NASA Astrophysics Data System (ADS)
Huang, Wei; Zhang, Xingnan; Li, Chenming; Wang, Jianying
Management of group decision-making is an important issue in water source management development. In order to overcome the defects in lacking of effective communication and cooperation in the existing decision-making models, this paper proposes a multi-layer dynamic model for coordination in water resource allocation and scheduling based group decision making. By introducing the scheme-recognized cooperative satisfaction index and scheme-adjusted rationality index, the proposed model can solve the problem of poor convergence of multi-round decision-making process in water resource allocation and scheduling. Furthermore, the problem about coordination of limited resources-based group decision-making process can be solved based on the effectiveness of distance-based group of conflict resolution. The simulation results show that the proposed model has better convergence than the existing models.
[The role of research-based evidence in health system policy decision-making].
Patiño, Daniel; Lavis, John N; Moat, Kaelan
2013-01-01
Different models may be used for explaining how research-based evidence is used in healthcare system policy-making. It is argued that models arising from a clinical setting (i.e. evidence-based policy-making model) could be useful regarding some types of healthcare system decision-making. However, such models are "silent" concerning the influence of political contextual factors on healthcare policy-making and are thus inconsistent with decision-making regarding the modification of healthcare system arrangements. Other political science-based models would seem to be more useful for understanding that research is just one factor affecting decision-making and that different types of research-based evidence can be used instrumentally, conceptual or strategically during different policy-making stages.
Multiple attribute decision making model and application to food safety risk evaluation.
Ma, Lihua; Chen, Hong; Yan, Huizhe; Yang, Lifeng; Wu, Lifeng
2017-01-01
Decision making for supermarket food purchase decisions are characterized by network relationships. This paper analyzed factors that influence supermarket food selection and proposes a supplier evaluation index system based on the whole process of food production. The author established the intuitive interval value fuzzy set evaluation model based on characteristics of the network relationship among decision makers, and validated for a multiple attribute decision making case study. Thus, the proposed model provides a reliable, accurate method for multiple attribute decision making.
Decision making under uncertainty in a spiking neural network model of the basal ganglia.
Héricé, Charlotte; Khalil, Radwa; Moftah, Marie; Boraud, Thomas; Guthrie, Martin; Garenne, André
2016-12-01
The mechanisms of decision-making and action selection are generally thought to be under the control of parallel cortico-subcortical loops connecting back to distinct areas of cortex through the basal ganglia and processing motor, cognitive and limbic modalities of decision-making. We have used these properties to develop and extend a connectionist model at a spiking neuron level based on a previous rate model approach. This model is demonstrated on decision-making tasks that have been studied in primates and the electrophysiology interpreted to show that the decision is made in two steps. To model this, we have used two parallel loops, each of which performs decision-making based on interactions between positive and negative feedback pathways. This model is able to perform two-level decision-making as in primates. We show here that, before learning, synaptic noise is sufficient to drive the decision-making process and that, after learning, the decision is based on the choice that has proven most likely to be rewarded. The model is then submitted to lesion tests, reversal learning and extinction protocols. We show that, under these conditions, it behaves in a consistent manner and provides predictions in accordance with observed experimental data.
Neuroanatomical basis for recognition primed decision making.
Hudson, Darren
2013-01-01
Effective decision making under time constraints is often overlooked in medical decision making. The recognition primed decision making (RPDM) model was developed by Gary Klein based on previous recognized situations to develop a satisfactory solution to the current problem. Bayes Theorem is the most popular decision making model in medicine but is limited by the need for adequate time to consider all probabilities. Unlike other decision making models, there is a potential neurobiological basis for RPDM. This model has significant implication for health informatics and medical education.
Elsawah, Sondoss; Guillaume, Joseph H A; Filatova, Tatiana; Rook, Josefine; Jakeman, Anthony J
2015-03-15
This paper aims to contribute to developing better ways for incorporating essential human elements in decision making processes for modelling of complex socio-ecological systems. It presents a step-wise methodology for integrating perceptions of stakeholders (qualitative) into formal simulation models (quantitative) with the ultimate goal of improving understanding and communication about decision making in complex socio-ecological systems. The methodology integrates cognitive mapping and agent based modelling. It cascades through a sequence of qualitative/soft and numerical methods comprising: (1) Interviews to elicit mental models; (2) Cognitive maps to represent and analyse individual and group mental models; (3) Time-sequence diagrams to chronologically structure the decision making process; (4) All-encompassing conceptual model of decision making, and (5) computational (in this case agent-based) Model. We apply the proposed methodology (labelled ICTAM) in a case study of viticulture irrigation in South Australia. Finally, we use strengths-weakness-opportunities-threats (SWOT) analysis to reflect on the methodology. Results show that the methodology leverages the use of cognitive mapping to capture the richness of decision making and mental models, and provides a combination of divergent and convergent analysis methods leading to the construction of an Agent Based Model. Copyright © 2014 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Ballantine, R. Malcolm
Decision Support Systems (DSSs) are computer-based decision aids to use when making decisions which are partially amenable to rational decision-making procedures but contain elements where intuitive judgment is an essential component. In such situations, DSSs are used to improve the quality of decision-making. The DSS approach is based on Simon's…
2016-05-05
Training for IND Response Decision-Making: Models for Government–Industry Collaboration for the Development of Game -Based Training Tools R.M. Seater...Skill Transfer and Virtual Training for IND Response Decision-Making: Models for Government–Industry Collaboration for the Development of Game -Based...unlimited. This page intentionally left blank. iii EXECUTIVE SUMMARY Game -based training tools, sometimes called “serious games ,” are becoming
Konovalov, Arkady; Krajbich, Ian
2016-01-01
Organisms appear to learn and make decisions using different strategies known as model-free and model-based learning; the former is mere reinforcement of previously rewarded actions and the latter is a forward-looking strategy that involves evaluation of action-state transition probabilities. Prior work has used neural data to argue that both model-based and model-free learners implement a value comparison process at trial onset, but model-based learners assign more weight to forward-looking computations. Here using eye-tracking, we report evidence for a different interpretation of prior results: model-based subjects make their choices prior to trial onset. In contrast, model-free subjects tend to ignore model-based aspects of the task and instead seem to treat the decision problem as a simple comparison process between two differentially valued items, consistent with previous work on sequential-sampling models of decision making. These findings illustrate a problem with assuming that experimental subjects make their decisions at the same prescribed time. PMID:27511383
A decision-making model based on a spiking neural circuit and synaptic plasticity.
Wei, Hui; Bu, Yijie; Dai, Dawei
2017-10-01
To adapt to the environment and survive, most animals can control their behaviors by making decisions. The process of decision-making and responding according to cues in the environment is stable, sustainable, and learnable. Understanding how behaviors are regulated by neural circuits and the encoding and decoding mechanisms from stimuli to responses are important goals in neuroscience. From results observed in Drosophila experiments, the underlying decision-making process is discussed, and a neural circuit that implements a two-choice decision-making model is proposed to explain and reproduce the observations. Compared with previous two-choice decision making models, our model uses synaptic plasticity to explain changes in decision output given the same environment. Moreover, biological meanings of parameters of our decision-making model are discussed. In this paper, we explain at the micro-level (i.e., neurons and synapses) how observable decision-making behavior at the macro-level is acquired and achieved.
Models based on value and probability in health improve shared decision making.
Ortendahl, Monica
2008-10-01
Diagnostic reasoning and treatment decisions are a key competence of doctors. A model based on values and probability provides a conceptual framework for clinical judgments and decisions, and also facilitates the integration of clinical and biomedical knowledge into a diagnostic decision. Both value and probability are usually estimated values in clinical decision making. Therefore, model assumptions and parameter estimates should be continually assessed against data, and models should be revised accordingly. Introducing parameter estimates for both value and probability, which usually pertain in clinical work, gives the model labelled subjective expected utility. Estimated values and probabilities are involved sequentially for every step in the decision-making process. Introducing decision-analytic modelling gives a more complete picture of variables that influence the decisions carried out by the doctor and the patient. A model revised for perceived values and probabilities by both the doctor and the patient could be used as a tool for engaging in a mutual and shared decision-making process in clinical work.
An Interactive Model of Career Decision Making.
ERIC Educational Resources Information Center
Amundson, Norman E.
1995-01-01
The decision-making model described highlights the interaction between contextual factors, decision triggers, establishing a frame of the problem, reframing, and action planning. The interactive perspective is based on process and change. Career counseling with an interactive decision-making approach requires an acknowledgment of external…
A control-theory model for human decision-making
NASA Technical Reports Server (NTRS)
Levison, W. H.; Tanner, R. B.
1971-01-01
A model for human decision making is an adaptation of an optimal control model for pilot/vehicle systems. The models for decision and control both contain concepts of time delay, observation noise, optimal prediction, and optimal estimation. The decision making model was intended for situations in which the human bases his decision on his estimate of the state of a linear plant. Experiments are described for the following task situations: (a) single decision tasks, (b) two-decision tasks, and (c) simultaneous manual control and decision making. Using fixed values for model parameters, single-task and two-task decision performance can be predicted to within an accuracy of 10 percent. Agreement is less good for the simultaneous decision and control situation.
Research on Bidding Decision-making of International Public-Private Partnership Projects
NASA Astrophysics Data System (ADS)
Hu, Zhen Yu; Zhang, Shui Bo; Liu, Xin Yan
2018-06-01
In order to select the optimal quasi-bidding project for an investment enterprise, a bidding decision-making model for international PPP projects was established in this paper. Firstly, the literature frequency statistics method was adopted to screen out the bidding decision-making indexes, and accordingly the bidding decision-making index system for international PPP projects was constructed. Then, the group decision-making characteristic root method, the entropy weight method, and the optimization model based on least square method were used to set the decision-making index weights. The optimal quasi-bidding project was thus determined by calculating the consistent effect measure of each decision-making index value and the comprehensive effect measure of each quasi-bidding project. Finally, the bidding decision-making model for international PPP projects was further illustrated by a hypothetical case. This model can effectively serve as a theoretical foundation and technical support for the bidding decision-making of international PPP projects.
Modelling decision-making by pilots
NASA Technical Reports Server (NTRS)
Patrick, Nicholas J. M.
1993-01-01
Our scientific goal is to understand the process of human decision-making. Specifically, a model of human decision-making in piloting modern commercial aircraft which prescribes optimal behavior, and against which we can measure human sub-optimality is sought. This model should help us understand such diverse aspects of piloting as strategic decision-making, and the implicit decisions involved in attention allocation. Our engineering goal is to provide design specifications for (1) better computer-based decision-aids, and (2) better training programs for the human pilot (or human decision-maker, DM).
Sebold, Miriam; Nebe, Stephan; Garbusow, Maria; Guggenmos, Matthias; Schad, Daniel J; Beck, Anne; Kuitunen-Paul, Soeren; Sommer, Christian; Frank, Robin; Neu, Peter; Zimmermann, Ulrich S; Rapp, Michael A; Smolka, Michael N; Huys, Quentin J M; Schlagenhauf, Florian; Heinz, Andreas
2017-12-01
Addiction is supposedly characterized by a shift from goal-directed to habitual decision making, thus facilitating automatic drug intake. The two-step task allows distinguishing between these mechanisms by computationally modeling goal-directed and habitual behavior as model-based and model-free control. In addicted patients, decision making may also strongly depend upon drug-associated expectations. Therefore, we investigated model-based versus model-free decision making and its neural correlates as well as alcohol expectancies in alcohol-dependent patients and healthy controls and assessed treatment outcome in patients. Ninety detoxified, medication-free, alcohol-dependent patients and 96 age- and gender-matched control subjects underwent functional magnetic resonance imaging during the two-step task. Alcohol expectancies were measured with the Alcohol Expectancy Questionnaire. Over a follow-up period of 48 weeks, 37 patients remained abstinent and 53 patients relapsed as indicated by the Alcohol Timeline Followback method. Patients who relapsed displayed reduced medial prefrontal cortex activation during model-based decision making. Furthermore, high alcohol expectancies were associated with low model-based control in relapsers, while the opposite was observed in abstainers and healthy control subjects. However, reduced model-based control per se was not associated with subsequent relapse. These findings suggest that poor treatment outcome in alcohol dependence does not simply result from a shift from model-based to model-free control but is instead dependent on the interaction between high drug expectancies and low model-based decision making. Reduced model-based medial prefrontal cortex signatures in those who relapse point to a neural correlate of relapse risk. These observations suggest that therapeutic interventions should target subjective alcohol expectancies. Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Analysis of the decision-making process of nurse managers: a collective reflection.
Eduardo, Elizabete Araujo; Peres, Aida Maris; de Almeida, Maria de Lourdes; Roglio, Karina de Dea; Bernardino, Elizabeth
2015-01-01
to analyze the decision-making model adopted by nurses from the perspective of some decision-making process theories. qualitative approach, based on action research. Semi-structured questionnaires and seminars were conducted from April to June 2012 in order to understand the nature of decisions and the decision-making process of nine nurses in position of managers at a public hospital in Southern Brazil. Data were subjected to content analysis. data were classified in two categories: the current situation of decision-making, which showed a lack of systematization; the construction and collective decision-making, which emphasizes the need to develop a decision-making model. the decision-making model used by nurses is limited because it does not consider two important factors: the limits of human rationality, and the external and internal organizational environments that influence and determine right decisions.
Advances in the Application of Decision Theory to Test-Based Decision Making.
ERIC Educational Resources Information Center
van der Linden, Wim J.
This paper reviews recent research in the Netherlands on the application of decision theory to test-based decision making about personnel selection and student placement. The review is based on an earlier model proposed for the classification of decision problems, and emphasizes an empirical Bayesian framework. Classification decisions with…
Wu, Jun; Li, Chengbing; Huo, Yueying
2014-01-01
Safety of dangerous goods transport is directly related to the operation safety of dangerous goods transport enterprise. Aiming at the problem of the high accident rate and large harm in dangerous goods logistics transportation, this paper took the group decision making problem based on integration and coordination thought into a multiagent multiobjective group decision making problem; a secondary decision model was established and applied to the safety assessment of dangerous goods transport enterprise. First of all, we used dynamic multivalue background and entropy theory building the first level multiobjective decision model. Secondly, experts were to empower according to the principle of clustering analysis, and combining with the relative entropy theory to establish a secondary rally optimization model based on relative entropy in group decision making, and discuss the solution of the model. Then, after investigation and analysis, we establish the dangerous goods transport enterprise safety evaluation index system. Finally, case analysis to five dangerous goods transport enterprises in the Inner Mongolia Autonomous Region validates the feasibility and effectiveness of this model for dangerous goods transport enterprise recognition, which provides vital decision making basis for recognizing the dangerous goods transport enterprises. PMID:25477954
Wu, Jun; Li, Chengbing; Huo, Yueying
2014-01-01
Safety of dangerous goods transport is directly related to the operation safety of dangerous goods transport enterprise. Aiming at the problem of the high accident rate and large harm in dangerous goods logistics transportation, this paper took the group decision making problem based on integration and coordination thought into a multiagent multiobjective group decision making problem; a secondary decision model was established and applied to the safety assessment of dangerous goods transport enterprise. First of all, we used dynamic multivalue background and entropy theory building the first level multiobjective decision model. Secondly, experts were to empower according to the principle of clustering analysis, and combining with the relative entropy theory to establish a secondary rally optimization model based on relative entropy in group decision making, and discuss the solution of the model. Then, after investigation and analysis, we establish the dangerous goods transport enterprise safety evaluation index system. Finally, case analysis to five dangerous goods transport enterprises in the Inner Mongolia Autonomous Region validates the feasibility and effectiveness of this model for dangerous goods transport enterprise recognition, which provides vital decision making basis for recognizing the dangerous goods transport enterprises.
2010-01-01
Background Current healthcare systems have extended the evidence-based medicine (EBM) approach to health policy and delivery decisions, such as access-to-care, healthcare funding and health program continuance, through attempts to integrate valid and reliable evidence into the decision making process. These policy decisions have major impacts on society and have high personal and financial costs associated with those decisions. Decision models such as these function under a shared assumption of rational choice and utility maximization in the decision-making process. Discussion We contend that health policy decision makers are generally unable to attain the basic goals of evidence-based decision making (EBDM) and evidence-based policy making (EBPM) because humans make decisions with their naturally limited, faulty, and biased decision-making processes. A cognitive information processing framework is presented to support this argument, and subtle cognitive processing mechanisms are introduced to support the focal thesis: health policy makers' decisions are influenced by the subjective manner in which they individually process decision-relevant information rather than on the objective merits of the evidence alone. As such, subsequent health policy decisions do not necessarily achieve the goals of evidence-based policy making, such as maximizing health outcomes for society based on valid and reliable research evidence. Summary In this era of increasing adoption of evidence-based healthcare models, the rational choice, utility maximizing assumptions in EBDM and EBPM, must be critically evaluated to ensure effective and high-quality health policy decisions. The cognitive information processing framework presented here will aid health policy decision makers by identifying how their decisions might be subtly influenced by non-rational factors. In this paper, we identify some of the biases and potential intervention points and provide some initial suggestions about how the EBDM/EBPM process can be improved. PMID:20504357
McCaughey, Deirdre; Bruning, Nealia S
2010-05-26
Current healthcare systems have extended the evidence-based medicine (EBM) approach to health policy and delivery decisions, such as access-to-care, healthcare funding and health program continuance, through attempts to integrate valid and reliable evidence into the decision making process. These policy decisions have major impacts on society and have high personal and financial costs associated with those decisions. Decision models such as these function under a shared assumption of rational choice and utility maximization in the decision-making process. We contend that health policy decision makers are generally unable to attain the basic goals of evidence-based decision making (EBDM) and evidence-based policy making (EBPM) because humans make decisions with their naturally limited, faulty, and biased decision-making processes. A cognitive information processing framework is presented to support this argument, and subtle cognitive processing mechanisms are introduced to support the focal thesis: health policy makers' decisions are influenced by the subjective manner in which they individually process decision-relevant information rather than on the objective merits of the evidence alone. As such, subsequent health policy decisions do not necessarily achieve the goals of evidence-based policy making, such as maximizing health outcomes for society based on valid and reliable research evidence. In this era of increasing adoption of evidence-based healthcare models, the rational choice, utility maximizing assumptions in EBDM and EBPM, must be critically evaluated to ensure effective and high-quality health policy decisions. The cognitive information processing framework presented here will aid health policy decision makers by identifying how their decisions might be subtly influenced by non-rational factors. In this paper, we identify some of the biases and potential intervention points and provide some initial suggestions about how the EBDM/EBPM process can be improved.
Diaby, Vakaramoko; Goeree, Ron
2014-02-01
In recent years, the quest for more comprehensiveness, structure and transparency in reimbursement decision-making in healthcare has prompted the research into alternative decision-making frameworks. In this environment, multi-criteria decision analysis (MCDA) is arising as a valuable tool to support healthcare decision-making. In this paper, we present the main MCDA decision support methods (elementary methods, value-based measurement models, goal programming models and outranking models) using a case study approach. For each family of methods, an example of how an MCDA model would operate in a real decision-making context is presented from a critical perspective, highlighting the parameters setting, the selection of the appropriate evaluation model as well as the role of sensitivity and robustness analyses. This study aims to provide a step-by-step guide on how to use MCDA methods for reimbursement decision-making in healthcare.
Aging and the neuroeconomics of decision making: A review.
Brown, Stephen B R E; Ridderinkhof, K Richard
2009-12-01
Neuroeconomics refers to a combination of paradigms derived from neuroscience, psychology, and economics for the study of decision making and is an area that has received considerable scientific attention in the recent literature. Using realistic laboratory tasks, researchers seek to study the neurocognitive processes underlying economic decision making and outcome-based decision learning, as well as individual differences in these processes and the social and affective factors that modulate them. To this point, one question has remained largely unanswered: What happens to decision-making processes and their neural substrates during aging? After all, aging is associated with neurocognitive change, which may affect outcome-based decision making. In our study, we use the subjective expected utility model-a well-established decision-making model in economics-as a descriptive framework. After a short survey of the brain areas and neurotransmitter systems associated with outcome-based decision making-and of the effects of aging thereon-we review a number of decision-making studies. Their general data pattern indicates that the decision-making process is changed by age: The elderly perform less efficiently than younger participants, as demonstrated, for instance, by the smaller total rewards that the elderly acquire in lab tasks. These findings are accounted for in terms of age-related deficiencies in the probability and value parameters of the subjective expected utility model. Finally, we discuss some implications and suggestions for future research.
Composite collective decision-making
Czaczkes, Tomer J.; Czaczkes, Benjamin; Iglhaut, Carolin; Heinze, Jürgen
2015-01-01
Individual animals are adept at making decisions and have cognitive abilities, such as memory, which allow them to hone their decisions. Social animals can also share information. This allows social animals to make adaptive group-level decisions. Both individual and collective decision-making systems also have drawbacks and limitations, and while both are well studied, the interaction between them is still poorly understood. Here, we study how individual and collective decision-making interact during ant foraging. We first gathered empirical data on memory-based foraging persistence in the ant Lasius niger. We used these data to create an agent-based model where ants may use social information (trail pheromones), private information (memories) or both to make foraging decisions. The combined use of social and private information by individuals results in greater efficiency at the group level than when either information source was used alone. The modelled ants couple consensus decision-making, allowing them to quickly exploit high-quality food sources, and combined decision-making, allowing different individuals to specialize in exploiting different resource patches. Such a composite collective decision-making system reaps the benefits of both its constituent parts. Exploiting such insights into composite collective decision-making may lead to improved decision-making algorithms. PMID:26019155
Dhukaram, Anandhi Vivekanandan; Baber, Chris
2015-06-01
Patients make various healthcare decisions on a daily basis. Such day-to-day decision making can have significant consequences on their own health, treatment, care, and costs. While decision aids (DAs) provide effective support in enhancing patient's decision making, to date there have been few studies examining patient's decision making process or exploring how the understanding of such decision processes can aid in extracting requirements for the design of DAs. This paper applies Cognitive Work Analysis (CWA) to analyse patient's decision making in order to inform requirements for supporting self-care decision making. This study uses focus groups to elicit information from elderly cardiovascular disease (CVD) patients concerning a range of decision situations they face on a daily basis. Specifically, the focus groups addressed issues related to the decision making of CVD in terms of medication compliance, pain, diet and exercise. The results of these focus groups are used to develop high level views using CWA. CWA framework decomposes the complex decision making problem to inform three approaches to DA design: one design based on high level requirements; one based on a normative model of decision-making for patients; and the third based on a range of heuristics that patients seem to use. CWA helps in extracting and synthesising decision making from different perspectives: decision processes, work organisation, patient competencies and strategies used in decision making. As decision making can be influenced by human behaviour like skills, rules and knowledge, it is argued that patients require support to different types of decision making. This paper also provides insights for designers in using CWA framework for the design of effective DAs to support patients in self-management. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Wang, Bowen; Xiong, Haitao; Jiang, Chengrui
2014-01-01
As a hot topic in supply chain management, fuzzy method has been widely used in logistics center location selection to improve the reliability and suitability of the logistics center location selection with respect to the impacts of both qualitative and quantitative factors. However, it does not consider the consistency and the historical assessments accuracy of experts in predecisions. So this paper proposes a multicriteria decision making model based on credibility of decision makers by introducing priority of consistency and historical assessments accuracy mechanism into fuzzy multicriteria decision making approach. In this way, only decision makers who pass the credibility check are qualified to perform the further assessment. Finally, a practical example is analyzed to illustrate how to use the model. The result shows that the fuzzy multicriteria decision making model based on credibility mechanism can improve the reliability and suitability of site selection for the logistics center.
Wang, Bowen; Jiang, Chengrui
2014-01-01
As a hot topic in supply chain management, fuzzy method has been widely used in logistics center location selection to improve the reliability and suitability of the logistics center location selection with respect to the impacts of both qualitative and quantitative factors. However, it does not consider the consistency and the historical assessments accuracy of experts in predecisions. So this paper proposes a multicriteria decision making model based on credibility of decision makers by introducing priority of consistency and historical assessments accuracy mechanism into fuzzy multicriteria decision making approach. In this way, only decision makers who pass the credibility check are qualified to perform the further assessment. Finally, a practical example is analyzed to illustrate how to use the model. The result shows that the fuzzy multicriteria decision making model based on credibility mechanism can improve the reliability and suitability of site selection for the logistics center. PMID:25215319
A two-phased fuzzy decision making procedure for IT supplier selection
NASA Astrophysics Data System (ADS)
Shohaimay, Fairuz; Ramli, Nazirah; Mohamed, Siti Rosiah; Mohd, Ainun Hafizah
2013-09-01
In many studies on fuzzy decision making, linguistic terms are usually represented by corresponding fixed triangular or trapezoidal fuzzy numbers. However, the fixed fuzzy numbers used in decision making process may not explain the actual respondents' opinions. Hence, a two-phased fuzzy decision making procedure is proposed. First, triangular fuzzy numbers were built based on respondents' opinions on the appropriate range (0-100) for each seven-scale linguistic terms. Then, the fuzzy numbers were integrated into fuzzy decision making model. The applicability of the proposed method is demonstrated in a case study of supplier selection in Information Technology (IT) department. The results produced via the developed fuzzy numbers were consistent with the results obtained using fixed fuzzy numbers. However, with different set of fuzzy numbers based on respondents, there is a difference in the ranking of suppliers based on criterion X1 (background of supplier). Hopefully the proposed model which incorporates fuzzy numbers based on respondents will provide a more significant meaning towards future decision making.
A communication model of shared decision making: accounting for cancer treatment decisions.
Siminoff, Laura A; Step, Mary M
2005-07-01
The authors present a communication model of shared decision making (CMSDM) that explicitly identifies the communication process as the vehicle for decision making in cancer treatment. In this view, decision making is necessarily a sociocommunicative process whereby people enter into a relationship, exchange information, establish preferences, and choose a course of action. The model derives from contemporary notions of behavioral decision making and ethical conceptions of the doctor-patient relationship. This article briefly reviews the theoretical approaches to decision making, notes deficiencies, and embeds a more socially based process into the dynamics of the physician-patient relationship, focusing on cancer treatment decisions. In the CMSDM, decisions depend on (a) antecedent factors that have potential to influence communication, (b) jointly constructed communication climate, and (c) treatment preferences established by the physician and the patient.
Making Career Decisions--A Sequential Elimination Approach.
ERIC Educational Resources Information Center
Gati, Itamar
1986-01-01
Presents a model for career decision making based on the sequential elimination of occupational alternatives, an adaptation for career decisions of Tversky's (1972) elimination-by-aspects theory of choice. The expected utility approach is reviewed as a representative compensatory model for career decisions. Advantages, disadvantages, and…
The development and application of physiologically based pharmacokinetic (PBPK) models in chemical toxicology have grown steadily since their emergence in the 1980s. However, critical evaluation of PBPK models to support public health decision-making across federal agencies has t...
Clinical errors that can occur in the treatment decision-making process in psychotherapy.
Park, Jake; Goode, Jonathan; Tompkins, Kelley A; Swift, Joshua K
2016-09-01
Clinical errors occur in the psychotherapy decision-making process whenever a less-than-optimal treatment or approach is chosen when working with clients. A less-than-optimal approach may be one that a client is unwilling to try or fully invest in based on his/her expectations and preferences, or one that may have little chance of success based on contraindications and/or limited research support. The doctor knows best and the independent choice models are two decision-making models that are frequently used within psychology, but both are associated with an increased likelihood of errors in the treatment decision-making process. In particular, these models fail to integrate all three components of the definition of evidence-based practice in psychology (American Psychological Association, 2006). In this article we describe both models and provide examples of clinical errors that can occur in each. We then introduce the shared decision-making model as an alternative that is less prone to clinical errors. PsycINFO Database Record (c) 2016 APA, all rights reserved
Composite collective decision-making.
Czaczkes, Tomer J; Czaczkes, Benjamin; Iglhaut, Carolin; Heinze, Jürgen
2015-06-22
Individual animals are adept at making decisions and have cognitive abilities, such as memory, which allow them to hone their decisions. Social animals can also share information. This allows social animals to make adaptive group-level decisions. Both individual and collective decision-making systems also have drawbacks and limitations, and while both are well studied, the interaction between them is still poorly understood. Here, we study how individual and collective decision-making interact during ant foraging. We first gathered empirical data on memory-based foraging persistence in the ant Lasius niger. We used these data to create an agent-based model where ants may use social information (trail pheromones), private information (memories) or both to make foraging decisions. The combined use of social and private information by individuals results in greater efficiency at the group level than when either information source was used alone. The modelled ants couple consensus decision-making, allowing them to quickly exploit high-quality food sources, and combined decision-making, allowing different individuals to specialize in exploiting different resource patches. Such a composite collective decision-making system reaps the benefits of both its constituent parts. Exploiting such insights into composite collective decision-making may lead to improved decision-making algorithms. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Of goals and habits: age-related and individual differences in goal-directed decision-making.
Eppinger, Ben; Walter, Maik; Heekeren, Hauke R; Li, Shu-Chen
2013-01-01
In this study we investigated age-related and individual differences in habitual (model-free) and goal-directed (model-based) decision-making. Specifically, we were interested in three questions. First, does age affect the balance between model-based and model-free decision mechanisms? Second, are these age-related changes due to age differences in working memory (WM) capacity? Third, can model-based behavior be affected by manipulating the distinctiveness of the reward value of choice options? To answer these questions we used a two-stage Markov decision task in in combination with computational modeling to dissociate model-based and model-free decision mechanisms. To affect model-based behavior in this task we manipulated the distinctiveness of reward probabilities of choice options. The results show age-related deficits in model-based decision-making, which are particularly pronounced if unexpected reward indicates the need for a shift in decision strategy. In this situation younger adults explore the task structure, whereas older adults show perseverative behavior. Consistent with previous findings, these results indicate that older adults have deficits in the representation and updating of expected reward value. We also observed substantial individual differences in model-based behavior. In younger adults high WM capacity is associated with greater model-based behavior and this effect is further elevated when reward probabilities are more distinct. However, in older adults we found no effect of WM capacity. Moreover, age differences in model-based behavior remained statistically significant, even after controlling for WM capacity. Thus, factors other than decline in WM, such as deficits in the in the integration of expected reward value into strategic decisions may contribute to the observed impairments in model-based behavior in older adults.
Of goals and habits: age-related and individual differences in goal-directed decision-making
Eppinger, Ben; Walter, Maik; Heekeren, Hauke R.; Li, Shu-Chen
2013-01-01
In this study we investigated age-related and individual differences in habitual (model-free) and goal-directed (model-based) decision-making. Specifically, we were interested in three questions. First, does age affect the balance between model-based and model-free decision mechanisms? Second, are these age-related changes due to age differences in working memory (WM) capacity? Third, can model-based behavior be affected by manipulating the distinctiveness of the reward value of choice options? To answer these questions we used a two-stage Markov decision task in in combination with computational modeling to dissociate model-based and model-free decision mechanisms. To affect model-based behavior in this task we manipulated the distinctiveness of reward probabilities of choice options. The results show age-related deficits in model-based decision-making, which are particularly pronounced if unexpected reward indicates the need for a shift in decision strategy. In this situation younger adults explore the task structure, whereas older adults show perseverative behavior. Consistent with previous findings, these results indicate that older adults have deficits in the representation and updating of expected reward value. We also observed substantial individual differences in model-based behavior. In younger adults high WM capacity is associated with greater model-based behavior and this effect is further elevated when reward probabilities are more distinct. However, in older adults we found no effect of WM capacity. Moreover, age differences in model-based behavior remained statistically significant, even after controlling for WM capacity. Thus, factors other than decline in WM, such as deficits in the in the integration of expected reward value into strategic decisions may contribute to the observed impairments in model-based behavior in older adults. PMID:24399925
NASA Astrophysics Data System (ADS)
Flaming, Susan C.
2007-12-01
The continuing saga of satellite technology development is as much a story of successful risk management as of innovative engineering. How do program leaders on complex, technology projects manage high stakes risks that threaten business success and satellite performance? This grounded theory study of risk decision making portrays decision leadership practices at one communication satellite company. Integrated product team (IPT) leaders of multi-million dollar programs were interviewed and observed to develop an extensive description of the leadership skills required to navigate organizational influences and drive challenging risk decisions to closure. Based on the study's findings the researcher proposes a new decision making model, Deliberative Decision Making, to describe the program leaders' cognitive and organizational leadership practices. This Deliberative Model extends the insights of prominent decision making models including the rational (or classical) and the naturalistic and qualifies claims made by bounded rationality theory. The Deliberative Model describes how leaders proactively engage resources to play a variety of decision leadership roles. The Model incorporates six distinct types of leadership decision activities, undertaken in varying sequence based on the challenges posed by specific risks. Novel features of the Deliberative Decision Model include: an inventory of leadership methods for managing task challenges, potential stakeholder bias and debates; four types of leadership meta-decisions that guide decision processes, and aligned organizational culture. Both supporting and constraining organizational influences were observed as leaders managed major risks, requiring active leadership on the most difficult decisions. Although the company's engineering culture emphasized the importance of data-based decisions, the uncertainties intrinsic to satellite risks required expert engineering judgment to be exercised throughout. An investigation into the co-variation of decision methods with uncertainty suggests that perceived risk severity may serve as a robust indicator for choices about decision practices. The Deliberative Decision processes incorporate multiple organizational and cultural controls as cross-checks to mitigate potential parochial bias of individuals, stakeholder groups, or leaders. Overall the Deliberative Decision framework describes how expert leadership practices, supportive organizational systems along with aligned cultural values and behavioral norms help leaders drive high stakes risk decisions to closure in this complex, advanced-technology setting.
Decision Making: New Paradigm for Education.
ERIC Educational Resources Information Center
Wales, Charles E.; And Others
1986-01-01
Defines education's new paradigm as schooling based on decision making, the critical thinking skills serving it, and the knowledge base supporting it. Outlines a model decision-making process using a hypothetical breakfast problem; a late riser chooses goals, generates ideas, develops an action plan, and implements and evaluates it. (4 references)…
2005-05-01
made. 4. Do military decision makers identify / analyze adverse consequences presently? Few do based on this research and most don’t do it effectively ...A HEURISTIC DECISION MAKING MODEL TO MITIGATE ADVERSE CONSEQUENCES IN A NETWORK CENTRIC WARFARE / SENSE AND RESPOND SYSTEM...ENS/05-01 A HEURISTIC DECISION MAKING MODEL TO MITIGATE ADVERSE CONSEQUENCES IN A NETWORK CENTRIC WARFARE / SENSE AND RESPOND SYSTEM
Error-associated behaviors and error rates for robotic geology
NASA Technical Reports Server (NTRS)
Anderson, Robert C.; Thomas, Geb; Wagner, Jacob; Glasgow, Justin
2004-01-01
This study explores human error as a function of the decision-making process. One of many models for human decision-making is Rasmussen's decision ladder [9]. The decision ladder identifies the multiple tasks and states of knowledge involved in decision-making. The tasks and states of knowledge can be classified by the level of cognitive effort required to make the decision, leading to the skill, rule, and knowledge taxonomy (Rasmussen, 1987). Skill based decisions require the least cognitive effort and knowledge based decisions require the greatest cognitive effort. Errors can occur at any of the cognitive levels.
de Bruin, Jeroen S; Adlassnig, Klaus-Peter; Leitich, Harald; Rappelsberger, Andrea
2018-01-01
Evidence-based clinical guidelines have a major positive effect on the physician's decision-making process. Computer-executable clinical guidelines allow for automated guideline marshalling during a clinical diagnostic process, thus improving the decision-making process. Implementation of a digital clinical guideline for the prevention of mother-to-child transmission of hepatitis B as a computerized workflow, thereby separating business logic from medical knowledge and decision-making. We used the Business Process Model and Notation language system Activiti for business logic and workflow modeling. Medical decision-making was performed by an Arden-Syntax-based medical rule engine, which is part of the ARDENSUITE software. We succeeded in creating an electronic clinical workflow for the prevention of mother-to-child transmission of hepatitis B, where institution-specific medical decision-making processes could be adapted without modifying the workflow business logic. Separation of business logic and medical decision-making results in more easily reusable electronic clinical workflows.
Influence of branding on preference-based decision making.
Philiastides, Marios G; Ratcliff, Roger
2013-07-01
Branding has become one of the most important determinants of consumer choices. Intriguingly, the psychological mechanisms of how branding influences decision making remain elusive. In the research reported here, we used a preference-based decision-making task and computational modeling to identify which internal components of processing are affected by branding. We found that a process of noisy temporal integration of subjective value information can model preference-based choices reliably and that branding biases are explained by changes in the rate of the integration process itself. This result suggests that branding information and subjective preference are integrated into a single source of evidence in the decision-making process, thereby altering choice behavior.
Decision-Making in Agent-Based Models of Migration: State of the Art and Challenges.
Klabunde, Anna; Willekens, Frans
We review agent-based models (ABM) of human migration with respect to their decision-making rules. The most prominent behavioural theories used as decision rules are the random utility theory, as implemented in the discrete choice model, and the theory of planned behaviour. We identify the critical choices that must be made in developing an ABM, namely the modelling of decision processes and social networks. We also discuss two challenges that hamper the widespread use of ABM in the study of migration and, more broadly, demography and the social sciences: (a) the choice and the operationalisation of a behavioural theory (decision-making and social interaction) and (b) the selection of empirical evidence to validate the model. We offer advice on how these challenges might be overcome.
Zendehrouh, Sareh
2015-11-01
Recent work on decision-making field offers an account of dual-system theory for decision-making process. This theory holds that this process is conducted by two main controllers: a goal-directed system and a habitual system. In the reinforcement learning (RL) domain, the habitual behaviors are connected with model-free methods, in which appropriate actions are learned through trial-and-error experiences. However, goal-directed behaviors are associated with model-based methods of RL, in which actions are selected using a model of the environment. Studies on cognitive control also suggest that during processes like decision-making, some cortical and subcortical structures work in concert to monitor the consequences of decisions and to adjust control according to current task demands. Here a computational model is presented based on dual system theory and cognitive control perspective of decision-making. The proposed model is used to simulate human performance on a variant of probabilistic learning task. The basic proposal is that the brain implements a dual controller, while an accompanying monitoring system detects some kinds of conflict including a hypothetical cost-conflict one. The simulation results address existing theories about two event-related potentials, namely error related negativity (ERN) and feedback related negativity (FRN), and explore the best account of them. Based on the results, some testable predictions are also presented. Copyright © 2015 Elsevier Ltd. All rights reserved.
Sustainability-based decision making is a challenging process that requires balancing trade-offs among social, economic, and environmental components. System Dynamic (SD) models can be useful tools to inform sustainability-based decision making because they provide a holistic co...
Eppinger, Ben; Walter, Maik; Li, Shu-Chen
2017-04-01
In this study, we investigated the interplay of habitual (model-free) and goal-directed (model-based) decision processes by using a two-stage Markov decision task in combination with event-related potentials (ERPs) and computational modeling. To manipulate the demands on model-based decision making, we applied two experimental conditions with different probabilities of transitioning from the first to the second stage of the task. As we expected, when the stage transitions were more predictable, participants showed greater model-based (planning) behavior. Consistent with this result, we found that stimulus-evoked parietal (P300) activity at the second stage of the task increased with the predictability of the state transitions. However, the parietal activity also reflected model-free information about the expected values of the stimuli, indicating that at this stage of the task both types of information are integrated to guide decision making. Outcome-related ERP components only reflected reward-related processes: Specifically, a medial prefrontal ERP component (the feedback-related negativity) was sensitive to negative outcomes, whereas a component that is elicited by reward (the feedback-related positivity) increased as a function of positive prediction errors. Taken together, our data indicate that stimulus-locked parietal activity reflects the integration of model-based and model-free information during decision making, whereas feedback-related medial prefrontal signals primarily reflect reward-related decision processes.
Emotion-affected decision making in human simulation.
Zhao, Y; Kang, J; Wright, D K
2006-01-01
Human modelling is an interdisciplinary research field. The topic, emotion-affected decision making, was originally a cognitive psychology issue, but is now recognized as an important research direction for both computer science and biomedical modelling. The main aim of this paper is to attempt to bridge the gap between psychology and bioengineering in emotion-affected decision making. The work is based on Ortony's theory of emotions and bounded rationality theory, and attempts to connect the emotion process with decision making. A computational emotion model is proposed, and the initial framework of this model in virtual human simulation within the platform of Virtools is presented.
Indicators of Informal and Formal Decision-Making about a Socioscientific Issue
ERIC Educational Resources Information Center
Dauer, Jenny M.; Lute, Michelle L.; Straka, Olivia
2017-01-01
We propose two contrasting types of student decision-making based on social and cognitive psychology models of separate mental processes for problem solving. Informal decision-making uses intuitive reasoning and is subject to cognitive biases, whereas formal decision-making uses effortful, logical reasoning. We explored indicators of students'…
Li, Yan
2017-05-25
The efficiency evaluation model of integrated energy system, involving many influencing factors, and the attribute values are heterogeneous and non-deterministic, usually cannot give specific numerical or accurate probability distribution characteristics, making the final evaluation result deviation. According to the characteristics of the integrated energy system, a hybrid multi-attribute decision-making model is constructed. The evaluation model considers the decision maker's risk preference. In the evaluation of the efficiency of the integrated energy system, the evaluation value of some evaluation indexes is linguistic value, or the evaluation value of the evaluation experts is not consistent. These reasons lead to ambiguity in the decision information, usually in the form of uncertain linguistic values and numerical interval values. In this paper, the risk preference of decision maker is considered when constructing the evaluation model. Interval-valued multiple-attribute decision-making method and fuzzy linguistic multiple-attribute decision-making model are proposed. Finally, the mathematical model of efficiency evaluation of integrated energy system is constructed.
Brain mechanisms controlling decision making and motor planning.
Ramakrishnan, Arjun; Murthy, Aditya
2013-01-01
Accumulator models of decision making provide a unified framework to understand decision making and motor planning. In these models, the evolution of a decision is reflected in the accumulation of sensory information into a motor plan that reaches a threshold, leading to choice behavior. While these models provide an elegant framework to understand performance and reaction times, their ability to explain complex behaviors such as decision making and motor control of sequential movements in dynamic environments is unclear. To examine and probe the limits of online modification of decision making and motor planning, an oculomotor "redirect" task was used. Here, subjects were expected to change their eye movement plan when a new saccade target appeared. Based on task performance, saccade reaction time distributions, computational models of behavior, and intracortical microstimulation of monkey frontal eye fields, we show how accumulator models can be tested and extended to study dynamic aspects of decision making and motor control. Copyright © 2013 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Manouselis, Nikos; Sampson, Demetrios
This paper focuses on the way a multi-criteria decision making methodology is applied in the case of agent-based selection of offered learning objects. The problem of selection is modeled as a decision making one, with the decision variables being the learner model and the learning objects' educational description. In this way, selection of…
Simulation of California's Major Reservoirs Outflow Using Data Mining Technique
NASA Astrophysics Data System (ADS)
Yang, T.; Gao, X.; Sorooshian, S.
2014-12-01
The reservoir's outflow is controlled by reservoir operators, which is different from the upstream inflow. The outflow is more important than the reservoir's inflow for the downstream water users. In order to simulate the complicated reservoir operation and extract the outflow decision making patterns for California's 12 major reservoirs, we build a data-driven, computer-based ("artificial intelligent") reservoir decision making tool, using decision regression and classification tree approach. This is a well-developed statistical and graphical modeling methodology in the field of data mining. A shuffled cross validation approach is also employed to extract the outflow decision making patterns and rules based on the selected decision variables (inflow amount, precipitation, timing, water type year etc.). To show the accuracy of the model, a verification study is carried out comparing the model-generated outflow decisions ("artificial intelligent" decisions) with that made by reservoir operators (human decisions). The simulation results show that the machine-generated outflow decisions are very similar to the real reservoir operators' decisions. This conclusion is based on statistical evaluations using the Nash-Sutcliffe test. The proposed model is able to detect the most influential variables and their weights when the reservoir operators make an outflow decision. While the proposed approach was firstly applied and tested on California's 12 major reservoirs, the method is universally adaptable to other reservoir systems.
Vocational Choice: A Decision Making Perspective
ERIC Educational Resources Information Center
Sauermann, Henry
2005-01-01
We propose a model of vocational choice that can be used for analyzing and guiding the decision processes underlying career and job choices. Our model is based on research in behavioral decision making (BDM), in particular the choice goals framework developed by Bettman, Luce, and Payne (1998). The basic model involves two major processes. First,…
Demeter, Sandor J
2016-12-21
Health care providers (HCP) and clinical scientists (CS) are generally most comfortable using evidence-based rational decision-making models. They become very frustrated when policymakers make decisions that, on the surface, seem irrational and unreasonable. However, such decisions usually make sense when analysed properly. The goal of this paper to provide a basic theoretical understanding of major policy models, to illustrate which models are most prevalent in publicly funded health care systems, and to propose a policy analysis framework to better understand the elements that drive policy decision-making. The proposed policy framework will also assist HCP and CS achieve greater success with their own proposals.
Dynamic Decision Making under Uncertainty and Partial Information
2017-01-30
order to address these problems, we investigated efficient computational methodologies for dynamic decision making under uncertainty and partial...information. In the course of this research, we developed and studied efficient simulation-based methodologies for dynamic decision making under...uncertainty and partial information; (ii) studied the application of these decision making models and methodologies to practical problems, such as those
USDA-ARS?s Scientific Manuscript database
Recent years have witnessed a call for evidence-based decisions in conservation and natural resource management, including data-driven decision-making. Adaptive management (AM) is one prevalent model for integrating scientific data into decision-making, yet AM has faced numerous challenges and limit...
Multi-objective decision-making model based on CBM for an aircraft fleet
NASA Astrophysics Data System (ADS)
Luo, Bin; Lin, Lin
2018-04-01
Modern production management patterns, in which multi-unit (e.g., a fleet of aircrafts) are managed in a holistic manner, have brought new challenges for multi-unit maintenance decision making. To schedule a good maintenance plan, not only does the individual machine maintenance have to be considered, but also the maintenance of the other individuals have to be taken into account. Since most condition-based maintenance researches for aircraft focused on solely reducing maintenance cost or maximizing the availability of single aircraft, as well as considering that seldom researches concentrated on both the two objectives: minimizing cost and maximizing the availability of a fleet (total number of available aircraft in fleet), a multi-objective decision-making model based on condition-based maintenance concentrated both on the above two objectives is established. Furthermore, in consideration of the decision maker may prefer providing the final optimal result in the form of discrete intervals instead of a set of points (non-dominated solutions) in real decision-making problem, a novel multi-objective optimization method based on support vector regression is proposed to solve the above multi-objective decision-making model. Finally, a case study regarding a fleet is conducted, with the results proving that the approach efficiently generates outcomes that meet the schedule requirements.
Decision-making based on emotional images.
Katahira, Kentaro; Fujimura, Tomomi; Okanoya, Kazuo; Okada, Masato
2011-01-01
The emotional outcome of a choice affects subsequent decision making. While the relationship between decision making and emotion has attracted attention, studies on emotion and decision making have been independently developed. In this study, we investigated how the emotional valence of pictures, which was stochastically contingent on participants' choices, influenced subsequent decision making. In contrast to traditional value-based decision-making studies that used money or food as a reward, the "reward value" of the decision outcome, which guided the update of value for each choice, is unknown beforehand. To estimate the reward value of emotional pictures from participants' choice data, we used reinforcement learning models that have successfully been used in previous studies for modeling value-based decision making. Consequently, we found that the estimated reward value was asymmetric between positive and negative pictures. The negative reward value of negative pictures (relative to neutral pictures) was larger in magnitude than the positive reward value of positive pictures. This asymmetry was not observed in valence for an individual picture, which was rated by the participants regarding the emotion experienced upon viewing it. These results suggest that there may be a difference between experienced emotion and the effect of the experienced emotion on subsequent behavior. Our experimental and computational paradigm provides a novel way for quantifying how and what aspects of emotional events affect human behavior. The present study is a first step toward relating a large amount of knowledge in emotion science and in taking computational approaches to value-based decision making.
Finding shared decisions in stakeholder networks: An agent-based approach
NASA Astrophysics Data System (ADS)
Le Pira, Michela; Inturri, Giuseppe; Ignaccolo, Matteo; Pluchino, Alessandro; Rapisarda, Andrea
2017-01-01
We address the problem of a participatory decision-making process where a shared priority list of alternatives has to be obtained while avoiding inconsistent decisions. An agent-based model (ABM) is proposed to mimic this process in different social networks of stakeholders who interact according to an opinion dynamics model. Simulations' results show the efficacy of interaction in finding a transitive and, above all, shared decision. These findings are in agreement with real participation experiences regarding transport planning decisions and can give useful suggestions on how to plan an effective participation process for sustainable policy-making based on opinion consensus.
Health decision making: lynchpin of evidence-based practice.
Spring, Bonnie
2008-01-01
Health decision making is both the lynchpin and the least developed aspect of evidence-based practice. The evidence-based practice process requires integrating the evidence with consideration of practical resources and patient preferences and doing so via a process that is genuinely collaborative. Yet, the literature is largely silent about how to accomplish integrative, shared decision making. for evidence-based practice are discussed for 2 theories of clinician decision making (expected utility and fuzzy trace) and 2 theories of patient health decision making (transtheoretical model and reasoned action). Three suggestions are offered. First, it would be advantageous to have theory-based algorithms that weight and integrate the 3 data strands (evidence, resources, preferences) in different decisional contexts. Second, patients, not providers, make the decisions of greatest impact on public health, and those decisions are behavioral. Consequently, theory explicating how provider-patient collaboration can influence patient lifestyle decisions made miles from the provider's office is greatly needed. Third, although the preponderance of data on complex decisions supports a computational approach, such an approach to evidence-based practice is too impractical to be widely applied at present. More troublesomely, until patients come to trust decisions made computationally more than they trust their providers' intuitions, patient adherence will remain problematic. A good theory of integrative, collaborative health decision making remains needed.
Health Decision Making: Lynchpin of Evidence-Based Practice
Spring, Bonnie
2008-01-01
Health decision making is both the lynchpin and the least developed aspect of evidence-based practice. The evidence-based practice process requires integrating the evidence with consideration of practical resources and patient preferences and doing so via a process that is genuinely collaborative. Yet, the literature is largely silent about how to accomplish integrative, shared decision making. Implications for evidence-based practice are discussed for 2 theories of clinician decision making (expected utility and fuzzy trace) and 2 theories of patient health decision making (transtheoretical model and reasoned action). Three suggestions are offered. First, it would be advantageous to have theory-based algorithms that weight and integrate the 3 data strands (evidence, resources, preferences) in different decisional contexts. Second, patients, not providers, make the decisions of greatest impact on public health, and those decisions are behavioral. Consequently, theory explicating how provider-patient collaboration can influence patient lifestyle decisions made miles from the provider's office is greatly needed. Third, although the preponderance of data on complex decisions supports a computational approach, such an approach to evidence-based practice is too impractical to be widely applied at present. More troublesomely, until patients come to trust decisions made computationally more than they trust their providers’ intuitions, patient adherence will remain problematic. A good theory of integrative, collaborative health decision making remains needed. PMID:19015288
Han, S Duke; Boyle, Patricia A; James, Bryan D; Yu, Lei; Bennett, David A
2015-04-01
To test the hypothesis that mild cognitive impairment (MCI) is associated with poorer financial and healthcare decision-making. Community-based epidemiological cohort study. Communities throughout northeastern Illinois. Older persons without dementia from the Rush Memory and Aging Project (N = 730). All participants underwent a detailed clinical evaluation and decision-making assessment using a measure that closely approximates materials used in real-world financial and healthcare settings. This allowed for measurement of total decision-making and financial and healthcare decision-making. Regression models were used to examine whether MCI was associated with a lower level of decision-making. In subsequent analyses, the relationship between specific cognitive systems (episodic memory, semantic memory, working memory, perceptual speed, visuospatial ability) and decision-making was explored in participants with MCI. MCI was associated with lower total, financial, and healthcare decision-making scores after accounting for the effects of age, education, and sex. The effect of MCI on total decision-making was equivalent to the effect of more than 10 additional years of age. Additional models showed that, when considering multiple cognitive systems, perceptual speed accounted for the most variance in decision-making in participants with MCI. Persons with MCI may have poorer financial and healthcare decision-making in real-world situations, and perceptual speed may be an important contributor to poorer decision-making in persons with MCI. © 2015, Copyright the Authors Journal compilation © 2015, The American Geriatrics Society.
