to pathogens are two important goals of implementing a modeling program at recreational beaches. Sampling efforts for modelling applications can be expensive and t...

  18. Assessment of NASA's Physiographic and Meteorological Datasets as Input to HSPF and SWAT Hydrological Models

    NASA Technical Reports Server (NTRS)

    Alacron, Vladimir J.; Nigro, Joseph D.; McAnally, William H.; OHara, Charles G.; Engman, Edwin Ted; Toll, David

    2011-01-01

    This paper documents the use of simulated Moderate Resolution Imaging Spectroradiometer land use/land cover (MODIS-LULC), NASA-LIS generated precipitation and evapo-transpiration (ET), and Shuttle Radar Topography Mission (SRTM) datasets (in conjunction with standard land use, topographical and meteorological datasets) as input to hydrological models routinely used by the watershed hydrology modeling community. The study is focused in coastal watersheds in the Mississippi Gulf Coast although one of the test cases focuses in an inland watershed located in northeastern State of Mississippi, USA. The decision support tools (DSTs) into which the NASA datasets were assimilated were the Soil Water & Assessment Tool (SWAT) and the Hydrological Simulation Program FORTRAN (HSPF). These DSTs are endorsed by several US government agencies (EPA, FEMA, USGS) for water resources management strategies. These models use physiographic and meteorological data extensively. Precipitation gages and USGS gage stations in the region were used to calibrate several HSPF and SWAT model applications. Land use and topographical datasets were swapped to assess model output sensitivities. NASA-LIS meteorological data were introduced in the calibrated model applications for simulation of watershed hydrology for a time period in which no weather data were available (1997-2006). The performance of the NASA datasets in the context of hydrological modeling was assessed through comparison of measured and model-simulated hydrographs. Overall, NASA datasets were as useful as standard land use, topographical , and meteorological datasets. Moreover, NASA datasets were used for performing analyses that the standard datasets could not made possible, e.g., introduction of land use dynamics into hydrological simulations

  19. Long-term Watershed Database for the Ridge and Valley Physiographic Province: Mahantango Creek Watershed, Pennsylvania, USA

    USDA-ARS?s Scientific Manuscript database

    Understanding agricultural effects on water quality in rivers and estuaries requires understanding of hydrometeorology and geochemical cycling at various scales over time. The USDA-ARS initiated a hydrologic research program at the Mahantango Creek Watershed (MCW) in 1968, a research watershed at t...

  20. Evaluating Ecosystem Services Provided by the Albemarle-Pamlico (NC) Estuary System in Response to Watershed Nitrogen Management

    EPA Science Inventory

    The Albemarle-Pamlico Watershed and Estuary Study (APWES) is part of the USEPA Ecosystem Services Research Program. The mission of the APWES is to develop ecosystem services science to inform watershed and coastal management decisions in the Albemarle-Pamlico watershed and estuar...

  1. Application of Watershed Scale Models to Predict Nitrogen Loading From Coastal Plain Watersheds

    Treesearch

    George M. Chescheir; Glenn P Fernandez; R. Wayne Skaggs; Devendra M. Amatya

    2004-01-01

    DRAINMOD-based watershed models have been developed and tested using data collected from an intensively instrumented research site on Kendricks Creek watershed near Plymouth. NC. These models were applied to simulate the hydrology and nitrate nitrogen (NO3-N) loading from two other watersheds in the Coastal Plain of North Carolina, the 11600 ha Chicod Creek watershed...

  2. Soil erosion modeled with USLE, GIS, and remote sensing: a case study of Ikkour watershed in Middle Atlas (Morocco)

    NASA Astrophysics Data System (ADS)

    El Jazouli, Aafaf; Barakat, Ahmed; Ghafiri, Abdessamad; El Moutaki, Saida; Ettaqy, Abderrahim; Khellouk, Rida

    2017-12-01

    The Ikkour watershed located in the Middle Atlas Mountain (Morocco) has been a subject of serious soil erosion problems. This study aimed to assess the soil erosion susceptibility in this mountainous watershed using Universal Soil Loss Equation (USLE) and spectral indices integrated with Geographic Information System (GIS) environment. The USLE model required the integration of thematic factors' maps which are rainfall aggressiveness, length and steepness of the slope, vegetation cover, soil erodibility, and erosion control practices. These factors were calculated using remote sensing data and GIS. The USLE-based assessment showed that the estimated total annual potential soil loss was about 70.66 ton ha-1 year-1. This soil loss is favored by the steep slopes and degraded vegetation cover. The spectral index method, offering a qualitative evaluation of water erosion, showed different degrees of soil degradation in the study watershed according to FI, BI, CI, and NDVI. The results of this study displayed an agreement between the USLE model and spectral index approach, and indicated that the predicted soil erosion rate can be due to the most rugged land topography and an increase in agricultural areas. Indeed, these results can further assist the decision makers in implementation of suitable conservation program to reduce soil erosion.

  3. Soil Biogeochemical Properties and Erosion Source Prediction Model Summary for the Buffalo Bayou Watershed, Houston, Texas

    NASA Astrophysics Data System (ADS)

    Ahmed, I.

    2015-12-01

    We draw conclusions on the research output and findings from a 4-year multidisciplinary USDA-CBG collaborative program in sustainable integrated monitoring of soil organic carbon (SOC) loss prediction via erosion. The underlying method uses the state-of-the-art stable isotope science of sediment tracing under uncertain hydrologic influences. The research finds are rooted in the (i) application of Bayesian Markov Chain Monte Carlo statistical models to assess the relationship between rainfall-runoff and soil erosion in space and time, (ii) capture of the episodic nature of rainfall events and its role in the spatial distribution of SOC loss from water erosion, (iii) stable isotope composition guided fingerprinting (source and quantity) of eroded soil, and (iv) the creation of an integrated watershed scale statistical soil loss monitoring model driven by spatial and temporal correlation of flow and stable isotope composition. The research theme was successfully applied on the urbanized Buffalo Bayou Watershed in Houston, Texas. The application brought to light novel future research conceptual outlines which will also be discussed in this deliverable to the AGU meeting. These include but not limited to: regional rainfall cluster research, physics of muddy river-bank soil and suspended sediment interaction, and friction & mobility that together make up the plasticity of soil aggregates that control erosion processes and landscape changes in a riparian corridor. References: Ahmed, I., Karim, A., Boutton, T.W., and Strom, K.B. (2013a). "Monitoring Soil Organic Carbon Loss from Erosion Using Stable Isotopes." Proc., Soil Carbon Sequestration, International Conference, May 26-29, Reykjavik, Iceland. Ahmed, I, Bouttom, T.W., Strom, K. B., Karim, A., and Irvin-Smith, N. (2013b). "Soil carbon distribution and loss monitoring in the urbanized Buffalo Bayou watershed, Houston, Texas." Proc., 4th Annual All Investigators Meeting of the North American Carbon Program, February 4-7, Albuquerque, NM. Fox, J.F. and Papanicolaou, A.N. (2008). An un-mixing model to study watershed erosion processes. Advances in Water Resources, 31, 96-108.

  4. Climate change and watershed mercury export: a multiple projection and model analysis.

    PubMed

    Golden, Heather E; Knightes, Christopher D; Conrads, Paul A; Feaster, Toby D; Davis, Gary M; Benedict, Stephen T; Bradley, Paul M

    2013-09-01

    Future shifts in climatic conditions may impact watershed mercury (Hg) dynamics and transport. An ensemble of watershed models was applied in the present study to simulate and evaluate the responses of hydrological and total Hg (THg) fluxes from the landscape to the watershed outlet and in-stream THg concentrations to contrasting climate change projections for a watershed in the southeastern coastal plain of the United States. Simulations were conducted under stationary atmospheric deposition and land cover conditions to explicitly evaluate the effect of projected precipitation and temperature on watershed Hg export (i.e., the flux of Hg at the watershed outlet). Based on downscaled inputs from 2 global circulation models that capture extremes of projected wet (Community Climate System Model, Ver 3 [CCSM3]) and dry (ECHAM4/HOPE-G [ECHO]) conditions for this region, watershed model simulation results suggest a decrease of approximately 19% in ensemble-averaged mean annual watershed THg fluxes using the ECHO climate-change model and an increase of approximately 5% in THg fluxes with the CCSM3 model. Ensemble-averaged mean annual ECHO in-stream THg concentrations increased 20%, while those of CCSM3 decreased by 9% between the baseline and projected simulation periods. Watershed model simulation results using both climate change models suggest that monthly watershed THg fluxes increase during the summer, when projected flow is higher than baseline conditions. The present study's multiple watershed model approach underscores the uncertainty associated with climate change response projections and their use in climate change management decisions. Thus, single-model predictions can be misleading, particularly in developmental stages of watershed Hg modeling. Copyright © 2013 SETAC.

  5. Coupling of Water and Carbon Cycles in Boreal Ecosystems at Watershed and National Scales

    NASA Astrophysics Data System (ADS)

    Chen, J. M.; Ju, W.; Govind, A.; Sonnentag, O.

    2009-05-01

    The boreal landscapes is relatively flat giving the impression of spatial homogeneity. However, glacial activities have left distinct fingerprints on the vegetation distribution on moderately rolling terrains over the boreal landscape. Upland or lowland forests types or wetlands having various degrees of hydrological connectivitiy to the surrounding terrain are typical of the boreal landscape. The nature of the terrain creates unique hydrological conditions affecting the local-scale ecophysiological and biogeochemical processes. As part of the Canadian Carbon Program, we investigated the importance of lateral water redistribution through surface and subsurface flows in the spatial distribution of the vertical fluxes of water and carbon. A spatially explicit hydroecological model (BEPS-TerrainLab) has been developed and tested in forested and wetland watersheds . Remotely sensed vegetation parameters along with other spatial datasets are used to run this model, and tower flux data are used for partial validation. It is demonstrated in both forest and wetland watersheds that ignoring the lateral water redistribution over the landscape, commonly done in 1-dimensional bucket models, can cause considerable biases in the vertical carbon and water flux estimation, in addition to the distortion of the spatial patterns of these fluxes. The biases in the carbon flux are considerably larger than those in the water flux. The significance of these findings in national carbon budget estimation is demonstrated by separate modeling of 2015 watersheds over the Canadian landmass.

  6. Multiobjective Optimization Combining BMP Technology and Land Preservation for Watershed-based Stormwater Management

    NASA Astrophysics Data System (ADS)

    McGarity, A. E.

    2009-12-01

    Recent progress has been made developing decision-support models for optimal deployment of best management practices (BMP’s) in an urban watershed to achieve water quality goals. One example is the high-level screening model StormWISE, developed by the author (McGarity, 2006) that uses linear and nonlinear programming to narrow the search for optimal solutions to certain land use categories and drainage zones. Another example is the model SUSTAIN developed by USEPA and Tetra Tech (Lai, et al., 2006), which builds on the work of Yu, et al., 2002), that uses a detailed, computationally intensive simulation model driven by a genetic solver to select optimal BMP sites. However, a model that deals only with best management practice (BMP) site selections may fail to consider solutions that avoid future nonpoint pollutant loadings by preserving undeveloped land. This paper presents results of a recently completed research project in which water resource engineers partnered with experienced professionals at a land conservation trust to develop a multiobjective model for watershed management. The result is a revised version of StormWISE that can be used to identify optimal, cost-effective combinations of easements and similar land preservation tools for undeveloped sites along with low impact development (LID) and BMP technologies for developed sites. The goal is to achieve the watershed-wide limits on runoff volume and pollutant loads that are necessary to meet water quality goals as well as ecological benefits associated with habitat preservation and enhancement. A nonlinear programming formulation is presented for the extended StormWISE model that achieves desired levels of environmental benefits at minimum cost. Tradeoffs between different environmental benefits are generated by multiple runs of the model while varying the levels of each environmental benefit obtained. The model is solved using piecewise linearization of environmental benefit functions where each linear segment of represents a different option for reducing stormwater runoff volumes and pollutant loadings. The solutions space is comprised of optimal levels of expenditure for categories of BMP's by land use category and optimal land preservation expenditures by drainage zone. To demonstrate the usefulness of the model, results from its application to the Little Crum Creek watershed in suburban Philadelphia are presented. The model has been used to assist a watershed association and four municipalities to develop an action plan for restoration of water quality on this impaired stream. References Lai, F., J. Zhen, J. Riverson, and L. Shoemaker (2006). "SUSTAIN - An Evaluation and Cost-Optimization Tool for Placement of BMPs," ASCE World Environmental and Water Resource Congress 2006. McGarity, A.E. (2006). A Cost Minimization Model to Priortize Urban Catchments for Stormwater BMP Implementation Projects. American Water Resources Association National Meeting, Baltimore, MD, November, 2006. Yu, S., J. X. Zhen, and S.Y. Zhai, (2002). Development of Stormwater Best Management Practice Placement Strategy for the Virginia Department of Transportation. Final Contract Report, VTRC 04-CR9, Virginia Transportation Research Council.

  7. Game theory and fuzzy programming approaches for bi-objective optimization of reservoir watershed management: a case study in Namazgah reservoir.

    PubMed

    Üçler, N; Engin, G Onkal; Köçken, H G; Öncel, M S

    2015-05-01

    In this study, game theory and fuzzy programming approaches were used to balance economic and environmental impacts in the Namazgah reservoir, Turkey. The main goals identified were to maximize economic benefits of land use and to protect water quality of reservoir and land resources. Total phosphorous load (kg ha(-1) year(-1)) and economic income (USD ha(-1) year(-1)) from land use were determined as environmental value and economic value, respectively. The surface area of existing land use types, which are grouped under 10 headings according to the investigations on the watershed area, and the constraint values for the watershed were calculated using aerial photos, master plans, and basin slope map. The results of fuzzy programming approach were found to be very close to the results of the game theory model. It was concluded that the amount of fertilizer used in the current situation presents a danger to the reservoir and, therefore, unnecessary fertilizer use should be prevented. Additionally, nuts, fruit, and vegetable cultivation, instead of wheat and corn cultivation, was found to be more suitable due to their high economic income and low total phosphorus (TP) load. Apart from agricultural activities, livestock farming should also be considered in the area as a second source of income. It is believed that the results obtained in this study will help decision makers to identify possible problems of the watershed.

  8. Derivation of a GIS-based watershed-scale conceptual model for the St. Jones River Delaware from habitat-scale conceptual models.

    PubMed

    Reiter, Michael A; Saintil, Max; Yang, Ziming; Pokrajac, Dragoljub

    2009-08-01

    Conceptual modeling is a useful tool for identifying pathways between drivers, stressors, Valued Ecosystem Components (VECs), and services that are central to understanding how an ecosystem operates. The St. Jones River watershed, DE is a complex ecosystem, and because management decisions must include ecological, social, political, and economic considerations, a conceptual model is a good tool for accommodating the full range of inputs. In 2002, a Four-Component, Level 1 conceptual model was formed for the key habitats of the St. Jones River watershed, but since the habitat level of resolution is too fine for some important watershed-scale issues we developed a functional watershed-scale model using the existing narrowed habitat-scale models. The narrowed habitat-scale conceptual models and associated matrices developed by Reiter et al. (2006) were combined with data from the 2002 land use/land cover (LULC) GIS-based maps of Kent County in Delaware to assemble a diagrammatic and numerical watershed-scale conceptual model incorporating the calculated weight of each habitat within the watershed. The numerical component of the assembled watershed model was subsequently subjected to the same Monte Carlo narrowing methodology used for the habitat versions to refine the diagrammatic component of the watershed-scale model. The narrowed numerical representation of the model was used to generate forecasts for changes in the parameters "Agriculture" and "Forest", showing that land use changes in these habitats propagated through the results of the model by the weighting factor. Also, the narrowed watershed-scale conceptual model identified some key parameters upon which to focus research attention and management decisions at the watershed scale. The forecast and simulation results seemed to indicate that the watershed-scale conceptual model does lead to different conclusions than the habitat-scale conceptual models for some issues at the larger watershed scale.

  9. Dealing with equality and benefit for water allocation in a lake watershed: A Gini-coefficient based stochastic optimization approach

    NASA Astrophysics Data System (ADS)

    Dai, C.; Qin, X. S.; Chen, Y.; Guo, H. C.

    2018-06-01

    A Gini-coefficient based stochastic optimization (GBSO) model was developed by integrating the hydrological model, water balance model, Gini coefficient and chance-constrained programming (CCP) into a general multi-objective optimization modeling framework for supporting water resources allocation at a watershed scale. The framework was advantageous in reflecting the conflicting equity and benefit objectives for water allocation, maintaining the water balance of watershed, and dealing with system uncertainties. GBSO was solved by the non-dominated sorting Genetic Algorithms-II (NSGA-II), after the parameter uncertainties of the hydrological model have been quantified into the probability distribution of runoff as the inputs of CCP model, and the chance constraints were converted to the corresponding deterministic versions. The proposed model was applied to identify the Pareto optimal water allocation schemes in the Lake Dianchi watershed, China. The optimal Pareto-front results reflected the tradeoff between system benefit (αSB) and Gini coefficient (αG) under different significance levels (i.e. q) and different drought scenarios, which reveals the conflicting nature of equity and efficiency in water allocation problems. A lower q generally implies a lower risk of violating the system constraints and a worse drought intensity scenario corresponds to less available water resources, both of which would lead to a decreased system benefit and a less equitable water allocation scheme. Thus, the proposed modeling framework could help obtain the Pareto optimal schemes under complexity and ensure that the proposed water allocation solutions are effective for coping with drought conditions, with a proper tradeoff between system benefit and water allocation equity.

  10. Ecosystem dynamics and disturbance in mountain wildernesses: assessing vulnerability of natural resources to change

    Treesearch

    Daniel B. Fagre; David L. Peterson

    2000-01-01

    An integrated program of ecosystem modeling and extensive field studies at Glacier and Olympic National Parks has quantified many of the ecological processes affected by climatic variability and disturbance. Models have successfully estimated snow distribution, annual watershed discharge, and stream temperature variation based on seven years of monitoring. Various...

  11. N-Sink: A Tool to Identify Nitrogen Sources and Sinks within aWatershed Framework

    EPA Science Inventory

    N-Sink is a customized ArcMap© program that provides maps of N sourcesand sinks within a watershed, and estimates the delivery efficiency of N movement from sources to the watershed outlet. The primary objective of N-Sink is to assist land use planners, watershed managers, and la...

  12. Development, calibration, and analysis of a hydrologic and water-quality model of the Delaware Inland Bays watershed

    USGS Publications Warehouse

    Gutierrez-Magness, Angelica L.; Raffensperger, Jeff P.

    2003-01-01

    Excessive nutrients and sediment are among the most significant environmental stressors in the Delaware Inland Bays (Rehoboth, Indian River, and Little Assawoman Bays). Sources of nutrients, sediment, and other contaminants within the Inland Bays watershed include point-source discharges from industries and wastewater-treatment plants, runoff and infiltration to ground water from agricultural fields and poultry operations, effluent from on-site wastewater disposal systems, and atmospheric deposition. To determine the most effective restoration methods for the Inland Bays, it is necessary to understand the relative distribution and contribution of each of the possible sources of nutrients, sediment, and other contaminants. A cooperative study involving the Delaware Department of Natural Resources and Environmental Control, the Delaware Geological Survey, and the U.S. Geological Survey was initiated in 2000 to develop a hydrologic and water-quality model of the Delaware Inland Bays watershed that can be used as a water-resources planning and management tool. The model code Hydrological Simulation Program - FORTRAN (HSPF) was used. The 719-square-kilometer watershed was divided into 45 model segments, and the model was calibrated using streamflow and water-quality data for January 1999 through April 2000 from six U.S. Geological Survey stream-gaging stations within the watershed. Calibration for some parameters was accomplished using PEST, a model-independent parameter estimator. Model parameters were adjusted systematically so that the discrepancies between the simulated values and the corresponding observations were minimized. Modeling results indicate that soil and aquifer permeability, ditching, dominant land-use class, and land-use practices affect the amount of runoff, the mechanism or flow path (surface flow, interflow, or base flow), and the loads of sediment and nutrients. In general, the edge-of-stream total suspended solids yields in the Inland Bays watershed are low in comparison to yields reported for the Eastern Shore from the Chesapeake Bay watershed model. The flatness of the terrain and the low annual surface runoff are important factors in determining the amount of detached sediment from the land that is delivered to streams. The highest total suspended solids yields were found in the southern part of the watershed, associated with high total streamflow and a high surface runoff component, and related to soil and aquifer permeability and land use. Nutrient yields from watershed model segments in the southern part of the Inland Bays watershed were the highest of all calibrated segments, due to high runoff and the substantial amount of available organic fertilizer (animal waste), which results in over-application of organic fertilizer to crops. Time series of simulated hourly total nitrogen concentrations and observed instantaneous values indicate a seasonal pattern, with the lowest values occurring during the summer and the highest during the winter months. Total phosphorus and total suspended solids concentrations are somewhat less seasonal. During storm events, total nitrogen concentrations tend to be diluted and total phosphorus concentrations tend to rise sharply. Nitrogen is transported mainly in the aqueous phase and primarily through ground water, whereas phosphorus is strongly associated with sediment, which washes off during precipitation events.

  13. Evaluation of the Agro-EcoSystem-Watershed (AgES-W)model for estimating nutrient dynamics on a midwest agricultural watershed

    USDA-ARS?s Scientific Manuscript database

    In order to satisfy the requirements of Conservation Effects Assessment Project (CEAP) Watershed Assessment Study (WAS) Objective 5 (“develop and verify regional watershed models that quantify environmental outcomes of conservation practices in major agricultural regions”), a new watershed model dev...

  14. Extending the ARS Experimental Watersheds to Address Regional Issues

    NASA Astrophysics Data System (ADS)

    Marks, D.; Goodrich, D. C.; Winstral, A.; Bosch, D. D.; Pool, D.

    2001-12-01

    The USDA-Agricultural Research Service's (ARS) Watershed Research Program maintains and operates a diverse, geog raphically distributed, nested, multi-scale, national ex perimental watershed network. This network, much of which has been operational for more than 40 years (several more than 60 years), constitutes one the best networks of its kind in the world. The watershed network and its instrumentation was primarily established to assess the hydrologic impacts of watershed conservation and management practices. It has evolved, through development of long-term hydrologic data, as a network of high quality outdoor laboratories for addressing emerging science issues facing hydrologists and resource managers. While the value of the experimental watershed for investigating precipitation, climatic, and hydrologic processes is unquestioned, extending the results from these investigations to other sites and larger areas is more difficult. ARS experimental watersheds are a few hundred km2 or smaller making it challenging to address regional scale issues. To address this the ARS watershed program is, with a suite of partners from universities and other federal agencies, enlarging its research focus to extend beyond the boundaries of the experimental watershed. In this poster we present several examples of this effort, with suggestions on how, using the experimental watershed and its core, a larger scale hydrologic observatory could be developed and maintained.

  15. NEW GIS WATERSHED ANALYSIS TOOLS FOR SOIL CHARACTERIZATION AND EROSION AND SEDIMENTATION MODELING

    EPA Science Inventory

    A comprehensive procedure for computing soil erosion and sediment delivery metrics has been developed which utilizes a suite of automated scripts and a pair of processing-intensive executable programs operating on a personal computer platform.

  16. Draft Maumee River Watershed Restoration Plan

    EPA Pesticide Factsheets

    A draft of the Maumee River AOC Watershed Restoration Plan was completed in January 2006. The plan was created to meet requirements for the stage II RAP as well as Ohio EPA’s and ODNR’s Watershed Coordinator Program.

  17. Watershed Complexity Impacts on Rainfall-Runoff Modeling

    NASA Astrophysics Data System (ADS)

    Goodrich, D. C.; Grayson, R.; Willgoose, G.; Palacios-Velez, O.; Bloeschl, G.

    2002-12-01

    Application of distributed hydrologic watershed models fundamentally requires watershed partitioning or discretization. In addition to partitioning the watershed into modeling elements, these elements typically represent a further abstraction of the actual watershed surface and its relevant hydrologic properties. A critical issue that must be addressed by any user of these models prior to their application is definition of an acceptable level of watershed discretization or geometric model complexity. A quantitative methodology to define a level of geometric model complexity commensurate with a specified level of model performance is developed for watershed rainfall-runoff modeling. In the case where watershed contributing areas are represented by overland flow planes, equilibrium discharge storage was used to define the transition from overland to channel dominated flow response. The methodology is tested on four subcatchments which cover a range of watershed scales of over three orders of magnitude in the USDA-ARS Walnut Gulch Experimental Watershed in Southeastern Arizona. It was found that distortion of the hydraulic roughness can compensate for a lower level of discretization (fewer channels) to a point. Beyond this point, hydraulic roughness distortion cannot compensate for topographic distortion of representing the watershed by fewer elements (e.g. less complex channel network). Similarly, differences in representation of topography by different model or digital elevation model (DEM) types (e.g. Triangular Irregular Elements - TINs; contour lines; and regular grid DEMs) also result in difference in runoff routing responses that can be largely compensated for by a distortion in hydraulic roughness.

  18. Automated watershed subdivision for simulations using multi-objective optimization

    USDA-ARS?s Scientific Manuscript database

    The development of watershed management plans to evaluate placement of conservation practices typically involves application of watershed models. Incorporating spatially variable watershed characteristics into a model often requires subdividing the watershed into small areas to accurately account f...

  19. Small watershed-scale research and the challenges ahead

    NASA Astrophysics Data System (ADS)

    Larsen, M. C.; Glynn, P. D.

    2008-12-01

    For the past century, Federal mission science agencies (eg. USFS, NRCS, ARS, USGS) have had the long- term agency goals, infrastructure, and research staff to conduct research and data collection in small watersheds as well as support these activities for non-Federal partners. The National Science Foundation has been a strong partner with the Federal mission science agencies, through the LTER network, which is dependent on Federally supported research sites, and more recently with the emerging CUAHSI, WATERS, CZEN, and NEON initiatives. Much of the NSF-supported research builds on the foundations provided by their Federally supported partners, who sustain the long-term, extensive monitoring activity and research sites, including making long-term data available to all users via public interfaces. The future of these programs, and their enhancement/expansion to face the intensifying concurrent challenges of population growth, land-use change, and climate change, is dependent on a well-funded national commitment to basic science. Such a commitment will allow the scientific community to advance our understanding of these scientific challenges and to synthesize our understanding among research sites and at the national scale. Small watersheds serve as essential platforms where hypotheses can be tested, as sentinels for climate change, and as a basis for comparing and scaling up local information and syntheses to regional and continental scales. The science guides resource management and mitigation decisions and is fundamental to the development of predictive models. Furthermore, small-watershed research and monitoring programs are generally undervalued because many research questions that can be addressed now or in the future were not anticipated when the sites were initiated. Some examples include: 1) the quantification, characterization, and understanding of how emerging contaminants, personal care products, and endocrine disruptors affect organisms - substances that could not be detected until the recent increased sensitivity of modern techniques; 2) the recognition of changing climate and its effects on already-stressed water resources and ecosystems; 3) more integrated monitoring and modeling of ecosystem processes and quantification of ecosystem services. Historical hydrological and biogeochemical information available at USGS and other watershed-research and -monitoring sites can now be used in conjunction with active monitoring of biota and biological processes (especially those involving plants, invertebrates and microbes). The results will help provide a more nationally consistent framework for evaluating ecosystem health, and assessing ecosystem services, in the face of changing climate and land-use. These, and related science questions and societal issues are complex and require strong collaborations across disciplinary and organizational boundaries. Along with a well-funded national commitment to basic watershed research, the USGS continually seeks to strengthen its small-watershed and ecosystem-science programs through partnerships with NSF, State, and Federal agencies. Given the growing U.S. population, continual development in water-scarce regions, and general water- and soil-resource stress under competing national interests and priorities, the role of basic watershed-scale research and monitoring is essential because of its unique niche in the development of the improved environmental understanding and predictive models needed by resource managers.

  20. An initial-abstraction, constant-loss model for unit hydrograph modeling for applicable watersheds in Texas

    USGS Publications Warehouse

    Asquith, William H.; Roussel, Meghan C.

    2007-01-01

    Estimation of representative hydrographs from design storms, which are known as design hydrographs, provides for cost-effective, riskmitigated design of drainage structures such as bridges, culverts, roadways, and other infrastructure. During 2001?07, the U.S. Geological Survey (USGS), in cooperation with the Texas Department of Transportation, investigated runoff hydrographs, design storms, unit hydrographs,and watershed-loss models to enhance design hydrograph estimation in Texas. Design hydrographs ideally should mimic the general volume, peak, and shape of observed runoff hydrographs. Design hydrographs commonly are estimated in part by unit hydrographs. A unit hydrograph is defined as the runoff hydrograph that results from a unit pulse of excess rainfall uniformly distributed over the watershed at a constant rate for a specific duration. A time-distributed, watershed-loss model is required for modeling by unit hydrographs. This report develops a specific time-distributed, watershed-loss model known as an initial-abstraction, constant-loss model. For this watershed-loss model, a watershed is conceptualized to have the capacity to store or abstract an absolute depth of rainfall at and near the beginning of a storm. Depths of total rainfall less than this initial abstraction do not produce runoff. The watershed also is conceptualized to have the capacity to remove rainfall at a constant rate (loss) after the initial abstraction is satisfied. Additional rainfall inputs after the initial abstraction is satisfied contribute to runoff if the rainfall rate (intensity) is larger than the constant loss. The initial abstraction, constant-loss model thus is a two-parameter model. The initial-abstraction, constant-loss model is investigated through detailed computational and statistical analysis of observed rainfall and runoff data for 92 USGS streamflow-gaging stations (watersheds) in Texas with contributing drainage areas from 0.26 to 166 square miles. The analysis is limited to a previously described, watershed-specific, gamma distribution model of the unit hydrograph. In particular, the initial-abstraction, constant-loss model is tuned to the gamma distribution model of the unit hydrograph. A complex computational analysis of observed rainfall and runoff for the 92 watersheds was done to determine, by storm, optimal values of initial abstraction and constant loss. Optimal parameter values for a given storm were defined as those values that produced a modeled runoff hydrograph with volume equal to the observed runoff hydrograph and also minimized the residual sum of squares of the two hydrographs. Subsequently, the means of the optimal parameters were computed on a watershed-specific basis. These means for each watershed are considered the most representative, are tabulated, and are used in further statistical analyses. Statistical analyses of watershed-specific, initial abstraction and constant loss include documentation of the distribution of each parameter using the generalized lambda distribution. The analyses show that watershed development has substantial influence on initial abstraction and limited influence on constant loss. The means and medians of the 92 watershed-specific parameters are tabulated with respect to watershed development; although they have considerable uncertainty, these parameters can be used for parameter prediction for ungaged watersheds. The statistical analyses of watershed-specific, initial abstraction and constant loss also include development of predictive procedures for estimation of each parameter for ungaged watersheds. Both regression equations and regression trees for estimation of initial abstraction and constant loss are provided. The watershed characteristics included in the regression analyses are (1) main-channel length, (2) a binary factor representing watershed development, (3) a binary factor representing watersheds with an abundance of rocky and thin-soiled terrain, and (4) curve numb

  1. Effect of Nutrient Management Planning on Crop Yield, Nitrate Leaching and Sediment Loading in Thomas Brook Watershed

    NASA Astrophysics Data System (ADS)

    Amon-Armah, Frederick; Yiridoe, Emmanuel K.; Ahmad, Nafees H. M.; Hebb, Dale; Jamieson, Rob; Burton, David; Madani, Ali

    2013-11-01

    Government priorities on provincial Nutrient Management Planning (NMP) programs include improving the program effectiveness for environmental quality protection, and promoting more widespread adoption. Understanding the effect of NMP on both crop yield and key water-quality parameters in agricultural watersheds requires a comprehensive evaluation that takes into consideration important NMP attributes and location-specific farming conditions. This study applied the Soil and Water Assessment Tool (SWAT) to investigate the effects of crop and rotation sequence, tillage type, and nutrient N application rate on crop yield and the associated groundwater leaching and sediment loss. The SWAT model was applied to the Thomas Brook Watershed, located in the most intensively managed agricultural region of Nova Scotia, Canada. Cropping systems evaluated included seven fertilizer application rates and two tillage systems (i.e., conventional tillage and no-till). The analysis reflected cropping systems commonly managed by farmers in the Annapolis Valley region, including grain corn-based and potato-based cropping systems, and a vegetable-horticulture system. ANOVA models were developed and used to assess the effects of crop management choices on crop yield and two water-quality parameters (i.e., leaching and sediment loading). Results suggest that existing recommended N-fertilizer rate can be reduced by 10-25 %, for grain crop production, to significantly lower leaching ( P > 0.05) while optimizing the crop yield. The analysis identified the nutrient N rates in combination with specific crops and rotation systems that can be used to manage leaching while balancing impacts on crop yields within the watershed.

  2. Linking Air Quality and Watershed Models for Environmental Assessments: Analysis of the Effects of Model-Specific Precipitation Estimates on Calculated Water Flux

    EPA Science Inventory

    Directly linking air quality and watershed models could provide an effective method for estimating spatially-explicit inputs of atmospheric contaminants to watershed biogeochemical models. However, to adequately link air and watershed models for wet deposition estimates, each mod...

  3. Simulating land-use changes and stormwater-detention basins and evaluating their effect on peak streamflows and stream-water quality in Irondequoit Creek basin, New York—A user's manual for HSPF and GenScn

    USGS Publications Warehouse

    Coon, William F.

    2003-01-01

    A computer model of hydrologic and water-quality processes of the Irondequoit Creek basin in Monroe and Ontario Counties, N.Y., was developed during 2000-02 to enable water-resources managers to simulate the effects of future development and stormwater-detention basins on peak flows and water quality of Irondequoit Creek and its tributaries. The model was developed with the program Hydrological Simulation Program-Fortran (HSPF) such that proposed or hypothetical land-use changes and instream stormwater-detention basins could be simulated, and their effects on peak flows and loads of total suspended solids, total phosphorus, ammonia-plus-organic nitrogen, and nitrate-plus-nitrite nitrogen could be analyzed, through an interactive computer program known as Generation and Analysis of Model Simulation Scenarios for Watersheds (GenScn). This report is a user's manual written to guide the Irondequoit Creek Watershed Collaborative in (1) the creation of land-use and flow-detention scenarios for simulation by the HSPF model, and (2) the use of GenScn to analyze the results of these simulations. These analyses can, in turn, aid the group in making basin-wide water-resources-management decisions.

  4. Modeling the Environmental Fate of Graphene Oxide and Its Phototransformation Products in Brier Creek Watershed Using the Water Quality Analysis Simulation Program 8 (WASP8)

    NASA Astrophysics Data System (ADS)

    Han, Y.; Bouchard, D.; Chang, X.; Hsieh, H. S.; Knightes, C. D.; Spear, J.; Zepp, R. G.

    2017-12-01

    The production of graphene-family nanoparticles (GFNs) appreciably increased in recent years. Among GFNs, graphene oxide (GO) is one of the most highly studied members due to its inexpensive synthesis cost compared to graphene, its stability in aqueous media and its broad application. However, GO also has been found to be the most toxic among GFNs. Lab studies showed that GO undergoes phototransformation in surface waters, resulting in products that include reduced GO (rGO) and polycyclic aromatic hydrocarbons (PAHs). Due to technical and analytical limitations, it is still difficult to conduct in-situ measurement of GO and rGO concentrations released in the environment, and it is of utmost importance to establish a model that can predict their environmental exposure concentrations in the environment. In this study, we develop a fate and transport model to predict time-dependent environmental exposure concentrations of GO for the Brier Creek Watershed in the GA coastal plain. We investigate the influence of sunlight radiation on the distribution of GO and its phototransformation products in the watershed over a 20-year period using the most updated Water Quality Analysis Simulation Program (WASP8). Flow rate, sediment transport data and sunlight radiation data are input into WASP8, and WASP8 is used to internally calculate a GO phototransformation rate and productions of rGO and PAHs. Heteroaggregation coefficients of GO and rGO with suspended solids were measured in an EPA laboratory, and then input into WASP8. GO and rGO concentrations in the watershed are calculated by WASP8. Mass fraction results show that GO is the predominant species among GO derived species, which account for 99% of the mass throughout the whole watershed of interest, while rGO species, including free rGO and rGO heteroaggregated to suspended solids, only account for 1%. We also found that almost all free GO and rGO are present in water column due to their extremely low settling velocity. rGO can be precipitated through heteroaggregation processes and predominantly accumulate in sediment. The identification of the exact PAHs species generated during GO phototransformation and simulation of PAHs concentrations in both water column and sediment using WASP8 are useful tools to facilitate the risk assessment of PAHs in watersheds.

  5. Modeling pesticide loadings from the San Joaquin watershed into the Sacramento-San Joaquin Delta using SWAT

    NASA Astrophysics Data System (ADS)

    Chen, H.; Zhang, M.

    2016-12-01

    The Sacramento-San Joaquin Delta is an ecologically rich, hydrologically complex area that serves as the hub of California's water supply. However, pesticides have been routinely detected in the Delta waterways, with concentrations exceeding the benchmark for the protection of aquatic life. Pesticide loadings into the Delta are partially attributed to the San Joaquin watershed, a highly productive agricultural watershed located upstream. Therefore, this study aims to simulate pesticide loadings to the Delta by applying the Soil and Water Assessment Tool (SWAT) model to the San Joaquin watershed, under the support of the USDA-ARS Delta Area-Wide Pest Management Program. Pesticide use patterns in the San Joaquin watershed were characterized by combining the California Pesticide Use Reporting (PUR) database and GIS analysis. Sensitivity/uncertainty analyses and multi-site calibration were performed in the simulation of stream flow, sediment, and pesticide loads along the San Joaquin River. Model performance was evaluated using a combination of graphic and quantitative measures. Preliminary results indicated that stream flow was satisfactorily simulated along the San Joaquin River and the major eastern tributaries, whereas stream flow was less accurately simulated in the western tributaries, which are ephemeral small streams that peak during winter storm events and are mainly fed by irrigation return flow during the growing season. The most sensitive parameters to stream flow were CN2, SOL_AWC, HRU_SLP, SLSUBBSN, SLSOIL, GWQMN and GW_REVAP. Regionalization of parameters is important as the sensitivity of parameters vary significantly spatially. In terms of evaluation metric, NSE tended to overrate model performance when compared to PBIAS. Anticipated results will include (1) pesticide use pattern analysis, (2) calibration and validation of stream flow, sediment, and pesticide loads, and (3) characterization of spatial patterns and temporal trends of pesticide yield.

  6. Evaluating barnyard Best Management Practices in Wisconsin using upstream-downstream monitoring

    USGS Publications Warehouse

    Stuntebeck, Todd D.

    1995-01-01

    The Nonpoint Source Water Pollution Abatement Program was created in 1978 by the Wisconsin Legislature. The goal of the program is to improve and protect the water quality of lakes, streams, wetlands, and ground water within selected priority watersheds by controlling sources of nonpoint pollution. For each selected watershed, the Wisconsin Department of Natural Resources drafts a management plan that guides the implementation of pollution-control strategies known as Best Management Practices (BMP's). This plan summarizes resource and land-use inventories, describes the results of pollution-source modeling, and suggests pollution reduction goals. The U.S. Geological Survey, through a cooperative effort with the Wisconsin Department of Natural Resources, is monitoring water-quality improvements that result from the implementation of BMP's. The data collected are then compared to the watershed plans to assess progress and determine whether goals are being realized. This fact sheet describes the data-collection efforts, preliminary results, and planned data-analysis techniques of monitoring projects for pre-BMP conditions at two barnyards, one each on Otter Creek and Halfway Prairie Creek.

  7. ASSESSMENT OF TWO PHYSICALLY BASED WATERSHED MODELS BASED ON THEIR PERFORMANCES OF SIMULATING SEDIMENT MOVEMENT OVER SMALL WATERSHEDS

    EPA Science Inventory


    Abstract: Two physically based and deterministic models, CASC2-D and KINEROS are evaluated and compared for their performances on modeling sediment movement on a small agricultural watershed over several events. Each model has different conceptualization of a watershed. CASC...

  8. ASSESSMENT OF TWO PHYSICALLY-BASED WATERSHED MODELS BASED ON THEIR PERFORMANCES OF SIMULATING WATER AND SEDIMENT MOVEMENT

    EPA Science Inventory

    Two physically based watershed models, GSSHA and KINEROS-2 are evaluated and compared for their performances on modeling flow and sediment movement. Each model has a different watershed conceptualization. GSSHA divides the watershed into cells, and flow and sediments are routed t...

  9. Curve Number Application in Continuous Runoff Models: An Exercise in Futility?

    NASA Astrophysics Data System (ADS)

    Lamont, S. J.; Eli, R. N.

    2006-12-01

    The suitability of applying the NRCS (Natural Resource Conservation Service) Curve Number (CN) to continuous runoff prediction is examined by studying the dependence of CN on several hydrologic variables in the context of a complex nonlinear hydrologic model. The continuous watershed model Hydrologic Simulation Program-FORTRAN (HSPF) was employed using a simple theoretical watershed in two numerical procedures designed to investigate the influence of soil type, soil depth, storm depth, storm distribution, and initial abstraction ratio value on the calculated CN value. This study stems from a concurrent project involving the design of a hydrologic modeling system to support the Cumulative Hydrologic Impact Assessments (CHIA) of over 230 coal-mined watersheds throughout West Virginia. Because of the large number of watersheds and limited availability of data necessary for HSPF calibration, it was initially proposed that predetermined CN values be used as a surrogate for those HSPF parameters controlling direct runoff. A soil physics model was developed to relate CN values to those HSPF parameters governing soil moisture content and infiltration behavior, with the remaining HSPF parameters being adopted from previous calibrations on real watersheds. A numerical procedure was then adopted to back-calculate CN values from the theoretical watershed using antecedent moisture conditions equivalent to the NRCS Antecedent Runoff Condition (ARC) II. This procedure used the direct runoff produced from a cyclic synthetic storm event time series input to HSPF. A second numerical method of CN determination, using real time series rainfall data, was used to provide a comparison to those CN values determined using the synthetic storm event time series. It was determined that the calculated CN values resulting from both numerical methods demonstrated a nonlinear dependence on all of the computational variables listed above. It was concluded that the use of the Curve Number as a surrogate for the selected subset of HPSF parameters could not be justified. These results suggest that use of the Curve Number in other complex continuous time series hydrologic models may not be appropriate, given the limitations inherent in the definition of the NRCS CN method.

  10. Enhanced nonlinearity interval mapping scheme for high-performance simulation-optimization of watershed-scale BMP placement

    NASA Astrophysics Data System (ADS)

    Zou, Rui; Riverson, John; Liu, Yong; Murphy, Ryan; Sim, Youn

    2015-03-01

    Integrated continuous simulation-optimization models can be effective predictors of a process-based responses for cost-benefit optimization of best management practices (BMPs) selection and placement. However, practical application of simulation-optimization model is computationally prohibitive for large-scale systems. This study proposes an enhanced Nonlinearity Interval Mapping Scheme (NIMS) to solve large-scale watershed simulation-optimization problems several orders of magnitude faster than other commonly used algorithms. An efficient interval response coefficient (IRC) derivation method was incorporated into the NIMS framework to overcome a computational bottleneck. The proposed algorithm was evaluated using a case study watershed in the Los Angeles County Flood Control District. Using a continuous simulation watershed/stream-transport model, Loading Simulation Program in C++ (LSPC), three nested in-stream compliance points (CP)—each with multiple Total Maximum Daily Loads (TMDL) targets—were selected to derive optimal treatment levels for each of the 28 subwatersheds, so that the TMDL targets at all the CP were met with the lowest possible BMP implementation cost. Genetic Algorithm (GA) and NIMS were both applied and compared. The results showed that the NIMS took 11 iterations (about 11 min) to complete with the resulting optimal solution having a total cost of 67.2 million, while each of the multiple GA executions took 21-38 days to reach near optimal solutions. The best solution obtained among all the GA executions compared had a minimized cost of 67.7 million—marginally higher, but approximately equal to that of the NIMS solution. The results highlight the utility for decision making in large-scale watershed simulation-optimization formulations.

  11. Watershed Modeling to Assess the Sensitivity of Streamflow, Nutrient, and Sediment Loads to Potential Climate Change and Urban Development in 20 U.S. Watersheds (Final Report)

    EPA Science Inventory

    In September 2013, EPA announced the release of the final report, Watershed Modeling to Assess the Sensitivity of Streamflow, Nutrient, and Sediment Loads to Potential Climate Change and Urban Development in 20 U.S. Watersheds.

    Watershed modeling was conducted in ...

  12. Hydro-ecological degradation due to human impacts in the Twin Streams Watershed, Auckland, New Zealand

    NASA Astrophysics Data System (ADS)

    Torrecillas Nunez, C.; Miguel-rodriguez, A.

    2012-12-01

    As a collaborative project between the Faculties of Engineering of the University of Sinaloa, Mexico and the University of Auckland, an inter-disciplinary team researched historical information, monitoring results and modelling completed over the last ten years to establish the cause-effect relationship of development and human impacts in the watershed and recommend strategies to offset them .The research program analyzed the performance of the Twin Streams watershed over time with modelling of floods, hydrological disturbance indicators, analysis of water quality and ecological information, cost / benefit, harbor modelling and contaminant loads. The watershed is located in the west of Auckland and comprises 10,356 hectare: 8.19% ecologically protected area, 29.70% buffer zone, 6.67% peri-urban, 30.98% urban, 16.04% parks, and 8.42% other; average impermeability is 19.1%. Current population is 129,475 (2011) forecast to grow to 212,798 by 2051. The watershed includes 317.5 km of streams that drain to the Waitemata Harbor. The human impact can be traced back to the 1850s when the colonial settlers logged the native forests, dammed streams and altered the channel hydro-ecology resulting in significant erosion, sediment and changes to flows. In the early 1900s native vegetation started to regenerate in the headwaters, while agriculture and horticulture become established in rest of the watershed leading to the use of quite often very harmful pesticides and insecticides, such as DDT which is still detected in current environmental monitoring programs, and more erosion and channel alterations. As land become unproductive in the 1950s it stared to be urbanized, followed by more intensive urban development in the 1990s. Curiously there was no regulatory regime to control land use in the early stages and consequently over 400 houses were built in the floodplains, as well there were no legislation to control environmental impacts until 1991. Consequently today there is a wide range of impacts due to human actions which will exacerbated by future development as the population in the watershed is forecast to increase by at least 65% and the likely impacts of global warming. The rural watershed generates sediment which smothers the streams and harbor, while the urban watershed is the source of point and diffuse contamination with heavy metals which damage ecosystems. Evidence of impacts is given by the extent of flooding, reduced ecological flows and sampling results showing that more than 50% of the sites do not comply with environmental guidelines for: water clarity, turbidity, suspended solids, nitrogen, phosphorus, copper, zinc, conductivity, Dieldrin, DDT, Dissolved Oxygen, E.Coli, macroinvertebrates ,etc. , with water quality deteriorating progressively downstream where there is greater urbanization. But perhaps the most stunning evidence of the impacts was established by comparing aerial photographs of the 1940s and 2006 and seeing the build-up of sediments in the estuaries, the change in vegetation cover and discolored water. It is highly likely that the tipping point was reached before urbanization started but there is no doubt that urban development has accelerated the impacts, which has been corroborated by studies in other watersheds in Auckland.

  13. Estimation of dynamic load of mercury in a river with BASINS-HSPF model

    Treesearch

    Ying Ouyang; John Higman; Jeff Hatten

    2012-01-01

    Purpose Mercury (Hg) is a naturally occurring element and a pervasive toxic pollutant. This study investigated the dynamic loads of Hg from the Cedar-Ortega Rivers watershed into the Lower St. Johns River (LSJR), Florida, USA, using the better assessment science integrating point and nonpoint sources (BASINS)-hydrologic simulation program - FORTRAN (HSPF) model....

  14. Characterizing response of total suspended solids and total phosphorus loading to weather and watershed characteristics for rainfall and snowmelt events in agricultural watersheds

    USGS Publications Warehouse

    Danz, Mari E.; Corsi, Steven; Brooks, Wesley R.; Bannerman, Roger T.