Djulbegovic, Benjamin; Elqayam, Shira
2017-10-01
Given that more than 30% of healthcare costs are wasted on inappropriate care, suboptimal care is increasingly connected to the quality of medical decisions. It has been argued that personal decisions are the leading cause of death, and 80% of healthcare expenditures result from physicians' decisions. Therefore, improving healthcare necessitates improving medical decisions, ie, making decisions (more) rational. Drawing on writings from The Great Rationality Debate from the fields of philosophy, economics, and psychology, we identify core ingredients of rationality commonly encountered across various theoretical models. Rationality is typically classified under umbrella of normative (addressing the question how people "should" or "ought to" make their decisions) and descriptive theories of decision-making (which portray how people actually make their decisions). Normative theories of rational thought of relevance to medicine include epistemic theories that direct practice of evidence-based medicine and expected utility theory, which provides the basis for widely used clinical decision analyses. Descriptive theories of rationality of direct relevance to medical decision-making include bounded rationality, argumentative theory of reasoning, adaptive rationality, dual processing model of rationality, regret-based rationality, pragmatic/substantive rationality, and meta-rationality. For the first time, we provide a review of wide range of theories and models of rationality. We showed that what is "rational" behaviour under one rationality theory may be irrational under the other theory. We also showed that context is of paramount importance to rationality and that no one model of rationality can possibly fit all contexts. We suggest that in context-poor situations, such as policy decision-making, normative theories based on expected utility informed by best research evidence may provide the optimal approach to medical decision-making, whereas in the context-rich circumstances other types of rationality, informed by human cognitive architecture and driven by intuition and emotions such as the aim to minimize regret, may provide better solution to the problem at hand. The choice of theory under which we operate is important as it determines both policy and our individual decision-making. © 2017 The Authors Journal of Evaluation in Clinical Practice Published by John Wiley & Sons Ltd.
Lin, Hui; Wang, Zhou-Jing
2017-09-17
Low-carbon tourism plays an important role in carbon emission reduction and environmental protection. Low-carbon tourism destination selection often involves multiple conflicting and incommensurate attributes or criteria and can be modelled as a multi-attribute decision-making problem. This paper develops a framework to solve multi-attribute group decision-making problems, where attribute evaluation values are provided as linguistic terms and the attribute weight information is incomplete. In order to obtain a group risk preference captured by a linguistic term set with triangular fuzzy semantic information, a nonlinear programming model is established on the basis of individual risk preferences. We first convert individual linguistic-term-based decision matrices to their respective triangular fuzzy decision matrices, which are then aggregated into a group triangular fuzzy decision matrix. Based on this group decision matrix and the incomplete attribute weight information, a linear program is developed to find an optimal attribute weight vector. A detailed procedure is devised for tackling linguistic multi-attribute group decision making problems. A low-carbon tourism destination selection case study is offered to illustrate how to use the developed group decision-making model in practice.
Lin, Hui; Wang, Zhou-Jing
2017-01-01
Low-carbon tourism plays an important role in carbon emission reduction and environmental protection. Low-carbon tourism destination selection often involves multiple conflicting and incommensurate attributes or criteria and can be modelled as a multi-attribute decision-making problem. This paper develops a framework to solve multi-attribute group decision-making problems, where attribute evaluation values are provided as linguistic terms and the attribute weight information is incomplete. In order to obtain a group risk preference captured by a linguistic term set with triangular fuzzy semantic information, a nonlinear programming model is established on the basis of individual risk preferences. We first convert individual linguistic-term-based decision matrices to their respective triangular fuzzy decision matrices, which are then aggregated into a group triangular fuzzy decision matrix. Based on this group decision matrix and the incomplete attribute weight information, a linear program is developed to find an optimal attribute weight vector. A detailed procedure is devised for tackling linguistic multi-attribute group decision making problems. A low-carbon tourism destination selection case study is offered to illustrate how to use the developed group decision-making model in practice. PMID:28926985
Parallel constraint satisfaction in memory-based decisions.
Glöckner, Andreas; Hodges, Sara D
2011-01-01
Three studies sought to investigate decision strategies in memory-based decisions and to test the predictions of the parallel constraint satisfaction (PCS) model for decision making (Glöckner & Betsch, 2008). Time pressure was manipulated and the model was compared against simple heuristics (take the best and equal weight) and a weighted additive strategy. From PCS we predicted that fast intuitive decision making is based on compensatory information integration and that decision time increases and confidence decreases with increasing inconsistency in the decision task. In line with these predictions we observed a predominant usage of compensatory strategies under all time-pressure conditions and even with decision times as short as 1.7 s. For a substantial number of participants, choices and decision times were best explained by PCS, but there was also evidence for use of simple heuristics. The time-pressure manipulation did not significantly affect decision strategies. Overall, the results highlight intuitive, automatic processes in decision making and support the idea that human information-processing capabilities are less severely bounded than often assumed.
Solway, A.; Botvinick, M.
2013-01-01
Recent work has given rise to the view that reward-based decision making is governed by two key controllers: a habit system, which stores stimulus-response associations shaped by past reward, and a goal-oriented system that selects actions based on their anticipated outcomes. The current literature provides a rich body of computational theory addressing habit formation, centering on temporal-difference learning mechanisms. Less progress has been made toward formalizing the processes involved in goal-directed decision making. We draw on recent work in cognitive neuroscience, animal conditioning, cognitive and developmental psychology and machine learning, to outline a new theory of goal-directed decision making. Our basic proposal is that the brain, within an identifiable network of cortical and subcortical structures, implements a probabilistic generative model of reward, and that goal-directed decision making is effected through Bayesian inversion of this model. We present a set of simulations implementing the account, which address benchmark behavioral and neuroscientific findings, and which give rise to a set of testable predictions. We also discuss the relationship between the proposed framework and other models of decision making, including recent models of perceptual choice, to which our theory bears a direct connection. PMID:22229491
Brain mechanisms for perceptual and reward-related decision-making.
Deco, Gustavo; Rolls, Edmund T; Albantakis, Larissa; Romo, Ranulfo
2013-04-01
Phenomenological models of decision-making, including the drift-diffusion and race models, are compared with mechanistic, biologically plausible models, such as integrate-and-fire attractor neuronal network models. The attractor network models show how decision confidence is an emergent property; and make testable predictions about the neural processes (including neuronal activity and fMRI signals) involved in decision-making which indicate that the medial prefrontal cortex is involved in reward value-based decision-making. Synaptic facilitation in these models can help to account for sequential vibrotactile decision-making, and for how postponed decision-related responses are made. The randomness in the neuronal spiking-related noise that makes the decision-making probabilistic is shown to be increased by the graded firing rate representations found in the brain, to be decreased by the diluted connectivity, and still to be significant in biologically large networks with thousands of synapses onto each neuron. The stability of these systems is shown to be influenced in different ways by glutamatergic and GABAergic efficacy, leading to a new field of dynamical neuropsychiatry with applications to understanding schizophrenia and obsessive-compulsive disorder. The noise in these systems is shown to be advantageous, and to apply to similar attractor networks involved in short-term memory, long-term memory, attention, and associative thought processes. Copyright © 2012 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heo, Yeonsook; Augenbroe, Godfried; Graziano, Diane
2015-05-01
The increasing interest in retrofitting of existing buildings is motivated by the need to make a major contribution to enhancing building energy efficiency and reducing energy consumption and CO2 emission by the built environment. This paper examines the relevance of calibration in model-based analysis to support decision-making for energy and carbon efficiency retrofits of individual buildings and portfolios of buildings. The authors formulate a set of real retrofit decision-making situations and evaluate the role of calibration by using a case study that compares predictions and decisions from an uncalibrated model with those of a calibrated model. The case study illustratesmore » both the mechanics and outcomes of a practical alternative to the expert- and time-intense application of dynamic energy simulation models for large-scale retrofit decision-making under uncertainty.« less
Servant, Mathieu; White, Corey; Montagnini, Anna; Burle, Borís
2016-10-01
A current challenge for decision-making research is in extending models of simple decisions to more complex and ecological choice situations. Conflict tasks (e.g., Simon, Stroop, Eriksen flanker) have been the focus of much interest, because they provide a decision-making context representative of everyday life experiences. Modeling efforts have led to an elaborated drift diffusion model for conflict tasks (DMC), which implements a superimposition of automatic and controlled decision activations. The DMC has proven to capture the diversity of behavioral conflict effects across various task contexts. This study combined DMC predictions with EEG and EMG measurements to test a set of linking propositions that specify the relationship between theoretical decision-making mechanisms involved in the Simon task and brain activity. Our results are consistent with a representation of the superimposed decision variable in the primary motor cortices. The decision variable was also observed in the EMG activity of response agonist muscles. These findings provide new insight into the neurophysiology of human decision-making. In return, they provide support for the DMC model framework.
Decision making in cancer primary prevention and chemoprevention.
Gorin, Sherri Sheinfeld; Wang, Catharine; Raich, Peter; Bowen, Deborah J; Hay, Jennifer
2006-12-01
We know very little about how individuals decide to undertake, maintain, or discontinue cancer primary prevention or chemoprevention. The aims of this article are to (a) examine whether and, if so, how traditional health behavior change models are relevant for decision making in this area; (b) review the application of decision aids to forming specific, personal choices between options; and (c) identify the challenges of evaluating these decision processes to suggest areas for future research. Theoretical models and frameworks derived from the health behavior change and decision-making fields were applied to cancer primary prevention choices. Decision aids for the human papillomavirus (HPV) vaccine, Hormone Replacement Therapy (HRT), and tamoxifen were systematically examined. Traditional concepts such as decisional balance and cues to action are relevant to understanding cancer primary prevention choices; Motivational Interviewing, Self-Determination Theory, and the Preventive Health Model may also explain the facilitators of decision making. There are no well-tested HPV vaccine decision aids, although there have been some studies on aids for HPV testing. There are several effective decision aids for HRT and tamoxifen; evidence-based decision aid components have also been identified. Additional theory-based empirical research on decision making in cancer primary prevention and chemoprevention, particularly at the interface of psychology and behavioral economics, is suggested.
Shared decision making in chronic care in the context of evidence based practice in nursing.
Friesen-Storms, Jolanda H H M; Bours, Gerrie J J W; van der Weijden, Trudy; Beurskens, Anna J H M
2015-01-01
In the decision-making environment of evidence-based practice, the following three sources of information must be integrated: research evidence of the intervention, clinical expertise, and the patient's values. In reality, evidence-based practice usually focuses on research evidence (which may be translated into clinical practice guidelines) and clinical expertise without considering the individual patient's values. The shared decision-making model seems to be helpful in the integration of the individual patient's values in evidence-based practice. We aim to discuss the relevance of shared decision making in chronic care and to suggest how it can be integrated with evidence-based practice in nursing. We start by describing the following three possible approaches to guide the decision-making process: the paternalistic approach, the informed approach, and the shared decision-making approach. Implementation of shared decision making has gained considerable interest in cases lacking a strong best-treatment recommendation, and when the available treatment options are equivalent to some extent. We discuss that in chronic care it is important to always invite the patient to participate in the decision-making process. We delineate the following six attributes of health care interventions in chronic care that influence the degree of shared decision making: the level of research evidence, the number of available intervention options, the burden of side effects, the impact on lifestyle, the patient group values, and the impact on resources. Furthermore, the patient's willingness to participate in shared decision making, the clinical expertise of the nurse, and the context in which the decision making takes place affect the shared decision-making process. A knowledgeable and skilled nurse with a positive attitude towards shared decision making—integrated with evidence-based practice—can facilitate the shared decision-making process. We conclude that nurses as well as other health care professionals in chronic care should integrate shared decision making with evidence-based practice to deliver patient-centred care. Copyright © 2014 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Chang, Ting-Cheng; Wang, Hui
2016-01-01
This paper proposes a cloud multi-criteria group decision-making model for teacher evaluation in higher education which is involving subjectivity, imprecision and fuzziness. First, selecting the appropriate evaluation index depending on the evaluation objectives, indicating a clear structural relationship between the evaluation index and…
Integrated Risk-Informed Decision-Making for an ALMR PRISM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muhlheim, Michael David; Belles, Randy; Denning, Richard S.
Decision-making is the process of identifying decision alternatives, assessing those alternatives based on predefined metrics, selecting an alternative (i.e., making a decision), and then implementing that alternative. The generation of decisions requires a structured, coherent process, or a decision-making process. The overall objective for this work is that the generalized framework is adopted into an autonomous decision-making framework and tailored to specific requirements for various applications. In this context, automation is the use of computing resources to make decisions and implement a structured decision-making process with limited or no human intervention. The overriding goal of automation is to replace ormore » supplement human decision makers with reconfigurable decision-making modules that can perform a given set of tasks rationally, consistently, and reliably. Risk-informed decision-making requires a probabilistic assessment of the likelihood of success given the status of the plant/systems and component health, and a deterministic assessment between plant operating parameters and reactor protection parameters to prevent unnecessary trips and challenges to plant safety systems. The probabilistic portion of the decision-making engine of the supervisory control system is based on the control actions associated with an ALMR PRISM. Newly incorporated into the probabilistic models are the prognostic/diagnostic models developed by Pacific Northwest National Laboratory. These allow decisions to incorporate the health of components into the decision–making process. Once the control options are identified and ranked based on the likelihood of success, the supervisory control system transmits the options to the deterministic portion of the platform. The deterministic portion of the decision-making engine uses thermal-hydraulic modeling and components for an advanced liquid-metal reactor Power Reactor Inherently Safe Module. The deterministic multi-attribute decision-making framework uses various sensor data (e.g., reactor outlet temperature, steam generator drum level) and calculates its position within the challenge state, its trajectory, and its margin within the controllable domain using utility functions to evaluate current and projected plant state space for different control decisions. The metrics that are evaluated are based on reactor trip set points. The integration of the deterministic calculations using multi-physics analyses and probabilistic safety calculations allows for the examination and quantification of margin recovery strategies. This also provides validation of the control options identified from the probabilistic assessment. Thus, the thermalhydraulics analyses are used to validate the control options identified from the probabilistic assessment. Future work includes evaluating other possible metrics and computational efficiencies, and developing a user interface to mimic display panels at a modern nuclear power plant.« less
Hudak, R P; Jacoby, I; Meyer, G S; Potter, A L; Hooper, T I; Krakauer, H
1997-01-01
This article describes a training model that focuses on health care management by applying epidemiologic methods to assess and improve the quality of clinical practice. The model's uniqueness is its focus on integrating clinical evidence-based decision making with fundamental principles of resource management to achieve attainable, cost-effective, high-quality health outcomes. The target students are current and prospective clinical and administrative executives who must optimize decision making at the clinical and managerial levels of health care organizations.
Decision theory, reinforcement learning, and the brain.
Dayan, Peter; Daw, Nathaniel D
2008-12-01
Decision making is a core competence for animals and humans acting and surviving in environments they only partially comprehend, gaining rewards and punishments for their troubles. Decision-theoretic concepts permeate experiments and computational models in ethology, psychology, and neuroscience. Here, we review a well-known, coherent Bayesian approach to decision making, showing how it unifies issues in Markovian decision problems, signal detection psychophysics, sequential sampling, and optimal exploration and discuss paradigmatic psychological and neural examples of each problem. We discuss computational issues concerning what subjects know about their task and how ambitious they are in seeking optimal solutions; we address algorithmic topics concerning model-based and model-free methods for making choices; and we highlight key aspects of the neural implementation of decision making.
Kimber, Melissa; Couturier, Jennifer; Jack, Susan; Niccols, Alison; Van Blyderveen, Sherry; McVey, Gail
2014-01-01
To explore the decision-making processes involved in the uptake and implementation of evidence-based treatments (EBTs), namely, family-based treatment (FBT), among therapists and their administrators within publically funded eating disorder treatment programs in Ontario, Canada. Fundamental qualitative description guided sampling, data collection, and analytic decisions. Forty therapists and 11 administrators belonging to a network of clinicians treating eating disorders completed an in-depth interview regarding the decision-making processes involved in EBT uptake and implementation within their organizations. Content analysis and the constant comparative technique were used to analyze interview transcripts, with 20% of the data independently double-coded by a second coder. Therapists and their administrators identified the importance of an inclusive change culture in evidence-based practice (EBP) decision-making. Each group indicated reluctance to make EBP decisions in isolation from the other. Additionally, participants identified seven stages of decision-making involved in EBT adoption, beginning with exposure to the EBT model and ending with evaluating the impact of the EBT on patient outcomes. Support for a stage-based decision-making process was in participants' indication that the stages were needed to demonstrate that they considered the costs and benefits of making a practice change. Participants indicated that EBTs endorsed by the Provincial Network for Eating Disorders or the Academy for Eating Disorders would more likely be adopted. Future work should focus on integrating the important decision-making processes identified in this study with known implementation models to increase the use of low-cost and effective treatments, such as FBT, within eating disorder treatment programs. Copyright © 2013 Wiley Periodicals, Inc.
A novel computer based expert decision making model for prostate cancer disease management.
Richman, Martin B; Forman, Ernest H; Bayazit, Yildirim; Einstein, Douglas B; Resnick, Martin I; Stovsky, Mark D
2005-12-01
We propose a strategic, computer based, prostate cancer decision making model based on the analytic hierarchy process. We developed a model that improves physician-patient joint decision making and enhances the treatment selection process by making this critical decision rational and evidence based. Two groups (patient and physician-expert) completed a clinical study comparing an initial disease management choice with the highest ranked option generated by the computer model. Participants made pairwise comparisons to derive priorities for the objectives and subobjectives related to the disease management decision. The weighted comparisons were then applied to treatment options to yield prioritized rank lists that reflect the likelihood that a given alternative will achieve the participant treatment goal. Aggregate data were evaluated by inconsistency ratio analysis and sensitivity analysis, which assessed the influence of individual objectives and subobjectives on the final rank list of treatment options. Inconsistency ratios less than 0.05 were reliably generated, indicating that judgments made within the model were mathematically rational. The aggregate prioritized list of treatment options was tabulated for the patient and physician groups with similar outcomes for the 2 groups. Analysis of the major defining objectives in the treatment selection decision demonstrated the same rank order for the patient and physician groups with cure, survival and quality of life being more important than controlling cancer, preventing major complications of treatment, preventing blood transfusion complications and limiting treatment cost. Analysis of subobjectives, including quality of life and sexual dysfunction, produced similar priority rankings for the patient and physician groups. Concordance between initial treatment choice and the highest weighted model option differed between the groups with the patient group having 59% concordance and the physician group having only 42% concordance. This study successfully validated the usefulness of a computer based prostate cancer management decision making model to produce individualized, rational, clinically appropriate disease management decisions without physician bias.
2018-01-01
Exhaust gas recirculation (EGR) is one of the main methods of reducing NOX emissions and has been widely used in marine diesel engines. This paper proposes an optimized comprehensive assessment method based on multi-objective grey situation decision theory, grey relation theory and grey entropy analysis to evaluate the performance and optimize rate determination of EGR, which currently lack clear theoretical guidance. First, multi-objective grey situation decision theory is used to establish the initial decision-making model according to the main EGR parameters. The optimal compromise between diesel engine combustion and emission performance is transformed into a decision-making target weight problem. After establishing the initial model and considering the characteristics of EGR under different conditions, an optimized target weight algorithm based on grey relation theory and grey entropy analysis is applied to generate the comprehensive evaluation and decision-making model. Finally, the proposed method is successfully applied to a TBD234V12 turbocharged diesel engine, and the results clearly illustrate the feasibility of the proposed method for providing theoretical support and a reference for further EGR optimization. PMID:29377956
Zu, Xianghuan; Yang, Chuanlei; Wang, Hechun; Wang, Yinyan
2018-01-01
Exhaust gas recirculation (EGR) is one of the main methods of reducing NOX emissions and has been widely used in marine diesel engines. This paper proposes an optimized comprehensive assessment method based on multi-objective grey situation decision theory, grey relation theory and grey entropy analysis to evaluate the performance and optimize rate determination of EGR, which currently lack clear theoretical guidance. First, multi-objective grey situation decision theory is used to establish the initial decision-making model according to the main EGR parameters. The optimal compromise between diesel engine combustion and emission performance is transformed into a decision-making target weight problem. After establishing the initial model and considering the characteristics of EGR under different conditions, an optimized target weight algorithm based on grey relation theory and grey entropy analysis is applied to generate the comprehensive evaluation and decision-making model. Finally, the proposed method is successfully applied to a TBD234V12 turbocharged diesel engine, and the results clearly illustrate the feasibility of the proposed method for providing theoretical support and a reference for further EGR optimization.
Dolan, James G
2010-01-01
Current models of healthcare quality recommend that patient management decisions be evidence-based and patient-centered. Evidence-based decisions require a thorough understanding of current information regarding the natural history of disease and the anticipated outcomes of different management options. Patient-centered decisions incorporate patient preferences, values, and unique personal circumstances into the decision making process and actively involve both patients along with health care providers as much as possible. Fundamentally, therefore, evidence-based, patient-centered decisions are multi-dimensional and typically involve multiple decision makers.Advances in the decision sciences have led to the development of a number of multiple criteria decision making methods. These multi-criteria methods are designed to help people make better choices when faced with complex decisions involving several dimensions. They are especially helpful when there is a need to combine "hard data" with subjective preferences, to make trade-offs between desired outcomes, and to involve multiple decision makers. Evidence-based, patient-centered clinical decision making has all of these characteristics. This close match suggests that clinical decision support systems based on multi-criteria decision making techniques have the potential to enable patients and providers to carry out the tasks required to implement evidence-based, patient-centered care effectively and efficiently in clinical settings.The goal of this paper is to give readers a general introduction to the range of multi-criteria methods available and show how they could be used to support clinical decision-making. Methods discussed include the balance sheet, the even swap method, ordinal ranking methods, direct weighting methods, multi-attribute decision analysis, and the analytic hierarchy process (AHP).
Dolan, James G.
2010-01-01
Current models of healthcare quality recommend that patient management decisions be evidence-based and patient-centered. Evidence-based decisions require a thorough understanding of current information regarding the natural history of disease and the anticipated outcomes of different management options. Patient-centered decisions incorporate patient preferences, values, and unique personal circumstances into the decision making process and actively involve both patients along with health care providers as much as possible. Fundamentally, therefore, evidence-based, patient-centered decisions are multi-dimensional and typically involve multiple decision makers. Advances in the decision sciences have led to the development of a number of multiple criteria decision making methods. These multi-criteria methods are designed to help people make better choices when faced with complex decisions involving several dimensions. They are especially helpful when there is a need to combine “hard data” with subjective preferences, to make trade-offs between desired outcomes, and to involve multiple decision makers. Evidence-based, patient-centered clinical decision making has all of these characteristics. This close match suggests that clinical decision support systems based on multi-criteria decision making techniques have the potential to enable patients and providers to carry out the tasks required to implement evidence-based, patient-centered care effectively and efficiently in clinical settings. The goal of this paper is to give readers a general introduction to the range of multi-criteria methods available and show how they could be used to support clinical decision-making. Methods discussed include the balance sheet, the even swap method, ordinal ranking methods, direct weighting methods, multi-attribute decision analysis, and the analytic hierarchy process (AHP) PMID:21394218
A Conceptual Model of the Role of Communication in Surrogate Decision Making for Hospitalized Adults
Torke, Alexia M.; Petronio, Sandra; Sachs, Greg A.; Helft, Paul R.; Purnell, Christianna
2011-01-01
Objective To build a conceptual model of the role of communication in decision making, based on literature from medicine, communication studies and medical ethics. Methods We propose a model and describe each construct in detail. We review what is known about interpersonal and patient-physician communication, describe literature about surrogate-clinician communication, and discuss implications for our developing model. Results The communication literature proposes two major elements of interpersonal communication: information processing and relationship building. These elements are composed of constructs such as information disclosure and emotional support that are likely to be relevant to decision making. We propose these elements of communication impact decision making, which in turn affects outcomes for both patients and surrogates. Decision making quality may also mediate the relationship between communication and outcomes. Conclusion Although many elements of the model have been studied in relation to patient-clinician communication, there is limited data about surrogate decision making. There is evidence of high surrogate distress associated with decision making that may be alleviated by communication–focused interventions. More research is needed to test the relationships proposed in the model. Practice Implications Good communication with surrogates may improve both the quality of medical decisions and outcomes for the patient and surrogate. PMID:21889865
Torke, Alexia M; Petronio, Sandra; Sachs, Greg A; Helft, Paul R; Purnell, Christianna
2012-04-01
To build a conceptual model of the role of communication in decision making, based on literature from medicine, communication studies and medical ethics. We proposed a model and described each construct in detail. We review what is known about interpersonal and patient-physician communication, described literature about surrogate-clinician communication, and discussed implications for our developing model. The communication literature proposes two major elements of interpersonal communication: information processing and relationship building. These elements are composed of constructs such as information disclosure and emotional support that are likely to be relevant to decision making. We propose these elements of communication impact decision making, which in turn affects outcomes for both patients and surrogates. Decision making quality may also mediate the relationship between communication and outcomes. Although many elements of the model have been studied in relation to patient-clinician communication, there is limited data about surrogate decision making. There is evidence of high surrogate distress associated with decision making that may be alleviated by communication-focused interventions. More research is needed to test the relationships proposed in the model. Good communication with surrogates may improve both the quality of medical decisions and outcomes for the patient and surrogate. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
RELATING ACCUMULATOR MODEL PARAMETERS AND NEURAL DYNAMICS
Purcell, Braden A.; Palmeri, Thomas J.
2016-01-01
Accumulator models explain decision-making as an accumulation of evidence to a response threshold. Specific model parameters are associated with specific model mechanisms, such as the time when accumulation begins, the average rate of evidence accumulation, and the threshold. These mechanisms determine both the within-trial dynamics of evidence accumulation and the predicted behavior. Cognitive modelers usually infer what mechanisms vary during decision-making by seeing what parameters vary when a model is fitted to observed behavior. The recent identification of neural activity with evidence accumulation suggests that it may be possible to directly infer what mechanisms vary from an analysis of how neural dynamics vary. However, evidence accumulation is often noisy, and noise complicates the relationship between accumulator dynamics and the underlying mechanisms leading to those dynamics. To understand what kinds of inferences can be made about decision-making mechanisms based on measures of neural dynamics, we measured simulated accumulator model dynamics while systematically varying model parameters. In some cases, decision- making mechanisms can be directly inferred from dynamics, allowing us to distinguish between models that make identical behavioral predictions. In other cases, however, different parameterized mechanisms produce surprisingly similar dynamics, limiting the inferences that can be made based on measuring dynamics alone. Analyzing neural dynamics can provide a powerful tool to resolve model mimicry at the behavioral level, but we caution against drawing inferences based solely on neural analyses. Instead, simultaneous modeling of behavior and neural dynamics provides the most powerful approach to understand decision-making and likely other aspects of cognition and perception. PMID:28392584
Chronic Motivational State Interacts with Task Reward Structure in Dynamic Decision-Making
Cooper, Jessica A.; Worthy, Darrell A.; Maddox, W. Todd
2015-01-01
Research distinguishes between a habitual, model-free system motivated toward immediately rewarding actions, and a goal-directed, model-based system motivated toward actions that improve future state. We examined the balance of processing in these two systems during state-based decision-making. We tested a regulatory fit hypothesis (Maddox & Markman, 2010) that predicts that global trait motivation affects the balance of habitual- vs. goal-directed processing but only through its interaction with the task framing as gain-maximization or loss-minimization. We found support for the hypothesis that a match between an individual’s chronic motivational state and the task framing enhances goal-directed processing, and thus state-based decision-making. Specifically, chronic promotion-focused individuals under gain-maximization and chronic prevention-focused individuals under loss-minimization both showed enhanced state-based decision-making. Computational modeling indicates that individuals in a match between global chronic motivational state and local task reward structure engaged more goal-directed processing, whereas those in a mismatch engaged more habitual processing. PMID:26520256
Type-2 fuzzy set extension of DEMATEL method combined with perceptual computing for decision making
NASA Astrophysics Data System (ADS)
Hosseini, Mitra Bokaei; Tarokh, Mohammad Jafar
2013-05-01
Most decision making methods used to evaluate a system or demonstrate the weak and strength points are based on fuzzy sets and evaluate the criteria with words that are modeled with fuzzy sets. The ambiguity and vagueness of the words and different perceptions of a word are not considered in these methods. For this reason, the decision making methods that consider the perceptions of decision makers are desirable. Perceptual computing is a subjective judgment method that considers that words mean different things to different people. This method models words with interval type-2 fuzzy sets that consider the uncertainty of the words. Also, there are interrelations and dependency between the decision making criteria in the real world; therefore, using decision making methods that cannot consider these relations is not feasible in some situations. The Decision-Making Trail and Evaluation Laboratory (DEMATEL) method considers the interrelations between decision making criteria. The current study used the combination of DEMATEL and perceptual computing in order to improve the decision making methods. For this reason, the fuzzy DEMATEL method was extended into type-2 fuzzy sets in order to obtain the weights of dependent criteria based on the words. The application of the proposed method is presented for knowledge management evaluation criteria.
Decision Making Analysis: Critical Factors-Based Methodology
2010-04-01
the pitfalls associated with current wargaming methods such as assuming a western view of rational values in decision - making regardless of the cultures...Utilization theory slightly expands the rational decision making model as it states that “actors try to maximize their expected utility by weighing the...items to categorize the decision - making behavior of political leaders which tend to demonstrate either a rational or cognitive leaning. Leaders
How shrinks think: decision making in psychiatry.
Bhugra, Dinesh; Malliaris, Yanni; Gupta, Susham
2010-10-01
Psychiatrists use biopsychosocial models in identifying aetiological factors in assessing their patients and similar approaches in planning management. Models in decision making will be influenced by previous experience, training, age and gender, among other factors. Critical thinking and evidence base are both important components in the process of reaching clinical decisions. Expected outcome of treatment may be another factor. The way we think influences our decision making, clinical or otherwise. With patients expecting and taking larger roles in their own management, there needs to be a shift towards patient-centred care in decision making. Further exploration in how clinical decisions are made by psychiatrists is necessary. An understanding of the manner in which therapeutic alliances are formed between the clinician and the patient is necessary to understand decision making.
2014-01-01
This paper analyses how different coordination modes and different multiobjective decision making approaches interfere with each other in hierarchical organizations. The investigation is based on an agent-based simulation. We apply a modified NK-model in which we map multiobjective decision making as adaptive walk on multiple performance landscapes, whereby each landscape represents one objective. We find that the impact of the coordination mode on the performance and the speed of performance improvement is critically affected by the selected multiobjective decision making approach. In certain setups, the performances achieved with the more complex multiobjective decision making approaches turn out to be less sensitive to the coordination mode than the performances achieved with the less complex multiobjective decision making approaches. Furthermore, we present results on the impact of the nature of interactions among decisions on the achieved performance in multiobjective setups. Our results give guidance on how to control the performance contribution of objectives to overall performance and answer the question how effective certain multiobjective decision making approaches perform under certain circumstances (coordination mode and interdependencies among decisions). PMID:25152926
Moreau, Alain; Carol, Laurent; Dedianne, Marie Cécile; Dupraz, Christian; Perdrix, Corinne; Lainé, Xavier; Souweine, Gilbert
2012-05-01
To understand patients' perceptions of decision making and identify relationships among decision-making models. This qualitative study was made up of four focus group interviews (elderly persons, users of health support groups, students, and rural inhabitants). Participants were asked to report their perceptions of decision making in three written clinical scenarios (hypertension, breast cancer, prostate cancer). The analysis was based on the principles of grounded theory. Most patients perceived decision making as shared decision making, a deliberative question-response interaction with the physician that allowed patients to be experts in obtaining clearer information, participating in the care process, and negotiating compromises with physician preferences. Requesting second opinions allowed patients to maintain control, even within the paternalistic model preferred by elderly persons. Facilitating factors (trust, qualitative non-verbal communication, time to think) and obstacles (serious/emergency situations, perceived inadequate scientific competence, problems making requests, fear of knowing) were also part of shared decision making. In the global concept of patient-centered care, shared decision making can be flexible and can integrate paternalistic and informative models. Physicians' expertise should be associated with biomedical and relational skills through listening to, informing, and advising patients, and by supporting patients' choices. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Mild Cognitive Impairment is Associated with PoorerDecision Making in Community-Based Older Persons
Duke Han, S.; Boyle, Patricia A.; James, Bryan D.; Yu, Lei; Bennett, David A.
2015-01-01
Background/Objectives Financial and healthcare decision making are important for maintaining wellbeing and independence in old age. We tested the hypothesis that Mild Cognitive Impairment (MCI) is associated with poorer decision making in financial and healthcare matters. Design Community-based epidemiologic cohort study. Setting Communities throughout Northeastern Illinois. Participants Participants were 730 older nondemented persons from the Rush Memory and Aging Project. Measurements All participants underwent a detailed clinical evaluation and decision making assessment using a measure that closely approximates materials utilized in real world financial and healthcare settings. This allowed for measurement of total decision making, as well as financial and healthcare decision making. Regression models were used to examine whether the presence of MCI was associated with a lower level of decision making. In subsequent analyses, we explored the relation of specific cognitive systems (i.e., episodic memory, semantic memory, working memory, perceptual speed, and visuospatial ability) with decision making in those with MCI. Results Results showed that MCI was associated with lower decision making total scores as well as financial and healthcare scores, respectively, after accounting for the effects of age, education, and sex. The effect of MCI on total decision making was equivalent to the effect of more than 10 additional years of age. Additional models showed that when considering multiple cognitive systems, perceptual speed accounted for the most variance in decision making among participants with MCI. Conclusion Results suggest that persons with MCI may exhibit poorer financial and healthcare decision making in real world situations, and that perceptual speed may be an important contributor to poorer decision making among persons with MCI. PMID:25850350
Reflections in the clinical practice.
Borrell-Carrió, F; Hernández-Clemente, J C
2014-03-01
The purpose of this article is to analyze some models of expert decision and their impact on the clinical practice. We have analyzed decision-making considering the cognitive aspects (explanatory models, perceptual skills, analysis of the variability of a phenomenon, creating habits and inertia of reasoning and declarative models based on criteria). We have added the importance of emotions in decision making within highly complex situations, such as those occurring within the clinical practice. The quality of the reflective act depends, among other factors, on the ability of metacognition (thinking about what we think). Finally, we propose an educational strategy based on having a task supervisor and rectification scenarios to improve the quality of medical decision making. Copyright © 2013 Elsevier España, S.L. All rights reserved.
The Adaptability of Career Decision-Making Profiles
ERIC Educational Resources Information Center
Gadassi, Reuma; Gati, Itamar; Dayan, Amira
2012-01-01
The Career Decision-Making Profiles questionnaire (CDMP; Gati, Landman, Davidovitch, Asulin-Peretz, & Gadassi, 2010) uses a new model for characterizing the way individuals make decisions based on the simultaneous use of 11 dimensions. The present study investigated which pole of each dimension is more adaptive. Using the data of 383 young…
NASA Technical Reports Server (NTRS)
Hanagud, S.; Uppaluri, B.
1975-01-01
This paper describes a methodology for making cost effective fatigue design decisions. The methodology is based on a probabilistic model for the stochastic process of fatigue crack growth with time. The development of a particular model for the stochastic process is also discussed in the paper. The model is based on the assumption of continuous time and discrete space of crack lengths. Statistical decision theory and the developed probabilistic model are used to develop the procedure for making fatigue design decisions on the basis of minimum expected cost or risk function and reliability bounds. Selections of initial flaw size distribution, NDT, repair threshold crack lengths, and inspection intervals are discussed.
Facilitators and constraints at each stage of the migration decision process.
Kley, Stefanie
2017-10-01
Behavioural models of migration emphasize the importance of migration decision-making for the explanation of subsequent behaviour. But empirical migration research regularly finds considerable gaps between those who intend to migrate and those who actually realize their intention. This paper applies the Theory of Planned Behaviour, enriched by the Rubicon model, to test specific hypotheses about distinct effects of facilitators and constraints on specific stages of migration decision-making and behaviour. The data come from a tailor-made panel survey based on random samples of people drawn from two German cities in 2006-07. The results show that in conventional models the effects of facilitators and constraints on migration decision-making are likely to be underestimated. Splitting the process of migration decision-making into a pre-decisional and a pre-actional phase helps to avoid bias in the estimated effects of facilitators and constraints on both migration decision-making and migration behaviour.
Stress and Aeronautical Team Decision Making: Strengthening the Weak Links
NASA Technical Reports Server (NTRS)
Orasanu, Judith; Rosekind, Mark R. (Technical Monitor)
1996-01-01
A model that characterizes pilots'decision making in flight will be presented. Elements of the model that appear most vulnerable to stress will be examined in light of accidents and incidents. The model includes two major components: Situation assessment and choice of a course of action. While based on Klein's Recognition-Primed Decision Making, it is tailored to the aviation environment which includes certain features that may be common to other domains: Primarily, aviation is highly proceduralized and options are generally well known. What appears to make decisions difficult are ambiguity, time pressure, and risk. In addition, decisions must often be made while carrying out the standard procedures of flight, including checklists, review of approach plates, standard briefings, and communication with air traffic controllers or cabin crew. The effects of stressors on decision making by pilots with varying levels of expertise will be explored, along with strategies for strengthening the weak links.
Kon, Alexander A; Davidson, Judy E; Morrison, Wynne; Danis, Marion; White, Douglas B
2016-01-01
Shared decision making is endorsed by critical care organizations; however, there remains confusion about what shared decision making is, when it should be used, and approaches to promote partnerships in treatment decisions. The purpose of this statement is to define shared decision making, recommend when shared decision making should be used, identify the range of ethically acceptable decision-making models, and present important communication skills. The American College of Critical Care Medicine and American Thoracic Society Ethics Committees reviewed empirical research and normative analyses published in peer-reviewed journals to generate recommendations. Recommendations approved by consensus of the full Ethics Committees of American College of Critical Care Medicine and American Thoracic Society were included in the statement. Six recommendations were endorsed: 1) DEFINITION: Shared decision making is a collaborative process that allows patients, or their surrogates, and clinicians to make healthcare decisions together, taking into account the best scientific evidence available, as well as the patient's values, goals, and preferences. 2) Clinicians should engage in a shared decision making process to define overall goals of care (including decisions regarding limiting or withdrawing life-prolonging interventions) and when making major treatment decisions that may be affected by personal values, goals, and preferences. 3) Clinicians should use as their "default" approach a shared decision making process that includes three main elements: information exchange, deliberation, and making a treatment decision. 4) A wide range of decision-making approaches are ethically supportable, including patient- or surrogate-directed and clinician-directed models. Clinicians should tailor the decision-making process based on the preferences of the patient or surrogate. 5) Clinicians should be trained in communication skills. 6) Research is needed to evaluate decision-making strategies. Patient and surrogate preferences for decision-making roles regarding value-laden choices range from preferring to exercise significant authority to ceding such authority to providers. Clinicians should adapt the decision-making model to the needs and preferences of the patient or surrogate.
Model-based hierarchical reinforcement learning and human action control
Botvinick, Matthew; Weinstein, Ari
2014-01-01
Recent work has reawakened interest in goal-directed or ‘model-based’ choice, where decisions are based on prospective evaluation of potential action outcomes. Concurrently, there has been growing attention to the role of hierarchy in decision-making and action control. We focus here on the intersection between these two areas of interest, considering the topic of hierarchical model-based control. To characterize this form of action control, we draw on the computational framework of hierarchical reinforcement learning, using this to interpret recent empirical findings. The resulting picture reveals how hierarchical model-based mechanisms might play a special and pivotal role in human decision-making, dramatically extending the scope and complexity of human behaviour. PMID:25267822
Teachers' Thoughts on Student Decision Making during Engineering Design Lessons
ERIC Educational Resources Information Center
Meyer, Helen
2018-01-01
In this paper, I share the results of a study of teachers' ideas about student decision-making at entry into a professional development program to integrate engineering into their instruction. The framework for the Engineering Design Process (EDP) was based on a Challenge-Based Learning (CBL) model. The EDP embedded within the CBL model suggests…
2016-04-01
IND Response Decision-Making: Models for Government–Industry Collaboration for the Development of Game -Based Training Tools R.M. Seater C.E. Rose...Models for Government–Industry Collaboration for the Development of Game -Based Training Tools C.E. Rose A.S. Norige Group 44 R.M. Seater K.C...Report 1208 Lexington Massachusetts This page intentionally left blank. iii EXECUTIVE SUMMARY Game -based training tools, sometimes called “serious
Khorram-Manesh, Amir; Berlin, Johan; Carlström, Eric
2016-01-01
The aim of the current review wasto study the existing knowledge about decision-making and to identify and describe validated training tools.A comprehensive literature review was conducted by using the following keywords: decision-making, emergencies, disasters, crisis management, training, exercises, simulation, validated, real-time, command and control, communication, collaboration, and multi-disciplinary in combination or as an isolated word. Two validated training systems developed in Sweden, 3 level collaboration (3LC) and MacSim, were identified and studied in light of the literature review in order to identify how decision-making can be trained. The training models fulfilled six of the eight identified characteristics of training for decision-making.Based on the results, these training models contained methods suitable to train for decision-making. PMID:27878123
A three-talk model for shared decision making: multistage consultation process
Durand, Marie Anne; Song, Julia; Aarts, Johanna; Barr, Paul J; Berger, Zackary; Cochran, Nan; Frosch, Dominick; Galasiński, Dariusz; Gulbrandsen, Pål; Han, Paul K J; Härter, Martin; Kinnersley, Paul; Lloyd, Amy; Mishra, Manish; Perestelo-Perez, Lilisbeth; Scholl, Isabelle; Tomori, Kounosuke; Trevena, Lyndal; Witteman, Holly O; Van der Weijden, Trudy
2017-01-01
Objectives To revise an existing three-talk model for learning how to achieve shared decision making, and to consult with relevant stakeholders to update and obtain wider engagement. Design Multistage consultation process. Setting Key informant group, communities of interest, and survey of clinical specialties. Participants 19 key informants, 153 member responses from multiple communities of interest, and 316 responses to an online survey from medically qualified clinicians from six specialties. Results After extended consultation over three iterations, we revised the three-talk model by making changes to one talk category, adding the need to elicit patient goals, providing a clear set of tasks for each talk category, and adding suggested scripts to illustrate each step. A new three-talk model of shared decision making is proposed, based on “team talk,” “option talk,” and “decision talk,” to depict a process of collaboration and deliberation. Team talk places emphasis on the need to provide support to patients when they are made aware of choices, and to elicit their goals as a means of guiding decision making processes. Option talk refers to the task of comparing alternatives, using risk communication principles. Decision talk refers to the task of arriving at decisions that reflect the informed preferences of patients, guided by the experience and expertise of health professionals. Conclusions The revised three-talk model of shared decision making depicts conversational steps, initiated by providing support when introducing options, followed by strategies to compare and discuss trade-offs, before deliberation based on informed preferences. PMID:29109079
The rational choice model in family decision making at the end of life.
Karasz, Alison; Sacajiu, Galit; Kogan, Misha; Watkins, Liza
2010-01-01
Most end-of-life decisions are made by family members. Current ethical guidelines for family decision making are based on a hierarchical model that emphasizes the patient's wishes over his or her best interests. Evidence suggests that the model poorly reflects the strategies and priorities of many families. Researchers observed and recorded 26 decision-making meetings between hospital staff and family members. Semi-structured follow-up interviews were conducted. Transcriptions were analyzed using qualitative techniques. For both staff and families, consideration of a patient's best interests generally took priority over the patient's wishes. Staff generally introduced discussion of the patient's wishes for rhetorical purposes, such as persuasion. Competing moral frameworks, which de-emphasized the salience of patients' autonomy and "right to choose," played a role in family decision making. The priority given to the patients' wishes in the hierarchical model does not reflect the priorities of staff and families in making decisions about end-of-life care.
Criteria for assessing problem solving and decision making in complex environments
NASA Technical Reports Server (NTRS)
Orasanu, Judith
1993-01-01
Training crews to cope with unanticipated problems in high-risk, high-stress environments requires models of effective problem solving and decision making. Existing decision theories use the criteria of logical consistency and mathematical optimality to evaluate decision quality. While these approaches are useful under some circumstances, the assumptions underlying these models frequently are not met in dynamic time-pressured operational environments. Also, applying formal decision models is both labor and time intensive, a luxury often lacking in operational environments. Alternate approaches and criteria are needed. Given that operational problem solving and decision making are embedded in ongoing tasks, evaluation criteria must address the relation between those activities and satisfaction of broader task goals. Effectiveness and efficiency become relevant for judging reasoning performance in operational environments. New questions must be addressed: What is the relation between the quality of decisions and overall performance by crews engaged in critical high risk tasks? Are different strategies most effective for different types of decisions? How can various decision types be characterized? A preliminary model of decision types found in air transport environments will be described along with a preliminary performance model based on an analysis of 30 flight crews. The performance analysis examined behaviors that distinguish more and less effective crews (based on performance errors). Implications for training and system design will be discussed.
Three Cases of Adolescent Childbearing Decision-Making: The Importance of Ambivalence
ERIC Educational Resources Information Center
Bender, Soley S.
2008-01-01
Limited information is available about the childbearing decision-making experience by the pregnant adolescent. The purpose of this case study was to explore this experience with three pregnant teenagers. The study is based on nine qualitative interviews. Within-case descriptions applying the theoretical model of decision-making regarding unwanted…
NASA Technical Reports Server (NTRS)
Chu, Y. Y.
1978-01-01
A unified formulation of computer-aided, multi-task, decision making is presented. Strategy for the allocation of decision making responsibility between human and computer is developed. The plans of a flight management systems are studied. A model based on the queueing theory was implemented.
Passionate Rationalism: The Role of Emotion in Decision Making
ERIC Educational Resources Information Center
Lakomski, Gabriele; Evers, Colin W.
2010-01-01
Purpose: The purpose of this paper is to argue that emotion has a central role to play in rational decision making based on recent research in the neuroanatomy of emotion. As a result, traditional rational decision-making theories, including Herbert Simon's modified model of satisficing that sharply demarcates emotions and values from rationality…
NASA Astrophysics Data System (ADS)
Inkoom, J. N.; Nyarko, B. K.
2014-12-01
The integration of geographic information systems (GIS) and agent-based modelling (ABM) can be an efficient tool to improve spatial planning practices. This paper utilizes GIS and ABM approaches to simulate spatial growth patterns of settlement structures in Shama. A preliminary household survey on residential location decision-making choice served as the behavioural rule for household agents in the model. Physical environment properties of the model were extracted from a 2005 image implemented in NetLogo. The resulting growth pattern model was compared with empirical growth patterns to ascertain the model's accuracy. The paper establishes that the development of unplanned structures and its evolving structural pattern are a function of land price, proximity to economic centres, household economic status and location decision-making patterns. The application of the proposed model underlines its potential for integration into urban planning policies and practices, and for understanding residential decision-making processes in emerging cities in developing countries. Key Words: GIS; Agent-based modelling; Growth patterns; NetLogo; Location decision making; Computational Intelligence.
Integration of Dynamic Models in Range Operations
NASA Technical Reports Server (NTRS)
Bardina, Jorge; Thirumalainambi, Rajkumar
2004-01-01
This work addresses the various model interactions in real-time to make an efficient internet based decision making tool for Shuttle launch. The decision making tool depends on the launch commit criteria coupled with physical models. Dynamic interaction between a wide variety of simulation applications and techniques, embedded algorithms, and data visualizations are needed to exploit the full potential of modeling and simulation. This paper also discusses in depth details of web based 3-D graphics and applications to range safety. The advantages of this dynamic model integration are secure accessibility and distribution of real time information to other NASA centers.
NASA Astrophysics Data System (ADS)
Song, Yanpo; Peng, Xiaoqi; Tang, Ying; Hu, Zhikun
2013-07-01
To improve the operation level of copper converter, the approach to optimal decision making modeling for coppermatte converting process based on data mining is studied: in view of the characteristics of the process data, such as containing noise, small sample size and so on, a new robust improved ANN (artificial neural network) modeling method is proposed; taking into account the application purpose of decision making model, three new evaluation indexes named support, confidence and relative confidence are proposed; using real production data and the methods mentioned above, optimal decision making model for blowing time of S1 period (the 1st slag producing period) are developed. Simulation results show that this model can significantly improve the converting quality of S1 period, increase the optimal probability from about 70% to about 85%.
Instructional decision making of high school science teachers
NASA Astrophysics Data System (ADS)
Carver, Jeffrey S.
The instructional decision-making processes of high school science teachers have not been well established in the literature. Several models for decision-making do exist in other teaching disciplines, business, computer game programming, nursing, and some fields of science. A model that incorporates differences in science teaching that is consistent with constructivist theory as opposed to conventional science teaching is useful in the current climate of standards-based instruction that includes an inquiry-based approach to teaching science. This study focuses on three aspects of the decision-making process. First, it defines what factors, both internal and external, influence high school science teacher decision-making. Second, those factors are analyzed further to determine what instructional decision-making processes are articulated or demonstrated by the participants. Third, by analyzing the types of decisions that are made in the classroom, the classroom learning environments established as a result of those instructional decisions are studied for similarities and differences between conventional and constructivist models. While the decision-making process for each of these teachers was not clearly articulated by the teachers themselves, the patterns that establish the process were clearly exhibited by the teachers. It was also clear that the classroom learning environments that were established were, at least in part, established as a result of the instructional decisions that were made in planning and implementation of instruction. Patterns of instructional decision-making were different for each teacher as a result of primary instructional goals that were different for each teacher. There were similarities between teachers who exhibited more constructivist epistemological tendencies as well as similarities between teachers who exhibited a more conventional epistemology. While the decisions that will result from these two camps may be different, the six step process for instructional decision-making that was established during this study shows promise for use in both situations.
Chronic motivational state interacts with task reward structure in dynamic decision-making.
Cooper, Jessica A; Worthy, Darrell A; Maddox, W Todd
2015-12-01
Research distinguishes between a habitual, model-free system motivated toward immediately rewarding actions, and a goal-directed, model-based system motivated toward actions that improve future state. We examined the balance of processing in these two systems during state-based decision-making. We tested a regulatory fit hypothesis (Maddox & Markman, 2010) that predicts that global trait motivation affects the balance of habitual- vs. goal-directed processing but only through its interaction with the task framing as gain-maximization or loss-minimization. We found support for the hypothesis that a match between an individual's chronic motivational state and the task framing enhances goal-directed processing, and thus state-based decision-making. Specifically, chronic promotion-focused individuals under gain-maximization and chronic prevention-focused individuals under loss-minimization both showed enhanced state-based decision-making. Computational modeling indicates that individuals in a match between global chronic motivational state and local task reward structure engaged more goal-directed processing, whereas those in a mismatch engaged more habitual processing. Copyright © 2015 Elsevier Inc. All rights reserved.
An Agent-Based Model of Farmer Decision Making in Jordan
NASA Astrophysics Data System (ADS)
Selby, Philip; Medellin-Azuara, Josue; Harou, Julien; Klassert, Christian; Yoon, Jim
2016-04-01
We describe an agent based hydro-economic model of groundwater irrigated agriculture in the Jordan Highlands. The model employs a Multi-Agent-Simulation (MAS) framework and is designed to evaluate direct and indirect outcomes of climate change scenarios and policy interventions on farmer decision making, including annual land use, groundwater use for irrigation, and water sales to a water tanker market. Land use and water use decisions are simulated for groups of farms grouped by location and their behavioural and economic similarities. Decreasing groundwater levels, and the associated increase in pumping costs, are important drivers for change within Jordan'S agricultural sector. We describe how this is considered by coupling of agricultural and groundwater models. The agricultural production model employs Positive Mathematical Programming (PMP), a method for calibrating agricultural production functions to observed planted areas. PMP has successfully been used with disaggregate models for policy analysis. We adapt the PMP approach to allow explicit evaluation of the impact of pumping costs, groundwater purchase fees and a water tanker market. The work demonstrates the applicability of agent-based agricultural decision making assessment in the Jordan Highlands and its integration with agricultural model calibration methods. The proposed approach is designed and implemented with software such that it could be used to evaluate a variety of physical and human influences on decision making in agricultural water management.
ERIC Educational Resources Information Center
Wong, Rose
2017-01-01
This article adds to the growing body of literature on the use of evidence-based practice (EBP) in social work. Specifically, it examines a 9-hour EBP educational model designed to prepare MSW students for appropriate decision-making strategies in working with multicultural client populations. The model places emphasis on identification and…
Making objective decisions in mechanical engineering problems
NASA Astrophysics Data System (ADS)
Raicu, A.; Oanta, E.; Sabau, A.