    2013-01-01

    Understanding the response of total suspended solids (TSS) and total phosphorus (TP) to influential weather and watershed variables is critical in the development of sediment and nutrient reduction plans. In this study, rainfall and snowmelt event loadings of TSS and TP were analyzed for eight agricultural watersheds in Wisconsin, with areas ranging from 14 to 110 km2 and having four to twelve years of data available. The data showed that a small number of rainfall and snowmelt runoff events accounted for the majority of total event loading. The largest 10% of the loading events for each watershed accounted for 73–97% of the total TSS load and 64–88% of the total TP load. More than half of the total annual TSS load was transported during a single event for each watershed at least one of the monitored years. Rainfall and snowmelt events were both influential contributors of TSS and TP loading. TSS loading contributions were greater from rainfall events at five watersheds, from snowmelt events at two watersheds, and nearly equal at one watershed. The TP loading contributions were greater from rainfall events at three watersheds, from snowmelt events at two watersheds and nearly equal at three watersheds. Stepwise multivariate regression models for TSS and TP event loadings were developed separately for rainfall and snowmelt runoff events for each individual watershed and for all watersheds combined by using a suite of precipitation, melt, temperature, seasonality, and watershed characteristics as predictors. All individual models and the combined model for rainfall events resulted in two common predictors as most influential for TSS and TP. These included rainfall depth and the antecedent baseflow. Using these two predictors alone resulted in an R2 greater than 0.7 in all but three individual models and 0.61 or greater for all individual models. The combined model yielded an R2 of 0.66 for TSS and 0.59 for TP. Neither the individual nor the combined models were substantially improved by using additional predictors. Snowmelt event models were statistically significant for individual and combined watershed models, but the model fits were not all as good as those for rainfall events (R2 between 0.19 and 0.87). Predictor selection varied from watershed to watershed, and the common variables that were selected were not always selected in the same order. Influential variables were commonly direct measures of moisture in the watershed such as snowmelt, rainfall + snowmelt, and antecedent baseflow, or measures of potential snowmelt volume in the watershed such as air temperature.

  15. UPDATE ON THE MARINA STUDY ON LAKE TEXOMA

    EPA Science Inventory

    The National Risk Management Research Laboratory (NRMRL) has instituted a program for Risk Management Research for Ecosystem Restoration in Watersheds. As part of this program a large scale project was initiated on Lake Texoma and the surrounding watershed to evaluate the assimi...

  16. [Coupling SWAT and CE-QUAL-W2 models to simulate water quantity and quality in Shanmei Reservoir watershed].

    PubMed

    Liu, Mei-Bing; Chen, Dong-Ping; Chen, Xing-Wei; Chen, Ying

    2013-12-01

    A coupled watershed-reservoir modeling approach consisting of a watershed distributed model (SWAT) and a two-dimensional laterally averaged model (CE-QUAL-W2) was adopted for simulating the impact of non-point source pollution from upland watershed on water quality of Shanmei Reservoir. Using the daily serial output from Shanmei Reservoir watershed by SWAT as the input to Shanmei Reservoir by CE-QUAL-W2, the coupled modeling was calibrated for runoff and outputs of sediment and pollutant at watershed scale and for elevation, temperature, nitrate, ammonium and total nitrogen in Shanmei Reservoir. The results indicated that the simulated values agreed fairly well with the observed data, although the calculation precision of downstream model would be affected by the accumulative errors generated from the simulation of upland model. The SWAT and CE-QUAL-W2 coupled modeling could be used to assess the hydrodynamic and water quality process in complex watershed comprised of upland watershed and downstream reservoir, and might further provide scientific basis for positioning key pollution source area and controlling the reservoir eutrophication.

  17. Development of watershed models for emerald lake watershed in Sequoia National Park and for other lakes of the Sierra Nevada. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sorooshian, S.; Bales, R.C.; Gupta, V.K.

    1992-02-01

    In order to better understand the implications of acid deposition in watershed systems in the Sierra Nevada, the California Air Resources Board (CARB) initiated an intensive integrated watershed study at Emerald Lake in Sequoia National Park. The comprehensive nature of the data obtained from these studies provided an opportunity to develop a quantitative description of how watershed characteristics and inputs to the watershed influence within-watershed fluxes, chemical composition of streams and lakes, and, therefore, biotic processes. Two different but closely-related modeling approaches were followed. In the first, the emphasis was placed on the development of systems-theoretic models. In the secondmore » approach, development of a compartmental model was undertaken. The systems-theoretic effort results in simple time-series models that allow the consideration of the stochastic properties of model errors. The compartmental model (the University of Arizona Alpine Hydrochemical Model (AHM)) is a comprehensive and detailed description of the various interacting physical and chemical processes occurring on the watershed.« less

  18. Ecosystem Management Decision Support (EMDS) Applied to Watershed Assessment on California's North Coast

    Treesearch

    Rich Walker; Chris Keithley; Russ Henly; Scott Downie; Steve Cannata

    2007-01-01

    In 2001, the state of California initiated the North Coast Watershed Assessment Program (2003a) to assemble information on the status of coastal watersheds that have historically supported anadromous fish. The five-agency consortium explored the use of Ecosystem Management Decision Support (EMDS) (Reynolds and others 1996) as a means to help assess overall watershed...

  19. Burned area emergency watershed rehabilitation: Program goals, techniques, effectiveness, and future directions in the 21st Century

    Treesearch

    Daniel G. Neary; Peter R. Robichaud; Jan L. Beyers

    2000-01-01

    Following wildfires, burned areas are assessed by special teams to determine if emergency watershed rehabilitation measures are required to restore watershed function and minimize damage to soil resources. The objective of burned area emergency rehabilitation (BAER) treatments is to restore watershed condition and reduce erosional losses on hillslopes, in channels, and...

  20. Evapotranspiration sensitivity to air temperature across a snow-influenced watershed: Space-for-time substitution versus integrated watershed modeling

    NASA Astrophysics Data System (ADS)

    Jepsen, S. M.; Harmon, T. C.; Ficklin, D. L.; Molotch, N. P.; Guan, B.

    2018-01-01

    Changes in long-term, montane actual evapotranspiration (ET) in response to climate change could impact future water supplies and forest species composition. For scenarios of atmospheric warming, predicted changes in long-term ET tend to differ between studies using space-for-time substitution (STS) models and integrated watershed models, and the influence of spatially varying factors on these differences is unclear. To examine this, we compared warming-induced (+2 to +6 °C) changes in ET simulated by an STS model and an integrated watershed model across zones of elevation, substrate available water capacity, and slope in the snow-influenced upper San Joaquin River watershed, Sierra Nevada, USA. We used the Soil Water and Assessment Tool (SWAT) for the watershed modeling and a Budyko-type relationship for the STS modeling. Spatially averaged increases in ET from the STS model increasingly surpassed those from the SWAT model in the higher elevation zones of the watershed, resulting in 2.3-2.6 times greater values from the STS model at the watershed scale. In sparse, deep colluvium or glacial soils on gentle slopes, the SWAT model produced ET increases exceeding those from the STS model. However, watershed areas associated with these conditions were too localized for SWAT to produce spatially averaged ET-gains comparable to the STS model. The SWAT model results nevertheless demonstrate that such soils on high-elevation, gentle slopes will form ET "hot spots" exhibiting disproportionately large increases in ET, and concomitant reductions in runoff yield, in response to warming. Predicted ET responses to warming from STS models and integrated watershed models may, in general, substantially differ (e.g., factor of 2-3) for snow-influenced watersheds exhibiting an elevational gradient in substrate water holding capacity and slope. Long-term water supplies in these settings may therefore be more resilient to warming than STS model predictions would suggest.

  1. Development and application of a comprehensive simulation model to evaluate impacts of watershed structures and irrigation water use on streamflow and groundwater: The case of Wet Walnut Creek Watershed, Kansas, USA

    USGS Publications Warehouse

    Ramireddygari, S.R.; Sophocleous, M.A.; Koelliker, J.K.; Perkins, S.P.; Govindaraju, R.S.

    2000-01-01

    This paper presents the results of a comprehensive modeling study of surface and groundwater systems, including stream-aquifer interactions, for the Wet Walnut Creek Watershed in west-central Kansas. The main objective of this study was to assess the impacts of watershed structures and irrigation water use on streamflow and groundwater levels, which in turn affect availability of water for the Cheyenne Bottoms Wildlife Refuge Management area. The surface-water flow model, POTYLDR, and the groundwater flow model, MODFLOW, were combined into an integrated, watershed-scale, continuous simulation model. Major revisions and enhancements were made to the POTYLDR and MODFLOW models for simulating the detailed hydrologic budget for the Wet Walnut Creek Watershed. The computer simulation model was calibrated and verified using historical streamflow records (at Albert and Nekoma gaging stations), reported irrigation water use, observed water-level elevations in watershed structure pools, and groundwater levels in the alluvial aquifer system. To assess the impact of watershed structures and irrigation water use on streamflow and groundwater levels, a number of hypothetical management scenarios were simulated under various operational criteria for watershed structures and different annual limits on water use for irrigation. A standard 'base case' was defined to allow comparative analysis of the results of different scenarios. The simulated streamflows showed that watershed structures decrease both streamflows and groundwater levels in the watershed. The amount of water used for irrigation has a substantial effect on the total simulated streamflow and groundwater levels, indicating that irrigation is a major budget item for managing water resources in the watershed. (C) 2000 Elsevier Science B.V.This paper presents the results of a comprehensive modeling study of surface and groundwater systems, including stream-aquifer interactions, for the Wet Walnut Creek Watershed in west-central Kansas. The main objective of this study was to assess the impacts of watershed structures and irrigation water use on streamflow and groundwater levels, which in turn affect availability of water for the Cheyenne Bottoms Wildlife Refuge Management area. The surface-water flow model, POTYLDR, and the groundwater flow model, MODFLOW, were combined into an integrated, watershed-scale, continuous simulation model. Major revisions and enhancements were made to the POTYLDR and MODFLOW models for simulating the detailed hydrologic budget for the Wet Walnut Creek Watershed. The computer simulation model was calibrated and verified using historical streamflow records (at Albert and Nekoma gaging stations), reported irrigation water use, observed water-level elevations in watershed structure pools, and groundwater levels in the alluvial aquifer system. To assess the impact of watershed structures and irrigation water use on streamflow and groundwater levels, a number of hypothetical management scenarios were simulated under various operational criteria for watershed structures and different annual limits on water use for irrigation. A standard `base case' was defined to allow comparative analysis of the results of different scenarios. The simulated streamflows showed that watershed structures decrease both streamflows and groundwater levels in the watershed. The amount of water used for irrigation has a substantial effect on the total simulated streamflow and groundwater levels, indicating that irrigation is a major budget item for managing water resources in the watershed.A comprehensive simulation model that combines the surface water flow model POTYLDR and the groundwater flow model MODFLOW was used to study the impacts of watershed structures (e.g., dams) and irrigation water use (including stream-aquifer interactions) on streamflow and groundwater. The model was revised, enhanced, calibrated, and verified, then applied to evaluate the hydrologic budget for Wet Wal

  2. Hydrological Modeling of Rainfall-Watershed-Bioretention System with EPA SWMM

    NASA Astrophysics Data System (ADS)

    gülbaz, sezar; melek kazezyılmaz-alhan, cevza

    2016-04-01

    Water resources should be protected for the sustainability of water supply and water quality. Human activities such as high urbanization with lack of infrastructure system and uncontrolled agricultural facilities adversely affect the water resources. Therefore, recent techniques should be investigated in detail to avoid present and future problems like flood, drought and water pollution. Low Impact Development-Best Management Practice (LID-BMP) is such a technique to manage storm water runoff and quality. There are several LID storm water BMPs such as bioretention facilities, rain gardens, storm water wetlands, vegetated rooftops, rain barrels, vegetative swales and permeable pavements. Bioretention is a type of Low Impact Developments (LIDs) implemented to diminish adverse effects of urbanization by reducing peak flows over the surface and improving surface water quality simultaneously. Different soil types in different ratios are considered in bioretention design which affects the performance of bioretention systems. Therefore, in this study, a hydrologic model for bioretention is developed by using Environmental Protection Agency Storm Water Management Model (EPA SWMM). Part of the input data is supplied to the hydrologic model by experimental setup called Rainfall-Watershed-Bioretention (RWB). RWB System is developed to investigate the relation among rainfall, watershed and bioretention. This setup consists of three main parts which are artificial rainfall system, drainage area and four bioretention columns with different soil mixture. EPA SWMM is a dynamic simulation model for the surface runoff which develops on a watershed during a rainfall event. The model is commonly used to plan, analyze, and control storm water runoff, to design drainage system components and to evaluate watershed management of both urban and rural areas. Furthermore, EPA SWMM is a well-known program to model LID-Bioretention in the literature. Therefore, EPA SWMM is employed in drainage and bioretention modeling. Calibration of hydrologic model is made using part of the measured data in RWB System for drainage area and for each bioretention column separately. Finally, performance of the model is evaluated by comparing the model results with the experimental data collected in RWB system.

  3. THE ENVIRONMENTAL PROTECTION AGENCY'S WATERSHED MANAGEMENT RESEARCH PROGRAM: AN OVERVIEW

    EPA Science Inventory

    The Environmental Protection Agency (EPA) has directed much attention to watersheds and water quality during its tenure as the United States Federal Agency charged with protection of human health and the environment. Watershed research as a vehicle to understand the interaction ...

  4. WATERSHED CLASSIFICATION AS A DIAGNOSTIC TOOL FOR CONSOLIDATED ASSESSMENT AND LISTING PROGRAMS

    EPA Science Inventory

    With over 40,000 TMDLs scheduled for development, the states, tribes, and EPA Regions need efficient streamlined approaches for watershed level inventory, monitoring, condition assessment, diagnosis of impairment, and prioritization of watersheds for restoration and future load r...

  5. Development of Load Duration Curve System in Data Scarce Watersheds Based on a Distributed Hydrological Model

    NASA Astrophysics Data System (ADS)

    WANG, J.

    2017-12-01

    In stream water quality control, the total maximum daily load (TMDL) program is very effective. However, the load duration curves (LDC) of TMDL are difficult to be established because no sufficient observed flow and pollutant data can be provided in data-scarce watersheds in which no hydrological stations or consecutively long-term hydrological data are available. Although the point sources or a non-point sources of pollutants can be clarified easily with the aid of LDC, where does the pollutant come from and to where it will be transported in the watershed cannot be traced by LDC. To seek out the best management practices (BMPs) of pollutants in a watershed, and to overcome the limitation of LDC, we proposed to develop LDC based on a distributed hydrological model of SWAT for the water quality management in data scarce river basins. In this study, firstly, the distributed hydrological model of SWAT was established with the scarce-hydrological data. Then, the long-term daily flows were generated with the established SWAT model and rainfall data from the adjacent weather station. Flow duration curves (FDC) was then developed with the aid of generated daily flows by SWAT model. Considering the goal of water quality management, LDC curves of different pollutants can be obtained based on the FDC. With the monitored water quality data and the LDC curves, the water quality problems caused by the point or non-point source pollutants in different seasons can be ascertained. Finally, the distributed hydrological model of SWAT was employed again to tracing the spatial distribution and the origination of the pollutants of coming from what kind of agricultural practices and/or other human activities. A case study was conducted in the Jian-jiang river, a tributary of Yangtze river, of Duyun city, Guizhou province. Results indicate that this kind of method can realize the water quality management based on TMDL and find out the suitable BMPs for reducing pollutant in a watershed.

  6. Integration of Tidal Prism Model and HSPF for simulating indicator bacteria in coastal watersheds

    NASA Astrophysics Data System (ADS)

    Sobel, Rose S.; Rifai, Hanadi S.; Petersen, Christina M.

    2017-09-01

    Coastal water quality is strongly influenced by tidal fluctuations and water chemistry. There is a need for rigorous models that are not computationally or economically prohibitive, but still allow simulation of the hydrodynamics and bacteria sources for coastal, tidally influenced streams and bayous. This paper presents a modeling approach that links a Tidal Prism Model (TPM) implemented in an Excel-based modeling environment with a watershed runoff model (Hydrologic Simulation Program FORTRAN, HSPF) for such watersheds. The TPM is a one-dimensional mass balance approach that accounts for loading from tidal exchange, runoff, point sources and bacteria die-off at an hourly time step resolution. The novel use of equal high-resolution time steps in this study allowed seamless integration of the TPM and HSPF. The linked model was calibrated to flow and E. Coli data (for HSPF), and salinity and enterococci data (for the TPM) for a coastal stream in Texas. Sensitivity analyses showed the TPM to be most influenced by changes in net decay rates followed by tidal and runoff loads, respectively. Management scenarios were evaluated with the developed linked models to assess the impact of runoff load reductions and improved wastewater treatment plant quality and to determine the areas of critical need for such reductions. Achieving water quality standards for bacteria required load reductions that ranged from zero to 90% for the modeled coastal stream.

  7. Using Campylobacter spp. and Escherichia coli data and Bayesian microbial risk assessment to examine public health risks in agricultural watersheds under tile drainage management.

    PubMed

    Schmidt, P J; Pintar, K D M; Fazil, A M; Flemming, C A; Lanthier, M; Laprade, N; Sunohara, M D; Simhon, A; Thomas, J L; Topp, E; Wilkes, G; Lapen, D R

    2013-06-15

    Human campylobacteriosis is the leading bacterial gastrointestinal illness in Canada; environmental transmission has been implicated in addition to transmission via consumption of contaminated food. Information about Campylobacter spp. occurrence at the watershed scale will enhance our understanding of the associated public health risks and the efficacy of source water protection strategies. The overriding purpose of this study is to provide a quantitative framework to assess and compare the relative public health significance of watershed microbial water quality associated with agricultural BMPs. A microbial monitoring program was expanded from fecal indicator analyses and Campylobacter spp. presence/absence tests to the development of a novel, 11-tube most probable number (MPN) method that targeted Campylobacter jejuni, Campylobacter coli, and Campylobacter lari. These three types of data were used to make inferences about theoretical risks in a watershed in which controlled tile drainage is widely practiced, an adjacent watershed with conventional (uncontrolled) tile drainage, and reference sites elsewhere in the same river basin. E. coli concentrations (MPN and plate count) in the controlled tile drainage watershed were statistically higher (2008-11), relative to the uncontrolled tile drainage watershed, but yearly variation was high as well. Escherichia coli loading for years 2008-11 combined were statistically higher in the controlled watershed, relative to the uncontrolled tile drainage watershed, but Campylobacter spp. loads for 2010-11 were generally higher for the uncontrolled tile drainage watershed (but not statistically significant). Using MPN data and a Bayesian modelling approach, higher mean Campylobacter spp. concentrations were found in the controlled tile drainage watershed relative to the uncontrolled tile drainage watershed (2010, 2011). A second-order quantitative microbial risk assessment (QMRA) was used, in a relative way, to identify differences in mean Campylobacter spp. infection risks among monitoring sites for a hypothetical exposure scenario. Greater relative mean risks were obtained for sites in the controlled tile drainage watershed than in the uncontrolled tile drainage watershed in each year of monitoring with pair-wise posterior probabilities exceeding 0.699, and the lowest relative mean risks were found at a downstream drinking water intake reference site. The second-order modelling approach was used to partition sources of uncertainty, which revealed that an adequate representation of the temporal variation in Campylobacter spp. concentrations for risk assessment was achieved with as few as 10 MPN data per site. This study demonstrates for the first time how QMRA can be implemented to evaluate, in a relative sense, the public health implications of controlled tile drainage on watershed-scale water quality. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  8. Multi-gauge Calibration for modeling the Semi-Arid Santa Cruz Watershed in Arizona-Mexico Border Area Using SWAT

    USGS Publications Warehouse

    Niraula, Rewati; Norman, Laura A.; Meixner, Thomas; Callegary, James B.

    2012-01-01

    In most watershed-modeling studies, flow is calibrated at one monitoring site, usually at the watershed outlet. Like many arid and semi-arid watersheds, the main reach of the Santa Cruz watershed, located on the Arizona-Mexico border, is discontinuous for most of the year except during large flood events, and therefore the flow characteristics at the outlet do not represent the entire watershed. Calibration is required at multiple locations along the Santa Cruz River to improve model reliability. The objective of this study was to best portray surface water flow in this semiarid watershed and evaluate the effect of multi-gage calibration on flow predictions. In this study, the Soil and Water Assessment Tool (SWAT) was calibrated at seven monitoring stations, which improved model performance and increased the reliability of flow, in the Santa Cruz watershed. The most sensitive parameters to affect flow were found to be curve number (CN2), soil evaporation and compensation coefficient (ESCO), threshold water depth in shallow aquifer for return flow to occur (GWQMN), base flow alpha factor (Alpha_Bf), and effective hydraulic conductivity of the soil layer (Ch_K2). In comparison, when the model was established with a single calibration at the watershed outlet, flow predictions at other monitoring gages were inaccurate. This study emphasizes the importance of multi-gage calibration to develop a reliable watershed model in arid and semiarid environments. The developed model, with further calibration of water quality parameters will be an integral part of the Santa Cruz Watershed Ecosystem Portfolio Model (SCWEPM), an online decision support tool, to assess the impacts of climate change and urban growth in the Santa Cruz watershed.

  9. Upscaling from research watersheds: an essential stage of trustworthy general-purpose hydrologic model building

    NASA Astrophysics Data System (ADS)

    McNamara, J. P.; Semenova, O.; Restrepo, P. J.

    2011-12-01

    Highly instrumented research watersheds provide excellent opportunities for investigating hydrologic processes. A danger, however, is that the processes observed at a particular research watershed are too specific to the watershed and not representative even of the larger scale watershed that contains that particular research watershed. Thus, models developed based on those partial observations may not be suitable for general hydrologic use. Therefore demonstrating the upscaling of hydrologic process from research watersheds to larger watersheds is essential to validate concepts and test model structure. The Hydrograph model has been developed as a general-purpose process-based hydrologic distributed system. In its applications and further development we evaluate the scaling of model concepts and parameters in a wide range of hydrologic landscapes. All models, either lumped or distributed, are based on a discretization concept. It is common practice that watersheds are discretized into so called hydrologic units or hydrologic landscapes possessing assumed homogeneous hydrologic functioning. If a model structure is fixed, the difference in hydrologic functioning (difference in hydrologic landscapes) should be reflected by a specific set of model parameters. Research watersheds provide the possibility for reasonable detailed combining of processes into some typical hydrologic concept such as hydrologic units, hydrologic forms, and runoff formation complexes in the Hydrograph model. And here by upscaling we imply not the upscaling of a single process but upscaling of such unified hydrologic functioning. The simulation of runoff processes for the Dry Creek research watershed, Idaho, USA (27 km2) was undertaken using the Hydrograph model. The information on the watershed was provided by Boise State University and included a GIS database of watershed characteristics and a detailed hydrometeorological observational dataset. The model provided good simulation results in terms of runoff and variable states of soil and snow over a simulation period 2000 - 2009. The parameters of the model were hand-adjusted based on rational sense, observational data and available understanding of underlying processes. For the first run some processes as riparian vegetation impact on runoff and streamflow/groundwater interaction were handled in a conceptual way. It was shown that the use of Hydrograph model which requires modest amount of parameter calibration may serve also as a quality control for observations. Based on the obtained parameters values and process understanding at the research watershed the model was applied to the larger scale watersheds located in similar environment - the Boise River at South Fork (1660 km2) and Twin Springs (2155 km2). The evaluation of the results of such upscaling will be presented.

  10. Flathead River Focus Watershed Coordinator, 2003-2004 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DuCharme, Lynn

    2004-06-01

    The Bonneville Power Administration (BPA) has long been involved with funding of the Cooperative Habitat Protection and Improvement with Private Landowners program in accordance with the Northwest Power Planning Council's (NPPC) Fish & Wildlife Program (Section 7.7). Section 7.7B.1 requires the establishment of ''at least one model watershed coordinator selected by each representative state''. This project was initiated in 1997 with the purpose of fulfilling the NWPCC's watershed program within the Flathead River basin in western Montana. Currently, the Flathead watershed has been radically altered by hydropower and other land uses. With the construction of Hungry Horse, Bigfork and Kerrmore » dams, the Flathead River system has been divided into isolated populations. Bull trout have been listed as threatened by the US Fish and Wildlife Service and westslope cutthroat trout have been petitioned for listing. Many streams in the drainage have been destabilized during recent decades. Past legal and illegal species introductions are also causing problems. This project fosters in-kind, out-of-place mitigation to offset the impacts of hydroelectric power to 72 miles of the South Fork of the Flathead River and its tributaries upstream of Hungry Horse Dam. Key subbasins within the Flathead drainage, which are critical to native species restoration, are experiencing rapid changes in land ownership and management direction. Subdivision and residential development of agricultural and timber lands adjacent to waterways in the drainage pose one of the greatest threats to weak but recoverable stocks of trout species. Plum Creek Timber Company, a major landholder in the Flathead drainage is currently divesting itself of large tracks of its lakeshore and streamside holdings. Growth of small tract development throughout the area and its tributaries is occurring at a record rate. Immediate to short-term action is required to protect stream corridors through many of these areas if cost-effective recovery efforts are to be implemented. In order to adequately address the issues, other segments of society and other (non-BPA) funding sources must be incorporated into the solution. As stated in the 1994 Fish and Wildlife Program (section 7.7), ''Comprehensive watershed management should enhance and expedite implementation of actions by clearly identifying gaps in programs and knowledge, by striving over time to resolve conflicts, and by keying on activities that address priorities''. A watershed coordinator helps to initiate and facilitate efforts for addressing the issues mentioned above and pulling together a plan for mitigation. Local support is essential before local governments and individual citizens are going to allow government initiatives to be implemented.« less

  11. Flathead River Focus Watershed Coordinator, 2002 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DuCharme, Lynn

    2003-04-01

    The Bonneville Power Administration (BPA) has long been involved with funding of the Cooperative Habitat Protection and Improvement with Private Landowners program in accordance with the Northwest Power Planning Council's (NPPC) Fish & Wildlife Program (Section 7.7). Section 7.7B.1 requires the establishment of ''at least one model watershed coordinator selected by each representative state''. This project was initiated in 1997 with the purpose of fulfilling the NPPC's watershed program within the Flathead River basin in western Montana. Currently, the Flathead watershed has been radically altered by hydropower and other land uses. With the construction of Hungry Horse, Bigfork and Kerrmore » dams, the Flathead River system has been divided into isolated populations. Bull trout have been listed as threatened by the US Fish and Wildlife Service and westslope cutthroat trout have been petitioned for listing. Many streams in the drainage have been destabilized during recent decades. Past legal and illegal species introductions are also causing problems. This project fosters in-kind, out-of-place mitigation to offset the impacts of hydroelectric power to 72 miles of the South Fork of the Flathead River and its tributaries upstream of Hungry Horse Dam. Key subbasins within the Flathead drainage, which are critical to native species restoration, are experiencing rapid changes in land ownership and management direction. Subdivision and residential development of agricultural and timber lands adjacent to waterways in the drainage pose one of the greatest threats to weak but recoverable stocks of trout species. Plum Creek Timber Company, a major landholder in the Flathead drainage is currently divesting itself of large tracks of its lakeshore and streamside holdings. Growth of small tract development throughout the area and its tributaries is occurring at a record rate. Immediate to short-term action is required to protect stream corridors through many of these areas if cost-effective recovery efforts are to be implemented. In order to adequately address the issues, other segments of society and other (non-BPA) funding sources must be incorporated into the solution. As stated in the 1994 Fish and Wildlife Program (section 7.7), ''Comprehensive watershed management should enhance and expedite implementation of actions by clearly identifying gaps in programs and knowledge, by striving over time to resolve conflicts, and by keying on activities that address priorities''. A watershed coordinator helps to initiate and facilitate efforts for addressing the issues mentioned above and pulling together a plan for mitigation. Local support is essential before local governments and individual citizens are going to allow government initiatives to be implemented.« less

  12. Flathead River Focus Watershed Coordinator, 2004-2005 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DuCharme, Lynn

    2006-06-26

    The Bonneville Power Administration (BPA) has long been involved with funding of the Cooperative Habitat Protection and Improvement with Private Landowners program in accordance with the Northwest Power Planning Council's (NPPC) Fish & Wildlife Program (Section 7.7). Section 7.7B.1 requires the establishment of ''at least one model watershed coordinator selected by each representative state''. This project was initiated in 1997 with the purpose of fulfilling the NWPCC's watershed program within the Flathead River basin in western Montana. Currently, the Flathead watershed has been radically altered by hydropower and other land uses. With the construction of Hungry Horse, Bigfork and Kerrmore » dams, the Flathead River system has been divided into isolated populations. Bull trout have been listed as threatened by the US Fish and Wildlife Service and westslope cutthroat trout have been petitioned for listing. Many streams in the drainage have been destabilized during recent decades. Past legal and illegal species introductions are also causing problems. This project fosters in-kind, out-of-place mitigation to offset the impacts of hydroelectric power to 72 miles of the South Fork of the Flathead River and its tributaries upstream of Hungry Horse Dam. Key subbasins within the Flathead drainage, which are critical to native species restoration, are experiencing rapid changes in land ownership and management direction. Subdivision and residential development of agricultural and timber lands adjacent to waterways in the drainage pose one of the greatest threats to weak but recoverable stocks of trout species. Plum Creek Timber Company, a major landholder in the Flathead drainage is currently divesting itself of large tracks of its lakeshore and streamside holdings. Growth of small tract development throughout the area and its tributaries is occurring at a record rate. Immediate to short-term action is required to protect stream corridors through many of these areas if cost-effective recovery efforts are to be implemented. In order to adequately address the issues, other segments of society and other (non-BPA) funding sources must be incorporated into the solution. As stated in the 1994 Fish and Wildlife Program (section 7.7), ''Comprehensive watershed management should enhance and expedite implementation of actions by clearly identifying gaps in programs and knowledge, by striving over time to resolve conflicts, and by keying on activities that address priorities''. A watershed coordinator helps to initiate and facilitate efforts for addressing the issues mentioned above and pulling together a plan for mitigation. Local support is essential before local governments and individual citizens are going to allow government initiatives to be implemented.« less

  13. Flathead River Focus Watershed Coordinator, 2005-2006 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DuCharme, Lynn

    2006-05-01

    The Bonneville Power Administration (BPA) has long been involved with funding of the Cooperative Habitat Protection and Improvement with Private Landowners program in accordance with the Northwest Power Planning Council's (NPPC) Fish & Wildlife Program (Section 7.7). Section 7.7B.1 requires the establishment of ''at least one model watershed coordinator selected by each representative state''. This project was initiated in 1997 with the purpose of fulfilling the NWPCC's watershed program within the Flathead River basin in western Montana. Currently, the Flathead watershed has been radically altered by hydropower and other land uses. With the construction of Hungry Horse, Bigfork and Kerrmore » dams, the Flathead River system has been divided into isolated populations. Bull trout have been listed as threatened by the US Fish and Wildlife Service and westslope cutthroat trout have been petitioned for listing. Many streams in the drainage have been destabilized during recent decades. Past legal and illegal species introductions are also causing problems. This project fosters in-kind, out-of-place mitigation to offset the impacts of hydroelectric power to 72 miles of the South Fork of the Flathead River and its tributaries upstream of Hungry Horse Dam. Key subbasins within the Flathead drainage, which are critical to native species restoration, are experiencing rapid changes in land ownership and management direction. Subdivision and residential development of agricultural and timber lands adjacent to waterways in the drainage pose one of the greatest threats to weak but recoverable stocks of trout species. Plum Creek Timber Company, a major landholder in the Flathead drainage is currently divesting itself of large tracks of its lakeshore and streamside holdings. Growth of small tract development throughout the area and its tributaries is occurring at a record rate. Immediate to short-term action is required to protect stream corridors through many of these areas if cost-effective recovery efforts are to be implemented. In order to adequately address the issues, other segments of society and other (non-BPA) funding sources must be incorporated into the solution. As stated in the 1994 Fish and Wildlife Program (section 7.7), ''Comprehensive watershed management should enhance and expedite implementation of actions by clearly identifying gaps in programs and knowledge, by striving over time to resolve conflicts, and by keying on activities that address priorities''. A watershed coordinator helps to initiate and facilitate efforts for addressing the issues mentioned above and pulling together a plan for mitigation. Local support is essential before local governments and individual citizens are going to allow government initiatives to be implemented.« less

  14. Lake Nutrient Responses to Integrated Conservation Practices in an Agricultural Watershed.

    PubMed

    Lizotte, Richard E; Yasarer, Lindsey M W; Locke, Martin A; Bingner, Ronald L; Knight, Scott S

    2017-03-01

    Watershed-scale management efforts to reduce nutrient loads and improve the conservation of lakes in agricultural watersheds require effective integration of a variety of agricultural conservation best management practices (BMPs). This paper documents watershed-scale assessments of the influence of multiple integrated BMPs on oxbow lake nutrient concentrations in a 625-ha watershed of intensive row-crop agricultural activity during a 14-yr monitoring period (1996-2009). A suite of BMPs within fields and at field edges throughout the watershed and enrollment of 87 ha into the Conservation Reserve Program (CRP) were implemented from 1995 to 2006. Total phosphorus (TP), soluble reactive phosphorus (SRP), ammonium, and nitrate were measured approximately biweekly from 1996 to 2009, and total nitrogen (TN) was measured from 2001 to 2009. Decreases in several lake nutrient concentrations occurred after BMP implementation. Reductions in TP lake concentrations were associated with vegetative buffers and rainfall. No consistent patterns of changes in TN or SRP lake concentrations were observed. Reductions in ammonium lake concentrations were associated with conservation tillage and CRP. Reductions in nitrate lake concentrations were associated with vegetative buffers. Watershed simulations conducted with the AnnAGNPS (Annualized Agricultural Non-Point Source) model with and without BMPs also show a clear reduction in TN and TP loads to the lake after the implementation of BMPs. These results provide direct evidence of how watershed-wide BMPs assist in reducing nutrient loading in aquatic ecosystems and promote a more viable and sustainable lake ecosystem. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  15. Watershed Nitrogen and Mercury Geochemical Fluxes Integrate Landscape Factors in Long-term Research Watersheds at Acadia National Park, Maine, USA

    Treesearch

    J. S. Kahl; S. J. Nelson; I. Fernandez; T. Haines; S. Norton; G. B. Wiersma; G. Jacobson; A. Amirbahman; K. Johnson; M. Schauffler; L. Rustad; K. Tonnessen; R. Lent; M. Bank; J. Elvir; J. Eckhoff; H. Caron; P. Ruck; J. Parker; J. Campbell; D. Manski; R. Breen; K. Sheehan; A. Grygo

    2007-01-01

    This paper is an overview of this special issue devoted to watershed research in Acadia National Park (Acadia NP). The papers address components of an integrated research program on two upland watersheds at Acadia NP, USA (44° 20′ N latitude; 68° 15′ E longitude). These watersheds were instrumented in 1998 to provide a long-term foundation for regional ecological and...

  16. Modeling of Soil Erosion by IntErO model: The Case Study of the Novsicki Potok Watershed, of the Prokletije high mountains of Montenegro

    NASA Astrophysics Data System (ADS)

    Spalevic, Velibor; Al-Turki, Ali M.; Barovic, Goran; Leandro Naves Silva, Marx; Djurovic, Nevenka; Soares Souza, Walisson; Veloso Gomes Batista, Pedro; Curovic, Milic

    2016-04-01

    The application of soil conservation programs to combat erosion and sedimentation are significantly contributing to the protection of the natural resources. Watershed management practices include the assessment of Physical-Geographical, Climate, Geological, Pedological characteristics, including the analysis of Land Use of the regions concerned. The policy makers are increasingly looking for the different land uses and climatic scenarios that can be used for valuable projections for watershed management. To increase knowledge about those processes, use of hydrological and soil erosion models is needed and that is allowing quantification of soil redistribution and sediment productions. We focused on soil erosion processes in one of Northern Montenegrin mountain watersheds, the Novsicki Potok Watershed of the Polimlje River Basin, using modeling techniques: the IntErO model for calculation of runoff and soil loss. The model outcomes were validated through measurements of lake sediment deposition at the Potpec hydropower plant dam. Our findings indicate a medium potential of soil erosion risk. With 464 m³ yr-1 of annual sediment yield, corresponding to an area-specific sediment yield of 270 m³km-2 yr-1, the Novsicki Potok drainage basin belongs to the Montenegrin basins with the medium sediment discharge; according to the erosion type, it is surface erosion. The value of the Z coefficient was calculated on 0.403, what indicates that the river basin belongs to 3rd destruction category (of five). Our results suggest that the calculated peak discharge from the river basin was 82 m3s-1 for the incidence of 100 years. According to our analysis there is a possibility for large flood waves to appear in the studied river basin. With this research we, to some extent, improved the knowledge on the status of sediment yield and runoff of the river basins of Montenegro, where the map of Soil erosion is still not prepared. The IntErO model we used in this study is relatively novel concept and is highly recommended for soil erosion modelling in other river basins similar to the studied watershed, because of its simple identification of critical areas affected by the soil loss caused by soil erosion.

  17. Assessment of the Impacts of Climate Change on Stream Discharge and Water Quality in an Arid, Urbanized Watershed

    NASA Astrophysics Data System (ADS)

    Ranatunga, T.; Tong, S.; Yang, J.

    2011-12-01

    Hydrologic and water quality models can provide a general framework to conceptualize and investigate the relationships between climate and water resources. Under a hot and dry climate, highly urbanized watersheds are more vulnerable to changes in climate, such as excess heat and drought. In this study, a comprehensive watershed model, Hydrological Simulation Program FORTRAN (HSPF), is used to assess the impacts of future climate change on the stream discharge and water quality in Las Vegas Wash in Nevada, the only surface water body that drains from the Las Vegas Valley (an area with rapid population growth and urbanization) to Lake Mead. In this presentation, the process of model building, calibration and validation, the generation of climate change scenarios, and the assessment of future climate change effects on stream hydrology and quality are demonstrated. The hydrologic and water quality model is developed based on the data from current national databases and existing major land use categories of the watershed. The model is calibrated for stream discharge, nutrients (nitrogen and phosphorus) and sediment yield. The climate change scenarios are derived from the outputs of the Global Climate Models (GCM) and Regional Climate Models (RCM) simulations, and from the recent assessment reports from the Intergovernmental Panel on Climate Change (IPCC). The Climate Assessment Tool from US EPA's BASINS is used to assess the effects of likely future climate scenarios on the water quantity and quality in Las Vegas Wash. Also the presentation discusses the consequences of these hydrologic changes, including the deficit supplies of clean water during peak seasons of water demand, increased eutrophication potentials, wetland deterioration, and impacts on wild life habitats.

  18. Watershed Effects on Streamflow Quantity and Quality in Six Watersheds of Gwinnett County, Georgia

    USGS Publications Warehouse

    Landers, Mark N.; Ankcorn, Paul D.; McFadden, Keith W.

    2007-01-01

    Watershed management is critical for the protection and enhancement of streams that provide multiple benefits for Gwinnett County, Georgia, and downstream communities. Successful watershed management requires an understanding of how stream quality is affected by watershed characteristics. The influence of watershed characteristics on stream quality is complex, particularly for the nonpoint sources of pollutants that affect urban watersheds. The U.S. Geological Survey (USGS), in cooperation with Gwinnett County Department of Water Resources (formerly known as Public Utilities), established a water-quality monitoring program during late 1996 to collect comprehensive, consistent, high-quality data for use by watershed managers. Between 1996 and 2003, more than 10,000 analyses were made for more than 430 water-quality samples. Continuous-flow and water-quality data have been collected since 1998. Loads have been computed for selected constituents from 1998 to 2003. Changing stream hydrology is a primary driver for many other water-quality and aquatic habitat effects. Primary factors affecting stream hydrology (after watershed size and climate) within Gwinnett County are watershed slope and land uses. For the six study watersheds in Gwinnett County, watershedwide imperviousness up to 12 percent does not have a well-defined influence on stream hydrology, whereas two watersheds with 21- and 35-percent impervious area are clearly impacted. In the stream corridor, however, imperviousness from 1.6 to 4.4 percent appears to affect baseflow and stormflow for all six watersheds. Relations of concentrations to discharge are used to develop regression models to compute constituent loads using the USGS LOAD ESTimator model. A unique method developed in this study is used to calibrate the model using separate baseflow and stormflow sample datasets. The method reduced model error and provided estimates of the load associated with the baseflow and stormflow parts of the hydrograph. Annual load of total suspended sediment is a performance criterion in Gwinnett County's Watershed Protection Plan. Median concentrations of total suspended solids in stormflow range from 30 to 180 times greater than in baseflow. This increase in total suspended solids concentration with increasing discharge has a multiplied effect on total suspended solids load, 97 to 99 percent of which is transported during stormflow. Annual total suspended solids load is highly dependent on annual precipitation; between 1998 and 2003 load for the wettest year was up to 28 times greater than for the driest year. Average annual total suspended solids yield from 1998-2003 in the six watersheds increased with high-density and transportation/utility land uses, and generally decreased with low-density residential, estate/park, and undeveloped land uses. Watershed characteristics also were related to annual loads of total phosphorus, dissolved phosphorus, total nitrogen, total dissolved solids, biochemical oxygen demand, and total zinc, as well as stream alkalinity. Flow-adjusted total suspended solids, total phosphorus, and total zinc stormflow concentrations between 1996 and 2003 have a seasonal pattern in five of the six watersheds. Flow-adjusted concentrations typically peak during late summer, between July and August. The seasonal pattern is stronger for more developed watersheds and may be related to seasonal land-disturbance activities and/or to seasonal rainfall intensity, both of which increase in summer. Adjusting for seasonality in the computation of constituent load caused the standard error of annual total suspended solids load to improve by an average of 11 percent, and increased computed summer total suspended solids loads by an average of 45 percent and decreased winter total suspended solids loads by an average of 40 percent. Total annual loads changed by less than 5 percent on the average. Graphical and statistical analyses do not indicate a time tre

  19. Simulation of groundwater and surface-water resources of the Santa Rosa Plain watershed, Sonoma County, California

    USGS Publications Warehouse

    Woolfenden, Linda R.; Nishikawa, Tracy

    2014-01-01

    Water managers in the Santa Rosa Plain face the challenge of meeting increasing water demand with a combination of Russian River water, which has uncertainties in its future availability; local groundwater resources; and ongoing and expanding recycled water and water from other conservation programs. To address this challenge, the U.S. Geological Survey, in cooperation with the Sonoma County Water Agency, the cities of Cotati, Rohnert Park, Santa Rosa, and Sebastopol, the town of Windsor, the California American Water Company, and the County of Sonoma, undertook development of a fully coupled groundwater and surface-water model to better understand and to help manage the hydrologic resources in the Santa Rosa Plain watershed. The purpose of this report is to (1) describe the construction and calibration of the fully coupled groundwater and surface-water flow model for the Santa Rosa Plain watershed, referred to as the Santa Rosa Plain hydrologic model; (2) present results from simulation of the Santa Rosa Plain hydrologic model, including water budgets, recharge distributions, streamflow, and the effect of pumping on water-budget components; and (3) present the results from using the model to evaluate the potential hydrologic effects of climate change and variability without pumpage for water years 2011-99 and with projected pumpage for water years 2011-40.

  20. Hydrologic land use classification of the Patuxent River watershed using remotely sensed data

    NASA Technical Reports Server (NTRS)

    Dallam, W. C.; Rango, A.; Shima, L.

    1975-01-01

    The Patuxent River Watershed is located in central Maryland between Baltimore and Washington, D.C. and is approximately 2330 sq km in area and 175 km long. This region is now at a critical point because of major concerns such as water management and quality, flooding and land use within the watershed. Data from the NASA-directed LANDSAT and Earth Resources Aircraft Programs were used to provide a new dimension in information collection and processing for the management of watersheds. Digital data from LANDSAT-1 were analyzed along with selected IR photography from U-2 flight number 74-060B taken 28 April 1974, which was digitized in three channels. Processing of the data was accomplished using a multispectral analysis system. Land use themes consisting of surface water, wetlands, forest, residential, cropland/pasture, urban, and extractive were developed and delineated through the watershed. Area measurements of watershed themes were obtained and will serve as a calibration input to a deterministic hydrologic model on a sub-watershed. Using the derived residential and urban theme areas from LANDSAT an estimated basin imperviousness was also calculated. Thematic maps were produced at 1:62,500 scale. Floodprone areas were also classified and delineated at a scale of 1:24,000. Comparison with standard floodprone area maps at the same scale have indicated a few areas of discrepancy. Such information can be used for updating or checking floodprone area boundaries as well as monitoring changes in floodplain areas.

  1. The behaviour of 39 pesticides in surface waters as a function of scale

    USGS Publications Warehouse

    Capel, P.D.; Larson, S.J.; Winterstein, T.A.

    2001-01-01

    A portion of applied pesticides runs off agricultural fields and is transported through surface waters. In this study, the behaviour of 39 pesticides is examined as a function of scale across 14 orders of magnitude from the field to the ocean. Data on pesticide loads in streams from two US Geological Survey programs were combined with literature data from field and watershed studies. The annual load as percent of use (LAPU) was quantified for each of the fields and watersheds and was used as the normalization factor across watersheds and compounds. The in-stream losses of each pesticide were estimated for a model stream with a 15 day travel time (similar in characteristics to the upper Mississippi River). These estimated in-stream losses agreed well with the observed changes in apparent LAPU values as a function of watershed area. In general, herbicides applied to the soil surface had the greatest LAPU values and minimal in-stream losses. Soil-incorporated herbicides had smaller LAPU values and substantial in-stream losses. Insecticides generally had LAPU values similar to the incorporated herbicides, but had more variation in their in-stream losses. On the basis of the LAPU values of the 39 pesticides as a function of watershed area, a generalized conceptual model of the movement of pesticides from the field to the ocean is suggested. The importance of considering both field runoff and in-stream losses is discussed in relation to interpreting monitoring data and making regulatory decisions.

  2. Application of the ReNuMa model in the Sha He river watershed: tools for watershed environmental management.

    PubMed

    Sha, Jian; Liu, Min; Wang, Dong; Swaney, Dennis P; Wang, Yuqiu

    2013-07-30

    Models and related analytical methods are critical tools for use in modern watershed management. A modeling approach for quantifying the source apportionment of dissolved nitrogen (DN) and associated tools for examining the sensitivity and uncertainty of the model estimates were assessed for the Sha He River (SHR) watershed in China. The Regional Nutrient Management model (ReNuMa) was used to infer the primary sources of DN in the SHR watershed. This model is based on the Generalized Watershed Loading Functions (GWLF) and the Net Anthropogenic Nutrient Input (NANI) framework, modified to improve the characterization of subsurface hydrology and septic system loads. Hydrochemical processes of the SHR watershed, including streamflow, DN load fluxes, and corresponding DN concentration responses, were simulated following calibrations against observations of streamflow and DN fluxes. Uncertainty analyses were conducted with a Monte Carlo analysis to vary model parameters for assessing the associated variations in model outputs. The model performed accurately at the watershed scale and provided estimates of monthly streamflows and nutrient loads as well as DN source apportionments. The simulations identified the dominant contribution of agricultural land use and significant monthly variations. These results provide valuable support for science-based watershed management decisions and indicate the utility of ReNuMa for such applications. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Loads of nitrate, phosphorus, and total suspended solids from Indiana watersheds

    USGS Publications Warehouse

    Bunch, Aubrey R.

    2016-01-01

    Transport of excess nutrients and total suspended solids (TSS) such as sediment by freshwater systems has led to degradation of aquatic ecosystems around the world. Nutrient and TSS loads from Midwestern states to the Mississippi River are a major contributor to the Gulf of Mexico Hypoxic Zone, an area of very low dissolved oxygen concentration in the Gulf of Mexico. To better understand Indiana’s contribution of nutrients and TSS to the Mississippi River, annual loads of nitrate plus nitrite as nitrogen, total phosphorus, and TSS were calculated for nine selected watersheds in Indiana using the load estimation model, S-LOADEST. Discrete water-quality samples collected monthly by the Indiana Department of Environmental Management’s Fixed Stations Monitoring Program from 2000–2010 and concurrent discharge data from the U. S. Geological Survey streamflow gages were used to create load models. Annual nutrient and TSS loads varied across Indiana by watershed and hydrologic condition. Understanding the loads from large river sites in Indiana is important for assessing contributions of nutrients and TSS to the Mississippi River Basin and in determining the effectiveness of best management practices in the state. Additionally, evaluation of loads from smaller upstream watersheds is important to characterize improvements at the local level and to identify priorities for reduction.

  4. Comprehensive Performance Evaluation for Hydrological and Nutrients Simulation Using the Hydrological Simulation Program-Fortran in a Mesoscale Monsoon Watershed, China.

    PubMed

    Li, Zhaofu; Luo, Chuan; Jiang, Kaixia; Wan, Rongrong; Li, Hengpeng

    2017-12-19

    The Hydrological Simulation Program-Fortran (HSPF) is a hydrological and water quality computer model that was developed by the United States Environmental Protection Agency. Comprehensive performance evaluations were carried out for hydrological and nutrient simulation using the HSPF model in the Xitiaoxi watershed in China. Streamflow simulation was calibrated from 1 January 2002 to 31 December 2007 and then validated from 1 January 2008 to 31 December 2010 using daily observed data, and nutrient simulation was calibrated and validated using monthly observed data during the period from July 2009 to July 2010. These results of model performance evaluation showed that the streamflows were well simulated over the study period. The determination coefficient ( R ²) was 0.87, 0.77 and 0.63, and the Nash-Sutcliffe coefficient of efficiency (Ens) was 0.82, 0.76 and 0.65 for the streamflow simulation in annual, monthly and daily time-steps, respectively. Although limited to monthly observed data, satisfactory performance was still achieved during the quantitative evaluation for nutrients. The R ² was 0.73, 0.82 and 0.92, and the Ens was 0.67, 0.74 and 0.86 for nitrate, ammonium and orthophosphate simulation, respectively. Some issues may affect the application of HSPF were also discussed, such as input data quality, parameter values, etc. Overall, the HSPF model can be successfully used to describe streamflow and nutrients transport in the mesoscale watershed located in the East Asian monsoon climate area. This study is expected to serve as a comprehensive and systematic documentation of understanding the HSPF model for wide application and avoiding possible misuses.

  5. USING HISTORICAL BIOLOGICAL DATA TO EVALUATE STATUS AND TRENDS IN THE BIG DARBY CREEK WATERSHED (OHIO, USA)

    EPA Science Inventory

    Assessment of watershed ecological status and trends is challenging for managers who lack randomly or consistently sampled data, or monitoring programs developed from a watershed perspective. This study investigated analytical approaches for assessment of status and trends using ...

  6. Robust Decision Making to Support Water Quality Climate Adaptation: a Case Study in the Chesapeake Bay Watershed

    NASA Astrophysics Data System (ADS)

    Fischbach, J. R.; Lempert, R. J.; Molina-Perez, E.

    2017-12-01

    The U.S. Environmental Protection Agency (USEPA), together with state and local partners, develops watershed implementation plans designed to meet water quality standards. Climate uncertainty, along with uncertainty about future land use changes or the performance of water quality best management practices (BMPs), may make it difficult for these implementation plans to meet water quality goals. In this effort, we explored how decision making under deep uncertainty (DMDU) methods such as Robust Decision Making (RDM) could help USEPA and its partners develop implementation plans that are more robust to future uncertainty. The study focuses on one part of the Chesapeake Bay watershed, the Patuxent River, which is 2,479 sq km in area, highly urbanized, and has a rapidly growing population. We simulated the contribution of stormwater contaminants from the Patuxent to the overall Total Maximum Daily Load (TMDL) for the Chesapeake Bay under multiple scenarios reflecting climate and other uncertainties. Contaminants considered included nitrogen, phosphorus, and sediment loads. The assessment included a large set of scenario simulations using the USEPA Chesapeake Bay Program's Phase V watershed model. Uncertainties represented in the analysis included 18 downscaled climate projections (based on 6 general circulation models and 3 emissions pathways), 12 land use scenarios with different population projections and development patterns, and alternative assumptions about BMP performance standards and efficiencies associated with different suites of stormwater BMPs. Finally, we developed cost estimates for each of the performance standards and compared cost to TMDL performance as a key tradeoff for future water quality management decisions. In this talk, we describe how this research can help inform climate-related decision support at USEPA's Chesapeake Bay Program, and more generally how RDM and other DMDU methods can support improved water quality management under climate uncertainty.

  7. Collection of short papers on Beaver Creek watershed studies in West Tennessee, 1989-94

    USGS Publications Warehouse

    Doyle, W. Harry.; Baker, Eva G.

    1995-01-01

    In 1989, the U.S. Geological Survey began a scientific investigation to evaluate the effect of agricultural activities on water quality and the effectiveness of agricultural best management practices in the Beaver Creek watershed, West Tennessee. The project is being conducted jointly with other Federal, State, county agencies, the farming community, and academic institutions, in support of the U.S. Department of Agriculture's Hydrologic Unit Area program. The Beaver Creek project has evolved into a long-term watershed assessment and monitoring program. In 1991, a grant was received to develop and evaluate sampling strategies for higher order streams. During the summer of 1992, a reconnaissance of water-quality conditions for the shallow aquifers in Shelby, Tipton, Fayette, and Haywood Counties was conducted and included 89 domestic wells in the Beaver Creek watershed. Results from this effort lead to the development of a 1-year program to evaluate cause- and-effect relations that can explain the observed water-quality conditions for the shallow aquifers in the watershed. In 1992 the USGS, in cooperation with the Soil Conservation Service and the Shelby County Soil Conservation District, began an evaluation of in-stream processes and in-stream resource-management systems. In 1993, a biomonitoring program was established in the watershed. This collection of eight articles and abstracts was originally published in the American Water Resources Association National Symposium on Water Quality Proceedings for the national conference held in Chicago in 1994 and describes what has been learned in the study to date.

  8. Model My Watershed: Connecting Students' Conceptual Understanding of Watersheds to Real-World Decision Making

    ERIC Educational Resources Information Center

    Gill, Susan E.; Marcum-Dietrich, Nanette; Becker-Klein, Rachel

    2014-01-01

    The Model My Watershed (MMW) application, and associated curricula, provides students with meaningful opportunities to connect conceptual understanding of watersheds to real-world decision making. The application uses an authentic hydrologic model, TR-55 (developed by the U.S. Natural Resources Conservation Service), and real data applied in…

  9. Workshop to transfer VELMA watershed model results to Washington state tribes and state agencies engaged in watershed restoration and salmon recovery planning

    EPA Science Inventory

    An EPA Western Ecology Division (WED) watershed modeling team has been working with the Snoqualmie Tribe Environmental and Natural Resources Department to develop VELMA watershed model simulations of the effects of historical and future restoration and land use practices on strea...

  10. The Water Erosion Prediction Project (WEPP) model for saturation excess conditions: application to an agricultural and a forested watershed.

    NASA Astrophysics Data System (ADS)

    Crabtree, B.; Brooks, E.; Ostrowski, K.; Elliot, W. J.; Boll, J.

    2006-12-01

    We incorporated saturation excess overland flow processes in the Water Erosion Prediction Project (WEPP) model for the evaluation of human disturbances in watersheds. In this presentation, we present results of the modified WEPP model to two watersheds: an agricultural watershed with mixed land use, and a forested watershed. The agricultural watershed is Paradise Creek, an intensively monitored watershed with continuous climate, flow and sediment data collection at multiple locations. Restoration efforts in Paradise Creek watershed include changing to minimal tillage or no-tillage sytems, and implementation of structural practices. The forested watershed is the 28 km2 Mica Creek Experimental Watershed (MCEW) where disturbances include clear and partial cutting, and road building. The MCEW has a nested study design, which allows for the analysis of cumulative effects as well as the traditional comparison of treatment versus control. Mica Creek watershed is a high elevation watershed where streamflow is generated mostly by snowmelt. Treatments include road building in 1997, and clearcut and partial-cut logging in 2001. Our results include the simulation of streamflow and sediment delivery at multiple locations within each watershed, and evaluation of the human disturbances.

  11. Development of Relations of Stream Stage to Channel Geometry and Discharge for Stream Segments Simulated with Hydrologic Simulation Program-Fortran (HSPF), Chesapeake Bay Watershed and Adjacent Parts of Virginia, Maryland, and Delaware

    USGS Publications Warehouse

    Moyer, Douglas; Bennett, Mark

    2007-01-01

    The U.S. Geological Survey (USGS), U.S. Environmental Protection Agency (USEPA), Chesapeake Bay Program (CBP), Interstate Commission for the Potomac River Basin (ICPRB), Maryland Department of the Environment (MDE), Virginia Department of Conservation and Recreation (VADCR), and University of Maryland (UMD) are collaborating to improve the resolution of the Chesapeake Bay Regional Watershed Model (CBRWM). This watershed model uses the Hydrologic Simulation Program-Fortran (HSPF) to simulate the fate and transport of nutrients and sediment throughout the Chesapeake Bay watershed and extended areas of Virginia, Maryland, and Delaware. Information from the CBRWM is used by the CBP and other watershed managers to assess the effectiveness of water-quality improvement efforts as well as guide future management activities. A critical step in the improvement of the CBRWM framework was the development of an HSPF function table (FTABLE) for each represented stream channel. The FTABLE is used to relate stage (water depth) in a particular stream channel to associated channel surface area, channel volume, and discharge (streamflow). The primary tool used to generate an FTABLE for each stream channel is the XSECT program, a computer program that requires nine input variables used to represent channel morphology. These input variables are reach length, upstream and downstream elevation, channel bottom width, channel bankfull width, channel bankfull stage, slope of the floodplain, and Manning's roughness coefficient for the channel and floodplain. For the purpose of this study, the nine input variables were grouped into three categories: channel geometry, Manning's roughness coefficient, and channel and floodplain slope. Values of channel geometry for every stream segment represented in CBRWM were obtained by first developing regional regression models that relate basin drainage area to observed values of bankfull width, bankfull depth, and bottom width at each of the 290 USGS streamflow-gaging stations included in the areal extent of the model. These regression models were developed on the basis of data from stations in four physiographic provinces (Appalachian Plateaus, Valley and Ridge, Piedmont, and Coastal Plain) and were used to predict channel geometry for all 738 stream segments in the modeled area from associated basin drainage area. Manning's roughness coefficient for the channel and floodplain was represented in the XSECT program in two forms. First, all available field-estimated values of roughness were compiled for gaging stations in each physiographic province. The median of field-estimated values of channel and floodplain roughness for each physiographic province was applied to all respective stream segments. The second representation of Manning's roughness coefficient was to allow roughness to vary with channel depth. Roughness was estimated at each gaging station for each 1-foot depth interval. Median values of roughness were calculated for each 1-foot depth interval for all stations in each physiographic province. Channel and floodplain slope were determined for every stream segment in CBRWM using the USGS National Elevation Dataset. Function tables were generated by the XSECT program using values of channel geometry, channel and floodplain roughness, and channel and floodplain slope. The FTABLEs for each of the 290 USGS streamflow-gaging stations were evaluated by comparing observed discharge to the XSECT-derived discharge. Function table stream discharge derived using depth-varying roughness was found to be more representative of and statistically indistinguishable from values of observed stream discharge. Additionally, results of regression analysis showed that XSECT-derived discharge accounted for approximately 90 percent of the variability associated with observed discharge in each of the four physiographic provinces. The results of this study indicate that the methodology developed to generate FTABLEs for every s

  12. Design and Implementation of a Research-Informed Water Conservation Education Program

    ERIC Educational Resources Information Center

    Thompson, Ruthanne; Coe, Alice; Klaver, Irene; Dickson, Kenneth

    2011-01-01

    Informed by the results of a baseline research study of regional citizen knowledge and understanding concerning watershed issues, a team of university faculty and classroom teachers designed and implemented a water conservation education program to address lacking areas of watershed knowledge. The authors developed age-appropriate, hands-on…

  13. Ecosystem Services Research Program (ESRP) Albemarle-Pamlico Watershed and Estuary Study (APWES) Research Plan

    EPA Science Inventory

    The APWES is a place-based study for the U.S. EPA Ecosystem Services Research Program conducted through the collaboration across the EPA Office of Research and Development. The mission of the APWES is to develop ecosystem services science to inform watershed and coastal manageme...

  14. 40 CFR 141.521 - What updated watershed control requirements must my unfiltered system implement to continue to...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Enhanced Filtration and Disinfection-Systems Serving Fewer Than 10,000... oocysts in the source water. Your system's watershed control program must, for Cryptosporidium: (a...

  15. 40 CFR 141.521 - What updated watershed control requirements must my unfiltered system implement to continue to...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Enhanced Filtration and Disinfection-Systems Serving Fewer Than 10,000... oocysts in the source water. Your system's watershed control program must, for Cryptosporidium: (a...

  16. 40 CFR 141.521 - What updated watershed control requirements must my unfiltered system implement to continue to...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Enhanced Filtration and Disinfection-Systems Serving Fewer Than 10,000... oocysts in the source water. Your system's watershed control program must, for Cryptosporidium: (a...

  17. 40 CFR 141.521 - What updated watershed control requirements must my unfiltered system implement to continue to...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Enhanced Filtration and Disinfection-Systems Serving Fewer Than 10,000... oocysts in the source water. Your system's watershed control program must, for Cryptosporidium: (a...

  18. 77 FR 33194 - Proposed Information Collection; Comment Request; Bay Watershed Education and Training Program...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-05

    ... Collection; Comment Request; Bay Watershed Education and Training Program National Evaluation System AGENCY... to Bronwen Rice, NOAA Office of Education, (202) 482-6797 or [email protected] . SUPPLEMENTARY INFORMATION: I. Abstract This request is for a new information collection. The NOAA Office of Education's Bay...

  19. Watershed erosion modeling using the probability of sediment connectivity in a gently rolling system

    NASA Astrophysics Data System (ADS)

    Mahoney, David Tyler; Fox, James Forrest; Al Aamery, Nabil

    2018-06-01

    Sediment connectivity has been shown in recent years to explain how the watershed configuration controls sediment transport. However, we find no studies develop a watershed erosion modeling framework based on sediment connectivity, and few, if any, studies have quantified sediment connectivity for gently rolling systems. We develop a new predictive sediment connectivity model that relies on the intersecting probabilities for sediment supply, detachment, transport, and buffers to sediment transport, which is integrated in a watershed erosion model framework. The model predicts sediment flux temporally and spatially across a watershed using field reconnaissance results, a high-resolution digital elevation models, a hydrologic model, and shear-based erosion formulae. Model results validate the capability of the model to predict erosion pathways causing sediment connectivity. More notably, disconnectivity dominates the gently rolling watershed across all morphologic levels of the uplands, including, microtopography from low energy undulating surfaces across the landscape, swales and gullies only active in the highest events, karst sinkholes that disconnect drainage areas, and floodplains that de-couple the hillslopes from the stream corridor. Results show that sediment connectivity is predicted for about 2% or more the watershed's area 37 days of the year, with the remaining days showing very little or no connectivity. Only 12.8 ± 0.7% of the gently rolling watershed shows sediment connectivity on the wettest day of the study year. Results also highlight the importance of urban/suburban sediment pathways in gently rolling watersheds, and dynamic and longitudinal distributions of sediment connectivity might be further investigated in future work. We suggest the method herein provides the modeler with an added tool to account for sediment transport criteria and has the potential to reduce computational costs in watershed erosion modeling.

  20. Collection and analysis of remotely sensed data from the Rhode River Estuary Watershed. [ecological parameters of Chesapeake Bay

    NASA Technical Reports Server (NTRS)

    Jenkins, D. W.

    1972-01-01

    NASA chose the watershed of Rhode River, a small sub-estuary of the Bay, as a representative test area for intensive studies of remote sensing, the results of which could be extrapolated to other estuarine watersheds around the Bay. A broad program of ecological research was already underway within the watershed, conducted by the Smithsonian Institution's Chesapeake Bay Center for Environmental Studies (CBCES) and cooperating universities. This research program offered a unique opportunity to explore potential applications for remote sensing techniques. This led to a joint NASA-CBCES project with two basic objectives: to evaluate remote sensing data for the interpretation of ecological parameters, and to provide essential data for ongoing research at the CBCES. A third objective, dependent upon realization of the first two, was to extrapolate photointerpretive expertise gained at the Rhode River watershed to other portions of the Chesapeake Bay.

  1. U.S. EPA'S URBAN WATERSHED RESEARCH PROGRAM IN BMPS AND RESTORATION FOR WATER QUALITY MANAGEMENT

    EPA Science Inventory

    The U.S. EPA's Urban Watershed Management Branch is responsible for developing and demonstrating technologies and methods required managing the risk to public health, property and the environment from wet weather flows (WWF) in urban watersheds. The activities are primarily aimed...

  2. DEVELOPMENT OF A WATERSHED-BASED MERCURY POLLUTION CHARACTERIZATION SYSTEM

    EPA Science Inventory

    To investigate total mercury loadings to streams in a watershed, we have developed a watershed-based source quantification model ? Watershed Mercury Characterization System. The system uses the grid-based GIS modeling technology to calculate total soil mercury concentrations and ...

  3. A TEST OF WATERSHED CLASSIFICATION SYSTEMS FOR ECOLOGICAL RISK ASSESSMENT

    EPA Science Inventory

    To facilitate extrapolation among watersheds, ecological risk assessments should be based on a model of underlying factors influencing watershed response, particularly vulnerability. We propose a conceptual model of landscape vulnerability to serve as a basis for watershed classi...

  4. Hydrologic, Hydraulic, and Flood Analyses of the Blackberry Creek Watershed, Kendall County, Illinois

    USGS Publications Warehouse

    Murphy, Elizabeth A.; Straub, Timothy D.; Soong, David T.; Hamblen, Christopher S.

    2007-01-01

    Results of the hydrologic model, flood-frequency, hydraulic model, and flood-hazard analysis of the Blackberry Creek watershed in Kendall County, Illinois, indicate that the 100-year and 500-year flood plains cover approximately 3,699 and 3,762 acres of land, respectively. On the basis of land-cover data for 2003, most of the land in the flood plains was cropland and residential land. Although many acres of residential land were included in the flood plain, this land was mostly lawns, with 25 homes within the 100-year flood plain, and 41 homes within the 500-year flood plain in the 2003 aerial photograph. This report describes the data collection activities to refine the hydrologic and hydraulic models used in an earlier study of the Kane County part of the Blackberry Creek watershed and to extend the flood-frequency analysis through water year 2003. The results of the flood-hazard analysis are presented in graphical and tabular form. The hydrologic model, Hydrological Simulation Program - FORTRAN (HSPF), was used to simulate continuous water movement through various land-use patterns in the watershed. Flood-frequency analysis was applied to an annual maximum series to determine flood quantiles in subbasins for flood-hazard analysis. The Hydrologic Engineering Center- River Analysis System (HEC-RAS) hydraulic model was used to determine the 100-year and 500-year flood elevations, and the 100-year floodway. The hydraulic model was calibrated and verified using observations during three storms at two crest-stage gages and the U.S. Geological Survey streamflowgaging station near Yorkville. Digital maps of the 100-year and 500-year flood plains and the 100-year floodway for each tributary and the main stem of Blackberry Creek were compiled.

  5. Comparison of SWAT and GeoWEPP model in predicting the impact of stone bunds on runoff and erosion processes in the Northern Ethiopian Highlands

    NASA Astrophysics Data System (ADS)

    Demelash, Nigus; Flagler, Jared; Renschler, Chris; Strohmeier, Stefan; Holzmann, Hubert; Feras, Ziadat; Addis, Hailu; Zucca, Claudio; Bayu, Wondimu; Klik, Andreas

    2017-04-01

    Soil degradation is a major issue in the Ethiopian highlands which are most suitable for agriculture and, therefore, support a major part of human population and livestock. Heavy rainstorms during the rainy season in summer create soil erosion and runoff processes which affect soil fertility and food security. In the last years programs for soil conservation and afforestation were initiated by the Ethiopian government to reduce erosion risk, retain water in the landscape and improve crop yields. The study was done in two adjacent watersheds in the Northwestern highlands of Ethiopia. One of the watersheds is developed by soil and water conservation structures (stone bunds) in 2011 and the other one is without soil and water conservation structures. Spatial distribution of soil textures and other soil properties were determined in the field and in the laboratory and a soil map was derived. A land use map was evaluated based on satellite images and ground truth data. A Digital Elevation Model of the watershed was developed based on conventional terrestrial surveying using a total station. At the outlet of the watersheds weirs with cameras were installed to measure surface runoff. During each event runoff samples were collected and sediment concentration was analyzed. The objective of this study is 1) to assess the impact of stone bunds on runoff and erosion processes by using simulation models, and 2) to compare the performance of two soil erosion models in predicting the measurements. The selected erosion models were the Soil and Water Assessment Tool (SWAT) and the Geospatial Interface to the Water Erosion Prediction Project (GeoWEPP). The simulation models were calibrated/verified for the 2011-2013 periods and validated with 2014-2015 data. Results of this comparison will be presented.

  6. Effectiveness of barnyard best management practices in Wisconsin

    USGS Publications Warehouse

    Stuntebeck, Todd D.; Bannerman, Roger T.

    1998-01-01

    In 1978, the Wisconsin Legislature committed to protecting water quality by enacting the Nonpoint Source Water Pollution Abatement Program. Through this program, cost-share money is provided within priority watersheds to control sources of nonpoint pollution. Most of the cost-share dollars for rural watersheds have been used to implement barnyard Best Management Practices (BMPs) because barnyards are believed to be a major source of pollutants, most notably phosphorus. Reductions in phosphorus loads of as much as 95 percent have been predicted for the barnyard BMPs recommended for priority watersheds.

  7. Identifying Hydrologic Processes in Agricultural Watersheds Using Precipitation-Runoff Models

    USGS Publications Warehouse

    Linard, Joshua I.; Wolock, David M.; Webb, Richard M.T.; Wieczorek, Michael

    2009-01-01

    Understanding the fate and transport of agricultural chemicals applied to agricultural fields will assist in designing the most effective strategies to prevent water-quality impairments. At a watershed scale, the processes controlling the fate and transport of agricultural chemicals are generally understood only conceptually. To examine the applicability of conceptual models to the processes actually occurring, two precipitation-runoff models - the Soil and Water Assessment Tool (SWAT) and the Water, Energy, and Biogeochemical Model (WEBMOD) - were applied in different agricultural settings of the contiguous United States. Each model, through different physical processes, simulated the transport of water to a stream from the surface, the unsaturated zone, and the saturated zone. Models were calibrated for watersheds in Maryland, Indiana, and Nebraska. The calibrated sets of input parameters for each model at each watershed are discussed, and the criteria used to validate the models are explained. The SWAT and WEBMOD model results at each watershed conformed to each other and to the processes identified in each watershed's conceptual hydrology. In Maryland the conceptual understanding of the hydrology indicated groundwater flow was the largest annual source of streamflow; the simulation results for the validation period confirm this. The dominant source of water to the Indiana watershed was thought to be tile drains. Although tile drains were not explicitly simulated in the SWAT model, a large component of streamflow was received from lateral flow, which could be attributed to tile drains. Being able to explicitly account for tile drains, WEBMOD indicated water from tile drains constituted most of the annual streamflow in the Indiana watershed. The Nebraska models indicated annual streamflow was composed primarily of perennial groundwater flow and infiltration-excess runoff, which conformed to the conceptual hydrology developed for that watershed. The hydrologic processes represented in the parameter sets resulting from each model were comparable at individual watersheds, but varied between watersheds. The models were unable to show, however, whether hydrologic processes other than those included in the original conceptual models were major contributors to streamflow. Supplemental simulations of agricultural chemical transport could improve the ability to assess conceptual models.

  8. AUTOMATED GIS WATERSHED ANALYSIS TOOLS FOR RUSLE/SEDMOD SOIL EROSION AND SEDIMENTATION MODELING

    EPA Science Inventory

    A comprehensive procedure for computing soil erosion and sediment delivery metrics has been developed using a suite of automated Arc Macro Language (AML ) scripts and a pair of processing- intensive ANSI C++ executable programs operating on an ESRI ArcGIS 8.x Workstation platform...

  9. Modeling urbanized watershed flood response changes with distributed hydrological model: key hydrological processes, parameterization and case studies

    NASA Astrophysics Data System (ADS)

    Chen, Y.

    2017-12-01

    Urbanization is the world development trend for the past century, and the developing countries have been experiencing much rapider urbanization in the past decades. Urbanization brings many benefits to human beings, but also causes negative impacts, such as increasing flood risk. Impact of urbanization on flood response has long been observed, but quantitatively studying this effect still faces great challenges. For example, setting up an appropriate hydrological model representing the changed flood responses and determining accurate model parameters are very difficult in the urbanized or urbanizing watershed. In the Pearl River Delta area, rapidest urbanization has been observed in China for the past decades, and dozens of highly urbanized watersheds have been appeared. In this study, a physically based distributed watershed hydrological model, the Liuxihe model is employed and revised to simulate the hydrological processes of the highly urbanized watershed flood in the Pearl River Delta area. A virtual soil type is then defined in the terrain properties dataset, and its runoff production and routing algorithms are added to the Liuxihe model. Based on a parameter sensitive analysis, the key hydrological processes of a highly urbanized watershed is proposed, that provides insight into the hydrological processes and for parameter optimization. Based on the above analysis, the model is set up in the Songmushan watershed where there is hydrological data observation. A model parameter optimization and updating strategy is proposed based on the remotely sensed LUC types, which optimizes model parameters with PSO algorithm and updates them based on the changed LUC types. The model parameters in Songmushan watershed are regionalized at the Pearl River Delta area watersheds based on the LUC types of the other watersheds. A dozen watersheds in the highly urbanized area of Dongguan City in the Pearl River Delta area were studied for the flood response changes due to urbanization, and the results show urbanization has big impact on the watershed flood responses. The peak flow increased a few times after urbanization which is much higher than previous reports.

  10. The effect of catchment discretization on rainfall-runoff model predictions

    NASA Astrophysics Data System (ADS)

    Goodrich, D.; Grayson, R.; Willgoose, G.; Palacios-Valez, O.; Bloschl, G.

    2003-04-01

    Application of distributed hydrologic watershed models fundamentally requires watershed partitioning or discretization. In addition to partitioning the watershed into modelling elements, these elements typically represent a further abstraction of the actual watershed surface and its relevant hydrologic properties. A critical issue that must be addressed by any user of these models prior to their application is definition of an acceptable level and type of watershed discretization or geometric model complexity. A quantitative methodology to define a level of geometric model complexity commensurate with a specified level of model performance is developed for watershed rainfall-runoff modelling. The methodology is tested on four subcatchments which cover a range of watershed scales of over three orders of magnitude in the USDA-ARS Walnut Gulch Experimental Watershed in Southeastern Arizona. It was found that distortion of the hydraulic roughness can compensate for a lower level of discretization (fewer channels) to a point. Beyond this point, hydraulic roughness distortion cannot compensate for the topographic distortion of representing the watershed by fewer elements (e.g. less complex channel network). Similarly, differences in representation of topography by different model or digital elevation model (DEM) types (e.g. Triangular Irregular Elements - TINs; contour lines; and regular grid DEMs) also result in difference in runoff routing responses that can be largely compensated for by a distortion in hydraulic roughness or path length. To put the effect of these discretization models in context it will be shown that relatively small non-compliance with Peclet number restrictions on timestep size can overwhelm the relatively modest differences resulting from the type of representation of topography.

  11. Digital data used to relate nutrient inputs to water quality in the Chesapeake Bay watershed, version 3.0

    USGS Publications Warehouse

    Brakebill, John W.; Preston, Stephen D.

    2004-01-01

    Chesapeake Bay restoration efforts are focused on improving water quality, living resources, and ecological habitats by 2010. One aspect of the water-quality restoration is the refinement of strategies designed to implement nutrient-reduction practices within the Bay watershed. These strategies are being refined and implemented by resource managers of the Chesapeake Bay Program (CBP), a partnership comprised of various Federal, State, and local agencies that includes jurisdictions within Delaware, Maryland, New York, Pennsylvania, Virginia, West Virginia, and the District of Columbia. The U.S. Geological Survey (USGS), an active member of the CBP, provides necessary water-quality information for these Chesapeake Bay nutrient-reduction strategy revisions and evaluations. The formulation and revision of effective nutrient-reduction strategies requires detailed scientific information and an analytical understanding of the sources, transport, and delivery of nutrients to the Chesapeake Bay. The USGS is supporting these strategies by providing scientific information to resource managers that can help them evaluate and understand these processes. One statistical model available to resource managers is a collection of SPAtially Referenced Regressions On Watershed (SPARROW) attributes, which uses a nonlinear regression approach to spatially relate nutrient sources and watershed characteristics to nutrient loads of streams throughout the Chesapeake Bay watershed. Developed by the USGS, information generated by SPARROW can help resource managers determine the geographical distribution and relative contribution of nutrient sources and the factors that affect their transport to the Bay. Nutrient source information representing the late 1990s time period was obtained from several agencies and used to create and compile digital spatial datasets of total nitrogen and total phosphorus contributions that served as input sources to the SPARROW models. These data represent atmospheric deposition, point-source locations, land-use, land-cover, and agricultural sources such as commercial fertilizer and manure applications. Watershed-characteristics datasets representing factors that affect the transport of nutrients also were compiled from previous applications of the SPARROW models in the Chesapeake Bay watershed. Datasets include average-annual precipitation and temperature, slope, soil permeability, and hydrogeomorphic regions. Nutrient-input and watershed-characteristics datasets representing conditions during the late 1990s were merged with a connected network of stream reaches and watersheds to provide the spatial detail required by SPARROW. Stream-nutrient load estimates for 125 sampling sites (87 for total nitrogen and 103 for total phosphorus) served as the dependent variables for the regressions, and were used to calibrate models of total nitrogen and total phosphorus depicting late 1990s conditions in the Chesapeake Bay watershed. Spatial data generated for the models can be used to identify the location of nutrient sources, while the models' nutrient estimates can be used to evaluate stream-nutrient load contributed locally by each source evaluated, the amount of local load generated that is transported to the Bay, and the factors that affect the nutrient transport. Applying the SPARROW methodology to late 1990s information completes three time periods (late 1980s, early 1990s, and late 1990s) of viable data that resource managers can use to evaluate the water-quality conditions within the Bay watershed in order to refine restoration goals and nutrient-reduction strategies.

  12. Multi criteria evaluation for universal soil loss equation based on geographic information system

    NASA Astrophysics Data System (ADS)

    Purwaamijaya, I. M.

    2018-05-01

    The purpose of this research were to produce(l) a conceptual, functional model designed and implementation for universal soil loss equation (usle), (2) standard operational procedure for multi criteria evaluation of universal soil loss equation (usle) using geographic information system, (3) overlay land cover, slope, soil and rain fall layers to gain universal soil loss equation (usle) using multi criteria evaluation, (4) thematic map of universal soil loss equation (usle) in watershed, (5) attribute table of universal soil loss equation (usle) in watershed. Descriptive and formal correlation methods are used for this research. Cikapundung Watershed, Bandung, West Java, Indonesia was study location. This research was conducted on January 2016 to May 2016. A spatial analysis is used to superimposed land cover, slope, soil and rain layers become universal soil loss equation (usle). Multi criteria evaluation for universal soil loss equation (usle) using geographic information system could be used for conservation program.

  13. 7 CFR 624.1 - Purpose.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AGRICULTURE WATER RESOURCES EMERGENCY WATERSHED PROTECTION § 624.1 Purpose. The Natural Resources Conservation... Watershed Protection (EWP) Program. This part sets forth the requirements and procedures for Federal...

  14. 7 CFR 624.1 - Purpose.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AGRICULTURE WATER RESOURCES EMERGENCY WATERSHED PROTECTION § 624.1 Purpose. The Natural Resources Conservation... Watershed Protection (EWP) Program. This part sets forth the requirements and procedures for Federal...

  15. 7 CFR 624.1 - Purpose.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AGRICULTURE WATER RESOURCES EMERGENCY WATERSHED PROTECTION § 624.1 Purpose. The Natural Resources Conservation... Watershed Protection (EWP) Program. This part sets forth the requirements and procedures for Federal...

  16. 7 CFR 624.1 - Purpose.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AGRICULTURE WATER RESOURCES EMERGENCY WATERSHED PROTECTION § 624.1 Purpose. The Natural Resources Conservation... Watershed Protection (EWP) Program. This part sets forth the requirements and procedures for Federal...

  17. 7 CFR 624.1 - Purpose.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AGRICULTURE WATER RESOURCES EMERGENCY WATERSHED PROTECTION § 624.1 Purpose. The Natural Resources Conservation... Watershed Protection (EWP) Program. This part sets forth the requirements and procedures for Federal...

  18. The role of interior watershed processes in improving parameter estimation and performance of watershed models.

    PubMed

    Yen, Haw; Bailey, Ryan T; Arabi, Mazdak; Ahmadi, Mehdi; White, Michael J; Arnold, Jeffrey G

    2014-09-01

    Watershed models typically are evaluated solely through comparison of in-stream water and nutrient fluxes with measured data using established performance criteria, whereas processes and responses within the interior of the watershed that govern these global fluxes often are neglected. Due to the large number of parameters at the disposal of these models, circumstances may arise in which excellent global results are achieved using inaccurate magnitudes of these "intra-watershed" responses. When used for scenario analysis, a given model hence may inaccurately predict the global, in-stream effect of implementing land-use practices at the interior of the watershed. In this study, data regarding internal watershed behavior are used to constrain parameter estimation to maintain realistic intra-watershed responses while also matching available in-stream monitoring data. The methodology is demonstrated for the Eagle Creek Watershed in central Indiana. Streamflow and nitrate (NO) loading are used as global in-stream comparisons, with two process responses, the annual mass of denitrification and the ratio of NO losses from subsurface and surface flow, used to constrain parameter estimation. Results show that imposing these constraints not only yields realistic internal watershed behavior but also provides good in-stream comparisons. Results further demonstrate that in the absence of incorporating intra-watershed constraints, evaluation of nutrient abatement strategies could be misleading, even though typical performance criteria are satisfied. Incorporating intra-watershed responses yields a watershed model that more accurately represents the observed behavior of the system and hence a tool that can be used with confidence in scenario evaluation. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  19. Preliminary assessment of a water-quality monitoring program for total maximum daily loads in Johnson County, Kansas, January 2015 through June 2016

    USGS Publications Warehouse

    Rasmussen, Teresa J.; Paxson, Chelsea R.

    2017-08-25

    Municipalities in Johnson County in northeastern Kansas are required to implement stormwater management programs to reduce pollutant discharges, protect water quality, and comply with applicable water-quality regulations in accordance with National Pollutant Discharge Elimination System permits for stormwater discharge. To this end, municipalities collect grab samples at streams entering and leaving their jurisdiction to determine levels of excessive nutrients, sediment, and fecal bacteria to characterize pollutants and understand the factors affecting them.In 2014, the U.S. Geological Survey and the Johnson County Stormwater Management Program, with input from the Kansas Department of Health and Environment, initiated a 5-year monitoring program to satisfy minimum sampling requirements for each municipality as described by new stormwater permits issued to Johnson County municipalities. The purpose of this report is to provide a preliminary assessment of the monitoring program. The monitoring program is described, a preliminary assessment of the monitoring program design is provided using water-quality data collected during the first 2 years of the program, and the ability of the current monitoring network and sampling plan to provide data sufficient to quantify improvements in water quality resulting from implemented and planned best management practices is evaluated. The information in this initial report may be used to evaluate changes in data collection methods while data collection is still ongoing that may lead to improved data utility.Discrete water-quality samples were collected at 27 sites and analyzed for nutrients, Escherichia coli (E. coli) bacteria, total suspended solids, and suspended-sediment concentration. In addition, continuous water-quality data (water temperature, pH, dissolved oxygen, specific conductance, turbidity, and nitrate plus nitrite) were collected at one site to characterize variability and provide a basis for comparison to discrete data. Base flow samples indicated that point sources are likely affecting nutrient concentrations and E. coli bacteria densities at several sites. Concentrations of all analytes in storm runoff samples were characterized by substantial variability among sites and samples. About one-half of the sites, representing different watersheds, had storm runoff samples with nitrogen concentrations greater than 10 milligrams per liter. About one-third of the sites, representing different watersheds, had storm runoff samples with total phosphorus concentrations greater than 3 milligrams per liter. Six sites had samples with E. coli densities greater than 100,000 colonies per 100 milliliters of water. Total suspended solids concentrations of about 12,000 milligrams per liter or greater occurred in samples from three sites.Data collected for this monitoring program may be useful for some general assessment purposes but may also be limited in potential to fully inform stormwater management activities. Valuable attributes of the monitoring program design included incorporating many sites across the county for comparisons among watersheds and municipalities, using fixed-stage samplers to collect multiple samples during single events, collection of base flow samples in addition to storm samples to isolate possible point sources from stormwater sources, and use of continuous monitors to characterize variability. Limiting attributes of the monitoring program design included location of monitoring sites along municipal boundaries to satisfy permit requirements rather than using watershed-based criteria such as locations of tributaries, potential pollutant sources, and implemented management practices. Additional limiting attributes include having a large number of widespread sampling locations, which presented logistical challenges for predicting localized rainfall and collecting and analyzing samples during short timeframes associated with storms, and collecting storm samples at fixed-stage elevations only during the rising limb of storms, which does not characterize conditions over the storm hydrograph. The small number of samples collected per site resulted in a sample size too small to be representative of site conditions, including seasonal and hydrologic variability, and insufficient for meaningful statistical analysis or site-specific modeling.Several measures could be taken to improve data utility and include redesigning the monitoring network according to watershed characteristics, incorporating a nested design in which data are collected at different scales (watershed, subwatershed, and best management practices), increasing sampling frequency, and combining different methods to allow for flexibility to focus on areas and conditions of particular interest. A monitoring design that would facilitate most of these improvements would be to focus efforts on a limited number of watersheds for several years, then cycle to the next set of watersheds for several years, eventually returning to previously monitored watersheds to document changes.Redesign of the water-quality monitoring program requires considerable effort and commitment from municipalities of Johnson County. However, the long-term benefit likely is a monitoring program that results in improved stream conditions and more effective management practices and efficient expenditure of resources.

  20. Mapping soil textural fractions across a large watershed in north-east Florida.

    PubMed

    Lamsal, S; Mishra, U

    2010-08-01

    Assessment of regional scale soil spatial variation and mapping their distribution is constrained by sparse data which are collected using field surveys that are labor intensive and cost prohibitive. We explored geostatistical (ordinary kriging-OK), regression (Regression Tree-RT), and hybrid methods (RT plus residual Sequential Gaussian Simulation-SGS) to map soil textural fractions across the Santa Fe River Watershed (3585 km(2)) in north-east Florida. Soil samples collected from four depths (L1: 0-30 cm, L2: 30-60 cm, L3: 60-120 cm, and L4: 120-180 cm) at 141 locations were analyzed for soil textural fractions (sand, silt and clay contents), and combined with textural data (15 profiles) assembled under the Florida Soil Characterization program. Textural fractions in L1 and L2 were autocorrelated, and spatially mapped across the watershed. OK performance was poor, which may be attributed to the sparse sampling. RT model structure varied among textural fractions, and the model explained variations ranged from 25% for L1 silt to 61% for L2 clay content. Regression residuals were simulated using SGS, and the average of simulated residuals were used to approximate regression residual distribution map, which were added to regression trend maps. Independent validation of the prediction maps showed that regression models performed slightly better than OK, and regression combined with average of simulated regression residuals improved predictions beyond the regression model. Sand content >90% in both 0-30 and 30-60 cm covered 80.6% of the watershed area. Copyright 2010 Elsevier Ltd. All rights reserved.

  1. "First aid" for burned watersheds

    Treesearch

    J. S. Krammes; L. W. Hill

    1963-01-01

    Most of the vegetative cover on the San Dimas Experimental Forest was destroyed by a wildfire in 1960. Following the fire an emergency research program was initiated to test several "first -aid" treatments aimed at reducing flood and erosion damage from burned watersheds. This paper summarizes first - and second-year results of the research program.

  2. Prioritizing watersheds for conservation actions in the southeastern coastal plain ecoregion.

    PubMed

    Jang, Taeil; Vellidis, George; Kurkalova, Lyubov A; Boll, Jan; Hyman, Jeffrey B

    2015-03-01

    The aim of this study was to apply and evaluate a recently developed prioritization model which uses the synoptic approach to geographically prioritize watersheds in which Best Management Practices (BMPs) can be implemented to reduce water quality problems resulting from erosion and sedimentation. The model uses a benefit-cost framework to rank candidate watersheds within an ecoregion or river basin so that BMP implementation within the highest ranked watersheds will result in the most water quality improvement per conservation dollar invested. The model was developed to prioritize BMP implementation efforts in ecoregions containing watersheds associated with the USDA-NRCS Conservation Effects Assessment Project (CEAP). We applied the model to HUC-8 watersheds within the southeastern Coastal Plain ecoregion (USA) because not only is it an important agricultural area but also because it contains a well-studied medium-sized CEAP watershed which is thought to be representative of the ecoregion. The results showed that the three HUC-8 watersheds with the highest rankings (most water quality improvement expected per conservation dollar invested) were located in the southern Alabama, northern Florida, and eastern Virginia. Within these watersheds, measures of community attitudes toward conservation practices were highly ranked, and these indicators seemed to push the watersheds to the top of the rankings above other similar watersheds. The results, visualized as maps, can be used to screen and reduce the number of watersheds that need further assessment by managers and decision-makers within the study area. We anticipate that this model will allow agencies like USDA-NRCS to geographically prioritize BMP implementation efforts.

  3. A METHODOLOGY FOR ESTIMATING UNCERTAINTY OF A DISTRIBUTED HYDROLOGIC MODEL: APPLICATION TO POCONO CREEK WATERSHED

    EPA Science Inventory

    Utility of distributed hydrologic and water quality models for watershed management and sustainability studies should be accompanied by rigorous model uncertainty analysis. However, the use of complex watershed models primarily follows the traditional {calibrate/validate/predict}...

  4. INTEGRATING ECOLOGICAL RISK ASSESSMENT AND ECONOMIC ANALYSIS IN WATERSHEDS: A CONCEPTUAL APPROACH AND THREE CASE STUDIES

    EPA Science Inventory

    This document reports on a program of research to investigate the integration of ecological risk assessment (ERA) and economics, with an emphasis on the watershed as the scale for analysis. In 1993, the U.S. Environmental Protection Agency initiated watershed ERA (W-ERA) in five...

  5. SWEEP: Sciencing with Watersheds, Environmental Education and Partnerships. Instructor's Guide to Implementation and Summer Institute Participant Notebook.

    ERIC Educational Resources Information Center

    Bainer, Deb; Barron, Pat; Cantrell, Diane

    Sciencing with Watersheds, Environmental Education, and Partnerships (SWEEP) is a professional development program designed to help elementary teachers improve the way they teach science using partnerships among teachers and resource professionals. SWEEP follows a thematic approach using watersheds as the core concept of an integrated elementary…

  6. User friendly tools to target vulnerable areas at watershed scale: evaluation of the soil vulnerability and conductivity claypan indices

    USDA-ARS?s Scientific Manuscript database

    One finding of the Conservation Effects Assessment Program (CEAP) watershed studies was that Best Management practices (BMPs) were not always installed where most needed: in many watersheds, only a fraction of BMPs were implemented in the most vulnerable areas. While complex computer simulation mode...

  7. Building multi-country collaboration on watershed ...

    EPA Pesticide Factsheets

    Community-based watershed resilience programs that bridge public health and environmental outcomes often require cross-boundary, multi-country collaboration. The CRESSIDA project, led by the Regional Environmental Center for Central and Eastern Europe (REC) and supported by the US Environmental Protection Agency (EPA), forwards a resilience-focused approach for Western Balkan communities in the Drini and Drina river watersheds with the goal of safeguarding public health and the environment. The initial phases of this project give a contextualized example of how to advance resilience-driven environmental health goals in Western Balkan communities, and experience within the region has garnered several theme areas that require focus in order to promote a holistic watershed management program. In this paper, using CRESSIDA as a case study, we show (1) how watershed projects designed with resilience-driven environmental health goals can work in context, (2) provide data surrounding contextualized problems with resilience and suggest tools and strategies for the implementation of projects to address these problems, and (3) explore how cross-boundary foci are central to the success of these approaches in watersheds that comprise several countries. Published in the journal, Reviews on Environmental Health.

  8. Evaluating the capabilities of watershed-scale models in estimating sediment yield at field-scale.

    PubMed

    Sommerlot, Andrew R; Nejadhashemi, A Pouyan; Woznicki, Sean A; Giri, Subhasis; Prohaska, Michael D

    2013-09-30

    Many watershed model interfaces have been developed in recent years for predicting field-scale sediment loads. They share the goal of providing data for decisions aimed at improving watershed health and the effectiveness of water quality conservation efforts. The objectives of this study were to: 1) compare three watershed-scale models (Soil and Water Assessment Tool (SWAT), Field_SWAT, and the High Impact Targeting (HIT) model) against calibrated field-scale model (RUSLE2) in estimating sediment yield from 41 randomly selected agricultural fields within the River Raisin watershed; 2) evaluate the statistical significance among models; 3) assess the watershed models' capabilities in identifying areas of concern at the field level; 4) evaluate the reliability of the watershed-scale models for field-scale analysis. The SWAT model produced the most similar estimates to RUSLE2 by providing the closest median and the lowest absolute error in sediment yield predictions, while the HIT model estimates were the worst. Concerning statistically significant differences between models, SWAT was the only model found to be not significantly different from the calibrated RUSLE2 at α = 0.05. Meanwhile, all models were incapable of identifying priorities areas similar to the RUSLE2 model. Overall, SWAT provided the most correct estimates (51%) within the uncertainty bounds of RUSLE2 and is the most reliable among the studied models, while HIT is the least reliable. The results of this study suggest caution should be exercised when using watershed-scale models for field level decision-making, while field specific data is of paramount importance. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. 7 CFR 624.3 - Scope.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AGRICULTURE WATER RESOURCES EMERGENCY WATERSHED PROTECTION § 624.3 Scope. EWP Program technical and financial... of floodplain easements. Emergency watershed protection is authorized in the 50 States, the District...

  10. 7 CFR 624.3 - Scope.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AGRICULTURE WATER RESOURCES EMERGENCY WATERSHED PROTECTION § 624.3 Scope. EWP Program technical and financial... of floodplain easements. Emergency watershed protection is authorized in the 50 States, the District...

  11. 7 CFR 624.3 - Scope.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AGRICULTURE WATER RESOURCES EMERGENCY WATERSHED PROTECTION § 624.3 Scope. EWP Program technical and financial... of floodplain easements. Emergency watershed protection is authorized in the 50 States, the District...

  12. 7 CFR 624.3 - Scope.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AGRICULTURE WATER RESOURCES EMERGENCY WATERSHED PROTECTION § 624.3 Scope. EWP Program technical and financial... of floodplain easements. Emergency watershed protection is authorized in the 50 States, the District...

  13. 7 CFR 624.3 - Scope.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AGRICULTURE WATER RESOURCES EMERGENCY WATERSHED PROTECTION § 624.3 Scope. EWP Program technical and financial... of floodplain easements. Emergency watershed protection is authorized in the 50 States, the District...

  14. WATERSHED HEALTH ASSESSMENT TOOLS-INVESTIGATING FISHERIES (WHAT-IF): A MODELING TOOLKIT FOR WATERSHED AND FISHERIES MANAGEMENT

    EPA Science Inventory

    The Watershed Health Assessment Tools-Investigating Fisheries (WHAT-IF) is a decision-analysis modeling toolkit for personal computers that supports watershed and fisheries management. The WHAT-IF toolkit includes a relational database, help-system functions and documentation, a...

  15. Integrated Modeling System for Analysis of Watershed Water Balance: A Case Study in the Tims Branch Watershed, South Carolina

    NASA Astrophysics Data System (ADS)

    Setegn, S. G.; Mahmoudi, M.; Lawrence, A.; Duque, N.

    2015-12-01

    The Applied Research Center at Florida International University (ARC-FIU) is supporting the soil and groundwater remediation efforts of the U.S. Department of Energy (DOE) Savannah River Site (SRS) by developing a surface water model to simulate the hydrology and the fate and transport of contaminants and sediment in the Tims Branch watershed. Hydrological models are useful tool in water and land resource development and decision-making for watershed management. Moreover, simulation of hydrological processes improves understanding of the environmental dynamics and helps to manage and protect water resources and the environment. MIKE SHE, an advanced integrated modeling system is used to simulate the hydrological processes of the Tim Branch watershed with the objective of developing an integrated modeling system to improve understanding of the physical, chemical and biological processes within the Tims Branch watershed. MIKE SHE simulates water flow in the entire land based phase of the hydrological cycle from rainfall to river flow, via various flow processes such as, overland flow, infiltration, evapotranspiration, and groundwater flow. In this study a MIKE SHE model is developed and applied to the Tim branch watershed to study the watershed response to storm events and understand the water balance of the watershed under different climatic and catchment characteristics. The preliminary result of the integrated model indicated that variation in the depth of overland flow highly depend on the amount and distribution of rainfall in the watershed. The ultimate goal of this project is to couple the MIKE SHE and MIKE 11 models to integrate the hydrological component in the land phase of hydrological cycle and stream flow process. The coupled MIKE SHE/MIKE 11 model will further be integrated with an Ecolab module to represent a range of water quality, contaminant transport, and ecological processes with respect to the stream, surface water and groundwater in the Tims Branch watershed at Savannah River Site.