2017-08-01
Decision making process has a great influence in the development of a given project, the goal being to select an optimal choice in a given context. Because of its great importance, the decision making was studied using various science methods, finally being conceived the game theory that is considered the background for the science of logical decision making in various fields. The paper presents some basic ideas regarding the game theory in order to offer the necessary information to understand the multiple-criteria decision making (MCDM) problems in engineering. The solution is to transform the multiple-criteria problem in a one-criterion decision problem, using the notion of utility, together with the weighting sum model or the weighting product model. The weighted importance of the criteria is computed using the so-called Step method applied to a relation of preferences between the criteria. Two relevant examples from engineering are also presented. The future directions of research consist of the use of other types of criteria, the development of computer based instruments for decision making general problems and to conceive a software module based on expert system principles to be included in the Wiki software applications for polymeric materials that are already operational.
Modelling human decision-making in coupled human and natural systems
NASA Astrophysics Data System (ADS)
Feola, G.
2012-12-01
A solid understanding of human decision-making is essential to analyze the complexity of coupled human and natural systems (CHANS) and inform policies to promote resilience in the face of environmental change. Human decisions drive and/or mediate the interactions and feedbacks, and contribute to the heterogeneity and non-linearity that characterize CHANS. However, human decision-making is usually over-simplistically modeled, whereby human agents are represented deterministically either as dumb or clairvoyant decision-makers. Decision-making models fall short in the integration of both environmental and human behavioral drivers, and concerning the latter, tend to focus on only one category, e.g. economic, cultural, or psychological. Furthermore, these models render a linear decision-making process and therefore fail to account for the recursive co-evolutionary dynamics in CHANS. As a result, these models constitute only a weak basis for policy-making. There is therefore scope and an urgent need for better approaches to human decision-making, to produce the knowledge that can inform vulnerability reduction policies in the face of environmental change. This presentation synthesizes the current state-of-the-art of modelling human decision-making in CHANS, with particular reference to agricultural systems, and delineates how the above mentioned shortcomings can be overcome. Through examples from research on pesticide use and adaptation to climate change, both based on the integrative agent-centered framework (Feola and Binder, 2010), the approach for an improved understanding of human agents in CHANS are illustrated. This entails: integrative approach, focus on behavioral dynamics more than states, feedbacks between individual and system levels, and openness to heterogeneity.
Accelerated bridge construction (ABC) decision making and economic modeling tool.
DOT National Transportation Integrated Search
2011-12-01
In this FHWA-sponsored pool funded study, a set of decision making tools, based on the Analytic Hierarchy Process (AHP) was developed. This tool set is prepared for transportation specialists and decision-makers to determine if ABC is more effective ...
Goal-Proximity Decision-Making
ERIC Educational Resources Information Center
Veksler, Vladislav D.; Gray, Wayne D.; Schoelles, Michael J.
2013-01-01
Reinforcement learning (RL) models of decision-making cannot account for human decisions in the absence of prior reward or punishment. We propose a mechanism for choosing among available options based on goal-option association strengths, where association strengths between objects represent previously experienced object proximity. The proposed…
van der Post, Daniel J.; Semmann, Dirk
2011-01-01
Information processing is a major aspect of the evolution of animal behavior. In foraging, responsiveness to local feeding opportunities can generate patterns of behavior which reflect or “recognize patterns” in the environment beyond the perception of individuals. Theory on the evolution of behavior generally neglects such opportunity-based adaptation. Using a spatial individual-based model we study the role of opportunity-based adaptation in the evolution of foraging, and how it depends on local decision making. We compare two model variants which differ in the individual decision making that can evolve (restricted and extended model), and study the evolution of simple foraging behavior in environments where food is distributed either uniformly or in patches. We find that opportunity-based adaptation and the pattern recognition it generates, plays an important role in foraging success, particularly in patchy environments where one of the main challenges is “staying in patches”. In the restricted model this is achieved by genetic adaptation of move and search behavior, in light of a trade-off on within- and between-patch behavior. In the extended model this trade-off does not arise because decision making capabilities allow for differentiated behavioral patterns. As a consequence, it becomes possible for properties of movement to be specialized for detection of patches with more food, a larger scale information processing not present in the restricted model. Our results show that changes in decision making abilities can alter what kinds of pattern recognition are possible, eliminate an evolutionary trade-off and change the adaptive landscape. PMID:21998571
van der Post, Daniel J; Semmann, Dirk
2011-10-01
Information processing is a major aspect of the evolution of animal behavior. In foraging, responsiveness to local feeding opportunities can generate patterns of behavior which reflect or "recognize patterns" in the environment beyond the perception of individuals. Theory on the evolution of behavior generally neglects such opportunity-based adaptation. Using a spatial individual-based model we study the role of opportunity-based adaptation in the evolution of foraging, and how it depends on local decision making. We compare two model variants which differ in the individual decision making that can evolve (restricted and extended model), and study the evolution of simple foraging behavior in environments where food is distributed either uniformly or in patches. We find that opportunity-based adaptation and the pattern recognition it generates, plays an important role in foraging success, particularly in patchy environments where one of the main challenges is "staying in patches". In the restricted model this is achieved by genetic adaptation of move and search behavior, in light of a trade-off on within- and between-patch behavior. In the extended model this trade-off does not arise because decision making capabilities allow for differentiated behavioral patterns. As a consequence, it becomes possible for properties of movement to be specialized for detection of patches with more food, a larger scale information processing not present in the restricted model. Our results show that changes in decision making abilities can alter what kinds of pattern recognition are possible, eliminate an evolutionary trade-off and change the adaptive landscape.
Patterns of out-of-home placement decision-making in child welfare.
Chor, Ka Ho Brian; McClelland, Gary M; Weiner, Dana A; Jordan, Neil; Lyons, John S
2013-10-01
Out-of-home placement decision-making in child welfare is founded on the best interest of the child in the least restrictive setting. After a child is removed from home, however, little is known about the mechanism of placement decision-making. This study aims to systematically examine the patterns of out-of-home placement decisions made in a state's child welfare system by comparing two models of placement decision-making: a multidisciplinary team decision-making model and a clinically based decision support algorithm. Based on records of 7816 placement decisions representing 6096 children over a 4-year period, hierarchical log-linear modeling characterized concordance or agreement, and discordance or disagreement when comparing the two models and accounting for age-appropriate placement options. Children aged below 16 had an overall concordance rate of 55.7%, most apparent in the least restrictive (20.4%) and the most restrictive placement (18.4%). Older youth showed greater discordant distributions (62.9%). Log-linear analysis confirmed the overall robustness of concordance (odd ratios [ORs] range: 2.9-442.0), though discordance was most evident from small deviations from the decision support algorithm, such as one-level under-placement in group home (OR=5.3) and one-level over-placement in residential treatment center (OR=4.8). Concordance should be further explored using child-level clinical and placement stability outcomes. Discordance might be explained by dynamic factors such as availability of placements, caregiver preferences, or policy changes and could be justified by positive child-level outcomes. Empirical placement decision-making is critical to a child's journey in child welfare and should be continuously improved to effect positive child welfare outcomes. Copyright © 2013 Elsevier Ltd. All rights reserved.
Goal-Directed Decision Making with Spiking Neurons.
Friedrich, Johannes; Lengyel, Máté
2016-02-03
Behavioral and neuroscientific data on reward-based decision making point to a fundamental distinction between habitual and goal-directed action selection. The formation of habits, which requires simple updating of cached values, has been studied in great detail, and the reward prediction error theory of dopamine function has enjoyed prominent success in accounting for its neural bases. In contrast, the neural circuit mechanisms of goal-directed decision making, requiring extended iterative computations to estimate values online, are still unknown. Here we present a spiking neural network that provably solves the difficult online value estimation problem underlying goal-directed decision making in a near-optimal way and reproduces behavioral as well as neurophysiological experimental data on tasks ranging from simple binary choice to sequential decision making. Our model uses local plasticity rules to learn the synaptic weights of a simple neural network to achieve optimal performance and solves one-step decision-making tasks, commonly considered in neuroeconomics, as well as more challenging sequential decision-making tasks within 1 s. These decision times, and their parametric dependence on task parameters, as well as the final choice probabilities match behavioral data, whereas the evolution of neural activities in the network closely mimics neural responses recorded in frontal cortices during the execution of such tasks. Our theory provides a principled framework to understand the neural underpinning of goal-directed decision making and makes novel predictions for sequential decision-making tasks with multiple rewards. Goal-directed actions requiring prospective planning pervade decision making, but their circuit-level mechanisms remain elusive. We show how a model circuit of biologically realistic spiking neurons can solve this computationally challenging problem in a novel way. The synaptic weights of our network can be learned using local plasticity rules such that its dynamics devise a near-optimal plan of action. By systematically comparing our model results to experimental data, we show that it reproduces behavioral decision times and choice probabilities as well as neural responses in a rich set of tasks. Our results thus offer the first biologically realistic account for complex goal-directed decision making at a computational, algorithmic, and implementational level. Copyright © 2016 the authors 0270-6474/16/361529-18$15.00/0.
Goal-Directed Decision Making with Spiking Neurons
Lengyel, Máté
2016-01-01
Behavioral and neuroscientific data on reward-based decision making point to a fundamental distinction between habitual and goal-directed action selection. The formation of habits, which requires simple updating of cached values, has been studied in great detail, and the reward prediction error theory of dopamine function has enjoyed prominent success in accounting for its neural bases. In contrast, the neural circuit mechanisms of goal-directed decision making, requiring extended iterative computations to estimate values online, are still unknown. Here we present a spiking neural network that provably solves the difficult online value estimation problem underlying goal-directed decision making in a near-optimal way and reproduces behavioral as well as neurophysiological experimental data on tasks ranging from simple binary choice to sequential decision making. Our model uses local plasticity rules to learn the synaptic weights of a simple neural network to achieve optimal performance and solves one-step decision-making tasks, commonly considered in neuroeconomics, as well as more challenging sequential decision-making tasks within 1 s. These decision times, and their parametric dependence on task parameters, as well as the final choice probabilities match behavioral data, whereas the evolution of neural activities in the network closely mimics neural responses recorded in frontal cortices during the execution of such tasks. Our theory provides a principled framework to understand the neural underpinning of goal-directed decision making and makes novel predictions for sequential decision-making tasks with multiple rewards. SIGNIFICANCE STATEMENT Goal-directed actions requiring prospective planning pervade decision making, but their circuit-level mechanisms remain elusive. We show how a model circuit of biologically realistic spiking neurons can solve this computationally challenging problem in a novel way. The synaptic weights of our network can be learned using local plasticity rules such that its dynamics devise a near-optimal plan of action. By systematically comparing our model results to experimental data, we show that it reproduces behavioral decision times and choice probabilities as well as neural responses in a rich set of tasks. Our results thus offer the first biologically realistic account for complex goal-directed decision making at a computational, algorithmic, and implementational level. PMID:26843636
Decision-making in Swiss home-like childbirth: A grounded theory study.
Meyer, Yvonne; Frank, Franziska; Schläppy Muntwyler, Franziska; Fleming, Valerie; Pehlke-Milde, Jessica
2017-12-01
Decision-making in midwifery, including a claim for shared decision-making between midwives and women, is of major significance for the health of mother and child. Midwives have little information about how to share decision-making responsibilities with women, especially when complications arise during birth. To increase understanding of decision-making in complex home-like birth settings by exploring midwives' and women's perspectives and to develop a dynamic model integrating participatory processes for making shared decisions. The study, based on grounded theory methodology, analysed 20 interviews of midwives and 20 women who had experienced complications in home-like births. The central phenomenon that arose from the data was "defining/redefining decision as a joint commitment to healthy childbirth". The sub-indicators that make up this phenomenon were safety, responsibility, mutual and personal commitments. These sub-indicators were also identified to influence temporal conditions of decision-making and to apply different strategies for shared decision-making. Women adopted strategies such as delegating a decision, making the midwife's decision her own, challenging a decision or taking a decision driven by the dynamics of childbirth. Midwives employed strategies such as remaining indecisive, approving a woman's decision, making an informed decision or taking the necessary decision. To respond to recommendations for shared responsibility for care, midwives need to strengthen their shared decision-making skills. The visual model of decision-making in childbirth derived from the data provides a framework for transferring clinical reasoning into practice. Copyright © 2017 Australian College of Midwives. Published by Elsevier Ltd. All rights reserved.
Nurses' decision making in heart failure management based on heart failure certification status.
Albert, Nancy M; Bena, James F; Buxbaum, Denise; Martensen, Linda; Morrison, Shannon L; Prasun, Marilyn A; Stamp, Kelly D
Research findings on the value of nurse certification were based on subjective perceptions or biased by correlations of certification status and global clinical factors. In heart failure, the value of certification is unknown. Examine the value of certification based nurses' decision-making. Cross-sectional study of nurses who completed heart failure clinical vignettes that reflected decision-making in clinical heart failure scenarios. Statistical tests included multivariable linear, logistic and proportional odds logistic regression models. Of nurses (N = 605), 29.1% were heart failure certified, 35.0% were certified in another specialty/job role and 35.9% were not certified. In multivariable modeling, nurses certified in heart failure (versus not heart failure certified) had higher clinical vignette scores (p = 0.002), reflecting higher evidence-based decision making; nurses with another specialty/role certification (versus no certification) did not (p = 0.62). Heart failure certification, but not in other specialty/job roles was associated with decisions that reflected delivery of high-quality care. Copyright © 2018 Elsevier Inc. All rights reserved.
Shared Problem Models and Crew Decision Making
NASA Technical Reports Server (NTRS)
Orasanu, Judith; Statler, Irving C. (Technical Monitor)
1994-01-01
The importance of crew decision making to aviation safety has been well established through NTSB accident analyses: Crew judgment and decision making have been cited as causes or contributing factors in over half of all accidents in commercial air transport, general aviation, and military aviation. Yet the bulk of research on decision making has not proven helpful in improving the quality of decisions in the cockpit. One reason is that traditional analytic decision models are inappropriate to the dynamic complex nature of cockpit decision making and do not accurately describe what expert human decision makers do when they make decisions. A new model of dynamic naturalistic decision making is offered that may prove more useful for training or aiding cockpit decision making. Based on analyses of crew performance in full-mission simulation and National Transportation Safety Board accident reports, features that define effective decision strategies in abnormal or emergency situations have been identified. These include accurate situation assessment (including time and risk assessment), appreciation of the complexity of the problem, sensitivity to constraints on the decision, timeliness of the response, and use of adequate information. More effective crews also manage their workload to provide themselves with time and resources to make good decisions. In brief, good decisions are appropriate to the demands of the situation and reflect the crew's metacognitive skill. Effective crew decision making and overall performance are mediated by crew communication. Communication contributes to performance because it assures that all crew members have essential information, but it also regulates and coordinates crew actions and is the medium of collective thinking in response to a problem. This presentation will examine the relation between communication that serves to build performance. Implications of these findings for crew training will be discussed.
The Defense Industrial Base: Prescription for a Psychosomatic Ailment
1983-08-01
The Decision- Making Process ------------------------- 65 Notes ---------------------------------------- FIGURE 4-1. The Decision [laking Process...the strategy and tactics process to make certain that we can attain out national security objectives. (IFP is also known as mobilization planning or...decision- making model that could improve the capacity and capability-of the military-industrial complex, thereby increasing the probability of success
Tan, Yu-Mei; Worley, Rachel R; Leonard, Jeremy A; Fisher, Jeffrey W
2018-04-01
The development and application of physiologically based pharmacokinetic (PBPK) models in chemical toxicology have grown steadily since their emergence in the 1980s. However, critical evaluation of PBPK models to support public health decision-making across federal agencies has thus far occurred for only a few environmental chemicals. In order to encourage decision-makers to embrace the critical role of PBPK modeling in risk assessment, several important challenges require immediate attention from the modeling community. The objective of this contemporary review is to highlight 3 of these challenges, including: (1) difficulties in recruiting peer reviewers with appropriate modeling expertise and experience; (2) lack of confidence in PBPK models for which no tissue/plasma concentration data exist for model evaluation; and (3) lack of transferability across modeling platforms. Several recommendations for addressing these 3 issues are provided to initiate dialog among members of the PBPK modeling community, as these issues must be overcome for the field of PBPK modeling to advance and for PBPK models to be more routinely applied in support of public health decision-making.
A three-talk model for shared decision making: multistage consultation process.
Elwyn, Glyn; Durand, Marie Anne; Song, Julia; Aarts, Johanna; Barr, Paul J; Berger, Zackary; Cochran, Nan; Frosch, Dominick; Galasiński, Dariusz; Gulbrandsen, Pål; Han, Paul K J; Härter, Martin; Kinnersley, Paul; Lloyd, Amy; Mishra, Manish; Perestelo-Perez, Lilisbeth; Scholl, Isabelle; Tomori, Kounosuke; Trevena, Lyndal; Witteman, Holly O; Van der Weijden, Trudy
2017-11-06
Objectives To revise an existing three-talk model for learning how to achieve shared decision making, and to consult with relevant stakeholders to update and obtain wider engagement. Design Multistage consultation process. Setting Key informant group, communities of interest, and survey of clinical specialties. Participants 19 key informants, 153 member responses from multiple communities of interest, and 316 responses to an online survey from medically qualified clinicians from six specialties. Results After extended consultation over three iterations, we revised the three-talk model by making changes to one talk category, adding the need to elicit patient goals, providing a clear set of tasks for each talk category, and adding suggested scripts to illustrate each step. A new three-talk model of shared decision making is proposed, based on "team talk," "option talk," and "decision talk," to depict a process of collaboration and deliberation. Team talk places emphasis on the need to provide support to patients when they are made aware of choices, and to elicit their goals as a means of guiding decision making processes. Option talk refers to the task of comparing alternatives, using risk communication principles. Decision talk refers to the task of arriving at decisions that reflect the informed preferences of patients, guided by the experience and expertise of health professionals. Conclusions The revised three-talk model of shared decision making depicts conversational steps, initiated by providing support when introducing options, followed by strategies to compare and discuss trade-offs, before deliberation based on informed preferences. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Gather, Jakov
2018-01-01
It is widely accepted among medical ethicists that competence is a necessary condition for informed consent. In this view, if a patient is incompetent to make a particular treatment decision, the decision must be based on an advance directive or made by a substitute decision-maker on behalf of the patient. We call this the competence model. According to a recent report of the United Nations (UN) High Commissioner for Human Rights, article 12 of the UN Convention on the Rights of Persons with Disabilities (CRPD) presents a wholesale rejection of the competence model. The High Commissioner here adopts the interpretation of article 12 proposed by the Committee on the Rights of Persons with Disabilities. On this interpretation, CRPD article 12 renders it impermissible to deny persons with mental disabilities the right to make treatment decisions on the basis of impaired decision-making capacity and demands the replacement of all regimes of substitute decision-making by supported decision-making. In this paper, we explicate six adverse consequences of CRPD article 12 for persons with mental disabilities and propose an alternative way forward. The proposed model combines the strengths of the competence model and supported decision-making. PMID:29070707
Research-based-decision-making in Canadian health organizations: a behavioural approach.
Jbilou, Jalila; Amara, Nabil; Landry, Réjean
2007-06-01
Decision making in Health sector is affected by a several elements such as economic constraints, political agendas, epidemiologic events, managers' values and environment... These competing elements create a complex environment for decision making. Research-Based-Decision-Making (RBDM) offers an opportunity to reduce the generated uncertainty and to ensure efficacy and efficiency in health administrations. We assume that RBDM is dependant on decision makers' behaviour and the identification of the determinants of this behaviour can help to enhance research results utilization in health sector decision making. This paper explores the determinants of RBDM as a personal behaviour among managers and professionals in health administrations in Canada. From the behavioural theories and the existing literature, we build a model measuring "RBDM" as an index based on five items. These items refer to the steps accomplished by a decision maker while developing a decision which is based on evidence. The determinants of RBDM behaviour are identified using data collected from 942 health care decision makers in Canadian health organizations. Linear regression is used to model the behaviour RBDM. Determinants of this behaviour are derived from Triandis Theory and Bandura's construct "self-efficacy." The results suggest that to improve research use among managers in Canadian governmental health organizations, strategies should focus on enhancing exposition to evidence through facilitating communication networks, partnerships and links between researchers and decision makers, with the key long-term objective of developing a culture that supports and values the contribution that research can make to decision making in governmental health organizations. Nevertheless, depending on the organizational level, determinants of RBDM are different. This difference has to be taken into account if RBDM adoption is desired. Decision makers in Canadian health organizations (CHO) can help to build networks, develop partnerships between professionals locally, regionally and nationally, and also act as change agents in the dissemination and adoption of knowledge and innovations in health services. However, the research focused on knowledge use as a support to decision-making, further research is needed to identify and evaluate effective incentives and strategies to implement so as to enhance RBDM adoption among health decision makers and more theoretical development are to complete in this perspective.
Steingroever, Helen; Pachur, Thorsten; Šmíra, Martin; Lee, Michael D
2018-06-01
The Iowa Gambling Task (IGT) is one of the most popular experimental paradigms for comparing complex decision-making across groups. Most commonly, IGT behavior is analyzed using frequentist tests to compare performance across groups, and to compare inferred parameters of cognitive models developed for the IGT. Here, we present a Bayesian alternative based on Bayesian repeated-measures ANOVA for comparing performance, and a suite of three complementary model-based methods for assessing the cognitive processes underlying IGT performance. The three model-based methods involve Bayesian hierarchical parameter estimation, Bayes factor model comparison, and Bayesian latent-mixture modeling. We illustrate these Bayesian methods by applying them to test the extent to which differences in intuitive versus deliberate decision style are associated with differences in IGT performance. The results show that intuitive and deliberate decision-makers behave similarly on the IGT, and the modeling analyses consistently suggest that both groups of decision-makers rely on similar cognitive processes. Our results challenge the notion that individual differences in intuitive and deliberate decision styles have a broad impact on decision-making. They also highlight the advantages of Bayesian methods, especially their ability to quantify evidence in favor of the null hypothesis, and that they allow model-based analyses to incorporate hierarchical and latent-mixture structures.
Denys Yemshanov; Frank H Koch; Mark Ducey
2015-01-01
Uncertainty is inherent in model-based forecasts of ecological invasions. In this chapter, we explore how the perceptions of that uncertainty can be incorporated into the pest risk assessment process. Uncertainty changes a decision makerâs perceptions of risk; therefore, the direct incorporation of uncertainty may provide a more appropriate depiction of risk. Our...
Dual Processes in Decision Making and Developmental Neuroscience: A Fuzzy-Trace Model.
Reyna, Valerie F; Brainerd, Charles J
2011-09-01
From Piaget to the present, traditional and dual-process theories have predicted improvement in reasoning from childhood to adulthood, and improvement has been observed. However, developmental reversals-that reasoning biases emerge with development -have also been observed in a growing list of paradigms. We explain how fuzzy-trace theory predicts both improvement and developmental reversals in reasoning and decision making. Drawing on research on logical and quantitative reasoning, as well as on risky decision making in the laboratory and in life, we illustrate how the same small set of theoretical principles apply to typical neurodevelopment, encompassing childhood, adolescence, and adulthood, and to neurological conditions such as autism and Alzheimer's disease. For example, framing effects-that risk preferences shift when the same decisions are phrases in terms of gains versus losses-emerge in early adolescence as gist-based intuition develops. In autistic individuals, who rely less on gist-based intuition and more on verbatim-based analysis, framing biases are attenuated (i.e., they outperform typically developing control subjects). In adults, simple manipulations based on fuzzy-trace theory can make framing effects appear and disappear depending on whether gist-based intuition or verbatim-based analysis is induced. These theoretical principles are summarized and integrated in a new mathematical model that specifies how dual modes of reasoning combine to produce predictable variability in performance. In particular, we show how the most popular and extensively studied model of decision making-prospect theory-can be derived from fuzzy-trace theory by combining analytical (verbatim-based) and intuitive (gist-based) processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burns, B.A.
This report reviews social and behavioral science models and techniques for their possible use in understanding and predicting consumer energy decision making and behaviors. A number of models and techniques have been developed that address different aspects of the decision process, use different theoretical bases and approaches, and have been aimed at different audiences. Three major areas of discussion were selected: (1) models of adaptation to social change, (2) decision making and choice, and (3) diffusion of innovation. Within these three areas, the contributions of psychologists, sociologists, economists, marketing researchers, and others were reviewed. Five primary components of the modelsmore » were identified and compared. The components are: (1) situational characteristics, (2) product characteristics, (3) individual characteristics, (4) social influences, and (5) the interaction or decision rules. The explicit use of behavioral and social science models in energy decision-making and behavior studies has been limited. Examples are given of a small number of energy studies which applied and tested existing models in studying the adoption of energy conservation behaviors and technologies, and solar technology.« less
NASA Astrophysics Data System (ADS)
Müller-Hansen, Finn; Schlüter, Maja; Mäs, Michael; Donges, Jonathan F.; Kolb, Jakob J.; Thonicke, Kirsten; Heitzig, Jobst
2017-11-01
Today, humans have a critical impact on the Earth system and vice versa, which can generate complex feedback processes between social and ecological dynamics. Integrating human behavior into formal Earth system models (ESMs), however, requires crucial modeling assumptions about actors and their goals, behavioral options, and decision rules, as well as modeling decisions regarding human social interactions and the aggregation of individuals' behavior. Here, we review existing modeling approaches and techniques from various disciplines and schools of thought dealing with human behavior at different levels of decision making. We demonstrate modelers' often vast degrees of freedom but also seek to make modelers aware of the often crucial consequences of seemingly innocent modeling assumptions. After discussing which socioeconomic units are potentially important for ESMs, we compare models of individual decision making that correspond to alternative behavioral theories and that make diverse modeling assumptions about individuals' preferences, beliefs, decision rules, and foresight. We review approaches to model social interaction, covering game theoretic frameworks, models of social influence, and network models. Finally, we discuss approaches to studying how the behavior of individuals, groups, and organizations can aggregate to complex collective phenomena, discussing agent-based, statistical, and representative-agent modeling and economic macro-dynamics. We illustrate the main ingredients of modeling techniques with examples from land-use dynamics as one of the main drivers of environmental change bridging local to global scales.
Decision-Making in Audiology: Balancing Evidence-Based Practice and Patient-Centered Care.
Boisvert, Isabelle; Clemesha, Jennifer; Lundmark, Erik; Crome, Erica; Barr, Caitlin; McMahon, Catherine M
2017-01-01
Health-care service delivery models have evolved from a practitioner-centered approach toward a patient-centered ideal. Concurrently, increasing emphasis has been placed on the use of empirical evidence in decision-making to increase clinical accountability. The way in which clinicians use empirical evidence and client preferences to inform decision-making provides an insight into health-care delivery models utilized in clinical practice. The present study aimed to investigate the sources of information audiologists use when discussing rehabilitation choices with clients, and discuss the findings within the context of evidence-based practice and patient-centered care. To assess the changes that may have occurred over time, this study uses a questionnaire based on one of the few studies of decision-making behavior in audiologists, published in 1989. The present questionnaire was completed by 96 audiologists who attended the World Congress of Audiology in 2014. The responses were analyzed using qualitative and quantitative approaches. Results suggest that audiologists rank clinical test results and client preferences as the most important factors for decision-making. Discussion with colleagues or experts was also frequently reported as an important source influencing decision-making. Approximately 20% of audiologists mentioned utilizing research evidence to inform decision-making when no clear solution was available. Information shared at conferences was ranked low in terms of importance and reliability. This study highlights an increase in awareness of concepts associated with evidence-based practice and patient-centered care within audiology settings, consistent with current research-to-practice dissemination pathways. It also highlights that these pathways may not be sufficient for an effective clinical implementation of these practices.
Integrated modelling of stormwater treatment systems uptake.
Castonguay, A C; Iftekhar, M S; Urich, C; Bach, P M; Deletic, A
2018-05-24
Nature-based solutions provide a variety of benefits in growing cities, ranging from stormwater treatment to amenity provision such as aesthetics. However, the decision-making process involved in the installation of such green infrastructure is not straightforward, as much uncertainty around the location, size, costs and benefits impedes systematic decision-making. We developed a model to simulate decision rules used by local municipalities to install nature-based stormwater treatment systems, namely constructed wetlands, ponds/basins and raingardens. The model was used to test twenty-four scenarios of policy-making, by combining four asset selection, two location selection and three budget constraint decision rules. Based on the case study of a local municipality in Metropolitan Melbourne, Australia, the modelled uptake of stormwater treatment systems was compared with attributes of real-world systems for the simulation period. Results show that the actual budgeted funding is not reliable to predict systems' uptake and that policy-makers are more likely to plan expenditures based on installation costs. The model was able to replicate the cumulative treatment capacity and the location of systems. As such, it offers a novel approach to investigate the impact of using different decision rules to provide environmental services considering biophysical and economic factors. Copyright © 2018 Elsevier Ltd. All rights reserved.
Surgical Consultation as Social Process: Implications for Shared Decision Making.
Clapp, Justin T; Arriaga, Alexander F; Murthy, Sushila; Raper, Steven E; Schwartz, J Sanford; Barg, Frances K; Fleisher, Lee A
2017-12-12
This qualitative study examines surgical consultation as a social process and assesses its alignment with assumptions of the shared decision-making (SDM) model. SDM stresses the importance of patient preferences and rigorous discussion of therapeutic risks/benefits based on these preferences. However, empirical studies have highlighted discrepancies between SDM and realities of surgical decision making. Qualitative research can inform understanding of the decision-making process and allow for granular assessment of the nature and causes of these discrepancies. We observed consultations between 3 general surgeons and 45 patients considering undergoing 1 of 2 preference-sensitive elective operations: (1) hernia repair, or (2) cholecystectomy. These patients and surgeons also participated in semi-structured interviews. By the time of the consultation, patients and surgeons were predisposed toward certain decisions by preceding events occurring elsewhere. During the visit, surgeons had differential ability to arbitrate surgical intervention and construct the severity of patients' conditions. These upstream dynamics frequently displaced the centrality of the risk/benefit-based consent discussion. The influence of events preceding consultation suggests that decision-making models should account for broader spatiotemporal spans. Given surgeons' authority to define patients' conditions and control service provision, SDM may be premised on an overestimation of patients' power to alter the course of decision making once in a specialist's office. Considering the subordinate role of the risk/benefit discussion in many surgical decisions, it will be important to study if and how the social process of decision making is altered by SDM-oriented decision aids that foreground this discussion.
Models of Shared Leadership: Evolving Structures and Relationships.
ERIC Educational Resources Information Center
Hallinger, Philip; Richardson, Don
Current reform efforts, focusing on teacher empowerment, are based on the belief that lasting school improvement will occur when teachers become more involved in professional decision-making at the school site. Presented in this document are four conceptually distinct models of teacher involvement in schoolwide decision-making, identified on the…
Ag2S atomic switch-based `tug of war' for decision making
NASA Astrophysics Data System (ADS)
Lutz, C.; Hasegawa, T.; Chikyow, T.
2016-07-01
For a computing process such as making a decision, a software controlled chip of several transistors is necessary. Inspired by how a single cell amoeba decides its movements, the theoretical `tug of war' computing model was proposed but not yet implemented in an analogue device suitable for integrated circuits. Based on this model, we now developed a new electronic element for decision making processes, which will have no need for prior programming. The devices are based on the growth and shrinkage of Ag filaments in α-Ag2+δS gap-type atomic switches. Here we present the adapted device design and the new materials. We demonstrate the basic `tug of war' operation by IV-measurements and Scanning Electron Microscopy (SEM) observation. These devices could be the base for a CMOS-free new computer architecture.For a computing process such as making a decision, a software controlled chip of several transistors is necessary. Inspired by how a single cell amoeba decides its movements, the theoretical `tug of war' computing model was proposed but not yet implemented in an analogue device suitable for integrated circuits. Based on this model, we now developed a new electronic element for decision making processes, which will have no need for prior programming. The devices are based on the growth and shrinkage of Ag filaments in α-Ag2+δS gap-type atomic switches. Here we present the adapted device design and the new materials. We demonstrate the basic `tug of war' operation by IV-measurements and Scanning Electron Microscopy (SEM) observation. These devices could be the base for a CMOS-free new computer architecture. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr00690f
Values based practice: a framework for thinking with.
Mohanna, Kay
2017-07-01
Values are those principles that govern behaviours, and values-based practice has been described as a theory and skills base for effective healthcare decision-making where different (and hence potentially conflicting) values are in play. The emphasis is on good process rather than pre-set right outcomes, aiming to achieve balanced decision-making. In this article we will consider the utility of this model by looking at leadership development, a current area of much interest and investment in healthcare. Copeland points out that 'values based leadership behaviors are styles with a moral, authentic and ethical dimension', important qualities in healthcare decision-making.
Abe, James; Lobo, Jennifer M; Trifiletti, Daniel M; Showalter, Timothy N
2017-08-24
Despite the emergence of genomics-based risk prediction tools in oncology, there is not yet an established framework for communication of test results to cancer patients to support shared decision-making. We report findings from a stakeholder engagement program that aimed to develop a framework for using Markov models with individualized model inputs, including genomics-based estimates of cancer recurrence probability, to generate personalized decision aids for prostate cancer patients faced with radiation therapy treatment decisions after prostatectomy. We engaged a total of 22 stakeholders, including: prostate cancer patients, urological surgeons, radiation oncologists, genomic testing industry representatives, and biomedical informatics faculty. Slides were at each meeting to provide background information regarding the analytical framework. Participants were invited to provide feedback during the meeting, including revising the overall project aims. Stakeholder meeting content was reviewed and summarized by stakeholder group and by theme. The majority of stakeholder suggestions focused on aspects of decision aid design and formatting. Stakeholders were enthusiastic about the potential value of using decision analysis modeling with personalized model inputs for cancer recurrence risk, as well as competing risks from age and comorbidities, to generate a patient-centered tool to assist decision-making. Stakeholders did not view privacy considerations as a major barrier to the proposed decision aid program. A common theme was that decision aids should be portable across multiple platforms (electronic and paper), should allow for interaction by the user to adjust model inputs iteratively, and available to patients both before and during consult appointments. Emphasis was placed on the challenge of explaining the model's composite result of quality-adjusted life years. A range of stakeholders provided valuable insights regarding the design of a personalized decision aid program, based upon Markov modeling with individualized model inputs, to provide a patient-centered framework to support for genomic-based treatment decisions for cancer patients. The guidance provided by our stakeholders may be broadly applicable to the communication of genomic test results to patients in a patient-centered fashion that supports effective shared decision-making that represents a spectrum of personal factors such as age, medical comorbidities, and individual priorities and values.
Niyogi, Ritwik K.; Wong-Lin, KongFatt
2013-01-01
Behavioural and neurophysiological studies in primates have increasingly shown the involvement of urgency signals during the temporal integration of sensory evidence in perceptual decision-making. Neuronal correlates of such signals have been found in the parietal cortex, and in separate studies, demonstrated attention-induced gain modulation of both excitatory and inhibitory neurons. Although previous computational models of decision-making have incorporated gain modulation, their abstract forms do not permit an understanding of the contribution of inhibitory gain modulation. Thus, the effects of co-modulating both excitatory and inhibitory neuronal gains on decision-making dynamics and behavioural performance remain unclear. In this work, we incorporate time-dependent co-modulation of the gains of both excitatory and inhibitory neurons into our previous biologically based decision circuit model. We base our computational study in the context of two classic motion-discrimination tasks performed in animals. Our model shows that by simultaneously increasing the gains of both excitatory and inhibitory neurons, a variety of the observed dynamic neuronal firing activities can be replicated. In particular, the model can exhibit winner-take-all decision-making behaviour with higher firing rates and within a significantly more robust model parameter range. It also exhibits short-tailed reaction time distributions even when operating near a dynamical bifurcation point. The model further shows that neuronal gain modulation can compensate for weaker recurrent excitation in a decision neural circuit, and support decision formation and storage. Higher neuronal gain is also suggested in the more cognitively demanding reaction time than in the fixed delay version of the task. Using the exact temporal delays from the animal experiments, fast recruitment of gain co-modulation is shown to maximize reward rate, with a timescale that is surprisingly near the experimentally fitted value. Our work provides insights into the simultaneous and rapid modulation of excitatory and inhibitory neuronal gains, which enables flexible, robust, and optimal decision-making. PMID:23825935
ERIC Educational Resources Information Center
Hilbig, Benjamin E.; Pohl, Rudiger F.
2009-01-01
According to part of the adaptive toolbox notion of decision making known as the recognition heuristic (RH), the decision process in comparative judgments--and its duration--is determined by whether recognition discriminates between objects. By contrast, some recently proposed alternative models predict that choices largely depend on the amount of…
Many faces of rationality: Implications of the great rationality debate for clinical decision‐making
Elqayam, Shira
2017-01-01
Abstract Given that more than 30% of healthcare costs are wasted on inappropriate care, suboptimal care is increasingly connected to the quality of medical decisions. It has been argued that personal decisions are the leading cause of death, and 80% of healthcare expenditures result from physicians' decisions. Therefore, improving healthcare necessitates improving medical decisions, ie, making decisions (more) rational. Drawing on writings from The Great Rationality Debate from the fields of philosophy, economics, and psychology, we identify core ingredients of rationality commonly encountered across various theoretical models. Rationality is typically classified under umbrella of normative (addressing the question how people “should” or “ought to” make their decisions) and descriptive theories of decision‐making (which portray how people actually make their decisions). Normative theories of rational thought of relevance to medicine include epistemic theories that direct practice of evidence‐based medicine and expected utility theory, which provides the basis for widely used clinical decision analyses. Descriptive theories of rationality of direct relevance to medical decision‐making include bounded rationality, argumentative theory of reasoning, adaptive rationality, dual processing model of rationality, regret‐based rationality, pragmatic/substantive rationality, and meta‐rationality. For the first time, we provide a review of wide range of theories and models of rationality. We showed that what is “rational” behaviour under one rationality theory may be irrational under the other theory. We also showed that context is of paramount importance to rationality and that no one model of rationality can possibly fit all contexts. We suggest that in context‐poor situations, such as policy decision‐making, normative theories based on expected utility informed by best research evidence may provide the optimal approach to medical decision‐making, whereas in the context‐rich circumstances other types of rationality, informed by human cognitive architecture and driven by intuition and emotions such as the aim to minimize regret, may provide better solution to the problem at hand. The choice of theory under which we operate is important as it determines both policy and our individual decision‐making. PMID:28730671
A Cognitive Modeling Approach to Strategy Formation in Dynamic Decision Making.
Prezenski, Sabine; Brechmann, André; Wolff, Susann; Russwinkel, Nele
2017-01-01
Decision-making is a high-level cognitive process based on cognitive processes like perception, attention, and memory. Real-life situations require series of decisions to be made, with each decision depending on previous feedback from a potentially changing environment. To gain a better understanding of the underlying processes of dynamic decision-making, we applied the method of cognitive modeling on a complex rule-based category learning task. Here, participants first needed to identify the conjunction of two rules that defined a target category and later adapt to a reversal of feedback contingencies. We developed an ACT-R model for the core aspects of this dynamic decision-making task. An important aim of our model was that it provides a general account of how such tasks are solved and, with minor changes, is applicable to other stimulus materials. The model was implemented as a mixture of an exemplar-based and a rule-based approach which incorporates perceptual-motor and metacognitive aspects as well. The model solves the categorization task by first trying out one-feature strategies and then, as a result of repeated negative feedback, switching to two-feature strategies. Overall, this model solves the task in a similar way as participants do, including generally successful initial learning as well as reversal learning after the change of feedback contingencies. Moreover, the fact that not all participants were successful in the two learning phases is also reflected in the modeling data. However, we found a larger variance and a lower overall performance of the modeling data as compared to the human data which may relate to perceptual preferences or additional knowledge and rules applied by the participants. In a next step, these aspects could be implemented in the model for a better overall fit. In view of the large interindividual differences in decision performance between participants, additional information about the underlying cognitive processes from behavioral, psychobiological and neurophysiological data may help to optimize future applications of this model such that it can be transferred to other domains of comparable dynamic decision tasks.
A Cognitive Modeling Approach to Strategy Formation in Dynamic Decision Making
Prezenski, Sabine; Brechmann, André; Wolff, Susann; Russwinkel, Nele
2017-01-01
Decision-making is a high-level cognitive process based on cognitive processes like perception, attention, and memory. Real-life situations require series of decisions to be made, with each decision depending on previous feedback from a potentially changing environment. To gain a better understanding of the underlying processes of dynamic decision-making, we applied the method of cognitive modeling on a complex rule-based category learning task. Here, participants first needed to identify the conjunction of two rules that defined a target category and later adapt to a reversal of feedback contingencies. We developed an ACT-R model for the core aspects of this dynamic decision-making task. An important aim of our model was that it provides a general account of how such tasks are solved and, with minor changes, is applicable to other stimulus materials. The model was implemented as a mixture of an exemplar-based and a rule-based approach which incorporates perceptual-motor and metacognitive aspects as well. The model solves the categorization task by first trying out one-feature strategies and then, as a result of repeated negative feedback, switching to two-feature strategies. Overall, this model solves the task in a similar way as participants do, including generally successful initial learning as well as reversal learning after the change of feedback contingencies. Moreover, the fact that not all participants were successful in the two learning phases is also reflected in the modeling data. However, we found a larger variance and a lower overall performance of the modeling data as compared to the human data which may relate to perceptual preferences or additional knowledge and rules applied by the participants. In a next step, these aspects could be implemented in the model for a better overall fit. In view of the large interindividual differences in decision performance between participants, additional information about the underlying cognitive processes from behavioral, psychobiological and neurophysiological data may help to optimize future applications of this model such that it can be transferred to other domains of comparable dynamic decision tasks. PMID:28824512
Continuous track paths reveal additive evidence integration in multistep decision making.
Buc Calderon, Cristian; Dewulf, Myrtille; Gevers, Wim; Verguts, Tom
2017-10-03
Multistep decision making pervades daily life, but its underlying mechanisms remain obscure. We distinguish four prominent models of multistep decision making, namely serial stage, hierarchical evidence integration, hierarchical leaky competing accumulation (HLCA), and probabilistic evidence integration (PEI). To empirically disentangle these models, we design a two-step reward-based decision paradigm and implement it in a reaching task experiment. In a first step, participants choose between two potential upcoming choices, each associated with two rewards. In a second step, participants choose between the two rewards selected in the first step. Strikingly, as predicted by the HLCA and PEI models, the first-step decision dynamics were initially biased toward the choice representing the highest sum/mean before being redirected toward the choice representing the maximal reward (i.e., initial dip). Only HLCA and PEI predicted this initial dip, suggesting that first-step decision dynamics depend on additive integration of competing second-step choices. Our data suggest that potential future outcomes are progressively unraveled during multistep decision making.
Attention and choice: a review on eye movements in decision making.
Orquin, Jacob L; Mueller Loose, Simone
2013-09-01
This paper reviews studies on eye movements in decision making, and compares their observations to theoretical predictions concerning the role of attention in decision making. Four decision theories are examined: rational models, bounded rationality, evidence accumulation, and parallel constraint satisfaction models. Although most theories were confirmed with regard to certain predictions, none of the theories adequately accounted for the role of attention during decision making. Several observations emerged concerning the drivers and down-stream effects of attention on choice, suggesting that attention processes plays an active role in constructing decisions. So far, decision theories have largely ignored the constructive role of attention by assuming that it is entirely determined by heuristics, or that it consists of stochastic information sampling. The empirical observations reveal that these assumptions are implausible, and that more accurate assumptions could have been made based on prior attention and eye movement research. Future decision making research would benefit from greater integration with attention research. Copyright © 2013 Elsevier B.V. All rights reserved.
Monitoring and decision making by people in man machine systems
NASA Technical Reports Server (NTRS)
Johannsen, G.
1979-01-01
The analysis of human monitoring and decision making behavior as well as its modeling are described. Classic and optimal control theoretical, monitoring models are surveyed. The relationship between attention allocation and eye movements is discussed. As an example of applications, the evaluation of predictor displays by means of the optimal control model is explained. Fault detection involving continuous signals and decision making behavior of a human operator engaged in fault diagnosis during different operation and maintenance situations are illustrated. Computer aided decision making is considered as a queueing problem. It is shown to what extent computer aids can be based on the state of human activity as measured by psychophysiological quantities. Finally, management information systems for different application areas are mentioned. The possibilities of mathematical modeling of human behavior in complex man machine systems are also critically assessed.
Computer-Assisted Community Planning and Decision Making.
ERIC Educational Resources Information Center
College of the Atlantic, Bar Harbor, ME.
The College of the Atlantic (COA) developed a broad-based, interdisciplinary curriculum in ecological policy and community planning and decision-making that incorporates two primary computer-based tools: ARC/INFO Geographic Information System (GIS) and STELLA, a systems-dynamics modeling tool. Students learn how to use and apply these tools…
Petrova, Dafina; Garcia-Retamero, Rocio; Cokely, Edward T
2015-10-01
Decisions about cancer screenings often involve the consideration of complex and counterintuitive evidence. We investigated psychological factors that promote the comprehension of benefits and harms associated with common cancer screenings and their influence on shared decision making. In experiment 1, 256 men received information about PSA-based prostate cancer screening. In experiment 2, 355 women received information about mammography-based breast cancer screening. In both studies, information about potential screening outcomes was provided in 1 of 3 formats: text, a fact box, or a visual aid (e.g., mortality with and without screening and rate of overdiagnosis). We modeled the interplay of comprehension, perceived risks and benefits, intention to participate in screening, and desire for shared decision making. Generally, visual aids were the most effective format, increasing comprehension by up to 18%. Improved comprehension was associated with 1) superior decision making (e.g., fewer intentions to participate in screening when it offered no benefit) and 2) more desire to share in decision making. However, comprehension of the evidence had a limited effect on experienced emotions, risk perceptions, and decision making among those participants who felt that the consequences of cancer were extremely severe. Even when information is counterintuitive and requires the integration of complex harms and benefits, user-friendly risk communications can facilitate comprehension, improve high-stakes decisions, and promote shared decision making. However, previous beliefs about the effectiveness of screening or strong fears about specific cancers may interfere with comprehension and informed decision making. © The Author(s) 2015.
Chen, Hai; Liang, Xiaoying; Li, Rui
2013-01-01
Multi-Agent Systems (MAS) offer a conceptual approach to include multi-actor decision making into models of land use change. Through the simulation based on the MAS, this paper tries to show the application of MAS in the micro scale LUCC, and reveal the transformation mechanism of difference scale. This paper starts with a description of the context of MAS research. Then, it adopts the Nested Spatial Choice (NSC) method to construct the multi-scale LUCC decision-making model. And a case study for Mengcha village, Mizhi County, Shaanxi Province is reported. Finally, the potentials and drawbacks of the following approach is discussed and concluded. From our design and implementation of the MAS in multi-scale model, a number of observations and conclusions can be drawn on the implementation and future research directions. (1) The use of the LUCC decision-making and multi-scale transformation framework provides, according to us, a more realistic modeling of multi-scale decision making process. (2) By using continuous function, rather than discrete function, to construct the decision-making of the households is more realistic to reflect the effect. (3) In this paper, attempts have been made to give a quantitative analysis to research the household interaction. And it provides the premise and foundation for researching the communication and learning among the households. (4) The scale transformation architecture constructed in this paper helps to accumulate theory and experience for the interaction research between the micro land use decision-making and the macro land use landscape pattern. Our future research work will focus on: (1) how to rational use risk aversion principle, and put the rule on rotation between household parcels into model. (2) Exploring the methods aiming at researching the household decision-making over a long period, it allows us to find the bridge between the long-term LUCC data and the short-term household decision-making. (3) Researching the quantitative method and model, especially the scenario analysis model which may reflect the interaction among different household types.
Controlling Chronic Diseases Through Evidence-Based Decision Making: A Group-Randomized Trial.
Brownson, Ross C; Allen, Peg; Jacob, Rebekah R; deRuyter, Anna; Lakshman, Meenakshi; Reis, Rodrigo S; Yan, Yan
2017-11-30
Although practitioners in state health departments are ideally positioned to implement evidence-based interventions, few studies have examined how to build their capacity to do so. The objective of this study was to explore how to increase the use of evidence-based decision-making processes at both the individual and organization levels. We conducted a 2-arm, group-randomized trial with baseline data collection and follow-up at 18 to 24 months. Twelve state health departments were paired and randomly assigned to intervention or control condition. In the 6 intervention states, a multiday training on evidence-based decision making was conducted from March 2014 through March 2015 along with a set of supplemental capacity-building activities. Individual-level outcomes were evidence-based decision making skills of public health practitioners; organization-level outcomes were access to research evidence and participatory decision making. Mixed analysis of covariance models was used to evaluate the intervention effect by accounting for the cluster randomized trial design. Analysis was performed from March through May 2017. Participation 18 to 24 months after initial training was 73.5%. In mixed models adjusted for participant and state characteristics, the intervention group improved significantly in the overall skill gap (P = .01) and in 6 skill areas. Among the 4 organizational variables, only access to evidence and skilled staff showed an intervention effect (P = .04). Tailored and active strategies are needed to build capacity at the individual and organization levels for evidence-based decision making. Our study suggests several dissemination interventions for consideration by leaders seeking to improve public health practice.
Artificial neural networks in mammography interpretation and diagnostic decision making.
Ayer, Turgay; Chen, Qiushi; Burnside, Elizabeth S
2013-01-01
Screening mammography is the most effective means for early detection of breast cancer. Although general rules for discriminating malignant and benign lesions exist, radiologists are unable to perfectly detect and classify all lesions as malignant and benign, for many reasons which include, but are not limited to, overlap of features that distinguish malignancy, difficulty in estimating disease risk, and variability in recommended management. When predictive variables are numerous and interact, ad hoc decision making strategies based on experience and memory may lead to systematic errors and variability in practice. The integration of computer models to help radiologists increase the accuracy of mammography examinations in diagnostic decision making has gained increasing attention in the last two decades. In this study, we provide an overview of one of the most commonly used models, artificial neural networks (ANNs), in mammography interpretation and diagnostic decision making and discuss important features in mammography interpretation. We conclude by discussing several common limitations of existing research on ANN-based detection and diagnostic models and provide possible future research directions.
History matching through dynamic decision-making
Maschio, Célio; Santos, Antonio Alberto; Schiozer, Denis; Rocha, Anderson
2017-01-01
History matching is the process of modifying the uncertain attributes of a reservoir model to reproduce the real reservoir performance. It is a classical reservoir engineering problem and plays an important role in reservoir management since the resulting models are used to support decisions in other tasks such as economic analysis and production strategy. This work introduces a dynamic decision-making optimization framework for history matching problems in which new models are generated based on, and guided by, the dynamic analysis of the data of available solutions. The optimization framework follows a ‘learning-from-data’ approach, and includes two optimizer components that use machine learning techniques, such as unsupervised learning and statistical analysis, to uncover patterns of input attributes that lead to good output responses. These patterns are used to support the decision-making process while generating new, and better, history matched solutions. The proposed framework is applied to a benchmark model (UNISIM-I-H) based on the Namorado field in Brazil. Results show the potential the dynamic decision-making optimization framework has for improving the quality of history matching solutions using a substantial smaller number of simulations when compared with a previous work on the same benchmark. PMID:28582413
Quantum-like dynamics of decision-making
NASA Astrophysics Data System (ADS)
Asano, Masanari; Basieva, Irina; Khrennikov, Andrei; Ohya, Masanori; Tanaka, Yoshiharu
2012-03-01
In cognitive psychology, some experiments for games were reported, and they demonstrated that real players did not use the “rational strategy” provided by classical game theory and based on the notion of the Nasch equilibrium. This psychological phenomenon was called the disjunction effect. Recently, we proposed a model of decision making which can explain this effect (“irrationality” of players) Asano et al. (2010, 2011) [23,24]. Our model is based on the mathematical formalism of quantum mechanics, because psychological fluctuations inducing the irrationality are formally represented as quantum fluctuations Asano et al. (2011) [55]. In this paper, we reconsider the process of quantum-like decision-making more closely and redefine it as a well-defined quantum dynamics by using the concept of lifting channel, which is an important concept in quantum information theory. We also present numerical simulation for this quantum-like mental dynamics. It is non-Markovian by its nature. Stabilization to the steady state solution (determining subjective probabilities for decision making) is based on the collective effect of mental fluctuations collected in the working memory of a decision maker.
De Jesus, Maria
2013-01-01
Mass media health communication has enormous potential to drastically alter how health-related information is disseminated and obtained by different populations. However, there is little evidence regarding the influence of media channels on health decision-making and medical advice-seeking behaviors among the Hispanic population. The Pew 2007 Hispanic Healthcare Survey was used to test the hypothesis that the amount of mass media health communication (i.e., quantity of media-based health information received) is more likely to influence Hispanic adults' health decision-making and medical advice-seeking behavior compared to health literacy and language proficiency variables. Results indicated that quantity of media-based health information is positively associated with health decision-making and medical advice-seeking behavior above and beyond the influence of health literacy and English and Spanish language proficiency. In a context where physician-patient dynamics are increasingly shifting from a passive patient role model to a more active patient role model, media-based health information can serve as an influential cue to action, prompting Hispanic individuals to make certain health-related decisions and to seek more health advice and information from a health provider. Study implications are discussed.