  16. Watershed Modeling Recommendation Report for Lake Champlain TMDL

    EPA Pesticide Factsheets

    This report describes the recommended modeling approach for watershed modeling component of the Lake Champlain TMDL project. The report was prepared by Tetra Tech, with input from the Lake Champlain watershed analysis workgroup. (TetraTech, 2012a)

  17. Incorporating groundwater flow into the WEPP model

    Treesearch

    William Elliot; Erin Brooks; Tim Link; Sue Miller

    2010-01-01

    The water erosion prediction project (WEPP) model is a physically-based hydrology and erosion model. In recent years, the hydrology prediction within the model has been improved for forest watershed modeling by incorporating shallow lateral flow into watershed runoff prediction. This has greatly improved WEPP's hydrologic performance on small watersheds with...

  18. Hydrologic response of the Crow Wing Watershed, Minnesota, to mid-Holocene climate change

    USGS Publications Warehouse

    Person, M.; Roy, P.; Wright, H.; Gutowski, W.; Ito, E.; Winter, T.; Rosenberry, D.; Cohen, D.

    2007-01-01

    In this study, we have integrated a suite of Holocene paleoclimatic proxies with mathematical modeling in an attempt to obtain a comprehensive picture of how watersheds respond to past climate change. A three-dimensional surface-water-groundwater model was developed to assess the effects of mid-Holocene climate change on water resources within the Crow Wing Watershed, Upper Mississippi Basin in north central Minnesota. The model was first calibrated to a 50 yr historical record of average annual surface-water discharge, monthly groundwater levels, and lake-level fluctuations. The model was able to reproduce reasonably well long-term historical records (1949-1999) of water-table and lake-level fluctuations across the watershed as well as stream discharge near the watershed outlet. The calibrated model was then used to reproduce paleogroundwater and lake levels using climate reconstructions based on pollen-transfer functions from Williams Lake just outside the watershed. Computed declines in mid-Holocene lake levels for two lakes at opposite ends of the watershed were between 6 and 18 m. Simulated streamflow near the outlet of the watershed decreased to 70% of modern average annual discharge after ???200 yr. The area covered by wetlands for the entire watershed was reduced by ???16%. The mid-Holocene hydrologic changes indicated by these model results and corroborated by several lake-core records across the Crow Wing Watershed may serve as a useful proxy of the hydrologic response to future warm, dry climatic forecasts (ca. 2050) made by some atmospheric general-circulation models for the glaciated Midwestern United States. ?? 2007 Geological Society of America.

  19. Looking for a relevant potential evapotranspiration model at the watershed scale

    NASA Astrophysics Data System (ADS)

    Oudin, L.; Hervieu, F.; Michel, C.; Perrin, C.; Anctil, F.; Andréassian, V.

    2003-04-01

    In this paper, we try to identify the most relevant approach to calculate Potential Evapotranspiration (PET) for use in a daily watershed model, to try to bring an answer to the following question: "how can we use commonly available atmospheric parameters to represent the evaporative demand at the catchment scale?". Hydrologists generally see the Penman model as the ideal model regarding to its good adequacy with lysimeter measurements and its physically-based formulation. However, in real-world engineering situations, where meteorological stations are scarce, hydrologists are often constrained to use other PET formulae with less data requirements or/and long-term average of PET values (the rationale being that PET is an inherently conservative variable). We chose to test 28 commonly used PET models coupled with 4 different daily watershed models. For each test, we compare both PET input options: actual data and long-term average data. The comparison is made in terms of streamflow simulation efficiency, over a large sample of 308 watersheds. The watersheds are located in France, Australia and the United States of America and represent varied climates. Strikingly, we find no systematic improvements of the watershed model efficiencies when using actual PET series instead of long-term averages. This suggests either that watershed models may not conveniently use the climatic information contained in PET values or that formulae are only awkward indicators of the real PET which watershed models need.

  20. Hydrologic analysis for selection and placement of conservation practices at the watershed scale

    NASA Astrophysics Data System (ADS)

    Wilson, C.; Brooks, E. S.; Boll, J.

    2012-12-01

    When a water body is exceeding water quality standards and a Total Maximum Daily Load has been established, conservation practices in the watershed are able to reduce point and non-point source pollution. Hydrological analysis is needed to place conservation practices in the most hydrologically sensitive areas. The selection and placement of conservation practices, however, is challenging in ungauged watersheds with little or no data for the hydrological analysis. The objective of this research is to perform a hydrological analysis for mitigation of erosion and total phosphorus in a mixed land use watershed, and to select and place the conservation practices in the most sensitive areas. The study area is the Hangman Creek watershed in Idaho and Washington State, upstream of Long Lake (WA) reservoir, east of Spokane, WA. While the pollutant of concern is total phosphorus (TP), reductions in TP were translated to total suspended solids or reductions in nonpoint source erosion and sediment delivery to streams. Hydrological characterization was done with a simple web-based tool, which runs the Water Erosion Prediction Project (WEPP) model for representative land types in the watersheds, where a land type is defined as a unique combination of soil type, slope configuration, land use and management, and climate. The web-based tool used site-specific spatial and temporal data on land use, soil physical parameters, slope, and climate derived from readily available data sources and provided information on potential pollutant pathways (i.e. erosion, runoff, lateral flow, and percolation). Multiple land types representative in the watershed were ordered from most effective to least effective, and displayed spatially using GIS. The methodology for the Hangman Creek watershed was validated in the nearby Paradise Creek watershed that has long-term stream discharge and monitoring as well as land use data. Output from the web-based tool shows the potential reductions for different tillage practices, buffer strips, streamside management, and conversion to the conservation reserve program in the watershed. The output also includes the relationship between land area where conservation practices are placed and the potential reduction in pollution, showing the diminished returns on investment as less sensitive areas are being treated. This application of a simple web-based tool and the use of a physically-based erosion model (i.e. WEPP) illustrates that quantitative, spatial and temporal analysis of changes in pollutant loading and site-specific recommendations of conservation practices can be made in ungauged watersheds.

  1. Metals fate and transport modelling in streams and watersheds: state of the science and USEPA workshop review

    USGS Publications Warehouse

    Caruso, B.S.; Cox, T.J.; Runkel, Robert L.; Velleux, M.L.; Bencala, Kenneth E.; Nordstrom, D. Kirk; Julien, P.Y.; Butler, B.A.; Alpers, Charles N.; Marion, A.; Smith, Kathleen S.

    2008-01-01

    Metals pollution in surface waters from point and non-point sources (NPS) is a widespread problem in the United States and worldwide (Lofts et al., 2007; USEPA, 2007). In the western United States, metals associated with acid mine drainage (AMD) from hardrock mines in mountainous areas impact aquatic ecosystems and human health (USEPA, 1997a; Caruso and Ward, 1998; Church et al., 2007). Metals fate and transport modelling in streams and watersheds is sometimes needed for assessment and restoration of surface waters, including mining-impacted streams (Runkel and Kimball, 2002; Caruso, 2003; Velleux et al., 2006). The Water Quality Analysis Simulation Program (WASP; Wool et al., 2001), developed by the US Environmental Protection Agency (USEPA), is an example of a model used for such analyses. Other approaches exist and appropriate model selection depends on site characteristics, data availability and modelling objectives. However, there are a wide range of assumptions, input parameters, data requirements and gaps, and calibration and validation issues that must be addressed by model developers, users and decision makers. Despite substantial work on model development, their successful application has been more limited because they are not often used by decision makers for stream and watershed assessment and restoration. Bringing together scientists, model developers, users and decision makers should stimulate the development of appropriate models and improve the applicability of their results. To address these issues, the USEPA Office of Research and Development and Region 8 (Colorado, Montana, North Dakota, South Dakota, Utah and Wyoming) hosted a workshop in Denver, Colorado on February 13–14, 2007. The workshop brought together approximately 35 experts from government, academia and consulting to address the state of the art for modelling metals fate and transport, knowledge gaps and future directions in metals modelling. It focused on modelling metals in high-altitude streams, rivers and watersheds impacted by mine waste that are common in the western United States and require remediation. For example, there are over 100 000 abandoned or inactive mining sites across the United States, encompassing over 500 000 acres of land that may eventually require characterization and remediation, including the possible application of stream or watershed metals fate and transport modelling (USEPA, 1997a). This article provides a general overview of the state of the science on modelling metals fate and transport in streams and watersheds, including a review of presentations and discussions at the USEPA workshop. It builds on previous summaries of metals fate and transport models in aquatic systems, including USEPA (1997b, 2007), Allen (2002), Paquin et al. (2003), Nordstrom (2004) and Maest et al. (2005).

  2. Spatial modeling on the upperstream of the Citarum watershed: An application of geoinformatics

    NASA Astrophysics Data System (ADS)

    Ningrum, Windy Setia; Widyaningsih, Yekti; Indra, Tito Latif

    2017-03-01

    The Citarum watershed is the longest and the largest watershed in West Java, Indonesia, located at 106°51'36''-107°51' E and 7°19'-6°24'S across 10 districts, and serves as the water supply for over 15 million people. In this area, the water criticality index is concerned to reach the balance between water supply and water demand, so that in the dry season, the watershed is still able to meet the water needs of the society along the Citarum river. The objective of this research is to evaluate the water criticality index of Citarum watershed area using spatial model to overcome the spatial dependencies in the data. The result of Lagrange multiplier diagnostics for spatial dependence results are LM-err = 34.6 (p-value = 4.1e-09) and LM-lag = 8.05 (p-value = 0.005), then modeling using Spatial Lag Model (SLM) and Spatial Error Model (SEM) were conducted. The likelihood ratio test show that both of SLM dan SEM model is better than OLS model in modeling water criticality index in Citarum watershed. The AIC value of SLM and SEM model are 78.9 and 51.4, then the SEM model is better than SLM model in predicting water criticality index in Citarum watershed.

  3. The role of interior watershed processes in improving parameter estimation and performance of watershed models

    USDA-ARS?s Scientific Manuscript database

    Watershed models typically are evaluated solely through comparison of in-stream water and nutrient fluxes with measured data using established performance criteria, whereas processes and responses within the interior of the watershed that govern these global fluxes often are neglected. Due to the l...

  4. Characterizing mercury concentrations and flux dynamics in a coastal plain watershed using multiple models

    EPA Science Inventory

    The primary goal was to asess Hg cycling within a small coastal plain watershed (McTier Creek) using multiple watershed models with distinct mathematical frameworks that emphasize different system dynamics; a secondary goal was to identify current needs in watershed-scale Hg mode...

  5. Watershed and Economic Data InterOperability (WEDO): Facilitating Discovery, Evaluation and Integration through the Sharing of Watershed Modeling Data

    EPA Science Inventory

    Watershed and Economic Data InterOperability (WEDO) is a system of information technologies designed to publish watershed modeling studies for reuse. WEDO facilitates three aspects of interoperability: discovery, evaluation and integration of data. This increased level of interop...

  6. Analyzing the Watershed Dynamics project as an example of successful science and education partnerships

    NASA Astrophysics Data System (ADS)

    Buzby, C. K.; Jona, K.

    2009-12-01

    The Watershed Dynamics project is a partnership between Northwestern University, the Consortium of Universities for the Advancement of Hydrologic Science (CUAHSI), and the GLOBE Program (Global Learning and Observations to Benefit the Environment). The goal of the project is to develop inquiry-based educational materials that use authentic scientific data and analysis techniques to teach students about the watershed. The relationship between Northwestern, CUAHSI, and GLOBE allows each partner to contribute to the development of the project in the area of their expertise. Science researchers from CUAHSI share science content knowledge and data access through the development of their Hydrologic Information System (HIS). Curriculum developers at Northwestern write inquiry-based curriculum using GIS technology to access and analyze live data. The GLOBE Program is a worldwide hands-on, primary and secondary school-based science education program that provides teacher training opportunities to a network of teachers around the world. This partnership allows each partner to bring their area of expertise to the project and make the best use of one another's resources. The Watershed Dynamics project can serve as a model for future partnerships between the science and education communities. The Office of Science, Technology, Engineering, and Math Education Partnerships (OSEP) at Northwestern is a service organization that supports Northwestern researchers in developing proposals and implementing research projects that incorporate K-12 educational components, particularly in the fields of science, technology, engineering and mathematics (STEM). OSEP assists faculty with the development of sound plans for education and outreach that reflect current research on learning and educational reform and provides expertise in STEM education materials development, learning technologies, and professional development for K-12 teachers and facilitators in informal education institutions. Resources such as OSEP can pair scientists with educational organizations so that science outreach programs can be sustainable.

  7. Data to support statistical modeling of instream nutrient load based on watershed attributes, southeastern United States, 2002

    USGS Publications Warehouse

    Hoos, Anne B.; Terziotti, Silvia; McMahon, Gerard; Savvas, Katerina; Tighe, Kirsten C.; Alkons-Wolinsky, Ruth

    2008-01-01

    This report presents and describes the digital datasets that characterize nutrient source inputs, environmental characteristics, and instream nutrient loads for the purpose of calibrating and applying a nutrient water-quality model for the southeastern United States for 2002. The model area includes all of the river basins draining to the south Atlantic and the eastern Gulf of Mexico, as well as the Tennessee River basin (referred to collectively as the SAGT area). The water-quality model SPARROW (SPAtially-Referenced Regression On Watershed attributes), developed by the U.S. Geological Survey, uses a regression equation to describe the relation between watershed attributes (predictors) and measured instream loads (response). Watershed attributes that are considered to describe nutrient input conditions and are tested in the SPARROW model for the SAGT area as source variables include atmospheric deposition, fertilizer application to farmland, manure from livestock production, permitted wastewater discharge, and land cover. Watershed and channel attributes that are considered to affect rates of nutrient transport from land to water and are tested in the SAGT SPARROW model as nutrient-transport variables include characteristics of soil, landform, climate, reach time of travel, and reservoir hydraulic loading. Datasets with estimates of each of these attributes for each individual reach or catchment in the reach-catchment network are presented in this report, along with descriptions of methods used to produce them. Measurements of nutrient water quality at stream monitoring sites from a combination of monitoring programs were used to develop observations of the response variable - mean annual nitrogen or phosphorus load - in the SPARROW regression equation. Instream load of nitrogen and phosphorus was estimated using bias-corrected log-linear regression models using the program Fluxmaster, which provides temporally detrended estimates of long-term mean load well-suited for spatial comparisons. The detrended, or normalized, estimates of load are useful for regional-scale assessments but should be used with caution for local-scale interpretations, for which use of loads estimated for actual time periods and employing more detailed regression analysis is suggested. The mean value of the nitrogen yield estimates, normalized to 2002, for 637 stations in the SAGT area is 4.7 kilograms per hectare; the mean value of nitrogen flow-weighted mean concentration is 1.2 milligrams per liter. The mean value of the phosphorus yield estimates, normalized to 2002, for the 747 stations in the SAGT area is 0.66 kilogram per hectare; the mean value of phosphorus flow-weighted mean concentration is 0.17 milligram per liter. Nutrient conditions measured in streams affected by substantial influx or outflux of water and nutrient mass across surface-water basin divides do not reflect nutrient source and transport conditions in the topographic watershed; therefore, inclusion of such streams in the SPARROW modeling approach is considered inappropriate. River basins identified with this concern include south Florida (where surface-water flow paths have been extensively altered) and the Oklawaha, Crystal, Lower Sante Fe, Lower Suwanee, St. Marks, and Chipola River basins in central and northern Florida (where flow exchange with the underlying regional aquifer may represent substantial nitrogen influx to and outflux from the surface-water basins).

  8. [New paradigm for soil and water conservation: a method based on watershed process modeling and scenario analysis].

    PubMed

    Zhu, A-Xing; Chen, La-Jiao; Qin, Cheng-Zhi; Wang, Ping; Liu, Jun-Zhi; Li, Run-Kui; Cai, Qiang-Guo

    2012-07-01

    With the increase of severe soil erosion problem, soil and water conservation has become an urgent concern for sustainable development. Small watershed experimental observation is the traditional paradigm for soil and water control. However, the establishment of experimental watershed usually takes long time, and has the limitations of poor repeatability and high cost. Moreover, the popularization of the results from the experimental watershed is limited for other areas due to the differences in watershed conditions. Therefore, it is not sufficient to completely rely on this old paradigm for soil and water loss control. Recently, scenario analysis based on watershed modeling has been introduced into watershed management, which can provide information about the effectiveness of different management practices based on the quantitative simulation of watershed processes. Because of its merits such as low cost, short period, and high repeatability, scenario analysis shows great potential in aiding the development of watershed management strategy. This paper elaborated a new paradigm using watershed modeling and scenario analysis for soil and water conservation, illustrated this new paradigm through two cases for practical watershed management, and explored the future development of this new soil and water conservation paradigm.

  9. Subdivision of Texas watersheds for hydrologic modeling.

    DOT National Transportation Integrated Search

    2009-06-01

    The purpose of this report is to present a set of findings and examples for subdivision of watersheds for hydrologic modeling. Three approaches were used to examine the impact of watershed subdivision on modeled hydrologic response: (1) An equal-area...

  10. Methodology and application of combined watershed and ground-water models in Kansas

    USGS Publications Warehouse

    Sophocleous, M.; Perkins, S.P.

    2000-01-01

    Increased irrigation in Kansas and other regions during the last several decades has caused serious water depletion, making the development of comprehensive strategies and tools to resolve such problems increasingly important. This paper makes the case for an intermediate complexity, quasi-distributed, comprehensive, large-watershed model, which falls between the fully distributed, physically based hydrological modeling system of the type of the SHE model and the lumped, conceptual rainfall-runoff modeling system of the type of the Stanford watershed model. This is achieved by integrating the quasi-distributed watershed model SWAT with the fully-distributed ground-water model MODFLOW. The advantage of this approach is the appreciably smaller input data requirements and the use of readily available data (compared to the fully distributed, physically based models), the statistical handling of watershed heterogeneities by employing the hydrologic-response-unit concept, and the significantly increased flexibility in handling stream-aquifer interactions, distributed well withdrawals, and multiple land uses. The mechanics of integrating the component watershed and ground-water models are outlined, and three real-world management applications of the integrated model from Kansas are briefly presented. Three different aspects of the integrated model are emphasized: (1) management applications of a Decision Support System for the integrated model (Rattlesnake Creek subbasin); (2) alternative conceptual models of spatial heterogeneity related to the presence or absence of an underlying aquifer with shallow or deep water table (Lower Republican River basin); and (3) the general nature of the integrated model linkage by employing a watershed simulator other than SWAT (Wet Walnut Creek basin). These applications demonstrate the practicality and versatility of this relatively simple and conceptually clear approach, making public acceptance of the integrated watershed modeling system much easier. This approach also enhances model calibration and thus the reliability of model results. (C) 2000 Elsevier Science B.V.Increased irrigation in Kansas and other regions during the last several decades has caused serious water depletion, making the development of comprehensive strategies and tools to resolve such problems increasingly important. This paper makes the case for an intermediate complexity, quasi-distributed, comprehensive, large-watershed model, which falls between the fully distributed, physically based hydrological modeling system of the type of the SHE model and the lumped, conceptual rainfall-runoff modeling system of the type of the Stanford watershed model. This is achieved by integrating the quasi-distributed watershed model SWAT with the fully-distributed ground-water model MODFLOW. The advantage of this approach is the appreciably smaller input data requirements and the use of readily available data (compared to the fully distributed, physically based models), the statistical handling of watershed heterogeneities by employing the hydrologic-response-unit concept, and the significantly increased flexibility in handling stream-aquifer interactions, distributed well withdrawals, and multiple land uses. The mechanics of integrating the component watershed and ground-water models are outlined, and three real-world management applications of the integrated model from Kansas are briefly presented. Three different aspects of the integrated model are emphasized: (1) management applications of a Decision Support System for the integrated model (Rattlesnake Creek subbasin); (2) alternative conceptual models of spatial heterogeneity related to the presence or absence of an underlying aquifer with shallow or deep water table (Lower Republican River basin); and (3) the general nature of the integrated model linkage by employing a watershed simulator other than SWAT (Wet Walnut Creek basin). These applications demonstrate the practicality and ve

  11. A Coupled Approach with Stochastic Rainfall-Runoff Simulation and Hydraulic Modeling for Extreme Flood Estimation on Large Watersheds

    NASA Astrophysics Data System (ADS)

    Paquet, E.

    2015-12-01

    The SCHADEX method aims at estimating the distribution of peak and daily discharges up to extreme quantiles. It couples a precipitation probabilistic model based on weather patterns, with a stochastic rainfall-runoff simulation process using a conceptual lumped model. It allows exploring an exhaustive set of hydrological conditions and watershed responses to intense rainfall events. Since 2006, it has been widely applied in France to about one hundred watersheds for dam spillway design, and also aboard (Norway, Canada and central Europe among others). However, its application to large watersheds (above 10 000 km²) faces some significant issues: spatial heterogeneity of rainfall and hydrological processes and flood peak damping due to hydraulic effects (flood plains, natural or man-made embankment) being the more important. This led to the development of an extreme flood simulation framework for large and heterogeneous watersheds, based on the SCHADEX method. Its main features are: Division of the large (or main) watershed into several smaller sub-watersheds, where the spatial homogeneity of the hydro-meteorological processes can reasonably be assumed, and where the hydraulic effects can be neglected. Identification of pilot watersheds where discharge data are available, thus where rainfall-runoff models can be calibrated. They will be parameters donors to non-gauged watersheds. Spatially coherent stochastic simulations for all the sub-watersheds at the daily time step. Identification of a selection of simulated events for a given return period (according to the distribution of runoff volumes at the scale of the main watershed). Generation of the complete hourly hydrographs at each of the sub-watersheds outlets. Routing to the main outlet with hydraulic 1D or 2D models. The presentation will be illustrated with the case-study of the Isère watershed (9981 km), a French snow-driven watershed. The main novelties of this method will be underlined, as well as its perspectives and future improvements.

  12. Loch Vale Watershed Long-Term Ecological Research and Monitoring Program: Quality Assurance Report, 2003-09

    USGS Publications Warehouse

    Richer, Eric E.; Baron, Jill S.

    2011-01-01

    The Loch Vale watershed project is a long-term research and monitoring program located in Rocky Mountain National Park that addresses watershed-scale ecosystem processes, particularly as they respond to atmospheric deposition and climate variability. Measurements of precipitation depth, precipitation chemistry, discharge, and surface-water quality are made within the watershed and elsewhere in Rocky Mountain National Park. As data collected for the program are used by resource managers, scientists, policy makers, and students, it is important that all data collected in Loch Vale watershed meet high standards of quality. In this report, data quality was evaluated for precipitation, discharge, and surface-water chemistry measurements collected during 2003-09. Equipment upgrades were made at the Loch Vale National Atmospheric Deposition Program monitoring site to improve precipitation measurements and evaluate variability in precipitation depth and chemistry. Additional solar panels and batteries have been installed to improve the power supply, and data completeness, at the NADP site. As a result of equipment malfunction, discharge data for the Loch Outlet were estimated from October 18, 2005, to August 17, 2006. Quality-assurance results indicate that more than 98 percent of all surface-water chemistry measurements were accurate and precise. Records that did not meet quality criteria were removed from the database. Measurements of precipitation depth, precipitation chemistry, discharge, and surface-water quality were all sufficiently complete and consistent to support project data needs.

  13. A Reliability Estimation in Modeling Watershed Runoff With Uncertainties

    NASA Astrophysics Data System (ADS)

    Melching, Charles S.; Yen, Ben Chie; Wenzel, Harry G., Jr.

    1990-10-01

    The reliability of simulation results produced by watershed runoff models is a function of uncertainties in nature, data, model parameters, and model structure. A framework is presented here for using a reliability analysis method (such as first-order second-moment techniques or Monte Carlo simulation) to evaluate the combined effect of the uncertainties on the reliability of output hydrographs from hydrologic models. For a given event the prediction reliability can be expressed in terms of the probability distribution of the estimated hydrologic variable. The peak discharge probability for a watershed in Illinois using the HEC-1 watershed model is given as an example. The study of the reliability of predictions from watershed models provides useful information on the stochastic nature of output from deterministic models subject to uncertainties and identifies the relative contribution of the various uncertainties to unreliability of model predictions.

  14. Alameda Creeks Healthy Watersheds Project

    EPA Pesticide Factsheets

    Information about the SFBWQP Alameda Creeks Healthy Watersheds Project, part of an EPA competitive grant program to improve SF Bay water quality focused on restoring impaired waters and enhancing aquatic resour

  15. Incorporating uncertainty into the ranking of SPARROW model nutrient yields from Mississippi/Atchafalaya River basin watersheds

    USGS Publications Warehouse

    Robertson, Dale M.; Schwarz, Gregory E.; Saad, David A.; Alexander, Richard B.

    2009-01-01

    Excessive loads of nutrients transported by tributary rivers have been linked to hypoxia in the Gulf of Mexico. Management efforts to reduce the hypoxic zone in the Gulf of Mexico and improve the water quality of rivers and streams could benefit from targeting nutrient reductions toward watersheds with the highest nutrient yields delivered to sensitive downstream waters. One challenge is that most conventional watershed modeling approaches (e.g., mechanistic models) used in these management decisions do not consider uncertainties in the predictions of nutrient yields and their downstream delivery. The increasing use of parameter estimation procedures to statistically estimate model coefficients, however, allows uncertainties in these predictions to be reliably estimated. Here, we use a robust bootstrapping procedure applied to the results of a previous application of the hybrid statistical/mechanistic watershed model SPARROW (Spatially Referenced Regression On Watershed attributes) to develop a statistically reliable method for identifying “high priority” areas for management, based on a probabilistic ranking of delivered nutrient yields from watersheds throughout a basin. The method is designed to be used by managers to prioritize watersheds where additional stream monitoring and evaluations of nutrient-reduction strategies could be undertaken. Our ranking procedure incorporates information on the confidence intervals of model predictions and the corresponding watershed rankings of the delivered nutrient yields. From this quantified uncertainty, we estimate the probability that individual watersheds are among a collection of watersheds that have the highest delivered nutrient yields. We illustrate the application of the procedure to 818 eight-digit Hydrologic Unit Code watersheds in the Mississippi/Atchafalaya River basin by identifying 150 watersheds having the highest delivered nutrient yields to the Gulf of Mexico. Highest delivered yields were from watersheds in the Central Mississippi, Ohio, and Lower Mississippi River basins. With 90% confidence, only a few watersheds can be reliably placed into the highest 150 category; however, many more watersheds can be removed from consideration as not belonging to the highest 150 category. Results from this ranking procedure provide robust information on watershed nutrient yields that can benefit management efforts to reduce nutrient loadings to downstream coastal waters, such as the Gulf of Mexico, or to local receiving streams and reservoirs.

  16. Daily Streamflow Predictions in an Ungauged Watershed in Northern California Using the Precipitation-Runoff Modeling System (PRMS): Calibration Challenges when nearby Gauged Watersheds are Hydrologically Dissimilar

    NASA Astrophysics Data System (ADS)

    Dhakal, A. S.; Adera, S.

    2017-12-01

    Accurate daily streamflow prediction in ungauged watersheds with sparse information is challenging. The ability of a hydrologic model calibrated using nearby gauged watersheds to predict streamflow accurately depends on hydrologic similarities between the gauged and ungauged watersheds. This study examines daily streamflow predictions using the Precipitation-Runoff Modeling System (PRMS) for the largely ungauged San Antonio Creek watershed, a 96 km2 sub-watershed of the Alameda Creek watershed in Northern California. The process-based PRMS model is being used to improve the accuracy of recent San Antonio Creek streamflow predictions generated by two empirical methods. Although San Antonio Creek watershed is largely ungauged, daily streamflow data exists for hydrologic years (HY) 1913 - 1930. PRMS was calibrated for HY 1913 - 1930 using streamflow data, modern-day land use and PRISM precipitation distribution, and gauged precipitation and temperature data from a nearby watershed. The PRMS model was then used to generate daily streamflows for HY 1996-2013, during which the watershed was ungauged, and hydrologic responses were compared to two nearby gauged sub-watersheds of Alameda Creek. Finally, the PRMS-predicted daily flows between HY 1996-2013 were compared to the two empirically-predicted streamflow time series: (1) the reservoir mass balance method and (2) correlation of historical streamflows from 80 - 100 years ago between San Antonio Creek and a nearby sub-watershed located in Alameda Creek. While the mass balance approach using reservoir storage and transfers is helpful for estimating inflows to the reservoir, large discrepancies in daily streamflow estimation can arise. Similarly, correlation-based predicted daily flows which rely on a relationship from flows collected 80-100 years ago may not represent current watershed hydrologic conditions. This study aims to develop a method of streamflow prediction in the San Antonio Creek watershed by examining PRMS's model outputs as well as empirically generated flow data for their use in water resources management decisions. PRMS is also being used to better understand the streamflow patterns in the San Antonio Creek watershed for a variety of antecedent soil moisture conditions as the creek is generally dry between late Spring and early Fall.

  17. Watershed Conservation, Groundwater Management, and Adaptation to Climate Change

    NASA Astrophysics Data System (ADS)

    Roumasset, J.; Burnett, K.; Wada, C.

    2009-12-01

    Sustainability science is transdisciplinary, organizing research to deliver meaningful and practical contributions to critical issues of resource management. As yet, however, sustainability science has not been integrated with the policy sciences. We provide a step towards integration by providing an integrated model of optimal groundwater management and investment in watershed conservation. The joint optimization problem is solved under alternative forecasts of the changing rainfall distribution for the Koolau Watershed in Oahu, Hawaii. Optimal groundwater management is solved using a simplified one-dimensional model of the groundwater aquifer for analytical tractability. For a constant aquifer recharge, the model solves for the optimal trajectories of water extraction up to the desalination steady state and an incentive compatible pricing scheme. The Koolau Watershed is currently being degraded, however, by invasive plants such as Miconia calvescens and feral animals, especially wild pigs. Runoff and erosion have increased and groundwater recharge is at risk. The Koolau Partnership, a coalition of private owners, the State Department of Land and Natural Resources have proposed a $5 million (present value) conservation plan that promises to halt further losses of recharge. We compare this to the enhanced present value of the aquifer, showing the benefits are an order of magnitude greater than the costs. If conservation is done in the absence of efficient groundwater management, however, more than 40% of the potential benefits would be wasted by under-pricing and overconsumption. We require an estimate of the rainfall-generating distribution and how that distribution is changing over time. We obtain these from statistical downsizing of IPCC climate models. Despite the finding that global warming will increase precipitation for most of the world, the opposite is forecast for Hawaii. A University of Hawaii study finds that the most likely precipitation scenario is a 5-10% reduction in wet season mean precipitation and a 5% increase during the dry season by the end of the 21st century. These trends will be used to condition the time series analysis through Bayesian updating. The resulting distributions, conditioned for seasonality and long-run climate change, will be used to recursively simulate daily rainfalls, thereby allowing for serial correlation and forming a basis for the watershed model to recursively determine components of the water balance equation. The methodology will allow us to generate different sequences of rainfall from the estimated distribution and the corresponding recharge functions. These in turn are used as the basis of optimizing groundwater management under both the watershed conservation program and no conservation. We calculate how much adaptation via joint optimization of watershed conservation and groundwater management decreases the damages from declining precipitation. Inasmuch as groundwater scarcity increases with the forecasted climate change, even under optimal groundwater management, the value of watershed conservation also increases.

  18. Simulation of Water Quality in the Tull Creek and West Neck Creek Watersheds, Currituck Sound Basin, North Carolina and Virginia

    USGS Publications Warehouse

    Garcia, Ana Maria

    2009-01-01

    A study of the Currituck Sound was initiated in 2005 to evaluate the water chemistry of the Sound and assess the effectiveness of management strategies. As part of this study, the Soil and Water Assessment Tool (SWAT) model was used to simulate current sediment and nutrient loadings for two distinct watersheds in the Currituck Sound basin and to determine the consequences of different water-quality management scenarios. The watersheds studied were (1) Tull Creek watershed, which has extensive row-crop cultivation and artificial drainage, and (2) West Neck Creek watershed, which drains urban areas in and around Virginia Beach, Virginia. The model simulated monthly streamflows with Nash-Sutcliffe model efficiency coefficients of 0.83 and 0.76 for Tull Creek and West Neck Creek, respectively. The daily sediment concentration coefficient of determination was 0.19 for Tull Creek and 0.36 for West Neck Creek. The coefficient of determination for total nitrogen was 0.26 for both watersheds and for dissolved phosphorus was 0.4 for Tull Creek and 0.03 for West Neck Creek. The model was used to estimate current (2006-2007) sediment and nutrient yields for the two watersheds. Total suspended-solids yield was 56 percent lower in the urban watershed than in the agricultural watershed. Total nitrogen export was 45 percent lower, and total phosphorus was 43 percent lower in the urban watershed than in the agricultural watershed. A management scenario with filter strips bordering the main channels was simulated for Tull Creek. The Soil and Water Assessment Tool model estimated a total suspended-solids yield reduction of 54 percent and total nitrogen and total phosphorus reductions of 21 percent and 29 percent, respectively, for the Tull Creek watershed.

  19. Precipitation and Runoff Simulations of the Carson Range and Pine Nut Mountains, and Updated Estimates of Ground-Water Inflow and the Ground-Water Budgets for Basin-Fill Aquifers of Carson Valley, Douglas County, Nevada, and Alpine County, California

    USGS Publications Warehouse

    Jeton, Anne E.; Maurer, Douglas K.

    2007-01-01

    Recent estimates of ground-water inflow to the basin-fill aquifers of Carson Valley, Nevada, and California, from the adjacent Carson Range and Pine Nut Mountains ranged from 22,000 to 40,000 acre-feet per year using water-yield and chloride-balance methods. In this study, watershed models were developed for watersheds with perennial streams and for watersheds with ephemeral streams in the Carson Range and Pine Nut Mountains to provide an independent estimate of ground-water inflow. This report documents the development and calibration of the watershed models, presents model results, compares the results with recent estimates of ground-water inflow to the basin-fill aquifers of Carson Valley, and presents updated estimates of the ground-water budget for basin-fill aquifers of Carson Valley. The model used for the study was the Precipitation-Runoff Modeling System, a physically based, distributed-parameter model designed to simulate precipitation and snowmelt runoff as well as snowpack accumulation and snowmelt processes. Geographic Information System software was used to manage spatial data, characterize model drainages, and to develop Hydrologic Response Units. Models were developed for * Two watersheds with gaged perennial streams in the Carson Range and two watersheds with gaged perennial streams in the Pine Nut Mountains using measured daily mean runoff, * Ten watersheds with ungaged perennial streams using estimated daily mean runoff, * Ten watershed with ungaged ephemeral streams in the Carson Range, and * A large area of ephemeral runoff near the Pine Nut Mountains. Models developed for the gaged watersheds were used as index models to guide the calibration of models for ungaged watersheds. Model calibration was constrained by daily mean runoff for 4 gaged watersheds and for 10 ungaged watersheds in the Carson Range estimated in a previous study. The models were further constrained by annual precipitation volumes estimated in a previous study to provide estimates of ground-water inflow using similar water input. The calibration periods were water years 1990-2002 for watersheds in the Carson Range, and water years 1981-97 for watersheds in the Pine Nut Mountains. Daily mean values for water years 1990-2002 were then simulated using the calibrated watershed models in the Pine Nut Mountains. The daily mean values of precipitation, runoff, evapotranspiration, and ground-water inflow simulated from the watershed models were summed to provide annual mean rates and volumes for each year of the simulations, and mean annual rates and volumes computed for water years 1990-2002. Mean annual bias for the period of record for models of Daggett Creek and Fredericksburg Canyon watersheds, two gaged perennial watersheds in the Carson Range, was within 4 percent and relative errors were about 6 and 12 percent, respectively. Model fit was not as satisfactory for two gaged perennial watersheds, Pine Nut and Buckeye Creeks, in the Pine Nut Mountains. The Pine Nut Creek watershed model had a large negative mean annual bias and a relative error of -11 percent, underestimated runoff for all years but the wet years in the latter part of the record, but adequately simulated the bulk of the spring runoff most of the years. The Buckeye Creek watershed model overestimated mean annual runoff with a relative error of about -5 percent when water year 1994 was removed from the analysis because it had a poor record. The bias and error of the calibrated models were within generally accepted limits for watershed models, indicating the simulated rates and volumes of runoff and ground-water inflow were reasonable. The total mean annual ground-water inflow to Carson Valley computed using estimates simulated by the watershed models was 38,000 acre-feet, including ground-water inflow from Eagle Valley, recharge from precipitation on eolian sand and gravel deposits, and ground-water recharge from precipitation on the western alluvial fans. The estimate was in close agreement with that obtained from the chloride-balance method, 40,000 acre-feet, but was considerably greater than the estimate obtained from the water-yield method, 22,000 acre-feet. The similar estimates obtained from the watershed models and chloride-balance method, two relatively independent methods, provide more confidence that they represent a reasonably accurate volume of ground-water inflow to Carson Valley. However, the two estimates are not completely independent because they use similar distributions of mean annual precipitation. Annual ground-water recharge of the basin-fill aquifers in Carson Valley ranged from 51,000 to 54,000 acre-feet computed using estimates of ground-water inflow to Carson Valley simulated from the watershed models combined with previous estimates of other ground-water budget components. Estimates of mean annual ground-water discharge range from 44,000 to 47,000 acre-feet. The low range estimate for ground-water recharge, 51,000 acre-feet per year, is most similar to the high range estimate for ground-water discharge, 47,000 acre-feet per year. Thus, an average annual volume of about 50,000 acre-feet is a reasonable estimate for mean annual ground-water recharge to and discharge from the basin-fill aquifers in Carson Valley. The results of watershed models indicate that significant interannual variability in the volumes of ground-water inflow is caused by climate variations. During multi-year drought conditions, the watershed simulations indicate that ground-water recharge could be as much as 80 percent less than the mean annual volume of 50,000 acre-feet.

  20. Sediment delivery modeling in practice: Comparing the effects of watershed characteristics and data resolution across hydroclimatic regions.

    PubMed

    Hamel, Perrine; Falinski, Kim; Sharp, Richard; Auerbach, Daniel A; Sánchez-Canales, María; Dennedy-Frank, P James

    2017-02-15

    Geospatial models are commonly used to quantify sediment contributions at the watershed scale. However, the sensitivity of these models to variation in hydrological and geomorphological features, in particular to land use and topography data, remains uncertain. Here, we assessed the performance of one such model, the InVEST sediment delivery model, for six sites comprising a total of 28 watersheds varying in area (6-13,500km 2 ), climate (tropical, subtropical, mediterranean), topography, and land use/land cover. For each site, we compared uncalibrated and calibrated model predictions with observations and alternative models. We then performed correlation analyses between model outputs and watershed characteristics, followed by sensitivity analyses on the digital elevation model (DEM) resolution. Model performance varied across sites (overall r 2 =0.47), but estimates of the magnitude of specific sediment export were as or more accurate than global models. We found significant correlations between metrics of sediment delivery and watershed characteristics, including erosivity, suggesting that empirical relationships may ultimately be developed for ungauged watersheds. Model sensitivity to DEM resolution varied across and within sites, but did not correlate with other observed watershed variables. These results were corroborated by sensitivity analyses performed on synthetic watersheds ranging in mean slope and DEM resolution. Our study provides modelers using InVEST or similar geospatial sediment models with practical insights into model behavior and structural uncertainty: first, comparison of model predictions across regions is possible when environmental conditions differ significantly; second, local knowledge on the sediment budget is needed for calibration; and third, model outputs often show significant sensitivity to DEM resolution. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Watershed Analysis of Runoff and Erosion Potential on Santa Cruz Watershed (Arizona, USA and Sonora, Mexico): Impact of Climate and Land Cover Changes

    EPA Science Inventory

    The Southwest Ecosystem Service Program (SwESP) is part of the US Environmental Protection Agency (EPA)’s newly undertaken Ecological Service Research Program (ESRP) to examine the variety of ways in which landscapes including crop lands, conservation areas, wetlands, lakes, and ...

  2. Selected achievements, science directions, and new opportunities for the WEBB Small Watershed Research Program

    Treesearch

    Pierre D. Glynn; Matthew C. Larsen; Earl A. Greene; Heather L. Buss; David W. Clow; Randall J. Hunt; M. Alisa Mast; Sheila F. Murphy; Norman E. Peters; Stephen D. Sebestyen; James B. Shanley; John F. Walker

    2009-01-01

    Over nearly two decades, the Water, Energy, and Biogeochemical Budgets (WEBB) small watershed research program of the U.S. Geological Survey (USGS) has documented how water and solute fluxes, nutrient, carbon, and mercury dynamics, and weathering and sediment transport respond to natural and humancaused drivers, including climate, climate change, and atmospheric...

  3. A program of watershed-management research

    Treesearch

    Howard W. Lull; Irvin C. Reigner

    1957-01-01

    This is a proposed 5-point, 5-year program for watershed-management research at the Kingston Research Center. This Center's area embraces 5 counties in southern New York and 18 counties in northeastern Pennsylvania, an aggregate of 10,247,000 acres or about 16,000 square miles. Its long axis (northeast to southwest) is about 250 miles long, and its breadth...

  4. Cibecue watershed projects: Then, now, and in the future

    Treesearch

    Jonathan W. Long

    2000-01-01

    The White Mountain Apache Tribe has undertaken a watershed analysis and various demonstration projects in the Cibecue watershed in east-central Arizona. The results support an adaptive management strategy to promote ecological health, enhance economic opportunities, and protect cultural values. Some of the problems faced by today’s program are similar to those faced by...

  5. Tracking the fate of watershed nitrogen: The “N-Sink” Web Tool and Two Case Studies

    EPA Science Inventory

    This product describes the application of a web-based decision support tool, N-Sink, in two case study watersheds. N-Sink is a customized ArcMap© program that provides maps of N sourcesand sinks within a watershed, and estimates the delivery efficiency of N movement from sou...

  6. Storytelling to support watershed research on emerging issues

    Treesearch

    Phillip Hellman

    2016-01-01

    Projections of budget deficits by the Congressional Budget Office imply ever-increasing pressure on federal spending for all purposes, including long-term watershed research. This presentation will argue that, since federal funding is ultimately a political decision, those responsible for maintaining long-term watershed research programs should not try to provide ...

  7. First progress report, 1961-1962, cooperative watershed management in the lower conifer zone of California

    Treesearch

    Walt Hopkins; Kenneth L. Boden

    1962-01-01

    The job of watershed management research is to conduct studies which will suggest better methods of management for water and predict the effects of a wide span of land management practices upon streamflow, water yield, and sedimentation. A program for watershed management research was prepared by Henry Anderson in 1960 (Anderson, 1960).

  8. Watershed modeling applications in south Texas

    USGS Publications Warehouse

    Pedraza, Diana E.; Ockerman, Darwin J.

    2012-01-01

    This fact sheet presents an overview of six selected watershed modeling studies by the USGS and partners that address a variety of water-resource issues in south Texas. These studies provide examples of modeling applications and demonstrate the usefulness and versatility of watershed models in aiding the understanding of hydrologic systems.

  9. How will climate change affect watershed mercury export in a representative Coastal Plain watershed?

    NASA Astrophysics Data System (ADS)

    Golden, H. E.; Knightes, C. D.; Conrads, P. A.; Feaster, T.; Davis, G. M.; Benedict, S. T.; Bradley, P. M.

    2012-12-01

    Future climate change is expected to drive variations in watershed hydrological processes and water quality across a wide range of physiographic provinces, ecosystems, and spatial scales. How such shifts in climatic conditions will impact watershed mercury (Hg) dynamics and hydrologically-driven Hg transport is a significant concern. We simulate the responses of watershed hydrological and total Hg (HgT) fluxes and concentrations to a unified set of past and future climate change projections in a Coastal Plain basin using multiple watershed models. We use two statistically downscaled global precipitation and temperature models, ECHO, a hybrid of the ECHAM4 and HOPE-G models, and the Community Climate System Model (CCSM3) across two thirty-year simulations (1980 to 2010 and 2040 to 2070). We apply three watershed models to quantify and bracket potential changes in hydrologic and HgT fluxes, including the Visualizing Ecosystems for Land Management Assessment Model for Hg (VELMA-Hg), the Grid Based Mercury Model (GBMM), and TOPLOAD, a water quality constituent model linked to TOPMODEL hydrological simulations. We estimate a decrease in average annual HgT fluxes in response to climate change using the ECHO projections and an increase with the CCSM3 projections in the study watershed. Average monthly HgT fluxes increase using both climate change projections between in the late spring (March through May), when HgT concentrations and flow are high. Results suggest that hydrological transport associated with changes in precipitation and temperature is the primary mechanism driving HgT flux response to climate change. Our multiple model/multiple projection approach allows us to bracket the relative response of HgT fluxes to climate change, thereby illustrating the uncertainty associated with the projections. In addition, our approach allows us to examine potential variations in climate change-driven water and HgT export based on different conceptualizations of watershed HgT dynamics and the representative mathematical structures underpinning existing watershed Hg models.

  10. Environmental setting of Maple Creek watershed, Nebraska

    USGS Publications Warehouse

    Fredrick, Brian S.; Linard, Joshua I.; Carpenter, Jennifer L.

    2006-01-01

    The Maple Creek watershed covers a 955-square-kilometer area in eastern Nebraska, which is a region dominated by agricultural land use. The Maple Creek watershed is one of seven areas currently included in a nationwide study of the sources, transport, and fate of water and chemicals in agricultural watersheds. This study, known as the topical study of 'Agricultural Chemicals: Sources, Transport, and Fate' is part of the National Water-Quality Assessment Program being conducted by the U.S. Geological Survey. The Program is designed to describe water-quality conditions and trends based on representative surface- and ground-water resources across the Nation. The objective of the Agricultural Chemicals topical study is to investigate the sources, transport, and fate of selected agricultural chemicals in a variety of agriculturally diverse environmental settings. The Maple Creek watershed was selected for the Agricultural Chemicals topical study because its watershed represents the agricultural setting that characterizes eastern Nebraska. This report describes the environmental setting of the Maple Creek watershed in the context of how agricultural practices, including agricultural chemical applications and irrigation methods, interface with natural settings and hydrologic processes. A description of the environmental setting of a subwatershed within the drainage area of Maple Creek is included to improve the understanding of the variability of hydrologic and chemical cycles at two different scales.

  11. Integrating local research watersheds into hydrologic education: Lessons from the Dry Creek Experimental Watershed

    NASA Astrophysics Data System (ADS)

    McNamara, J. P.; Aishlin, P. S.; Flores, A. N.; Benner, S. G.; Marshall, H. P.; Pierce, J. L.

    2014-12-01

    While a proliferation of instrumented research watersheds and new data sharing technologies has transformed hydrologic research in recent decades, similar advances have not been realized in hydrologic education. Long-standing problems in hydrologic education include discontinuity of hydrologic topics from introductory to advanced courses, inconsistency of content across academic departments, and difficulties in development of laboratory and homework assignments utilizing large time series and spatial data sets. Hydrologic problems are typically not amenable to "back-of-the-chapter" examples. Local, long-term research watersheds offer solutions to these problems. Here, we describe our integration of research and monitoring programs in the Dry Creek Experimental Watershed into undergraduate and graduate hydrology programs at Boise State University. We developed a suite of watershed-based exercises into courses and curriculums using real, tangible datasets from the watershed to teach concepts not amenable to traditional textbook and lecture methods. The aggregation of exercises throughout a course or degree allows for scaffolding of concepts with progressive exposure of advanced concepts throughout a course or degree. The need for exercises of this type is growing as traditional lecture-based classes (passive learning from a local authoritative source) are being replaced with active learning courses that integrate many sources of information through situational factors.

  12. Characterizing ponds in watershed simulations and evaluating their influence on streamflowin a Mississippi Watershed

    USDA-ARS?s Scientific Manuscript database

    Small water bodies are common landscape features, but often are not simulated within a watershed modeling framework. The wetland modeling tool, AgWET, uses a GIS framework to characterize the features of ponds and wetlands so that they can be incorporated into watershed simulations using the Annuali...

  13. Modeling Peak Discharge within the Marengo River Watershed: Lessons for Restoration in the Saint Louis River Watershed

    EPA Science Inventory

    To more fully understand the hydrologic condition of the Marengo River Watershed, and to map specific locations most likely to have increased discharge and flow velocity (leading to more erosion and higher sediment loads) we modeled peak discharge for 35 different sub-watersheds ...