Directional Slack-Based Measure for the Inverse Data Envelopment Analysis
Abu Bakar, Mohd Rizam; Lee, Lai Soon; Jaafar, Azmi B.; Heydar, Maryam
2014-01-01
A novel technique has been introduced in this research which lends its basis to the Directional Slack-Based Measure for the inverse Data Envelopment Analysis. In practice, the current research endeavors to elucidate the inverse directional slack-based measure model within a new production possibility set. On one occasion, there is a modification imposed on the output (input) quantities of an efficient decision making unit. In detail, the efficient decision making unit in this method was omitted from the present production possibility set but substituted by the considered efficient decision making unit while its input and output quantities were subsequently modified. The efficiency score of the entire DMUs will be retained in this approach. Also, there would be an improvement in the efficiency score. The proposed approach was investigated in this study with reference to a resource allocation problem. It is possible to simultaneously consider any upsurges (declines) of certain outputs associated with the efficient decision making unit. The significance of the represented model is accentuated by presenting numerical examples. PMID:24883350
Toward an operational model of decision making, emotional regulation, and mental health impact.
Collura, Thomas Francis; Zalaquett, Ronald P; Bonnstetter, Carlos Joyce; Chatters, Seria J
2014-01-01
Current brain research increasingly reveals the underlying mechanisms and processes of human behavior, cognition, and emotion. In addition to being of interest to a wide range of scientists, educators, and professionals, as well as laypeople, brain-based models are of particular value in a clinical setting. Psychiatrists, psychologists, counselors, and other mental health professionals are in need of operational models that integrate recent findings in the physical, cognitive, and emotional domains, and offer a common language for interdisciplinary understanding and communication. Based on individual traits, predispositions, and responses to stimuli, we can begin to identify emotional and behavioral pathways and mental processing patterns. The purpose of this article is to present a brain-path activation model to understand individual differences in decision making and psychopathology. The first section discusses the role of frontal lobe electroencephalography (EEG) asymmetry, summarizes state- and trait-based models of decision making, and provides a more complex analysis that supplements the traditional simple left-right brain model. Key components of the new model are the introduction of right hemisphere parallel and left hemisphere serial scanning in rendering decisions, and the proposition of pathways that incorporate both past experiences as well as future implications into the decision process. Main attributes of each decision-making mechanism are provided. The second section applies the model within the realm of clinical mental health as a tool to understand specific human behavior and pathology. Applications include general and chronic anxiety, depression, paranoia, risk taking, and the pathways employed when well-functioning operational integration is observed. Finally, specific applications such as meditation and mindfulness are offered to facilitate positive functioning.
ERIC Educational Resources Information Center
Kennedy, Eileen; Laurillard, Diana; Horan, Bernard; Charlton, Patricia
2015-01-01
This article reports on a design-based research project to create a modelling tool to analyse the costs and learning benefits involved in different modes of study. The Course Resource Appraisal Model (CRAM) provides accurate cost-benefit information so that institutions are able to make more meaningful decisions about which kind of…
Richter, D L; Greaney, M L; McKeown, R E; Cornell, C E; Littleton, M A; Pulley, L; Groff, J Y; Byrd, T L; Herman, C J
2001-01-01
The ENDOW study is a multisite, community-based project designed to improve decision-making and patient-physician communication skills for midlife African-American, white, and Hispanic women facing decisions about hysterectomy. Based on results of initial focus groups, a patient education video was developed in English and Spanish to serve as the centerpiece of various interventions. The video uses community women to model appropriate decision-making and patient-physician communication skills. Women in the target populations rated the video as useful to very useful and would recommend it to others. The use of theory-driven approaches and pilot testing of draft products resulted in the production of a well-accepted, useful video suitable for diverse populations in intervention sites in several states.
Developing Environmental Decision-making in Middle School Classes.
ERIC Educational Resources Information Center
Rowland, Paul McD.; Adkins, Carol R.
This paper presents Rowland's Ways of Knowing and Decision-making Model for curriculum development and how it can be applied to environmental education curricula. The model uses a problem solving approach based on steps of: (1) coming to know the problem through the ways of knowing of the disciplines and personal knowledge; (2) proposing solutions…
The Instability of Instability
1991-05-01
thermodynamic principles, changes cannot be effected without some cost. The decision - making associated with Model I can be viewed as rational behavior. Consider...number Democratic simple majority voting is perhaps the most widely used method of group decision making i;i our time. Current theory, based on...incorporate any of several plausible characteristics of decision - making , then the instability theorems do not hold and in fact the probability of
Decision support systems in health economics.
Quaglini, S; Dazzi, L; Stefanelli, M; Barosi, G; Marchetti, M
1999-08-01
This article describes a system addressed to different health care professionals for building, using, and sharing decision support systems for resource allocation. The system deals with selected areas, namely the choice of diagnostic tests, the therapy planning, and the instrumentation purchase. Decision support is based on decision-analytic models, incorporating an explicit knowledge representation of both the medical domain knowledge and the economic evaluation theory. Application models are built on top of meta-models, that are used as guidelines for making explicit both the cost and effectiveness components. This approach improves the transparency and soundness of the collaborative decision-making process and facilitates the result interpretation.
Kon, Alexander A.; Davidson, Judy E.; Morrison, Wynne; Danis, Marion; White, Douglas B.
2015-01-01
Objectives Shared decision-making (SDM) is endorsed by critical care organizations, however there remains confusion about what SDM is, when it should be used, and approaches to promote partnerships in treatment decisions. The purpose of this statement is to define SDM, recommend when SDM should be used, identify the range of ethically acceptable decision-making models, and present important communication skills. Methods The American College of Critical Care Medicine (ACCM) and American Thoracic Society (ATS) Ethics Committees reviewed empirical research and normative analyses published in peer-reviewed journals to generate recommendations. Recommendations approved by consensus of the full Ethics Committees of ACCM and ATS were included in the statement. Main Results Six recommendations were endorsed: 1) Definition: Shared decision-making is a collaborative process that allows patients, or their surrogates, and clinicians to make health care decisions together, taking into account the best scientific evidence available, as well as the patient’s values, goals, and preferences. 2) Clinicians should engage in a SDM process to define overall goals of care (including decisions regarding limiting or withdrawing life-prolonging interventions) and when making major treatment decisions that may be affected by personal values, goals, and preferences. 3) Clinicians should use as their “default” approach a SDM process that includes three main elements: information exchange, deliberation, and making a treatment decision. 4) A wide range of decision-making approaches are ethically supportable including patient- or surrogate-directed and clinician-directed models. Clinicians should tailor the decision-making process based on the preferences of the patient or surrogate. 5) Clinicians should be trained in communication skills. 6) Research is needed to evaluate decision-making strategies. Conclusions Patient and surrogate preferences for decision-making roles regarding value-laden choices range from preferring to exercise significant authority to ceding such authority to providers. Clinicians should adapt the decision-making model to the needs and preferences of the patient or surrogate. PMID:26509317
NASA Technical Reports Server (NTRS)
Galvan, Jose Ramon; Saxena, Abhinav; Goebel, Kai Frank
2012-01-01
This article discusses several aspects of uncertainty representation and management for model-based prognostics methodologies based on our experience with Kalman Filters when applied to prognostics for electronics components. In particular, it explores the implications of modeling remaining useful life prediction as a stochastic process, and how it relates to uncertainty representation, management and the role of prognostics in decision-making. A distinction between the interpretations of estimated remaining useful life probability density function is explained and a cautionary argument is provided against mixing interpretations for two while considering prognostics in making critical decisions.
Bayesian outcome-based strategy classification.
Lee, Michael D
2016-03-01
Hilbig and Moshagen (Psychonomic Bulletin & Review, 21, 1431-1443, 2014) recently developed a method for making inferences about the decision processes people use in multi-attribute forced choice tasks. Their paper makes a number of worthwhile theoretical and methodological contributions. Theoretically, they provide an insightful psychological motivation for a probabilistic extension of the widely-used "weighted additive" (WADD) model, and show how this model, as well as other important models like "take-the-best" (TTB), can and should be expressed in terms of meaningful priors. Methodologically, they develop an inference approach based on the Minimum Description Length (MDL) principles that balances both the goodness-of-fit and complexity of the decision models they consider. This paper aims to preserve these useful contributions, but provide a complementary Bayesian approach with some theoretical and methodological advantages. We develop a simple graphical model, implemented in JAGS, that allows for fully Bayesian inferences about which models people use to make decisions. To demonstrate the Bayesian approach, we apply it to the models and data considered by Hilbig and Moshagen (Psychonomic Bulletin & Review, 21, 1431-1443, 2014), showing how a prior predictive analysis of the models, and posterior inferences about which models people use and the parameter settings at which they use them, can contribute to our understanding of human decision making.
Modeling Common-Sense Decisions
NASA Astrophysics Data System (ADS)
Zak, Michail
This paper presents a methodology for efficient synthesis of dynamical model simulating a common-sense decision making process. The approach is based upon the extension of the physics' First Principles that includes behavior of living systems. The new architecture consists of motor dynamics simulating actual behavior of the object, and mental dynamics representing evolution of the corresponding knowledge-base and incorporating it in the form of information flows into the motor dynamics. The autonomy of the decision making process is achieved by a feedback from mental to motor dynamics. This feedback replaces unavailable external information by an internal knowledgebase stored in the mental model in the form of probability distributions.
Combined monitoring, decision and control model for the human operator in a command and control desk
NASA Technical Reports Server (NTRS)
Muralidharan, R.; Baron, S.
1978-01-01
A report is given on the ongoing efforts to mode the human operator in the context of the task during the enroute/return phases in the ground based control of multiple flights of remotely piloted vehicles (RPV). The approach employed here uses models that have their analytical bases in control theory and in statistical estimation and decision theory. In particular, it draws heavily on the modes and the concepts of the optimal control model (OCM) of the human operator. The OCM is being extended into a combined monitoring, decision, and control model (DEMON) of the human operator by infusing decision theoretic notions that make it suitable for application to problems in which human control actions are infrequent and in which monitoring and decision-making are the operator's main activities. Some results obtained with a specialized version of DEMON for the RPV control problem are included.
An exploration of clinical decision making in mental health triage.
Sands, Natisha
2009-08-01
Mental health (MH) triage is a specialist area of clinical nursing practice that involves complex decision making. The discussion in this article draws on the findings of a Ph.D. study that involved a statewide investigation of the scope of MH triage nursing practice in Victoria, Australia. Although the original Ph.D. study investigated a number of core practices in MH triage, the focus of the discussion in this article is specifically on the findings related to clinical decision making in MH triage, which have not previously been published. The study employed an exploratory descriptive research design that used mixed data collection methods including a survey questionnaire (n = 139) and semistructured interviews (n = 21). The study findings related to decision making revealed a lack of empirically tested evidence-based decision-making frameworks currently in use to support MH triage nursing practice. MH triage clinicians in Australia rely heavily on clinical experience to underpin decision making and have little of knowledge of theoretical models for practice, such as methodologies for rating urgency. A key recommendation arising from the study is the need to develop evidence-based decision-making frameworks such as clinical guidelines to inform and support MH triage clinical decision making.
Decision-Making in Audiology: Balancing Evidence-Based Practice and Patient-Centered Care
Clemesha, Jennifer; Lundmark, Erik; Crome, Erica; Barr, Caitlin; McMahon, Catherine M.
2017-01-01
Health-care service delivery models have evolved from a practitioner-centered approach toward a patient-centered ideal. Concurrently, increasing emphasis has been placed on the use of empirical evidence in decision-making to increase clinical accountability. The way in which clinicians use empirical evidence and client preferences to inform decision-making provides an insight into health-care delivery models utilized in clinical practice. The present study aimed to investigate the sources of information audiologists use when discussing rehabilitation choices with clients, and discuss the findings within the context of evidence-based practice and patient-centered care. To assess the changes that may have occurred over time, this study uses a questionnaire based on one of the few studies of decision-making behavior in audiologists, published in 1989. The present questionnaire was completed by 96 audiologists who attended the World Congress of Audiology in 2014. The responses were analyzed using qualitative and quantitative approaches. Results suggest that audiologists rank clinical test results and client preferences as the most important factors for decision-making. Discussion with colleagues or experts was also frequently reported as an important source influencing decision-making. Approximately 20% of audiologists mentioned utilizing research evidence to inform decision-making when no clear solution was available. Information shared at conferences was ranked low in terms of importance and reliability. This study highlights an increase in awareness of concepts associated with evidence-based practice and patient-centered care within audiology settings, consistent with current research-to-practice dissemination pathways. It also highlights that these pathways may not be sufficient for an effective clinical implementation of these practices. PMID:28752808
Miller, W B; Pasta, D J
2001-01-01
In this study we develop and then test a couple model of contraceptive method choice decision-making following a pregnancy scare. The central constructs in our model are satisfaction with one's current method and confidence in the use of it. Downstream in the decision sequence, satisfaction and confidence predict desires and intentions to change methods. Upstream they are predicted by childbearing motivations, contraceptive attitudes, and the residual effects of the couples' previous method decisions. We collected data from 175 mostly unmarried and racially/ethnically diverse couples who were seeking pregnancy tests. We used LISREL and its latent variable capacity to estimate a structural equation model of the couple decision-making sequence leading to a change (or not) in contraceptive method. Results confirm most elements in our model and demonstrate a number of important cross-partner effects. Almost one-half of the sample had positive pregnancy tests and the base model fitted to this subsample indicates less accuracy in partner perception and greater influence of the female partner on method change decision-making. The introduction of some hypothesis-generating exogenous variables to our base couple model, together with some unexpected findings for the contraceptive attitude variables, suggest interesting questions that require further exploration.
Uncertainty quantification in downscaling procedures for effective decisions in energy systems
NASA Astrophysics Data System (ADS)
Constantinescu, E. M.
2010-12-01
Weather is a major driver both of energy supply and demand, and with the massive adoption of renewable energy sources and changing economic and producer-consumer paradigms, the management of the next-generation energy systems is becoming ever more challenging. The operational and planning decisions in energy systems are guided by efficiency and reliability, and therefore a central role in these decisions will be played by the ability to obtain weather condition forecasts with accurate uncertainty estimates. The appropriate temporal and spatial resolutions needed for effective decision-making, be it operational or planning, is not clear. It is arguably certain however, that such temporal scales as hourly variations of temperature or wind conditions and ramp events are essential in this process. Planning activities involve decade or decades-long projections of weather. One sensible way to achieve this is to embed regional weather models in a global climate system. This strategy acts as a downscaling procedure. Uncertainty modeling techniques must be developed in order to quantify and minimize forecast errors as well as target variables that impact the decision-making process the most. We discuss the challenges of obtaining a realistic uncertainty quantification estimate using mathematical algorithms based on scalable matrix-free computations and physics-based statistical models. The process of making decisions for energy management systems based on future weather scenarios is a very complex problem. We shall focus on the challenges in generating wind power predictions based on regional weather predictions, and discuss the implications of making the common assumptions about the uncertainty models.
Analysis of a decision model in the context of equilibrium pricing and order book pricing
NASA Astrophysics Data System (ADS)
Wagner, D. C.; Schmitt, T. A.; Schäfer, R.; Guhr, T.; Wolf, D. E.
2014-12-01
An agent-based model for financial markets has to incorporate two aspects: decision making and price formation. We introduce a simple decision model and consider its implications in two different pricing schemes. First, we study its parameter dependence within a supply-demand balance setting. We find realistic behavior in a wide parameter range. Second, we embed our decision model in an order book setting. Here, we observe interesting features which are not present in the equilibrium pricing scheme. In particular, we find a nontrivial behavior of the order book volumes which reminds of a trend switching phenomenon. Thus, the decision making model alone does not realistically represent the trading and the stylized facts. The order book mechanism is crucial.
Reviewing model application to support animal health decision making.
Singer, Alexander; Salman, Mo; Thulke, Hans-Hermann
2011-04-01
Animal health is of societal importance as it affects human welfare, and anthropogenic interests shape decision making to assure animal health. Scientific advice to support decision making is manifold. Modelling, as one piece of the scientific toolbox, is appreciated for its ability to describe and structure data, to give insight in complex processes and to predict future outcome. In this paper we study the application of scientific modelling to support practical animal health decisions. We reviewed the 35 animal health related scientific opinions adopted by the Animal Health and Animal Welfare Panel of the European Food Safety Authority (EFSA). Thirteen of these documents were based on the application of models. The review took two viewpoints, the decision maker's need and the modeller's approach. In the reviewed material three types of modelling questions were addressed by four specific model types. The correspondence between tasks and models underpinned the importance of the modelling question in triggering the modelling approach. End point quantifications were the dominating request from decision makers, implying that prediction of risk is a major need. However, due to knowledge gaps corresponding modelling studies often shed away from providing exact numbers. Instead, comparative scenario analyses were performed, furthering the understanding of the decision problem and effects of alternative management options. In conclusion, the most adequate scientific support for decision making - including available modelling capacity - might be expected if the required advice is clearly stated. Copyright © 2011 Elsevier B.V. All rights reserved.
New approaches for real time decision support systems
NASA Technical Reports Server (NTRS)
Hair, D. Charles; Pickslay, Kent
1994-01-01
NCCOSC RDT&E Division (NRaD) is conducting research into ways of improving decision support systems (DSS) that are used in tactical Navy decision making situations. The research has focused on the incorporation of findings about naturalistic decision-making processes into the design of the DSS. As part of that research, two computer tools were developed that model the two primary naturalistic decision-making strategies used by Navy experts in tactical settings. Current work is exploring how best to incorporate the information produced by those tools into an existing simulation of current Navy decision support systems. This work has implications for any applications involving the need to make decisions under time constraints, based on incomplete or ambiguous data.
A review of clinical decision making: models and current research.
Banning, Maggi
2008-01-01
The aim of this paper was to review the current literature clinical decision-making models and the educational application of models to clinical practice. This was achieved by exploring the function and related research of the three available models of clinical decision making: information-processing model, the intuitive-humanist model and the clinical decision-making model. Clinical decision making is a unique process that involves the interplay between knowledge of pre-existing pathological conditions, explicit patient information, nursing care and experiential learning. Historically, two models of clinical decision making are recognized from the literature; the information-processing model and the intuitive-humanist model. The usefulness and application of both models has been examined in relation the provision of nursing care and care related outcomes. More recently a third model of clinical decision making has been proposed. This new multidimensional model contains elements of the information-processing model but also examines patient specific elements that are necessary for cue and pattern recognition. Literature review. Evaluation of the literature generated from MEDLINE, CINAHL, OVID, PUBMED and EBESCO systems and the Internet from 1980 to November 2005. The characteristics of the three models of decision making were identified and the related research discussed. Three approaches to clinical decision making were identified, each having its own attributes and uses. The most recent addition to the clinical decision making is a theoretical, multidimensional model which was developed through an evaluation of current literature and the assessment of a limited number of research studies that focused on the clinical decision-making skills of inexperienced nurses in pseudoclinical settings. The components of this model and the relative merits to clinical practice are discussed. It is proposed that clinical decision making improves as the nurse gains experience of nursing patients within a specific speciality and with experience, nurses gain a sense of saliency in relation to decision making. Experienced nurses may use all three forms of clinical decision making both independently and concurrently to solve nursing-related problems. It is suggested that O'Neill's clinical decision-making model could be tested by educators and experienced nurses to assess the efficacy of this hybrid approach to decision making.
Harlé, Katia M; Guo, Dalin; Zhang, Shunan; Paulus, Martin P; Yu, Angela J
2017-01-01
Depressive pathology, which includes both heightened negative affect (e.g., anxiety) and reduced positive affect (e.g., anhedonia), is known to be associated with sub-optimal decision-making, particularly in uncertain environments. Here, we use a computational approach to quantify and disambiguate how individual differences in these affective measures specifically relate to different aspects of learning and decision-making in reward-based choice behavior. Fifty-three individuals with a range of depressed mood completed a two-armed bandit task, in which they choose between two arms with fixed but unknown reward rates. The decision-making component, which chooses among options based on current expectations about reward rates, is modeled by two different decision policies: a learning-independent Win-stay/Lose-shift (WSLS) policy that ignores all previous experiences except the last trial, and Softmax, which prefers the arm with the higher expected reward. To model the learning component for the Softmax choice policy, we use a Bayesian inference model, which updates estimated reward rates based on the observed history of trial outcomes. Softmax with Bayesian learning better fits the behavior of 55% of the participants, while the others are better fit by a learning-independent WSLS strategy. Among Softmax "users", those with higher anhedonia are less likely to choose the option estimated to be most rewarding. Moreover, the Softmax parameter mediates the inverse relationship between anhedonia and overall monetary gains. On the other hand, among WSLS "users", higher state anxiety correlates with increasingly better ability of WSLS, relative to Softmax, to explain subjects' trial-by-trial choices. In summary, there is significant variability among individuals in their reward-based, exploratory decision-making, and this variability is at least partly mediated in a very specific manner by affective attributes, such as hedonic tone and state anxiety.
NASA Technical Reports Server (NTRS)
Christie, Vanessa L.; Landess, David J.
2012-01-01
In the international arena, decision makers are often swayed away from fact-based analysis by their own individual cultural and political bias. Modeling and Simulation-based training can raise awareness of individual predisposition and improve the quality of decision making by focusing solely on fact vice perception. This improved decision making methodology will support the multinational collaborative efforts of military and civilian leaders to solve challenges more effectively. The intent of this experimental research is to create a framework that allows decision makers to "come to the table" with the latest and most significant facts necessary to determine an appropriate solution for any given contingency.
Optimal policy for value-based decision-making.
Tajima, Satohiro; Drugowitsch, Jan; Pouget, Alexandre
2016-08-18
For decades now, normative theories of perceptual decisions, and their implementation as drift diffusion models, have driven and significantly improved our understanding of human and animal behaviour and the underlying neural processes. While similar processes seem to govern value-based decisions, we still lack the theoretical understanding of why this ought to be the case. Here, we show that, similar to perceptual decisions, drift diffusion models implement the optimal strategy for value-based decisions. Such optimal decisions require the models' decision boundaries to collapse over time, and to depend on the a priori knowledge about reward contingencies. Diffusion models only implement the optimal strategy under specific task assumptions, and cease to be optimal once we start relaxing these assumptions, by, for example, using non-linear utility functions. Our findings thus provide the much-needed theory for value-based decisions, explain the apparent similarity to perceptual decisions, and predict conditions under which this similarity should break down.
Optimal policy for value-based decision-making
Tajima, Satohiro; Drugowitsch, Jan; Pouget, Alexandre
2016-01-01
For decades now, normative theories of perceptual decisions, and their implementation as drift diffusion models, have driven and significantly improved our understanding of human and animal behaviour and the underlying neural processes. While similar processes seem to govern value-based decisions, we still lack the theoretical understanding of why this ought to be the case. Here, we show that, similar to perceptual decisions, drift diffusion models implement the optimal strategy for value-based decisions. Such optimal decisions require the models' decision boundaries to collapse over time, and to depend on the a priori knowledge about reward contingencies. Diffusion models only implement the optimal strategy under specific task assumptions, and cease to be optimal once we start relaxing these assumptions, by, for example, using non-linear utility functions. Our findings thus provide the much-needed theory for value-based decisions, explain the apparent similarity to perceptual decisions, and predict conditions under which this similarity should break down. PMID:27535638
Charles, Cathy; Gafni, Amiram
2014-03-01
Two international movements, evidence-based medicine (EBM) and shared decision-making (SDM) have grappled for some time with issues related to defining the meaning, role and measurement of values/preferences in their respective models of treatment decision-making. In this article, we identify and describe unresolved problems in the way that each movement addresses these issues. The starting point for this discussion is that at least two essential ingredients are needed for treatment decision-making: research information about treatment options and their potential benefits and risks; and the values/preferences of participants in the decision-making process. Both the EBM and SDM movements have encountered difficulties in defining the meaning, role and measurement of values/preferences in treatment decision-making. In the EBM model of practice, there is no clear and consistent definition of patient values/preferences and no guidance is provided on how to integrate these into an EBM model of practice. Methods advocated to measure patient values are also problematic. Within the SDM movement, patient values/preferences tend to be defined and measured in a restrictive and reductionist way as patient preferences for treatment options or attributes of options, while broader underlying value structures are ignored. In both models of practice, the meaning and expected role of physician values in decision-making are unclear. Values clarification exercises embedded in patient decision aids are suggested by SDM advocates to identify and communicate patient values/preferences for different treatment outcomes. Such exercises have the potential to impose a particular decision-making theory and/or process onto patients, which can change the way they think about and process information, potentially impeding them from making decisions that are consistent with their true values. The tasks of clarifying the meaning, role and measurement of values/preferences in treatment decision-making models such as EBM and SDM, and determining whose values ought to count are complex and difficult tasks that will not be resolved quickly. Additional conceptual thinking and research are needed to explore and clarify these issues. To date, the values component of these models remains elusive and underdeveloped.
de Visser, Leonie; Homberg, Judith R.; Mitsogiannis, Manuela; Zeeb, Fiona D.; Rivalan, Marion; Fitoussi, Aurélie; Galhardo, Vasco; van den Bos, Ruud; Winstanley, Catherine A.; Dellu-Hagedorn, Françoise
2011-01-01
Impaired decision-making is a core problem in several psychiatric disorders including attention-deficit/hyperactivity disorder, schizophrenia, obsessive–compulsive disorder, mania, drug addiction, eating disorders, and substance abuse as well as in chronic pain. To ensure progress in the understanding of the neuropathophysiology of these disorders, animal models with good construct and predictive validity are indispensable. Many human studies aimed at measuring decision-making capacities use the Iowa gambling task (IGT), a task designed to model everyday life choices through a conflict between immediate gratification and long-term outcomes. Recently, new rodent models based on the same principle have been developed to investigate the neurobiological mechanisms underlying IGT-like decision-making on behavioral, neural, and pharmacological levels. The comparative strengths, as well as the similarities and differences between these paradigms are discussed. The contribution of these models to elucidate the neurobehavioral factors that lead to poor decision-making and to the development of better treatments for psychiatric illness is considered, along with important future directions and potential limitations. PMID:22013406
Following Human Footsteps: Proposal of a Decision Theory Based on Human Behavior
NASA Technical Reports Server (NTRS)
Mahmud, Faisal
2011-01-01
Human behavior is a complex nature which depends on circumstances and decisions varying from time to time as well as place to place. The way a decision is made either directly or indirectly related to the availability of the options. These options though appear at random nature, have a solid directional way for decision making. In this paper, a decision theory is proposed which is based on human behavior. The theory is structured with model sets that will show the all possible combinations for making a decision, A virtual and simulated environment is considered to show the results of the proposed decision theory
Internet use and decision making in community-based older adults
James, Bryan D.; Boyle, Patricia A.; Yu, Lei; Bennett, David A.
2013-01-01
Use of the internet may provide tools and resources for better decision making, yet little is known about the association of internet use with decision making in older persons. We examined this relationship in 661 community-dwelling older persons without dementia from the Rush Memory and Aging Project, an ongoing longitudinal study of aging. Participants were asked to report if they had access to the internet and how frequently they used the internet and email. A 12-item instrument was used to assess financial and healthcare decision making using materials designed to approximate those used in real world settings. Items were summed to yield a total decision making score. Associations were tested via linear regression models adjusted for age, sex, race, education, and a measure of global cognitive function. Secondary models further adjusted for income, depression, loneliness, social networks, social support, chronic medical conditions, instrumental activities of daily living (IADLs), life space size, and health and financial literacy. Interaction terms were used to test for effect modification. Almost 70% of participants had access to the internet, and of those with access, 55% used the internet at least several times a week. Higher frequency of internet use was associated with better financial and healthcare decision making (β = 0.11, p = 0.002). The association persisted in a fully adjusted model (β = 0.08, p = 0.024). Interaction models indicated that higher frequency of internet use attenuated the relationships of older age, poorer cognitive function, and lower levels of health and financial literacy with poorer healthcare and financial decision making. These findings indicate that internet use is associated with better health and financial decision making in older persons. Future research is required to understand whether promoting the use of the internet can produce improvements in healthcare and financial decision making. PMID:24578696
Azadeh, A; Mokhtari, Z; Sharahi, Z Jiryaei; Zarrin, M
2015-12-01
Decision making failure is a predominant human error in emergency situations. To demonstrate the subject model, operators of an oil refinery were asked to answer a health, safety and environment HSE-decision styles (DS) questionnaire. In order to achieve this purpose, qualitative indicators in HSE and ergonomics domain have been collected. Decision styles, related to the questions, have been selected based on Driver taxonomy of human decision making approach. Teamwork efficiency has been assessed based on different decision style combinations. The efficiency has been ranked based on HSE performance. Results revealed that efficient decision styles resulted from data envelopment analysis (DEA) optimization model is consistent with the plant's dominant styles. Therefore, improvement in system performance could be achieved using the best operator for critical posts or in team arrangements. This is the first study that identifies the best decision styles with respect to HSE and ergonomics factors. Copyright © 2015 Elsevier Ltd. All rights reserved.
The Impact of Health and Financial Literacy on Decision Making in Community-Based Older Adults
James, Bryan D.; Boyle, Patricia A.; Bennett, Jarred S.; Bennett, David A.
2012-01-01
Background Health and financial literacy have been linked to the health and well-being of older adults, yet there are few data on how health and financial literacy actually impact decision making regarding healthcare and economic choices in advanced age. Objective To examine the association of health and financial literacy with decision making in older adults. Method Data came from 525 community-dwelling older persons without dementia from the Rush Memory and Aging Project, an ongoing longitudinal study of aging. Health and financial literacy were assessed via a series of questions designed to measure comprehension of health and financial information and concepts. The two scores were averaged to yield a total literacy score. A modified, 12-item version of the Decision-Making Competence Assessment Tool was used to measure financial and healthcare decision making (6 items each), using materials designed to approximate those used in real world settings. All 12 items were summed to yield a total decision-making score. Associations were tested via linear regression models adjusted for age, sex and education. Secondary models adjusted for global cognitive function, income, depression and chronic medical conditions. Results On average, participants correctly answered 67% of the literacy questions (health literacy = 61.6%, SD = 18.8% and financial literacy = 72.5%, SD = 16.0%). After adjustment for cognitive function, the total literacy score was positively associated with the decision-making total score (estimate = 0.64, SE = 0.08, p < 0.001), as well as healthcare (estimate = 0.37, SE = 0.5, p < 0.001) and financial decision making (estimate = 0.28, SE = 0.05, p < 0.001). Further, total literacy, health and financial literacy all were independently associated with decision making in models adjusted for covariates including income, depression, and chronic medical conditions (all p values < 0.001). Finally, there was evidence of effect modification such that the beneficial association between literacy and healthcare decision making was stronger among older persons, poorer persons and persons at the lower ranges of cognitive ability. Conclusion Among community based older persons without dementia, higher levels of health and financial literacy were associated with better decision making, suggesting that improvements in literacy could facilitate better decision making and lead to better health and quality of life in later years. PMID:22739454
The impact of health and financial literacy on decision making in community-based older adults.
James, Bryan D; Boyle, Patricia A; Bennett, Jarred S; Bennett, David A
2012-01-01
Health and financial literacy have been linked to the health and well-being of older adults, yet there are few data on how health and financial literacy actually impact decision making regarding healthcare and economic choices in advanced age. To examine the association of health and financial literacy with decision making in older adults. Data came from 525 community-dwelling older persons without dementia from the Rush Memory and Aging Project, an ongoing longitudinal study of aging. Health and financial literacy were assessed via a series of questions designed to measure comprehension of health and financial information and concepts. The two scores were averaged to yield a total literacy score. A modified, 12-item version of the Decision-Making Competence Assessment Tool was used to measure financial and healthcare decision making (6 items each), using materials designed to approximate those used in real world settings. All 12 items were summed to yield a total decision-making score. Associations were tested via linear regression models adjusted for age, sex and education. Secondary models adjusted for global cognitive function, income, depression and chronic medical conditions. On average, participants correctly answered 67% of the literacy questions (health literacy = 61.6%, SD = 18.8% and financial literacy = 72.5%, SD = 16.0%). After adjustment for cognitive function, the total literacy score was positively associated with the decision-making total score (estimate = 0.64, SE = 0.08, p < 0.001), as well as healthcare (estimate = 0.37, SE = 0.5, p < 0.001) and financial decision making (estimate = 0.28, SE = 0.05, p < 0.001). Further, total literacy, health and financial literacy all were independently associated with decision making in models adjusted for covariates including income, depression, and chronic medical conditions (all p values < 0.001). Finally, there was evidence of effect modification such that the beneficial association between literacy and healthcare decision making was stronger among older persons, poorer persons and persons at the lower ranges of cognitive ability. Among community based older persons without dementia, higher levels of health and financial literacy were associated with better decision making, suggesting that improvements in literacy could facilitate better decision making and lead to better health and quality of life in later years. Copyright © 2012 S. Karger AG, Basel.
A public health decision support system model using reasoning methods.
Mera, Maritza; González, Carolina; Blobel, Bernd
2015-01-01
Public health programs must be based on the real health needs of the population. However, the design of efficient and effective public health programs is subject to availability of information that can allow users to identify, at the right time, the health issues that require special attention. The objective of this paper is to propose a case-based reasoning model for the support of decision-making in public health. The model integrates a decision-making process and case-based reasoning, reusing past experiences for promptly identifying new population health priorities. A prototype implementation of the model was performed, deploying the case-based reasoning framework jColibri. The proposed model contributes to solve problems found today when designing public health programs in Colombia. Current programs are developed under uncertain environments, as the underlying analyses are carried out on the basis of outdated and unreliable data.
Djulbegovic, Benjamin; van den Ende, Jef; Hamm, Robert M; Mayrhofer, Thomas; Hozo, Iztok; Pauker, Stephen G
2015-05-01
The threshold model represents an important advance in the field of medical decision-making. It is a linchpin between evidence (which exists on the continuum of credibility) and decision-making (which is a categorical exercise - we decide to act or not act). The threshold concept is closely related to the question of rational decision-making. When should the physician act, that is order a diagnostic test, or prescribe treatment? The threshold model embodies the decision theoretic rationality that says the most rational decision is to prescribe treatment when the expected treatment benefit outweighs its expected harms. However, the well-documented large variation in the way physicians order diagnostic tests or decide to administer treatments is consistent with a notion that physicians' individual action thresholds vary. We present a narrative review summarizing the existing literature on physicians' use of a threshold strategy for decision-making. We found that the observed variation in decision action thresholds is partially due to the way people integrate benefits and harms. That is, explanation of variation in clinical practice can be reduced to a consideration of thresholds. Limited evidence suggests that non-expected utility threshold (non-EUT) models, such as regret-based and dual-processing models, may explain current medical practice better. However, inclusion of costs and recognition of risk attitudes towards uncertain treatment effects and comorbidities may improve the explanatory and predictive value of the EUT-based threshold models. The decision when to act is closely related to the question of rational choice. We conclude that the medical community has not yet fully defined criteria for rational clinical decision-making. The traditional notion of rationality rooted in EUT may need to be supplemented by reflective rationality, which strives to integrate all aspects of medical practice - medical, humanistic and socio-economic - within a coherent reasoning system. © 2015 Stichting European Society for Clinical Investigation Journal Foundation.
ERIC Educational Resources Information Center
Mehrens, William A.; And Others
A study was undertaken to explore cost-effective ways of making career ladder teacher evaluation system decisions based on fewer measures, assessing the relationship of observational variables to other data and final decisions, and comparison of compensatory and conjunctive decision models. Data included multiple scores from eight data sources in…
A decision-making process model of young online shoppers.
Lin, Chin-Feng; Wang, Hui-Fang
2008-12-01
Based on the concepts of brand equity, means-end chain, and Web site trust, this study proposes a novel model called the consumption decision-making process of adolescents (CDMPA) to understand adolescents' Internet consumption habits and behavioral intention toward particular sporting goods. The findings of the CDMPA model can help marketers understand adolescents' consumption preferences and habits for developing effective Internet marketing strategies.
Dual Processes in Decision Making and Developmental Neuroscience: A Fuzzy-Trace Model
Reyna, Valerie F.; Brainerd, Charles J.
2011-01-01
From Piaget to the present, traditional and dual-process theories have predicted improvement in reasoning from childhood to adulthood, and improvement has been observed. However, developmental reversals—that reasoning biases emerge with development —have also been observed in a growing list of paradigms. We explain how fuzzy-trace theory predicts both improvement and developmental reversals in reasoning and decision making. Drawing on research on logical and quantitative reasoning, as well as on risky decision making in the laboratory and in life, we illustrate how the same small set of theoretical principles apply to typical neurodevelopment, encompassing childhood, adolescence, and adulthood, and to neurological conditions such as autism and Alzheimer's disease. For example, framing effects—that risk preferences shift when the same decisions are phrases in terms of gains versus losses—emerge in early adolescence as gist-based intuition develops. In autistic individuals, who rely less on gist-based intuition and more on verbatim-based analysis, framing biases are attenuated (i.e., they outperform typically developing control subjects). In adults, simple manipulations based on fuzzy-trace theory can make framing effects appear and disappear depending on whether gist-based intuition or verbatim-based analysis is induced. These theoretical principles are summarized and integrated in a new mathematical model that specifies how dual modes of reasoning combine to produce predictable variability in performance. In particular, we show how the most popular and extensively studied model of decision making—prospect theory—can be derived from fuzzy-trace theory by combining analytical (verbatim-based) and intuitive (gist-based) processes. PMID:22096268
Plant, Katherine L; Stanton, Neville A
2013-01-01
Aeronautical decision-making is complex as there is not always a clear coupling between the decision made and decision outcome. As such, there is a call for process-orientated decision research in order to understand why a decision made sense at the time it was made. Schema theory explains how we interact with the world using stored mental representations and forms an integral part of the perceptual cycle model (PCM); proposed here as a way to understand the decision-making process. This paper qualitatively analyses data from the critical decision method (CDM) based on the principles of the PCM. It is demonstrated that the approach can be used to understand a decision-making process and highlights how influential schemata can be at informing decision-making. The reliability of this approach is established, the general applicability is discussed and directions for future work are considered. This paper introduces the PCM, and the associated schema theory, as a framework to structure and explain data collected from the CDM. The reliability of both the method and coding scheme is addressed.
Spatial planning using probabilistic flood maps
NASA Astrophysics Data System (ADS)
Alfonso, Leonardo; Mukolwe, Micah; Di Baldassarre, Giuliano
2015-04-01
Probabilistic flood maps account for uncertainty in flood inundation modelling and convey a degree of certainty in the outputs. Major sources of uncertainty include input data, topographic data, model structure, observation data and parametric uncertainty. Decision makers prefer less ambiguous information from modellers; this implies that uncertainty is suppressed to yield binary flood maps. Though, suppressing information may potentially lead to either surprise or misleading decisions. Inclusion of uncertain information in the decision making process is therefore desirable and transparent. To this end, we utilise the Prospect theory and information from a probabilistic flood map to evaluate potential decisions. Consequences related to the decisions were evaluated using flood risk analysis. Prospect theory explains how choices are made given options for which probabilities of occurrence are known and accounts for decision makers' characteristics such as loss aversion and risk seeking. Our results show that decision making is pronounced when there are high gains and loss, implying higher payoffs and penalties, therefore a higher gamble. Thus the methodology may be appropriately considered when making decisions based on uncertain information.
Using a Problem-Solving/Decision-Making Model to Evaluate School Lunch Salad Bars
ERIC Educational Resources Information Center
Johnson, Carolyn C.; Spruance, Lori Andersen; O'Malley, Keelia; Begalieva, Maya; Myers, Leann
2017-01-01
Purpose/Objectives: Evaluation of school-based activities is a high priority for school personnel. Nutrition activities, such as salad bars (SBs) incorporated into school lunchrooms, may increase children's consumption of low-energy, high fiber diets. The purpose of this paper is to describe a problem-solving/ decision-making model and demonstrate…
Maintaining homeostasis by decision-making.
Korn, Christoph W; Bach, Dominik R
2015-05-01
Living organisms need to maintain energetic homeostasis. For many species, this implies taking actions with delayed consequences. For example, humans may have to decide between foraging for high-calorie but hard-to-get, and low-calorie but easy-to-get food, under threat of starvation. Homeostatic principles prescribe decisions that maximize the probability of sustaining appropriate energy levels across the entire foraging trajectory. Here, predictions from biological principles contrast with predictions from economic decision-making models based on maximizing the utility of the endpoint outcome of a choice. To empirically arbitrate between the predictions of biological and economic models for individual human decision-making, we devised a virtual foraging task in which players chose repeatedly between two foraging environments, lost energy by the passage of time, and gained energy probabilistically according to the statistics of the environment they chose. Reaching zero energy was framed as starvation. We used the mathematics of random walks to derive endpoint outcome distributions of the choices. This also furnished equivalent lotteries, presented in a purely economic, casino-like frame, in which starvation corresponded to winning nothing. Bayesian model comparison showed that--in both the foraging and the casino frames--participants' choices depended jointly on the probability of starvation and the expected endpoint value of the outcome, but could not be explained by economic models based on combinations of statistical moments or on rank-dependent utility. This implies that under precisely defined constraints biological principles are better suited to explain human decision-making than economic models based on endpoint utility maximization.
Maintaining Homeostasis by Decision-Making
Korn, Christoph W.; Bach, Dominik R.
2015-01-01
Living organisms need to maintain energetic homeostasis. For many species, this implies taking actions with delayed consequences. For example, humans may have to decide between foraging for high-calorie but hard-to-get, and low-calorie but easy-to-get food, under threat of starvation. Homeostatic principles prescribe decisions that maximize the probability of sustaining appropriate energy levels across the entire foraging trajectory. Here, predictions from biological principles contrast with predictions from economic decision-making models based on maximizing the utility of the endpoint outcome of a choice. To empirically arbitrate between the predictions of biological and economic models for individual human decision-making, we devised a virtual foraging task in which players chose repeatedly between two foraging environments, lost energy by the passage of time, and gained energy probabilistically according to the statistics of the environment they chose. Reaching zero energy was framed as starvation. We used the mathematics of random walks to derive endpoint outcome distributions of the choices. This also furnished equivalent lotteries, presented in a purely economic, casino-like frame, in which starvation corresponded to winning nothing. Bayesian model comparison showed that—in both the foraging and the casino frames—participants’ choices depended jointly on the probability of starvation and the expected endpoint value of the outcome, but could not be explained by economic models based on combinations of statistical moments or on rank-dependent utility. This implies that under precisely defined constraints biological principles are better suited to explain human decision-making than economic models based on endpoint utility maximization. PMID:26024504
Optimal allocation model of construction land based on two-level system optimization theory
NASA Astrophysics Data System (ADS)
Liu, Min; Liu, Yanfang; Xia, Yuping; Lei, Qihong
2007-06-01
The allocation of construction land is an important task in land-use planning. Whether implementation of planning decisions is a success or not, usually depends on a reasonable and scientific distribution method. Considering the constitution of land-use planning system and planning process in China, multiple levels and multiple objective decision problems is its essence. Also, planning quantity decomposition is a two-level system optimization problem and an optimal resource allocation decision problem between a decision-maker in the topper and a number of parallel decision-makers in the lower. According the characteristics of the decision-making process of two-level decision-making system, this paper develops an optimal allocation model of construction land based on two-level linear planning. In order to verify the rationality and the validity of our model, Baoan district of Shenzhen City has been taken as a test case. Under the assistance of the allocation model, construction land is allocated to ten townships of Baoan district. The result obtained from our model is compared to that of traditional method, and results show that our model is reasonable and usable. In the end, the paper points out the shortcomings of the model and further research directions.
Dual processing model of medical decision-making.
Djulbegovic, Benjamin; Hozo, Iztok; Beckstead, Jason; Tsalatsanis, Athanasios; Pauker, Stephen G
2012-09-03
Dual processing theory of human cognition postulates that reasoning and decision-making can be described as a function of both an intuitive, experiential, affective system (system I) and/or an analytical, deliberative (system II) processing system. To date no formal descriptive model of medical decision-making based on dual processing theory has been developed. Here we postulate such a model and apply it to a common clinical situation: whether treatment should be administered to the patient who may or may not have a disease. We developed a mathematical model in which we linked a recently proposed descriptive psychological model of cognition with the threshold model of medical decision-making and show how this approach can be used to better understand decision-making at the bedside and explain the widespread variation in treatments observed in clinical practice. We show that physician's beliefs about whether to treat at higher (lower) probability levels compared to the prescriptive therapeutic thresholds obtained via system II processing is moderated by system I and the ratio of benefit and harms as evaluated by both system I and II. Under some conditions, the system I decision maker's threshold may dramatically drop below the expected utility threshold derived by system II. This can explain the overtreatment often seen in the contemporary practice. The opposite can also occur as in the situations where empirical evidence is considered unreliable, or when cognitive processes of decision-makers are biased through recent experience: the threshold will increase relative to the normative threshold value derived via system II using expected utility threshold. This inclination for the higher diagnostic certainty may, in turn, explain undertreatment that is also documented in the current medical practice. We have developed the first dual processing model of medical decision-making that has potential to enrich the current medical decision-making field, which is still to the large extent dominated by expected utility theory. The model also provides a platform for reconciling two groups of competing dual processing theories (parallel competitive with default-interventionalist theories).
NASA Astrophysics Data System (ADS)
King, Steven Gray
Geographic information systems (GIS) reveal relationships and patterns from large quantities of diverse data in the form of maps and reports. The United States spends billions of dollars to use GIS to improve decisions made during responses to natural disasters and terrorist attacks, but precisely how GIS improves or impairs decision making is not known. This research examined how GIS affect decision making during natural disasters, and how GIS can be more effectively used to improve decision making for emergency management. Using a qualitative case study methodology, this research examined decision making at the U.S. Department of Homeland Security (DHS) during a large full-scale disaster exercise. This study indicates that GIS provided decision makers at DHS with an outstanding context for information that would otherwise be challenging to understand, especially through the integration of multiple data sources and dynamic three-dimensional interactive maps. Decision making was hampered by outdated information, a reliance on predictive models based on hypothetical data rather than actual event data, and a lack of understanding of the capabilities of GIS beyond cartography. Geospatial analysts, emergency managers, and other decision makers who use GIS should take specific steps to improve decision making based on GIS for disaster response and emergency management.
Changes of mind in an attractor network of decision-making.
Albantakis, Larissa; Deco, Gustavo
2011-06-01
Attractor networks successfully account for psychophysical and neurophysiological data in various decision-making tasks. Especially their ability to model persistent activity, a property of many neurons involved in decision-making, distinguishes them from other approaches. Stable decision attractors are, however, counterintuitive to changes of mind. Here we demonstrate that a biophysically-realistic attractor network with spiking neurons, in its itinerant transients towards the choice attractors, can replicate changes of mind observed recently during a two-alternative random-dot motion (RDM) task. Based on the assumption that the brain continues to evaluate available evidence after the initiation of a decision, the network predicts neural activity during changes of mind and accurately simulates reaction times, performance and percentage of changes dependent on difficulty. Moreover, the model suggests a low decision threshold and high incoming activity that drives the brain region involved in the decision-making process into a dynamical regime close to a bifurcation, which up to now lacked evidence for physiological relevance. Thereby, we further affirmed the general conformance of attractor networks with higher level neural processes and offer experimental predictions to distinguish nonlinear attractor from linear diffusion models.
Beyond pain: modeling decision-making deficits in chronic pain
Hess, Leonardo Emanuel; Haimovici, Ariel; Muñoz, Miguel Angel; Montoya, Pedro
2014-01-01
Risky decision-making seems to be markedly disrupted in patients with chronic pain, probably due to the high cost that impose pain and negative mood on executive control functions. Patients’ behavioral performance on decision-making tasks such as the Iowa Gambling Task (IGT) is characterized by selecting cards more frequently from disadvantageous than from advantageous decks, and by switching often between competing responses in comparison with healthy controls (HCs). In the present study, we developed a simple heuristic model to simulate individuals’ choice behavior by varying the level of decision randomness and the importance given to gains and losses. The findings revealed that the model was able to differentiate the behavioral performance of patients with chronic pain and HCs at the group, as well as at the individual level. The best fit of the model in patients with chronic pain was yielded when decisions were not based on previous choices and when gains were considered more relevant than losses. By contrast, the best account of the available data in HCs was obtained when decisions were based on previous experiences and losses loomed larger than gains. In conclusion, our model seems to provide useful information to measure each individual participant extensively, and to deal with the data on a participant-by-participant basis. PMID:25136301
Beyond pain: modeling decision-making deficits in chronic pain.
Hess, Leonardo Emanuel; Haimovici, Ariel; Muñoz, Miguel Angel; Montoya, Pedro
2014-01-01
Risky decision-making seems to be markedly disrupted in patients with chronic pain, probably due to the high cost that impose pain and negative mood on executive control functions. Patients' behavioral performance on decision-making tasks such as the Iowa Gambling Task (IGT) is characterized by selecting cards more frequently from disadvantageous than from advantageous decks, and by switching often between competing responses in comparison with healthy controls (HCs). In the present study, we developed a simple heuristic model to simulate individuals' choice behavior by varying the level of decision randomness and the importance given to gains and losses. The findings revealed that the model was able to differentiate the behavioral performance of patients with chronic pain and HCs at the group, as well as at the individual level. The best fit of the model in patients with chronic pain was yielded when decisions were not based on previous choices and when gains were considered more relevant than losses. By contrast, the best account of the available data in HCs was obtained when decisions were based on previous experiences and losses loomed larger than gains. In conclusion, our model seems to provide useful information to measure each individual participant extensively, and to deal with the data on a participant-by-participant basis.
Navigating the Decision Space: Shared Medical Decision Making as Distributed Cognition.
Lippa, Katherine D; Feufel, Markus A; Robinson, F Eric; Shalin, Valerie L
2017-06-01
Despite increasing prominence, little is known about the cognitive processes underlying shared decision making. To investigate these processes, we conceptualize shared decision making as a form of distributed cognition. We introduce a Decision Space Model to identify physical and social influences on decision making. Using field observations and interviews, we demonstrate that patients and physicians in both acute and chronic care consider these influences when identifying the need for a decision, searching for decision parameters, making actionable decisions Based on the distribution of access to information and actions, we then identify four related patterns: physician dominated; physician-defined, patient-made; patient-defined, physician-made; and patient-dominated decisions. Results suggests that (a) decision making is necessarily distributed between physicians and patients, (b) differential access to information and action over time requires participants to transform a distributed task into a shared decision, and (c) adverse outcomes may result from failures to integrate physician and patient reasoning. Our analysis unifies disparate findings in the medical decision-making literature and has implications for improving care and medical training.
Comprehensible knowledge model creation for cancer treatment decision making.
Afzal, Muhammad; Hussain, Maqbool; Ali Khan, Wajahat; Ali, Taqdir; Lee, Sungyoung; Huh, Eui-Nam; Farooq Ahmad, Hafiz; Jamshed, Arif; Iqbal, Hassan; Irfan, Muhammad; Abbas Hydari, Manzar
2017-03-01
A wealth of clinical data exists in clinical documents in the form of electronic health records (EHRs). This data can be used for developing knowledge-based recommendation systems that can assist clinicians in clinical decision making and education. One of the big hurdles in developing such systems is the lack of automated mechanisms for knowledge acquisition to enable and educate clinicians in informed decision making. An automated knowledge acquisition methodology with a comprehensible knowledge model for cancer treatment (CKM-CT) is proposed. With the CKM-CT, clinical data are acquired automatically from documents. Quality of data is ensured by correcting errors and transforming various formats into a standard data format. Data preprocessing involves dimensionality reduction and missing value imputation. Predictive algorithm selection is performed on the basis of the ranking score of the weighted sum model. The knowledge builder prepares knowledge for knowledge-based services: clinical decisions and education support. Data is acquired from 13,788 head and neck cancer (HNC) documents for 3447 patients, including 1526 patients of the oral cavity site. In the data quality task, 160 staging values are corrected. In the preprocessing task, 20 attributes and 106 records are eliminated from the dataset. The Classification and Regression Trees (CRT) algorithm is selected and provides 69.0% classification accuracy in predicting HNC treatment plans, consisting of 11 decision paths that yield 11 decision rules. Our proposed methodology, CKM-CT, is helpful to find hidden knowledge in clinical documents. In CKM-CT, the prediction models are developed to assist and educate clinicians for informed decision making. The proposed methodology is generalizable to apply to data of other domains such as breast cancer with a similar objective to assist clinicians in decision making and education. Copyright © 2017 Elsevier Ltd. All rights reserved.
Shared decision-making in neonatology: an utopia or an attainable goal?
D'Aloja, Ernesto; Floris, Laura; Muller, Mima; Birocchi, Francesca; Fanos, Vassilios; Paribello, Francesco; Demontis, Roberto
2010-10-01
Medical decision making is sometimes considered as a relatively simple process in which a decision may be made by the physician, by the patient, or by both patient and physician working together. There are three main models of decision making--paternalism, patient informed choice, and shared decision-making (SDM), having each one of these drawbacks and limitations. Historically, the most adopted one was the paternalism (strongly 'Doctor knows best'), where the professional made the decision based on what he/she considered to be as the patient's best interest, not necessarily contemplating patient's will and wishes. Currently, at the antipodes, the patient informed choice, where the patient makes his/her decision based on information received from the physician with no possible interference of professional's own preferences, seems to be the preferred relationship standard. SDM represents an intermediate approach between the two above-mentioned opposite models, being a medical process that involves actively the doctor and the patient who both bring their own facts and preferences to reach an agreement on the decision on if, when and how to treat a disease. This model, being characterized by elements pertaining to both the others, is gaining popularity in several medical and surgical scenarios whenever a competent patient is able to actively participate into the decisional process. On this basis can this model be implemented also in a Neonatology Intensive Care Unit where little patients are--by nature--incompetent, being the diagnostic/therapeutic choices taken by parents? We focused on this complex item considering four possible different scenarios and it seems to us that it could be possible to introduce such an approach, providing that parents' empowerment, a good physician's communication skill and consideration of all cultural, religious, economic, and ethic values of every single actor have been fairly taken into account.
Emergent collective decision-making: Control, model and behavior
NASA Astrophysics Data System (ADS)
Shen, Tian
In this dissertation we study emergent collective decision-making in social groups with time-varying interactions and heterogeneously informed individuals. First we analyze a nonlinear dynamical systems model motivated by animal collective motion with heterogeneously informed subpopulations, to examine the role of uninformed individuals. We find through formal analysis that adding uninformed individuals in a group increases the likelihood of a collective decision. Secondly, we propose a model for human shared decision-making with continuous-time feedback and where individuals have little information about the true preferences of other group members. We study model equilibria using bifurcation analysis to understand how the model predicts decisions based on the critical threshold parameters that represent an individual's tradeoff between social and environmental influences. Thirdly, we analyze continuous-time data of pairs of human subjects performing an experimental shared tracking task using our second proposed model in order to understand transient behavior and the decision-making process. We fit the model to data and show that it reproduces a wide range of human behaviors surprisingly well, suggesting that the model may have captured the mechanisms of observed behaviors. Finally, we study human behavior from a game-theoretic perspective by modeling the aforementioned tracking task as a repeated game with incomplete information. We show that the majority of the players are able to converge to playing Nash equilibrium strategies. We then suggest with simulations that the mean field evolution of strategies in the population resemble replicator dynamics, indicating that the individual strategies may be myopic. Decisions form the basis of control and problems involving deciding collectively between alternatives are ubiquitous in nature and in engineering. Understanding how multi-agent systems make decisions among alternatives also provides insight for designing decentralized control laws for engineering applications from mobile sensor networks for environmental monitoring to collective construction robots. With this dissertation we hope to provide additional methodology and mathematical models for understanding the behavior and control of collective decision-making in multi-agent systems.
Classification images reveal decision variables and strategies in forced choice tasks
Pritchett, Lisa M.; Murray, Richard F.
2015-01-01
Despite decades of research, there is still uncertainty about how people make simple decisions about perceptual stimuli. Most theories assume that perceptual decisions are based on decision variables, which are internal variables that encode task-relevant information. However, decision variables are usually considered to be theoretical constructs that cannot be measured directly, and this often makes it difficult to test theories of perceptual decision making. Here we show how to measure decision variables on individual trials, and we use these measurements to test theories of perceptual decision making more directly than has previously been possible. We measure classification images, which are estimates of templates that observers use to extract information from stimuli. We then calculate the dot product of these classification images with the stimuli to estimate observers' decision variables. Finally, we reconstruct each observer's “decision space,” a map that shows the probability of the observer’s responses for all values of the decision variables. We use this method to examine decision strategies in two-alternative forced choice (2AFC) tasks, for which there are several competing models. In one experiment, the resulting decision spaces support the difference model, a classic theory of 2AFC decisions. In a second experiment, we find unexpected decision spaces that are not predicted by standard models of 2AFC decisions, and that suggest intrinsic uncertainty or soft thresholding. These experiments give new evidence regarding observers’ strategies in 2AFC tasks, and they show how measuring decision variables can answer long-standing questions about perceptual decision making. PMID:26015584
ERIC Educational Resources Information Center
Visagan, Ravindran; Xiang, Ally; Lamar, Melissa
2012-01-01
We compared the original deck-based model of advantageous decision making assessed with the Iowa Gambling Task (IGT) with a trial-based approach across behavioral and physiological outcomes in 33 younger adults (15 men, 18 women; 22.2 [plus or minus] 3.7 years of age). One administration of the IGT with simultaneous measurement of skin conductance…
Music and Video Gaming during Breaks: Influence on Habitual versus Goal-Directed Decision Making.
Liu, Shuyan; Schad, Daniel J; Kuschpel, Maxim S; Rapp, Michael A; Heinz, Andreas
2016-01-01
Different systems for habitual versus goal-directed control are thought to underlie human decision-making. Working memory is known to shape these decision-making systems and their interplay, and is known to support goal-directed decision making even under stress. Here, we investigated if and how decision systems are differentially influenced by breaks filled with diverse everyday life activities known to modulate working memory performance. We used a within-subject design where young adults listened to music and played a video game during breaks interleaved with trials of a sequential two-step Markov decision task, designed to assess habitual as well as goal-directed decision making. Based on a neurocomputational model of task performance, we observed that for individuals with a rather limited working memory capacity video gaming as compared to music reduced reliance on the goal-directed decision-making system, while a rather large working memory capacity prevented such a decline. Our findings suggest differential effects of everyday activities on key decision-making processes.
Music and Video Gaming during Breaks: Influence on Habitual versus Goal-Directed Decision Making
Kuschpel, Maxim S.; Rapp, Michael A.; Heinz, Andreas
2016-01-01
Different systems for habitual versus goal-directed control are thought to underlie human decision-making. Working memory is known to shape these decision-making systems and their interplay, and is known to support goal-directed decision making even under stress. Here, we investigated if and how decision systems are differentially influenced by breaks filled with diverse everyday life activities known to modulate working memory performance. We used a within-subject design where young adults listened to music and played a video game during breaks interleaved with trials of a sequential two-step Markov decision task, designed to assess habitual as well as goal-directed decision making. Based on a neurocomputational model of task performance, we observed that for individuals with a rather limited working memory capacity video gaming as compared to music reduced reliance on the goal-directed decision-making system, while a rather large working memory capacity prevented such a decline. Our findings suggest differential effects of everyday activities on key decision-making processes. PMID:26982326
NASA Astrophysics Data System (ADS)
Hossain, F.; Iqbal, N.; Lee, H.; Muhammad, A.
2015-12-01
When it comes to building durable capacity for implementing state of the art technology and earth observation (EO) data for improved decision making, it has been long recognized that a unidirectional approach (from research to application) often does not work. Co-design of capacity building effort has recently been recommended as a better alternative. This approach is a two-way street where scientists and stakeholders engage intimately along the entire chain of actions from design of research experiments to packaging of decision making tools and each party provides an equal amount of input. Scientists execute research experiments based on boundary conditions and outputs that are defined as tangible by stakeholders for decision making. On the other hand, decision making tools are packaged by stakeholders with scientists ensuring the application-specific science is relevant. In this talk, we will overview one such iterative capacity building approach that we have implemented for gravimetry-based satellite (GRACE) EO data for improved groundwater management in Pakistan. We call our approach a hybrid approach where the initial step is a forward model involving a conventional short-term (3 day) capacity building workshop in the stakeholder environment addressing a very large audience. In this forward model, the net is cast wide to 'shortlist' a set of highly motivated stakeholder agency staffs who are then engaged more directly in 1-1 training. In the next step (the backward model), these short listed staffs are then brought back in the research environment of the scientists (supply) for 1-1 and long-term (6 months) intense brainstorming, training, and design of decision making tools. The advantage of this backward model is that it allows for a much better understanding for scientists of the ground conditions and hurdles of making a EO-based scientific innovation work for a specific decision making problem that is otherwise fundamentally impossible in conventional training workshops. We demonstrate here our experience of implementing this hybrid model for capacity building for groundwater management for Pakistan Council for Research on Water Resources (PCRWR) with the ultimate goal of empowering naitonal agencies in their ability to monitor groundwater storage changes independently from satellites.
ECOLOGICAL MODEL TESTING: VERIFICATION, VALIDATION OR NEITHER?
Consider the need to make a management decision about a declining animal population. Two models are available to help. Before a decision is made based on model results, the astute manager or policy maker may ask, "Do the models work?" Or, "Have the models been verified or validat...
Neural signatures of experience-based improvements in deterministic decision-making.
Tremel, Joshua J; Laurent, Patryk A; Wolk, David A; Wheeler, Mark E; Fiez, Julie A
2016-12-15
Feedback about our choices is a crucial part of how we gather information and learn from our environment. It provides key information about decision experiences that can be used to optimize future choices. However, our understanding of the processes through which feedback translates into improved decision-making is lacking. Using neuroimaging (fMRI) and cognitive models of decision-making and learning, we examined the influence of feedback on multiple aspects of decision processes across learning. Subjects learned correct choices to a set of 50 word pairs across eight repetitions of a concurrent discrimination task. Behavioral measures were then analyzed with both a drift-diffusion model and a reinforcement learning model. Parameter values from each were then used as fMRI regressors to identify regions whose activity fluctuates with specific cognitive processes described by the models. The patterns of intersecting neural effects across models support two main inferences about the influence of feedback on decision-making. First, frontal, anterior insular, fusiform, and caudate nucleus regions behave like performance monitors, reflecting errors in performance predictions that signal the need for changes in control over decision-making. Second, temporoparietal, supplementary motor, and putamen regions behave like mnemonic storage sites, reflecting differences in learned item values that inform optimal decision choices. As information about optimal choices is accrued, these neural systems dynamically adjust, likely shifting the burden of decision processing from controlled performance monitoring to bottom-up, stimulus-driven choice selection. Collectively, the results provide a detailed perspective on the fundamental ability to use past experiences to improve future decisions. Copyright © 2016 Elsevier B.V. All rights reserved.
Neural signatures of experience-based improvements in deterministic decision-making
Tremel, Joshua J.; Laurent, Patryk A.; Wolk, David A.; Wheeler, Mark E.; Fiez, Julie A.
2016-01-01
Feedback about our choices is a crucial part of how we gather information and learn from our environment. It provides key information about decision experiences that can be used to optimize future choices. However, our understanding of the processes through which feedback translates into improved decision-making is lacking. Using neuroimaging (fMRI) and cognitive models of decision-making and learning, we examined the influence of feedback on multiple aspects of decision processes across learning. Subjects learned correct choices to a set of 50 word pairs across eight repetitions of a concurrent discrimination task. Behavioral measures were then analyzed with both a drift-diffusion model and a reinforcement learning model. Parameter values from each were then used as fMRI regressors to identify regions whose activity fluctuates with specific cognitive processes described by the models. The patterns of intersecting neural effects across models support two main inferences about the influence of feedback on decision-making. First, frontal, anterior insular, fusiform, and caudate nucleus regions behave like performance monitors, reflecting errors in performance predictions that signal the need for changes in control over decision-making. Second, temporoparietal, supplementary motor, and putamen regions behave like mnemonic storage sites, reflecting differences in learned item values that inform optimal decision choices. As information about optimal choices is accrued, these neural systems dynamically adjust, likely shifting the burden of decision processing from controlled performance monitoring to bottom-up, stimulus-driven choice selection. Collectively, the results provide a detailed perspective on the fundamental ability to use past experiences to improve future decisions. PMID:27523644
NASA Astrophysics Data System (ADS)
Zachary, Wayne; Eggleston, Robert; Donmoyer, Jason; Schremmer, Serge
2003-09-01
Decision-making is strongly shaped and influenced by the work context in which decisions are embedded. This suggests that decision support needs to be anchored by a model (implicit or explicit) of the work process, in contrast to traditional approaches that anchor decision support to either context free decision models (e.g., utility theory) or to detailed models of the external (e.g., battlespace) environment. An architecture for cognitively-based, work centered decision support called the Work-centered Informediary Layer (WIL) is presented. WIL separates decision support into three overall processes that build and dynamically maintain an explicit context model, use the context model to identify opportunities for decision support and tailor generic decision-support strategies to the current context and offer them to the system-user/decision-maker. The generic decision support strategies include such things as activity/attention aiding, decision process structuring, work performance support (selective, contextual automation), explanation/ elaboration, infosphere data retrieval, and what if/action-projection and visualization. A WIL-based application is a work-centered decision support layer that provides active support without intent inferencing, and that is cognitively based without requiring classical cognitive task analyses. Example WIL applications are detailed and discussed.
NASA Astrophysics Data System (ADS)
Zubir, S. N. A.; Thiruchelvam, S.; Mustapha, K. N. M.; Che Muda, Z.; Ghazali, A.; Hakimie, H.
2017-12-01
For the past few years, natural disaster has been the subject of debate in disaster management especially in flood disaster. Each year, natural disaster results in significant loss of life, destruction of homes and public infrastructure, and economic hardship. Hence, an effective and efficient flood disaster management would assure non-futile efforts for life saving. The aim of this article is to examine the relationship between approach, decision maker, influence factor, result, and ethic to decision making for flood disaster management in Malaysia. The key elements of decision making in the disaster management were studied based on the literature. Questionnaire surveys were administered among lead agencies at East Coast of Malaysia in the state of Kelantan and Pahang. A total of 307 valid responses had been obtained for further analysis. Exploratory Factor Analysis (EFA) and Confirmatory Factor Analysis (CFA) were carried out to analyse the measurement model involved in the study. The CFA for second-order reflective and first-order reflective measurement model indicates that approach, decision maker, influence factor, result, and ethic have a significant and direct effect on decision making during disaster. The results from this study showed that decision- making during disaster is an important element for disaster management to necessitate a successful collaborative decision making. The measurement model is accepted to proceed with further analysis known as Structural Equation Modeling (SEM) and can be assessed for the future research.
Scholten, Matthé; Gather, Jakov
2018-04-01
It is widely accepted among medical ethicists that competence is a necessary condition for informed consent. In this view, if a patient is incompetent to make a particular treatment decision, the decision must be based on an advance directive or made by a substitute decision-maker on behalf of the patient. We call this the competence model. According to a recent report of the United Nations (UN) High Commissioner for Human Rights, article 12 of the UN Convention on the Rights of Persons with Disabilities (CRPD) presents a wholesale rejection of the competence model. The High Commissioner here adopts the interpretation of article 12 proposed by the Committee on the Rights of Persons with Disabilities. On this interpretation, CRPD article 12 renders it impermissible to deny persons with mental disabilities the right to make treatment decisions on the basis of impaired decision-making capacity and demands the replacement of all regimes of substitute decision-making by supported decision-making. In this paper, we explicate six adverse consequences of CRPD article 12 for persons with mental disabilities and propose an alternative way forward. The proposed model combines the strengths of the competence model and supported decision-making. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Friedel, Eva; Sebold, Miriam; Kuitunen-Paul, Sören; Nebe, Stephan; Veer, Ilya M.; Zimmermann, Ulrich S.; Schlagenhauf, Florian; Smolka, Michael N.; Rapp, Michael; Walter, Henrik; Heinz, Andreas
2017-01-01
Rationale: Advances in neurocomputational modeling suggest that valuation systems for goal-directed (deliberative) on one side, and habitual (automatic) decision-making on the other side may rely on distinct computational strategies for reinforcement learning, namely model-free vs. model-based learning. As a key theoretical difference, the model-based system strongly demands cognitive functions to plan actions prospectively based on an internal cognitive model of the environment, whereas valuation in the model-free system relies on rather simple learning rules from operant conditioning to retrospectively associate actions with their outcomes and is thus cognitively less demanding. Acute stress reactivity is known to impair model-based but not model-free choice behavior, with higher working memory capacity protecting the model-based system from acute stress. However, it is not clear which impact accumulated real life stress has on model-free and model-based decision systems and how this influence interacts with cognitive abilities. Methods: We used a sequential decision-making task distinguishing relative contributions of both learning strategies to choice behavior, the Social Readjustment Rating Scale questionnaire to assess accumulated real life stress, and the Digit Symbol Substitution Test to test cognitive speed in 95 healthy subjects. Results: Individuals reporting high stress exposure who had low cognitive speed showed reduced model-based but increased model-free behavioral control. In contrast, subjects exposed to accumulated real life stress with high cognitive speed displayed increased model-based performance but reduced model-free control. Conclusion: These findings suggest that accumulated real life stress exposure can enhance reliance on cognitive speed for model-based computations, which may ultimately protect the model-based system from the detrimental influences of accumulated real life stress. The combination of accumulated real life stress exposure and slower information processing capacities, however, might favor model-free strategies. Thus, the valence and preference of either system strongly depends on stressful experiences and individual cognitive capacities. PMID:28642696
Friedel, Eva; Sebold, Miriam; Kuitunen-Paul, Sören; Nebe, Stephan; Veer, Ilya M; Zimmermann, Ulrich S; Schlagenhauf, Florian; Smolka, Michael N; Rapp, Michael; Walter, Henrik; Heinz, Andreas
2017-01-01
Rationale: Advances in neurocomputational modeling suggest that valuation systems for goal-directed (deliberative) on one side, and habitual (automatic) decision-making on the other side may rely on distinct computational strategies for reinforcement learning, namely model-free vs. model-based learning. As a key theoretical difference, the model-based system strongly demands cognitive functions to plan actions prospectively based on an internal cognitive model of the environment, whereas valuation in the model-free system relies on rather simple learning rules from operant conditioning to retrospectively associate actions with their outcomes and is thus cognitively less demanding. Acute stress reactivity is known to impair model-based but not model-free choice behavior, with higher working memory capacity protecting the model-based system from acute stress. However, it is not clear which impact accumulated real life stress has on model-free and model-based decision systems and how this influence interacts with cognitive abilities. Methods: We used a sequential decision-making task distinguishing relative contributions of both learning strategies to choice behavior, the Social Readjustment Rating Scale questionnaire to assess accumulated real life stress, and the Digit Symbol Substitution Test to test cognitive speed in 95 healthy subjects. Results: Individuals reporting high stress exposure who had low cognitive speed showed reduced model-based but increased model-free behavioral control. In contrast, subjects exposed to accumulated real life stress with high cognitive speed displayed increased model-based performance but reduced model-free control. Conclusion: These findings suggest that accumulated real life stress exposure can enhance reliance on cognitive speed for model-based computations, which may ultimately protect the model-based system from the detrimental influences of accumulated real life stress. The combination of accumulated real life stress exposure and slower information processing capacities, however, might favor model-free strategies. Thus, the valence and preference of either system strongly depends on stressful experiences and individual cognitive capacities.
Tučník, Petr; Bureš, Vladimír
2016-01-01
Multi-criteria decision-making (MCDM) can be formally implemented by various methods. This study compares suitability of four selected MCDM methods, namely WPM, TOPSIS, VIKOR, and PROMETHEE, for future applications in agent-based computational economic (ACE) models of larger scale (i.e., over 10 000 agents in one geographical region). These four MCDM methods were selected according to their appropriateness for computational processing in ACE applications. Tests of the selected methods were conducted on four hardware configurations. For each method, 100 tests were performed, which represented one testing iteration. With four testing iterations conducted on each hardware setting and separated testing of all configurations with the-server parameter de/activated, altogether, 12800 data points were collected and consequently analyzed. An illustrational decision-making scenario was used which allows the mutual comparison of all of the selected decision making methods. Our test results suggest that although all methods are convenient and can be used in practice, the VIKOR method accomplished the tests with the best results and thus can be recommended as the most suitable for simulations of large-scale agent-based models.
Dynamics of Sequential Decision Making
NASA Astrophysics Data System (ADS)
Rabinovich, Mikhail I.; Huerta, Ramón; Afraimovich, Valentin
2006-11-01
We suggest a new paradigm for intelligent decision-making suitable for dynamical sequential activity of animals or artificial autonomous devices that depends on the characteristics of the internal and external world. To do it we introduce a new class of dynamical models that are described by ordinary differential equations with a finite number of possibilities at the decision points, and also include rules solving this uncertainty. Our approach is based on the competition between possible cognitive states using their stable transient dynamics. The model controls the order of choosing successive steps of a sequential activity according to the environment and decision-making criteria. Two strategies (high-risk and risk-aversion conditions) that move the system out of an erratic environment are analyzed.
A Decision Support Model and Tool to Assist Financial Decision-Making in Universities
ERIC Educational Resources Information Center
Bhayat, Imtiaz; Manuguerra, Maurizio; Baldock, Clive
2015-01-01
In this paper, a model and tool is proposed to assist universities and other mission-based organisations to ascertain systematically the optimal portfolio of projects, in any year, meeting the organisations risk tolerances and available funds. The model and tool presented build on previous work on university operations and decision support systems…
21st century neurobehavioral theories of decision making in addiction: Review and evaluation.
Bickel, Warren K; Mellis, Alexandra M; Snider, Sarah E; Athamneh, Liqa N; Stein, Jeffrey S; Pope, Derek A
2018-01-01
This review critically examines neurobehavioral theoretical developments in decision making in addiction in the 21st century. We specifically compare each theory reviewed to seven benchmarks of theoretical robustness, based on their ability to address: why some commodities are addictive; developmental trends in addiction; addiction-related anhedonia; self-defeating patterns of behavior in addiction; why addiction co-occurs with other unhealthy behaviors; and, finally, means for the repair of addiction. We have included only self-contained theories or hypotheses which have been developed or extended in the 21st century to address decision making in addiction. We thus review seven distinct theories of decision making in addiction: learning theories, incentive-sensitization theory, dopamine imbalance and systems models, opponent process theory, strength models of self-control failure, the competing neurobehavioral decision systems theory, and the triadic systems theory of addiction. Finally, we have directly compared the performance of each of these theories based on the aforementioned benchmarks, and highlighted key points at which several theories have coalesced. Copyright © 2017 Elsevier Inc. All rights reserved.
Neural and neurochemical basis of reinforcement-guided decision making.
Khani, Abbas; Rainer, Gregor
2016-08-01
Decision making is an adaptive behavior that takes into account several internal and external input variables and leads to the choice of a course of action over other available and often competing alternatives. While it has been studied in diverse fields ranging from mathematics, economics, ecology, and ethology to psychology and neuroscience, recent cross talk among perspectives from different fields has yielded novel descriptions of decision processes. Reinforcement-guided decision making models are based on economic and reinforcement learning theories, and their focus is on the maximization of acquired benefit over a defined period of time. Studies based on reinforcement-guided decision making have implicated a large network of neural circuits across the brain. This network includes a wide range of cortical (e.g., orbitofrontal cortex and anterior cingulate cortex) and subcortical (e.g., nucleus accumbens and subthalamic nucleus) brain areas and uses several neurotransmitter systems (e.g., dopaminergic and serotonergic systems) to communicate and process decision-related information. This review discusses distinct as well as overlapping contributions of these networks and neurotransmitter systems to the processing of decision making. We end the review by touching on neural circuitry and neuromodulatory regulation of exploratory decision making. Copyright © 2016 the American Physiological Society.
Naturalistic Decision Making for Power System Operators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greitzer, Frank L.; Podmore, Robin; Robinson, Marck
2010-02-01
Motivation – Investigations of large-scale outages in the North American interconnected electric system often attribute the causes to three T’s: Trees, Training and Tools. To document and understand the mental processes used by expert operators when making critical decisions, a naturalistic decision making (NDM) model was developed. Transcripts of conversations were analyzed to reveal and assess NDM-based performance criteria. Findings/Design – An item analysis indicated that the operators’ Situation Awareness Levels, mental models, and mental simulations can be mapped at different points in the training scenario. This may identify improved training methods or analytical/ visualization tools. Originality/Value – This studymore » applies for the first time, the concepts of Recognition Primed Decision Making, Situation Awareness Levels and Cognitive Task Analysis to training of electric power system operators. Take away message – The NDM approach provides a viable framework for systematic training management to accelerate learning in simulator-based training scenarios for power system operators and teams.« less
Devaluation and sequential decisions: linking goal-directed and model-based behavior
Friedel, Eva; Koch, Stefan P.; Wendt, Jean; Heinz, Andreas; Deserno, Lorenz; Schlagenhauf, Florian
2014-01-01
In experimental psychology different experiments have been developed to assess goal–directed as compared to habitual control over instrumental decisions. Similar to animal studies selective devaluation procedures have been used. More recently sequential decision-making tasks have been designed to assess the degree of goal-directed vs. habitual choice behavior in terms of an influential computational theory of model-based compared to model-free behavioral control. As recently suggested, different measurements are thought to reflect the same construct. Yet, there has been no attempt to directly assess the construct validity of these different measurements. In the present study, we used a devaluation paradigm and a sequential decision-making task to address this question of construct validity in a sample of 18 healthy male human participants. Correlational analysis revealed a positive association between model-based choices during sequential decisions and goal-directed behavior after devaluation suggesting a single framework underlying both operationalizations and speaking in favor of construct validity of both measurement approaches. Up to now, this has been merely assumed but never been directly tested in humans. PMID:25136310
Predicting explorative motor learning using decision-making and motor noise.
Chen, Xiuli; Mohr, Kieran; Galea, Joseph M
2017-04-01
A fundamental problem faced by humans is learning to select motor actions based on noisy sensory information and incomplete knowledge of the world. Recently, a number of authors have asked whether this type of motor learning problem might be very similar to a range of higher-level decision-making problems. If so, participant behaviour on a high-level decision-making task could be predictive of their performance during a motor learning task. To investigate this question, we studied performance during an explorative motor learning task and a decision-making task which had a similar underlying structure with the exception that it was not subject to motor (execution) noise. We also collected an independent measurement of each participant's level of motor noise. Our analysis showed that explorative motor learning and decision-making could be modelled as the (approximately) optimal solution to a Partially Observable Markov Decision Process bounded by noisy neural information processing. The model was able to predict participant performance in motor learning by using parameters estimated from the decision-making task and the separate motor noise measurement. This suggests that explorative motor learning can be formalised as a sequential decision-making process that is adjusted for motor noise, and raises interesting questions regarding the neural origin of explorative motor learning.
Predicting explorative motor learning using decision-making and motor noise
Galea, Joseph M.
2017-01-01
A fundamental problem faced by humans is learning to select motor actions based on noisy sensory information and incomplete knowledge of the world. Recently, a number of authors have asked whether this type of motor learning problem might be very similar to a range of higher-level decision-making problems. If so, participant behaviour on a high-level decision-making task could be predictive of their performance during a motor learning task. To investigate this question, we studied performance during an explorative motor learning task and a decision-making task which had a similar underlying structure with the exception that it was not subject to motor (execution) noise. We also collected an independent measurement of each participant’s level of motor noise. Our analysis showed that explorative motor learning and decision-making could be modelled as the (approximately) optimal solution to a Partially Observable Markov Decision Process bounded by noisy neural information processing. The model was able to predict participant performance in motor learning by using parameters estimated from the decision-making task and the separate motor noise measurement. This suggests that explorative motor learning can be formalised as a sequential decision-making process that is adjusted for motor noise, and raises interesting questions regarding the neural origin of explorative motor learning. PMID:28437451
A Chain of Sexual Decision-Making.
ERIC Educational Resources Information Center
Juhasz, Anne McCreary
This paper presents a six-stage model for sexual decision making which is based on six questions, each of which represents a point at which a decision must be made. The six questions are: (1) intercourse or no intercourse; (2) children or no children; (3) birth control or no birth control; (4) delivery or abortion; (5) keep the child or give it…
Yang, Z Janet; McComas, Katherine A; Gay, Geri K; Leonard, John P; Dannenberg, Andrew J; Dillon, Hildy
2012-01-01
This study extends a risk information seeking and processing model to explore the relative effect of cognitive processing strategies, positive and negative emotions, and normative beliefs on individuals' decision making about potential health risks. Most previous research based on this theoretical framework has examined environmental risks. Applying this risk communication model to study health decision making presents an opportunity to explore theoretical boundaries of the model, while also bringing this research to bear on a pressing medical issue: low enrollment in clinical trials. Comparative analysis of data gathered from 2 telephone surveys of a representative national sample (n = 500) and a random sample of cancer patients (n = 411) indicated that emotions played a more substantive role in cancer patients' decisions to enroll in a potential trial, whereas cognitive processing strategies and normative beliefs had greater influences on the decisions of respondents from the national sample.
Lin, Frank P Y; Pokorny, Adrian; Teng, Christina; Dear, Rachel; Epstein, Richard J
2016-12-01
Multidisciplinary team (MDT) meetings are used to optimise expert decision-making about treatment options, but such expertise is not digitally transferable between centres. To help standardise medical decision-making, we developed a machine learning model designed to predict MDT decisions about adjuvant breast cancer treatments. We analysed MDT decisions regarding adjuvant systemic therapy for 1065 breast cancer cases over eight years. Machine learning classifiers with and without bootstrap aggregation were correlated with MDT decisions (recommended, not recommended, or discussable) regarding adjuvant cytotoxic, endocrine and biologic/targeted therapies, then tested for predictability using stratified ten-fold cross-validations. The predictions so derived were duly compared with those based on published (ESMO and NCCN) cancer guidelines. Machine learning more accurately predicted adjuvant chemotherapy MDT decisions than did simple application of guidelines. No differences were found between MDT- vs. ESMO/NCCN- based decisions to prescribe either adjuvant endocrine (97%, p = 0.44/0.74) or biologic/targeted therapies (98%, p = 0.82/0.59). In contrast, significant discrepancies were evident between MDT- and guideline-based decisions to prescribe chemotherapy (87%, p < 0.01, representing 43% and 53% variations from ESMO/NCCN guidelines, respectively). Using ten-fold cross-validation, the best classifiers achieved areas under the receiver operating characteristic curve (AUC) of 0.940 for chemotherapy (95% C.I., 0.922-0.958), 0.899 for the endocrine therapy (95% C.I., 0.880-0.918), and 0.977 for trastuzumab therapy (95% C.I., 0.955-0.999) respectively. Overall, bootstrap aggregated classifiers performed better among all evaluated machine learning models. A machine learning approach based on clinicopathologic characteristics can predict MDT decisions about adjuvant breast cancer drug therapies. The discrepancy between MDT- and guideline-based decisions regarding adjuvant chemotherapy implies that certain non-clincopathologic criteria, such as patient preference and resource availability, are factored into clinical decision-making by local experts but not captured by guidelines.
Chorpita, Bruce F; Bernstein, Adam; Daleiden, Eric L
2008-03-01
This paper illustrates the application of design principles for tools that structure clinical decision-making. If the effort to implement evidence-based practices in community services organizations is to be effective, attention must be paid to the decision-making context in which such treatments are delivered. Clinical research trials commonly occur in an environment characterized by structured decision making and expert supports. Technology has great potential to serve mental health organizations by supporting these potentially important contextual features of the research environment, through organization and reporting of clinical data into interpretable information to support decisions and anchor decision-making procedures. This article describes one example of a behavioral health reporting system designed to facilitate clinical and administrative use of evidence-based practices. The design processes underlying this system-mapping of decision points and distillation of performance information at the individual, caseload, and organizational levels-can be implemented to support clinical practice in a wide variety of settings.
Dowding, Dawn; Lichtner, Valentina; Allcock, Nick; Briggs, Michelle; James, Kirstin; Keady, John; Lasrado, Reena; Sampson, Elizabeth L; Swarbrick, Caroline; José Closs, S
2016-01-01
The recognition, assessment and management of pain in hospital settings is suboptimal, and is a particular challenge in patients with dementia. The existing process guiding pain assessment and management in clinical settings is based on the assumption that nurses follow a sequential linear approach to decision making. In this paper we re-evaluate this theoretical assumption drawing on findings from a study of pain recognition, assessment and management in patients with dementia. To provide a revised conceptual model of pain recognition, assessment and management based on sense-making theories of decision making. The research we refer to is an exploratory ethnographic study using nested case sites. Patients with dementia (n=31) were the unit of data collection, nested in 11 wards (vascular, continuing care, stroke rehabilitation, orthopaedic, acute medicine, care of the elderly, elective and emergency surgery), located in four NHS hospital organizations in the UK. Data consisted of observations of patients at bedside (170h in total); observations of the context of care; audits of patient hospital records; documentary analysis of artefacts; semi-structured interviews (n=56) and informal open conversations with staff and carers (family members). Existing conceptualizations of pain recognition, assessment and management do not fully explain how the decision process occurs in clinical practice. Our research indicates that pain recognition, assessment and management is not an individual cognitive activity; rather it is carried out by groups of individuals over time and within a specific organizational culture or climate, which influences both health care professional and patient behaviour. We propose a revised theoretical model of decision making related to pain assessment and management for patients with dementia based on theories of sense-making, which is reflective of the reality of clinical decision making in acute hospital wards. The revised model recognizes the salience of individual cognition as well as acknowledging that decisions are constructed through social interaction and organizational context. The model will be used in further research to develop decision support interventions to assist with the assessment and management of patients with dementia in acute hospital settings. Copyright © 2015. Published by Elsevier Ltd.
Prospect Theory and Interval-Valued Hesitant Set for Safety Evacuation Model
NASA Astrophysics Data System (ADS)
Kou, Meng; Lu, Na
2018-01-01
The study applies the research results of prospect theory and multi attribute decision making theory, combined with the complexity, uncertainty and multifactor influence of the underground mine fire system and takes the decision makers’ psychological behavior of emotion and intuition into full account to establish the intuitionistic fuzzy multiple attribute decision making method that is based on the prospect theory. The model established by this method can explain the decision maker’s safety evacuation decision behavior in the complex system of underground mine fire due to the uncertainty of the environment, imperfection of the information and human psychological behavior and other factors.
Decision Making in the Airplane
NASA Technical Reports Server (NTRS)
Orasanu, Judith; Shafto, Michael G. (Technical Monitor)
1995-01-01
The Importance of decision-making to safety in complex, dynamic environments like mission control centers, aviation, and offshore installations has been well established. NASA-ARC has a program of research dedicated to fostering safe and effective decision-making in the manned spaceflight environment. Because access to spaceflight is limited, environments with similar characteristics, including aviation and nuclear power plants, serve as analogs from which space-relevant data can be gathered and theories developed. Analyses of aviation accidents cite crew judgement and decision making as causes or contributing factors in over half of all accidents. Yet laboratory research on decision making has not proven especially helpful In improving the quality of decisions in these kinds of environments. One reason is that the traditional, analytic decision models are inappropriate to multi-dimensional, high-risk environments, and do not accurately describe what expert human decision makers do when they make decisions that have consequences. A new model of dynamic, naturalistic decision making is offered that may prove useful for improving decision making in complex, isolated, confined and high-risk environments. Based on analyses of crew performance in full-mission simulators and accident reports, features that define effective decision strategies in abnormal or emergency situations have been identified. These include accurate situation assessment (including time and risk assessment), appreciation of the complexity of the problem, sensitivity to constraints on the decision, timeliness of the response, and use of adequate information. More effective crews also manage their workload to provide themselves with time and resources to make good decisions. In brief, good decisions are appropriate to the demands of the situation. Effective crew decision making and overall performance are mediated by crew communication. Communication contributes to performance because it assures that all crew members have essential information, but it also regulates and coordinates crew actions and is the medium of collective thinking In response to a problem, This presentation will examine the relations between leadership, communication, decision making and overall crew performance. Implications of these findings for training will be discussed.
Uncertainty in sample estimates and the implicit loss function for soil information.
NASA Astrophysics Data System (ADS)
Lark, Murray
2015-04-01
One significant challenge in the communication of uncertain information is how to enable the sponsors of sampling exercises to make a rational choice of sample size. One way to do this is to compute the value of additional information given the loss function for errors. The loss function expresses the costs that result from decisions made using erroneous information. In certain circumstances, such as remediation of contaminated land prior to development, loss functions can be computed and used to guide rational decision making on the amount of resource to spend on sampling to collect soil information. In many circumstances the loss function cannot be obtained prior to decision making. This may be the case when multiple decisions may be based on the soil information and the costs of errors are hard to predict. The implicit loss function is proposed as a tool to aid decision making in these circumstances. Conditional on a logistical model which expresses costs of soil sampling as a function of effort, and statistical information from which the error of estimates can be modelled as a function of effort, the implicit loss function is the loss function which makes a particular decision on effort rational. In this presentation the loss function is defined and computed for a number of arbitrary decisions on sampling effort for a hypothetical soil monitoring problem. This is based on a logistical model of sampling cost parameterized from a recent geochemical survey of soil in Donegal, Ireland and on statistical parameters estimated with the aid of a process model for change in soil organic carbon. It is shown how the implicit loss function might provide a basis for reflection on a particular choice of sample size by comparing it with the values attributed to soil properties and functions. Scope for further research to develop and apply the implicit loss function to help decision making by policy makers and regulators is then discussed.
Harris, Kevin R; Eccles, David W; Freeman, Carlos; Ward, Paul
2017-08-01
Research on decision-making under stress has mainly involved laboratory-based studies with few contextual descriptions of decision-making under stress in the natural ecology. We examined how police officers prepared for, coped with and made decisions under threat-of-death stress during real events. A delayed retrospective report method was used to elicit skilled police officers' thoughts and feelings during attempts to resolve such events. Reports were analysed to identify experiences of stress and coping, and thought processes underpinning decision-making during the event. Officers experienced a wide range of events, coped with stress predominantly via problem-focused strategies, and adapted their decision-making under stress based on the available context. Future officer training should involve a greater variety of training scenarios than is involved in current training, and expose trainees to the possible variants of each situation to foster better situational representation and, thus, a more reliable and adaptive mental model for use in decision-making. Practitioner Summary: This study concerns decision-making and coping strategies used by skilled police officers during real threat-of-death situations. Officers' decision-making strategies differed according to the complexity of the situation and they coped with the stress of these situations via attempts to resolve the situations (e.g. by planning responses) and, to a lesser extent, via attempts to deal with their emotions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coleman, C. Norman; Blumenthal, Daniel J.
2013-05-01
Based on experiences in Tokyo responding to the Fukushima Daiichi nuclear power plant crisis, a real-time, medical decision model is presented by which to make key health-related decisions given the central role of health and medical issues in such disasters. Focus is on response and recovery activities that are safe, timely, effective, and well-organized. This approach empowers on-site decision makers to make interim decisions without undue delay using readily available and high-level scientific, medical, communication, and policy expertise. Key features of this approach include ongoing assessment, consultation, information, and adaption to the changing conditions. This medical decision model presented ismore » compatible with the existing US National Response Framework structure.« less
Hart, Andrew S.; Collins, Anne L.; Bernstein, Ilene L.; Phillips, Paul E. M.
2012-01-01
Alcohol use during adolescence has profound and enduring consequences on decision-making under risk. However, the fundamental psychological processes underlying these changes are unknown. Here, we show that alcohol use produces over-fast learning for better-than-expected, but not worse-than-expected, outcomes without altering subjective reward valuation. We constructed a simple reinforcement learning model to simulate altered decision making using behavioral parameters extracted from rats with a history of adolescent alcohol use. Remarkably, the learning imbalance alone was sufficient to simulate the divergence in choice behavior observed between these groups of animals. These findings identify a selective alteration in reinforcement learning following adolescent alcohol use that can account for a robust change in risk-based decision making persisting into later life. PMID:22615989
Soós, Reka; Whiteman, Andrew D; Wilson, David C; Briciu, Cosmin; Nürnberger, Sofia; Oelz, Barbara; Gunsilius, Ellen; Schwehn, Ekkehard
2017-08-01
This is the second of two papers reporting the results of a major study considering 'operator models' for municipal solid waste management (MSWM) in emerging and developing countries. Part A documents the evidence base, while Part B presents a four-step decision support system for selecting an appropriate operator model in a particular local situation. Step 1 focuses on understanding local problems and framework conditions; Step 2 on formulating and prioritising local objectives; and Step 3 on assessing capacities and conditions, and thus identifying strengths and weaknesses, which underpin selection of the operator model. Step 4A addresses three generic questions, including public versus private operation, inter-municipal co-operation and integration of services. For steps 1-4A, checklists have been developed as decision support tools. Step 4B helps choose locally appropriate models from an evidence-based set of 42 common operator models ( coms); decision support tools here are a detailed catalogue of the coms, setting out advantages and disadvantages of each, and a decision-making flowchart. The decision-making process is iterative, repeating steps 2-4 as required. The advantages of a more formal process include avoiding pre-selection of a particular com known to and favoured by one decision maker, and also its assistance in identifying the possible weaknesses and aspects to consider in the selection and design of operator models. To make the best of whichever operator models are selected, key issues which need to be addressed include the capacity of the public authority as 'client', management in general and financial management in particular.
Chen, Keping; Blong, Russell; Jacobson, Carol
2003-04-01
This paper develops a GIS-based integrated approach to risk assessment in natural hazards, with reference to bushfires. The challenges for undertaking this approach have three components: data integration, risk assessment tasks, and risk decision-making. First, data integration in GIS is a fundamental step for subsequent risk assessment tasks and risk decision-making. A series of spatial data integration issues within GIS such as geographical scales and data models are addressed. Particularly, the integration of both physical environmental data and socioeconomic data is examined with an example linking remotely sensed data and areal census data in GIS. Second, specific risk assessment tasks, such as hazard behavior simulation and vulnerability assessment, should be undertaken in order to understand complex hazard risks and provide support for risk decision-making. For risk assessment tasks involving heterogeneous data sources, the selection of spatial analysis units is important. Third, risk decision-making concerns spatial preferences and/or patterns, and a multicriteria evaluation (MCE)-GIS typology for risk decision-making is presented that incorporates three perspectives: spatial data types, data models, and methods development. Both conventional MCE methods and artificial intelligence-based methods with GIS are identified to facilitate spatial risk decision-making in a rational and interpretable way. Finally, the paper concludes that the integrated approach can be used to assist risk management of natural hazards, in theory and in practice.
The drift diffusion model as the choice rule in reinforcement learning.
Pedersen, Mads Lund; Frank, Michael J; Biele, Guido
2017-08-01
Current reinforcement-learning models often assume simplified decision processes that do not fully reflect the dynamic complexities of choice processes. Conversely, sequential-sampling models of decision making account for both choice accuracy and response time, but assume that decisions are based on static decision values. To combine these two computational models of decision making and learning, we implemented reinforcement-learning models in which the drift diffusion model describes the choice process, thereby capturing both within- and across-trial dynamics. To exemplify the utility of this approach, we quantitatively fit data from a common reinforcement-learning paradigm using hierarchical Bayesian parameter estimation, and compared model variants to determine whether they could capture the effects of stimulant medication in adult patients with attention-deficit hyperactivity disorder (ADHD). The model with the best relative fit provided a good description of the learning process, choices, and response times. A parameter recovery experiment showed that the hierarchical Bayesian modeling approach enabled accurate estimation of the model parameters. The model approach described here, using simultaneous estimation of reinforcement-learning and drift diffusion model parameters, shows promise for revealing new insights into the cognitive and neural mechanisms of learning and decision making, as well as the alteration of such processes in clinical groups.
The drift diffusion model as the choice rule in reinforcement learning
Frank, Michael J.
2017-01-01
Current reinforcement-learning models often assume simplified decision processes that do not fully reflect the dynamic complexities of choice processes. Conversely, sequential-sampling models of decision making account for both choice accuracy and response time, but assume that decisions are based on static decision values. To combine these two computational models of decision making and learning, we implemented reinforcement-learning models in which the drift diffusion model describes the choice process, thereby capturing both within- and across-trial dynamics. To exemplify the utility of this approach, we quantitatively fit data from a common reinforcement-learning paradigm using hierarchical Bayesian parameter estimation, and compared model variants to determine whether they could capture the effects of stimulant medication in adult patients with attention-deficit hyper-activity disorder (ADHD). The model with the best relative fit provided a good description of the learning process, choices, and response times. A parameter recovery experiment showed that the hierarchical Bayesian modeling approach enabled accurate estimation of the model parameters. The model approach described here, using simultaneous estimation of reinforcement-learning and drift diffusion model parameters, shows promise for revealing new insights into the cognitive and neural mechanisms of learning and decision making, as well as the alteration of such processes in clinical groups. PMID:27966103
Neural Signatures of Controlled and Automatic Retrieval Processes in Memory-based Decision-making.
Khader, Patrick H; Pachur, Thorsten; Weber, Lilian A E; Jost, Kerstin
2016-01-01
Decision-making often requires retrieval from memory. Drawing on the neural ACT-R theory [Anderson, J. R., Fincham, J. M., Qin, Y., & Stocco, A. A central circuit of the mind. Trends in Cognitive Sciences, 12, 136-143, 2008] and other neural models of memory, we delineated the neural signatures of two fundamental retrieval aspects during decision-making: automatic and controlled activation of memory representations. To disentangle these processes, we combined a paradigm developed to examine neural correlates of selective and sequential memory retrieval in decision-making with a manipulation of associative fan (i.e., the decision options were associated with one, two, or three attributes). The results show that both the automatic activation of all attributes associated with a decision option and the controlled sequential retrieval of specific attributes can be traced in material-specific brain areas. Moreover, the two facets of memory retrieval were associated with distinct activation patterns within the frontoparietal network: The dorsolateral prefrontal cortex was found to reflect increasing retrieval effort during both automatic and controlled activation of attributes. In contrast, the superior parietal cortex only responded to controlled retrieval, arguably reflecting the sequential updating of attribute information in working memory. This dissociation in activation pattern is consistent with ACT-R and constitutes an important step toward a neural model of the retrieval dynamics involved in memory-based decision-making.
Perceptual decision making: drift-diffusion model is equivalent to a Bayesian model
Bitzer, Sebastian; Park, Hame; Blankenburg, Felix; Kiebel, Stefan J.
2014-01-01
Behavioral data obtained with perceptual decision making experiments are typically analyzed with the drift-diffusion model. This parsimonious model accumulates noisy pieces of evidence toward a decision bound to explain the accuracy and reaction times of subjects. Recently, Bayesian models have been proposed to explain how the brain extracts information from noisy input as typically presented in perceptual decision making tasks. It has long been known that the drift-diffusion model is tightly linked with such functional Bayesian models but the precise relationship of the two mechanisms was never made explicit. Using a Bayesian model, we derived the equations which relate parameter values between these models. In practice we show that this equivalence is useful when fitting multi-subject data. We further show that the Bayesian model suggests different decision variables which all predict equal responses and discuss how these may be discriminated based on neural correlates of accumulated evidence. In addition, we discuss extensions to the Bayesian model which would be difficult to derive for the drift-diffusion model. We suggest that these and other extensions may be highly useful for deriving new experiments which test novel hypotheses. PMID:24616689
A Novel Group Decision-Making Method Based on Sensor Data and Fuzzy Information.
Bai, Yu-Ting; Zhang, Bai-Hai; Wang, Xiao-Yi; Jin, Xue-Bo; Xu, Ji-Ping; Su, Ting-Li; Wang, Zhao-Yang
2016-10-28
Algal bloom is a typical phenomenon of the eutrophication of rivers and lakes and makes the water dirty and smelly. It is a serious threat to water security and public health. Most scholars studying solutions for this pollution have studied the principles of remediation approaches, but few have studied the decision-making and selection of the approaches. Existing research uses simplex decision-making information which is highly subjective and uses little of the data from water quality sensors. To utilize these data and solve the rational decision-making problem, a novel group decision-making method is proposed using the sensor data with fuzzy evaluation information. Firstly, the optimal similarity aggregation model of group opinions is built based on the modified similarity measurement of Vague values. Secondly, the approaches' ability to improve the water quality indexes is expressed using Vague evaluation methods. Thirdly, the water quality sensor data are analyzed to match the features of the alternative approaches with grey relational degrees. This allows the best remediation approach to be selected to meet the current water status. Finally, the selection model is applied to the remediation of algal bloom in lakes. The results show this method's rationality and feasibility when using different data from different sources.
Problem-Oriented Corporate Knowledge Base Models on the Case-Based Reasoning Approach Basis
NASA Astrophysics Data System (ADS)
Gluhih, I. N.; Akhmadulin, R. K.
2017-07-01
One of the urgent directions of efficiency enhancement of production processes and enterprises activities management is creation and use of corporate knowledge bases. The article suggests a concept of problem-oriented corporate knowledge bases (PO CKB), in which knowledge is arranged around possible problem situations and represents a tool for making and implementing decisions in such situations. For knowledge representation in PO CKB a case-based reasoning approach is encouraged to use. Under this approach, the content of a case as a knowledge base component has been defined; based on the situation tree a PO CKB knowledge model has been developed, in which the knowledge about typical situations as well as specific examples of situations and solutions have been represented. A generalized problem-oriented corporate knowledge base structural chart and possible modes of its operation have been suggested. The obtained models allow creating and using corporate knowledge bases for support of decision making and implementing, training, staff skill upgrading and analysis of the decisions taken. The universal interpretation of terms “situation” and “solution” adopted in the work allows using the suggested models to develop problem-oriented corporate knowledge bases in different subject domains. It has been suggested to use the developed models for making corporate knowledge bases of the enterprises that operate engineer systems and networks at large production facilities.
Zhang, J L; Li, Y P; Huang, G H; Baetz, B W; Liu, J
2017-06-01
In this study, a Bayesian estimation-based simulation-optimization modeling approach (BESMA) is developed for identifying effluent trading strategies. BESMA incorporates nutrient fate modeling with soil and water assessment tool (SWAT), Bayesian estimation, and probabilistic-possibilistic interval programming with fuzzy random coefficients (PPI-FRC) within a general framework. Based on the water quality protocols provided by SWAT, posterior distributions of parameters can be analyzed through Bayesian estimation; stochastic characteristic of nutrient loading can be investigated which provides the inputs for the decision making. PPI-FRC can address multiple uncertainties in the form of intervals with fuzzy random boundaries and the associated system risk through incorporating the concept of possibility and necessity measures. The possibility and necessity measures are suitable for optimistic and pessimistic decision making, respectively. BESMA is applied to a real case of effluent trading planning in the Xiangxihe watershed, China. A number of decision alternatives can be obtained under different trading ratios and treatment rates. The results can not only facilitate identification of optimal effluent-trading schemes, but also gain insight into the effects of trading ratio and treatment rate on decision making. The results also reveal that decision maker's preference towards risk would affect decision alternatives on trading scheme as well as system benefit. Compared with the conventional optimization methods, it is proved that BESMA is advantageous in (i) dealing with multiple uncertainties associated with randomness and fuzziness in effluent-trading planning within a multi-source, multi-reach and multi-period context; (ii) reflecting uncertainties existing in nutrient transport behaviors to improve the accuracy in water quality prediction; and (iii) supporting pessimistic and optimistic decision making for effluent trading as well as promoting diversity of decision alternatives. Copyright © 2017 Elsevier Ltd. All rights reserved.
Toward an Expanded Definition of Adaptive Decision Making.
ERIC Educational Resources Information Center
Phillips, Susan D.
1997-01-01
Uses the lifespan, life-space model to examine the definition of adaptive decision making. Reviews the existing definition of adaptive decision making as "rational" decision making and offers alternate perspectives on decision making with an emphasis on the implications of using the model. Makes suggestions for future theory, research,…
Nurse manager cognitive decision-making amidst stress and work complexity.
Shirey, Maria R; Ebright, Patricia R; McDaniel, Anna M
2013-01-01
The present study provides insight into nurse manager cognitive decision-making amidst stress and work complexity. Little is known about nurse manager decision-making amidst stress and work complexity. Because nurse manager decisions have the potential to impact patient care quality and safety, understanding their decision-making processes is useful for designing supportive interventions. This qualitative descriptive study interviewed 21 nurse managers from three hospitals to answer the research question: What decision-making processes do nurse managers utilize to address stressful situations in their nurse manager role? Face-to-face interviews incorporating components of the Critical Decision Method illuminated expert-novice practice differences. Content analysis identified one major theme and three sub-themes. The present study produced a cognitive model that guides nurse manager decision-making related to stressful situations. Experience in the role, organizational context and situation factors influenced nurse manager cognitive decision-making processes. Study findings suggest that chronic exposure to stress and work complexity negatively affects nurse manager health and their decision-making processes potentially threatening individual, patient and organizational outcomes. Cognitive decision-making varies based on nurse manager experience and these differences have coaching and mentoring implications. This present study contributes a current understanding of nurse manager decision-making amidst stress and work complexity. © 2012 Blackwell Publishing Ltd.