  14. A Combined Modeling Approach to Evaluate Water Quality Benefits of Riparian Buffers in the Jobos Bay Watershed

    USDA-ARS?s Scientific Manuscript database

    The Jobos Bay Watershed, located in south-central Puerto Rico, is a tropical Conservation Effects Assessment Project (CEAP) Special Emphasis Watershed. The purpose of CEAP is to quantify environmental benefits of conservation practices and includes field and watershed modeling. In Jobos Bay, the goa...

  15. Application of Watershed Deposition Tool to Estimate from CMAQ Simulations of the Atmospheric Deposition of Nitrogen to Tampa Bay and Its Watershed

    EPA Science Inventory

    The USEPA has developed Watershed Deposition Tool (WDT) to calculate from the Community Multiscale Air Quality (CMAQ) model output the nitrogen, sulfur, and mercury deposition rates to watersheds and their sub-basins. The CMAQ model simulates from first principles the transport, ...

  16. DEM Based Modeling: Grid or TIN? The Answer Depends

    NASA Astrophysics Data System (ADS)

    Ogden, F. L.; Moreno, H. A.

    2015-12-01

    The availability of petascale supercomputing power has enabled process-based hydrological simulations on large watersheds and two-way coupling with mesoscale atmospheric models. Of course with increasing watershed scale come corresponding increases in watershed complexity, including wide ranging water management infrastructure and objectives, and ever increasing demands for forcing data. Simulations of large watersheds using grid-based models apply a fixed resolution over the entire watershed. In large watersheds, this means an enormous number of grids, or coarsening of the grid resolution to reduce memory requirements. One alternative to grid-based methods is the triangular irregular network (TIN) approach. TINs provide the flexibility of variable resolution, which allows optimization of computational resources by providing high resolution where necessary and low resolution elsewhere. TINs also increase required effort in model setup, parameter estimation, and coupling with forcing data which are often gridded. This presentation discusses the costs and benefits of the use of TINs compared to grid-based methods, in the context of large watershed simulations within the traditional gridded WRF-HYDRO framework and the new TIN-based ADHydro high performance computing watershed simulator.

  17. Using Caffeine as a Water Quality Indicator in the Ambient Monitoring Program for Third Fork Creek Watershed, Durham, North Carolina

    PubMed Central

    Spence, Porché L

    2015-01-01

    Caffeine has been suggested as a chemical indicator for domestic wastewater in freshwater systems, although it is not included in water quality monitoring programs. The Third Fork Creek watershed in Durham, NC, is highly urbanized, with a history of receiving untreated wastewater from leaking and overflowing sanitary sewers. The poor water quality originating in the Third Fork Creek watershed threatens its intended uses and jeopardizes drinking water, aquatic life, and recreational activities provided by Jordan Lake. Organic waste contaminants have been detected in both Third Fork Creek watershed and Jordan Lake; however, the sampling periods were temporary, resulting in a few samples collected during nonstorm periods. It is recommended that (1) the concentration of caffeine and other organic waste contaminants are determined during storm and nonstorm periods and (2) caffeine is monitored regularly with traditional water quality indicators to evaluate the health of Third Fork Creek watershed. PMID:26157335

  18. The Reynolds Creek Experimental Watershed: A Hydro-Geo-Climatic Observatory for the 21^{st} Century

    NASA Astrophysics Data System (ADS)

    Marks, D.; Seyfried, M.; Flerchinger, G.

    2006-12-01

    Long-term hydro-climatic data on a watershed scale are critical to improving our understanding of basic hydrologic and ecologic processes because they provide a context to assess inter-annual variability and allow us to document longer-term trends. In addition, a scientific infrastructure that captures the spatial variations within a watershed are required to identify recharge areas, describe the amount and timing of streamflow generation and understand the variability of vegetation. These basic data, combined with soil microclimate information, are required to describe the milieu for geochemical weathering and soil formation. Data from watersheds that include significant human activities, such as grazing, farming, irrigation, and urbanization, represent conditions typical to most watersheds and are critical for determining the signature of human induced changes on hydrologic processes and the water cycle. The Reynolds Creek Experimental Watershed (RCEW), a 239 km2 drainage in the Owyhee Mountains near Boise, Idaho, was added to the USDA Agricultural Research Service watershed program in 1960. The vision for RCEW as an outdoor laboratory to support watershed research was described 1965 in the first volume of Water Resources Research [Robins et al., 1965]. The RCEW has supported a sustained data collection network for over 45 years. The first 35 years of data were presented in a series of papers in 2001 [Marks, 2001]. More recently, there has been an effort to better describe spatial variations within the watershed, and research is currently supported by 9 weirs, 32 primary and 5 secondary meteorological measurement stations, 26 precipitation stations, 8 snow course and 5 snow study sites, and 5 eddy covariance systems. In addition, soil microclimate (moisture and temperature) profile data are collected eight sites with surface data collected at an additional 19 sites. These support a wide range of experimental investigations including snow hydrology and physics, cold season hydrology, geophysics, water quality, model development and testing, water and carbon flux experiments, ecosystem processes, grazing effects, and mountain climate research. Active watershed manipulation allows fire ecology and hydrology, vegetation-climate inter-action, watershed restoration, grazing and wildlife management, and invasive plant research.

  19. Analysis of regional rainfall-runoff parameters for the Lake Michigan Diversion hydrological modeling

    USGS Publications Warehouse

    Soong, David T.; Over, Thomas M.

    2015-01-01

    Recalibration of the HSPF parameters to the updated inputs and land covers was completed on two representative watershed models selected from the nine by using a manual method (HSPEXP) and an automatic method (PEST). The objective of the recalibration was to develop a regional parameter set that improves the accuracy in runoff volume prediction for the nine study watersheds. Knowledge about flow and watershed characteristics plays a vital role for validating the calibration in both manual and automatic methods. The best performing parameter set was determined by the automatic calibration method on a two-watershed model. Applying this newly determined parameter set to the nine watersheds for runoff volume simulation resulted in “very good” ratings in five watersheds, an improvement as compared to “very good” ratings achieved for three watersheds by the North Branch parameter set.

  20. A stakeholder project to model water temperature under future climate scenarios in the Satus and Toppenish watersheds of the Yakima River Basinin Washington, USA

    USGS Publications Warehouse

    Graves, D.; Maule, A.

    2014-01-01

    The goal of this study was to support an assessment of the potential effects of climate change on select natural, social, and economic resources in the Yakima River Basin. A workshop with local stakeholders highlighted the usefulness of projecting climate change impacts on anadromous steelhead (Oncorhynchus mykiss), a fish species of importance to local tribes, fisherman, and conservationists. Stream temperature is an important environmental variable for the freshwater stages of steelhead. For this study, we developed water temperature models for the Satus and Toppenish watersheds, two of the key stronghold areas for steelhead in the Yakima River Basin. We constructed the models with the Stream Network Temperature Model (SNTEMP), a mechanistic approach to simulate water temperature in a stream network. The models were calibrated over the April 15, 2008 to September 30, 2008 period and validated over the April 15, 2009 to September 30, 2009 period using historic measurements of stream temperature and discharge provided by the Yakama Nation Fisheries Resource Management Program. Once validated, the models were run to simulate conditions during the spring and summer seasons over a baseline period (1981–2005) and two future climate scenarios with increased air temperature of 1°C and 2°C. The models simulated daily mean and maximum water temperatures at sites throughout the two watersheds under the baseline and future climate scenarios.

  1. 7 CFR 654.1 - Purpose and scope.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...) Federal financially-assisted projects. (i) Watershed Protection and Flood Prevention (WP&FP). See part 622...) Emergency Watershed Protection (EWP). See part 624 of this title. (4) Great Plains Conservation Program (GP...

  2. 7 CFR 654.1 - Purpose and scope.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...) Federal financially-assisted projects. (i) Watershed Protection and Flood Prevention (WP&FP). See part 622...) Emergency Watershed Protection (EWP). See part 624 of this title. (4) Great Plains Conservation Program (GP...

  3. 7 CFR 654.1 - Purpose and scope.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...) Federal financially-assisted projects. (i) Watershed Protection and Flood Prevention (WP&FP). See part 622...) Emergency Watershed Protection (EWP). See part 624 of this title. (4) Great Plains Conservation Program (GP...

  4. 7 CFR 654.1 - Purpose and scope.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...) Federal financially-assisted projects. (i) Watershed Protection and Flood Prevention (WP&FP). See part 622...) Emergency Watershed Protection (EWP). See part 624 of this title. (4) Great Plains Conservation Program (GP...

  5. 7 CFR 654.1 - Purpose and scope.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...) Federal financially-assisted projects. (i) Watershed Protection and Flood Prevention (WP&FP). See part 622...) Emergency Watershed Protection (EWP). See part 624 of this title. (4) Great Plains Conservation Program (GP...

  6. 40 CFR 141.520 - Is my system subject to the updated watershed control requirements?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Enhanced Filtration and Disinfection-Systems Serving Fewer Than 10,000 People Additional Watershed Control...

  7. 40 CFR 141.520 - Is my system subject to the updated watershed control requirements?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Enhanced Filtration and Disinfection-Systems Serving Fewer Than 10,000 People Additional Watershed Control...

  8. 40 CFR 141.520 - Is my system subject to the updated watershed control requirements?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Enhanced Filtration and Disinfection-Systems Serving Fewer Than 10,000 People Additional Watershed Control...

  9. 40 CFR 141.520 - Is my system subject to the updated watershed control requirements?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Enhanced Filtration and Disinfection-Systems Serving Fewer Than 10,000 People Additional Watershed Control...

  10. 40 CFR 141.520 - Is my system subject to the updated watershed control requirements?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Enhanced Filtration and Disinfection-Systems Serving Fewer Than 10,000 People Additional Watershed Control...

  11. Assessment of the Impact of Climate Change on the Water Balances and Flooding Conditions of Peninsular Malaysia watersheds by a Coupled Numerical Climate Model - Watershed Hydrology Model

    NASA Astrophysics Data System (ADS)

    Ercan, A.; Kavvas, M. L.; Ishida, K.; Chen, Z. Q.; Amin, M. Z. M.; Shaaban, A. J.

    2017-12-01

    Impacts of climate change on the hydrologic processes under future climate change conditions were assessed over various watersheds of Peninsular Malaysia by means of a coupled regional climate and physically-based hydrology model that utilized an ensemble of future climate change projections. An ensemble of 15 different future climate realizations from coarse resolution global climate models' (GCMs) projections for the 21st century were dynamically downscaled to 6 km resolution over Peninsular Malaysia by a regional numerical climate model, which was then coupled with the watershed hydrology model WEHY through the atmospheric boundary layer over the selected watersheds of Peninsular Malaysia. Hydrologic simulations were carried out at hourly increments and at hillslope-scale in order to assess the impacts of climate change on the water balances and flooding conditions at the selected watersheds during the 21st century. The coupled regional climate and hydrology model was simulated for a duration of 90 years for each of the 15 realizations. It is demonstrated that the increase in mean monthly flows due to the impact of expected climate change during 2040-2100 is statistically significant at the selected watersheds. Furthermore, the flood frequency analyses for the selected watersheds indicate an overall increasing trend in the second half of the 21st century.

  12. Characterization and evaluation of controls on post-fire streamflow response across western US watersheds

    NASA Astrophysics Data System (ADS)

    Saxe, Samuel; Hogue, Terri S.; Hay, Lauren

    2018-02-01

    This research investigates the impact of wildfires on watershed flow regimes, specifically focusing on evaluation of fire events within specified hydroclimatic regions in the western United States, and evaluating the impact of climate and geophysical variables on response. Eighty-two watersheds were identified with at least 10 years of continuous pre-fire daily streamflow records and 5 years of continuous post-fire daily flow records. Percent change in annual runoff ratio, low flows, high flows, peak flows, number of zero flow days, baseflow index, and Richards-Baker flashiness index were calculated for each watershed using pre- and post-fire periods. Independent variables were identified for each watershed and fire event, including topographic, vegetation, climate, burn severity, percent area burned, and soils data. Results show that low flows, high flows, and peak flows increase in the first 2 years following a wildfire and decrease over time. Relative response was used to scale response variables with the respective percent area of watershed burned in order to compare regional differences in watershed response. To account for variability in precipitation events, runoff ratio was used to compare runoff directly to PRISM precipitation estimates. To account for regional differences in climate patterns, watersheds were divided into nine regions, or clusters, through k-means clustering using climate data, and regression models were produced for watersheds grouped by total area burned. Watersheds in Cluster 9 (eastern California, western Nevada, Oregon) demonstrate a small negative response to observed flow regimes after fire. Cluster 8 watersheds (coastal California) display the greatest flow responses, typically within the first year following wildfire. Most other watersheds show a positive mean relative response. In addition, simple regression models show low correlation between percent watershed burned and streamflow response, implying that other watershed factors strongly influence response. Spearman correlation identified NDVI, aridity index, percent of a watershed's precipitation that falls as rain, and slope as being positively correlated with post-fire streamflow response. This metric also suggested a negative correlation between response and the soil erodibility factor, watershed area, and percent low burn severity. Regression models identified only moderate burn severity and watershed area as being consistently positively/negatively correlated, respectively, with response. The random forest model identified only slope and percent area burned as significant watershed parameters controlling response. Results will help inform post-fire runoff management decisions by helping to identify expected changes to flow regimes, as well as facilitate parameterization for model application in burned watersheds.

  13. Multivariate Statistical Models for Predicting Sediment Yields from Southern California Watersheds

    USGS Publications Warehouse

    Gartner, Joseph E.; Cannon, Susan H.; Helsel, Dennis R.; Bandurraga, Mark

    2009-01-01

    Debris-retention basins in Southern California are frequently used to protect communities and infrastructure from the hazards of flooding and debris flow. Empirical models that predict sediment yields are used to determine the size of the basins. Such models have been developed using analyses of records of the amount of material removed from debris retention basins, associated rainfall amounts, measures of watershed characteristics, and wildfire extent and history. In this study we used multiple linear regression methods to develop two updated empirical models to predict sediment yields for watersheds located in Southern California. The models are based on both new and existing measures of volume of sediment removed from debris retention basins, measures of watershed morphology, and characterization of burn severity distributions for watersheds located in Ventura, Los Angeles, and San Bernardino Counties. The first model presented reflects conditions in watersheds located throughout the Transverse Ranges of Southern California and is based on volumes of sediment measured following single storm events with known rainfall conditions. The second model presented is specific to conditions in Ventura County watersheds and was developed using volumes of sediment measured following multiple storm events. To relate sediment volumes to triggering storm rainfall, a rainfall threshold was developed to identify storms likely to have caused sediment deposition. A measured volume of sediment deposited by numerous storms was parsed among the threshold-exceeding storms based on relative storm rainfall totals. The predictive strength of the two models developed here, and of previously-published models, was evaluated using a test dataset consisting of 65 volumes of sediment yields measured in Southern California. The evaluation indicated that the model developed using information from single storm events in the Transverse Ranges best predicted sediment yields for watersheds in San Bernardino, Los Angeles, and Ventura Counties. This model predicts sediment yield as a function of the peak 1-hour rainfall, the watershed area burned by the most recent fire (at all severities), the time since the most recent fire, watershed area, average gradient, and relief ratio. The model that reflects conditions specific to Ventura County watersheds consistently under-predicted sediment yields and is not recommended for application. Some previously-published models performed reasonably well, while others either under-predicted sediment yields or had a larger range of errors in the predicted sediment yields.

  14. An integrated modeling approach for estimating the water quality benefits of conservation practices at the river basin scale.

    PubMed

    Santhi, C; Kannan, N; White, M; Di Luzio, M; Arnold, J G; Wang, X; Williams, J R

    2014-01-01

    The USDA initiated the Conservation Effects Assessment Project (CEAP) to quantify the environmental benefits of conservation practices at regional and national scales. For this assessment, a sampling and modeling approach is used. This paper provides a technical overview of the modeling approach used in CEAP cropland assessment to estimate the off-site water quality benefits of conservation practices using the Ohio River Basin (ORB) as an example. The modeling approach uses a farm-scale model, Agricultural Policy Environmental Extender (APEX), and a watershed scale model (the Soil and Water Assessment Tool [SWAT]) and databases in the Hydrologic Unit Modeling for the United States system. Databases of land use, soils, land use management, topography, weather, point sources, and atmospheric depositions were developed to derive model inputs. APEX simulates the cultivated cropland, Conserve Reserve Program land, and the practices implemented on them, whereas SWAT simulates the noncultivated land (e.g., pasture, range, urban, and forest) and point sources. Simulation results from APEX are input into SWAT. SWAT routes all sources, including APEX's, to the basin outlet through each eight-digit watershed. Each basin is calibrated for stream flow, sediment, and nutrient loads at multiple gaging sites and turned in for simulating the effects of conservation practice scenarios on water quality. Results indicate that sediment, nitrogen, and phosphorus loads delivered to the Mississippi River from ORB could be reduced by 16, 15, and 23%, respectively, due to current conservation practices. Modeling tools are useful to provide science-based information for assessing existing conservation programs, developing future programs, and developing insights on load reductions necessary for hypoxia in the Gulf of Mexico. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  15. Simulation of nutrient and sediment concentrations and loads in the Delaware inland bays watershed: Extension of the hydrologic and water-quality model to ungaged segments

    USGS Publications Warehouse

    Gutierrez-Magness, Angelica L.

    2006-01-01

    Rapid population increases, agriculture, and industrial practices have been identified as important sources of excessive nutrients and sediments in the Delaware Inland Bays watershed. The amount and effect of excessive nutrients and sediments in the Inland Bays watershed have been well documented by the Delaware Geological Survey, the Delaware Department of Natural Resources and Environmental Control, the U.S. Environmental Protection Agency's National Estuary Program, the Delaware Center for Inland Bays, the University of Delaware, and other agencies. This documentation and data previously were used to develop a hydrologic and water-quality model of the Delaware Inland Bays watershed to simulate nutrients and sediment concentrations and loads, and to calibrate the model by comparing concentrations and streamflow data at six stations in the watershed over a limited period of time (October 1998 through April 2000). Although the model predictions of nutrient and sediment concentrations for the calibrated segments were fairly accurate, the predictions for the 28 ungaged segments located near tidal areas, where stream data were not available, were above the range of values measured in the area. The cooperative study established in 2000 by the Delaware Department of Natural Resources and Environmental Control, the Delaware Geological Survey, and the U.S. Geological Survey was extended to evaluate the model predictions in ungaged segments and to ensure that the model, developed as a planning and management tool, could accurately predict nutrient and sediment concentrations within the measured range of values in the area. The evaluation of the predictions was limited to the period of calibration (1999) of the 2003 model. To develop estimates on ungaged watersheds, parameter values from calibrated segments are transferred to the ungaged segments; however, accurate predictions are unlikely where parameter transference is subject to error. The unexpected nutrient and sediment concentrations simulated with the 2003 model were likely the result of inappropriate criteria for the transference of parameter values. From a model-simulation perspective, it is a common practice to transfer parameter values based on the similarity of soils or the similarity of land-use proportions between segments. For the Inland Bays model, the similarity of soils between segments was used as the basis to transfer parameter values. An alternative approach, which is documented in this report, is based on the similarity of the spatial distribution of the land use between segments and the similarity of land-use proportions, as these can be important factors for the transference of parameter values in lumped models. Previous work determined that the difference in the variation of runoff due to various spatial distributions of land use within a watershed can cause substantialloss of accuracy in the model predictions. The incorporation of the spatial distribution of land use to transfer parameter values from calibrated to uncalibrated segments provided more consistent and rational predictions of flow, especially during the summer, and consequently, predictions of lower nutrient concentrations during the same period. For the segments where the similarity of spatial distribution of land use was not clearly established with a calibrated segment, the similarity of the location of the most impervious areas was also used as a criterion for the transference of parameter values. The model predictions from the 28 ungaged segments were verified through comparison with measured in-stream concentrations from local and nearby streams provided by the Delaware Department of Natural Resources and Environmental Control. Model results indicated that the predicted edge-of-stream total suspended solids loads in the Inland Bays watershed were low in comparison to loads reported for the Eastern Shore of Maryland from the Chesapeake Bay watershed model. The flatness of the ter

  16. Urban watershed modeling in Seattle, Washington using VELMA – a spatially explicit ecohydrological watershed model

    EPA Science Inventory

    Urban watersheds are notoriously difficult to model due to their complex, small-scale combinations of landscape and land use characteristics including impervious surfaces that ultimately affect the hydrologic system. We utilized EPA’s Visualizing Ecosystem Land Management A...

  17. Modeled Watershed Runoff Associated with Variations in Precipitation Data with Implications for Contaminant Fluxes

    EPA Science Inventory

    Watershed-scale fate and transport models are important tools for estimating the sources, transformation, and transport of contaminants to surface water systems. Precipitation is one of the primary inputs to watershed biogeochemical models, influencing changes in the water budge...

  18. Program Contacts for Patapsco Watershed/Baltimore Region (Maryland)

    EPA Pesticide Factsheets

    Patapsco Watershed/Baltimore Region (Maryland) Area of the Urban Waters Federal Partnership (UWFP) reconnects urban communities with their waterways by improving coordination among federal agencies and collaborating with community-led efforts.

  19. Watershed sediment measurement and sediment transport modeling techniques: Case study to quantify the impact of converting cropland to forested stream buffers on soil loss and water quality at the watershed scale

    USDA-ARS?s Scientific Manuscript database

    Watershed models such as the Soil and Water Assessment Tool (SWAT) have been widely used to simulate watershed hydrologic processes and the effect of management, such as agroforestry, on soil and water resources. In order to use model outputs for tasks ranging from aiding policy decision making to r...

  20. A framework for propagation of uncertainty contributed by parameterization, input data, model structure, and calibration/validation data in watershed modeling

    USDA-ARS?s Scientific Manuscript database

    The progressive improvement of computer science and development of auto-calibration techniques means that calibration of simulation models is no longer a major challenge for watershed planning and management. Modelers now increasingly focus on challenges such as improved representation of watershed...

  1. How Does an Environmental Educator Address Student Engagement in a Meaningful Watershed Educational Experience (MWEE)?

    NASA Astrophysics Data System (ADS)

    Char, Chelia

    Children represent the future and thus by providing them with effective environmental educational experiences, educators may be taking a critical step in preventing "the probable serious environmental problems in the future" (Gokhan, 2010, p. 56). The Meaningful Watershed Educational Experience (MWEE) is an excellent example of one such education program. MWEEs aim to educate and enhance the students' relationship with the Chesapeake Bay Watershed through an integration of classroom activities and fieldwork. As environmental educators and role models, field interpreters are a major component and significant influence on the local MWEE programs, however their perspective as to how they have impacted the programs has yet to be examined. Through a qualitative analysis and specific focus on the behavioral, emotional, and cognitive dimensions of student engagement, the researcher intended to address this void. The focus of the study was to examine how the local MWEE field interpreters understood and addressed student engagement in a field setting. This was measured via data collected from observations of and semi-structured, one-on-one interviews with each field interpreter involved with the local MWEE programs. Data analysis uncovered that field interpreters demonstrated a strong awareness of student engagement. Furthermore, they defined, recognized, and addressed student engagement within the constructs of the emotional, behavioral, and cognitive dimensions. Ultimately, the individual experiences of each MWEE field interpreter provides insight into the phenomenon, however further research is required to strengthen the awareness of how, if at all, their perspectives of student engagement directly impact student outcomes.

  2. PATHOGEN TRANSPORT AND FATE MODELING IN THE UPPER SALEM RIVER WATERSHED USING SWAT MODEL - PEER-REVIEWED JOURNAL ARTICLE

    EPA Science Inventory

    Simulation of the fate and transport of pathogen contamination was conducted with SWAT for the Upper Salem River Watershed, located in Salem County, New Jersey. This watershed is 37 km2 and land uses are predominantly agricultural. The watershed drains to a 32 km str...

  3. Nationwide summary of US Geological Survey regional regression equations for estimating magnitude and frequency of floods for ungaged sites, 1993

    USGS Publications Warehouse

    Jennings, M.E.; Thomas, W.O.; Riggs, H.C.

    1994-01-01

    For many years, the U.S. Geological Survey (USGS) has been involved in the development of regional regression equations for estimating flood magnitude and frequency at ungaged sites. These regression equations are used to transfer flood characteristics from gaged to ungaged sites through the use of watershed and climatic characteristics as explanatory or predictor variables. Generally these equations have been developed on a statewide or metropolitan area basis as part of cooperative study programs with specific State Departments of Transportation or specific cities. The USGS, in cooperation with the Federal Highway Administration and the Federal Emergency Management Agency, has compiled all the current (as of September 1993) statewide and metropolitan area regression equations into a micro-computer program titled the National Flood Frequency Program.This program includes regression equations for estimating flood-peak discharges and techniques for estimating a typical flood hydrograph for a given recurrence interval peak discharge for unregulated rural and urban watersheds. These techniques should be useful to engineers and hydrologists for planning and design applications. This report summarizes the statewide regression equations for rural watersheds in each State, summarizes the applicable metropolitan area or statewide regression equations for urban watersheds, describes the National Flood Frequency Program for making these computations, and provides much of the reference information on the extrapolation variables needed to run the program.

  4. SCS-CN based time-distributed sediment yield model

    NASA Astrophysics Data System (ADS)

    Tyagi, J. V.; Mishra, S. K.; Singh, Ranvir; Singh, V. P.

    2008-05-01

    SummaryA sediment yield model is developed to estimate the temporal rates of sediment yield from rainfall events on natural watersheds. The model utilizes the SCS-CN based infiltration model for computation of rainfall-excess rate, and the SCS-CN-inspired proportionality concept for computation of sediment-excess. For computation of sedimentographs, the sediment-excess is routed to the watershed outlet using a single linear reservoir technique. Analytical development of the model shows the ratio of the potential maximum erosion (A) to the potential maximum retention (S) of the SCS-CN method is constant for a watershed. The model is calibrated and validated on a number of events using the data of seven watersheds from India and the USA. Representative values of the A/S ratio computed for the watersheds from calibration are used for the validation of the model. The encouraging results of the proposed simple four parameter model exhibit its potential in field application.

  5. Watersheds in Baltimore, Maryland: understanding and application of integrated ecological and social processes

    Treesearch

    Steward T.A. Pickett; Kenneth T. Belt; Michael F. Galvin; Peter M. Groffman; J. Morgan Grove; Donald C. Outen; Richard V. Pouyat; William P. Stack; Mary L. Cadenasso

    2007-01-01

    The Water and Watersheds program has made significant and lasting contributions to the basic understanding of the complex ecological system of Baltimore, MD. Funded at roughly the same time as the urban Long- Term Ecological Research (LTER) project in Baltimore, the Water and Watersheds grant and the LTER grant together established the Baltimore Ecosystem Study (BES)...

  6. Evaluating agricultural nonpoint-source pollution programs in two Lake Erie tributaries.

    PubMed

    Forster, D Lynn; Rausch, Jonathan N

    2002-01-01

    During the past three decades, numerous government programs have encouraged Lake Erie basin farmers to adopt practices that reduce water pollution. The first section of this paper summarizes these state and federal government agricultural pollution abatement programs in watersheds of two prominent Lake Erie tributaries, the Maumee River and Sandusky River. Expenditures are summarized for each program, total expenditures in each county are estimated, and cost effectiveness of program expenditures (i.e., cost per metric ton of soil saved) are analyzed. Farmers received nearly $143 million as incentive payments to implement agricultural nonpoint source pollution abatement programs in the Maumee and Sandusky River watersheds from 1987 to 1997. About 95% of these funds was from federal sources. On average, these payments totaled about $7000 per farm or about $30 per farm acre (annualized equivalent of $2 per acre) within the watersheds. Our analysis raises questions about how efficiently these incentive payments were allocated. The majority of Agricultural Conservation Program (ACP) funds appear to have been spent on less cost-effective practices. Also, geographic areas with relatively low (high) soil erosion rates received relatively large (small) funding.

  7. Developing of Watershed Radionuclide Transport Model DHSVM-R as Modification and Extension of Distributed Hydrological and Sediment Dynamics Model DHSVM

    NASA Astrophysics Data System (ADS)

    Zheleznyak, M.; Kivva, S.; Onda, Y.; Nanba, K.; Wakiyama, Y.; Konoplev, A.

    2015-12-01

    The reliable modeling tools for prediction wash - off radionuclides from watersheds are needed as for assessment the consequences of accidental and industrial releases of radionuclides, as for soil erosion studies using the radioactive tracers. The distributed model of radionuclide transport through watershed in exchangeable and nonexchangeable forms in solute and with sediments was developed and validated for small Chernobyl watersheds in 90th within EU SPARTACUS project (van der Perk et al., 1996). New tendency is coupling of radionuclide transport models and the widely validated hydrological distributed models. To develop radionuclide transport model DHSVM-R the open source Distributed Hydrology Soil Vegetation Model -DHSVM http://www.hydro.washington.edu/Lettenmaier/Models/DHSVM was modified and extended. The main changes provided in the hydrological and sediment transport modules of DHSVM are as follows: Morel-Seytoux infiltration model is added; four-directions schematization for the model's cells flows (D4) is replaced by D8 approach; the finite-difference schemes for solution of kinematic wave equations for overland water flow, stream net flow, and sediment transport are replaced by new computationally efficient scheme. New radionuclide transport module, coupled with hydrological and sediment transport modules, continues SPARTACUS's approach, - it describes radionuclide wash-off from watershed and transport via stream network in soluble phase and on suspended sediments. The hydrological module of DHSVM-R was calibrated and validated for the watersheds of Ukrainian Carpathian mountains and for the subwatersheds of Niida river flowing 137Cs in solute and with suspended sediments to Pacific Ocean at 30 km north of the Fukushima Daiichi NPP. The modules of radionuclide and sediment transport were calibrated and validated versus experimental data for USLE experimental plots in Fukushima Prefecture and versus monitoring data collected in Niida watershed. The role of sediment transport in radionuclide wash-off from mountain and lowland watersheds is analyzed in comparison of modeling results for Chernobyl and Fukushima watersheds.

  8. Watershed Management Optimization Support Tool (WMOST) v1: Theoretical Documentation

    EPA Science Inventory

    The Watershed Management Optimization Support Tool (WMOST) is a screening model that is spatially lumped with options for a daily or monthly time step. It is specifically focused on modeling the effect of management decisions on the watershed. The model considers water flows and ...

  9. Comparison of radar and gauge precipitation data in watershed models across varying spatial and temporal scales

    EPA Science Inventory

    Precipitation is a key control on watershed hydrologic modelling output, with errors in rainfall propagating through subsequent stages of water quantity and quality analysis. Most watershed models incorporate precipitation data from rain gauges; higher-resolution data sources are...

  10. Advancing computational methods for calibration of the Soil and Water Assessment Tool (SWAT): Application for modeling climate change impacts on water resources in the Upper Neuse Watershed of North Carolina

    NASA Astrophysics Data System (ADS)

    Ercan, Mehmet Bulent

    Watershed-scale hydrologic models are used for a variety of applications from flood prediction, to drought analysis, to water quality assessments. A particular challenge in applying these models is calibration of the model parameters, many of which are difficult to measure at the watershed-scale. A primary goal of this dissertation is to contribute new computational methods and tools for calibration of watershed-scale hydrologic models and the Soil and Water Assessment Tool (SWAT) model, in particular. SWAT is a physically-based, watershed-scale hydrologic model developed to predict the impact of land management practices on water quality and quantity. The dissertation follows a manuscript format meaning it is comprised of three separate but interrelated research studies. The first two research studies focus on SWAT model calibration, and the third research study presents an application of the new calibration methods and tools to study climate change impacts on water resources in the Upper Neuse Watershed of North Carolina using SWAT. The objective of the first two studies is to overcome computational challenges associated with calibration of SWAT models. The first study evaluates a parallel SWAT calibration tool built using the Windows Azure cloud environment and a parallel version of the Dynamically Dimensioned Search (DDS) calibration method modified to run in Azure. The calibration tool was tested for six model scenarios constructed using three watersheds of increasing size (the Eno, Upper Neuse, and Neuse) for both a 2 year and 10 year simulation duration. Leveraging the cloud as an on demand computing resource allowed for a significantly reduced calibration time such that calibration of the Neuse watershed went from taking 207 hours on a personal computer to only 3.4 hours using 256 cores in the Azure cloud. The second study aims at increasing SWAT model calibration efficiency by creating an open source, multi-objective calibration tool using the Non-Dominated Sorting Genetic Algorithm II (NSGA-II). This tool was demonstrated through an application for the Upper Neuse Watershed in North Carolina, USA. The objective functions used for the calibration were Nash-Sutcliffe (E) and Percent Bias (PB), and the objective sites were the Flat, Little, and Eno watershed outlets. The results show that the use of multi-objective calibration algorithms for SWAT calibration improved model performance especially in terms of minimizing PB compared to the single objective model calibration. The third study builds upon the first two studies by leveraging the new calibration methods and tools to study future climate impacts on the Upper Neuse watershed. Statistically downscaled outputs from eight Global Circulation Models (GCMs) were used for both low and high emission scenarios to drive a well calibrated SWAT model of the Upper Neuse watershed. The objective of the study was to understand the potential hydrologic response of the watershed, which serves as a public water supply for the growing Research Triangle Park region of North Carolina, under projected climate change scenarios. The future climate change scenarios, in general, indicate an increase in precipitation and temperature for the watershed in coming decades. The SWAT simulations using the future climate scenarios, in general, suggest an increase in soil water and water yield, and a decrease in evapotranspiration within the Upper Neuse watershed. In summary, this dissertation advances the field of watershed-scale hydrologic modeling by (i) providing some of the first work to apply cloud computing for the computationally-demanding task of model calibration; (ii) providing a new, open source library that can be used by SWAT modelers to perform multi-objective calibration of their models; and (iii) advancing understanding of climate change impacts on water resources for an important watershed in the Research Triangle Park region of North Carolina. The third study leveraged the methodological advances presented in the first two studies. Therefore, the dissertation contains three independent by interrelated studies that collectively advance the field of watershed-scale hydrologic modeling and analysis.

  11. Bringing Science to Life for Students, Teachers and the Community

    NASA Astrophysics Data System (ADS)

    Pratt, Kimberly

    2010-05-01

    Prior to 2008, 5th grade students at two schools of the New Haven Unified School District consistently scored in the bottom 20% of the California State Standards Test for science. Teachers in the upper grades reported not spending enough time teaching science, which is attributed to lack of time, resources or knowledge of science. A proposal was written to the National Oceanic and Atmospheric Administration's Bay Watershed Education Grant program and funding was received for Bringing Science to Life for Students, Teachers and the Community to address these concerns and instill a sense of stewardship in our students. This program engages and energizes students in learning science and the protection of the SF Bay Watershed, provides staff development for teachers, and educates the community about conservation of our local watershed. The project includes a preparation phase, outdoor phase, an analysis and reporting phase, and teacher training and consists of two complete units: 1) The San Francisco Bay Watershed Unit and 2) the Marine Environment Unit. At the end of the three-year program, teachers were teaching more science, the community was engaged in conservation of the San Francisco Bay Watershed and most importantly, student scores increased on the California Science Test at one site by over 70% and another site by 120%.

  12. The Adopt-a-Herring program as a fisheries conservation tool

    USGS Publications Warehouse

    Frank, Holly J.; Mather, Martha E.; Muth, Robert M.; Pautzke, Sarah M.; Smith, Joseph M.; Finn, John T.

    2009-01-01

    Successful conservation depends on a scientifically literate public. We developed the adopt-a-Herring program to educate nonscientists about fisheries and watershed restoration. this interactive educational and outreach project encouraged coastal residents to be involved in local watershed restoration. In the northeastern United States, river herring (Alosa spp.) are an important component of many coastal watersheds and often are the object of conservation efforts. In order to understand river herring spawning behavior and to improve the effectiveness of restoration efforts, our research tracked these fish via radiotelemetry in the Ipswich River, Massachusetts. In our adopt-a-Herring Program, participating stakeholder organizations adopted and named individual tagged river herring and followed their movements online. We also made information available to our adopters on our larger research goals, the mission and activities of other research and management agencies, examples of human actions that adversely affect watersheds, and opportunities for proactive conservation. Research results were communicated to adopters through our project web page and end-of-the-season summary presentations. Both tools cultivated a personal interest in river herring, stimulated discussion about fisheries and watershed restoration, educated participants about the goals and methods of scientists in general, and initiated critical thinking about human activities that advance or impede sustainability.

  13. Holistic Watershed-Scale Approach for Studying Agricultural Chemicals

    NASA Astrophysics Data System (ADS)

    Capel, P. D.; Domagalski, J. L.

    2006-05-01

    The USGS National Water-Quality Assessment (NAWQA) Program studied the water quality of 51 areas across the United States during its first decade (1991-2001). Analyses of results from that phase of the NAWQA Program indicated that detailed studies of the processes affecting water quality could aid in the interpretation of these data, help to determine the direction and scope of future monitoring studies, and add to the understanding of the sources, transport and fate of non-point source chemicals, such as from agriculture. Now in the second decade of investigations, the NAWQA Program has initiated new process-based detailed studies to increase our understanding at the scale of a small watershed (about 3-15 square kilometers), nested within the larger basins studied during the first decade. The holistic, mass-budget approach for small agricultural watersheds that was adopted includes processes, and measures water and chemicals in the atmosphere, surface water, tile drains, overland flow, and within various sub-surface environments including the vadose, saturated, and hyporheic zones. The primary chemicals of interest were nutrients (nitrogen and phosphorous), the triazine and acetanilide herbicides, and the organophosphorus insecticides. Extensive field observations were made, and numerical models were developed to simulate important environmental compartments and interfaces associated with the transport and fate of agricultural chemicals. It is well recognized that these field measurements and simulations cannot fully achieve a full mass budget at this scale, but the approach provides a useful means for comparisons of various processes in different environmental settings. The results gained using this approach will add to the general knowledge of environmental transport and fate processes, and have transfer value to unstudied areas and different scales of investigation. The five initial study areas started in 2002, included watersheds in California, Indiana, Maryland, Nebraska and Washington. Two watersheds in Iowa and Mississippi were added in 2005. Each of these areas adopted the same general study design, but modified it slightly based on the local environmental setting. Consistent field and laboratory methods were used to enable direct comparison of results from each study area. This presentation of the study goals, design, and methods will serve as an introduction to other talks in this symposium.

  14. Modeling watershed-scale impacts of stormwater management with traditional versus low impact development design

    USGS Publications Warehouse

    Sparkman, Stephanie A.; Hogan, Dianna; Hopkins, Kristina G.; Loperfido, J. V.

    2017-01-01

    Stormwater runoff and associated pollutants from urban areas in the greater Chesapeake Bay Watershed (CBW) impair local streams and downstream ecosystems, despite urbanized land comprising only 7% of the CBW area. More recently, stormwater best management practices (BMPs) have been implemented in a low impact development (LID) manner to treat stormwater runoff closer to its source. This approach included the development of a novel BMP model to compare traditional and LID design, pioneering the use of comprehensively digitized storm sewer infrastructure and BMP design connectivity with spatial patterns in a geographic information system at the watershed scale. The goal was to compare total watershed pollutant removal efficiency in two study watersheds with differing spatial patterns of BMP design (traditional and LID), by quantifying the improved water quality benefit of LID BMP design. An estimate of uncertainty was included in the modeling framework by using ranges for BMP pollutant removal efficiencies that were based on the literature. Our model, using Monte Carlo analysis, predicted that the LID watershed removed approximately 78 kg more nitrogen, 3 kg more phosphorus, and 1,592 kg more sediment per square kilometer as compared with the traditional watershed on an annual basis. Our research provides planners a valuable model to prioritize watersheds for BMP design based on model results or in optimizing BMP selection.

  15. Workshop to transfer VELMA watershed model results to ...

    EPA Pesticide Factsheets

    An EPA Western Ecology Division (WED) watershed modeling team has been working with the Snoqualmie Tribe Environmental and Natural Resources Department to develop VELMA watershed model simulations of the effects of historical and future restoration and land use practices on streamflow, stream temperature, and other habitat characteristics affecting threatened salmon populations in the 100 square mile Tolt River watershed in Washington state. To date, the WED group has fully calibrated the watershed model to simulate Tolt River flows with a high degree of accuracy under current and historical conditions and practices, and is in the process of simulating long-term responses to specific watershed restoration practices conducted by the Snoqualmie Tribe and partners. On July 20-21 WED Researchers Bob McKane, Allen Brookes and ORISE Fellow Jonathan Halama will be attending a workshop at the Tolt River site in Carnation, WA, to present and discuss modeling results with the Snoqualmie Tribe and other Tolt River watershed stakeholders and land managers, including the Washington Departments of Ecology and Natural Resources, U.S. Forest Service, City of Seattle, King County, and representatives of the Northwest Indian Fisheries Commission. The workshop is being co-organized by the Snoqualmie Tribe, EPA Region 10 and WED. The purpose of this 2-day workshop is two-fold. First, on Day 1, the modeling team will perform its second site visit to the watershed, this time focus

  16. Mapping Land Use/Land Cover in the Ambos Nogales Study Area

    USGS Publications Warehouse

    Norman, Laura M.; Wallace, Cynthia S.A.

    2008-01-01

    The Ambos Nogales watershed, which surrounds the twin cities of Nogales, Arizona, United States and Nogales, Sonora, Mexico, has a history of problems related to flooding. This paper describes the process of creating a high-resolution, binational land-cover dataset to be used in modeling the Ambos Nogales watershed. The Automated Geospatial Watershed Assessment tool will be used to model the Ambos Nogales watershed to identify focal points for planning efforts and to anticipate ramifications of implementing detention reservoirs at certain watershed planes.

  17. Comparing the Hydrologic and Watershed Processes between a Full Scale Stochastic Model Versus a Scaled Physical Model of Bell Canyon

    NASA Astrophysics Data System (ADS)

    Hernandez, K. F.; Shah-Fairbank, S.

    2016-12-01

    The San Dimas Experimental Forest has been designated as a research area by the United States Forest Service for use as a hydrologic testing facility since 1933 to investigate watershed hydrology of the 27 square mile land. Incorporation of a computer model provides validity to the testing of the physical model. This study focuses on San Dimas Experimental Forest's Bell Canyon, one of the triad of watersheds contained within the Big Dalton watershed of the San Dimas Experimental Forest. A scaled physical model was constructed of Bell Canyon to highlight watershed characteristics and each's effect on runoff. The physical model offers a comprehensive visualization of a natural watershed and can vary the characteristics of rainfall intensity, slope, and roughness through interchangeable parts and adjustments to the system. The scaled physical model is validated and calibrated through a HEC-HMS model to assure similitude of the system. Preliminary results of the physical model suggest that a 50-year storm event can be represented by a peak discharge of 2.2 X 10-3 cfs. When comparing the results to HEC-HMS, this equates to a flow relationship of approximately 1:160,000, which can be used to model other return periods. The completion of the Bell Canyon physical model can be used for educational instruction in the classroom, outreach in the community, and further research using the model as an accurate representation of the watershed present in the San Dimas Experimental Forest.

  18. Distributed modeling of radiocesium washoff from the experimental watershed plots of the Fukushima fallout zone

    NASA Astrophysics Data System (ADS)

    Kivva, Sergei; Zheleznyak, Mark; Konoplev, Alexei; Nanba, Kenji; Onda, Yuichi; Wakiyama Yoshifumi Wakiyama, Yoshifumi

    2015-04-01

    The distributed hydrological "rainfall- runoff" models provide possibilities of the physically based simulation of surface and subsurface flow on watersheds based on the GIS processed data. The success of such modeling approaches for the predictions of the runoff and soil erosion provides a basis for the implementation of the distributed models of the radionuclide washoff from the watersheds. The field studies provided on the Chernobyl and Fukushima catchments provides a unique data sets for the comparative testing and improvements of the modeling tools for the watersheds located in the areas of the very different geographical and hydro-meteorological condition The set of USLE experimental plots has been established by CRIED, University of Tsukuba after the Fukushima accident to study soil erosion and 137Cs wash off from the watersheds (Onda et al, 2014). The distributed watershed models of surface and subsurface flow, sediment and radionuclide transport has been used to simulate the radionuclide transport in the basin Dnieper River, Ukraine and the watersheds of Prefecture Fuksuhima. DHSVM-R is extension of the distributed hydrological model DHSVM (Lettenmayer, Wigmosta et al, 1996-2014) by the including into it the module of the watershed radionuclide transport. DHSVM is a physically based, distributed hydrology-vegetation model for complex terrain based on the numerical solution of the network of one-dimensional equations. The surface flow submodel of DHSMV has been modified: four-directions schematization for the model's cells has been replaced by the eight-directions scheme, more numerically efficient finite -differences scheme was implemented. The new module of radionuclide wash-off from catchment and transport via stream network in soluble phase and on suspended sediments including bottom-water exchange processes was developed for DHSMV-R. DHSVM-R was implemented recently within Swedish- Ukrainian ENSURE project for the modeling of 234U wash-off from the watershed of Konoplyanka river, tributary of Dnieper Rivet at the territory of the Pridneprovsky Chemical) Plant and neighboring tailings dumps. The modeling results has been used for the assessment of the watershed's "hot spots" and analyses of the ways of the diminishing of the uranium wash off from the watersheds The testing of DHSMV-R has started in 2014 for Fukushima watershed experimental plots. The major amount of 137Cs is washed out from watershed on sediments and only small fraction in solute. The reason for such phenomenon that was not observed at Chernobyl can be - steeper slopes, more intensive rains ( daily maximum in Fukushima city at 160 mm, hourly maximum 69mm) and higher Kd values due to the volcanic kind of soils. The virtual rain of the daily amount 200 mm ( as in mountains around Fukushima city) was applied for Farmland A1- slope 7.36% and imaginary watershed (case B) the same as A1 however slope as in Chernobyl plots ( Konoplev, 1996) 4%. Due to the high nonlinearity in erosion equations for the such heavy precipitations the total amount of washed out 137Cs with sediments for the steep watershed A due to the simulated rainstorm ( 11530 Bq) is at 20 times higher, than such amount for mild slope watershed B ( 690 Bq) when the watershed A is only twice steeper than B. The modeling results demonstrate that the higher intensity of the extreme rainstorm in Fukushima area than in Chernobyl area initiated even on slightly steeper slopes the much higher amount of 137Cs washed out with sediments in Fukushima than in Chernobyl area. The successful testing of the distributed model provides the background for the simulation of the watersheds of the larger scales for small, medium and large rivers. The implementation of such models is important as for the forecasting of 137Cs wash out from the watersheds and following transport in rivers for the highest extreme floods that still did not happen in Fukushima area after the accident, as also for the long term forecasting of 137Cs in watershed-river systems at Fukushima.

  19. Application of large-scale, multi-resolution watershed modeling framework using the Hydrologic and Water Quality System (HAWQS)

    USDA-ARS?s Scientific Manuscript database

    In recent years, large-scale watershed modeling has been implemented broadly in the field of water resources planning and management. Complex hydrological, sediment, and nutrient processes can be simulated by sophisticated watershed simulation models for important issues such as water resources all...

  20. Comparison of computer models for estimating hydrology and water quality in an agricultural watershed

    USDA-ARS?s Scientific Manuscript database

    Various computer models, ranging from simple to complex, have been developed to simulate hydrology and water quality from field to watershed scales. However, many users are uncertain about which model to choose when estimating water quantity and quality conditions in a watershed. This study compared...

  1. A study of remote sensing as applied to regional and small watersheds. Volume 1: Summary report

    NASA Technical Reports Server (NTRS)

    Ambaruch, R.

    1974-01-01

    The accuracy of remotely sensed measurements to provide inputs to hydrologic models of watersheds is studied. A series of sensitivity analyses on continuous simulation models of three watersheds determined: (1)Optimal values and permissible tolerances of inputs to achieve accurate simulation of streamflow from the watersheds; (2) Which model inputs can be quantified from remote sensing, directly, indirectly or by inference; and (3) How accurate remotely sensed measurements (from spacecraft or aircraft) must be to provide a basis for quantifying model inputs within permissible tolerances.

  2. KINEROS2-AGWA: Model Use, Calibration, and Validation

    NASA Technical Reports Server (NTRS)

    Goodrich, D C.; Burns, I. S.; Unkrich, C. L.; Semmens, D. J.; Guertin, D. P.; Hernandez, M.; Yatheendradas, S.; Kennedy, J. R.; Levick, L. R..