Liaw, Siaw-Teng; Deveny, Elizabeth; Morrison, Iain; Lewis, Bryn
2006-09-01
Using a factorial vignette survey and modeling methodology, we developed clinical and information models - incorporating evidence base, key concepts, relevant terms, decision-making and workflow needed to practice safely and effectively - to guide the development of an integrated rule-based knowledge module to support prescribing decisions in asthma. We identified workflows, decision-making factors, factor use, and clinician information requirements. The Unified Modeling Language (UML) and public domain software and knowledge engineering tools (e.g. Protégé) were used, with the Australian GP Data Model as the starting point for expressing information needs. A Web Services service-oriented architecture approach was adopted within which to express functional needs, and clinical processes and workflows were expressed in the Business Process Execution Language (BPEL). This formal analysis and modeling methodology to define and capture the process and logic of prescribing best practice in a reference implementation is fundamental to tackling deficiencies in prescribing decision support software.
Decision Making in Action: Applying Research to Practice
NASA Technical Reports Server (NTRS)
Orasanu, Judith; Hart, Sandra G. (Technical Monitor)
1994-01-01
The importance of decision-making to safety in complex, dynamic environments like mission control centers, aviation, and offshore installations has been well established. NASA-ARC has a program of research dedicated to fostering safe and effective decision-making in the manned spaceflight environment: Because access to spaceflight is limited, environments with similar characteristics, including aviation and nuclear power plants, serve as analogs from which space-relevant data can be gathered and theories developed. Analyses of aviation accidents cite crew judgement and decision making as causes or contributing factors in over half of all accidents. Yet laboratory research on decision making has not proven especially helpful in improving the quality of decisions in these kinds of environments. One reason is that the traditional, analytic decision models are inappropriate to multi-dimensional, high-risk environments, and do not accurately describe what expert human decision makers do when they make decisions that have consequences. A new model of dynamic, naturalistic decision making is offered that may prove useful for improving decision making in complex, isolated, confined and high-risk environments. Based on analyses of crew performance in full-mission simulators and accident reports, features that define effective decision strategies in abnormal or emergency situations have been identified. These include accurate situation assessment (including time and risk assessment), appreciation of the complexity of the problem, sensitivity to constraints on the decision, timeliness of the response, and use of adequate information. More effective crews also manage their workload to provide themselves with time and resources to make good good decisions are appropriate to the demands of the situation. Effective crew decision making and overall performance are mediated by crew communication. Communication contributes to performance because it assures that all crew members have essential information, but it also regulates and coordinates crew actions and is the medium of collective thinking in response to a problem. This presentation will examine the relations between leadership, communication, decision making and overall crew performance. Implications of these findings for training will be discussed.
Karakülah, G.; Dicle, O.; Sökmen, S.; Çelikoğlu, C.C.
2015-01-01
Summary Background The selection of appropriate rectal cancer treatment is a complex multi-criteria decision making process, in which clinical decision support systems might be used to assist and enrich physicians’ decision making. Objective The objective of the study was to develop a web-based clinical decision support tool for physicians in the selection of potentially beneficial treatment options for patients with rectal cancer. Methods The updated decision model contained 8 and 10 criteria in the first and second steps respectively. The decision support model, developed in our previous study by combining the Analytic Hierarchy Process (AHP) method which determines the priority of criteria and decision tree that formed using these priorities, was updated and applied to 388 patients data collected retrospectively. Later, a web-based decision support tool named corRECTreatment was developed. The compatibility of the treatment recommendations by the expert opinion and the decision support tool was examined for its consistency. Two surgeons were requested to recommend a treatment and an overall survival value for the treatment among 20 different cases that we selected and turned into a scenario among the most common and rare treatment options in the patient data set. Results In the AHP analyses of the criteria, it was found that the matrices, generated for both decision steps, were consistent (consistency ratio<0.1). Depending on the decisions of experts, the consistency value for the most frequent cases was found to be 80% for the first decision step and 100% for the second decision step. Similarly, for rare cases consistency was 50% for the first decision step and 80% for the second decision step. Conclusions The decision model and corRECTreatment, developed by applying these on real patient data, are expected to provide potential users with decision support in rectal cancer treatment processes and facilitate them in making projections about treatment options. PMID:25848413
Suner, A; Karakülah, G; Dicle, O; Sökmen, S; Çelikoğlu, C C
2015-01-01
The selection of appropriate rectal cancer treatment is a complex multi-criteria decision making process, in which clinical decision support systems might be used to assist and enrich physicians' decision making. The objective of the study was to develop a web-based clinical decision support tool for physicians in the selection of potentially beneficial treatment options for patients with rectal cancer. The updated decision model contained 8 and 10 criteria in the first and second steps respectively. The decision support model, developed in our previous study by combining the Analytic Hierarchy Process (AHP) method which determines the priority of criteria and decision tree that formed using these priorities, was updated and applied to 388 patients data collected retrospectively. Later, a web-based decision support tool named corRECTreatment was developed. The compatibility of the treatment recommendations by the expert opinion and the decision support tool was examined for its consistency. Two surgeons were requested to recommend a treatment and an overall survival value for the treatment among 20 different cases that we selected and turned into a scenario among the most common and rare treatment options in the patient data set. In the AHP analyses of the criteria, it was found that the matrices, generated for both decision steps, were consistent (consistency ratio<0.1). Depending on the decisions of experts, the consistency value for the most frequent cases was found to be 80% for the first decision step and 100% for the second decision step. Similarly, for rare cases consistency was 50% for the first decision step and 80% for the second decision step. The decision model and corRECTreatment, developed by applying these on real patient data, are expected to provide potential users with decision support in rectal cancer treatment processes and facilitate them in making projections about treatment options.
Understanding the Hows and Whys of Decision-Making: From Expected Utility to Divisive Normalization.
Glimcher, Paul
2014-01-01
Over the course of the last century, economists and ethologists have built detailed models from first principles of how humans and animals should make decisions. Over the course of the last few decades, psychologists and behavioral economists have gathered a wealth of data at variance with the predictions of these economic models. This has led to the development of highly descriptive models that can often predict what choices people or animals will make but without offering any insight into why people make the choices that they do--especially when those choices reduce a decision-maker's well-being. Over the course of the last two decades, neurobiologists working with economists and psychologists have begun to use our growing understanding of how the nervous system works to develop new models of how the nervous system makes decisions. The result, a growing revolution at the interdisciplinary border of neuroscience, psychology, and economics, is a new field called Neuroeconomics. Emerging neuroeconomic models stand to revolutionize our understanding of human and animal choice behavior by combining fundamental properties of neurobiological representation with decision-theoretic analyses. In this overview, one class of these models, based on the widely observed neural computation known as divisive normalization, is presented in detail. The work demonstrates not only that a discrete class of computation widely observed in the nervous system is fundamentally ubiquitous, but how that computation shapes behaviors ranging from visual perception to financial decision-making. It also offers the hope of reconciling economic analysis of what choices we should make with psychological observations of the choices we actually do make. Copyright © 2014 Cold Spring Harbor Laboratory Press; all rights reserved.
ERIC Educational Resources Information Center
Hall, John S.
This review analyzes the trend in educational decision making to replace hierarchical authority structures with more rational models for decision making drawn from management science. Emphasis is also placed on alternatives to a hierarchical decision-making model, including governing models, union models, and influence models. A 54-item…
End of Life in a Haitian American, Faith-Based Community: Caring for Family and Communal Unity.
Ladd, Susan Charlotte; Gordon, Shirley C
This article presents two models resulting from a grounded theory study of the end-of-life decision-making process for Haitian Americans. Successful access to this vulnerable population was achieved through the faith-based community. The first model describes this faith-based community of Haitian Americans. The second model describes the process used by families in this community who must make end-of-life healthcare decisions. Implications for nursing practice and caring science include a need to improve the congruence between the nursing care provided at this vulnerable time and the cultural values of a population.
Reiter, Andrea M F; Heinze, Hans-Jochen; Schlagenhauf, Florian; Deserno, Lorenz
2017-02-01
Despite its clinical relevance and the recent recognition as a diagnostic category in the DSM-5, binge eating disorder (BED) has rarely been investigated from a cognitive neuroscientific perspective targeting a more precise neurocognitive profiling of the disorder. BED patients suffer from a lack of behavioral control during recurrent binge eating episodes and thus fail to adapt their behavior in the face of negative consequences, eg, high risk for obesity. To examine impairments in flexible reward-based decision-making, we exposed BED patients (n=22) and matched healthy individuals (n=22) to a reward-guided decision-making task during functional resonance imaging (fMRI). Performing fMRI analysis informed via computational modeling of choice behavior, we were able to identify specific signatures of altered decision-making in BED. On the behavioral level, we observed impaired behavioral adaptation in BED, which was due to enhanced switching behavior, a putative deficit in striking a balance between exploration and exploitation appropriately. This was accompanied by diminished activation related to exploratory decisions in the anterior insula/ventro-lateral prefrontal cortex. Moreover, although so-called model-free reward prediction errors remained intact, representation of ventro-medial prefrontal learning signatures, incorporating inference on unchosen options, was reduced in BED, which was associated with successful decision-making in the task. On the basis of a computational psychiatry account, the presented findings contribute to defining a neurocognitive phenotype of BED.
Reiter, Andrea M F; Heinze, Hans-Jochen; Schlagenhauf, Florian; Deserno, Lorenz
2017-01-01
Despite its clinical relevance and the recent recognition as a diagnostic category in the DSM-5, binge eating disorder (BED) has rarely been investigated from a cognitive neuroscientific perspective targeting a more precise neurocognitive profiling of the disorder. BED patients suffer from a lack of behavioral control during recurrent binge eating episodes and thus fail to adapt their behavior in the face of negative consequences, eg, high risk for obesity. To examine impairments in flexible reward-based decision-making, we exposed BED patients (n=22) and matched healthy individuals (n=22) to a reward-guided decision-making task during functional resonance imaging (fMRI). Performing fMRI analysis informed via computational modeling of choice behavior, we were able to identify specific signatures of altered decision-making in BED. On the behavioral level, we observed impaired behavioral adaptation in BED, which was due to enhanced switching behavior, a putative deficit in striking a balance between exploration and exploitation appropriately. This was accompanied by diminished activation related to exploratory decisions in the anterior insula/ventro-lateral prefrontal cortex. Moreover, although so-called model-free reward prediction errors remained intact, representation of ventro–medial prefrontal learning signatures, incorporating inference on unchosen options, was reduced in BED, which was associated with successful decision-making in the task. On the basis of a computational psychiatry account, the presented findings contribute to defining a neurocognitive phenotype of BED. PMID:27301429
Data Clustering and Evolving Fuzzy Decision Tree for Data Base Classification Problems
NASA Astrophysics Data System (ADS)
Chang, Pei-Chann; Fan, Chin-Yuan; Wang, Yen-Wen
Data base classification suffers from two well known difficulties, i.e., the high dimensionality and non-stationary variations within the large historic data. This paper presents a hybrid classification model by integrating a case based reasoning technique, a Fuzzy Decision Tree (FDT), and Genetic Algorithms (GA) to construct a decision-making system for data classification in various data base applications. The model is major based on the idea that the historic data base can be transformed into a smaller case-base together with a group of fuzzy decision rules. As a result, the model can be more accurately respond to the current data under classifying from the inductions by these smaller cases based fuzzy decision trees. Hit rate is applied as a performance measure and the effectiveness of our proposed model is demonstrated by experimentally compared with other approaches on different data base classification applications. The average hit rate of our proposed model is the highest among others.
Emotion-based decision-making in healthy subjects: short-term effects of reducing dopamine levels.
Sevy, Serge; Hassoun, Youssef; Bechara, Antoine; Yechiam, Eldad; Napolitano, Barbara; Burdick, Katherine; Delman, Howard; Malhotra, Anil
2006-10-01
Converging evidences from animal and human studies suggest that addiction is associated with dopaminergic dysfunction in brain reward circuits. So far, it is unclear what aspects of addictive behaviors are related to a dopaminergic dysfunction. We hypothesize that a decrease in dopaminergic activity impairs emotion-based decision-making. To demonstrate this hypothesis, we investigated the effects of a decrease in dopaminergic activity on the performance of an emotion-based decision-making task, the Iowa gambling task (IGT), in 11 healthy human subjects. We used a double-blind, placebo-controlled, within-subject design to examine the effect of a mixture containing the branched-chain amino acids (BCAA) valine, isoleucine and leucine on prolactin, IGT performance, perceptual competency and visual aspects of visuospatial working memory, visual attention and working memory, and verbal memory. The expectancy-valence model was used to determine the relative contributions of distinct IGT components (attention to past outcomes, relative weight of wins and losses, and choice strategies) in the decision-making process. Compared to placebo, the BCAA mixture increased prolactin levels and impaired IGT performance. BCAA administration interfered with a particular component process of decision-making related to attention to more recent events as compared to more distant events. There were no differences between placebo and BCAA conditions for other aspects of cognition. Our results suggest a direct link between a reduced dopaminergic activity and poor emotion-based decision-making characterized by shortsightedness, and thus difficulties resisting short-term reward, despite long-term negative consequences. These findings have implications for behavioral and pharmacological interventions targeting impaired emotion-based decision-making in addictive disorders.
Cogenerating a Competency-based HRM Degree: A Model and Some Lessons from Experience.
ERIC Educational Resources Information Center
Wooten, Kevin C.; Elden, Max
2001-01-01
A competency-based degree program in human resource management was co-generated by six groups of stakeholders who synthesized competency models using group decision support software. The program focuses on core human resource processes, general business management, strategic decision making and problem solving, change management, and personal…
Automatic Generation of Customized, Model Based Information Systems for Operations Management.
The paper discusses the need for developing a customized, model based system to support management decision making in the field of operations ... management . It provides a critique of the current approaches available, formulates a framework to classify logistics decisions, and suggests an approach for the automatic development of logistics systems. (Author)
The complex contribution of sociodemographics to decision-making power in gay male couples
Perry, Nicholas S.; Huebner, David M.; Baucom, Brian R. W.; Hoff, Colleen C.
2016-01-01
Relationship power is an important dyadic construct in close relationships that is associated with relationship health and partner’s individual health. Understanding what predicts power in heterosexual couples has proven difficult, and even less is known about gay couples. Resource models of power posit that demographic characteristics associated with social status (e.g., age, income) confer power within the relationship, which in turn shapes relationship outcomes. We tested this model in a sample of gay male couples (N=566 couples), and extended it by examining race and HIV status. Multilevel modeling was used to test associations between demographic bases of power and decision-making power. We also examined relative associations among demographic bases and decision-making power with relationship satisfaction, given the literature on power imbalances and overall relationship functioning. Results showed that individual income was positively associated with decision-making power, as was participant’s HIV status, with HIV-positive men reporting greater power. Age differences within the relationship interacted with relationship length to predict decision-making power, but not satisfaction. HIV-concordant positive couples were less satisfied than concordant negative couples. Higher power partners were less satisfied than lower power partners. Demographic factors contributing to decision-making power among same-sex male couples appear to share some similarities with heterosexual couples (e.g., income is associated with power), as well as have unique features (e.g., HIV status influences power). However, these same demographics did not reliably predict relationship satisfaction in the manner that existing power theories suggest. Findings indicate important considerations for theories of power among same-sex male couples. PMID:27606937
Magliocca, Nicholas R; Brown, Daniel G; Ellis, Erle C
2014-01-01
Local changes in land use result from the decisions and actions of land-users within land systems, which are structured by local and global environmental, economic, political, and cultural contexts. Such cross-scale causation presents a major challenge for developing a general understanding of how local decision-making shapes land-use changes at the global scale. This paper implements a generalized agent-based model (ABM) as a virtual laboratory to explore how global and local processes influence the land-use and livelihood decisions of local land-users, operationalized as settlement-level agents, across the landscapes of six real-world test sites. Test sites were chosen in USA, Laos, and China to capture globally-significant variation in population density, market influence, and environmental conditions, with land systems ranging from swidden to commercial agriculture. Publicly available global data were integrated into the ABM to model cross-scale effects of economic globalization on local land-use decisions. A suite of statistics was developed to assess the accuracy of model-predicted land-use outcomes relative to observed and random (i.e. null model) landscapes. At four of six sites, where environmental and demographic forces were important constraints on land-use choices, modeled land-use outcomes were more similar to those observed across sites than the null model. At the two sites in which market forces significantly influenced land-use and livelihood decisions, the model was a poorer predictor of land-use outcomes than the null model. Model successes and failures in simulating real-world land-use patterns enabled the testing of hypotheses on land-use decision-making and yielded insights on the importance of missing mechanisms. The virtual laboratory approach provides a practical framework for systematic improvement of both theory and predictive skill in land change science based on a continual process of experimentation and model enhancement.
Magliocca, Nicholas R.; Brown, Daniel G.; Ellis, Erle C.
2014-01-01
Local changes in land use result from the decisions and actions of land-users within land systems, which are structured by local and global environmental, economic, political, and cultural contexts. Such cross-scale causation presents a major challenge for developing a general understanding of how local decision-making shapes land-use changes at the global scale. This paper implements a generalized agent-based model (ABM) as a virtual laboratory to explore how global and local processes influence the land-use and livelihood decisions of local land-users, operationalized as settlement-level agents, across the landscapes of six real-world test sites. Test sites were chosen in USA, Laos, and China to capture globally-significant variation in population density, market influence, and environmental conditions, with land systems ranging from swidden to commercial agriculture. Publicly available global data were integrated into the ABM to model cross-scale effects of economic globalization on local land-use decisions. A suite of statistics was developed to assess the accuracy of model-predicted land-use outcomes relative to observed and random (i.e. null model) landscapes. At four of six sites, where environmental and demographic forces were important constraints on land-use choices, modeled land-use outcomes were more similar to those observed across sites than the null model. At the two sites in which market forces significantly influenced land-use and livelihood decisions, the model was a poorer predictor of land-use outcomes than the null model. Model successes and failures in simulating real-world land-use patterns enabled the testing of hypotheses on land-use decision-making and yielded insights on the importance of missing mechanisms. The virtual laboratory approach provides a practical framework for systematic improvement of both theory and predictive skill in land change science based on a continual process of experimentation and model enhancement. PMID:24489696
Hilbig, Benjamin E; Pohl, Rüdiger F
2009-09-01
According to part of the adaptive toolbox notion of decision making known as the recognition heuristic (RH), the decision process in comparative judgments-and its duration-is determined by whether recognition discriminates between objects. By contrast, some recently proposed alternative models predict that choices largely depend on the amount of evidence speaking for each of the objects and that decision times thus depend on the evidential difference between objects, or the degree of conflict between options. This article presents 3 experiments that tested predictions derived from the RH against those from alternative models. All experiments used naturally recognized objects without teaching participants any information and thus provided optimal conditions for application of the RH. However, results supported the alternative, evidence-based models and often conflicted with the RH. Recognition was not the key determinant of decision times, whereas differences between objects with respect to (both positive and negative) evidence predicted effects well. In sum, alternative models that allow for the integration of different pieces of information may well provide a better account of comparative judgments. (c) 2009 APA, all rights reserved.
NASA Technical Reports Server (NTRS)
Celaya, Jose R.; Saxen, Abhinav; Goebel, Kai
2012-01-01
This article discusses several aspects of uncertainty representation and management for model-based prognostics methodologies based on our experience with Kalman Filters when applied to prognostics for electronics components. In particular, it explores the implications of modeling remaining useful life prediction as a stochastic process and how it relates to uncertainty representation, management, and the role of prognostics in decision-making. A distinction between the interpretations of estimated remaining useful life probability density function and the true remaining useful life probability density function is explained and a cautionary argument is provided against mixing interpretations for the two while considering prognostics in making critical decisions.
Holden, Richard J; Srinivas, Preethi; Campbell, Noll L; Clark, Daniel O; Bodke, Kunal S; Hong, Youngbok; Boustani, Malaz A; Ferguson, Denisha; Callahan, Christopher M
2018-03-06
Older adults purchase and use over-the-counter (OTC) medications with potentially significant adverse effects. Some OTC medications, such as those with anticholinergic effects, are relatively contraindicated for use by older adults due to evidence of impaired cognition and other adverse effects. To inform the design of future OTC medication safety interventions for older adults, this study investigated consumers' decision making and behavior related to OTC medication purchasing and use, with a focus on OTC anticholinergic medications. The study had a cross-sectional design with multiple methods. A total of 84 adults participated in qualitative research interviews (n = 24), in-store shopper observations (n = 39), and laboratory-based simulated OTC shopping tasks (n = 21). Simulated shopping participants also rank-ordered eight factors on their importance for OTC decision making. Findings revealed that many participants had concerns about medication adverse effects, generally, but were not aware of age-related risk associated with the use of anticholinergic medications. Analyses produced a map of the workflow of OTC-related behavior and decision making as well as related barriers such as difficulty locating medications or comparing them to an alternative. Participants reported effectiveness, adverse effects or health risks, and price as most important to their OTC medication purchase and use decisions. A persona analysis identified two types of consumers: the habit follower, who frequently purchased OTC medications and considered them safe; and the deliberator, who was more likely to weigh their options and consider alternatives to OTC medications. A conceptual model of OTC medication purchase and use is presented. Drawing on study findings and behavioral theories, the model depicts dual processes for OTC medication decision making - habit-based and deliberation-based - as well as the antecedents and consequences of decision making. This model suggests several design directions for consumer-oriented interventions to promote OTC medication safety. Copyright © 2018 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greitzer, Frank L.; Podmore, Robin
2008-11-17
The focus of the present study is on improved training approaches to accelerate learning and improved methods for analyzing effectiveness of tools within a high-fidelity power grid simulated environment. A theory-based model has been developed to document and understand the mental processes that an expert power system operator uses when making critical decisions. The theoretical foundation for the method is based on the concepts of situation awareness, the methods of cognitive task analysis, and the naturalistic decision making (NDM) approach of Recognition Primed Decision Making. The method has been systematically explored and refined as part of a capability demonstration ofmore » a high-fidelity real-time power system simulator under normal and emergency conditions. To examine NDM processes, we analyzed transcripts of operator-to-operator conversations during the simulated scenario to reveal and assess NDM-based performance criteria. The results of the analysis indicate that the proposed framework can be used constructively to map or assess the Situation Awareness Level of the operators at each point in the scenario. We can also identify the mental models and mental simulations that the operators employ at different points in the scenario. This report documents the method, describes elements of the model, and provides appendices that document the simulation scenario and the associated mental models used by operators in the scenario.« less
From guideline modeling to guideline execution: defining guideline-based decision-support services.
Tu, S. W.; Musen, M. A.
2000-01-01
We describe our task-based approach to defining the guideline-based decision-support services that the EON system provides. We categorize uses of guidelines in patient-specific decision support into a set of generic tasks--making of decisions, specification of work to be performed, interpretation of data, setting of goals, and issuance of alert and reminders--that can be solved using various techniques. Our model includes constructs required for representing the knowledge used by these techniques. These constructs form a toolkit from which developers can select modeling solutions for guideline task. Based on the tasks and the guideline model, we define a guideline-execution architecture and a model of interactions between a decision-support server and clients that invoke services provided by the server. These services use generic interfaces derived from guideline tasks and their associated modeling constructs. We describe two implementations of these decision-support services and discuss how this work can be generalized. We argue that a well-defined specification of guideline-based decision-support services will facilitate sharing of tools that implement computable clinical guidelines. PMID:11080007
Sensorimotor Learning Biases Choice Behavior: A Learning Neural Field Model for Decision Making
Schöner, Gregor; Gail, Alexander
2012-01-01
According to a prominent view of sensorimotor processing in primates, selection and specification of possible actions are not sequential operations. Rather, a decision for an action emerges from competition between different movement plans, which are specified and selected in parallel. For action choices which are based on ambiguous sensory input, the frontoparietal sensorimotor areas are considered part of the common underlying neural substrate for selection and specification of action. These areas have been shown capable of encoding alternative spatial motor goals in parallel during movement planning, and show signatures of competitive value-based selection among these goals. Since the same network is also involved in learning sensorimotor associations, competitive action selection (decision making) should not only be driven by the sensory evidence and expected reward in favor of either action, but also by the subject's learning history of different sensorimotor associations. Previous computational models of competitive neural decision making used predefined associations between sensory input and corresponding motor output. Such hard-wiring does not allow modeling of how decisions are influenced by sensorimotor learning or by changing reward contingencies. We present a dynamic neural field model which learns arbitrary sensorimotor associations with a reward-driven Hebbian learning algorithm. We show that the model accurately simulates the dynamics of action selection with different reward contingencies, as observed in monkey cortical recordings, and that it correctly predicted the pattern of choice errors in a control experiment. With our adaptive model we demonstrate how network plasticity, which is required for association learning and adaptation to new reward contingencies, can influence choice behavior. The field model provides an integrated and dynamic account for the operations of sensorimotor integration, working memory and action selection required for decision making in ambiguous choice situations. PMID:23166483
Levin, Lia; Schwartz-Tayri, Talia
2017-06-01
Partnerships between service users and social workers are complex in nature and can be driven by both personal and contextual circumstances. This study sought to explore the relationship between social workers' involvement in shared decision making with service users, their attitudes towards service users in poverty, moral standards and health and social care organizations' policies towards shared decision making. Based on the responses of 225 licensed social workers from health and social care agencies in the public, private and third sectors in Israel, path analysis was used to test a hypothesized model. Structural attributions for poverty contributed to attitudes towards people who live in poverty, which led to shared decision making. Also, organizational support in shared decision making, and professional moral identity, contributed to ethical behaviour which led to shared decision making. The results of this analysis revealed that shared decision making may be a scion of branched roots planted in the relationship between ethics, organizations and Stigma. © 2016 The Authors. Health Expectations Published by John Wiley & Sons Ltd.
Map for Decision Making in Operating Distance Learning System--Research Results.
ERIC Educational Resources Information Center
Offir, Baruch
2000-01-01
Examines decision-making aspects of the introduction of distance learning into university instruction and learning based on experiences in Israel. Discusses the introduction of information technology into the classroom; examines teacher/student interactions; and suggests a model for introducing distance learning that focuses on the role of the…
Decision-Making Accuracy of CBM Progress-Monitoring Data
ERIC Educational Resources Information Center
Hintze, John M.; Wells, Craig S.; Marcotte, Amanda M.; Solomon, Benjamin G.
2018-01-01
This study examined the diagnostic accuracy associated with decision making as is typically conducted with curriculum-based measurement (CBM) approaches to progress monitoring. Using previously published estimates of the standard errors of estimate associated with CBM, 20,000 progress-monitoring data sets were simulated to model student reading…
Modeling Hospital Discharge and Placement Decision Making: Whither the Elderly.
ERIC Educational Resources Information Center
Clark, William F.; Pelham, Anabel O.
This paper examines the hospital discharge decision making process for elderly patients, based on observations of the operations of a long term care agency, the California Multipurpose Senior Services Project. The analysis is divided into four components: actors, factors, processes, and strategy critique. The first section discusses the major…
Krajbich, Ian; Rangel, Antonio
2011-08-16
How do we make decisions when confronted with several alternatives (e.g., on a supermarket shelf)? Previous work has shown that accumulator models, such as the drift-diffusion model, can provide accurate descriptions of the psychometric data for binary value-based choices, and that the choice process is guided by visual attention. However, the computational processes used to make choices in more complicated situations involving three or more options are unknown. We propose a model of trinary value-based choice that generalizes what is known about binary choice, and test it using an eye-tracking experiment. We find that the model provides a quantitatively accurate description of the relationship between choice, reaction time, and visual fixation data using the same parameters that were estimated in previous work on binary choice. Our findings suggest that the brain uses similar computational processes to make binary and trinary choices.
Cypko, Mario A; Stoehr, Matthaeus; Kozniewski, Marcin; Druzdzel, Marek J; Dietz, Andreas; Berliner, Leonard; Lemke, Heinz U
2017-11-01
Oncological treatment is being increasingly complex, and therefore, decision making in multidisciplinary teams is becoming the key activity in the clinical pathways. The increased complexity is related to the number and variability of possible treatment decisions that may be relevant to a patient. In this paper, we describe validation of a multidisciplinary cancer treatment decision in the clinical domain of head and neck oncology. Probabilistic graphical models and corresponding inference algorithms, in the form of Bayesian networks, can support complex decision-making processes by providing a mathematically reproducible and transparent advice. The quality of BN-based advice depends on the quality of the model. Therefore, it is vital to validate the model before it is applied in practice. For an example BN subnetwork of laryngeal cancer with 303 variables, we evaluated 66 patient records. To validate the model on this dataset, a validation workflow was applied in combination with quantitative and qualitative analyses. In the subsequent analyses, we observed four sources of imprecise predictions: incorrect data, incomplete patient data, outvoting relevant observations, and incorrect model. Finally, the four problems were solved by modifying the data and the model. The presented validation effort is related to the model complexity. For simpler models, the validation workflow is the same, although it may require fewer validation methods. The validation success is related to the model's well-founded knowledge base. The remaining laryngeal cancer model may disclose additional sources of imprecise predictions.
Chahine, Saad; Cristancho, Sayra; Padgett, Jessica; Lingard, Lorelei
2017-06-01
In the competency-based medical education (CBME) approach, clinical competency committees are responsible for making decisions about trainees' competence. However, we currently lack a theoretical model for group decision-making to inform this emerging assessment phenomenon. This paper proposes an organizing framework to study and guide the decision-making processes of clinical competency committees.This is an explanatory, non-exhaustive review, tailored to identify relevant theoretical and evidence-based papers related to small group decision-making. The search was conducted using Google Scholar, Web of Science, MEDLINE, ERIC, and PsycINFO for relevant literature. Using a thematic analysis, two researchers (SC & JP) met four times between April-June 2016 to consolidate the literature included in this review.Three theoretical orientations towards group decision-making emerged from the review: schema, constructivist, and social influence. Schema orientations focus on how groups use algorithms for decision-making. Constructivist orientations focus on how groups construct their shared understanding. Social influence orientations focus on how individual members influence the group's perspective on a decision. Moderators of decision-making relevant to all orientations include: guidelines, stressors, authority, and leadership.Clinical competency committees are the mechanisms by which groups of clinicians will be in charge of interpreting multiple assessment data points and coming to a shared decision about trainee competence. The way in which these committees make decisions can have huge implications for trainee progression and, ultimately, patient care. Therefore, there is a pressing need to build the science of how such group decision-making works in practice. This synthesis suggests a preliminary organizing framework that can be used in the implementation and study of clinical competency committees.
Data-Based Decision Making in Education: Challenges and Opportunities
ERIC Educational Resources Information Center
Schildkamp, Kim, Ed.; Lai, Mei Kuin, Ed.; Earl, Lorna, Ed.
2013-01-01
In a context where schools are held more and more accountable for the education they provide, data-based decision making has become increasingly important. This book brings together scholars from several countries to examine data-based decision making. Data-based decision making in this book refers to making decisions based on a broad range of…
Energy-Water Nexus: Balancing the Tradeoffs between Two-Level Decision Makers
Zhang, Xiaodong; Vesselinov, Velimir Valentinov
2016-09-03
Energy-water nexus has substantially increased importance in the recent years. Synergistic approaches based on systems-analysis and mathematical models are critical for helping decision makers better understand the interrelationships and tradeoffs between energy and water. In energywater nexus management, various decision makers with different goals and preferences, which are often conflicting, are involved. These decision makers may have different controlling power over the management objectives and the decisions. They make decisions sequentially from the upper level to the lower level, challenging decision making in energy-water nexus. In order to address such planning issues, a bi-level decision model is developed, which improvesmore » upon the existing studies by integration of bi-level programming into energy-water nexus management. The developed model represents a methodological contribution to the challenge of sequential decisionmaking in energy-water nexus through provision of an integrated modeling framework/tool. An interactive fuzzy optimization methodology is introduced to seek a satisfactory solution to meet the overall satisfaction of the two-level decision makers. The tradeoffs between the two-level decision makers in energy-water nexus management are effectively addressed and quantified. Application of the proposed model to a synthetic example problem has demonstrated its applicability in practical energy-water nexus management. Optimal solutions for electricity generation, fuel supply, water supply including groundwater, surface water and recycled water, capacity expansion of the power plants, and GHG emission control are generated. In conclusion, these analyses are capable of helping decision makers or stakeholders adjust their tolerances to make informed decisions to achieve the overall satisfaction of energy-water nexus management where bi-level sequential decision making process is involved.« less
Energy-Water Nexus: Balancing the Tradeoffs between Two-Level Decision Makers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Xiaodong; Vesselinov, Velimir Valentinov
Energy-water nexus has substantially increased importance in the recent years. Synergistic approaches based on systems-analysis and mathematical models are critical for helping decision makers better understand the interrelationships and tradeoffs between energy and water. In energywater nexus management, various decision makers with different goals and preferences, which are often conflicting, are involved. These decision makers may have different controlling power over the management objectives and the decisions. They make decisions sequentially from the upper level to the lower level, challenging decision making in energy-water nexus. In order to address such planning issues, a bi-level decision model is developed, which improvesmore » upon the existing studies by integration of bi-level programming into energy-water nexus management. The developed model represents a methodological contribution to the challenge of sequential decisionmaking in energy-water nexus through provision of an integrated modeling framework/tool. An interactive fuzzy optimization methodology is introduced to seek a satisfactory solution to meet the overall satisfaction of the two-level decision makers. The tradeoffs between the two-level decision makers in energy-water nexus management are effectively addressed and quantified. Application of the proposed model to a synthetic example problem has demonstrated its applicability in practical energy-water nexus management. Optimal solutions for electricity generation, fuel supply, water supply including groundwater, surface water and recycled water, capacity expansion of the power plants, and GHG emission control are generated. In conclusion, these analyses are capable of helping decision makers or stakeholders adjust their tolerances to make informed decisions to achieve the overall satisfaction of energy-water nexus management where bi-level sequential decision making process is involved.« less
Dual processing model of medical decision-making
2012-01-01
Background Dual processing theory of human cognition postulates that reasoning and decision-making can be described as a function of both an intuitive, experiential, affective system (system I) and/or an analytical, deliberative (system II) processing system. To date no formal descriptive model of medical decision-making based on dual processing theory has been developed. Here we postulate such a model and apply it to a common clinical situation: whether treatment should be administered to the patient who may or may not have a disease. Methods We developed a mathematical model in which we linked a recently proposed descriptive psychological model of cognition with the threshold model of medical decision-making and show how this approach can be used to better understand decision-making at the bedside and explain the widespread variation in treatments observed in clinical practice. Results We show that physician’s beliefs about whether to treat at higher (lower) probability levels compared to the prescriptive therapeutic thresholds obtained via system II processing is moderated by system I and the ratio of benefit and harms as evaluated by both system I and II. Under some conditions, the system I decision maker’s threshold may dramatically drop below the expected utility threshold derived by system II. This can explain the overtreatment often seen in the contemporary practice. The opposite can also occur as in the situations where empirical evidence is considered unreliable, or when cognitive processes of decision-makers are biased through recent experience: the threshold will increase relative to the normative threshold value derived via system II using expected utility threshold. This inclination for the higher diagnostic certainty may, in turn, explain undertreatment that is also documented in the current medical practice. Conclusions We have developed the first dual processing model of medical decision-making that has potential to enrich the current medical decision-making field, which is still to the large extent dominated by expected utility theory. The model also provides a platform for reconciling two groups of competing dual processing theories (parallel competitive with default-interventionalist theories). PMID:22943520
Optimal and Nonoptimal Computer-Based Test Designs for Making Pass-Fail Decisions
ERIC Educational Resources Information Center
Hambleton, Ronald K.; Xing, Dehui
2006-01-01
Now that many credentialing exams are being routinely administered by computer, new computer-based test designs, along with item response theory models, are being aggressively researched to identify specific designs that can increase the decision consistency and accuracy of pass-fail decisions. The purpose of this study was to investigate the…
Models of Affective Decision Making: How Do Feelings Predict Choice?
Charpentier, Caroline J; De Neve, Jan-Emmanuel; Li, Xinyi; Roiser, Jonathan P; Sharot, Tali
2016-06-01
Intuitively, how you feel about potential outcomes will determine your decisions. Indeed, an implicit assumption in one of the most influential theories in psychology, prospect theory, is that feelings govern choice. Surprisingly, however, very little is known about the rules by which feelings are transformed into decisions. Here, we specified a computational model that used feelings to predict choices. We found that this model predicted choice better than existing value-based models, showing a unique contribution of feelings to decisions, over and above value. Similar to the value function in prospect theory, our feeling function showed diminished sensitivity to outcomes as value increased. However, loss aversion in choice was explained by an asymmetry in how feelings about losses and gains were weighted when making a decision, not by an asymmetry in the feelings themselves. The results provide new insights into how feelings are utilized to reach a decision. © The Author(s) 2016.
Models of Affective Decision Making
Charpentier, Caroline J.; De Neve, Jan-Emmanuel; Li, Xinyi; Roiser, Jonathan P.; Sharot, Tali
2016-01-01
Intuitively, how you feel about potential outcomes will determine your decisions. Indeed, an implicit assumption in one of the most influential theories in psychology, prospect theory, is that feelings govern choice. Surprisingly, however, very little is known about the rules by which feelings are transformed into decisions. Here, we specified a computational model that used feelings to predict choices. We found that this model predicted choice better than existing value-based models, showing a unique contribution of feelings to decisions, over and above value. Similar to the value function in prospect theory, our feeling function showed diminished sensitivity to outcomes as value increased. However, loss aversion in choice was explained by an asymmetry in how feelings about losses and gains were weighted when making a decision, not by an asymmetry in the feelings themselves. The results provide new insights into how feelings are utilized to reach a decision. PMID:27071751
Factors influencing the clinical decision-making of midwives: a qualitative study.
Daemers, Darie O A; van Limbeek, Evelien B M; Wijnen, Hennie A A; Nieuwenhuijze, Marianne J; de Vries, Raymond G
2017-10-06
Although midwives make clinical decisions that have an impact on the health and well-being of mothers and babies, little is known about how they make those decisions. Wide variation in intrapartum decisions to refer women to obstetrician-led care suggests that midwives' decisions are based on more than the evidence based medicine (EBM) model - i.e. clinical evidence, midwife's expertise, and woman's values - alone. With this study we aimed to explore the factors that influence clinical decision-making of midwives who work independently. We used a qualitative approach, conducting in-depth interviews with a purposive sample of 11 Dutch primary care midwives. Data collection took place between May and September 2015. The interviews were semi-structured, using written vignettes to solicit midwives' clinical decision-making processes (Think Aloud method). We performed thematic analysis on the transcripts. We identified five themes that influenced clinical decision-making: the pregnant woman as a whole person, sources of knowledge, the midwife as a whole person, the collaboration between maternity care professionals, and the organisation of care. Regarding the midwife, her decisions were shaped not only by her experience, intuition, and personal circumstances, but also by her attitudes about physiology, woman-centredness, shared decision-making, and collaboration with other professionals. The nature of the local collaboration between maternity care professionals and locally-developed protocols dominated midwives' clinical decision-making. When midwives and obstetricians had different philosophies of care and different practice styles, their collaborative efforts were challenged. Midwives' clinical decision-making is a more varied and complex process than the EBM framework suggests. If midwives are to succeed in their role as promoters and protectors of physiological pregnancy and birth, they need to understand how clinical decisions in a multidisciplinary context are actually made.
Effectiveness of a Case-Based Computer Program on Students' Ethical Decision Making.
Park, Eun-Jun; Park, Mihyun
2015-11-01
The aim of this study was to test the effectiveness of a case-based computer program, using an integrative ethical decision-making model, on the ethical decision-making competency of nursing students in South Korea. This study used a pre- and posttest comparison design. Students in the intervention group used a computer program for case analysis assignments, whereas students in the standard group used a traditional paper assignment for case analysis. The findings showed that using the case-based computer program as a complementary tool for the ethics courses offered at the university enhanced students' ethical preparedness and satisfaction with the course. On the basis of the findings, it is recommended that nurse educators use a case-based computer program as a complementary self-study tool in ethics courses to supplement student learning without an increase in course hours, particularly in terms of analyzing ethics cases with dilemma scenarios and exercising ethical decision making. Copyright 2015, SLACK Incorporated.
Myers, Catherine E.; Sheynin, Jony; Baldson, Tarryn; Luzardo, Andre; Beck, Kevin D.; Hogarth, Lee; Haber, Paul; Moustafa, Ahmed A.
2016-01-01
Addiction is the continuation of a habit in spite of negative consequences. A vast literature gives evidence that this poor decision-making behavior in individuals addicted to drugs also generalizes to laboratory decision making tasks, suggesting that the impairment in decision-making is not limited to decisions about taking drugs. In the current experiment, opioid-addicted individuals and matched controls with no history of illicit drug use were administered a probabilistic classification task that embeds both reward-based and punishment-based learning trials, and a computational model of decision making was applied to understand the mechanisms describing individuals’ performance on the task. Although behavioral results showed thatopioid-addicted individuals performed as well as controls on both reward- and punishment-based learning, the modeling results suggested subtle differences in how decisions were made between the two groups. Specifically, the opioid-addicted group showed decreased tendency to repeat prior responses, meaning that they were more likely to “chase reward” when expectancies were violated, whereas controls were more likely to stick with a previously-successful response rule, despite occasional expectancy violations. This tendency to chase short-term reward, potentially at the expense of developing rules that maximize reward over the long term, may be a contributing factor to opioid addiction. Further work is indicated to better understand whether this tendency arises as a result of brain changes in the wake of continued opioid use/abuse, or might be a pre-existing factor that may contribute to risk for addiction. PMID:26381438
Risk Decision Making Model for Reservoir Floodwater resources Utilization
NASA Astrophysics Data System (ADS)
Huang, X.
2017-12-01
Floodwater resources utilization(FRU) can alleviate the shortage of water resources, but there are risks. In order to safely and efficiently utilize the floodwater resources, it is necessary to study the risk of reservoir FRU. In this paper, the risk rate of exceeding the design flood water level and the risk rate of exceeding safety discharge are estimated. Based on the principle of the minimum risk and the maximum benefit of FRU, a multi-objective risk decision making model for FRU is constructed. Probability theory and mathematical statistics method is selected to calculate the risk rate; C-D production function method and emergy analysis method is selected to calculate the risk benefit; the risk loss is related to flood inundation area and unit area loss; the multi-objective decision making problem of the model is solved by the constraint method. Taking the Shilianghe reservoir in Jiangsu Province as an example, the optimal equilibrium solution of FRU of the Shilianghe reservoir is found by using the risk decision making model, and the validity and applicability of the model are verified.
Cella, Matteo; Dymond, Simon; Cooper, Andrew; Turnbull, Oliver H
2012-03-30
Individuals with schizophrenia often lack insight or awareness. Resulting impairment has been observed in various cognitive domains and, recently, linked to problems in emotion-based learning. The Iowa Gambling Task (IGT) has been used to assess emotion-based decision-making in patients with schizophrenia, but results have been inconclusive. The current study further investigates emotion-based decision-making in schizophrenia by elucidating the unique contribution of awareness. Twenty-five patients with schizophrenia and 24 healthy controls were assessed with a modified version of the IGT recording awareness at regular intervals. Symptom assessment, medication and medical history were recorded for the clinical group. Patients with schizophrenia underperformed on the IGT compared to controls. Subjective awareness levels were significantly lower in the schizophrenia group and were associated with hallucination severity. Cognitive decision modelling further indicated that patients with schizophrenia had impaired attention to losses, compared to controls. This parameter was positively correlated with awareness. We also found that positive symptoms altered awareness levels and suggest that this disruption may contribute to sub-optimal decision-making. Overall, a lack of awareness may be an important aspect in understanding impaired social cognitive functioning and emotion-based learning observed in schizophrenia. Copyright © 2011 Elsevier Ltd. All rights reserved.
A Developmental Approach to the Teaching of Ethical Decision Making.
ERIC Educational Resources Information Center
Neukrug, Edward S.
1996-01-01
Examines the newly adopted code of ethics, reviews some ethical decision-making models, and hypothesizes how the maturity of a student might mediate the effective use of codes and of decision-making models. Provides a model for human service educators that integrates ethical guidelines and ethical decision-making models. (RJM)
Advanced Computational Framework for Environmental Management ZEM, Version 1.x
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vesselinov, Velimir V.; O'Malley, Daniel; Pandey, Sachin
2016-11-04
Typically environmental management problems require analysis of large and complex data sets originating from concurrent data streams with different data collection frequencies and pedigree. These big data sets require on-the-fly integration into a series of models with different complexity for various types of model analyses where the data are applied as soft and hard model constraints. This is needed to provide fast iterative model analyses based on the latest available data to guide decision-making. Furthermore, the data and model are associated with uncertainties. The uncertainties are probabilistic (e.g. measurement errors) and non-probabilistic (unknowns, e.g. alternative conceptual models characterizing site conditions).more » To address all of these issues, we have developed an integrated framework for real-time data and model analyses for environmental decision-making called ZEM. The framework allows for seamless and on-the-fly integration of data and modeling results for robust and scientifically-defensible decision-making applying advanced decision analyses tools such as Bayesian- Information-Gap Decision Theory (BIG-DT). The framework also includes advanced methods for optimization that are capable of dealing with a large number of unknown model parameters, and surrogate (reduced order) modeling capabilities based on support vector regression techniques. The framework is coded in Julia, a state-of-the-art high-performance programing language (http://julialang.org). The ZEM framework is open-source and can be applied to any environmental management site. The framework will be open-source and released under GPL V3 license.« less
Tedford, Stephanie E.; Holtz, Nathan A.; Persons, Amanda L.; Napier, T. Celeste
2014-01-01
Pathological gambling is one manifestation of impulse control disorders. The biological underpinnings of these disorders remain elusive and treatment is far from ideal. Animal models of impulse control disorders are a critical research tool for understanding this condition and for medication development. Modeling such complex behaviors is daunting, but by its deconstruction, scientists have recapitulated in animals critical aspects of gambling. One aspect of gambling is cost/benefit decision-making wherein one weighs the anticipated costs and expected benefits of a course of action. Risk/reward, delay-based and effort-based decision-making all represent cost/benefit choices. These features are studied in humans and have been translated to animal protocols to measure decision-making processes. Traditionally, the positive reinforcer used in animal studies is food. Here, we describe how intracranial self-stimulation can be used for cost/benefit decision-making tasks and overview our recent studies showing how pharmacological therapies alter these behaviors in laboratory rats. We propose that these models may have value in screening new compounds for the ability to promote and prevent aspects of gambling behavior. PMID:24966822
Recognition Decisions From Visual Working Memory Are Mediated by Continuous Latent Strengths.
Ricker, Timothy J; Thiele, Jonathan E; Swagman, April R; Rouder, Jeffrey N
2017-08-01
Making recognition decisions often requires us to reference the contents of working memory, the information available for ongoing cognitive processing. As such, understanding how recognition decisions are made when based on the contents of working memory is of critical importance. In this work we examine whether recognition decisions based on the contents of visual working memory follow a continuous decision process of graded information about the correct choice or a discrete decision process reflecting only knowing and guessing. We find a clear pattern in favor of a continuous latent strength model of visual working memory-based decision making, supporting the notion that visual recognition decision processes are impacted by the degree of matching between the contents of working memory and the choices given. Relation to relevant findings and the implications for human information processing more generally are discussed. Copyright © 2016 Cognitive Science Society, Inc.
Osman, Magda; Wiegmann, Alex
2017-03-01
In this review we make a simple theoretical argument which is that for theory development, computational modeling, and general frameworks for understanding moral psychology researchers should build on domain-general principles from reasoning, judgment, and decision-making research. Our approach is radical with respect to typical models that exist in moral psychology that tend to propose complex innate moral grammars and even evolutionarily guided moral principles. In support of our argument we show that by using a simple value-based decision model we can capture a range of core moral behaviors. Crucially, the argument we propose is that moral situations per se do not require anything specialized or different from other situations in which we have to make decisions, inferences, and judgments in order to figure out how to act.
A behavioural and neural evaluation of prospective decision-making under risk
Symmonds, Mkael; Bossaerts, Peter; Dolan, Raymond J.
2010-01-01
Making the best choice when faced with a chain of decisions requires a person to judge both anticipated outcomes and future actions. Although economic decision-making models account for both risk and reward in single choice contexts there is a dearth of similar knowledge about sequential choice. Classical utility-based models assume that decision-makers select and follow an optimal pre-determined strategy, irrespective of the particular order in which options are presented. An alternative model involves continuously re-evaluating decision utilities, without prescribing a specific future set of choices. Here, using behavioral and functional magnetic resonance imaging (fMRI) data, we studied human subjects in a sequential choice task and use these data to compare alternative decision models of valuation and strategy selection. We provide evidence that subjects adopt a model of re-evaluating decision utilities, where available strategies are continuously updated and combined in assessing action values. We validate this model by using simultaneously-acquired fMRI data to show that sequential choice evokes a pattern of neural response consistent with a tracking of anticipated distribution of future reward, as expected in such a model. Thus, brain activity evoked at each decision point reflects the expected mean, variance and skewness of possible payoffs, consistent with the idea that sequential choice evokes a prospective evaluation of both available strategies and possible outcomes. PMID:20980595
A behavioral and neural evaluation of prospective decision-making under risk.
Symmonds, Mkael; Bossaerts, Peter; Dolan, Raymond J
2010-10-27
Making the best choice when faced with a chain of decisions requires a person to judge both anticipated outcomes and future actions. Although economic decision-making models account for both risk and reward in single-choice contexts, there is a dearth of similar knowledge about sequential choice. Classical utility-based models assume that decision-makers select and follow an optimal predetermined strategy, regardless of the particular order in which options are presented. An alternative model involves continuously reevaluating decision utilities, without prescribing a specific future set of choices. Here, using behavioral and functional magnetic resonance imaging (fMRI) data, we studied human subjects in a sequential choice task and use these data to compare alternative decision models of valuation and strategy selection. We provide evidence that subjects adopt a model of reevaluating decision utilities, in which available strategies are continuously updated and combined in assessing action values. We validate this model by using simultaneously acquired fMRI data to show that sequential choice evokes a pattern of neural response consistent with a tracking of anticipated distribution of future reward, as expected in such a model. Thus, brain activity evoked at each decision point reflects the expected mean, variance, and skewness of possible payoffs, consistent with the idea that sequential choice evokes a prospective evaluation of both available strategies and possible outcomes.
Retrospective revaluation in sequential decision making: a tale of two systems.
Gershman, Samuel J; Markman, Arthur B; Otto, A Ross
2014-02-01
Recent computational theories of decision making in humans and animals have portrayed 2 systems locked in a battle for control of behavior. One system--variously termed model-free or habitual--favors actions that have previously led to reward, whereas a second--called the model-based or goal-directed system--favors actions that causally lead to reward according to the agent's internal model of the environment. Some evidence suggests that control can be shifted between these systems using neural or behavioral manipulations, but other evidence suggests that the systems are more intertwined than a competitive account would imply. In 4 behavioral experiments, using a retrospective revaluation design and a cognitive load manipulation, we show that human decisions are more consistent with a cooperative architecture in which the model-free system controls behavior, whereas the model-based system trains the model-free system by replaying and simulating experience.
Noise, cost and speed-accuracy trade-offs: decision-making in a decentralized system
Marshall, James A.R.; Dornhaus, Anna; Franks, Nigel R.; Kovacs, Tim
2005-01-01
Many natural and artificial decision-making systems face decision problems where there is an inherent compromise between two or more objectives. One such common compromise is between the speed and accuracy of a decision. The ability to exploit the characteristics of a decision problem in order to vary between the extremes of making maximally rapid, or maximally accurate decisions, is a useful property of such systems. Colonies of the ant Temnothorax albipennis (formerly Leptothorax albipennis) are a paradigmatic decentralized decision-making system, and have been shown flexibly to compromise accuracy for speed when making decisions during house-hunting. During emigration, a colony must typically evaluate and choose between several possible alternative new nest sites of differing quality. In this paper, we examine this speed-accuracy trade-off through modelling, and conclude that noise and time-cost of assessing alternative choices are likely to be significant for T. albipennis. Noise and cost of such assessments are likely to mean that T. albipennis' decision-making mechanism is Pareto-optimal in one crucial regard; increasing the willingness of individuals to change their decisions cannot improve collective accuracy overall without impairing speed. We propose that a decentralized control algorithm based on this emigration behaviour may be derived for applications in engineering domains and specify the characteristics of the problems to which it should be suited, based on our new results. PMID:16849234
Summerfield, Christopher; Tsetsos, Konstantinos
2012-01-01
Investigation into the neural and computational bases of decision-making has proceeded in two parallel but distinct streams. Perceptual decision-making (PDM) is concerned with how observers detect, discriminate, and categorize noisy sensory information. Economic decision-making (EDM) explores how options are selected on the basis of their reinforcement history. Traditionally, the sub-fields of PDM and EDM have employed different paradigms, proposed different mechanistic models, explored different brain regions, disagreed about whether decisions approach optimality. Nevertheless, we argue that there is a common framework for understanding decisions made in both tasks, under which an agent has to combine sensory information (what is the stimulus) with value information (what is it worth). We review computational models of the decision process typically used in PDM, based around the idea that decisions involve a serial integration of evidence, and assess their applicability to decisions between good and gambles. Subsequently, we consider the contribution of three key brain regions - the parietal cortex, the basal ganglia, and the orbitofrontal cortex (OFC) - to perceptual and EDM, with a focus on the mechanisms by which sensory and reward information are integrated during choice. We find that although the parietal cortex is often implicated in the integration of sensory evidence, there is evidence for its role in encoding the expected value of a decision. Similarly, although much research has emphasized the role of the striatum and OFC in value-guided choices, they may play an important role in categorization of perceptual information. In conclusion, we consider how findings from the two fields might be brought together, in order to move toward a general framework for understanding decision-making in humans and other primates.
Summerfield, Christopher; Tsetsos, Konstantinos
2012-01-01
Investigation into the neural and computational bases of decision-making has proceeded in two parallel but distinct streams. Perceptual decision-making (PDM) is concerned with how observers detect, discriminate, and categorize noisy sensory information. Economic decision-making (EDM) explores how options are selected on the basis of their reinforcement history. Traditionally, the sub-fields of PDM and EDM have employed different paradigms, proposed different mechanistic models, explored different brain regions, disagreed about whether decisions approach optimality. Nevertheless, we argue that there is a common framework for understanding decisions made in both tasks, under which an agent has to combine sensory information (what is the stimulus) with value information (what is it worth). We review computational models of the decision process typically used in PDM, based around the idea that decisions involve a serial integration of evidence, and assess their applicability to decisions between good and gambles. Subsequently, we consider the contribution of three key brain regions – the parietal cortex, the basal ganglia, and the orbitofrontal cortex (OFC) – to perceptual and EDM, with a focus on the mechanisms by which sensory and reward information are integrated during choice. We find that although the parietal cortex is often implicated in the integration of sensory evidence, there is evidence for its role in encoding the expected value of a decision. Similarly, although much research has emphasized the role of the striatum and OFC in value-guided choices, they may play an important role in categorization of perceptual information. In conclusion, we consider how findings from the two fields might be brought together, in order to move toward a general framework for understanding decision-making in humans and other primates. PMID:22654730
Medical students, clinical preventive services, and shared decision-making.
Keefe, Carole W; Thompson, Margaret E; Noel, Mary Margaret
2002-11-01
Improving access to preventive care requires addressing patient, provider, and systems barriers. Patients often lack knowledge or are skeptical about the importance of prevention. Physicians feel that they have too little time, are not trained to deliver preventive services, and are concerned about the effectiveness of prevention. We have implemented an educational module in the required family practice clerkship (1) to enhance medical student learning about common clinical preventive services and (2) to teach students how to inform and involve patients in shared decision making about those services. Students are asked to examine available evidence-based information for preventive screening services. They are encouraged to look at the recommendations of various organizations and use such resources as reports from the U.S. Preventive Services Task Force to determine recommendations they want to be knowledgeable about in talking with their patients. For learning shared decision making, students are trained to use a model adapted from Braddock and colleagues(1) to discuss specific screening services and to engage patients in the process of making informed decisions about what is best for their own health. The shared decision making is presented and modeled by faculty, discussed in small groups, and students practice using Web-based cases and simulations. The students are evaluated using formative and summative performance-based assessments as they interact with simulated patients about (1) screening for high blood cholesterol and other lipid abnormalities, (2) screening for colorectal cancer, (3) screening for prostate cancer, and (4) screening for breast cancer. The final student evaluation is a ten-minute, videotaped discussion with a simulated patient about screening for colorectal cancer that is graded against a checklist that focuses primarily on the elements of shared decision making. Our medical students appear quite willing to accept shared decision making as a skill that they should have in working with patients, and this was the primary focus of the newly implemented module. However, we have learned that students need to deepen their understanding of screening services in order to help patients understand the associated benefits and risks. The final videotaped interaction with a simulated patient about colorectal cancer screening has been very helpful in making it more obvious to faculty what students believe and know about screening for colorectal cancer. As the students are asked to discuss clinical issues with patients and discuss the pros and cons of screening tests as part of the shared decision-making process, their thinking becomes transparent and it is evident where curricular changes and enhancements are required. We have found that an explicit model that allows students to demonstrate a process for shared decision making is a good introductory tool. We think it would be helpful to provide students with more formative feedback. We would like to develop faculty development programs around shared decision making so that more of our clinical faculty would model such a process with patients. Performance-based assessments are resource-intensive, but they appear to be worth the added effort in terms of enhanced skills development and a more comprehensive appraisal of student learning.
Opioid Modulation of Value-Based Decision-Making in Healthy Humans.
Eikemo, Marie; Biele, Guido; Willoch, Frode; Thomsen, Lotte; Leknes, Siri
2017-08-01
Modifying behavior to maximize reward is integral to adaptive decision-making. In rodents, the μ-opioid receptor (MOR) system encodes motivation and preference for high-value rewards. Yet it remains unclear whether and how human MORs contribute to value-based decision-making. We reasoned that if the human MOR system modulates value-based choice, this would be reflected by opposite effects of agonist and antagonist drugs. In a double-blind pharmacological cross-over study, 30 healthy men received morphine (10 mg), placebo, and the opioid antagonist naltrexone (50 mg). They completed a two-alternative decision-making task known to induce a considerable bias towards the most frequently rewarded response option. To quantify MOR involvement in this bias, we fitted accuracy and reaction time data with the drift-diffusion model (DDM) of decision-making. The DDM analysis revealed the expected bidirectional drug effects for two decision subprocesses. MOR stimulation with morphine increased the preference for the stimulus with high-reward probability (shift in starting point). Compared to placebo, morphine also increased, and naltrexone reduced, the efficiency of evidence accumulation. Since neither drug affected motor-coordination, speed-accuracy trade-off, or subjective state (indeed participants were still blinded after the third session), we interpret the MOR effects on evidence accumulation efficiency as a consequence of changes in effort exerted in the task. Together, these findings support a role for the human MOR system in value-based choice by tuning decision-making towards high-value rewards across stimulus domains.
A Model of Supervisor Decision-Making in the Accommodation of Workers with Low Back Pain.
Williams-Whitt, Kelly; Kristman, Vicki; Shaw, William S; Soklaridis, Sophie; Reguly, Paula
2016-09-01
Purpose To explore supervisors' perspectives and decision-making processes in the accommodation of back injured workers. Methods Twenty-three semi-structured, in-depth interviews were conducted with supervisors from eleven Canadian organizations about their role in providing job accommodations. Supervisors were identified through an on-line survey and interviews were recorded, transcribed and entered into NVivo software. The initial analyses identified common units of meaning, which were used to develop a coding guide. Interviews were coded, and a model of supervisor decision-making was developed based on the themes, categories and connecting ideas identified in the data. Results The decision-making model includes a process element that is described as iterative "trial and error" decision-making. Medical restrictions are compared to job demands, employee abilities and available alternatives. A feasible modification is identified through brainstorming and then implemented by the supervisor. Resources used for brainstorming include information, supervisor experience and autonomy, and organizational supports. The model also incorporates the experience of accommodation as a job demand that causes strain for the supervisor. Accommodation demands affect the supervisor's attitude, brainstorming and monitoring effort, and communication with returning employees. Resources and demands have a combined effect on accommodation decision complexity, which in turn affects the quality of the accommodation option selected. If the employee is unable to complete the tasks or is reinjured during the accommodation, the decision cycle repeats. More frequent iteration through the trial and error process reduces the likelihood of return to work success. Conclusion A series of propositions is developed to illustrate the relationships among categories in the model. The model and propositions show: (a) the iterative, problem solving nature of the RTW process; (b) decision resources necessary for accommodation planning, and (c) the impact accommodation demands may have on supervisors and RTW quality.
2017-09-01
AVAILABILITY STATEMENT Approved for public release. Distribution is unlimited. 12b. DISTRIBUTION CODE 13. ABSTRACT (maximum 200 words) Test and...ambiguities and identify high -value decision points? This thesis explores how formalization of these experience-based decisions as a process model...representing a T&E event may reveal high -value decision nodes where certain decisions carry more weight or potential for impacts to a successful test. The
Légaré, France; Moumjid-Ferdjaoui, Nora; Drolet, Renée; Stacey, Dawn; Härter, Martin; Bastian, Hilda; Beaulieu, Marie-Dominique; Borduas, Francine; Charles, Cathy; Coulter, Angela; Desroches, Sophie; Friedrich, Gwendolyn; Gafni, Amiram; Graham, Ian D.; Labrecque, Michel; LeBlanc, Annie; Légaré, Jean; Politi, Mary; Sargeant, Joan; Thomson, Richard
2014-01-01
Shared decision making is now making inroads in health care professionals’ continuing education curriculum, but there is no consensus on what core competencies are required by clinicians for effectively involving patients in health-related decisions. Ready-made programs for training clinicians in shared decision making are in high demand, but existing programs vary widely in their theoretical foundations, length, and content. An international, interdisciplinary group of 25 individuals met in 2012 to discuss theoretical approaches to making health-related decisions, compare notes on existing programs, take stock of stakeholders concerns, and deliberate on core competencies. This article summarizes the results of those discussions. Some participants believed that existing models already provide a sufficient conceptual basis for developing and implementing shared decision making competency-based training programs on a wide scale. Others argued that this would be premature as there is still no consensus on the definition of shared decision making or sufficient evidence to recommend specific competencies for implementing shared decision making. However, all participants agreed that there were 2 broad types of competencies that clinicians need for implementing shared decision making: relational competencies and risk communication competencies. Further multidisciplinary research could broaden and deepen our understanding of core competencies for shared decision making training. PMID:24347105
2016-01-01
Multi-criteria decision-making (MCDM) can be formally implemented by various methods. This study compares suitability of four selected MCDM methods, namely WPM, TOPSIS, VIKOR, and PROMETHEE, for future applications in agent-based computational economic (ACE) models of larger scale (i.e., over 10 000 agents in one geographical region). These four MCDM methods were selected according to their appropriateness for computational processing in ACE applications. Tests of the selected methods were conducted on four hardware configurations. For each method, 100 tests were performed, which represented one testing iteration. With four testing iterations conducted on each hardware setting and separated testing of all configurations with the–server parameter de/activated, altogether, 12800 data points were collected and consequently analyzed. An illustrational decision-making scenario was used which allows the mutual comparison of all of the selected decision making methods. Our test results suggest that although all methods are convenient and can be used in practice, the VIKOR method accomplished the tests with the best results and thus can be recommended as the most suitable for simulations of large-scale agent-based models. PMID:27806061
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goehle, D.G.
1978-01-01
A conceptual model was developed which drew from the existing research in organization theory, comparative management, and international business which assisted in the delineation of the relevant variables and suggested the nature of their relationship to the locus of decision making. The conceptual model incorporated certain corporate and subsidiary factors considered an influence on the determination of the locus of decision making. Corporate factors included product line or industry, size and complexity of international operations, organization structure, availability of managerial talent, and corporate philosophy. Subsidiary characteristics included subsidiary age and size, availability of local managerial talent, geographic distance from headquartersmore » and other affiliated units, and subsidiary environmental characteristics. The locus of desicion making was measured by the level of participation the headquarters and subsidiary management had in decision making for twenty-nine decisions, representing six functional areas. Levels of participation for headquarters and subsidiary managers were measured for each decision based on responses to a five-point scale of decision process categories which indicated varying levels of headquarters and subsidiary participation. The sample included ten US multinational corporations representing five industries: pharmaceuticals, tire and rubber, automobiles, capital equipment, and food processing.« less
Neuroeconomics: cross-currents in research on decision-making.
Sanfey, Alan G; Loewenstein, George; McClure, Samuel M; Cohen, Jonathan D
2006-03-01
Despite substantial advances, the question of how we make decisions and judgments continues to pose important challenges for scientific research. Historically, different disciplines have approached this problem using different techniques and assumptions, with few unifying efforts made. However, the field of neuroeconomics has recently emerged as an inter-disciplinary effort to bridge this gap. Research in neuroscience and psychology has begun to investigate neural bases of decision predictability and value, central parameters in the economic theory of expected utility. Economics, in turn, is being increasingly influenced by a multiple-systems approach to decision-making, a perspective strongly rooted in psychology and neuroscience. The integration of these disparate theoretical approaches and methodologies offers exciting potential for the construction of more accurate models of decision-making.
Hogden, Anne; Greenfield, David; Nugus, Peter; Kiernan, Matthew C
2015-10-01
Patients with amyotrophic lateral sclerosis (ALS) face numerous decisions for symptom management and quality of life. Models of decision making in chronic disease and cancer care are insufficient for the complex and changing needs of patients with ALS . The aim was to examine the question: how can decision making that is both effective and patient-centred be enacted in ALS multidisciplinary care? Fifty-four respondents (32 health professionals, 14 patients and eight carers) from two specialized ALS multidisciplinary clinics participated in semi-structured interviews. Interviews were transcribed, coded and analysed thematically. Comparison of stakeholder perspectives revealed six key themes of ALS decision making. These were the decision-making process; patient-centred focus; timing and planning; information sources; engagement with specialized ALS services; and access to non-specialized services. A model, embedded in the specialized ALS multidisciplinary clinic, was derived to guide patient decision making. The model is cyclic, with four stages: 'Participant Engagement'; 'Option Information'; 'Option Deliberation'; and 'Decision Implementation'. Effective and patient-centred decision making is enhanced by the structure of the specialized ALS clinic, which promotes patients' symptom management and quality of life goals. However, patient and carer engagement in ALS decision making is tested by the dynamic nature of ALS, and patient and family distress. Our model optimizes patient-centred decision making, by incorporating patients' cyclic decision-making patterns and facilitating carer inclusion in decision processes. The model captures the complexities of patient-centred decision making in ALS. The framework can assist patients and carers, health professionals, researchers and policymakers in this challenging disease environment. © 2013 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Sharpanskykh, Alexei; Treur, Jan
Employing rich internal agent models of actors in large-scale socio-technical systems often results in scalability issues. The problem addressed in this paper is how to improve computational properties of a complex internal agent model, while preserving its behavioral properties. The problem is addressed for the case of an existing affective-cognitive decision making model instantiated for an emergency scenario. For this internal decision model an abstracted behavioral agent model is obtained, which ensures a substantial increase of the computational efficiency at the cost of approximately 1% behavioural error. The abstraction technique used can be applied to a wide range of internal agent models with loops, for example, involving mutual affective-cognitive interactions.
Smart Grid as Multi-layer Interacting System for Complex Decision Makings
NASA Astrophysics Data System (ADS)
Bompard, Ettore; Han, Bei; Masera, Marcelo; Pons, Enrico
This chapter presents an approach to the analysis of Smart Grids based on a multi-layer representation of their technical, cyber, social and decision-making aspects, as well as the related environmental constraints. In the Smart Grid paradigm, self-interested active customers (prosumers), system operators and market players interact among themselves making use of an extensive cyber infrastructure. In addition, policy decision makers define regulations, incentives and constraints to drive the behavior of the competing operators and prosumers, with the objective of ensuring the global desired performance (e.g. system stability, fair prices). For these reasons, the policy decision making is more complicated than in traditional power systems, and needs proper modeling and simulation tools for assessing "in vitro" and ex-ante the possible impacts of the decisions assumed. In this chapter, we consider the smart grids as multi-layered interacting complex systems. The intricacy of the framework, characterized by several interacting layers, cannot be captured by closed-form mathematical models. Therefore, a new approach using Multi Agent Simulation is described. With case studies we provide some indications about how to develop agent-based simulation tools presenting some preliminary examples.
Effort-Based Decision Making: A Novel Approach for Assessing Motivation in Schizophrenia
Green, Michael F.; Horan, William P.; Barch, Deanna M.; Gold, James M.
2015-01-01
Because negative symptoms, including motivational deficits, are a critical unmet need in schizophrenia, there are many ongoing efforts to develop new pharmacological and psychosocial interventions for these impairments. A common challenge of these studies involves how to evaluate and select optimal endpoints. Currently, all studies of negative symptoms in schizophrenia depend on ratings from clinician-conducted interviews. Effort-based decision-making tasks may provide a more objective, and perhaps more sensitive, endpoint for trials of motivational negative symptoms. These tasks assess how much effort a person is willing to exert for a given level of reward. This area has been well-studied with animal models of effort and motivation, and effort-based decision-making tasks have been adapted for use in humans. Very recently, several studies have examined physical and cognitive types of effort-based decision-making tasks in cross-sectional studies of schizophrenia, providing evidence for effort-related impairment in this illness. This article covers the theoretical background on effort-based decision-making tasks to provide a context for the subsequent articles in this theme section. In addition, we review the existing literature of studies using these tasks in schizophrenia, consider some practical challenges in adapting them for use in clinical trials in schizophrenia, and discuss interpretive challenges that are central to these types of tasks. PMID:26089350
Schindler, Abigail G.; Soden, Marta E.; Zweifel, Larry S.
2016-01-01
Alcohol is the most commonly abused substance among adolescents, promoting the development of substance use disorders and compromised decision-making in adulthood. We have previously demonstrated, with a preclinical model in rodents, that adolescent alcohol use results in adult risk-taking behavior that positively correlates with phasic dopamine transmission in response to risky options, but the underlying mechanisms remain unknown. Here, we show that adolescent alcohol use may produce maladaptive decision-making through a disruption in dopamine network dynamics via increased GABAergic transmission within the ventral tegmental area (VTA). Indeed, we find that increased phasic dopamine signaling after adolescent alcohol use is attributable to a midbrain circuit, including the input from the pedunculopontine tegmentum to the VTA. Moreover, we demonstrate that VTA dopamine neurons from adult rats exhibit enhanced IPSCs after adolescent alcohol exposure corresponding to decreased basal dopamine levels in adulthood that negatively correlate with risk-taking. Building on these findings, we develop a model where increased inhibitory tone on dopamine neurons leads to a persistent decrease in tonic dopamine levels and results in a potentiation of stimulus-evoked phasic dopamine release that may drive risky choice behavior. Based on this model, we take a pharmacological approach to the reversal of risk-taking behavior through normalization of this pattern in dopamine transmission. These results isolate the underlying circuitry involved in alcohol-induced maladaptive decision-making and identify a novel therapeutic target. SIGNIFICANCE STATEMENT One of the primary problems resulting from chronic alcohol use is persistent, maladaptive decision-making that is associated with ongoing addiction vulnerability and relapse. Indeed, studies with the Iowa Gambling Task, a standard measure of risk-based decision-making, have reliably shown that alcohol-dependent individuals make riskier, more maladaptive choices than nondependent individuals, even after periods of prolonged abstinence. Using a preclinical model, in the current work, we identify a selective disruption in dopamine network dynamics that may promote maladaptive decision-making after chronic adolescent alcohol use and demonstrate its pharmacological reversal in adulthood. Together, these results highlight a novel neural mechanism underlying heightened risk-taking behavior in alcohol-dependent individuals and provide a potential therapeutic target for further investigation. PMID:27030756
Rosenthal, Sara A; Nolan, Marie T
2013-07-01
To synthesize the existing qualitative literature about parent ethical decision making in the neonatal intensive care unit (NICU) and to investigate the potential impact of culture on parents' decision making experiences. PubMed, CINAHL plus, and PsychInfo using the search terms parental decision making, culture, race, decision making, and parental decisions. Qualitative research studies investigating decision making for infants in the NICU from the parents' perspective were included. Studies involving older pediatric populations were excluded. Ten primary qualitative research articles were included. The primary author read all manuscripts and tabulated themes related to parents' ethical decision making. Study findings were synthesized using meta-ethnography involving translating concepts of separate studies into one another, exploring contradictions, and organizing these concepts into new theories. Key themes included parent involvement in decision making, parental role, necessity of good information, need for communication, desire for hope and compassion conveyed by providers, decision making satisfaction, and trust in caregiving team. A preliminary theoretical framework of ethical parent decision making was modeled based on the proposed relationships between the themes. Parent preferences for their involvement in decision making, their perceptions of communication with providers, and their relationships with providers are all important factors in the experience of making decisions for their infants. Needs of parents were the same regardless the ethnic or racial diversity of study participants. © 2013 AWHONN, the Association of Women's Health, Obstetric and Neonatal Nurses.
NASA Astrophysics Data System (ADS)
Haer, Toon; Botzen, Wouter; de Moel, Hans; Aerts, Jeroen
2015-04-01
In the period 1998-2009, floods triggered roughly 52 billion euro in insured economic losses making floods the most costly natural hazard in Europe. Climate change and socio/economic trends are expected to further aggrevate floods losses in many regions. Research shows that flood risk can be significantly reduced if households install protective measures, and that the implementation of such measures can be stimulated through flood insurance schemes and subsidies. However, the effectiveness of such incentives to stimulate implementation of loss-reducing measures greatly depends on the decision process of individuals and is hardly studied. In our study, we developed an Agent-Based Model that integrates flood damage models, insurance mechanisms, subsidies, and household behaviour models to assess the effectiveness of different economic tools on stimulating households to invest in loss-reducing measures. Since the effectiveness depends on the decision making process of individuals, the study compares different household decision models ranging from standard economic models, to economic models for decision making under risk, to more complex decision models integrating economic models and risk perceptions, opinion dynamics, and the influence of flood experience. The results show the effectiveness of incentives to stimulate investment in loss-reducing measures for different household behavior types, while assuming climate change scenarios. It shows how complex decision models can better reproduce observed real-world behaviour compared to traditional economic models. Furthermore, since flood events are included in the simulations, the results provide an analysis of the dynamics in insured and uninsured losses for households, the costs of reducing risk by implementing loss-reducing measures, the capacity of the insurance market, and the cost of government subsidies under different scenarios. The model has been applied to the City of Rotterdam in The Netherlands.
State-based versus reward-based motivation in younger and older adults.
Worthy, Darrell A; Cooper, Jessica A; Byrne, Kaileigh A; Gorlick, Marissa A; Maddox, W Todd
2014-12-01
Recent decision-making work has focused on a distinction between a habitual, model-free neural system that is motivated toward actions that lead directly to reward and a more computationally demanding goal-directed, model-based system that is motivated toward actions that improve one's future state. In this article, we examine how aging affects motivation toward reward-based versus state-based decision making. Participants performed tasks in which one type of option provided larger immediate rewards but the alternative type of option led to larger rewards on future trials, or improvements in state. We predicted that older adults would show a reduced preference for choices that led to improvements in state and a greater preference for choices that maximized immediate reward. We also predicted that fits from a hybrid reinforcement-learning model would indicate greater model-based strategy use in younger than in older adults. In line with these predictions, older adults selected the options that maximized reward more often than did younger adults in three of the four tasks, and modeling results suggested reduced model-based strategy use. In the task where older adults showed similar behavior to younger adults, our model-fitting results suggested that this was due to the utilization of a win-stay-lose-shift heuristic rather than a more complex model-based strategy. Additionally, within older adults, we found that model-based strategy use was positively correlated with memory measures from our neuropsychological test battery. We suggest that this shift from state-based to reward-based motivation may be due to age related declines in the neural structures needed for more computationally demanding model-based decision making.
[Modeling in value-based medicine].
Neubauer, A S; Hirneiss, C; Kampik, A
2010-03-01
Modeling plays an important role in value-based medicine (VBM). It allows decision support by predicting potential clinical and economic consequences, frequently combining different sources of evidence. Based on relevant publications and examples focusing on ophthalmology the key economic modeling methods are explained and definitions are given. The most frequently applied model types are decision trees, Markov models, and discrete event simulation (DES) models. Model validation includes besides verifying internal validity comparison with other models (external validity) and ideally validation of its predictive properties. The existing uncertainty with any modeling should be clearly stated. This is true for economic modeling in VBM as well as when using disease risk models to support clinical decisions. In economic modeling uni- and multivariate sensitivity analyses are usually applied; the key concepts here are tornado plots and cost-effectiveness acceptability curves. Given the existing uncertainty, modeling helps to make better informed decisions than without this additional information.
Ensemble modelling and structured decision-making to support Emergency Disease Management.
Webb, Colleen T; Ferrari, Matthew; Lindström, Tom; Carpenter, Tim; Dürr, Salome; Garner, Graeme; Jewell, Chris; Stevenson, Mark; Ward, Michael P; Werkman, Marleen; Backer, Jantien; Tildesley, Michael
2017-03-01
Epidemiological models in animal health are commonly used as decision-support tools to understand the impact of various control actions on infection spread in susceptible populations. Different models contain different assumptions and parameterizations, and policy decisions might be improved by considering outputs from multiple models. However, a transparent decision-support framework to integrate outputs from multiple models is nascent in epidemiology. Ensemble modelling and structured decision-making integrate the outputs of multiple models, compare policy actions and support policy decision-making. We briefly review the epidemiological application of ensemble modelling and structured decision-making and illustrate the potential of these methods using foot and mouth disease (FMD) models. In case study one, we apply structured decision-making to compare five possible control actions across three FMD models and show which control actions and outbreak costs are robustly supported and which are impacted by model uncertainty. In case study two, we develop a methodology for weighting the outputs of different models and show how different weighting schemes may impact the choice of control action. Using these case studies, we broadly illustrate the potential of ensemble modelling and structured decision-making in epidemiology to provide better information for decision-making and outline necessary development of these methods for their further application. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.
Molina-Mula, Jesús; Gallo-Estrada, Julia; Perelló-Campaner, Catalina
2017-12-29
Interprofessional relationships may impact the decision making of patients in a clinical setting. The objective of this study was to analyse the decision-making capabilities of patients from nurses' perspectives of interprofessional relationships using Foucauldian ethics. This qualitative study was based on poststructuralist Foucault references with in-depth interviews of nurses working in internal medicine and specialties in a general hospital. The patients constantly appeared in the definition of teamwork, but also as a passive element used by every professional to communicate with others. Nurses continue modelling a type of patient passivity, or what Foucault called passive subjectivity in relation to oneself, because the patient is guided and directed to take charge of a truth provided by professionals. Nurses must break the rigid design of sections or professional skills, and adopt a model of teamwork that meets the needs of the patient and increases their decision-making power. The quality of care will increase to the extent that professionals establish a relationship of equality with the patient, allowing the patient to make real decisions about their care. An egalitarian model of teamwork is beneficial to the patient, abandoning the idea of a team where the patient and family are constantly excluded from decisions about their care.
Gallo-Estrada, Julia; Perelló-Campaner, Catalina
2017-01-01
Interprofessional relationships may impact the decision making of patients in a clinical setting. The objective of this study was to analyse the decision-making capabilities of patients from nurses’ perspectives of interprofessional relationships using Foucauldian ethics. This qualitative study was based on poststructuralist Foucault references with in-depth interviews of nurses working in internal medicine and specialties in a general hospital. The patients constantly appeared in the definition of teamwork, but also as a passive element used by every professional to communicate with others. Nurses continue modelling a type of patient passivity, or what Foucault called passive subjectivity in relation to oneself, because the patient is guided and directed to take charge of a truth provided by professionals. Nurses must break the rigid design of sections or professional skills, and adopt a model of teamwork that meets the needs of the patient and increases their decision-making power. The quality of care will increase to the extent that professionals establish a relationship of equality with the patient, allowing the patient to make real decisions about their care. An egalitarian model of teamwork is beneficial to the patient, abandoning the idea of a team where the patient and family are constantly excluded from decisions about their care. PMID:29286342
Decision insight into stakeholder conflict for ERN.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Siirola, John; Tidwell, Vincent Carroll; Benz, Zachary O.
Participatory modeling has become an important tool in facilitating resource decision making and dispute resolution. Approaches to modeling that are commonly used in this context often do not adequately account for important human factors. Current techniques provide insights into how certain human activities and variables affect resource outcomes; however, they do not directly simulate the complex variables that shape how, why, and under what conditions different human agents behave in ways that affect resources and human interactions related to them. Current approaches also do not adequately reveal how the effects of individual decisions scale up to have systemic level effectsmore » in complex resource systems. This lack of integration prevents the development of more robust models to support decision making and dispute resolution processes. Development of integrated tools is further hampered by the fact that collection of primary data for decision-making modeling is costly and time consuming. This project seeks to develop a new approach to resource modeling that incorporates both technical and behavioral modeling techniques into a single decision-making architecture. The modeling platform is enhanced by use of traditional and advanced processes and tools for expedited data capture. Specific objectives of the project are: (1) Develop a proof of concept for a new technical approach to resource modeling that combines the computational techniques of system dynamics and agent based modeling, (2) Develop an iterative, participatory modeling process supported with traditional and advance data capture techniques that may be utilized to facilitate decision making, dispute resolution, and collaborative learning processes, and (3) Examine potential applications of this technology and process. The development of this decision support architecture included both the engineering of the technology and the development of a participatory method to build and apply the technology. Stakeholder interaction with the model and associated data capture was facilitated through two very different modes of engagement, one a standard interface involving radio buttons, slider bars, graphs and plots, while the other utilized an immersive serious gaming interface. The decision support architecture developed through this project was piloted in the Middle Rio Grande Basin to examine how these tools might be utilized to promote enhanced understanding and decision-making in the context of complex water resource management issues. Potential applications of this architecture and its capacity to lead to enhanced understanding and decision-making was assessed through qualitative interviews with study participants who represented key stakeholders in the basin.« less
An Analysis of the EPA Report on Pipeline Renewal Decision Making Tools and Approaches
Few DSS are commercially available for technology selection as most utilities make decisions based on in-house and consultant expertise (Matthews et al., 2011). This review presents some of the models proposed over the past 15 years for selecting technologies in the U.S. and wor...
Emotion-based decision-making in healthy subjects: short-term effects of reducing dopamine levels
Sevy, Serge; Hassoun, Youssef; Bechara, Antoine; Yechiam, Eldad; Napolitano, Barbara; Burdick, Katherine; Delman, Howard; Malhotra, Anil
2007-01-01
Introduction Converging evidences from animal and human studies suggest that addiction is associated with dopaminergic dysfunction in brain reward circuits. So far, it is unclear what aspects of addictive behaviors are related to a dopaminergic dysfunction. Discussion We hypothesize that a decrease in dopaminergic activity impairs emotion-based decision-making. To demonstrate this hypothesis, we investigated the effects of a decrease in dopaminergic activity on the performance of an emotion-based decision-making task, the Iowa gambling task (IGT), in 11 healthy human subjects. Materials and methods We used a double-blind, placebo-controlled, within-subject design to examine the effect of a mixture containing the branched-chain amino acids (BCAA) valine, isoleucine and leucine on prolactin, IGT performance, perceptual competency and visual aspects of visuospatial working memory, visual attention and working memory, and verbal memory. The expectancy-valence model was used to determine the relative contributions of distinct IGT components (attention to past outcomes, relative weight of wins and losses, and choice strategies) in the decision-making process. Observations and results Compared to placebo, the BCAA mixture increased prolactin levels and impaired IGT performance. BCAA administration interfered with a particular component process of decision-making related to attention to more recent events as compared to more distant events. There were no differences between placebo and BCAA conditions for other aspects of cognition. Our results suggest a direct link between a reduced dopaminergic activity and poor emotion-based decision-making characterized by shortsightedness, and thus difficulties resisting short-term reward, despite long-term negative consequences. These findings have implications for behavioral and pharmacological interventions targeting impaired emotion-based decision-making in addictive disorders. PMID:16915385
Sütfeld, Leon R; Gast, Richard; König, Peter; Pipa, Gordon
2017-01-01
Self-driving cars are posing a new challenge to our ethics. By using algorithms to make decisions in situations where harming humans is possible, probable, or even unavoidable, a self-driving car's ethical behavior comes pre-defined. Ad hoc decisions are made in milliseconds, but can be based on extensive research and debates. The same algorithms are also likely to be used in millions of cars at a time, increasing the impact of any inherent biases, and increasing the importance of getting it right. Previous research has shown that moral judgment and behavior are highly context-dependent, and comprehensive and nuanced models of the underlying cognitive processes are out of reach to date. Models of ethics for self-driving cars should thus aim to match human decisions made in the same context. We employed immersive virtual reality to assess ethical behavior in simulated road traffic scenarios, and used the collected data to train and evaluate a range of decision models. In the study, participants controlled a virtual car and had to choose which of two given obstacles they would sacrifice in order to spare the other. We randomly sampled obstacles from a variety of inanimate objects, animals and humans. Our model comparison shows that simple models based on one-dimensional value-of-life scales are suited to describe human ethical behavior in these situations. Furthermore, we examined the influence of severe time pressure on the decision-making process. We found that it decreases consistency in the decision patterns, thus providing an argument for algorithmic decision-making in road traffic. This study demonstrates the suitability of virtual reality for the assessment of ethical behavior in humans, delivering consistent results across subjects, while closely matching the experimental settings to the real world scenarios in question.
Sütfeld, Leon R.; Gast, Richard; König, Peter; Pipa, Gordon
2017-01-01
Self-driving cars are posing a new challenge to our ethics. By using algorithms to make decisions in situations where harming humans is possible, probable, or even unavoidable, a self-driving car's ethical behavior comes pre-defined. Ad hoc decisions are made in milliseconds, but can be based on extensive research and debates. The same algorithms are also likely to be used in millions of cars at a time, increasing the impact of any inherent biases, and increasing the importance of getting it right. Previous research has shown that moral judgment and behavior are highly context-dependent, and comprehensive and nuanced models of the underlying cognitive processes are out of reach to date. Models of ethics for self-driving cars should thus aim to match human decisions made in the same context. We employed immersive virtual reality to assess ethical behavior in simulated road traffic scenarios, and used the collected data to train and evaluate a range of decision models. In the study, participants controlled a virtual car and had to choose which of two given obstacles they would sacrifice in order to spare the other. We randomly sampled obstacles from a variety of inanimate objects, animals and humans. Our model comparison shows that simple models based on one-dimensional value-of-life scales are suited to describe human ethical behavior in these situations. Furthermore, we examined the influence of severe time pressure on the decision-making process. We found that it decreases consistency in the decision patterns, thus providing an argument for algorithmic decision-making in road traffic. This study demonstrates the suitability of virtual reality for the assessment of ethical behavior in humans, delivering consistent results across subjects, while closely matching the experimental settings to the real world scenarios in question. PMID:28725188
Exploratory Decision-Making as a Function of Lifelong Experience, Not Cognitive Decline
2016-01-01
Older adults perform worse than younger adults in some complex decision-making scenarios, which is commonly attributed to age-related declines in striatal and frontostriatal processing. Recently, this popular account has been challenged by work that considered how older adults’ performance may differ as a function of greater knowledge and experience, and by work showing that, in some cases, older adults outperform younger adults in complex decision-making tasks. In light of this controversy, we examined the performance of older and younger adults in an exploratory choice task that is amenable to model-based analyses and ostensibly not reliant on prior knowledge. Exploration is a critical aspect of decision-making poorly understood across the life span. Across 2 experiments, we addressed (a) how older and younger adults differ in exploratory choice and (b) to what extent observed differences reflect processing capacity declines. Model-based analyses suggested that the strategies used by the 2 groups were qualitatively different, resulting in relatively worse performance for older adults in 1 decision-making environment but equal performance in another. Little evidence was found that differences in processing capacity drove performance differences. Rather the results suggested that older adults’ performance might result from applying a strategy that may have been shaped by their wealth of real-word decision-making experience. While this strategy is likely to be effective in the real world, it is ill suited to some decision environments. These results underscore the importance of taking into account effects of experience in aging studies, even for tasks that do not obviously tap past experiences. PMID:26726916
NASA Astrophysics Data System (ADS)
Madani, Kaveh
2016-04-01
Water management benefits from a suite of modelling tools and techniques that help simplifying and understanding the complexities involved in managing water resource systems. Early water management models were mainly concerned with optimizing a single objective, related to the design, operations or management of water resource systems (e.g. economic cost, hydroelectricity production, reliability of water deliveries). Significant improvements in methodologies, computational capacity, and data availability over the last decades have resulted in developing more complex water management models that can now incorporate multiple objectives, various uncertainties, and big data. These models provide an improved understanding of complex water resource systems and provide opportunities for making positive impacts. Nevertheless, there remains an alarming mismatch between the optimal solutions developed by these models and the decisions made by managers and stakeholders of water resource systems. Modelers continue to consider decision makers as irrational agents who fail to implement the optimal solutions developed by sophisticated and mathematically rigours water management models. On the other hand, decision makers and stakeholders accuse modelers of being idealist, lacking a perfect understanding of reality, and developing 'smart' solutions that are not practical (stable). In this talk I will have a closer look at the mismatch between the optimality and stability of solutions and argue that conventional water resources management models suffer inherently from a full-cooperation assumption. According to this assumption, water resources management decisions are based on group rationality where in practice decisions are often based on individual rationality, making the group's optimal solution unstable for individually rational decision makers. I discuss how game theory can be used as an appropriate framework for addressing the irrational "rationality assumption" of water resources management models and for better capturing the social aspects of decision making in water management systems with multiple stakeholders.
Variable Perceptions of Decision: An Operationalization of Four Models.
ERIC Educational Resources Information Center
Benjamin, Beverly P.; Kerchner, Charles T.
Decision-making and the models of decision-making that people carry in their minds were assessed. Participants in a public policy decision involving early childhood education were mapped onto four frequently used models of decision making: the rational, the bureaucratic, organizational process (Allison, 1971) and the garbage can or organized…
Manson, Steven M.; Evans, Tom
2007-01-01
We combine mixed-methods research with integrated agent-based modeling to understand land change and economic decision making in the United States and Mexico. This work demonstrates how sustainability science benefits from combining integrated agent-based modeling (which blends methods from the social, ecological, and information sciences) and mixed-methods research (which interleaves multiple approaches ranging from qualitative field research to quantitative laboratory experiments and interpretation of remotely sensed imagery). We test assumptions of utility-maximizing behavior in household-level landscape management in south-central Indiana, linking parcel data, land cover derived from aerial photography, and findings from laboratory experiments. We examine the role of uncertainty and limited information, preferences, differential demographic attributes, and past experience and future time horizons. We also use evolutionary programming to represent bounded rationality in agriculturalist households in the southern Yucatán of Mexico. This approach captures realistic rule of thumb strategies while identifying social and environmental factors in a manner similar to econometric models. These case studies highlight the role of computational models of decision making in land-change contexts and advance our understanding of decision making in general. PMID:18093928
The complex contribution of sociodemographics to decision-making power in gay male couples.
Perry, Nicholas S; Huebner, David M; Baucom, Brian R W; Hoff, Colleen C
2016-12-01
Relationship power is an important dyadic construct in close relationships that is associated with relationship health and partner's individual health. Understanding what predicts power in heterosexual couples has proven difficult, and even less is known about gay couples. Resource models of power posit that demographic characteristics associated with social status (e.g., age, income) confer power within the relationship, which in turn shapes relationship outcomes. We tested this model in a sample of gay male couples (N = 566 couples) and extended it by examining race and HIV status. Multilevel modeling was used to test associations between demographic bases of power and decision-making power. We also examined relative associations among demographic bases and decision-making power with relationship satisfaction given the literature on power imbalances and overall relationship functioning. Results showed that individual income was positively associated with decision-making power, as was participant's HIV status, with HIV-positive men reporting greater power. Age differences within the relationship interacted with relationship length to predict decision-making power, but not satisfaction. HIV-concordant positive couples were less satisfied than concordant negative couples. Higher power partners were less satisfied than lower power partners. Demographic factors contributing to decision-making power among same-sex male couples appear to share some similarities with heterosexual couples (e.g., income is associated with power) and have unique features (e.g., HIV status influences power). However, these same demographics did not reliably predict relationship satisfaction in the manner that existing power theories suggest. Findings indicate important considerations for theories of power among same-sex male couples. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Decision making in asthma exacerbation: a clinical judgement analysis
Jenkins, John; Shields, Mike; Patterson, Chris; Kee, Frank
2007-01-01
Background Clinical decisions which impact directly on patient safety and quality of care are made during acute asthma attacks by individual doctors based on their knowledge and experience. Decisions include administration of systemic corticosteroids (CS) and oral antibiotics, and admission to hospital. Clinical judgement analysis provides a methodology for comparing decisions between practitioners with different training and experience, and improving decision making. Methods Stepwise linear regression was used to select clinical cues based on visual analogue scale assessments of the propensity of 62 clinicians to prescribe a short course of oral CS (decision 1), a course of antibiotics (decision 2), and/or admit to hospital (decision 3) for 60 “paper” patients. Results When compared by specialty, paediatricians' models for decision 1 were more likely to include level of alertness as a cue (54% vs 16%); for decision 2 they were more likely to include presence of crepitations (49% vs 16%) and less likely to include inhaled CS (8% vs 40%), respiratory rate (0% vs 24%) and air entry (70% vs 100%). When compared to other grades, the models derived for decision 3 by consultants/general practitioners were more likely to include wheeze severity as a cue (39% vs 6%). Conclusions Clinicians differed in their use of individual cues and the number included in their models. Patient safety and quality of care will benefit from clarification of decision‐making strategies as general learning points during medical training, in the development of guidelines and care pathways, and by clinicians developing self‐awareness of their own preferences. PMID:17428817
NASA Astrophysics Data System (ADS)
Zein-Sabatto, Saleh; Mikhail, Maged; Bodruzzaman, Mohammad; DeSimio, Martin; Derriso, Mark; Behbahani, Alireza
2012-06-01
It has been widely accepted that data fusion and information fusion methods can improve the accuracy and robustness of decision-making in structural health monitoring systems. It is arguably true nonetheless, that decision-level is equally beneficial when applied to integrated health monitoring systems. Several decisions at low-levels of abstraction may be produced by different decision-makers; however, decision-level fusion is required at the final stage of the process to provide accurate assessment about the health of the monitored system as a whole. An example of such integrated systems with complex decision-making scenarios is the integrated health monitoring of aircraft. Thorough understanding of the characteristics of the decision-fusion methodologies is a crucial step for successful implementation of such decision-fusion systems. In this paper, we have presented the major information fusion methodologies reported in the literature, i.e., probabilistic, evidential, and artificial intelligent based methods. The theoretical basis and characteristics of these methodologies are explained and their performances are analyzed. Second, candidate methods from the above fusion methodologies, i.e., Bayesian, Dempster-Shafer, and fuzzy logic algorithms are selected and their applications are extended to decisions fusion. Finally, fusion algorithms are developed based on the selected fusion methods and their performance are tested on decisions generated from synthetic data and from experimental data. Also in this paper, a modeling methodology, i.e. cloud model, for generating synthetic decisions is presented and used. Using the cloud model, both types of uncertainties; randomness and fuzziness, involved in real decision-making are modeled. Synthetic decisions are generated with an unbiased process and varying interaction complexities among decisions to provide for fair performance comparison of the selected decision-fusion algorithms. For verification purposes, implementation results of the developed fusion algorithms on structural health monitoring data collected from experimental tests are reported in this paper.
Teaching medical students about fair distribution of healthcare resources.
Leget, C; Hoedemaekers, R
2007-12-01
Healthcare package decisions are complex. Different judgements about effectiveness, cost-effectiveness and disease burden influence the decision-making process. Moreover, different concepts of justice generate different ideas about fair distribution of healthcare resources. This paper presents a decision model that is used in medical school in order to familiarise medical students with the different concepts of justice and the ethical dimension of making concrete choices. The model is based on the four-stage decision model developed in the Netherlands by the Dunning Committee and the discussion that followed its presentation in 1991. Having to deal with 10 medical services, students working with the model learn to discern and integrate four different ideas of distributive justice that are integrated in a flow chart: libertarian, communitarian, egalitarian and utilitarian.
The design of patient decision support interventions: addressing the theory-practice gap.
Elwyn, Glyn; Stiel, Mareike; Durand, Marie-Anne; Boivin, Jacky
2011-08-01
Although an increasing number of decision support interventions for patients (including decision aids) are produced, few make explicit use of theory. We argue the importance of using theory to guide design. The aim of this work was to address this theory-practice gap and to examine how a range of selected decision-making theories could inform the design and evaluation of decision support interventions. We reviewed the decision-making literature and selected relevant theories. We assessed their key principles, theoretical pathways and predictions in order to determine how they could inform the design of two core components of decision support interventions, namely, information and deliberation components and to specify theory-based outcome measures. Eight theories were selected: (1) the expected utility theory; (2) the conflict model of decision making; (3) prospect theory; (4) fuzzy-trace theory; (5) the differentiation and consolidation theory; (6) the ecological rationality theory; (7) the rational-emotional model of decision avoidance; and finally, (8) the Attend, React, Explain, Adapt model of affective forecasting. Some theories have strong relevance to the information design (e.g. prospect theory); some are more relevant to deliberation processes (conflict theory, differentiation theory and ecological validity). None of the theories in isolation was sufficient to inform the design of all the necessary components of decision support interventions. It was also clear that most work in theory-building has focused on explaining or describing how humans think rather than on how tools could be designed to help humans make good decisions. It is not surprising therefore that a large theory-practice gap exists as we consider decision support for patients. There was no relevant theory that integrated all the necessary contributions to the task of making good decisions in collaborative interactions. Initiatives such as the International Patient Decision Aids Standards Collaboration influence standards for the design of decision support interventions. However, this analysis points to the need to undertake more work in providing theoretical foundations for these interventions. © 2010 Blackwell Publishing Ltd.
Narrative Interest Standard: A Novel Approach to Surrogate Decision-Making for People With Dementia.
Wilkins, James M
2017-06-17
Dementia is a common neurodegenerative process that can significantly impair decision-making capacity as the disease progresses. When a person is found to lack capacity to make a decision, a surrogate decision-maker is generally sought to aid in decision-making. Typical bases for surrogate decision-making include the substituted judgment standard and the best interest standard. Given the heterogeneous and progressive course of dementia, however, these standards for surrogate decision-making are often insufficient in providing guidance for the decision-making for a person with dementia, escalating the likelihood of conflict in these decisions. In this article, the narrative interest standard is presented as a novel and more appropriate approach to surrogate decision-making for people with dementia. Through case presentation and ethical analysis, the standard mechanisms for surrogate decision-making for people with dementia are reviewed and critiqued. The narrative interest standard is then introduced and discussed as a dementia-specific model for surrogate decision-making. Through incorporation of elements of a best interest standard in focusing on the current benefit-burden ratio and elements of narrative to provide context, history, and flexibility for values and preferences that may change over time, the narrative interest standard allows for elaboration of an enriched context for surrogate decision-making for people with dementia. More importantly, however, a narrative approach encourages the direct contribution from people with dementia in authoring the story of what matters to them in their lives.
2017-01-01
In principle, formal dynamical models of decision making hold the potential to represent fundamental computations underpinning value-based (i.e., preferential) decisions in addition to perceptual decisions. Sequential-sampling models such as the race model and the drift-diffusion model that are grounded in simplicity, analytical tractability, and optimality remain popular, but some of their more recent counterparts have instead been designed with an aim for more feasibility as architectures to be implemented by actual neural systems. Connectionist models are proposed herein at an intermediate level of analysis that bridges mental phenomena and underlying neurophysiological mechanisms. Several such models drawing elements from the established race, drift-diffusion, feedforward-inhibition, divisive-normalization, and competing-accumulator models were tested with respect to fitting empirical data from human participants making choices between foods on the basis of hedonic value rather than a traditional perceptual attribute. Even when considering performance at emulating behavior alone, more neurally plausible models were set apart from more normative race or drift-diffusion models both quantitatively and qualitatively despite remaining parsimonious. To best capture the paradigm, a novel six-parameter computational model was formulated with features including hierarchical levels of competition via mutual inhibition as well as a static approximation of attentional modulation, which promotes “winner-take-all” processing. Moreover, a meta-analysis encompassing several related experiments validated the robustness of model-predicted trends in humans’ value-based choices and concomitant reaction times. These findings have yet further implications for analysis of neurophysiological data in accordance with computational modeling, which is also discussed in this new light. PMID:29077746
Colas, Jaron T
2017-01-01
In principle, formal dynamical models of decision making hold the potential to represent fundamental computations underpinning value-based (i.e., preferential) decisions in addition to perceptual decisions. Sequential-sampling models such as the race model and the drift-diffusion model that are grounded in simplicity, analytical tractability, and optimality remain popular, but some of their more recent counterparts have instead been designed with an aim for more feasibility as architectures to be implemented by actual neural systems. Connectionist models are proposed herein at an intermediate level of analysis that bridges mental phenomena and underlying neurophysiological mechanisms. Several such models drawing elements from the established race, drift-diffusion, feedforward-inhibition, divisive-normalization, and competing-accumulator models were tested with respect to fitting empirical data from human participants making choices between foods on the basis of hedonic value rather than a traditional perceptual attribute. Even when considering performance at emulating behavior alone, more neurally plausible models were set apart from more normative race or drift-diffusion models both quantitatively and qualitatively despite remaining parsimonious. To best capture the paradigm, a novel six-parameter computational model was formulated with features including hierarchical levels of competition via mutual inhibition as well as a static approximation of attentional modulation, which promotes "winner-take-all" processing. Moreover, a meta-analysis encompassing several related experiments validated the robustness of model-predicted trends in humans' value-based choices and concomitant reaction times. These findings have yet further implications for analysis of neurophysiological data in accordance with computational modeling, which is also discussed in this new light.
A Common Mechanism Underlying Food Choice and Social Decisions.
Krajbich, Ian; Hare, Todd; Bartling, Björn; Morishima, Yosuke; Fehr, Ernst
2015-10-01
People make numerous decisions every day including perceptual decisions such as walking through a crowd, decisions over primary rewards such as what to eat, and social decisions that require balancing own and others' benefits. The unifying principles behind choices in various domains are, however, still not well understood. Mathematical models that describe choice behavior in specific contexts have provided important insights into the computations that may underlie decision making in the brain. However, a critical and largely unanswered question is whether these models generalize from one choice context to another. Here we show that a model adapted from the perceptual decision-making domain and estimated on choices over food rewards accurately predicts choices and reaction times in four independent sets of subjects making social decisions. The robustness of the model across domains provides behavioral evidence for a common decision-making process in perceptual, primary reward, and social decision making.
A Common Mechanism Underlying Food Choice and Social Decisions
Krajbich, Ian; Hare, Todd; Bartling, Björn; Morishima, Yosuke; Fehr, Ernst
2015-01-01
People make numerous decisions every day including perceptual decisions such as walking through a crowd, decisions over primary rewards such as what to eat, and social decisions that require balancing own and others’ benefits. The unifying principles behind choices in various domains are, however, still not well understood. Mathematical models that describe choice behavior in specific contexts have provided important insights into the computations that may underlie decision making in the brain. However, a critical and largely unanswered question is whether these models generalize from one choice context to another. Here we show that a model adapted from the perceptual decision-making domain and estimated on choices over food rewards accurately predicts choices and reaction times in four independent sets of subjects making social decisions. The robustness of the model across domains provides behavioral evidence for a common decision-making process in perceptual, primary reward, and social decision making. PMID:26460812
The DO ART Model: An Ethical Decision-Making Model Applicable to Art Therapy
ERIC Educational Resources Information Center
Hauck, Jessica; Ling, Thomson
2016-01-01
Although art therapists have discussed the importance of taking a positive stance in terms of ethical decision making (Hinz, 2011), an ethical decision-making model applicable for the field of art therapy has yet to emerge. As the field of art therapy continues to grow, an accessible, theoretically grounded, and logical decision-making model is…
NASA Technical Reports Server (NTRS)
Orasanu, Judith; Statler, Irving C. (Technical Monitor)
1994-01-01
The importance of decision-making to safety in complex, dynamic environments like mission control centers and offshore installations has been well established. NASA-ARC has a program of research dedicated to fostering safe and effective decision-making in the manned spaceflight environment. Because access to spaceflight is limited, environments with similar characteristics, including aviation and nuclear power plants, serve as analogs from which space-relevant data can be gathered and theories developed. Analyses of aviation accidents cite crew judgement and decision making as causes or contributing factors in over half of all accidents. A similar observation has been made in nuclear power plants. Yet laboratory research on decision making has not proven especially helpful in improving the quality of decisions in these kinds of environments. One reason is that the traditional, analytic decision models are inappropriate to multidimensional, high-risk environments, and do not accurately describe what expert human decision makers do when they make decisions that have consequences. A new model of dynamic, naturalistic decision making is offered that may prove useful for improving decision making in complex, isolated, confined and high-risk environments. Based on analyses of crew performance in full-mission simulators and accident reports, features that define effective decision strategies in abnormal or emergency situations have been identified. These include accurate situation assessment (including time and risk assessment), appreciation of the complexity of the problem, sensitivity to constraints on the decision, timeliness of the response, and use of adequate information. More effective crews also manage their workload to provide themselves with time and resources to make good decisions. In brief, good decisions are appropriate to the demands of the situation. Effective crew decision making and overall performance are mediated by crew communication. Communication contributes to performance because it assures that all crew members have essential information, but it also regulates and coordinates crew actions and is the medium of collective thinking in response to a problem. This presentation will examine the relations between leadership, communication, decision making and overall crew performance. Implications of these findings for spaceflight and training for offshore installations will be discussed.