    2013-01-01

    KINEROS (KINematic runoff and EROSion) originated in the 1960s as a distributed event-based model that conceptualizes a watershed as a cascade of overland flow model elements that flow into trapezoidal channel model elements. KINEROS was one of the first widely available watershed models that interactively coupled a finite difference approximation of the kinematic overland flow equations to a physically based infiltration model. Development and improvement of KINEROS continued from the 1960s on a variety of projects for a range of purposes, which has resulted in a suite of KINEROS-based modeling tools. This article focuses on KINEROS2 (K2), a spatially distributed, event-based watershed rainfall-runoff and erosion model, and the companion ArcGIS-based Automated Geospatial Watershed Assessment (AGWA) tool. AGWA automates the time-consuming tasks of watershed delineation into distributed model elements and initial parameterization of these elements using commonly available, national GIS data layers. A variety of approaches have been used to calibrate and validate K2 successfully across a relatively broad range of applications (e.g., urbanization, pre- and post-fire, hillslope erosion, erosion from roads, runoff and recharge, and manure transport). The case studies presented in this article (1) compare lumped to stepwise calibration and validation of runoff and sediment at plot, hillslope, and small watershed scales; and (2) demonstrate an uncalibrated application to address relative change in watershed response to wildfire.

  3. KINEROS2/AGWA: Model use, calibration and validation

    USGS Publications Warehouse

    Goodrich, D.C.; Burns, I.S.; Unkrich, C.L.; Semmens, Darius J.; Guertin, D.P.; Hernandez, M.; Yatheendradas, S.; Kennedy, Jeffrey R.; Levick, Lainie R.

    2012-01-01

    KINEROS (KINematic runoff and EROSion) originated in the 1960s as a distributed event-based model that conceptualizes a watershed as a cascade of overland flow model elements that flow into trapezoidal channel model elements. KINEROS was one of the first widely available watershed models that interactively coupled a finite difference approximation of the kinematic overland flow equations to a physically based infiltration model. Development and improvement of KINEROS continued from the 1960s on a variety of projects for a range of purposes, which has resulted in a suite of KINEROS-based modeling tools. This article focuses on KINEROS2 (K2), a spatially distributed, event-based watershed rainfall-runoff and erosion model, and the companion ArcGIS-based Automated Geospatial Watershed Assessment (AGWA) tool. AGWA automates the time-consuming tasks of watershed delineation into distributed model elements and initial parameterization of these elements using commonly available, national GIS data layers. A variety of approaches have been used to calibrate and validate K2 successfully across a relatively broad range of applications (e.g., urbanization, pre- and post-fire, hillslope erosion, erosion from roads, runoff and recharge, and manure transport). The case studies presented in this article (1) compare lumped to stepwise calibration and validation of runoff and sediment at plot, hillslope, and small watershed scales; and (2) demonstrate an uncalibrated application to address relative change in watershed response to wildfire.

  4. Development and testing of watershed-scale models for poorly drained soils

    Treesearch

    Glenn P. Fernandez; George M. Chescheir; R. Wayne Skaggs; Devendra M. Amatya

    2005-01-01

    Watershed-scale hydrology and water quality models were used to evaluate the crrmulative impacts of land use and management practices on dowrzstream hydrology and nitrogen loading of poorly drained watersheds. Field-scale hydrology and nutrient dyyrutmics are predicted by DRAINMOD in both models. In the first model (DRAINMOD-DUFLOW), field-scale predictions are coupled...

  5. Reducing nonpoint source pollution through collaboration: policies and programs across the U.S. States.

    PubMed

    Hardy, Scott D; Koontz, Tomas M

    2008-03-01

    Nonpoint source (NPS) pollution has emerged as the largest threat to water quality in the United States, influencing policy makers and resource managers to direct more attention toward NPS prevention and remediation. In response, the United States Environmental Protection Agency (USEPA) spent more than $204 million in fiscal year (FY) 2006 on the Clean Water Act's Section 319 program to combat NPS pollution, much of it on the development and implementation of watershed-based plans. State governments have also increasingly allocated financial and technical resources to collaborative watershed efforts within their own borders to fight NPS pollution. With increased collaboration among the federal government, states, and citizens to combat NPS pollution, more information is needed to understand how public resources are being used, by whom, and for what, and what policy changes might improve effectiveness. Analysis from a 50-state study suggests that, in addition to the average 35% of all Section 319 funds per state that are passed on to collaborative watershed groups, 35 states have provided financial assistance beyond Section 319 funding to support collaborative watershed initiatives. State programs frequently provide technical assistance and training, in addition to financial resources, to encourage collaborative partnerships. Such assistance is typically granted in exchange for requirements to generate a watershed action plan and/or follow a mutually agreed upon work plan to address NPS pollution. Program managers indicated a need for greater fiscal resources and flexibility to achieve water quality goals.

  6. Estimation of runoff and sediment yield in the Redrock Creek watershed using AnnAGNPS and GIS

    USGS Publications Warehouse

    Tsou, Ming‐shu; Zhan, X.-Y.

    2004-01-01

    Sediment has been identified as a significant threat to water quality and channel clogging that in turn may lead to river flooding. With the increasing awareness of the impairment from sediment to water bodies in a watershed, identifying the locations of the major sediment sources and reducing the sediment through management practices will be important for an effective watershed management. The annualized agricultural non-point source pollution (AnnAGNPS) model and newly developed GIS interface for it were applied in a small agricultural watershed, Redrock Creek watershed, Kansas, in this pilot study for exploring the effectiveness of using this model as a management tool. The calibrated model appropriately simulated monthly runoff and sediment yield through the practices in this study and potentially suggested the ways of sediment reduction through evaluating the changes of land use and field operation in the model for the purpose of watershed management.

  7. Application of a DRAINMOD-based watershed model to a lower coastal plain watershed

    Treesearch

    Glenn P. Fernandez; George M. Chescheir; R. Wayne Skaggs; Devendra M. Amatya

    2003-01-01

    This is a case study for applying DRAINMOD-GIS, a DRAINMOD based lumped parameter watershed model to Chicod Creek, a 11300 ha coastal plain watershed in North Carolina which is not intensively instrumented or documented. The study utilized the current database of land-use, topography, stream network, soil, and weather data available to the State and Federal agencies....

  8. Simulation of runoff and water quality for 1990 and 2008 land use conditions in the Reedy Creek watershed, East-Central Florida

    USGS Publications Warehouse

    Wicklein, Shaun M.; Schiffer, Donna M.

    2002-01-01

    Hydrologic and water-quality data have been collected within the 177-square-mile Reedy Creek, Florida, watershed, beginning as early as 1939, but the data have not been used to evaluate relations among land use, hydrology, and water quality. A model of the Reedy Creek watershed was developed and applied to the period January 1990 to December 1995 to provide a computational foundation for evaluating the effects of future land-use changes on hydrology and water quality in the watershed. The Hydrological Simulation Program-Fortran (HSPF) model was used to simulate hydrology and water quality of runoff for pervious land areas, impervious land areas, and stream reaches. Six land-use types were used to characterize the hydrology and water quality of pervious and impervious land areas in the Reedy Creek watershed: agriculture, rangeland, forest, wetlands, rapid infiltration basins, and urban areas. Hydrologic routing and water-quality reactions were simulated to characterize hydrologic and water-quality processes and the movement of runoff and its constituents through the main stream channels and their tributaries. Because of the complexity of the stream system within the Reedy Creek Improvement District (RCID) (hydraulic structures, retention ponds) and the anticipated difficulty of modeling the system, an approach of calibrating the model parameters for a subset of the gaged watersheds and confirming the usefulness of the parameters by simulating the remainder of the gaged sites was selected for this study. Two sub-watersheds (Whittenhorse Creek and Davenport Creek) were selected for calibration because both have similar land use to watersheds within the RCID (with the exception of urban areas). Given the lack of available rainfall data, the hydrologic calibration of the Whittenhorse Creek and Davenport Creek sub-watersheds was considered acceptable (for monthly data, correlation coefficients, 0.86 and 0.88, and coefficients of model-fit efficiency, 0.72 and 0.74, respectively). The hydrologic model was tested by applying the parameter sets developed for Whittenhorse Creek and Davenport Creek to other land areas within the Reedy Creek watershed, and by comparing the simulated results to observed data sets for Reedy Creek near Vineland, Bonnet Creek near Vineland, and Reedy Creek near Loughman. The hydrologic model confirmation for Reedy Creek near Vineland (correlation coefficient, 0.91, and coefficient of model fit efficiency, 0.78, for monthly flows) was acceptable. Flows for Bonnet Creek near Vineland were substantially under simulated. Consideration of the ground-water contribution to Bonnet Creek could improve the water balance simulation for Bonnet Creek near Vineland. On longer time scales (monthly or over the 72-month simulation period), simulated discharges for Reedy Creek near Loughman agreed well with observed data (correlation coefficient, 0.88). For monthly flows the coefficient of model-fit efficiency was 0.77. On a shorter time scale (less than a month), however, storm volumes were greatly over simulated and low flows (less than 8 cubic feet per second) were greatly under simulated. A primary reason for the poor results at low flows is the diversion of an unknown amount of water from the RCID at the Bonnet Creek near Kissimmee site. Selection of water-quality constituents for simulation was based primarily on the availability of water-quality data. Dissolved oxygen, nitrogen, and phosphorus species were simulated. Representation of nutrient cycling in HSPF also required simulation of biochemical oxygen demand and phytoplankton populations. The correlation coefficient for simulated and observed daily mean dissolved oxygen concentration values at Reedy Creek near Vineland was 0.633. Simulated time series of total phosphorus, phosphate, ammonia nitrogen, and nitrate nitrogen generally agreed well with periodically observed values for the Whittenhorse Creek and Davenport Creek sites. Simulated water-quality c

  9. A comparison of results from a hydrologic transport model (HSPF) with distributions of sulfate and mercury in a mine-impacted watershed in northeastern Minnesota.

    PubMed

    Berndt, Michael E; Rutelonis, Wes; Regan, Charles P

    2016-10-01

    The St. Louis River watershed in northeast Minnesota hosts a major iron mining district that has operated continuously since the 1890s. Concern exists that chemical reduction of sulfate that is released from mines enhances the methylation of mercury in the watershed, leading to increased mercury concentrations in St. Louis River fish. This study tests this idea by simulating the behavior of chemical tracers using a hydrologic flow model (Hydrologic Simulation Program FORTRAN; HSPF) and comparing the results with measured chemistry from several key sites located both upstream and downstream from the mining region. It was found that peaks in measured methylmercury (MeHg), total mercury (THg), dissolved organic carbon (DOC), and dissolved iron (Fe) concentrations correspond to periods in time when modeled recharge was dominated by active groundwater throughout the watershed. This helps explain why the timing and size of the MeHg peaks was nearly the same at sites located just upstream and downstream from the mining region. Both the modeled percentages of mine water and the measured sulfate concentrations were low and computed transit times were short for sites downstream from the mining region at times when measured MeHg reached its peak. Taken together, the data and flow model imply that MeHg is released into groundwater that recharges the river through riparian sediments following periods of elevated summer rainfall. The measured sulfate concentrations at the upstream site reached minimum concentrations of approximately 1 mg/L just as MeHg reached its peak, suggesting that reduction of sulfate from non-point sources exerts an important influence on MeHg concentrations at this site. While mines are the dominant source of sulfate to sites downstream from them, it appears that the background sulfate which is present at only 1-6 mg/L, has the largest influence on MeHg concentrations. This is because point sourced sulfate is transported generally under oxidized conditions and is not flushed through riparian sediments in a gaining stream watershed system. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Removing Mercury in the Guadalupe River Watershed Project

    EPA Pesticide Factsheets

    Information about the SFBWQP Removing Mercury in the Guadalupe River Watershed Project, part of an EPA competitive grant program to improve SF Bay water quality focused on restoring impaired waters and enhancing aquatic resources.

  11. Updated estimates of long-term average dissolved-solids loading in streams and rivers of the Upper Colorado River Basin

    USGS Publications Warehouse

    Tillman, Fred D.; Anning, David W.

    2014-01-01

    The Colorado River and its tributaries supply water to more than 35 million people in the United States and 3 million people in Mexico, irrigating over 4.5 million acres of farmland, and annually generating about 12 billion kilowatt hours of hydroelectric power. The Upper Colorado River Basin, part of the Colorado River Basin, encompasses more than 110,000 mi2 and is the source of much of more than 9 million tons of dissolved solids that annually flows past the Hoover Dam. High dissolved-solids concentrations in the river are the cause of substantial economic damages to users, primarily in reduced agricultural crop yields and corrosion, with damages estimated to be greater than 300 million dollars annually. In 1974, the Colorado River Basin Salinity Control Act created the Colorado River Basin Salinity Control Program to investigate and implement a broad range of salinity control measures. A 2009 study by the U.S. Geological Survey, supported by the Salinity Control Program, used the Spatially Referenced Regressions on Watershed Attributes surface-water quality model to examine dissolved-solids supply and transport within the Upper Colorado River Basin. Dissolved-solids loads developed for 218 monitoring sites were used to calibrate the 2009 Upper Colorado River Basin Spatially Referenced Regressions on Watershed Attributes dissolved-solids model. This study updates and develops new dissolved-solids loading estimates for 323 Upper Colorado River Basin monitoring sites using streamflow and dissolved-solids concentration data through 2012, to support a planned Spatially Referenced Regressions on Watershed Attributes modeling effort that will investigate the contributions to dissolved-solids loads from irrigation and rangeland practices.

  12. Optimal land use management for soil erosion control by using an interval-parameter fuzzy two-stage stochastic programming approach.

    PubMed

    Han, Jing-Cheng; Huang, Guo-He; Zhang, Hua; Li, Zhong

    2013-09-01

    Soil erosion is one of the most serious environmental and public health problems, and such land degradation can be effectively mitigated through performing land use transitions across a watershed. Optimal land use management can thus provide a way to reduce soil erosion while achieving the maximum net benefit. However, optimized land use allocation schemes are not always successful since uncertainties pertaining to soil erosion control are not well presented. This study applied an interval-parameter fuzzy two-stage stochastic programming approach to generate optimal land use planning strategies for soil erosion control based on an inexact optimization framework, in which various uncertainties were reflected. The modeling approach can incorporate predefined soil erosion control policies, and address inherent system uncertainties expressed as discrete intervals, fuzzy sets, and probability distributions. The developed model was demonstrated through a case study in the Xiangxi River watershed, China's Three Gorges Reservoir region. Land use transformations were employed as decision variables, and based on these, the land use change dynamics were yielded for a 15-year planning horizon. Finally, the maximum net economic benefit with an interval value of [1.197, 6.311] × 10(9) $ was obtained as well as corresponding land use allocations in the three planning periods. Also, the resulting soil erosion amount was found to be decreased and controlled at a tolerable level over the watershed. Thus, results confirm that the developed model is a useful tool for implementing land use management as not only does it allow local decision makers to optimize land use allocation, but can also help to answer how to accomplish land use changes.

  13. Optimal Land Use Management for Soil Erosion Control by Using an Interval-Parameter Fuzzy Two-Stage Stochastic Programming Approach

    NASA Astrophysics Data System (ADS)

    Han, Jing-Cheng; Huang, Guo-He; Zhang, Hua; Li, Zhong

    2013-09-01

    Soil erosion is one of the most serious environmental and public health problems, and such land degradation can be effectively mitigated through performing land use transitions across a watershed. Optimal land use management can thus provide a way to reduce soil erosion while achieving the maximum net benefit. However, optimized land use allocation schemes are not always successful since uncertainties pertaining to soil erosion control are not well presented. This study applied an interval-parameter fuzzy two-stage stochastic programming approach to generate optimal land use planning strategies for soil erosion control based on an inexact optimization framework, in which various uncertainties were reflected. The modeling approach can incorporate predefined soil erosion control policies, and address inherent system uncertainties expressed as discrete intervals, fuzzy sets, and probability distributions. The developed model was demonstrated through a case study in the Xiangxi River watershed, China's Three Gorges Reservoir region. Land use transformations were employed as decision variables, and based on these, the land use change dynamics were yielded for a 15-year planning horizon. Finally, the maximum net economic benefit with an interval value of [1.197, 6.311] × 109 was obtained as well as corresponding land use allocations in the three planning periods. Also, the resulting soil erosion amount was found to be decreased and controlled at a tolerable level over the watershed. Thus, results confirm that the developed model is a useful tool for implementing land use management as not only does it allow local decision makers to optimize land use allocation, but can also help to answer how to accomplish land use changes.

  14. What is the effect of LiDAR-derived DEM resolution on large-scale watershed model results?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ping Yang; Daniel B. Ames; Andre Fonseca

    This paper examines the effect of raster cell size on hydrographic feature extraction and hydrological modeling using LiDAR derived DEMs. LiDAR datasets for three experimental watersheds were converted to DEMs at various cell sizes. Watershed boundaries and stream networks were delineated from each DEM and were compared to reference data. Hydrological simulations were conducted and the outputs were compared. Smaller cell size DEMs consistently resulted in less difference between DEM-delineated features and reference data. However, minor differences been found between streamflow simulations resulted for a lumped watershed model run at daily simulations aggregated at an annual average. These findings indicatemore » that while higher resolution DEM grids may result in more accurate representation of terrain characteristics, such variations do not necessarily improve watershed scale simulation modeling. Hence the additional expense of generating high resolution DEM's for the purpose of watershed modeling at daily or longer time steps may not be warranted.« less

  15. Development of a comprehensive watershed model applied to study stream yield under drought conditions

    USGS Publications Warehouse

    Perkins, S.P.; Sophocleous, M.

    1999-01-01

    We developed a model code to simulate a watershed's hydrology and the hydraulic response of an interconnected stream-aquifer system, and applied the model code to the Lower Republican River Basin in Kansas. The model code links two well-known computer programs: MODFLOW (modular 3-D flow model), which simulates ground water flow and stream-aquifer interaction; and SWAT (soil water assessment tool), a soil water budget simulator for an agricultural watershed. SWAT represents a basin as a collection of subbasins in terms of soil, land use, and weather data, and simulates each subbasin on a daily basis to determine runoff, percolation, evaporation, irrigation, pond seepages and crop growth. Because SWAT applies a lumped hydrologic model to each subbasin, spatial heterogeneities with respect to factors such as soil type and land use are not resolved geographically, but can instead be represented statistically. For the Republican River Basin model, each combination of six soil types and three land uses, referred to as a hydrologic response unit (HRU), was simulated with a separate execution of SWAT. A spatially weighted average was then taken over these results for each hydrologic flux and time step by a separate program, SWBAVG. We wrote a package for MOD-FLOW to associate each subbasin with a subset of aquifer grid cells and stream reaches, and to distribute the hydrologic fluxes given for each subbasin by SWAT and SWBAVG over MODFLOW's stream-aquifer grid to represent tributary flow, surface and ground water diversions, ground water recharge, and evapotranspiration from ground water. The Lower Republican River Basin model was calibrated with respect to measured ground water levels, streamflow, and reported irrigation water use. The model was used to examine the relative contributions of stream yield components and the impact on stream yield and base flow of administrative measures to restrict irrigation water use during droughts. Model results indicate that tributary flow is the dominant component of stream yield and that reduction of irrigation water use produces a corresponding increase in base flow and stream yield. However, the increase in stream yield resulting from reduced water use does not appear to be of sufficient magnitude to restore minimum desirable streamflows.

  16. Grays River Watershed and Biological Assessment Final Report 2006.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    May, Christopher W.; McGrath, Kathleen E.; Geist, David R.

    2008-02-04

    The Grays River Watershed and Biological Assessment was funded to address degradation and loss of spawning habitat for chum salmon (Onchorhynchus keta) and fall Chinook salmon (Onchoryhnchus tshawytscha). In 1999, the National Marine Fisheries Service listed lower Columbia River chum salmon as a threatened Evolutionarily Significant Unit (ESU) under the Endangered Species Act of 1973 (ESA). The Grays River watershed is one of two remaining significant chum salmon spawning locations in this ESU. Runs of Grays River chum and Chinook salmon have declined significantly during the past century, largely because of damage to spawning habitat associated with timber harvest andmore » agriculture in the watershed. In addition, approximately 20-25% of the then-remaining chum salmon spawning habitat was lost during a 1999 channel avulsion that destroyed an important artificial spawning channel operated by the Washington Department of Fish and Wildlife (WDFW). Although the lack of stable, high-quality spawning habitat is considered the primary physical limitation on Grays River chum salmon production today, few data are available to guide watershed management and channel restoration activities. The objectives of the Grays River Watershed and Biological Assessment project were to (1) perform a comprehensive watershed and biological analysis, including hydrologic, geomorphic, and ecological assessments; (2) develop a prioritized list of actions that protect and restore critical chum and Chinook salmon spawning habitat in the Grays River based on comprehensive geomorphic, hydrologic, and stream channel assessments; and (3) gain a better understanding of chum and Chinook salmon habitat requirements and survival within the lower Columbia River and the Grays River. The watershed-based approach to river ecosystem restoration relies on a conceptual framework that describes general relationships between natural landscape characteristics, watershed-scale habitat-forming processes, aquatic habitat conditions, and biological integrity. In addition, human land-use impacts are factored into the conceptual model because they can alter habitat quality and can disrupt natural habitat-forming processes. In this model (Figure S.1), aquatic habitat--both instream and riparian--is viewed as the link between watershed conditions and biologic responses. Based on this conceptual model, assessment of habitat loss and the resultant declines in salmonid populations can be conducted by relating current and historical (e.g., natural) habitat conditions to salmonid utilization, diversity, and abundance. In addition, assessing disrupted ecosystem functions and processes within the watershed can aid in identifying the causes of habitat change and the associated decline in biological integrity. In this same way, restoration, enhancement, and conservation projects can be identified and prioritized. A watershed assessment is primarily a landscape-scale evaluation of current watershed conditions and the associated hydrogeomorphic riverine processes. The watershed assessment conducted for this project focused on watershed processes that form and maintain salmonid habitat. Landscape metrics describing the level of human alteration of natural ecosystem attributes were used as indicators of water quality, hydrology, channel geomorphology, instream habitat, and biotic integrity. Ecological (watershed) processes are related to and can be predicted based on specific aspects of spatial pattern. This study evaluated the hydrologic regime, sediment delivery regime, and riparian condition of the sub-watersheds that comprise the upper Grays River watershed relative to their natural range of conditions. Analyses relied primarily on available geographic information system (GIS) data describing landscape characteristics such as climate, vegetation type and maturity, geology and soils, topography, land use, and road density. In addition to watershed-scale landscape characteristics, the study area was also evaluated on the riparian scale, with appropriate landscape variables analyzed within riparian buffers around each stream or river channel. Included in the overall watershed assessment are field habitat surveys and analyses of the physical and hydrological characteristics of primary chum and fall Chinook salmon spawning areas and spawning habitat availability and use. This assessment is a significant step in a comprehensive program to ensure the survival and recovery of Columbia River chum salmon in its most productive system and builds on existing recovery planning efforts for these ESA-listed salmonids within the Grays River and the lower Columbia River. This assessment also provides a basis for the recovery of other fish species in the Grays River, including coho salmon, winter steelhead, coastal cutthroat trout, and Pacific lamprey.« less

  17. Grays River Watershed and Biological Assessment, 2006 Final Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    May, Christopher; Geist, David

    2007-04-01

    The Grays River Watershed and Biological Assessment was funded to address degradation and loss of spawning habitat for chum salmon (Onchorhynchus keta) and fall Chinook salmon (Onchoryhnchus tshawytscha). In 1999, the National Marine Fisheries Service listed lower Columbia River chum salmon as a threatened Evolutionarily Significant Unit (ESU) under the Endangered Species Act of 1973 (ESA). The Grays River watershed is one of two remaining significant chum salmon spawning locations in this ESU. Runs of Grays River chum and Chinook salmon have declined significantly during the past century, largely because of damage to spawning habitat associated with timber harvest andmore » agriculture in the watershed. In addition, approximately 20-25% of the then-remaining chum salmon spawning habitat was lost during a 1999 channel avulsion that destroyed an important artificial spawning channel operated by the Washington Department of Fish and Wildlife (WDFW). Although the lack of stable, high-quality spawning habitat is considered the primary physical limitation on Grays River chum salmon production today, few data are available to guide watershed management and channel restoration activities. The objectives of the Grays River Watershed and Biological Assessment project were to (1) perform a comprehensive watershed and biological analysis, including hydrologic, geomorphic, and ecological assessments; (2) develop a prioritized list of actions that protect and restore critical chum and Chinook salmon spawning habitat in the Grays River based on comprehensive geomorphic, hydrologic, and stream channel assessments; and (3) gain a better understanding of chum and Chinook salmon habitat requirements and survival within the lower Columbia River and the Grays River. The watershed-based approach to river ecosystem restoration relies on a conceptual framework that describes general relationships between natural landscape characteristics, watershed-scale habitat-forming processes, aquatic habitat conditions, and biological integrity. In addition, human land-use impacts are factored into the conceptual model because they can alter habitat quality and can disrupt natural habitat forming processes. In this model (Figure S.1), aquatic habitat--both instream and riparian--is viewed as the link between watershed conditions and biologic responses. Based on this conceptual model, assessment of habitat loss and the resultant declines in salmonid populations can be conducted by relating current and historical (e.g., natural) habitat conditions to salmonid utilization, diversity, and abundance. In addition, assessing disrupted ecosystem functions and processes within the watershed can aid in identifying the causes of habitat change and the associated decline in biological integrity. In this same way, restoration, enhancement, and conservation projects can be identified and prioritized. A watershed assessment is primarily a landscape-scale evaluation of current watershed conditions and the associated hydrogeomorphic riverine processes. The watershed assessment conducted for this project focused on watershed processes that form and maintain salmonid habitat. Landscape metrics describing the level of human alteration of natural ecosystem attributes were used as indicators of water quality, hydrology, channel geomorphology, instream habitat, and biotic integrity. Ecological (watershed) processes are related to and can be predicted based on specific aspects of spatial pattern. This study evaluated the hydrologic regime, sediment delivery regime, and riparian condition of the sub-watersheds that comprise the upper Grays River watershed relative to their natural range of conditions. Analyses relied primarily on available geographic information system (GIS) data describing landscape characteristics such as climate, vegetation type and maturity, geology and soils, topography, land use, and road density. In addition to watershed-scale landscape characteristics, the study area was also evaluated on the riparian scale, with appropriate landscape variables analyzed within riparian buffers around each stream or river channel. Included in the overall watershed assessment are field habitat surveys and analyses of the physical and hydrological characteristics of primary chum and fall Chinook salmon spawning areas and spawning habitat availability and use. This assessment is a significant step in a comprehensive program to ensure the survival and recovery of Columbia River chum salmon in its most productive system and builds on existing recovery planning efforts for these ESA-listed salmonids within the Grays River and the lower Columbia River. This assessment also provides a basis for the recovery of other fish species in the Grays River, including coho salmon, winter steelhead, coastal cutthroat trout, and Pacific lamprey.« less

  18. Assessment of Runoff and Sediment Yields Using the AnnAGNPS Model from the Daning River Watershed in Three-Gorge Area of China

    EPA Science Inventory

    Soil erosion has been recognized as one of the major threats to our environment and water quality worldwide, especially in China. To mitigate nonpoint source water quality problems caused by soil erosion, best management practices (BMPs) and/or conservation programs have been ado...

  19. Seeing Eye-to-Eye on Natural Resource Management: Trust, Value Similarity, and Action Consistency / Justification

    Treesearch

    George T. Cvetkovich; Patricia L. Winter

    2004-01-01

    A series of natural resource management studies has explored a salient values similarity model of trust introduced by Earle & Cvetkovich (1995). Forest Service management topics investigated by these studies include acceptance of a proposed forest research program, evaluations of management interventions to protect a watershed, acceptance of a proposed fee...

  20. Modeling and measuring snow for assessing climate change impacts in Glacier National Park, Montana

    USGS Publications Warehouse

    Fagre, Daniel B.; Selkowitz, David J.; Reardon, Blase; Holzer, Karen; Mckeon, Lisa L.

    2002-01-01

    A 12-year program of global change research at Glacier National Park by the U.S. Geological Survey and numerous collaborators has made progress in quantifying the role of snow as a driver of mountain ecosystem processes. Spatially extensive snow surveys during the annual accumulation/ablation cycle covered two mountain watersheds and approximately 1,000 km2 . Over 7,000 snow depth and snow water equivalent (SWE) measurements have been made through spring 2002. These augment two SNOTEL sites, 9 NRCS snow courses, and approximately 150 snow pit analyses. Snow data were used to establish spatially-explicit interannual variability in snowpack SWE. East of the Continental Divide, snowpack SWE was lower but also less variable than west of the Divide. Analysis of snowpacks suggest downward trends in SWE, a reduction in snow cover duration, and earlier melt-out dates during the past 52 years. Concurrently, high elevation forests and treelines have responded with increased growth. However, the 80 year record of snow from 3 NRCS snow courses reflects a strong influence from the Pacific Decadal Oscillation, resulting in 20-30 year phases of greater or lesser mean SWE. Coupled with the fine-resolution spatial snow data from the two watersheds, the ecological consequences of changes in snowpack can be empirically assessed at a habitat patch scale. This will be required because snow distribution models have had varied success in simulating snowpack accumulation/ablation dynamics in these mountain watersheds, ranging from R2=0.38 for individual south-facing forested snow survey routes to R2=0.95 when aggregated to the watershed scale. Key ecological responses to snowpack changes occur below the watershed scale, such as snow-mediated expansion of forest into subalpine meadows, making continued spatially-explicit snow surveys a necessity. 

  1. An eleven-year validation of a physically-based distributed dynamic ecohydorological model tRIBS+VEGGIE: Walnut Gulch Experimental Watershed

    NASA Astrophysics Data System (ADS)

    Sivandran, G.; Bisht, G.; Ivanov, V. Y.; Bras, R. L.

    2008-12-01

    A coupled, dynamic vegetation and hydrologic model, tRIBS+VEGGIE, was applied to the semiarid Walnut Gulch Experimental Watershed in Arizona. The physically-based, distributed nature of the coupled model allows for parameterization and simulation of watershed vegetation-water-energy dynamics on timescales varying from hourly to interannual. The model also allows for explicit spatial representation of processes that vary due to complex topography, such as lateral redistribution of moisture and partitioning of radiation with respect to aspect and slope. Model parameterization and forcing was conducted using readily available databases for topography, soil types, and land use cover as well as the data from network of meteorological stations located within the Walnut Gulch watershed. In order to test the performance of the model, three sets of simulations were conducted over an 11 year period from 1997 to 2007. Two simulations focus on heavily instrumented nested watersheds within the Walnut Gulch basin; (i) Kendall watershed, which is dominated by annual grasses; and (ii) Lucky Hills watershed, which is dominated by a mixture of deciduous and evergreen shrubs. The third set of simulations cover the entire Walnut Gulch Watershed. Model validation and performance were evaluated in relation to three broad categories; (i) energy balance components: the network of meteorological stations were used to validate the key energy fluxes; (ii) water balance components: the network of flumes, rain gauges and soil moisture stations installed within the watershed were utilized to validate the manner in which the model partitions moisture; and (iii) vegetation dynamics: remote sensing products from MODIS were used to validate spatial and temporal vegetation dynamics. Model results demonstrate satisfactory spatial and temporal agreement with observed data, giving confidence that key ecohydrological processes can be adequately represented for future applications of tRIBS+VEGGIE in regional modeling of land-atmosphere interactions.

  2. Evaluating the Effectiveness of Agricultural Management Practices under Climate Change for Water Quality Improvement in a Rural Agricultural Watershed of Oklahoma, USA

    NASA Astrophysics Data System (ADS)

    Rasoulzadeh Gharibdousti, S.; Kharel, G.; Stoecker, A.; Storm, D.

    2016-12-01

    One of the main causes of water quality impairment in the United States is human induced Non-Point Source (NPS) pollution through intensive agriculture. Fort Cobb Reservoir (FCR) watershed located in west-central Oklahoma, United States is a rural agricultural catchment with known issues of NPS pollution including suspended solids, siltation, nutrients, and pesticides. The FCR watershed with an area of 813 km2 includes one major lake fed by four tributaries. Recently, several Best Management Practices (BMPs) have been implemented in the watershed (such as no-tillage and cropland to grassland conversion) to improve water quality. In this study we aim to estimate the effectiveness of different BMPs in improving watershed health under future climate projections. We employed the Soil and Water Assessment Tool (SWAT) to develop the hydrological model of the FCR watershed. The watershed was delineated using the 10 m USGS Digital Elevation Model and divided into 43 sub-basins with an average area of 8 km2 (min. 0.2 km2 - max. 28 km2). Through a combination of Soil Survey Geographic Database- SSURGO soil data, the US Department of Agriculture crop layer and the slope information, the watershed was further divided into 1,217 hydrologic response units. The historical climate pattern in the watershed was represented by two different weather stations. The model was calibrated (1991 - 2000) and validated (2001 - 2010) against the monthly USGS observations of streamflow recorded at the watershed outlet using three statistical matrices: coefficient of determination (R2), Nash-Sutcliffe efficiency (NS) and percentage bias (PB). Model parametrization resulted into satisfactory values of R2 (0.56) and NS (0.56) in calibration period and an excellent model performance (R2 = 0.75; NS = 0.75; PB = <1) in validation period. We have selected 19 BMPs to estimate their efficacy in terms of water and sediment yields under a combination of three Coupled Model Intercomparison Project-5 Global Climate Model projections and two concentration pathways (4.5 and 8.5) downscaled to the FCR watershed. The model results provide precise information for stakeholders to prioritize ecologically sound and economically feasible BMPs that are capable of mitigating future climate change impacts at the watershed scale.

  3. Pathogen transport and fate modeling in the Upper Salem River Watershed using SWAT model.

    PubMed

    Niazi, Mehran; Obropta, Christopher; Miskewitz, Robert

    2015-03-15

    Simulation of the fate and transport of pathogen contamination was conducted with SWAT for the Upper Salem River Watershed, located in Salem County, New Jersey. This watershed is 37 km(2) and land uses are predominantly agricultural. The watershed drains to a 32 km stretch of the Salem River upstream of the head of tide. This strech is identified on the 303(d) list as impaired for pathogens. The overall goal of this research was to use SWAT as a tool to help to better understand how two pathogen indicators (Escherichia coli and fecal coliform) are transported throughout the watershed, by determining the model parameters that control the fate and transport of these two indicator species. This effort was the first watershed modeling attempt with SWAT to successfully simulate E. coli and fecal coliform simultaneously. Sensitivity analysis has been performed for flow as well as fecal coliform and E. coli. Hydrologic calibration at six sampling locations indicate that the model provides a "good" prediction of watershed outlet flow (E = 0.69) while at certain upstream calibration locations predictions are less representative (0.32 < E < 0.70). Monthly calibration and validation of the pathogen transport and fate model was conducted for both fecal coliform (0.07 < E < 0.47 and -0.94 < E < 0.33) and E. coli (0.03 < E < 0.39 and -0.81 < E < 0.31) for the six sampling points. The fit of the model compared favorably with many similar pathogen modeling efforts. The research contributes new knowledge in E. coli and fecal coliform modeling and will help increase the understanding of sensitivity analysis and pathogen modeling with SWAT at the watershed scale. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Landowner preferences for wetlands conservation programs in two Southern Ontario watersheds.

    PubMed

    Trenholm, Ryan; Haider, Wolfgang; Lantz, Van; Knowler, Duncan; Haegeli, Pascal

    2017-09-15

    Wetlands in the region of Southern Ontario, Canada have declined substantially from their historic area. Existing regulations and programs have not abated this decline. However, reversing this trend by protecting or restoring wetlands will increase the supply of important ecosystem services. In particular, these actions will contribute to moderating the impacts of extreme weather predicted to result from climate change as well as reducing phosphorous loads in Lake Erie and ensuing eutrophication. Since the majority of land in the region is privately owned, landowners can play an important role. Thus, we assessed landowner preferences for voluntary incentive-based wetlands conservation programs using separate choice experiments mailed to farm and non-farm landowners in the Grand River and Upper Thames River watersheds. Latent class models were separately estimated for the two data sets. Marginal willingness to accept, compensating surplus, and participation rates were estimated from the resulting models to gain insight into the financial compensation required by landowners and their potential participation. Many of the participating landowners appear willing to participate in wetlands conservation at reasonable cost, with more willing groups notably marked by past participation in incentive-based conservation programs. They generally favor wetlands conservation programs that divert smaller areas of land to wetlands conservation, target marginal agricultural land, use treed buffers to protect wetlands, offer technical help, and pay financial incentives. However, landowners appear reluctant to receive public recognition of their wetland conservation actions. Our results are of interest to natural resource managers designing or refining wetlands conservation programs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Modelling of the estimated contributions of different sub-watersheds and sources to phosphorous export and loading from the Dongting Lake watershed, China.

    PubMed

    Hou, Ying; Chen, Weiping; Liao, Yuehua; Luo, Yueping

    2017-11-03

    Considerable growth in the economy and population of the Dongting Lake watershed in Southern China has increased phosphorus loading to the lake and resulted in a growing risk of lake eutrophication. This study aimed to reveal the spatial pattern and sources of phosphorus export and loading from the watershed. We applied an export coefficient model and the Dillon-Rigler model to quantify contributions of different sub-watersheds and sources to the total phosphorus (TP) export and loading in 2010. Together, the upper and lower reaches of the Xiang River watershed and the Dongting Lake Area contributed 60.9% of the TP exported from the entire watershed. Livestock husbandry appeared to be the largest anthropogenic source of TP, contributing more than 50% of the TP exported from each secondary sub-watersheds. The actual TP loading to the lake in 2010 was 62.9% more than the permissible annual TP loading for compliance with the Class III water quality standard for lakes. Three primary sub-watersheds-the Dongting Lake Area, the Xiang River, and the Yuan River watersheds-contributed 91.2% of the total TP loading. As the largest contributor among all sources, livestock husbandry contributed nearly 50% of the TP loading from the Dongting Lake Area and more than 60% from each of the other primary sub-watersheds. This study provides a methodology to identify the key sources and locations of TP export and loading in large lake watersheds. The study can provide a reference for the decision-making for controlling P pollution in the Dongting Lake watershed.

  6. Watershed Management Optimization Support Tool (WMOST) ...

    EPA Pesticide Factsheets

    EPA's Watershed Management Optimization Support Tool (WMOST) version 2 is a decision support tool designed to facilitate integrated water management by communities at the small watershed scale. WMOST allows users to look across management options in stormwater (including green infrastructure), wastewater, drinking water, and land conservation programs to find the least cost solutions. The pdf version of these presentations accompany the recorded webinar with closed captions to be posted on the WMOST web page. The webinar was recorded at the time a training workshop took place for EPA's Watershed Management Optimization Support Tool (WMOST, v2).

  7. Conditioning geostatistical simulations of a heterogeneous paleo-fluvial bedrock aquifer using lithologs and pumping tests

    NASA Astrophysics Data System (ADS)

    Niazi, A.; Bentley, L. R.; Hayashi, M.

    2016-12-01

    Geostatistical simulations are used to construct heterogeneous aquifer models. Optimally, such simulations should be conditioned with both lithologic and hydraulic data. We introduce an approach to condition lithologic geostatistical simulations of a paleo-fluvial bedrock aquifer consisting of relatively high permeable sandstone channels embedded in relatively low permeable mudstone using hydraulic data. The hydraulic data consist of two-hour single well pumping tests extracted from the public water well database for a 250-km2 watershed in Alberta, Canada. First, lithologic models of the entire watershed are simulated and conditioned with hard lithological data using transition probability - Markov chain geostatistics (TPROGS). Then, a segment of the simulation around a pumping well is used to populate a flow model (FEFLOW) with either sand or mudstone. The values of the hydraulic conductivity and specific storage of sand and mudstone are then adjusted to minimize the difference between simulated and actual pumping test data using the parameter estimation program PEST. If the simulated pumping test data do not adequately match the measured data, the lithologic model is updated by locally deforming the lithology distribution using the probability perturbation method and the model parameters are again updated with PEST. This procedure is repeated until the simulated and measured data agree within a pre-determined tolerance. The procedure is repeated for each well that has pumping test data. The method creates a local groundwater model that honors both the lithologic model and pumping test data and provides estimates of hydraulic conductivity and specific storage. Eventually, the simulations will be integrated into a watershed-scale groundwater model.

  8. ArgoEcoSystem-watershed (AgES-W) model evaluation for streamflow and nitrogen/sediment dynamics on a midwest agricultural watershed

    USDA-ARS?s Scientific Manuscript database

    AgroEcoSystem-Watershed (AgES-W) is a modular, Java-based spatially distributed model which implements hydrologic/water quality simulation components under the Object Modeling System Version 3 (OMS3). The AgES-W model was previously evaluated for streamflow and recently has been enhanced with the ad...

  9. Modeling streamflow in a snow-dominated forest watershed using the Water Erosion Prediction Project (WEPP) model

    Treesearch

    A. Srivastava; J. Q. Wu; W. J. Elliot; E. S. Brooks; D. C. Flanagan

    2017-01-01

    The Water Erosion Prediction Project (WEPP) model was originally developed for hillslope and small watershed applications. Recent improvements to WEPP have led to enhanced computations for deep percolation, subsurface lateral flow, and frozen soil. In addition, the incorporation of channel routing has made the WEPP model well suited for large watersheds with perennial...

  10. Watershed Modeling to Assess the Sensitivity of Streamflow, Nutrient, and Sediment Loads to Potential Climate Change and Urban Development in 20 U.S. Watersheds (External Review Draft)

    EPA Science Inventory

    EPA has released for independent external peer review and public comment a draft report titled, Watershed Modeling to Assess the Sensitivity of Streamflow, Nutrient, and Sediment Loads to Potential Climate Change and Urban Development in 20 U.S. Watersheds. This is a draft...

  11. Augmenting watershed model calibration with incorporation of ancillary data sources and qualitative soft data sources

    USDA-ARS?s Scientific Manuscript database

    Watershed simulation models can be calibrated using “hard data” such as temporal streamflow observations; however, users may find upon examination of detailed outputs that some of the calibrated models may not reflect summative actual watershed behavior. Thus, it is necessary to use “soft data” (i....

  12. Comparison of Drainmod Based Watershed Scale Models

    Treesearch

    Glenn P. Fernandez; George M. Chescheir; R. Wayne Skaggs; Devendra M. Amatya

    2004-01-01

    Watershed scale hydrology and water quality models (DRAINMOD-DUFLOW, DRAINMOD-W, DRAINMOD-GIS and WATGIS) that describe the nitrogen loadings at the outlet of poorly drained watersheds were examined with respect to their accuracy and uncertainty in model predictions. Latin Hypercube Sampling (LHS) was applied to determine the impact of uncertainty in estimating field...

  13. Lumped Parameter Models for Predicting Nitrogen Transport in Lower Coastal Plain Watersheds

    Treesearch

    Devendra M. Amatya; George M. Chescheir; Glen P. Fernandez; R. Wayne Skaggs; F. Birgand; J.W. Gilliam

    2003-01-01

    hl recent years physically based comprehensive disfributed watershed scale hydrologic/water quality models have been developed and applied 10 evaluate cumulative effects of land arld water management practices on receiving waters, Although fhesc complex physically based models are capable of simulating the impacts ofthese changes in large watersheds, they are often...

  14. HYDROLOGIC MODELING OF AN EASTERN PENNSYLVANIA WATERSHED WITH NEXRAD AND RAIN GAUGE DATA

    EPA Science Inventory

    This paper applies the Soil Water Assessment Tool (SWAT) to model the hydrology in the Pocono Creek watershed located in Monroe County, Pa. The calibrated model will be used in a subsequent study to examine the impact of population growth and rapid urbanization in the watershed o...

  15. WATERSHED AND INSTREAM MODELING OF SEDIMENT FATE AND TRANSPORT

    EPA Science Inventory

    To effectively manage watersheds, the assessment of watershed ecological response to physicochemical stressors such as sediments over broad spatial and temporal scales is needed. Assessments at this level of complexity requires the development of sediment transport and fate model...

  16. Estuary 2100 Project, Phase 2: Building Partnerships for Resilient Watersheds

    EPA Pesticide Factsheets

    Information about the SFBWQP Estuary 2100 Project, Phase 2: Building Partnerships for Resilient Watersheds, part of an EPA competitive grant program to improve SF Bay water quality focused on restoring impaired waters and enhancing aquat

  17. Comparison of estimated and observed stormwater runoff for fifteen watersheds in west-central Florida, using five common design techniques

    USGS Publications Warehouse

    Trommer, J.T.; Loper, J.E.; Hammett, K.M.; Bowman, Georgia

    1996-01-01

    Hydrologists use several traditional techniques for estimating peak discharges and runoff volumes from ungaged watersheds. However, applying these techniques to watersheds in west-central Florida requires that empirical relationships be extrapolated beyond tested ranges. As a result there is some uncertainty as to their accuracy. Sixty-six storms in 15 west-central Florida watersheds were modeled using (1) the rational method, (2) the U.S. Geological Survey regional regression equations, (3) the Natural Resources Conservation Service (formerly the Soil Conservation Service) TR-20 model, (4) the Army Corps of Engineers HEC-1 model, and (5) the Environmental Protection Agency SWMM model. The watersheds ranged between fully developed urban and undeveloped natural watersheds. Peak discharges and runoff volumes were estimated using standard or recommended methods for determining input parameters. All model runs were uncalibrated and the selection of input parameters was not influenced by observed data. The rational method, only used to calculate peak discharges, overestimated 45 storms, underestimated 20 storms and estimated the same discharge for 1 storm. The mean estimation error for all storms indicates the method overestimates the peak discharges. Estimation errors were generally smaller in the urban watersheds and larger in the natural watersheds. The U.S. Geological Survey regression equations provide peak discharges for storms of specific recurrence intervals. Therefore, direct comparison with observed data was limited to sixteen observed storms that had precipitation equivalent to specific recurrence intervals. The mean estimation error for all storms indicates the method overestimates both peak discharges and runoff volumes. Estimation errors were smallest for the larger natural watersheds in Sarasota County, and largest for the small watersheds located in the eastern part of the study area. The Natural Resources Conservation Service TR-20 model, overestimated peak discharges for 45 storms and underestimated 21 storms, and overestimated runoff volumes for 44 storms and underestimated 22 storms. The mean estimation error for all storms modeled indicates that the model overestimates peak discharges and runoff volumes. The smaller estimation errors in both peak discharges and runoff volumes were for storms occurring in the urban watersheds, and the larger errors were for storms occurring in the natural watersheds. The HEC-1 model overestimated peak discharge rates for 55 storms and underestimated 11 storms. Runoff volumes were overestimated for 44 storms and underestimated for 22 storms using the Army Corps of Engineers HEC-1 model. The mean estimation error for all the storms modeled indicates that the model overestimates peak discharge rates and runoff volumes. Generally, the smaller estimation errors in peak discharges were for storms occurring in the urban watersheds, and the larger errors were for storms occurring in the natural watersheds. Estimation errors in runoff volumes; however, were smallest for the 3 natural watersheds located in the southernmost part of Sarasota County. The Environmental Protection Agency Storm Water Management model produced similar peak discharges and runoff volumes when using both the Green-Ampt and Horton infiltration methods. Estimated peak discharge and runoff volume data calculated with the Horton method was only slightly higher than those calculated with the Green-Ampt method. The mean estimation error for all the storms modeled indicates the model using the Green-Ampt infiltration method overestimates peak discharges and slightly underestimates runoff volumes. Using the Horton infiltration method, the model overestimates both peak discharges and runoff volumes. The smaller estimation errors in both peak discharges and runoff volumes were for storms occurring in the five natural watersheds in Sarasota County with the least amount of impervious cover and the lowest slopes. The largest er

  18. Watershed Controls on the Proper Scale of Economic Markets for Pollution Reduction

    NASA Astrophysics Data System (ADS)

    Rigby, J.; Doyle, M. W.; Yates, A.

    2010-12-01

    Markets for tradable discharge permits (TDPs) are an increasingly popular policy instrument for obtaining cost-effective nutrient reduction targets across watersheds. Such markets are also an emerging, dynamic coupling between economic institutions and stream hydrology/biogeochemistry as trading markets become explicit determinants for the spatial distribution of stream nutrient loads. A central problem in any environmental market program is setting the size of the market, as there are distinct trade-offs for large versus small markets. While the overall cost-effectiveness of permit trading increases with the size of the market, the potential for localized and highly damaging nutrient concentrations, or “hotspots”, also increases. Smaller market size reduces the potential for hot spots by dispersing the location of trades, but this may increase the net costs of water quality compliance significantly through both the restriction of possible trading partners and price manipulation by market participants. This project couples a microeconomic model for TDPs (based on possible configurations of mutually exclusive trading zones within the basin) with a semi-distributed water quality model to examine watershed controls on the configuration and scale of such markets. Our results show a wide variation in total annual cost of pollution abatement based on choice of market design -- often with large differences in cost between very similar configurations. This framework is also applied to a 10-member trading program among wastewater treatment plants in the Neuse River, NC, in order to assess (1) the optimum market design for the Upper Neuse basin and (2) how these costs compare with expected costs under alternative market structures (e.g., trading ratio system) and (3) the cost improvements over traditional command-and-control regulatory frameworks. We find that the optimal zone configuration is almost always a lower cost option when compared to a trading ratio scheme and that the optimal design depends largely on the range of plant sizes and their geographic distribution within the stream network. Leveraging this model, we can develop a heuristic understanding of how the shape or topography of watersheds, and/or the spatial distribution of polluters may constrain the utility of market mechanisms in water quality regulation.

  19. Effectiveness of SWAT in characterizing the watershed hydrology in the snowy-mountainous Lower Bear Malad River (LBMR) watershed in Box Elder County, Utah

    NASA Astrophysics Data System (ADS)

    Salha, A. A.; Stevens, D. K.

    2015-12-01

    Distributed watershed models are essential for quantifying sediment and nutrient loads that originate from point and nonpoint sources. Such models are primary means towards generating pollutant estimates in ungaged watersheds and respond well at watershed scales by capturing the variability in soils, climatic conditions, land uses/covers and management conditions over extended periods of time. This effort evaluates the performance of the Soil and Water Assessment Tool (SWAT) model as a watershed level tool to investigate, manage, and characterize the transport and fate of nutrients in Lower Bear Malad River (LBMR) watershed (Subbasin HUC 16010204) in Utah. Water quality concerns have been documented and are primarily attributed to high phosphorus and total suspended sediment concentrations caused by agricultural and farming practices along with identified point sources (WWTPs). Input data such as Digital Elevation Model (DEM), land use/Land cover (LULC), soils, and climate data for 10 years (2000-2010) is utilized to quantify the LBMR streamflow. Such modeling is useful in developing the required water quality regulations such as Total Maximum Daily Loads (TMDL). Measured concentrations of nutrients were closely captured by simulated monthly nutrient concentrations based on the R2 and Nash- Sutcliffe fitness criteria. The model is expected to be able to identify contaminant non-point sources, identify areas of high pollution risk, locate optimal monitoring sites, and evaluate best management practices to cost-effectively reduce pollution and improve water quality as required by the LBMR watershed's TMDL.

  20. Modeling nitrogen loading in a small watershed in southwest China using a DNDC model with hydrological enhancements

    NASA Astrophysics Data System (ADS)

    Deng, J.; Zhou, Z.; Zhu, B.; Zheng, X.; Li, C.; Wang, X.; Jian, Z.

    2011-10-01

    The degradation of water quality has been observed worldwide, and inputs of nitrogen (N), along with other nutrients, play a key role in the process of contamination. The quantification of N loading from non-point sources at a watershed scale has long been a challenge. Process-based models have been developed to address this problem. Because N loading from non-point sources result from interactions between biogeochemical and hydrological processes, a model framework must include both types of processes if it is to be useful. This paper reports the results of a study in which we integrated two fundamental hydrologic features, the SCS (Soil Conservation Service) curve function and the MUSLE (Modified Universal Soil Loss), into a biogeochemical model, the DNDC. The SCS curve equation and the MUSLE are widely used in hydrological models for calculating surface runoff and soil erosion. Equipped with the new added hydrologic features, DNDC was substantially enhanced with the new capacity of simulating both vertical and horizontal movements of water and N at a watershed scale. A long-term experimental watershed in Southwest China was selected to test the new version of the DNDC. The target watershed's 35.1 ha of territory encompass 19.3 ha of croplands, 11.0 ha of forest lands, 1.1 ha of grassplots, and 3.7 ha of residential areas. An input database containing topographic data, meteorological conditions, soil properties, vegetation information, and management applications was established and linked to the enhanced DNDC. Driven by the input database, the DNDC simulated the surface runoff flow, the subsurface leaching flow, the soil erosion, and the N loadings from the target watershed. The modeled water flow, sediment yield, and N loading from the entire watershed were compared with observations from the watershed and yielded encouraging results. The sources of N loading were identified by using the results of the model. In 2008, the modeled runoff-induced loss of total N from the watershed was 904 kg N yr-1, of which approximately 67 % came from the croplands. The enhanced DNDC model also estimated the watershed-scale N losses (1391 kg N yr-1) from the emissions of the N-containing gases (ammonia, nitrous oxide, nitric oxide, and dinitrogen). Ammonia volatilization (1299 kg N yr-1) dominated the gaseous N losses. The study indicated that process-based biogeochemical models such as the DNDC could contribute more effectively to watershed N loading studies if the hydrological components of the models were appropriately enhanced.

  1. Modeling nitrogen loading in a small watershed in Southwest China using a DNDC model with hydrological enhancements

    NASA Astrophysics Data System (ADS)

    Deng, J.; Zhou, Z.; Zhu, B.; Zheng, X.; Li, C.; Wang, X.; Jian, Z.

    2011-07-01

    The degradation of water quality has been observed worldwide, and inputs of nitrogen (N), along with other nutrients, play a key role in the process of contamination. The quantification of N loading from non-point sources at a watershed scale has long been a challenge. Process-based models have been developed to address this problem. Because N loading from non-point sources result from interactions between biogeochemical and hydrological processes, a model framework must include both types of processes if it is to be useful. This paper reports the results of a study in which we integrated two fundamental hydrologic features, the SCS (Soil Conservation Service) curve function and the MUSLE (Modified Universal Soil Loss), into a biogeochemical model, the DNDC. The SCS curve equation and the MUSLE are widely used in hydrological models for calculating surface runoff and soil erosion. Equipped with the new added hydrologic features, DNDC was substantially enhanced with the new capacity of simulating both vertical and horizontal movements of water and N at a watershed scale. A long-term experimental watershed in Southwest China was selected to test the new version of the DNDC. The target watershed's 35.1 ha of territory encompass 19.3 ha of croplands, 11.0 ha of forest lands, 1.1 ha of grassplots, and 3.7 ha of residential areas. An input database containing topographic data, meteorological conditions, soil properties, vegetation information, and management applications was established and linked to the enhanced DNDC. Driven by the input database, the DNDC simulated the surface runoff flow, the subsurface leaching flow, the soil erosion, and the N loadings from the target watershed. The modeled water flow, sediment yield, and N loading from the entire watershed were compared with observations from the watershed and yielded encouraging results. The sources of N loading were identified by using the results of the model. In 2008, the modeled runoff-induced loss of total N from the watershed was 904 kg N yr-1, of which approximately 67 % came from the croplands. The enhanced DNDC model also estimated the watershed-scale N losses (1391 kg N yr-1) from the emissions of the N-containing gases (ammonia, nitrous oxide, nitric oxide, and dinitrogen). Ammonia volatilization (1299 kg N yr-1) dominated the gaseous N losses. The study indicated that process-based biogeochemical models such as the DNDC could contribute more effectively to watershed N loading studies if the hydrological components of the models were appropriately enhanced.

  2. Augmentation of Water Resources Potential and Cropping Intensification Through Watershed Programs.

    PubMed

    Mondal, Biswajit; Singh, Alka; Singh, S D; Kalra, B S; Samal, P; Sinha, M K; Ramajayam, D; Kumar, Suresh

    2018-02-01

      This paper presents the biophysical impact of various interventions made under watershed development programs, in terms of the creation of additional water resources, and resultant changes in land use and cropping patterns in the Bundelkhand region of Madhya Pradesh State, India. Both primary and secondary data gathered from randomly selected watersheds and their corresponding control villages were used in this study. Analysis revealed that emphasis was given primarily to the creation of water resources potential during implementation of the programs, which led to augmentation of surface and groundwater availability for both irrigation and non-agricultural purposes. In addition, other land based interventions for soil and moisture conservation, plantation activities, and so forth, were taken up on both arable and nonarable land, which helped to improve land slope and land use, cropping pattern, agricultural productivity, and vegetation cover.

  3. An approach to measure parameter sensitivity in watershed hydrological modelling

    EPA Science Inventory

    Hydrologic responses vary spatially and temporally according to watershed characteristics. In this study, the hydrologic models that we developed earlier for the Little Miami River (LMR) and Las Vegas Wash (LVW) watersheds were used for detail sensitivity analyses. To compare the...

  4. Workshop: Economic Research and Policy Concerning Water Use and Watershed Management (1999)

    EPA Pesticide Factsheets

    Workshop proceedings: Integrating Economic and Physical Models in Water and Watershed Research, Methods for Measuring Stakeholder Values of Water Quality and Watershed Protection, and Applications of Stakeholder Valuation Techniques for Watersheds and WQ

  5. A Watershed Modeling System for Fort Benning, GA Using the US EPA BASINS Framework

    DTIC Science & Technology

    2013-01-01

    Benning watersheds. The objective of this project was to identify, adapt , and develop watershed management models for Fort Benning that address impacts on...of Need (SON) (SERDP, 2005) which recognized that military installations needed the identification, adaptation , and development of watershed...capabilities. To accomplish these goals the Strategic Plan for SEMP (2005) notes the need for both fundamental and applied ( adaptive ) research; this need

  6. Future climate change impact assessment of watershed scale hydrologic processes in Peninsular Malaysia by a regional climate model coupled with a physically-based hydrology modelo.

    PubMed

    Amin, M Z M; Shaaban, A J; Ercan, A; Ishida, K; Kavvas, M L; Chen, Z Q; Jang, S

    2017-01-01

    Impacts of climate change on the hydrologic processes under future climate change conditions were assessed over Muda and Dungun watersheds of Peninsular Malaysia by means of a coupled regional climate and physically-based hydrology model utilizing an ensemble of future climate change projections. An ensemble of 15 different future climate realizations from coarse resolution global climate models' (GCMs) projections for the 21st century was dynamically downscaled to 6km resolution over Peninsular Malaysia by a regional climate model, which was then coupled with the watershed hydrology model WEHY through the atmospheric boundary layer over Muda and Dungun watersheds. Hydrologic simulations were carried out at hourly increments and at hillslope-scale in order to assess the impacts of climate change on the water balances and flooding conditions in the 21st century. The coupled regional climate and hydrology model was simulated for a duration of 90years for each of the 15 realizations. It is demonstrated that the increase in mean monthly flows due to the impact of expected climate change during 2040-2100 is statistically significant from April to May and from July to October at Muda watershed. Also, the increase in mean monthly flows is shown to be significant in November during 2030-2070 and from November to December during 2070-2100 at Dungun watershed. In other words, the impact of the expected climate change will be significant during the northeast and southwest monsoon seasons at Muda watershed and during the northeast monsoon season at Dungun watershed. Furthermore, the flood frequency analyses for both watersheds indicated an overall increasing trend in the second half of the 21st century. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Water-quality investigation of the Caney Creek watershed, Northeast Arkansas

    USGS Publications Warehouse

    Lamb, T.E.; Newsom, G.

    1979-01-01

    The results of a 1-year study, in 1977-78, of surface-water quality in the Caney Creek watershed, northeast Arkansas, are presented to document conditions before implementation of Soil Conservation Service programs. The report includes a general description of the watershed 's topography, geology, and aquifers, and the results of several measurements at two sites of discharge, and a number of physical and chemical parameters. (USGS)

  8. Increasing a Community's Knowledge about Drought, Watershed Ecosystems, and Water Quality Through Educational Activities Added to Coastal Cleanup Day Events

    NASA Astrophysics Data System (ADS)

    Brinker, R.; Allen, L.; Cole, P.; Rho, C.

    2016-12-01

    International Coastal Cleanup Day, held each September, is an effective campaign to bring volunteers together to clean trash from beaches and waterways and document results. Over 500,000 participants cleared over 9 million pounds of trash in 2015. To build on the enthusiasm for this event, the city of Livermore, California's Water Resource Department, the Livermore Valley Joint Unified School District, Livermore Area Recreation and Parks Department created a water education program to embed within the city's Coastal Cleanup Day events. Goals of the education program are to increase awareness of the local watershed and its geographic reach, impacts of climate change and drought on local water supplies, pollution sources and impacts of local pollution on the ocean, positive impacts of a recent plastic bag ban, water quality assessment, and action steps citizens can take to support a healthy watershed. Volunteers collect and test water samples (when water is in the creek) using modified GLOBE and World Water Monitoring Day protocols. Test results are uploaded to the World Water Monitoring Day site and documented on the program web site. Volunteers report that they did not know about watersheds, impacts of local pollution, and water quality components before the education program. Volunteers are encouraged to adopt a creek spot for one year, and continue to collect and document trash. High school and middle school science classes added the water quality testing into curriculum, and regularly visit creek sites to clean the spots and monitor habitats. Each year for the past five years, about 300 volunteers have worked on creek clean-up events, 20 have adopted creek sites, and collected over 4,000 gallons of trash annually. As a result of these efforts, sites have been downgraded from a trash hot spot of concern. Strategies will be shared to expand an established (or start a new) Coastal Cleanup Day event into a successful watershed and climate awareness citizen science program. Include are: Data collection and review; Watershed posters and maps created for the event; Water quality test kits, equipment and protocols; Promotional items; Uses of social media and apps; Connecting with teachers; Recruiting interns; Program costs and supporting agencies. Attendees should feel that the program could be duplicated at their location.

  9. Planning of water resources management and pollution control for Heshui River watershed, China: A full credibility-constrained programming approach.

    PubMed

    Zhang, Y M; Huang, G; Lu, H W; He, Li

    2015-08-15

    A key issue facing integrated water resources management and water pollution control is to address the vague parametric information. A full credibility-based chance-constrained programming (FCCP) method is thus developed by introducing the new concept of credibility into the modeling framework. FCCP can deal with fuzzy parameters appearing concurrently in the objective and both sides of the constraints of the model, but also provide a credibility level indicating how much confidence one can believe the optimal modeling solutions. The method is applied to Heshui River watershed in the south-central China for demonstration. Results from the case study showed that groundwater would make up for the water shortage in terms of the shrinking surface water and rising water demand, and the optimized total pumpage of groundwater from both alluvial and karst aquifers would exceed 90% of its maximum allowable levels when credibility level is higher than or equal to 0.9. It is also indicated that an increase in credibility level would induce a reduction in cost for surface water acquisition, a rise in cost from groundwater withdrawal, and negligible variation in cost for water pollution control. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Quality assurance report - Loch Vale Watershed, 1999-2002

    USGS Publications Warehouse

    Botte, Jorin A.; Baron, Jill S.

    2004-01-01

    The National Park Service initiated the Loch Vale Watershed (LVWS) project in 1980 with funding from the Aquatic Effects Research Program of the National Acid Precipitation Assessment Program. Long-term ecological research and monitoring address watershed-scale ecosystem processes, particularly as they respond to atmospheric deposition and climate variability. Monitoring of meteorological, hydrologic, precipitation chemistry, and surface water quality parameters enable us to use long-term trends to distinguish natural from human-caused disturbances. Research into snow distribution, hydrologic flowpaths, vegetation responses to N deposition, isotopic transformations of N by forest and soil processes, trace metals, and aquatic ecological responses to disturbance enable us to understand processes that influence high elevation ecosystems.

  11. Baseline for Climate Change: Modeling Watershed Aquatic Biodiversity Relative to Environmental and Anthropogenic Factors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maurakis, Eugene G

    Objectives of the two-year study were to (1) establish baselines for fish and macroinvertebrate community structures in two mid-Atlantic lower Piedmont watersheds (Quantico Creek, a pristine forest watershed; and Cameron Run, an urban watershed, Virginia) that can be used to monitor changes relative to the impacts related to climate change in the future; (2) create mathematical expressions to model fish species richness and diversity, and macroinvertebrate taxa and macroinvertebrate functional feeding group taxa richness and diversity that can serve as a baseline for future comparisons in these and other watersheds in the mid-Atlantic region; and (3) heighten people’s awareness, knowledgemore » and understanding of climate change and impacts on watersheds in a laboratory experience and interactive exhibits, through internship opportunities for undergraduate and graduate students, a week-long teacher workshop, and a website about climate change and watersheds. Mathematical expressions modeled fish and macroinvertebrate richness and diversity accurately well during most of the six thermal seasons where sample sizes were robust. Additionally, hydrologic models provide the basis for estimating flows under varying meteorological conditions and landscape changes. Continuations of long-term studies are requisite for accurately teasing local human influences (e.g. urbanization and watershed alteration) from global anthropogenic impacts (e.g. climate change) on watersheds. Effective and skillful translations (e.g. annual potential exposure of 750,000 people to our inquiry-based laboratory activities and interactive exhibits in Virginia) of results of scientific investigations are valuable ways of communicating information to the general public to enhance their understanding of climate change and its effects in watersheds.« less

  12. Hydrologic Response and Watershed Sensitivity to Climate Warming in California's Sierra Nevada

    PubMed Central

    Null, Sarah E.; Viers, Joshua H.; Mount, Jeffrey F.

    2010-01-01

    This study focuses on the differential hydrologic response of individual watersheds to climate warming within the Sierra Nevada mountain region of California. We describe climate warming models for 15 west-slope Sierra Nevada watersheds in California under unimpaired conditions using WEAP21, a weekly one-dimensional rainfall-runoff model. Incremental climate warming alternatives increase air temperature uniformly by 2°, 4°, and 6°C, but leave other climatic variables unchanged from observed values. Results are analyzed for changes in mean annual flow, peak runoff timing, and duration of low flow conditions to highlight which watersheds are most resilient to climate warming within a region, and how individual watersheds may be affected by changes to runoff quantity and timing. Results are compared with current water resources development and ecosystem services in each watershed to gain insight into how regional climate warming may affect water supply, hydropower generation, and montane ecosystems. Overall, watersheds in the northern Sierra Nevada are most vulnerable to decreased mean annual flow, southern-central watersheds are most susceptible to runoff timing changes, and the central portion of the range is most affected by longer periods with low flow conditions. Modeling results suggest the American and Mokelumne Rivers are most vulnerable to all three metrics, and the Kern River is the most resilient, in part from the high elevations of the watershed. Our research seeks to bridge information gaps between climate change modeling and regional management planning, helping to incorporate climate change into the development of regional adaptation strategies for Sierra Nevada watersheds. PMID:20368984

  13. Monitoring and Predicting Land-use Changes and the Hydrology of the Urbanized Paochiao Watershed in Taiwan Using Remote Sensing Data, Urban Growth Models and a Hydrological Model.

    PubMed

    Lin, Yu-Pin; Lin, Yun-Bin; Wang, Yen-Tan; Hong, Nien-Ming

    2008-02-04

    Monitoring and simulating urban sprawl and its effects on land-use patterns andhydrological processes in urbanized watersheds are essential in land-use and waterresourceplanning and management. This study applies a novel framework to the urbangrowth model Slope, Land use, Excluded land, Urban extent, Transportation, andHillshading (SLEUTH) and land-use change with the Conversion of Land use and itsEffects (CLUE-s) model using historical SPOT images to predict urban sprawl in thePaochiao watershed in Taipei County, Taiwan. The historical and predicted land-use datawas input into Patch Analyst to obtain landscape metrics. This data was also input to theGeneralized Watershed Loading Function (GWLF) model to analyze the effects of futureurban sprawl on the land-use patterns and watershed hydrology. The landscape metrics ofthe historical SPOT images show that land-use patterns changed between 1990-2000. TheSLEUTH model accurately simulated historical land-use patterns and urban sprawl in thePaochiao watershed, and simulated future clustered land-use patterns (2001-2025). TheCLUE-s model also simulated land-use patterns for the same period and yielded historical trends in the metrics of land-use patterns. The land-use patterns predicted by the SLEUTHand CLUE-s models show the significant impact urban sprawl will have on land-usepatterns in the Paochiao watershed. The historical and predicted land-use patterns in thewatershed tended to fragment, had regular shapes and interspersion patterns, but wererelatively less isolated in 2001-2025 and less interspersed from 2005-2025 compared withland-use pattern in 1990. During the study, the variability and magnitude of hydrologicalcomponents based on the historical and predicted land-use patterns were cumulativelyaffected by urban sprawl in the watershed; specifically, surface runoff increasedsignificantly by 22.0% and baseflow decreased by 18.0% during 1990-2025. The proposedapproach is an effective means of enhancing land-use monitoring and management ofurbanized watersheds.

  14. Assessing the impacts of land use on downstream water quality using a hydrologically sensitive area concept.

    PubMed

    Giri, Subhasis; Qiu, Zeyuan; Zhang, Zhen

    2018-05-01

    Understanding the relationship between land use and water quality is essential to improve water quality through carefully managing landscape change. This study applies a linear mixed model at both watershed and hydrologically sensitive areas (HSAs) scales to assess such a relationship in 28 northcentral New Jersey watersheds located in a rapidly urbanizing region in the United States. Two models differ in terms of the geographic scope used to derive land use matrices that quantify land use conditions. The land use matrices at the watershed and HSAs scales represent the land use conditions in these watersheds and their HSAs, respectively. HSAs are the hydrological "hotspots" in a watershed that are prone to runoff generation during storm events. HSAs are derived using a soil topographic index (STI) that predicts hydrological sensitivity of a landscape based on a variable source area hydrology concept. The water quality indicators in these models are total nitrogen (TN), total phosphorus (TP) and total suspended solids (TSS) concentrations in streams observed at the watershed outlets. The modeling results suggest that presence of low density urban land, agricultural land and wetlands elevate while forest decreases TN, TP and/or TSS concentrations in streams. The watershed scale model tends to emphasize the role of agricultural lands in water quality degradation while the HSA scale model highlights the role of forest in water quality improvement. This study supports the hypothesis that even though HSAs are relatively smaller area compared to watershed, still the land uses within HSAs have similar impacts on downstream water quality as the land uses in entire watersheds, since both models have negligible differences in model evaluation parameters. Inclusion of HSAs brings an interesting perspective to understand the dynamic relationships between land use and water quality. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Linear Modeling and Evaluation of Controls on Flow Response in Western Post-Fire Watersheds

    NASA Astrophysics Data System (ADS)

    Saxe, S.; Hogue, T. S.; Hay, L.

    2015-12-01

    This research investigates the impact of wildfires on watershed flow regimes throughout the western United States, specifically focusing on evaluation of fire events within specified subregions and determination of the impact of climate and geophysical variables in post-fire flow response. Fire events were collected through federal and state-level databases and streamflow data were collected from U.S. Geological Survey stream gages. 263 watersheds were identified with at least 10 years of continuous pre-fire daily streamflow records and 5 years of continuous post-fire daily flow records. For each watershed, percent changes in runoff ratio (RO), annual seven day low-flows (7Q2) and annual seven day high-flows (7Q10) were calculated from pre- to post-fire. Numerous independent variables were identified for each watershed and fire event, including topographic, land cover, climate, burn severity, and soils data. The national watersheds were divided into five regions through K-clustering and a lasso linear regression model, applying the Leave-One-Out calibration method, was calculated for each region. Nash-Sutcliffe Efficiency (NSE) was used to determine the accuracy of the resulting models. The regions encompassing the United States along and west of the Rocky Mountains, excluding the coastal watersheds, produced the most accurate linear models. The Pacific coast region models produced poor and inconsistent results, indicating that the regions need to be further subdivided. Presently, RO and HF response variables appear to be more easily modeled than LF. Results of linear regression modeling showed varying importance of watershed and fire event variables, with conflicting correlation between land cover types and soil types by region. The addition of further independent variables and constriction of current variables based on correlation indicators is ongoing and should allow for more accurate linear regression modeling.

  16. Accounting for disturbance history in models: using remote sensing to constrain carbon and nitrogen pool spin-up.

    PubMed

    Hanan, Erin J; Tague, Christina; Choate, Janet; Liu, Mingliang; Kolden, Crystal; Adam, Jennifer

    2018-03-24

    Disturbances such as wildfire, insect outbreaks, and forest clearing, play an important role in regulating carbon, nitrogen, and hydrologic fluxes in terrestrial watersheds. Evaluating how watersheds respond to disturbance requires understanding mechanisms that interact over multiple spatial and temporal scales. Simulation modeling is a powerful tool for bridging these scales; however, model projections are limited by uncertainties in the initial state of plant carbon and nitrogen stores. Watershed models typically use one of two methods to initialize these stores: spin-up to steady state or remote sensing with allometric relationships. Spin-up involves running a model until vegetation reaches equilibrium based on climate. This approach assumes that vegetation across the watershed has reached maturity and is of uniform age, which fails to account for landscape heterogeneity and non-steady-state conditions. By contrast, remote sensing, can provide data for initializing such conditions. However, methods for assimilating remote sensing into model simulations can also be problematic. They often rely on empirical allometric relationships between a single vegetation variable and modeled carbon and nitrogen stores. Because allometric relationships are species- and region-specific, they do not account for the effects of local resource limitation, which can influence carbon allocation (to leaves, stems, roots, etc.). To address this problem, we developed a new initialization approach using the catchment-scale ecohydrologic model RHESSys. The new approach merges the mechanistic stability of spin-up with the spatial fidelity of remote sensing. It uses remote sensing to define spatially explicit targets for one or several vegetation state variables, such as leaf area index, across a watershed. The model then simulates the growth of carbon and nitrogen stores until the defined targets are met for all locations. We evaluated this approach in a mixed pine-dominated watershed in central Idaho, and a chaparral-dominated watershed in southern California. In the pine-dominated watershed, model estimates of carbon, nitrogen, and water fluxes varied among methods, while the target-driven method increased correspondence between observed and modeled streamflow. In the chaparral watershed, where vegetation was more homogeneously aged, there were no major differences among methods. Thus, in heterogeneous, disturbance-prone watersheds, the target-driven approach shows potential for improving biogeochemical projections. © 2018 by the Ecological Society of America.

  17. The politics of participation in watershed modeling.

    PubMed

    Korfmacher, K S

    2001-02-01

    While researchers and decision-makers increasingly recognize the importance of public participation in environmental decision-making, there is less agreement about how to involve the public. One of the most controversial issues is how to involve citizens in producing scientific information. Although this question is relevant to many areas of environmental policy, it has come to the fore in watershed management. Increasingly, the public is becoming involved in the sophisticated computer modeling efforts that have been developed to inform watershed management decisions. These models typically have been treated as technical inputs to the policy process. However, model-building itself involves numerous assumptions, judgments, and decisions that are relevant to the public. This paper examines the politics of public involvement in watershed modeling efforts and proposes five guidelines for good practice for such efforts. Using these guidelines, I analyze four cases in which different approaches to public involvement in the modeling process have been attempted and make recommendations for future efforts to involve communities in watershed modeling. Copyright 2001 Springer-Verlag

  18. Kootenai River Focus Watershed Coordination, 2002-2003 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Munson, Bob; Munson, Vicki; Rogers, Rox

    2003-10-01

    The Kootenai River Network Inc. (KRN) was incorporated in Montana in early 1995 with a mission ''to involve stakeholders in the protection and restoration of the chemical, physical and biological integrity of the Kootenai River Basin waters''. The KRN operates with funding from donations, membership dues, private, state and federal grants, and with funding through the Bonneville Power Administration (BPA) for a Focus Watershed Coordinator Program. The Focus Watershed Program is administered to KRN as of October 2001, through a Memorandum of Understanding. Katie Randall resigned her position as Watershed Coordinator in late January 2003 and Munson Consulting was contractedmore » to fill that position through the BPA contract period ending May 30, 2003. To improve communications with in the Kootenai River watershed, the board and staff engaged watershed stakeholders in a full day KRN watershed conference on May 15 and 16 in Bonners Ferry, Idaho. This Annual General Meeting was a tremendous success with over 75 participants representing over 40 citizen groups, tribes and state/provincial/federal agencies from throughout northern Montana and Idaho as well as British Columbia and Alberta. Membership in the KRN increased during the course of the BPA 02/03 grant period. The board of directors grew in numbers during this same time frame and an Advisory Council was formed to assist in transboundary efforts while developing two reorganized KRN committees (Habitat/Restoration/Monitoring (HRM) and Communication/Education/Outreach (CEO)). These committees will serve pivotal roles in communications, outreach, and education about watershed issues, as well as habitat restoration work being accomplished throughout the entire watershed. During this BPA grant period, the KRN has capitalized on the transboundary interest in the Kootenai River watershed. Jim and Laura Duncan of Kimberley, British Columbia, have been instrumental volunteers who have acted as Canadian liaisons to the KRN. As a result, restoration work is in the planning stages for Canadian tributaries that flow into the Moyie River in northern Idaho and the Yaak River in northwest Montana.« less

  19. Modeling the Environmental Fate of Graphene Oxide and Its Phototransformation Products in Brier Creek Watershed Using the Water Quality Analysis Simulation Program 8 (WASP8)

    EPA Science Inventory

    The production of graphene-family nanoparticles (GFNs) appreciably increased in recent years. Among GFNs, graphene oxide (GO) is one of the most highly studied members due to its inexpensive synthesis cost compared to graphene, its stability in aqueous media and its broad applica...

  20. Improved indexes for targeting placement of buffers of Hortonian runoff

    Treesearch

    M.G. Dosskey; Z. Qiu; M.J. Helmers; D.E. Eisenhauer

    2011-01-01

    Targeting specific locations within agricultural watersheds for installing vegetative buffers has been advocated as a way to enhance the impact of buffers and buffer programs on stream water quality. Existing models for targeting buffers of Hortonian, or infiltration-excess, runoff are not well developed. The objective was to improve on an existing soil survey–based...

  1. Spatially-Distributed Stream Flow and Nutrient Dynamics Simulations Using the Component-Based AgroEcoSystem-Watershed (AgES-W) Model

    NASA Astrophysics Data System (ADS)

    Ascough, J. C.; David, O.; Heathman, G. C.; Smith, D. R.; Green, T. R.; Krause, P.; Kipka, H.; Fink, M.

    2010-12-01

    The Object Modeling System 3 (OMS3), currently being developed by the USDA-ARS Agricultural Systems Research Unit and Colorado State University (Fort Collins, CO), provides a component-based environmental modeling framework which allows the implementation of single- or multi-process modules that can be developed and applied as custom-tailored model configurations. OMS3 as a “lightweight” modeling framework contains four primary foundations: modeling resources (e.g., components) annotated with modeling metadata; domain specific knowledge bases and ontologies; tools for calibration, sensitivity analysis, and model optimization; and methods for model integration and performance scalability. The core is able to manage modeling resources and development tools for model and simulation creation, execution, evaluation, and documentation. OMS3 is based on the Java platform but is highly interoperable with C, C++, and FORTRAN on all major operating systems and architectures. The ARS Conservation Effects Assessment Project (CEAP) Watershed Assessment Study (WAS) Project Plan provides detailed descriptions of ongoing research studies at 14 benchmark watersheds in the United States. In order to satisfy the requirements of CEAP WAS Objective 5 (“develop and verify regional watershed models that quantify environmental outcomes of conservation practices in major agricultural regions”), a new watershed model development approach was initiated to take advantage of OMS3 modeling framework capabilities. Specific objectives of this study were to: 1) disaggregate and refactor various agroecosystem models (e.g., J2K-S, SWAT, WEPP) and implement hydrological, N dynamics, and crop growth science components under OMS3, 2) assemble a new modular watershed scale model for fully-distributed transfer of water and N loading between land units and stream channels, and 3) evaluate the accuracy and applicability of the modular watershed model for estimating stream flow and N dynamics. The Cedar Creek watershed (CCW) in northeastern Indiana, USA was selected for application of the OMS3-based AgroEcoSystem-Watershed (AgES-W) model. AgES-W performance for stream flow and N loading was assessed using Nash-Sutcliffe model efficiency (ENS) and percent bias (PBIAS) model evaluation statistics. Comparisons of daily and average monthly simulated and observed stream flow and N loads for the 1997-2005 simulation period resulted in PBIAS and ENS values that were similar or better than those reported in the literature for SWAT stream flow and N loading predictions at a similar scale. The results show that the AgES-W model was able to reproduce the hydrological and N dynamics of the CCW with sufficient quality, and should serve as a foundation upon which to better quantify additional water quality indicators (e.g., sediment transport and P dynamics) at the watershed scale.

  2. The DOE water cycle pilot study.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, N. L.; King, A. W.; Miller, M. A.

    In 1999, the U.S. Global Change Research Program (USGCRP) formed a Water Cycle Study Group (Hornberger et al. 2001) to organize research efforts in regional hydrologic variability, the extent to which this variability is caused by human activity, and the influence of ecosystems. The USGCRP Water Cycle Study Group was followed by a U.S. Department of Energy (DOE) Water Cycle Research Plan (Department of Energy 2002) that outlined an approach toward improving seasonal-to-interannual hydroclimate predictability and closing a regional water budget. The DOE Water Cycle Research Plan identified key research areas, including a comprehensive long-term observational database to support modelmore » development, and to develop a better understanding of the relationship between the components of local water budgets and large scale processes. In response to this plan, a multilaboratory DOE Water Cycle Pilot Study (WCPS) demonstration project began with a focus on studying the water budget and its variability at multiple spatial scales. Previous studies have highlighted the need for continued efforts to observationally close a local water budget, develop a numerical model closure scheme, and further quantify the scales in which predictive accuracy are optimal. A concerted effort within the National Oceanic and Atmospheric Administration (NOAA)-funded Global Energy and Water Cycle Experiment (GEWEX) Continental-scale International Project (GCIP) put forth a strategy to understand various hydrometeorological processes and phenomena with an aim toward closing the water and energy budgets of regional watersheds (Lawford 1999, 2001). The GCIP focus on such regional budgets includes the measurement of all components and reduction of the error in the budgets to near zero. To approach this goal, quantification of the uncertainties in both measurements and modeling is required. Model uncertainties within regional climate models continue to be evaluated within the Program to Intercompare Regional Climate Simulations (Takle et al. 1999), and model uncertainties within land surface models are being evaluated within the Program to Intercompare Land Surface Schemes (e.g., Henderson-Sellers 1993; Wood et al. 1998; Lohmann et al. 1998). In the context of understanding the water budget at watershed scales, the following two research questions that highlight DOE's unique water isotope analysis and high-performance modeling capabilities were posed as the foci of this pilot study: (1) Can the predictability of the regional water budget be improved using high-resolution model simulations that are constrained and validated with new hydrospheric water measurements? (2) Can water isotopic tracers be used to segregate different pathways through the water cycle and predict a change in regional climate patterns? To address these questions, numerical studies using regional atmospheric-land surface models and multiscale land surface hydrologic models were generated and, to the extent possible, the results were evaluated with observations. While the number of potential processes that may be important in the local water budget is large, several key processes were examined in detail. Most importantly, a concerted effort was made to understand water cycle processes and feedbacks at the land surface-atmosphere interface at spatial scales ranging from 30 m to hundreds of kilometers. A simple expression for the land surface water budget at the watershed scale is expressed as {Delta}S = P + G{sub in} - ET - Q - G{sub out}, where {Delta}S is the change in water storage, P is precipitation, ET is evapotranspiration, Q is streamflow, G{sub in} is groundwater entering the watershed, and G{sub out} is groundwater leaving the watershed, per unit time. The WCPS project identified data gaps and necessary model improvements that will lead to a more accurate representation of the terms in Eq. (1). Table 1 summarizes the components of this water cycle pilot study and the respective participants. The following section provides a description of the surface observation and modeling sites. This is followed by a section on model analyses, and then the summary and concluding remarks.« less

  3. Use of fire spread and hydrology models to target forest management on a municipal watershed

    Treesearch

    Anurag Srivastava; William J. Elliot; Joan Wu

    2015-01-01

    A small town relies on a forested watershed for its water supply. The forest is at risk for a wildfire. To reduce this risk, some of the watershed will be thinned followed by a prescribed burn. This paper reports on a study to evaluate the impact of such watershed disturbances on water yield. To target management activities, a fire spread model was applied to the...

  4. Urbanization and watershed sustainability: Collaborative simulation modeling of future development states

    NASA Astrophysics Data System (ADS)

    Randhir, Timothy O.; Raposa, Sarah

    2014-11-01

    Urbanization has a significant impact on water resources and requires a watershed-based approach to evaluate impacts of land use and urban development on watershed processes. This study uses a simulation with urban policy scenarios to model and strategize transferable recommendations for municipalities and cities to guide urban decisions using watershed ecohydrologic principles. The watershed simulation model is used to evaluation intensive (policy in existing built regions) and extensive (policy outside existing build regions) urban development scenarios with and without implementation of Best Management practices (BMPs). Water quantity and quality changes are simulated to assess effectiveness of five urban development scenarios. It is observed that optimal combination of intensive and extensive strategies can be used to sustain urban ecosystems. BMPs are found critical to reduce storm water and water quality impacts on urban development. Conservation zoning and incentives for voluntary adoption of BMPs can be used in sustaining urbanizing watersheds.

  5. Assessing the radar rainfall estimates in watershed-scale water quality model

    USDA-ARS?s Scientific Manuscript database

    Watershed-scale water quality models are effective science-based tools for interpreting change in complex environmental systems that affect hydrology cycle, soil erosion and nutrient fate and transport in watershed. Precipitation is one of the primary input data to achieve a precise rainfall-runoff ...

  6. APEX Model Simulation for Row Crop Watersheds with Agroforestry and Grass Buffers

    USDA-ARS?s Scientific Manuscript database

    Watershed model simulation has become an important tool in studying ways and means to reduce transport of agricultural pollutants. Conducting field experiments to assess buffer influences on water quality are constrained by the large-scale nature of watersheds, high experimental costs, private owner...

  7. Watershed Management Optimization Support Tool v3

    EPA Science Inventory

    The Watershed Management Optimization Support Tool (WMOST) is a decision support tool that facilitates integrated water management at the local or small watershed scale. WMOST models the environmental effects and costs of management decisions in a watershed context that is, accou...

  8. Estuary 2100 Project, Phase 1: Resilient Watersheds for a Changing Climate

    EPA Pesticide Factsheets

    Information about the SFBWQP Estuary 2100 Project, Phase 1: Resilient Watersheds for a Changing Climate , part of an EPA competitive grant program to improve SF Bay water quality focused on restoring impaired waters and enhancing aquatic resources.

  9. Managing Watersheds with WMOST (Watershed Management Optimization Support Tool)

    EPA Science Inventory

    EPA’s Green Infrastructure research program and EPA Region 1 recently released a new public-domain software application, WMOST, which supports community applications of Integrated Water Resources Management (IWRM) principles (http://cfpub.epa.gov/si/si_public_record_report....

  10. Construction of a Distributed-network Digital Watershed Management System with B/S Techniques

    NASA Astrophysics Data System (ADS)

    Zhang, W. C.; Liu, Y. M.; Fang, J.

    2017-07-01

    Integrated watershed assessment tools for supporting land management and hydrologic research are becoming established tools in both basic and applied research. The core of these tools are mainly spatially distributed hydrologic models as they can provide a mechanism for investigating interactions among climate, topography, vegetation, and soil. However, the extensive data requirements and the difficult task of building input parameter files for driving these distributed models, have long been an obstacle to the timely and cost-effective use of such complex models by watershed managers and policy-makers. Recently, a web based geographic information system (GIS) tool to facilitate this process has been developed for a large watersheds of Jinghe and Weihe catchments located in the loess plateau of the Huanghe River basin in north-western China. A web-based GIS provides the framework within which spatially distributed data are collected and used to prepare model input files of these two watersheds and evaluate model results as well as to provide the various clients for watershed information inquiring, visualizing and assessment analysis. This Web-based Automated Geospatial Watershed Assessment GIS (WAGWA-GIS) tool uses widely available standardized spatial datasets that can be obtained via the internet oracle databank designed with association of Map Guide platform to develop input parameter files for online simulation at different spatial and temporal scales with Xing’anjiang and TOPMODEL that integrated with web-based digital watershed. WAGWA-GIS automates the process of transforming both digital data including remote sensing data, DEM, Land use/cover, soil digital maps and meteorological and hydrological station geo-location digital maps and text files containing meteorological and hydrological data obtained from stations of the watershed into hydrological models for online simulation and geo-spatial analysis and provides a visualization tool to help the user interpret results. The utility of WAGWA-GIS in jointing hydrologic and ecological investigations has been demonstrated on such diverse landscapes as Jinhe and Weihe watersheds, and will be extended to be utilized in the other watersheds in China step by step in coming years

  11. WATERSHED SCALE RAINFALL INTERCEPTION ON TWO FORESTED WATERSHEDS IN THE LUQUILLO MOUNTAINS OF PUERTO RICO

    Treesearch

    F.N. SCATENA

    1990-01-01

    Interception losses were monitored for one year and related to vegetation characteristics in two forested watersheds in the Luquillo Experimental Forest of Puerto Rico. Total watershed interception was then modeled by weighting values of throughfall measured in representative areas of different vegetation types by the total watershed area of that vegetation group....

  12. An Integrated Risk Management Model for Source Water Protection Areas

    PubMed Central

    Chiueh, Pei-Te; Shang, Wei-Ting; Lo, Shang-Lien

    2012-01-01

    Watersheds are recognized as the most effective management unit for the protection of water resources. For surface water supplies that use water from upstream watersheds, evaluating threats to water quality and implementing a watershed management plan are crucial for the maintenance of drinking water safe for humans. The aim of this article is to establish a risk assessment model that provides basic information for identifying critical pollutants and areas at high risk for degraded water quality. In this study, a quantitative risk model that uses hazard quotients for each water quality parameter was combined with a qualitative risk model that uses the relative risk level of potential pollution events in order to characterize the current condition and potential risk of watersheds providing drinking water. In a case study of Taipei Source Water Area in northern Taiwan, total coliforms and total phosphorus were the top two pollutants of concern. Intensive tea-growing and recreational activities around the riparian zone may contribute the greatest pollution to the watershed. Our risk assessment tool may be enhanced by developing, recording, and updating information on pollution sources in the water supply watersheds. Moreover, management authorities could use the resultant information to create watershed risk management plans. PMID:23202770

  13. Model analysis of check dam impacts on long-term sediment and water budgets in southeast Arizona, USA

    USGS Publications Warehouse

    Norman, Laura M.; Niraula, Rewati

    2016-01-01

    The objective of this study was to evaluate the effect of check dam infrastructure on soil and water conservation at the catchment scale using the Soil and Water Assessment Tool (SWAT). This paired watershed study includes a watershed treated with over 2000 check dams and a Control watershed which has none, in the West Turkey Creek watershed, Southeast Arizona, USA. SWAT was calibrated for streamflow using discharge documented during the summer of 2013 at the Control site. Model results depict the necessity to eliminate lateral flow from SWAT models of aridland environments, the urgency to standardize geospatial soils data, and the care for which modelers must document altering parameters when presenting findings. Performance was assessed using the percent bias (PBIAS), with values of ±2.34%. The calibrated model was then used to examine the impacts of check dams at the Treated watershed. Approximately 630 tons of sediment is estimated to be stored behind check dams in the Treated watershed over the 3-year simulation, increasing water quality for fish habitat. A minimum precipitation event of 15 mm was necessary to instigate the detachment of soil, sediments, or rock from the study area, which occurred 2% of the time. The resulting watershed model is useful as a predictive framework and decision-support tool to consider long-term impacts of restoration and potential for future restoration.

  14. DRAINMOD-GIS: a lumped parameter watershed scale drainage and water quality model

    Treesearch

    G.P. Fernandez; G.M. Chescheir; R.W. Skaggs; D.M. Amatya

    2006-01-01

    A watershed scale lumped parameter hydrology and water quality model that includes an uncertainty analysis component was developed and tested on a lower coastal plain watershed in North Carolina. Uncertainty analysis was used to determine the impacts of uncertainty in field and network parameters of the model on the predicted outflows and nitrate-nitrogen loads at the...

  15. Watershed Models for Predicting Nitrogen Loads from Artificially Drained Lands

    Treesearch

    R. Wayne Skaggs; George M. Chescheir; Glenn Fernandez; Devendra M. Amatya

    2003-01-01

    Non-point sources of pollutants originate at the field scale but water quality problems usually occur at the watershed or basin scale. This paper describes a series of models developed for poorly drained watersheds. The models use DRAINMOD to predict hydrology at the field scale and a range of methods to predict channel hydraulics and nitrogen transport. In-stream...

  16. Modeling precipitation-runoff relationships to determine water yield from a ponderosa pine forest watershed

    Treesearch

    Assefa S. Desta

    2006-01-01

    A stochastic precipitation-runoff modeling is used to estimate a cold and warm-seasons water yield from a ponderosa pine forested watershed in the north-central Arizona. The model consists of two parts namely, simulation of the temporal and spatial distribution of precipitation using a stochastic, event-based approach and estimation of water yield from the watershed...

  17. Calibration and validation of the SWAT model for a forested watershed in coastal South Carolina

    Treesearch

    Devendra M. Amatya; Elizabeth B. Haley; Norman S. Levine; Timothy J. Callahan; Artur Radecki-Pawlik; Manoj K. Jha

    2008-01-01

    Modeling the hydrology of low-gradient coastal watersheds on shallow, poorly drained soils is a challenging task due to the complexities in watershed delineation, runoff generation processes and pathways, flooding, and submergence caused by tropical storms. The objective of the study is to calibrate and validate a GIS-based spatially-distributed hydrologic model, SWAT...

  18. A study of application of remote sensing to river forecasting. Volume 2: Detailed technical report, NASA-IBM streamflow forecast model user's guide

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The Model is described along with data preparation, determining model parameters, initializing and optimizing parameters (calibration) selecting control options and interpreting results. Some background information is included, and appendices contain a dictionary of variables, a source program listing, and flow charts. The model was operated on an IBM System/360 Model 44, using a model 2250 keyboard/graphics terminal for interactive operation. The model can be set up and operated in a batch processing mode on any System/360 or 370 that has the memory capacity. The model requires 210K bytes of core storage, and the optimization program, OPSET (which was used previous to but not in this study), requires 240K bytes. The data band for one small watershed requires approximately 32 tracks of disk storage.

  19. Model My Watershed: A high-performance cloud application for public engagement, watershed modeling and conservation decision support

    NASA Astrophysics Data System (ADS)

    Aufdenkampe, A. K.; Tarboton, D. G.; Horsburgh, J. S.; Mayorga, E.; McFarland, M.; Robbins, A.; Haag, S.; Shokoufandeh, A.; Evans, B. M.; Arscott, D. B.

    2017-12-01

    The Model My Watershed Web app (https://app.wikiwatershed.org/) and the BiG-CZ Data Portal (http://portal.bigcz.org/) and are web applications that share a common codebase and a common goal to deliver high-performance discovery, visualization and analysis of geospatial data in an intuitive user interface in web browser. Model My Watershed (MMW) was designed as a decision support system for watershed conservation implementation. BiG CZ Data Portal was designed to provide context and background data for research sites. Users begin by creating an Area of Interest, via an automated watershed delineation tool, a free draw tool, selection of a predefined area such as a county or USGS Hydrological Unit (HUC), or uploading a custom polygon. Both Web apps visualize and provide summary statistics of land use, soil groups, streams, climate and other geospatial information. MMW then allows users to run a watershed model to simulate different scenarios of human impacts on stormwater runoff and water-quality. BiG CZ Data Portal allows users to search for scientific and monitoring data within the Area of Interest, which also serves as a prototype for the upcoming Monitor My Watershed web app. Both systems integrate with CUAHSI cyberinfrastructure, including visualizing observational data from CUAHSI Water Data Center and storing user data via CUAHSI HydroShare. Both systems also integrate with the new EnviroDIY Water Quality Data Portal (http://data.envirodiy.org/), a system for crowd-sourcing environmental monitoring data using open-source sensor stations (http://envirodiy.org/mayfly/) and based on the Observations Data Model v2.

  20. Use of Fuzzy rainfall-runoff predictions for claypan watersheds with conservation buffers in Northeast Missouri

    NASA Astrophysics Data System (ADS)

    Anomaa Senaviratne, G. M. M. M.; Udawatta, Ranjith P.; Anderson, Stephen H.; Baffaut, Claire; Thompson, Allen

    2014-09-01

    Fuzzy rainfall-runoff models are often used to forecast flood or water supply in large catchments and applications at small/field scale agricultural watersheds are limited. The study objectives were to develop, calibrate, and validate a fuzzy rainfall-runoff model using long-term data of three adjacent field scale row crop watersheds (1.65-4.44 ha) with intermittent discharge in the claypan soils of Northeast Missouri. The watersheds were monitored for a six-year calibration period starting 1991 (pre-buffer period). Thereafter, two of them were treated with upland contour grass and agroforestry (tree + grass) buffers (4.5 m wide, 36.5 m apart) to study water quality benefits. The fuzzy system was based on Mamdani method using MATLAB 7.10.0. The model predicted event-based runoff with model performance coefficients of r2 and Nash-Sutcliffe Coefficient (NSC) values greater than 0.65 for calibration and validation. The pre-buffer fuzzy system predicted event-based runoff for 30-50 times larger corn/soybean watersheds with r2 values of 0.82 and 0.68 and NSC values of 0.77 and 0.53, respectively. The runoff predicted by the fuzzy system closely agreed with values predicted by physically-based Agricultural Policy Environmental eXtender model (APEX) for the pre-buffer watersheds. The fuzzy rainfall-runoff model has the potential for runoff predictions at field-scale watersheds with minimum input. It also could up-scale the predictions for large-scale watersheds to evaluate the benefits of conservation practices.

  1. Simulation of runoff and nutrient export from a typical small watershed in China using the Hydrological Simulation Program-Fortran.

    PubMed

    Li, Zhaofu; Liu, Hongyu; Luo, Chuan; Li, Yan; Li, Hengpeng; Pan, Jianjun; Jiang, Xiaosan; Zhou, Quansuo; Xiong, Zhengqin

    2015-05-01

    The Hydrological Simulation Program-Fortran (HSPF), which is a hydrological and water-quality computer model that was developed by the United States Environmental Protection Agency, was employed to simulate runoff and nutrient export from a typical small watershed in a hilly eastern monsoon region of China. First, a parameter sensitivity analysis was performed to assess how changes in the model parameters affect runoff and nutrient export. Next, the model was calibrated and validated using measured runoff and nutrient concentration data. The Nash-Sutcliffe efficiency (E NS ) values of the yearly runoff were 0.87 and 0.69 for the calibration and validation periods, respectively. For storms runoff events, the E NS values were 0.93 for the calibration period and 0.47 for the validation period. Antecedent precipitation and soil moisture conditions can affect the simulation accuracy of storm event flow. The E NS values for the total nitrogen (TN) export were 0.58 for the calibration period and 0.51 for the validation period. In addition, the correlation coefficients between the observed and simulated TN concentrations were 0.84 for the calibration period and 0.74 for the validation period. For phosphorus export, the E NS values were 0.89 for the calibration period and 0.88 for the validation period. In addition, the correlation coefficients between the observed and simulated orthophosphate concentrations were 0.96 and 0.94 for the calibration and validation periods, respectively. The nutrient simulation results are generally satisfactory even though the parameter-lumped HSPF model cannot represent the effects of the spatial pattern of land cover on nutrient export. The model parameters obtained in this study could serve as reference values for applying the model to similar regions. In addition, HSPF can properly describe the characteristics of water quantity and quality processes in this area. After adjustment, calibration, and validation of the parameters, the HSPF model is suitable for hydrological and water-quality simulations in watershed planning and management and for designing best management practices.

  2. Watershed Management Optimization Support Tool (WMOST) v3: User Guide

    EPA Science Inventory

    The Watershed Management Optimization Support Tool (WMOST) is a decision support tool that facilitates integrated water management at the local or small watershed scale. WMOST models the environmental effects and costs of management decisions in a watershed context that is, accou...

  3. Watershed Management Optimization Support Tool (WMOST) v3: Theoretical Documentation

    EPA Science Inventory

    The Watershed Management Optimization Support Tool (WMOST) is a decision support tool that facilitates integrated water management at the local or small watershed scale. WMOST models the environmental effects and costs of management decisions in a watershed context, accounting fo...

  4. Watershed Management Optimization Support Tool (WMOST) v2: Theoretical Documentation

    EPA Science Inventory

    The Watershed Management Optimization Support Tool (WMOST) is a decision support tool that evaluates the relative cost-effectiveness of management practices at the local or watershed scale. WMOST models the environmental effects and costs of management decisions in a watershed c...

  5. Climate change and watershed mercury export: a multiple projection and model analysis

    EPA Science Inventory

    Future shifts in climatic conditions may impact watershed mercury (Hg) dynamics and transport. We apply an ensemble of watershed models to simulate and assess the responses of hydrological and total Hg (HgT) fluxes and concentrations to two climate change projections in the US Co...

  6. Comparisons of Historical versus Synthetic Weather Inputs to Watershed Models and their Effect on Pollutant Loads

    USDA-ARS?s Scientific Manuscript database

    Synthetic weather generators are important for continuous-simulation of agricultural watersheds for risk analyses of downstream water quality. Many watersheds are sparsely or totally ungauged and daily weather must either be transposed or augmented. Since water quality models must recognize runoff...

  7. APEX simulation: environmental benefits of agroforestry and grass buffers on corn-soybean watersheds

    USDA-ARS?s Scientific Manuscript database

    The Agricultural Policy Environmental Extender (APEX) model has the ability to simulate the effects of vegetative filter strips on runoff and pollutant loadings from agricultural watersheds. The objectives of this study were to calibrate and validate the APEX model for three adjacent watersheds and...

  8. Modeled Watershed Runoff Associated with Variations in Precipitation Data, with Implications for Contaminant Fluxes: Initial Results

    EPA Science Inventory

    Precipitation is one of the primary forcing functions of hydrologic and watershed fate and transport models; however, in light of advances in precipitation estimates across watersheds, data remain highly uncertain. A wide variety of simulated and observed precipitation data are a...

  9. 7 CFR 614.3 - Decisions subject to informal appeal procedures.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Program; and (x) Conservation Innovation Grants. (2) Non-Title XII conservation programs or provisions, including: (i) Agriculture Management Assistance Program; (ii) Emergency Watershed Protection Program; (iii...

  10. A sensitivity analysis of regional and small watershed hydrologic models

    NASA Technical Reports Server (NTRS)

    Ambaruch, R.; Salomonson, V. V.; Simmons, J. W.

    1975-01-01

    Continuous simulation models of the hydrologic behavior of watersheds are important tools in several practical applications such as hydroelectric power planning, navigation, and flood control. Several recent studies have addressed the feasibility of using remote earth observations as sources of input data for hydrologic models. The objective of the study reported here was to determine how accurately remotely sensed measurements must be to provide inputs to hydrologic models of watersheds, within the tolerances needed for acceptably accurate synthesis of streamflow by the models. The study objective was achieved by performing a series of sensitivity analyses using continuous simulation models of three watersheds. The sensitivity analysis showed quantitatively how variations in each of 46 model inputs and parameters affect simulation accuracy with respect to five different performance indices.

  11. Modeling post-fire hydro-geomorphic recovery in the Waldo Canyon Fire

    NASA Astrophysics Data System (ADS)

    Kinoshita, Alicia; Nourbakhshbeidokhti, Samira; Chin, Anne

    2016-04-01

    Wildfire can have significant impacts on watershed hydrology and geomorphology by changing soil properties and removing vegetation, often increasing runoff and soil erosion and deposition, debris flows, and flooding. Watershed systems may take several years or longer to recover. During this time, post-fire channel changes have the potential to alter hydraulics that influence characteristics such as time of concentration and increase time to peak flow, flow capacity, and velocity. Using the case of the 2012 Waldo Canyon Fire in Colorado (USA), this research will leverage field-based surveys and terrestrial Light Detection and Ranging (LiDAR) data to parameterize KINEROS2 (KINematic runoff and EROSion), an event oriented, physically-based watershed runoff and erosion model. We will use the Automated Geospatial Watershed Assessment (AGWA) tool, which is a GIS-based hydrologic modeling tool that uses commonly available GIS data layers to parameterize, execute, and spatially visualize runoff and sediment yield for watersheds impacted by the Waldo Canyon Fire. Specifically, two models are developed, an unburned (Bear Creek) and burned (Williams) watershed. The models will simulate burn severity and treatment conditions. Field data will be used to validate the burned watersheds for pre- and post-fire changes in infiltration, runoff, peak flow, sediment yield, and sediment discharge. Spatial modeling will provide insight into post-fire patterns for varying treatment, burn severity, and climate scenarios. Results will also provide post-fire managers with improved hydro-geomorphic modeling and prediction tools for water resources management and mitigation efforts.

  12. Estimates of nitrate loads and yields from groundwater to streams in the Chesapeake Bay watershed based on land use and geology

    USGS Publications Warehouse

    Terziotti, Silvia; Capel, Paul D.; Tesoriero, Anthony J.; Hopple, Jessica A.; Kronholm, Scott C.

    2018-03-07

    The water quality of the Chesapeake Bay may be adversely affected by dissolved nitrate carried in groundwater discharge to streams. To estimate the concentrations, loads, and yields of nitrate from groundwater to streams for the Chesapeake Bay watershed, a regression model was developed based on measured nitrate concentrations from 156 small streams with watersheds less than 500 square miles (mi2 ) at baseflow. The regression model has three predictive variables: geologic unit, percent developed land, and percent agricultural land. Comparisons of estimated and actual values within geologic units were closely matched. The coefficient of determination (R2 ) for the model was 0.6906. The model was used to calculate baseflow nitrate concentrations at over 83,000 National Hydrography Dataset Plus Version 2 catchments and aggregated to 1,966 total 12-digit hydrologic units in the Chesapeake Bay watershed. The modeled output geospatial data layers provided estimated annual loads and yields of nitrate from groundwater into streams. The spatial distribution of annual nitrate yields from groundwater estimated by this method was compared to the total watershed yields of all sources estimated from a Chesapeake Bay SPAtially Referenced Regressions On Watershed attributes (SPARROW) water-quality model. The comparison showed similar spatial patterns. The regression model for groundwater contribution had similar but lower yields, suggesting that groundwater is an important source of nitrogen for streams in the Chesapeake Bay watershed.

  13. Uncertainty in BMP evaluation and optimization for watershed management

    NASA Astrophysics Data System (ADS)

    Chaubey, I.; Cibin, R.; Sudheer, K.; Her, Y.

    2012-12-01

    Use of computer simulation models have increased substantially to make watershed management decisions and to develop strategies for water quality improvements. These models are often used to evaluate potential benefits of various best management practices (BMPs) for reducing losses of pollutants from sources areas into receiving waterbodies. Similarly, use of simulation models in optimizing selection and placement of best management practices under single (maximization of crop production or minimization of pollutant transport) and multiple objective functions has increased recently. One of the limitations of the currently available assessment and optimization approaches is that the BMP strategies are considered deterministic. Uncertainties in input data (e.g. precipitation, streamflow, sediment, nutrient and pesticide losses measured, land use) and model parameters may result in considerable uncertainty in watershed response under various BMP options. We have developed and evaluated options to include uncertainty in BMP evaluation and optimization for watershed management. We have also applied these methods to evaluate uncertainty in ecosystem services from mixed land use watersheds. In this presentation, we will discuss methods to to quantify uncertainties in BMP assessment and optimization solutions due to uncertainties in model inputs and parameters. We have used a watershed model (Soil and Water Assessment Tool or SWAT) to simulate the hydrology and water quality in mixed land use watershed located in Midwest USA. The SWAT model was also used to represent various BMPs in the watershed needed to improve water quality. SWAT model parameters, land use change parameters, and climate change parameters were considered uncertain. It was observed that model parameters, land use and climate changes resulted in considerable uncertainties in BMP performance in reducing P, N, and sediment loads. In addition, climate change scenarios also affected uncertainties in SWAT simulated crop yields. Considerable uncertainties in the net cost and the water quality improvements resulted due to uncertainties in land use, climate change, and model parameter values.

  14. Watershed regressions for pesticides (warp) models for predicting atrazine concentrations in Corn Belt streams

    USGS Publications Warehouse

    Stone, Wesley W.; Gilliom, Robert J.

    2012-01-01

    Watershed Regressions for Pesticides (WARP) models, previously developed for atrazine at the national scale, are improved for application to the United States (U.S.) Corn Belt region by developing region-specific models that include watershed characteristics that are influential in predicting atrazine concentration statistics within the Corn Belt. WARP models for the Corn Belt (WARP-CB) were developed for annual maximum moving-average (14-, 21-, 30-, 60-, and 90-day durations) and annual 95th-percentile atrazine concentrations in streams of the Corn Belt region. The WARP-CB models accounted for 53 to 62% of the variability in the various concentration statistics among the model-development sites. Model predictions were within a factor of 5 of the observed concentration statistic for over 90% of the model-development sites. The WARP-CB residuals and uncertainty are lower than those of the National WARP model for the same sites. Although atrazine-use intensity is the most important explanatory variable in the National WARP models, it is not a significant variable in the WARP-CB models. The WARP-CB models provide improved predictions for Corn Belt streams draining watersheds with atrazine-use intensities of 17 kg/km2 of watershed area or greater.

  15. Parameterization and Uncertainty Analysis of SWAT model in Hydrological Simulation of Chaohe River Basin

    NASA Astrophysics Data System (ADS)

    Jie, M.; Zhang, J.; Guo, B. B.

    2017-12-01

    As a typical distributed hydrological model, the SWAT model also has a challenge in calibrating parameters and analysis their uncertainty. This paper chooses the Chaohe River Basin China as the study area, through the establishment of the SWAT model, loading the DEM data of the Chaohe river basin, the watershed is automatically divided into several sub-basins. Analyzing the land use, soil and slope which are on the basis of the sub-basins and calculating the hydrological response unit (HRU) of the study area, after running SWAT model, the runoff simulation values in the watershed are obtained. On this basis, using weather data, known daily runoff of three hydrological stations, combined with the SWAT-CUP automatic program and the manual adjustment method are used to analyze the multi-site calibration of the model parameters. Furthermore, the GLUE algorithm is used to analyze the parameters uncertainty of the SWAT model. Through the sensitivity analysis, calibration and uncertainty study of SWAT, the results indicate that the parameterization of the hydrological characteristics of the Chaohe river is successful and feasible which can be used to simulate the Chaohe river basin.

  16. MONITORING OF A BEST MANAGEMENT PRACTICE POND

    EPA Science Inventory

    The USEPA's Urban Watershed Management Branch has monitored stormwater drainage and best management practices (BMP) as part of its research program. One BMP currently being monitored, a retention pond with wetland plantings, is in the Richmond Creek (RC) watershed part of New Yor...

  17. IMPACTS OF URBANIZATION ON WATERSHED HYDROLOGIC FUNCTION

    EPA Science Inventory

    Although urbanization has a major impact on watershed hydrology, there have not been studies to quantify basic hydrological relationships that are altered by the addition of impervious surfaces. The USDA-ARS and USEPA-ORD-NRMRL have initiated a pilot program to study the impacts...

  18. INTENSIVE WATERSHED STUDY: THE PATUXENT RIVER BASIN

    EPA Science Inventory

    This study was one of five intensive watershed studies designed by the Chesapeake Bay Program's Eutrophication Work Group to provide detailed nonpoint source loading rates and ambient water quality data within the Chesapeake Bay drainage area. The study was conducted within the P...

  19. Trend analysis of watershed-scale precipitation over Northern California by means of dynamically-downscaled CMIP5 future climate projections.

    PubMed

    Ishida, K; Gorguner, M; Ercan, A; Trinh, T; Kavvas, M L

    2017-08-15

    The impacts of climate change on watershed-scale precipitation through the 21st century were investigated over eight study watersheds in Northern California based on dynamically downscaled CMIP5 future climate projections from three GCMs (CCSM4, HadGEM2-ES, and MIROC5) under the RCP4.5 and RCP8.5 future climate scenarios. After evaluating the modeling capability of the WRF model, the six future climate projections were dynamically downscaled by means of the WRF model over Northern California at 9km grid resolution and hourly temporal resolution during a 94-year period (2006-2100). The biases in the model simulations were corrected, and basin-average precipitation over the eight study watersheds was calculated from the dynamically downscaled precipitation data. Based on the dynamically downscaled basin-average precipitation, trends in annual depth and annual peaks of basin-average precipitation during the 21st century were analyzed over the eight study watersheds. The analyses in this study indicate that there may be differences between trends of annual depths and annual peaks of watershed-scale precipitation during the 21st century. Furthermore, trends in watershed-scale precipitation under future climate conditions may be different for different watersheds depending on their location and topography even if they are in the same region. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. An economic inquisition of water quality trading programs, with a case study of Jordan Lake, NC.

    PubMed

    Motallebi, Marzieh; Hoag, Dana L; Tasdighi, Ali; Arabi, Mazdak; Osmond, Deanna L

    2017-05-15

    A water quality trading (WQT) program was promulgated in North Carolina to address water quality issues related to nutrients in the highly urbanizing Jordan Lake Watershed. Although WQT programs are appealing in theory, the concept has not proved feasible in several attempts between point and nonpoint polluters in the United States. Many application hurdles that create wedges between success and failure have been evaluated in the literature. Most programs, however, face multiple hurdles; eliminating one may not clear a pathway to success. Therefore, we identify and evaluate the combined impact of four different wedges including baseline, transaction cost, trading ratio, and trading cost in the Jordan Lake Watershed program. Unfortunately, when applied to the Jordan Lake program, the analysis clearly shows that a traditional WQT program will not be feasible or address nutrient management needs in a meaningful way. The hurdles individually would be difficult to overcome, but together they appear to be unsurmountable. This analysis shows that there is enough information to pre-identify potential hurdles that could inform policy makers where, and how, the concept might work. It would have saved time, energy, and financial resources if North Carolina had done so before embarking to implement their program in the Jordan Lake Watershed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. A Watershed-Scale Agent-Based Model Incorporating Agent Learning and Interaction of Farmers' Decisions Subject to Carbon and Miscanthus Prices

    NASA Astrophysics Data System (ADS)

    Ng, T.; Eheart, J.; Cai, X.; Braden, J. B.

    2010-12-01

    Agricultural watersheds are coupled human-natural systems where the land use decisions of human agents (farmers) affect surface water quality, and in turn, are affected by the weather and yields. The reliable modeling of such systems requires an approach that considers both the human and natural aspects. Agent-based modeling (ABM), representing the human aspect, coupled with hydrologic modeling, representing the natural aspect, is one such approach. ABM is a relatively new modeling paradigm that formulates the system from the perspectives of the individual agents, i.e., each agent is modeled as a discrete autonomous entity with distinct goals and actions. The primary objective of this study is to demonstrate the applicability of this approach to agricultural watershed management. This is done using a semi-hypothetical case study of farmers in the Salt Creek watershed in East-Central Illinois under the influence markets for carbon and second-generation bioenergy crop (specifically, miscanthus). An agent-based model of the system is developed and linked to a hydrologic model of the watershed. The former is based on fundamental economic and mathematical programming principles, while the latter is based on the Soil and Water Assessment Tool (SWAT). Carbon and second-generation bioenergy crop markets are of interest here due to climate change and energy independence concerns. The agent-based model is applied to fifty hypothetical heterogeneous farmers. The farmers' decisions depend on their perceptions of future conditions. Those perceptions are updated, according to a pre-defined algorithm, as the farmers make new observations of prices, costs, yields and the weather with time. The perceptions are also updated as the farmers interact with each other as they share new information on initially unfamiliar activities (e.g., carbon trading, miscanthus cultivation). The updating algorithm is set differently for different farmers such that each is unique in his processing of new information. The results provide insights on how differences in the way farmers learn and adapt affect their forecasts of the future, and hence, decisions. Farmers who are interacting, less risk averse, quick to adjust their expectations with new observations, and slow to reduce their forecast confidence when there are unexpected changes are more likely to practice conservation tillage (farmers may claim carbon credits for sale when practicing conservation tillage), and switch from conventional crops to miscanthus. The results, though empirically untested, appear plausible and consistent with general behavior by farmers. All this demonstrates the ability and potential of ABM to capture, at least partially, the complexities of human decision-making.

  2. Research on Coupling Method of Watershed Initial Water Rights Allocation in Daling River

    NASA Astrophysics Data System (ADS)

    Liu, J.; Fengping, W.

    2016-12-01

    Water scarcity is now a common occurrence in many countries. The situation of watershed initial water rights allocation has caused many benefit conflicts among regions and regional water sectors of domestic and ecology environment and industries in China. This study aims to investigate the method of watershed initial water rights allocation in the perspective of coupling in Daling River Watershed taking provincial initial water rights and watershed-level governmental reserved water as objects. First of all, regarding the allocation subsystem of initial water rights among provinces, this research calculates initial water rights of different provinces by establishing the coupling model of water quantity and quality on the principle of "rewarding efficiency and penalizing inefficiency" based on the two control objectives of water quantity and quality. Secondly, regarding the allocation subsystem of watershed-level governmental reserved water rights, the study forecasts the demand of watershed-level governmental reserved water rights by the combination of case-based reasoning and water supply quotas. Then, the bilaterally coupled allocation model on water supply and demand is designed after supply analysis to get watershed-level governmental reserved water rights. The results of research method applied to Daling River Watershed reveal the recommended scheme of watershed initial water rights allocation based on coordinated degree criterion. It's found that the feasibility of the iteration coupling model and put forward related policies and suggestions. This study owns the advantages of complying with watershed initial water rights allocation mechanism and meeting the control requirements of water quantity, water quality and water utilization efficiency, which help to achieve the effective allocation of water resources.

  3. Web-based decision support and visualization tools for water quality management in the Chesapeake Bay watershed

    USGS Publications Warehouse

    Mullinix, C.; Hearn, P.; Zhang, H.; Aguinaldo, J.

    2009-01-01

    Federal, State, and local water quality managers charged with restoring the Chesapeake Bay ecosystem require tools to maximize the impact of their limited resources. To address this need, the U.S. Geological Survey (USGS) and the Environmental Protection Agency's Chesapeake Bay Program (CBP) are developing a suite of Web-based tools called the Chesapeake Online Assessment Support Toolkit (COAST). The goal of COAST is to help CBP partners identify geographic areas where restoration activities would have the greatest effect, select the appropriate management strategies, and improve coordination and prioritization among partners. As part of the COAST suite of tools focused on environmental restoration, a water quality management visualization component called the Nutrient Yields Mapper (NYM) tool is being developed by USGS. The NYM tool is a web application that uses watershed yield estimates from USGS SPAtially Referenced Regressions On Watershed (SPARROW) attributes model (Schwarz et al., 2006) [6] to allow water quality managers to identify important sources of nitrogen and phosphorous within the Chesapeake Bay watershed. The NYM tool utilizes new open source technologies that have become popular in geospatial web development, including components such as OpenLayers and GeoServer. This paper presents examples of water quality data analysis based on nutrient type, source, yield, and area of interest using the NYM tool for the Chesapeake Bay watershed. In addition, we describe examples of map-based techniques for identifying high and low nutrient yield areas; web map engines; and data visualization and data management techniques.

  4. McKenzie River Focus Watershed Coordination: Year-End Report 2000.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thrailkil, Jim

    2000-01-01

    This report summarizes accomplishments of the McKenzie River Focus Watershed Council (MWC) in the areas of coordination and administration during Fiscal Year 2000. Coordination and administration consist of prioritization and planning for projects; project management and implementation; procurement of funding for long-term support of the Council; and watershed education/outreach program for residents and local schools. Key accomplishments in the area of project planning include coordinating: monthly Council and executive committee meetings; staffing the Upper Willamette Spring Chinook Working Group; staffing the water quality technical committee; and guiding education and stewardship projects. Key accomplishments in the area of project management includemore » the completion of the McKenzie-Willamette Confluence Assessment; securing funds for project planning in the confluence area; near completion of the BPA funded McKenzie sub-basin assessment; development of a framework for a McKenzie Watershed Conservation Strategy; an evaluation of Council's monitoring programs - ambient water quality, storm-event water quality, Tier III water quality, and macroinvertebrate monitoring. The Council, in cooperation with the McKenzie River Cooperative, completed habitat enhancements in the Gate Creek and Deer Creek sub-watersheds. This partnership recently submitted Bring Back the Natives grant for initiation of projects in other McKenzie tributaries. The Council will also be working with a local business to develop a river-side riparian enhancement and native landscaping project on the lodge grounds. This will serve as a demonstration project for blending fish and wildlife habitat concerns with maintaining grounds for business opportunities. Accomplishments in the area of procurement of funding included developing the FY2000 Scope of Work and budget for approval by the Council and BPA; providing quarterly budget and work program progress reports to the Council; and securing additional funding from Council partner organizations and foundations. Highlights in the area of watershed education/outreach include the MWC's lead role in convening the Watershed Education Network for teachers as part of its educational mission; production of newsletters and brochures; and coordination of media coverage of watershed-related issues.« less

  5. Rainfall-runoff in the Albuquerque, New Mexico, area: Measurements, analyses and comparisons

    USGS Publications Warehouse

    Anderson, C.E.; Ward, T.J.; Kelly, T.; ,

    2005-01-01

    Albuquerque, New Mexico, has experienced significant growth over the last 20 years like many other cities in the Southwestern United States. While the US population grew by 37% between the 1970 and 2000 censuses, the growth for Albuquerque was 83%. More people mean more development and increased problems of managing runoff from urbanizing watersheds. The U.S. Geological Survey (USGS) in cooperation with the Albuquerque Arroyo Metropolitan Flood Control Authority (AMAFCA) and the City of Albuquerque has maintained a rainfall-runoff data collection program since 1976. The data from measured precipitation events can be used to verify hydrologic modeling. In this presentation, data from a representative gaged watershed is analyzed and discussed to set the overall framework for the rainfall-runoff process in the Albuquerque area. Of particular interest are the basic relationships between rainfall and watershed runoff response and an analysis of curve numbers as an indicator of runoff function. In urbanized areas, four land treatment types (natural, irrigated lawns, compacted soil, and impervious) are used to define surface infiltration conditions. Rainfall and runoff gage data are used to compare curve number (CN) and initial abstraction/uniform infiltration (IA/INF) techniques in an Albuquerque watershed. The IA/INF method appears to produce superior results over the CN method for the measured rainfall events.

  6. Using LiDAR datasets to improve HSPF water quality modeling in the Red River of the North Basin

    NASA Astrophysics Data System (ADS)

    Burke, M. P.; Foreman, C. S.

    2013-12-01

    The Red River of the North Basin (RRB), located in the lakebed of ancient glacial Lake Agassiz, comprises one of the flattest landscapes in North America. The topography of the basin, coupled with the Red River's direction of flow from south to north results in a system that is highly susceptible to flooding. The magnitude and frequency of flood events in the RRB has prompted several multijurisdictional projects and mitigation efforts. In response to the devastating 1997 flood, an International Joint Commission sponsored task force established the need for accurate elevation data to help improve flood forecasting and better understand risks. This led to the International Water Institute's Red River Basin Mapping Initiative, and the acquisition LiDAR Data for the entire US portion of the RRB. The resulting 1 meter bare earth digital elevation models have been used to improve hydraulic and hydrologic modeling within the RRB, with focus on flood prediction and mitigation. More recently, these LiDAR datasets have been incorporated into Hydrological Simulation Program-FORTRAN (HSPF) model applications to improve water quality predictions in the MN portion of the RRB. RESPEC is currently building HSPF model applications for five of MN's 8-digit HUC watersheds draining to the Red River, including: the Red Lake River, Clearwater River, Sandhill River, Two Rivers, and Tamarac River watersheds. This work is being conducted for the Minnesota Pollution Control Agency (MPCA) as part of MN's statewide watershed approach to restoring and protecting water. The HSPF model applications simulate hydrology (discharge, stage), as well as a number of water quality constituents (sediment, temperature, organic and inorganic nitrogen, total ammonia, organic and inorganic phosphorus, dissolved oxygen and biochemical oxygen demand, and algae) continuously for the period 1995-2009 and are formulated to provide predictions at points of interest within the watersheds, such as observation gages, management boundaries, compliance points, and impaired water body endpoints. Incorporation of the LiDAR datasets has been critical to representing the topographic characteristics that impact hydrologic and water quality processes in the extremely flat, heavily drained sub-basins of the RRB. Beyond providing more detailed elevation and slope measurements, the high resolution LiDAR datasets have helped to identify drainage alterations due to agricultural practices, as well as improve representation of channel geometry. Additionally, when available, LiDAR based hydraulic models completed as part of the RRB flood mitigation efforts, are incorporated to further improve flow routing. The MPCA will ultimately use these HSPF models to aid in Total Maximum Daily Load (TMDL) development, permit development/compliance, analysis of Best Management Practice (BMP) implementation scenarios, and other watershed planning and management objectives. LiDAR datasets are an essential component of the water quality models build for the watersheds within the RRB and would greatly benefit water quality modeling efforts in similarly characterized areas.

  7. Coastal circulation and sediment dynamics in Pelekane and Kawaihae Bays, Hawaii--measurements of waves, currents, temperature, salinity, turbidity, and geochronology: November 2010--March 2011

    USGS Publications Warehouse

    Storlazzi, Curt D.; Field, Michael E.; Presto, M. Katherine; Swarzenski, Peter W.; Logan, Joshua B.; Reiss, Thomas E.; Elfers, Timothy C.; Cochran, Susan A.; Torresan, Michael E.; Chezar, Hank

    2012-01-01

    Coral reef communities on the Island of Hawaii have been heavily affected by the construction of Kawaihae Harbor in the 1950s and by subsequent changes in land use in the adjacent watershed. Sedimentation and other forms of land-based pollution have led to declines in water quality and coral reef health over the past two decades (Tissot, 1998). Erosion mitigation efforts are underway on land, and there is a need to evaluate the impact of these actions on the adjacent coastal ecosystem. The Kohala Center and Kohala Watershed Partnership was awarded $2.69 million from the National Oceanographic and Atmospheric Administration’s (NOAA) Restoration Center as part of the American Recovery and Reinvestment Act of 2009 to stabilize soil and improve land-use practices in the Pelekane Bay watershed. The grant allowed the Kohala Watershed Partnership to implement various upland watershed management activities to reduce land-based sources of pollution into Pelekane Bay. However, a number of questions must be answered in order to: (1) evaluate the effectiveness of the terrestrial watershed remediation efforts; (2) understand the potential of the local marine ecosystem to recover; and (3) understand the potential threat that existing mud deposits in the bay pose to adjacent, relatively pristine coral reef ecosystems. The goal of this experiment was to help address these questions and establish a framework to evaluate the success of the Kohala Watershed Partnership restoration efforts. This research program will also provide resource managers with information relevant to other watershed restoration efforts currently being planned in neighboring watersheds. This project involved an interdisciplinary team of coral reef biologists from the University of Hawaii Coral Reef Assessment and Monitoring Program, who focused on the impact of sedimentation on the biota of Pelekane Bay, and a team of geologists and oceanographers from the U.S. Geological Survey (USGS), who focused on the circulation and sediment dynamics in Pelekane and Kawaihae Bays. The initial findings from the USGS research program are described in this report. These measurements support the ongoing studies being conducted as part of the USGS Coastal and Marine Geology Program’s Pacific Coral Reef Project to better understand the effect of geologic and oceanographic processes on coral reef systems.

  8. Soils Activity Mobility Study: Methodology and Application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    2014-09-29

    This report presents a three-level approach for estimation of sediment transport to provide an assessment of potential erosion risk for sites at the Nevada National Security Site (NNSS) that are posted for radiological purposes and where migration is suspected or known to occur due to storm runoff. Based on the assessed risk, the appropriate level of effort can be determined for analysis of radiological surveys, field experiments to quantify erosion and transport rates, and long-term monitoring. The method is demonstrated at contaminated sites, including Plutonium Valley, Shasta, Smoky, and T-1. The Pacific Southwest Interagency Committee (PSIAC) procedure is selected asmore » the Level 1 analysis tool. The PSIAC method provides an estimation of the total annual sediment yield based on factors derived from the climatic and physical characteristics of a watershed. If the results indicate low risk, then further analysis is not warranted. If the Level 1 analysis indicates high risk or is deemed uncertain, a Level 2 analysis using the Modified Universal Soil Loss Equation (MUSLE) is proposed. In addition, if a sediment yield for a storm event rather than an annual sediment yield is needed, then the proposed Level 2 analysis should be performed. MUSLE only provides sheet and rill erosion estimates. The U.S. Army Corps of Engineers Hydrologic Engineering Center-Hydrologic Modeling System (HEC-HMS) provides storm peak runoff rate and storm volumes, the inputs necessary for MUSLE. Channel Sediment Transport (CHAN-SED) I and II models are proposed for estimating sediment deposition or erosion in a channel reach from a storm event. These models require storm hydrograph associated sediment concentration and bed load particle size distribution data. When the Level 2 analysis indicates high risk for sediment yield and associated contaminant migration or when there is high uncertainty in the Level 2 results, the sites can be further evaluated with a Level 3 analysis using more complex and labor- and data-intensive methods. For the watersheds analyzed in this report using the Level 1 PSIAC method, the risk of erosion is low. The field reconnaissance surveys of these watersheds confirm the conclusion that the sediment yield of undisturbed areas at the NNSS would be low. The climate, geology, soils, ground cover, land use, and runoff potential are similar among these watersheds. There are no well-defined ephemeral channels except at the Smoky and Plutonium Valley sites. Topography seems to have the strongest influence on sediment yields, as sediment yields are higher on the steeper hill slopes. Lack of measured sediment yield data at the NNSS does not allow for a direct evaluation of the yield estimates by the PSIAC method. Level 2 MUSLE estimates in all the analyzed watersheds except Shasta are a small percentage of the estimates from PSIAC because MUSLE is not inclusive of channel erosion. This indicates that channel erosion dominates the total sediment yield in these watersheds. Annual sediment yields for these watersheds are estimated using the CHAN-SEDI and CHAN-SEDII channel sediment transport models. Both transport models give similar results and exceed the estimates obtained from PSIAC and MUSLE. It is recommended that the total watershed sediment yield of watersheds at the NNSS with flow channels be obtained by adding the washload estimate (rill and inter-rill erosion) from MUSLE to that obtained from channel transport models (bed load and suspended sediment). PSIAC will give comparable results if factor scores for channel erosion are revised towards the high erosion level. Application of the Level 3 process-based models to estimate sediment yields at the NNSS cannot be recommended at this time. Increased model complexity alone will not improve the certainty of the sediment yield estimates. Models must be calibrated against measured data before model results are accepted as certain. Because no measurements of sediment yields at the NNSS are available, model validation cannot be performed. This is also true for the models used in the Level 2 analyses presented in this study. The need to calibrate MUSLE to local conditions has been discussed. Likewise, the transport equations of CHAN-SEDI and CHAN-SEDII need to be calibrated against local data to assess their applicability under semi-arid conditions and for the ephemeral channels at the NNSS. Before these validations and calibration exercises can be undertaken, a long-term measured sediment yield data set must be developed. Development of long-term measured sediment yield data cannot be overemphasized. Long-term monitoring is essential for accurate characterization of watershed processes. It is recommended that a long-term monitoring program be set up to measure watershed erosion rates and channel sediment transport rates.« less

  9. Evaluation of Lower East Fork Poplar Creek Mercury Sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watson, David B.; Brooks, Scott C.; Mathews, Teresa J.

    This report summarizes a 3-year research project undertaken to better understand the nature and magnitude of mercury (Hg) fluxes in East Fork Poplar Creek (EFPC). This project addresses the requirements of Action Plan 1 in the 2011 Oak Ridge Reservation-wide Comprehensive Environmental Response, Compensation, and Liability Act Five Year Review (FYR). The Action Plan is designed to address a twofold 2011 FYR issue: (1) new information suggests mobilization of mercury from the upper and lower EFPC streambeds and stream banks is the primary source of mercury export during high-flow conditions, and (2) the current Record of Decision did not addressmore » the entire hydrologic system and creek bank or creek bed sediments. To obtain a more robust watershed-scale understanding of mercury sources and processes in lower EFPC (LEFPC), new field and laboratory studies were coupled with existing data from multiple US Department of Energy programs to develop a dynamic watershed and bioaccumulation model. LEFPC field studies for the project focused primarily on quantification of streambank erosion and an evaluation of mercury dynamics in shallow groundwater adjacent to LEFPC and potential connection to the surface water. The approach to the stream bank study was innovative in using imagery from kayak floats’ surveys from the headwaters to the mouth of EFPC to estimate erosion, coupled with detailed bank soil mercury analyses. The goal of new field assessments and modeling was to generate a more holistic and quantitative understanding of the watershed and the sources, flux, concentration, transformation, and bioaccumulation of inorganic mercury (IHg) and methylmercury (MeHg). Model development used a hybrid approach that dynamically linked a spreadsheet-based physical and chemical watershed model to a systems dynamics, mercury bioaccumulation model for key fish species. The watershed model tracks total Hg and MeHg fluxes and concentrations by examining upstream inputs, floodplain runoff, floodplain leaching, bank soil erosion, and periphyton matrix dynamics. The bioaccumulation model tracks the feeding, growth, and mercury assimilation of representative individual fish through their typical life span using key inputs of fish size, water temperature, and diet. The LEFPC watershed was divided into five modeling reaches, and fluxes and concentrations are assessed at this spatial scale. Following are the key findings of the field and laboratory studies and the watershed and bioaccumulation modeling: • The greatest flux of total mercury (HgT) in LEFPC is related to stormflow transport of Hg-contaminated solids entering the creek because of bank erosion in the upper reaches of the creek. • The second greatest flux originates from upper EFPC (Station 17 representing the exit stream sampling point near the boundary of the Y-12 Complex), and appears to control base flow fluxes. • The observed increase in MeHg concentration and flux from upstream to downstream is related primarily to instream methylation by periphyton and other biological activity. • A meaningful substantial reduction of the HgT flux in LEFPC would require addressing the flux of HgT originating from bank erosion and from Station 17. • Actions to reduce LEFPC floodplain leaching and runoff would not produce much of an impact on HgT or MeHg concentrations or fluxes unless other major sources are eliminated first. This project addresses the Action Plan goal to evaluate the role of LEFPC bank soil sources and to consider the entire EFPC hydrologic system. Model conclusions are dependent on the data available at the time of this assessment. However, a robust understanding and quantification for some mercury-related parameters and relationships is still lacking; there is a continued need for field data collection and modeling improvements. Model predictions should be viewed cautiously, with comparisons of the magnitude of predictions between scenarios being more valid than absolute predictions of concentrations or fluxes. With continued updates and refinement, the watershed-scale model can be a useful, valuable tool for future EFPC research prioritization, technology development, and remedial decision-making.« less

  10. Mitigation of Flood Hazards Through Modification of Urban Channels and Floodplains

    NASA Astrophysics Data System (ADS)

    Miller, A. J.; Lee, G.; Bledsoe, B. P.; Stephens, T.

    2017-12-01

    Small urban watersheds with high percent impervious cover and dense road and storm-drain networks are highly responsive to short-duration high-intensity rainfall events that lead to flash floods. The Baltimore metropolitan area has some of the flashiest urban watersheds in the conterminous U.S., high frequency of channel incision in affected areas, and a large number of watershed restoration projects designed to restore ecosystem services through reconnection of the channel with the floodplain. A question of key importance in these and other urban watersheds is to what extent we can mitigate flood hazards and urban stream syndrome through restoration activities that modify the channel and valley floor. Local and state governments have invested resources in repairing damage caused by extreme events like the July 30, 2016 Ellicott City flood in the Tiber River watershed, as well as more frequent high flows in other local urban streams. Recent reports have investigated how much flood mitigation may be achieved through modification of the channel and floodplain to enhance short-term storage of flood waters on the valley floor or in other subsurface structures, as compared with increasing stormwater management in the headwaters. Ongoing research conducted as part of the UWIN (Urban Water Innovation Network) program utilizes high-resolution topographic point clouds derived by processing of photographs from hand-held cameras or video frames from drone overflights. These are used both to track geomorphic change and to assess flood response with 2d hydraulic modeling tools under alternative mitigation scenarios. Assessment metrics include variations in inundation extent, water depth, hydrograph attenuation, and temporal and spatial characteristics of the 2d depth-averaged velocity field. Examples from diverse urban watersheds are presented to illustrate the range of anticipated outcomes and potential constraints on the effectiveness of downstream vs. headwater mitigation efforts.

  11. Modeling Fate and Transport of Fecal Coliform Bacteria Using SWAT 2005 (Case Study: Jajrood River Watershed, Iran)

    NASA Astrophysics Data System (ADS)

    Maghrebi, M.; Tajrishy, M.

    2010-12-01

    Jajrood River watershed is one of the main drinking water resources of the capital city of Tehran, Iran. In addition it has been available as many recreational usages especially in the warm months. As a result of being located near one of the crowded cities of the world, a variety of microbial pollutions is commonly perceived in the Jajrood River. Among them, there are strong concerns about fecal coliform bacteria concentration. This article aimed to model fate and transport of fecal coliform bacteria in Jajrood River watershed using Soil and Water Assessment Tool (SWAT) model version 2005. Potential pollutant sources in the study area were detected and quantified for modeling purposes. In spite of being lack of knowledge about bacteria die-off rate in small river bodies, as well as in other watershed-based forms, fecal coliform bacteria die-off rates were estimated using both laboratory and field data investigations with some simplifications. The SWAT model was calibrated over an extended time period (1997-2002) for this watershed. The river flow calibrated using SUFI-2 software and resulted in a very good outputs (R2=0.82, E=0.81). Furthermore SWAT model was validated over January 2003 to September 2005 in the study area and has resulted in good outputs (R2=0.61, E=0.57). This research illustrates SWAT 2005 capability to model fecal coliform bacteria in a populated watershed, and deals with most of watershed microbial pollution sources that are usually observed in developing countries. Fecal coliform concentration simulation results were mostly in the same order in comparison with real data. However, Differences were judged to be related to lack of input data. In this article different aspects of SWAT capabilities for modeling of fecal coliform bacteria concentration will be reviewed and it will present new insights in bacteria modeling procedures especially for mountainous, high populated and small sized watersheds.

  12. Legacy nutrient dynamics and patterns of catchment response under changing land use and management

    NASA Astrophysics Data System (ADS)

    Attinger, S.; Van, M. K.; Basu, N. B.

    2017-12-01

    Watersheds are complex heterogeneous systems that store, transform, and release water and nutrients under a broad distribution of both natural and anthropogenic controls. Many current watershed models, from complex numerical models to simpler reservoir-type models, are considered to be well-developed in their ability to predict fluxes of water and nutrients to streams and groundwater. They are generally less adept, however, at capturing watershed storage dynamics. In other words, many current models are run with an assumption of steady-state dynamics, and focus on nutrient flows rather than changes in nutrient stocks within watersheds. Although these commonly used modeling approaches may be able to adequately capture short-term watershed dynamics, they are unable to represent the clear nonlinearities or hysteresis responses observed in watersheds experiencing significant changes in nutrient inputs. To address such a lack, we have, in the present work, developed a parsimonious modeling approach designed to capture long-term catchment responses to spatial and temporal changes in nutrient inputs. In this approach, we conceptualize the catchment as a biogeochemical reactor that is driven by nutrient inputs, characterized internally by both biogeochemical degradation and residence or travel time distributions, resulting in a specific nutrient output. For the model simulations, we define a range of different scenarios to represent real-world changes in land use and management implemented to improve water quality. We then introduce the concept of state-space trajectories to describe system responses to these potential changes in anthropogenic forcings. We also increase model complexity, in a stepwise fashion, by dividing the catchment into multiple biogeochemical reactors, coupled in series or in parallel. Using this approach, we attempt to answer the following questions: (1) What level of model complexity is needed to capture observed system responses? (2) How can we explain different patterns of nonlinearity in watershed nutrient dynamics? And finally, how does the accumulation of nutrient legacies within watersheds impact current and future water quality?

  13. Participatory Modeling Processes to Build Community Knowledge Using Shared Model and Data Resources and in a Transboundary Pacific Northwest Watershed (Nooksack River Basin, Washington, USA)

    NASA Astrophysics Data System (ADS)

    Bandaragoda, C.; Dumas, M.

    2014-12-01

    As with many western US watersheds, the Nooksack River Basin faces strong pressures associated with climate variability and change, rapid population growth, and deep-rooted water law. This transboundary basin includes contributing areas in British Columbia, Canada, and has a long history of joint data collection, model development, and facilitated communication between governmental (federal, tribal, state, local), environmental, timber, agricultural, and recreational user groups. However, each entity in the watershed responds to unique data coordination, information sharing, and adaptive management regimes and thresholds, further increasing the complexity of watershed management. Over the past four years, participatory methods were used to compile and review scientific data and models, including fish habitat (endangered salmonid species), channel hydraulics, climate data, agricultural, municipal and industrial water use, and integrated watershed scale distributed hydrologic models from over 15 years of projects (from jointly funded to independent shared work by individual companies, agencies, and universities). A specific outcome of the work includes participatory design of a collective problem statement used for guidance on future investment of shared resources and development of a data-generation process where modeling results are communicated in a three-tiers for 1) public/decision-making, 2) technical, and 3) research audiences. We establish features for successful participation using tools that are iteratively developed, tested for usability through incremental knowledge building, and designed to provide rigor in modeling. A general outcome of the work is ongoing support by tribal, state, and local governments, as well as the agricultural community, to continue the generation of shared watershed data using models in a dynamic legal and regulatory setting, where two federally recognized tribes have requested federal court resolution of federal treaty rights. Our participatory modeling process aims to integrate disciplines and watershed processes over time and space, while building capacity for more holistic watershed-scale thinking, or community knowledge, by research, governmental and public interests.

  14. Assessing the seasonality and uncertainty in evapotranspiration partitioning using a tracer-aided model

    NASA Astrophysics Data System (ADS)

    Smith, A. A.; Welch, C.; Stadnyk, T. A.

    2018-05-01

    Evapotranspiration (ET) partitioning is a growing field of research in hydrology due to the significant fraction of watershed water loss it represents. The use of tracer-aided models has improved understanding of watershed processes, and has significant potential for identifying time-variable partitioning of evaporation (E) from ET. A tracer-aided model was used to establish a time-series of E/ET using differences in riverine δ18O and δ2H in four northern Canadian watersheds (lower Nelson River, Manitoba, Canada). On average E/ET follows a parabolic trend ranging from 0.7 in the spring and autumn to 0.15 (three watersheds) and 0.5 (fourth watershed) during the summer growing season. In the fourth watershed wetlands and shrubs dominate land cover. During the summer, E/ET ratios are highest in wetlands for three watersheds (10% higher than unsaturated soil storage), while lowest for the fourth watershed (20% lower than unsaturated soil storage). Uncertainty of the ET partition parameters is strongly influenced by storage volumes, with large storage volumes increasing partition uncertainty. In addition, higher simulated soil moisture increases estimated E/ET. Although unsaturated soil storage accounts for larger surface areas in these watersheds than wetlands, riverine isotopic composition is more strongly affected by E from wetlands. Comparisons of E/ET to measurement-intensive studies in similar ecoregions indicate that the methodology proposed here adequately partitions ET.

  15. A solar energy estimation procedure using remote sensing techniques. [watershed hydrologic models

    NASA Technical Reports Server (NTRS)

    Khorram, S.

    1977-01-01

    The objective of this investigation is to design a remote sensing-aided procedure for daily location-specific estimation of solar radiation components over the watershed(s) of interest. This technique has been tested on the Spanish Creek Watershed, Northern California, with successful results.

  16. Watershed Management Optimization Support Tool (WMOST) v2: User Manual and Case Studies

    EPA Science Inventory

    The Watershed Management Optimization Support Tool (WMOST) is a decision support tool that evaluates the relative cost-effectiveness of management practices at the local or watershed scale. WMOST models the environmental effects and costs of management decisions in a watershed c...

  17. Advances in distributed watershed modeling: a review and application of the AgroEcoSystem-Watershed (AgES-W) model

    USDA-ARS?s Scientific Manuscript database

    Progress in the understanding of physical, chemical, and biological processes influencing water quality, coupled with advancements in the collection and analysis of hydrologic data, provide opportunities for significant innovations in the manner and level with which watershed-scale processes may be ...

  18. Revised method and outcomes for estimating soil phosphorus losses from agricultural land in the Chesapeake Bay watershed model

    USDA-ARS?s Scientific Manuscript database

    Current restoration efforts for the Chesapeake Bay watershed mandate a timeline for reducing the load of nutrients and sediment to receiving waters. The Chesapeake Bay Watershed Model (WSM) has been used for two decades to simulate hydrology and nutrient and sediment transport; however, spatial limi...

  19. Challenges and progress in distributed watershed modeling: applications of the AgroEcoSystem-Watershed (AgES-W) model

    USDA-ARS?s Scientific Manuscript database

    Progress in the understanding of physical, chemical, and biological processes influencing water quality, coupled with advances in the collection and analysis of hydrologic data, provide opportunities for significant innovations in the manner and level with which watershed-scale processes may be quan...

  20. Integrated landscape/hydrologic modeling tool for semiarid watersheds

    Treesearch

    Mariano Hernandez; Scott N. Miller

    2000-01-01

    An integrated hydrologic modeling/watershed assessment tool is being developed to aid in determining the susceptibility of semiarid landscapes to natural and human-induced changes across a range of scales. Watershed processes are by definition spatially distributed and are highly variable through time, and this approach is designed to account for their spatial and...

Top