Decision Making in Action: Applying Research to Practice
NASA Technical Reports Server (NTRS)
Orasanu, Judith; Statler, Irving C. (Technical Monitor)
1994-01-01
The importance of decision-making to safety in complex, dynamic environments like mission control centers and offshore installations has been well established. NASA-ARC has a program of research dedicated to fostering safe and effective decision-making in the manned spaceflight environment. Because access to spaceflight is limited, environments with similar characteristics, including aviation and nuclear power plants, serve as analogs from which space-relevant data can be gathered and theories developed. Analyses of aviation accidents cite crew judgement and decision making as causes or contributing factors in over half of all accidents. A similar observation has been made in nuclear power plants. Yet laboratory research on decision making has not proven especially helpful in improving the quality of decisions in these kinds of environments. One reason is that the traditional, analytic decision models are inappropriate to multidimensional, high-risk environments, and do not accurately describe what expert human decision makers do when they make decisions that have consequences. A new model of dynamic, naturalistic decision making is offered that may prove useful for improving decision making in complex, isolated, confined and high-risk environments. Based on analyses of crew performance in full-mission simulators and accident reports, features that define effective decision strategies in abnormal or emergency situations have been identified. These include accurate situation assessment (including time and risk assessment), appreciation of the complexity of the problem, sensitivity to constraints on the decision, timeliness of the response, and use of adequate information. More effective crews also manage their workload to provide themselves with time and resources to make good decisions. In brief, good decisions are appropriate to the demands of the situation. Effective crew decision making and overall performance are mediated by crew communication. Communication contributes to performance because it assures that all crew members have essential information, but it also regulates and coordinates crew actions and is the medium of collective thinking in response to a problem. This presentation will examine the relations between leadership, communication, decision making and overall crew performance. Implications of these findings for spaceflight and training for offshore installations will be discussed.
Risk-based decision making for terrorism applications.
Dillon, Robin L; Liebe, Robert M; Bestafka, Thomas
2009-03-01
This article describes the anti-terrorism risk-based decision aid (ARDA), a risk-based decision-making approach for prioritizing anti-terrorism measures. The ARDA model was developed as part of a larger effort to assess investments for protecting U.S. Navy assets at risk and determine whether the most effective anti-terrorism alternatives are being used to reduce the risk to the facilities and war-fighting assets. With ARDA and some support from subject matter experts, we examine thousands of scenarios composed of 15 attack modes against 160 facility types on two installations and hundreds of portfolios of 22 mitigation alternatives. ARDA uses multiattribute utility theory to solve some of the commonly identified challenges in security risk analysis. This article describes the process and documents lessons learned from applying the ARDA model for this application.
NASA Astrophysics Data System (ADS)
Marović, Ivan; Hanak, Tomaš
2017-10-01
In the management of construction projects special attention should be given to the planning as the most important phase of decision-making process. Quality decision-making based on adequate and comprehensive collaboration of all involved stakeholders is crucial in project’s early stages. Fundamental reasons for existence of this problem arise from: specific conditions of construction industry (final products are inseparable from the location i.e. location has a strong influence of building design and its structural characteristics as well as technology which will be used during construction), investors’ desires and attitudes, and influence of socioeconomic and environment aspects. Considering all mentioned reasons one can conclude that selection of adequate construction site location for future investment is complex, low structured and multi-criteria problem. To take into account all the dimensions, the proposed model for selection of adequate site location is devised. The model is based on AHP (for designing the decision-making hierarchy) and PROMETHEE (for pairwise comparison of investment locations) methods. As a result of mixing basis feature of both methods, operational synergies can be achieved in multi-criteria decision analysis. Such gives the decision-maker a sense of assurance, knowing that if the procedure proposed by the presented model has been followed, it will lead to a rational decision, carefully and systematically thought out.
Knebel, Ann R.; Sharpe, Virginia A.; Danis, Marion; Toomey, Lauren M.; Knickerbocker, Deborah K.
2017-01-01
During catastrophic disasters, government leaders must decide how to efficiently and effectively allocate scarce public health and medical resources. The literature about triage decision making at the individual patient level is substantial, and the National Response Framework provides guidance about the distribution of responsibilities between federal and state governments. However, little has been written about the decision-making process of federal leaders in disaster situations when resources are not sufficient to meet the needs of several states simultaneously. We offer an ethical framework and logic model for decision making in such circumstances. We adapted medical triage and the federalism principle to the decision-making process for allocating scarce federal public health and medical resources. We believe that the logic model provides a values-based framework that can inform the gestalt during the iterative decision process used by federal leaders as they allocate scarce resources to states during catastrophic disasters. PMID:24612854
Embodied Choice: How Action Influences Perceptual Decision Making
Lepora, Nathan F.; Pezzulo, Giovanni
2015-01-01
Embodied Choice considers action performance as a proper part of the decision making process rather than merely as a means to report the decision. The central statement of embodied choice is the existence of bidirectional influences between action and decisions. This implies that for a decision expressed by an action, the action dynamics and its constraints (e.g. current trajectory and kinematics) influence the decision making process. Here we use a perceptual decision making task to compare three types of model: a serial decision-then-action model, a parallel decision-and-action model, and an embodied choice model where the action feeds back into the decision making. The embodied model incorporates two key mechanisms that together are lacking in the other models: action preparation and commitment. First, action preparation strategies alleviate delays in enacting a choice but also modify decision termination. Second, action dynamics change the prospects and create a commitment effect to the initially preferred choice. Our results show that these two mechanisms make embodied choice models better suited to combine decision and action appropriately to achieve suitably fast and accurate responses, as usually required in ecologically valid situations. Moreover, embodied choice models with these mechanisms give a better account of trajectory tracking experiments during decision making. In conclusion, the embodied choice framework offers a combined theory of decision and action that gives a clear case that embodied phenomena such as the dynamics of actions can have a causal influence on central cognition. PMID:25849349
Embodied choice: how action influences perceptual decision making.
Lepora, Nathan F; Pezzulo, Giovanni
2015-04-01
Embodied Choice considers action performance as a proper part of the decision making process rather than merely as a means to report the decision. The central statement of embodied choice is the existence of bidirectional influences between action and decisions. This implies that for a decision expressed by an action, the action dynamics and its constraints (e.g. current trajectory and kinematics) influence the decision making process. Here we use a perceptual decision making task to compare three types of model: a serial decision-then-action model, a parallel decision-and-action model, and an embodied choice model where the action feeds back into the decision making. The embodied model incorporates two key mechanisms that together are lacking in the other models: action preparation and commitment. First, action preparation strategies alleviate delays in enacting a choice but also modify decision termination. Second, action dynamics change the prospects and create a commitment effect to the initially preferred choice. Our results show that these two mechanisms make embodied choice models better suited to combine decision and action appropriately to achieve suitably fast and accurate responses, as usually required in ecologically valid situations. Moreover, embodied choice models with these mechanisms give a better account of trajectory tracking experiments during decision making. In conclusion, the embodied choice framework offers a combined theory of decision and action that gives a clear case that embodied phenomena such as the dynamics of actions can have a causal influence on central cognition.
Enhancing Consumer Choice: Are We Making Appropriate Recommendations?
ERIC Educational Resources Information Center
Lee, Jinkook; Geistfeld, Loren V.
1998-01-01
This study used conjoint analysis to identify consumer choice models. Results suggest a need to base choice-making aids on ideal choice models if the aid is to lead consumers to decisions consistent with true preferences. (Author/JOW)
Measuring and Modeling Behavioral Decision Dynamics in Collective Evacuation
Carlson, Jean M.; Alderson, David L.; Stromberg, Sean P.; Bassett, Danielle S.; Craparo, Emily M.; Guiterrez-Villarreal, Francisco; Otani, Thomas
2014-01-01
Identifying and quantifying factors influencing human decision making remains an outstanding challenge, impacting the performance and predictability of social and technological systems. In many cases, system failures are traced to human factors including congestion, overload, miscommunication, and delays. Here we report results of a behavioral network science experiment, targeting decision making in a natural disaster. In a controlled laboratory setting, our results quantify several key factors influencing individual evacuation decision making in a controlled laboratory setting. The experiment includes tensions between broadcast and peer-to-peer information, and contrasts the effects of temporal urgency associated with the imminence of the disaster and the effects of limited shelter capacity for evacuees. Based on empirical measurements of the cumulative rate of evacuations as a function of the instantaneous disaster likelihood, we develop a quantitative model for decision making that captures remarkably well the main features of observed collective behavior across many different scenarios. Moreover, this model captures the sensitivity of individual- and population-level decision behaviors to external pressures, and systematic deviations from the model provide meaningful estimates of variability in the collective response. Identification of robust methods for quantifying human decisions in the face of risk has implications for policy in disasters and other threat scenarios, specifically the development and testing of robust strategies for training and control of evacuations that account for human behavior and network topologies. PMID:24520331
Human Judgment and Decision Making: Models and Applications.
ERIC Educational Resources Information Center
Loke, Wing Hong
This document notes that researchers study the processes involved in judgment and decision making and prescribe theories and models that reflect the behavior of the decision makers. It addresses the various models that are used to represent judgment and decision making, with particular interest in models that more accurately represent human…
Out-of-Home Placement Decision-Making and Outcomes in Child Welfare: A Longitudinal Study
McClelland, Gary M.; Weiner, Dana A.; Jordan, Neil; Lyons, John S.
2015-01-01
After children enter the child welfare system, subsequent out-of-home placement decisions and their impact on children’s well-being are complex and under-researched. This study examined two placement decision-making models: a multidisciplinary team approach, and a decision support algorithm using a standardized assessment. Based on 3,911 placement records in the Illinois child welfare system over 4 years, concordant (agreement) and discordant (disagreement) decisions between the two models were compared. Concordant decisions consistently predicted improvement in children’s well-being regardless of placement type. Discordant decisions showed greater variability. In general, placing children in settings less restrictive than the algorithm suggested (“under-placing”) was associated with less severe baseline functioning but also less improvement over time than placing children according to the algorithm. “Over-placing” children in settings more restrictive than the algorithm recommended was associated with more severe baseline functioning but fewer significant results in rate of improvement than predicted by concordant decisions. The importance of placement decision-making on policy, restrictiveness of placement, and delivery of treatments and services in child welfare are discussed. PMID:24677172
Addy, Nii Antiaye; Shaban-Nejad, Arash; Buckeridge, David L; Dubé, Laurette
2015-01-23
Multi-stakeholder partnerships (MSPs) have become a widespread means for deploying policies in a whole of society strategy to address the complex problem of childhood obesity. However, decision-making in MSPs is fraught with challenges, as decision-makers are faced with complexity, and have to reconcile disparate conceptualizations of knowledge across multiple sectors with diverse sets of indicators and data. These challenges can be addressed by supporting MSPs with innovative tools for obtaining, organizing and using data to inform decision-making. The purpose of this paper is to describe and analyze the development of a knowledge-based infrastructure to support MSP decision-making processes. The paper emerged from a study to define specifications for a knowledge-based infrastructure to provide decision support for community-level MSPs in the Canadian province of Quebec. As part of the study, a process assessment was conducted to understand the needs of communities as they collect, organize, and analyze data to make decisions about their priorities. The result of this process is a "portrait", which is an epidemiological profile of health and nutrition in their community. Portraits inform strategic planning and development of interventions, and are used to assess the impact of interventions. Our key findings indicate ambiguities and disagreement among MSP decision-makers regarding causal relationships between actions and outcomes, and the relevant data needed for making decisions. MSP decision-makers expressed a desire for easy-to-use tools that facilitate the collection, organization, synthesis, and analysis of data, to enable decision-making in a timely manner. Findings inform conceptual modeling and ontological analysis to capture the domain knowledge and specify relationships between actions and outcomes. This modeling and analysis provide the foundation for an ontology, encoded using OWL 2 Web Ontology Language. The ontology is developed to provide semantic support for the MSP process, defining objectives, strategies, actions, indicators, and data sources. In the future, software interacting with the ontology can facilitate interactive browsing by decision-makers in the MSP in the form of concepts, instances, relationships, and axioms. Our ontology also facilitates the integration and interpretation of community data, and can help in managing semantic interoperability between different knowledge sources. Future work will focus on defining specifications for the development of a database of indicators and an information system to help decision-makers to view, analyze and organize indicators for their community. This work should improve MSP decision-making in the development of interventions to address childhood obesity.
Addy, Nii Antiaye; Shaban-Nejad, Arash; Buckeridge, David L.; Dubé, Laurette
2015-01-01
Multi-stakeholder partnerships (MSPs) have become a widespread means for deploying policies in a whole of society strategy to address the complex problem of childhood obesity. However, decision-making in MSPs is fraught with challenges, as decision-makers are faced with complexity, and have to reconcile disparate conceptualizations of knowledge across multiple sectors with diverse sets of indicators and data. These challenges can be addressed by supporting MSPs with innovative tools for obtaining, organizing and using data to inform decision-making. The purpose of this paper is to describe and analyze the development of a knowledge-based infrastructure to support MSP decision-making processes. The paper emerged from a study to define specifications for a knowledge-based infrastructure to provide decision support for community-level MSPs in the Canadian province of Quebec. As part of the study, a process assessment was conducted to understand the needs of communities as they collect, organize, and analyze data to make decisions about their priorities. The result of this process is a “portrait”, which is an epidemiological profile of health and nutrition in their community. Portraits inform strategic planning and development of interventions, and are used to assess the impact of interventions. Our key findings indicate ambiguities and disagreement among MSP decision-makers regarding causal relationships between actions and outcomes, and the relevant data needed for making decisions. MSP decision-makers expressed a desire for easy-to-use tools that facilitate the collection, organization, synthesis, and analysis of data, to enable decision-making in a timely manner. Findings inform conceptual modeling and ontological analysis to capture the domain knowledge and specify relationships between actions and outcomes. This modeling and analysis provide the foundation for an ontology, encoded using OWL 2 Web Ontology Language. The ontology is developed to provide semantic support for the MSP process, defining objectives, strategies, actions, indicators, and data sources. In the future, software interacting with the ontology can facilitate interactive browsing by decision-makers in the MSP in the form of concepts, instances, relationships, and axioms. Our ontology also facilitates the integration and interpretation of community data, and can help in managing semantic interoperability between different knowledge sources. Future work will focus on defining specifications for the development of a database of indicators and an information system to help decision-makers to view, analyze and organize indicators for their community. This work should improve MSP decision-making in the development of interventions to address childhood obesity. PMID:25625409
Moore, Jennifer E; Titler, Marita G; Kane Low, Lisa; Dalton, Vanessa K; Sampselle, Carolyn M
2015-01-01
In response to the passage of the Affordable Care Act in the United States, clinicians and researchers are critically evaluating methods to engage patients in implementing evidence-based care to improve health outcomes. However, most models on implementation only target clinicians or health systems as the adopters of evidence. Patients are largely ignored in these models. A new implementation model that captures the complex but important role of patients in the uptake of evidence may be a critical missing link. Through a process of theory evaluation and development, we explore patient-centered concepts (patient activation and shared decision making) within an implementation model by mapping qualitative data from an elective induction of labor study to assess the model's ability to capture these key concepts. The process demonstrated that a new, patient-centered model for implementation is needed. In response, the Evidence Informed Decision Making through Engagement Model is presented. We conclude that, by fully integrating women into an implementation model, outcomes that are important to both the clinician and patient will improve. In the interest of providing evidence-based care to women during pregnancy and childbirth, it is essential that care is patient centered. The inclusion of concepts discussed in this article has the potential to extend beyond maternity care and influence other clinical areas. Utilizing the newly developed Evidence Informed Decision Making through Engagement Model provides a framework for utilizing evidence and translating it into practice while acknowledging the important role that women have in the process. Published by Elsevier Inc.
A multicriteria decision making model for assessment and selection of an ERP in a logistics context
NASA Astrophysics Data System (ADS)
Pereira, Teresa; Ferreira, Fernanda A.
2017-07-01
The aim of this work is to apply a methodology of decision support based on a multicriteria decision analyses (MCDA) model that allows the assessment and selection of an Enterprise Resource Planning (ERP) in a Portuguese logistics company by Group Decision Maker (GDM). A Decision Support system (DSS) that implements a MCDA - Multicriteria Methodology for the Assessment and Selection of Information Systems / Information Technologies (MMASSI / IT) is used based on its features and facility to change and adapt the model to a given scope. Using this DSS it was obtained the information system that best suited to the decisional context, being this result evaluated through a sensitivity and robustness analysis.
Clayman, Marla L.; Makoul, Gregory; Harper, Maya M.; Koby, Danielle G.; Williams, Adam R.
2012-01-01
Objectives Describe the development and refinement of a scheme, Detail of Essential Elements and Participants in Shared Decision Making (DEEP-SDM), for coding Shared Decision Making (SDM) while reporting on the characteristics of decisions in a sample of patients with metastatic breast cancer. Methods The Evidence-Based Patient Choice instrument was modified to reflect Makoul and Clayman’s Integrative Model of SDM. Coding was conducted on video recordings of 20 women at the first visit with their medical oncologists after suspicion of disease progression. Noldus Observer XT v.8, a video coding software platform, was used for coding. Results The sample contained 80 decisions (range: 1-11), divided into 150 decision making segments. Most decisions were physician-led, although patients and physicians initiated similar numbers of decision-making conversations. Conclusion DEEP-SDM facilitates content analysis of encounters between women with metastatic breast cancer and their medical oncologists. Despite the fractured nature of decision making, it is possible to identify decision points and to code each of the Essential Elements of Shared Decision Making. Further work should include application of DEEP-SDM to non-cancer encounters. Practice Implications: A better understanding of how decisions unfold in the medical encounter can help inform the relationship of SDM to patient-reported outcomes. PMID:22784391
Transcendental Political Systems and the Gravity Model
NASA Technical Reports Server (NTRS)
Lock, Connor
2012-01-01
This summer I have been working on an Army Deep Futures Model project named Themis. Themis is a JPL based modeling framework that anticipates possible future states for the world within the next 25 years. The goal of this framework is to determine the likelihood that the US Army will need to intervene on behalf of the US strategic interests. Key elements that are modeled within this tool include the world structure and major decisions that are made by key actors. Each actor makes decisions based on their goals and within the constraints of the structure of the system in which they are located. In my research I have focused primarily on the effects of structures upon the decision-making processes of the actors within them. This research is a natural extension of my major program at Georgetown University, where I am studying the International Political Economy and the structures that make it up. My basic goal for this summer project was to be a helpful asset to the Themis modeling team, with any research done or processes learned constituting a bonus.
NASA Astrophysics Data System (ADS)
Arnold, Julia C.
2018-03-01
Health education is to foster health literacy, informed decision-making and to promote health behaviour. To date, there are several models that seek to explain health behaviour (e.g. the Theory of Planned Behaviour or the Health Belief Model). These models include motivational factors (expectancies and values) that play a role in decision-making in health contexts. In this theoretical paper, it is argued that none of these models makes consequent use of expectancy-value pairs. It is further argued that in order to make these models fruitful for science education and for informed decision-making, models should systematically incorporate knowledge as part of the decision-making process. To fill this gap, this theoretical paper introduces The Integrated Model of Decision-Making in Health Contexts. This model includes three types of knowledge (system health knowledge, action-related health knowledge and effectiveness health knowledge) as influencing factors for motivational factors (perceived health threat, attitude towards health action, attitude towards health outcome and subjective norm) that are formed of expectancy-value pairs and lead to decisions. The model's potential for health education in science education as well as research implications is discussed.
Modeling Search Behaviors during the Acquisition of Expertise in a Sequential Decision-Making Task.
Moënne-Loccoz, Cristóbal; Vergara, Rodrigo C; López, Vladimir; Mery, Domingo; Cosmelli, Diego
2017-01-01
Our daily interaction with the world is plagued of situations in which we develop expertise through self-motivated repetition of the same task. In many of these interactions, and especially when dealing with computer and machine interfaces, we must deal with sequences of decisions and actions. For instance, when drawing cash from an ATM machine, choices are presented in a step-by-step fashion and a specific sequence of choices must be performed in order to produce the expected outcome. But, as we become experts in the use of such interfaces, is it possible to identify specific search and learning strategies? And if so, can we use this information to predict future actions? In addition to better understanding the cognitive processes underlying sequential decision making, this could allow building adaptive interfaces that can facilitate interaction at different moments of the learning curve. Here we tackle the question of modeling sequential decision-making behavior in a simple human-computer interface that instantiates a 4-level binary decision tree (BDT) task. We record behavioral data from voluntary participants while they attempt to solve the task. Using a Hidden Markov Model-based approach that capitalizes on the hierarchical structure of behavior, we then model their performance during the interaction. Our results show that partitioning the problem space into a small set of hierarchically related stereotyped strategies can potentially capture a host of individual decision making policies. This allows us to follow how participants learn and develop expertise in the use of the interface. Moreover, using a Mixture of Experts based on these stereotyped strategies, the model is able to predict the behavior of participants that master the task.
A decision model for cost effective design of biomass based green energy supply chains.
Yılmaz Balaman, Şebnem; Selim, Hasan
2015-09-01
The core driver of this study is to deal with the design of anaerobic digestion based biomass to energy supply chains in a cost effective manner. In this concern, a decision model is developed. The model is based on fuzzy multi objective decision making in order to simultaneously optimize multiple economic objectives and tackle the inherent uncertainties in the parameters and decision makers' aspiration levels for the goals. The viability of the decision model is explored with computational experiments on a real-world biomass to energy supply chain and further analyses are performed to observe the effects of different conditions. To this aim, scenario analyses are conducted to investigate the effects of energy crop utilization and operational costs on supply chain structure and performance measures. Copyright © 2015 Elsevier Ltd. All rights reserved.
Using multi-species occupancy models in structured decision making on managed lands
Sauer, John R.; Blank, Peter J.; Zipkin, Elise F.; Fallon, Jane E.; Fallon, Frederick W.
2013-01-01
Land managers must balance the needs of a variety of species when manipulating habitats. Structured decision making provides a systematic means of defining choices and choosing among alternative management options; implementation of a structured decision requires quantitative approaches to predicting consequences of management on the relevant species. Multi-species occupancy models provide a convenient framework for making structured decisions when the management objective is focused on a collection of species. These models use replicate survey data that are often collected on managed lands. Occupancy can be modeled for each species as a function of habitat and other environmental features, and Bayesian methods allow for estimation and prediction of collective responses of groups of species to alternative scenarios of habitat management. We provide an example of this approach using data from breeding bird surveys conducted in 2008 at the Patuxent Research Refuge in Laurel, Maryland, evaluating the effects of eliminating meadow and wetland habitats on scrub-successional and woodland-breeding bird species using summed total occupancy of species as an objective function. Removal of meadows and wetlands decreased value of an objective function based on scrub-successional species by 23.3% (95% CI: 20.3–26.5), but caused only a 2% (0.5, 3.5) increase in value of an objective function based on woodland species, documenting differential effects of elimination of meadows and wetlands on these groups of breeding birds. This approach provides a useful quantitative tool for managers interested in structured decision making.
Optimization Research of Generation Investment Based on Linear Programming Model
NASA Astrophysics Data System (ADS)
Wu, Juan; Ge, Xueqian
Linear programming is an important branch of operational research and it is a mathematical method to assist the people to carry out scientific management. GAMS is an advanced simulation and optimization modeling language and it will combine a large number of complex mathematical programming, such as linear programming LP, nonlinear programming NLP, MIP and other mixed-integer programming with the system simulation. In this paper, based on the linear programming model, the optimized investment decision-making of generation is simulated and analyzed. At last, the optimal installed capacity of power plants and the final total cost are got, which provides the rational decision-making basis for optimized investments.
The use of decision analysis to examine ethical decision making by critical care nurses.
Hughes, K K; Dvorak, E M
1997-01-01
To examine the extent to which critical care staff nurses make ethical decisions that coincide with those recommended by a decision analytic model. Nonexperimental, ex post facto. Midwestern university-affiliated 500 bed tertiary care medical center. One hundred critical care staff nurses randomly selected from seven critical care units. Complete responses were obtained from 82 nurses (for a final response rate of 82%). The dependent variable--consistent decision making--was measured as staff nurses' abilities to make ethical decisions that coincided with those prescribed by the decision model. Subjects completed two instruments, the Ethical Decision Analytic Model, a computer-administered instrument designed to measure staff nurses' abilities to make consistent decisions about a chemically-impaired colleague; and a Background Inventory. The results indicate marked consensus among nurses when informal methods were used. However, there was little consistency between the nurses' informal decisions and those recommended by the decision analytic model. Although 50% (n = 41) of all nurses chose a course of action that coincided with the model's least optimal alternative, few nurses agreed with the model as to the most optimal course of action. The findings also suggest that consistency was unrelated (p > 0.05) to the nurses' educational background or years of clinical experience; that most subjects reported receiving little or no education in decision making during their basic nursing education programs; but that exposure to decision-making strategies was related to years of nursing experience (p < 0.05). The findings differ from related studies that have found a moderate degree of consistency between nurses and decision analytic models for strictly clinical decision tasks, especially when those tasks were less complex. However, the findings partially coincide with other findings that decision analysis may not be particularly well-suited to the critical care environment. Additional research is needed to determine whether critical care nurses use the same decision-making methods as do other nurses; and to clarify the effects of decision task (clinical versus ethical) on nurses' decision making. It should not be assumed that methods used to study nurses' clinical decision making are applicable for all nurses or all types of decisions, including ethical decisions.
The role of flight planning in aircrew decision performance
NASA Technical Reports Server (NTRS)
Pepitone, Dave; King, Teresa; Murphy, Miles
1989-01-01
The role of flight planning in increasing the safety and decision-making performance of the air transport crews was investigated in a study that involved 48 rated airline crewmembers on a B720 simulator with a model-board-based visual scene and motion cues with three degrees of freedom. The safety performance of the crews was evaluated using videotaped replays of the flight. Based on these evaluations, the crews could be divided into high- and low-safety groups. It was found that, while collecting information before flights, the high-safety crews were more concerned with information about alternative airports, especially the fuel required to get there, and were characterized by making rapid and appropriate decisions during the emergency part of the flight scenario, allowing these crews to make an early diversion to other airports. These results suggest that contingency planning that takes into account alternative courses of action enhances rapid and accurate decision-making under time pressure.
Xia, Ying; Zhang, Li; Zhao, Ning
2016-09-20
Participation in organizational decision-making has received considerable attention from scholars. Beyond the perspectives proposed in past studies, we offer a new account, based upon a communication perspective, to explain why and when participation in decision-making can influence job satisfaction. Drawing from social capital theory, we examine whether communication openness mediates the relationship between participation in decision-making and job satisfaction. We also investigate how information adequacy moderates this mediated process. Results from a sample of 184 employees in China showed that the four-factor model was the best fitting solution (CFI = .91, GFI = .90, RMSEA = .09). The analyses indicated that employees' participation in decision-making positively affected their job satisfaction (β = .32, p < .001), and the effect was mediated by communication openness (direct effect became non-significant when communication openness was included: β = .06, n.s.). Results also found that decision-making information adequacy positively moderated the relationship between participation in decision-making and communication openness (β = .13, p < .05). Thus, open communication and the free flow of information within organizations should be encouraged.
Classifying clinical decision making: a unifying approach.
Buckingham, C D; Adams, A
2000-10-01
This is the first of two linked papers exploring decision making in nursing which integrate research evidence from different clinical and academic disciplines. Currently there are many decision-making theories, each with their own distinctive concepts and terminology, and there is a tendency for separate disciplines to view their own decision-making processes as unique. Identifying good nursing decisions and where improvements can be made is therefore problematic, and this can undermine clinical and organizational effectiveness, as well as nurses' professional status. Within the unifying framework of psychological classification, the overall aim of the two papers is to clarify and compare terms, concepts and processes identified in a diversity of decision-making theories, and to demonstrate their underlying similarities. It is argued that the range of explanations used across disciplines can usefully be re-conceptualized as classification behaviour. This paper explores problems arising from multiple theories of decision making being applied to separate clinical disciplines. Attention is given to detrimental effects on nursing practice within the context of multidisciplinary health-care organizations and the changing role of nurses. The different theories are outlined and difficulties in applying them to nursing decisions highlighted. An alternative approach based on a general model of classification is then presented in detail to introduce its terminology and the unifying framework for interpreting all types of decisions. The classification model is used to provide the context for relating alternative philosophical approaches and to define decision-making activities common to all clinical domains. This may benefit nurses by improving multidisciplinary collaboration and weakening clinical elitism.
A social discounting model based on Tsallis’ statistics
NASA Astrophysics Data System (ADS)
Takahashi, Taiki
2010-09-01
Social decision making (e.g. social discounting and social preferences) has been attracting attention in economics, econophysics, social physics, behavioral psychology, and neuroeconomics. This paper proposes a novel social discounting model based on the deformed algebra developed in the Tsallis’ non-extensive thermostatistics. Furthermore, it is suggested that this model can be utilized to quantify the degree of consistency in social discounting in humans and analyze the relationships between behavioral tendencies in social discounting and other-regarding economic decision making under game-theoretic conditions. Future directions in the application of the model to studies in econophysics, neuroeconomics, and social physics, as well as real-world problems such as the supply of live organ donations, are discussed.
Myers, Catherine E; Sheynin, Jony; Balsdon, Tarryn; Luzardo, Andre; Beck, Kevin D; Hogarth, Lee; Haber, Paul; Moustafa, Ahmed A
2016-01-01
Addiction is the continuation of a habit in spite of negative consequences. A vast literature gives evidence that this poor decision-making behavior in individuals addicted to drugs also generalizes to laboratory decision making tasks, suggesting that the impairment in decision-making is not limited to decisions about taking drugs. In the current experiment, opioid-addicted individuals and matched controls with no history of illicit drug use were administered a probabilistic classification task that embeds both reward-based and punishment-based learning trials, and a computational model of decision making was applied to understand the mechanisms describing individuals' performance on the task. Although behavioral results showed that opioid-addicted individuals performed as well as controls on both reward- and punishment-based learning, the modeling results suggested subtle differences in how decisions were made between the two groups. Specifically, the opioid-addicted group showed decreased tendency to repeat prior responses, meaning that they were more likely to "chase reward" when expectancies were violated, whereas controls were more likely to stick with a previously-successful response rule, despite occasional expectancy violations. This tendency to chase short-term reward, potentially at the expense of developing rules that maximize reward over the long term, may be a contributing factor to opioid addiction. Further work is indicated to better understand whether this tendency arises as a result of brain changes in the wake of continued opioid use/abuse, or might be a pre-existing factor that may contribute to risk for addiction. Copyright © 2015 Elsevier B.V. All rights reserved.
Multi-alternative decision-making with non-stationary inputs.
Nunes, Luana F; Gurney, Kevin
2016-08-01
One of the most widely implemented models for multi-alternative decision-making is the multihypothesis sequential probability ratio test (MSPRT). It is asymptotically optimal, straightforward to implement, and has found application in modelling biological decision-making. However, the MSPRT is limited in application to discrete ('trial-based'), non-time-varying scenarios. By contrast, real world situations will be continuous and entail stimulus non-stationarity. In these circumstances, decision-making mechanisms (like the MSPRT) which work by accumulating evidence, must be able to discard outdated evidence which becomes progressively irrelevant. To address this issue, we introduce a new decision mechanism by augmenting the MSPRT with a rectangular integration window and a transparent decision boundary. This allows selection and de-selection of options as their evidence changes dynamically. Performance was enhanced by adapting the window size to problem difficulty. Further, we present an alternative windowing method which exponentially decays evidence and does not significantly degrade performance, while greatly reducing the memory resources necessary. The methods presented have proven successful at allowing for the MSPRT algorithm to function in a non-stationary environment.
Making ResourceFULL™ Decisions: A Process Model for Civic Engagement
ERIC Educational Resources Information Center
Radke, Barbara; Chazdon, Scott
2015-01-01
Many public issues are becoming more complex, interconnected, and cannot be resolved by one individual or entity. Research shows an informed decision is not enough. Addressing these issues requires authentic civic engagement (deliberative dialogue) with the public to reach resourceFULL™ decisions--a decision based on diverse sources of information…
The value of decision models: Using ecologically based invasive plant management as an example
USDA-ARS?s Scientific Manuscript database
Humans have both fast and slow thought processes which influence our judgment and decision-making. The fast system is intuitive and valuable for decisions which do not require multiple steps or the application of logic or statistics. However, many decisions in natural resources are complex and req...
Acquisition and production of skilled behavior in dynamic decision-making tasks
NASA Technical Reports Server (NTRS)
Kirlik, Alex
1993-01-01
Summaries of the four projects completed during the performance of this research are included. The four projects described are: Perceptual Augmentation Aiding for Situation Assessment, Perceptual Augmentation Aiding for Dynamic Decision-Making and Control, Action Advisory Aiding for Dynamic Decision-Making and Control, and Display Design to Support Time-Constrained Route Optimization. Papers based on each of these projects are currently in preparation. The theoretical framework upon which the first three projects are based, Ecological Task Analysis, was also developed during the performance of this research, and is described in a previous report. A project concerned with modeling strategies in human control of a dynamic system was also completed during the performance of this research.
The impact of sleep deprivation on decision making: a review.
Harrison, Y; Horne, J A
2000-09-01
Few sleep deprivation (SD) studies involve realism or high-level decision making, factors relevant to managers, military commanders, and so forth, who are undergoing prolonged work during crises. Instead, research has favored simple tasks sensitive to SD mostly because of their dull monotony. In contrast, complex rule-based, convergent, and logical tasks are unaffected by short-term SD, seemingly because of heightened participant interest and compensatory effort. However, recent findings show that despite this effort, SD still impairs decision making involving the unexpected, innovation, revising plans, competing distraction, and effective communication. Decision-making models developed outside SD provide useful perspectives on these latter effects, as does a neuropsychological explanation of sleep function. SD presents particular difficulties for sleep-deprived decision makers who require these latter skills during emergency situations.
Breininger, David; Duncan, Brean; Eaton, Mitchell J.; Johnson, Fred; Nichols, James
2014-01-01
Land cover modeling is used to inform land management, but most often via a two-step process, where science informs how management alternatives can influence resources, and then, decision makers can use this information to make decisions. A more efficient process is to directly integrate science and decision-making, where science allows us to learn in order to better accomplish management objectives and is developed to address specific decisions. Co-development of management and science is especially productive when decisions are complicated by multiple objectives and impeded by uncertainty. Multiple objectives can be met by the specification of tradeoffs, and relevant uncertainty can be addressed through targeted science (i.e., models and monitoring). We describe how to integrate habitat and fuel monitoring with decision-making focused on the dual objectives of managing for endangered species and minimizing catastrophic fire risk. Under certain conditions, both objectives might be achieved by a similar management policy; other conditions require tradeoffs between objectives. Knowledge about system responses to actions can be informed by developing hypotheses based on ideas about fire behavior and then applying competing management actions to different land units in the same system state. Monitoring and management integration is important to optimize state-specific management decisions and to increase knowledge about system responses. We believe this approach has broad utility and identifies a clear role for land cover modeling programs intended to inform decision-making.
NASA Astrophysics Data System (ADS)
Anna, I. D.; Cahyadi, I.; Yakin, A.
2018-01-01
Selection of marketing strategy is a prominent competitive advantage for small and medium enterprises business development. The selection process is is a multiple criteria decision-making problem, which includes evaluation of various attributes or criteria in a process of strategy formulation. The objective of this paper is to develop a model for the selection of a marketing strategy in Batik Madura industry. The current study proposes an integrated approach based on analytic network process (ANP) and technique for order preference by similarity to ideal solution (TOPSIS) to determine the best strategy for Batik Madura marketing problems. Based on the results of group decision-making technique, this study selected fourteen criteria, including consistency, cost, trend following, customer loyalty, business volume, uniqueness manpower, customer numbers, promotion, branding, bussiness network, outlet location, credibility and the inovation as Batik Madura marketing strategy evaluation criteria. A survey questionnaire developed from literature review was distributed to a sample frame of Batik Madura SMEs in Pamekasan. In the decision procedure step, expert evaluators were asked to establish the decision matrix by comparing the marketing strategy alternatives under each of the individual criteria. Then, considerations obtained from ANP and TOPSIS methods were applied to build the specific criteria constraints and range of the launch strategy in the model. The model in this study demonstrates that, under current business situation, Straight-focus marketing strategy is the best marketing strategy for Batik Madura SMEs in Pamekasan.
Enhanced Requirements for Assessment in a Competency-Based, Time-Variable Medical Education System.
Gruppen, Larry D; Ten Cate, Olle; Lingard, Lorelei A; Teunissen, Pim W; Kogan, Jennifer R
2018-03-01
Competency-based, time-variable medical education has reshaped the perceptions and practices of teachers, curriculum designers, faculty developers, clinician educators, and program administrators. This increasingly popular approach highlights the fact that learning among different individuals varies in duration, foundation, and goal. Time variability places particular demands on the assessment data that are so necessary for making decisions about learner progress. These decisions may be formative (e.g., feedback for improvement) or summative (e.g., decisions about advancing a student). This article identifies challenges to collecting assessment data and to making assessment decisions in a time-variable system. These challenges include managing assessment data, defining and making valid assessment decisions, innovating in assessment, and modeling the considerable complexity of assessment in real-world settings and richly interconnected social systems. There are hopeful signs of creativity in assessment both from researchers and practitioners, but the transition from a traditional to a competency-based medical education system will likely continue to create much controversy and offer opportunities for originality and innovation in assessment.
The neural representation of unexpected uncertainty during value-based decision making.
Payzan-LeNestour, Elise; Dunne, Simon; Bossaerts, Peter; O'Doherty, John P
2013-07-10
Uncertainty is an inherent property of the environment and a central feature of models of decision-making and learning. Theoretical propositions suggest that one form, unexpected uncertainty, may be used to rapidly adapt to changes in the environment, while being influenced by two other forms: risk and estimation uncertainty. While previous studies have reported neural representations of estimation uncertainty and risk, relatively little is known about unexpected uncertainty. Here, participants performed a decision-making task while undergoing functional magnetic resonance imaging (fMRI), which, in combination with a Bayesian model-based analysis, enabled us to separately examine each form of uncertainty examined. We found representations of unexpected uncertainty in multiple cortical areas, as well as the noradrenergic brainstem nucleus locus coeruleus. Other unique cortical regions were found to encode risk, estimation uncertainty, and learning rate. Collectively, these findings support theoretical models in which several formally separable uncertainty computations determine the speed of learning. Copyright © 2013 Elsevier Inc. All rights reserved.
2015-07-14
AFRL-OSR-VA-TR-2015-0202 Robust Decision Making: The Cognitive and Computational Modeling of Team Problem Solving for Decision Making under Complex...Computational Modeling of Team Problem Solving for Decision Making Under Complex and Dynamic Conditions 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550-12-1...functioning as they solve complex problems, and propose the means to improve the performance of teams, under changing or adversarial conditions. By
Stamovlasis, Dimitrios; Vaiopoulou, Julie
2017-07-01
The present study examines the factors influencing a decision-making process, with specific focus on the role of dysfunctional myths (DM). DM are thoughts or beliefs that are rather irrational, however influential to people's decisions. In this paper a decision-making process regarding the career choice of university students majoring in natural sciences and education (N=496) is examined by analyzing survey data taken via Career Decision Making Difficulties Questionnaire (CDDQ). The difficulty of making the choice and the certainty about one's decision were the state variables, while the independent variables were factors related to the lack of information or knowledge needed, which actually reflect a bounded rationality. Cusp catastrophe analysis, based on both least squares and maximum likelihood procedures, showed that the nonlinear models predicting the two state variables were superior to linear alternatives. Factors related to lack of knowledge about the steps involved in the process of career decision-making, lack of information about the various occupations, lack of information about self and lack of motivation acted as asymmetry, while dysfunctional myths acted as bifurcation factor for both state variables. The catastrophe model, grounded in empirical data, revealed a unique role for DM and a better interpretation within the context of complexity and the notion of bounded rationality. The analysis opens the nonlinear dynamical systems (NDS) perspective in studying decision-making processes. Theoretical and practical implications are discussed.
2015-07-31
and make the expected decision outcomes. The scenario is based around a scripted storyboard where an organized crime network is operating in a city to...interdicted by law enforcement to disrupt the network. The scenario storyboard was used to develop a probabilistic vehicle traffic model in order to
USDA-ARS?s Scientific Manuscript database
Forecasting peak standing crop (PSC) for the coming grazing season can help ranchers make appropriate stocking decisions to reduce enterprise risks. Previously developed PSC predictors were based on short-term experimental data (<15 yr) and limited stocking rates (SR) without including the effect of...
Decision making on fitness landscapes
NASA Astrophysics Data System (ADS)
Arthur, R.; Sibani, P.
2017-04-01
We discuss fitness landscapes and how they can be modified to account for co-evolution. We are interested in using the landscape as a way to model rational decision making in a toy economic system. We develop a model very similar to the Tangled Nature Model of Christensen et al. that we call the Tangled Decision Model. This is a natural setting for our discussion of co-evolutionary fitness landscapes. We use a Monte Carlo step to simulate decision making and investigate two different decision making procedures.
Human judgment vs. quantitative models for the management of ecological resources.
Holden, Matthew H; Ellner, Stephen P
2016-07-01
Despite major advances in quantitative approaches to natural resource management, there has been resistance to using these tools in the actual practice of managing ecological populations. Given a managed system and a set of assumptions, translated into a model, optimization methods can be used to solve for the most cost-effective management actions. However, when the underlying assumptions are not met, such methods can potentially lead to decisions that harm the environment and economy. Managers who develop decisions based on past experience and judgment, without the aid of mathematical models, can potentially learn about the system and develop flexible management strategies. However, these strategies are often based on subjective criteria and equally invalid and often unstated assumptions. Given the drawbacks of both methods, it is unclear whether simple quantitative models improve environmental decision making over expert opinion. In this study, we explore how well students, using their experience and judgment, manage simulated fishery populations in an online computer game and compare their management outcomes to the performance of model-based decisions. We consider harvest decisions generated using four different quantitative models: (1) the model used to produce the simulated population dynamics observed in the game, with the values of all parameters known (as a control), (2) the same model, but with unknown parameter values that must be estimated during the game from observed data, (3) models that are structurally different from those used to simulate the population dynamics, and (4) a model that ignores age structure. Humans on average performed much worse than the models in cases 1-3, but in a small minority of scenarios, models produced worse outcomes than those resulting from students making decisions based on experience and judgment. When the models ignored age structure, they generated poorly performing management decisions, but still outperformed students using experience and judgment 66% of the time. © 2016 by the Ecological Society of America.
NASA Astrophysics Data System (ADS)
Bascetin, A.
2007-04-01
The selection of an optimal reclamation method is one of the most important factors in open-pit design and production planning. It also affects economic considerations in open-pit design as a function of plan location and depth. Furthermore, the selection is a complex multi-person, multi-criteria decision problem. The group decision-making process can be improved by applying a systematic and logical approach to assess the priorities based on the inputs of several specialists from different functional areas within the mine company. The analytical hierarchy process (AHP) can be very useful in involving several decision makers with different conflicting objectives to arrive at a consensus decision. In this paper, the selection of an optimal reclamation method using an AHP-based model was evaluated for coal production in an open-pit coal mine located at Seyitomer region in Turkey. The use of the proposed model indicates that it can be applied to improve the group decision making in selecting a reclamation method that satisfies optimal specifications. Also, it is found that the decision process is systematic and using the proposed model can reduce the time taken to select a optimal method.
The use of economic evaluation in CAM: an introductory framework
2010-01-01
Background For CAM to feature prominently in health care decision-making there is a need to expand the evidence-base and to further incorporate economic evaluation into research priorities. In a world of scarce health care resources and an emphasis on efficiency and clinical efficacy, CAM, as indeed do all other treatments, requires rigorous evaluation to be considered in budget decision-making. Methods Economic evaluation provides the tools to measure the costs and health consequences of CAM interventions and thereby inform decision making. This article offers CAM researchers an introductory framework for understanding, undertaking and disseminating economic evaluation. The types of economic evaluation available for the study of CAM are discussed, and decision modelling is introduced as a method for economic evaluation with much potential for use in CAM. Two types of decision models are introduced, decision trees and Markov models, along with a worked example of how each method is used to examine costs and health consequences. This is followed by a discussion of how this information is used by decision makers. Conclusions Undoubtedly, economic evaluation methods form an important part of health care decision making. Without formal training it can seem a daunting task to consider economic evaluation, however, multidisciplinary teams provide an opportunity for health economists, CAM practitioners and other interested researchers, to work together to further develop the economic evaluation of CAM. PMID:21067622
The use of economic evaluation in CAM: an introductory framework.
Ford, Emily; Solomon, Daniela; Adams, Jon; Graves, Nicholas
2010-11-11
For CAM to feature prominently in health care decision-making there is a need to expand the evidence-base and to further incorporate economic evaluation into research priorities.In a world of scarce health care resources and an emphasis on efficiency and clinical efficacy, CAM, as indeed do all other treatments, requires rigorous evaluation to be considered in budget decision-making. Economic evaluation provides the tools to measure the costs and health consequences of CAM interventions and thereby inform decision making. This article offers CAM researchers an introductory framework for understanding, undertaking and disseminating economic evaluation. The types of economic evaluation available for the study of CAM are discussed, and decision modelling is introduced as a method for economic evaluation with much potential for use in CAM. Two types of decision models are introduced, decision trees and Markov models, along with a worked example of how each method is used to examine costs and health consequences. This is followed by a discussion of how this information is used by decision makers. Undoubtedly, economic evaluation methods form an important part of health care decision making. Without formal training it can seem a daunting task to consider economic evaluation, however, multidisciplinary teams provide an opportunity for health economists, CAM practitioners and other interested researchers, to work together to further develop the economic evaluation of CAM.
Increased Reliance on Value-based Decision Processes Following Motor Cortex Disruption.
Zénon, Alexandre; Klein, Pierre-Alexandre; Alamia, Andrea; Boursoit, François; Wilhelm, Emmanuelle; Duque, Julie
2015-01-01
During motor decision making, the neural activity in primary motor cortex (M1) encodes dynamically the competition occurring between potential action plans. A common view is that M1 represents the unfolding of the outcome of a decision process taking place upstream. Yet, M1 could also be directly involved in the decision process. Here we tested this hypothesis by assessing the effect of M1 disruption on a motor decision-making task. We applied continuous theta burst stimulation (cTBS) to inhibit either left or right M1 in different groups of subjects and included a third control group with no stimulation. Following cTBS, participants performed a task that required them to choose between two finger key-presses with the right hand according to both perceptual and value-based information. Effects were assessed by means of generalized linear mixed models and computational simulations. In all three groups, subjects relied both on perceptual (P < 0.0001) and value-based information (P = 0.003) to reach a decision. Yet, left M1 disruption led to an increased reliance on value-based information (P = 0.03). This result was confirmed by a computational model showing an increased weight of the valued-based process on the right hand finger choices following left M1 cTBS (P < 0.01). These results indicate that M1 is involved in motor decision making, possibly by weighting the final integration of multiple sources of evidence driving motor behaviors. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Zaibidi, Nerda Zura; Ibrahim, Adyda; Abidin, Norhaslinda Zainal
2014-12-01
A considerable number of studies have been conducted to study fairness issues using two-player game. Dictator Game is one of the two-player games that receive much attention. In this paper, we develop an evolutionary approach to the Dictator Game by using Goal programming to build a model of human decision-making for cooperation. The model is formulated based on the theories of cognitive neuroscience that is capable in capturing a more realistic fairness concerns between players in the games. We show that fairness will evolve by taking into account players' aspirations and preferences explicitly in terms of profit and fairness concerns. The model is then simulated to investigate any possible effective strategy for people in economics to deal with fairness coalition. Parallels are drawn between the approach and concepts of human decision making from the field of cognitive neuroscience and psychology. The proposed model is also able to help decision makers to plan or enhance the effective strategies for business purposes.
Modeling Common-Sense Decisions in Artificial Intelligence
NASA Technical Reports Server (NTRS)
Zak, Michail
2010-01-01
A methodology has been conceived for efficient synthesis of dynamical models that simulate common-sense decision- making processes. This methodology is intended to contribute to the design of artificial-intelligence systems that could imitate human common-sense decision making or assist humans in making correct decisions in unanticipated circumstances. This methodology is a product of continuing research on mathematical models of the behaviors of single- and multi-agent systems known in biology, economics, and sociology, ranging from a single-cell organism at one extreme to the whole of human society at the other extreme. Earlier results of this research were reported in several prior NASA Tech Briefs articles, the three most recent and relevant being Characteristics of Dynamics of Intelligent Systems (NPO -21037), NASA Tech Briefs, Vol. 26, No. 12 (December 2002), page 48; Self-Supervised Dynamical Systems (NPO-30634), NASA Tech Briefs, Vol. 27, No. 3 (March 2003), page 72; and Complexity for Survival of Living Systems (NPO- 43302), NASA Tech Briefs, Vol. 33, No. 7 (July 2009), page 62. The methodology involves the concepts reported previously, albeit viewed from a different perspective. One of the main underlying ideas is to extend the application of physical first principles to the behaviors of living systems. Models of motor dynamics are used to simulate the observable behaviors of systems or objects of interest, and models of mental dynamics are used to represent the evolution of the corresponding knowledge bases. For a given system, the knowledge base is modeled in the form of probability distributions and the mental dynamics is represented by models of the evolution of the probability densities or, equivalently, models of flows of information. Autonomy is imparted to the decisionmaking process by feedback from mental to motor dynamics. This feedback replaces unavailable external information by information stored in the internal knowledge base. Representation of the dynamical models in a parameterized form reduces the task of common-sense-based decision making to a solution of the following hetero-associated-memory problem: store a set of m predetermined stochastic processes given by their probability distributions in such a way that when presented with an unexpected change in the form of an input out of the set of M inputs, the coupled motormental dynamics converges to the corresponding one of the m pre-assigned stochastic process, and a sample of this process represents the decision.
Truglio-Londrigan, Marie; Slyer, Jason T; Singleton, Joanne K; Worral, Priscilla
The objective of this review is to identify and synthesize the best available evidence related to the meaningfulness of internal and external influences on shared-decision making for adult patients and health care providers in all health care settings.The specific questions to be answered are: BACKGROUND: Patient-centered care is emphasized in today's healthcare arena. This emphasis is seen in the works of the International Alliance of Patients' Organizations (IAOP) who describe patient-centered healthcare as care that is aimed at addressing the needs and preferences of patients. The IAOP presents five principles which are foundational to the achievement of patient-centered healthcare: respect, choice, policy, access and support, as well as information. These five principles are further described as:Within the description of these five principles the idea of shared decision-making is clearly evident.The concept of shared decision-making began to appear in the literature in the 1990s. It is defined as a "process jointly shared by patients and their health care provider. It aims at helping patients play an active role in decisions concerning their health, which is the ultimate goal of patient-centered care." The details of the shared decision-making process are complex and consist of a series of steps including:Three overall representative decision-making models are noted in contemporary literature. These three models include: paternalistic, informed decision-making, and shared decision-making. The paternalistic model is an autocratic style of decision-making where the healthcare provider carries out the care from the perspective of knowing what is best for the patient and therefore makes all decisions. The informed decision-making model takes place as the information needed to make decisions is conveyed to the patient and the patient makes the decisions without the healthcare provider involvement. Finally, the shared decision-making model is representative of a sharing and a negotiation towards treatment decisions. Thus, these models represent a range with patient non-participation at one end of the continuum to informed decision making or a high level of patient power at the other end. Several shared decision-making models focus on the process of shared decision-making previously noted. A discussion of several process models follows below.Charles et al. depicts a process model of shared decision-making that identifies key characteristics that must be in evidence. The patient shares in the responsibility with the healthcare provider in this model. The key characteristics included:This model illustrates that there must be at least two individuals participating, however, family and friends may be involved in a variety of roles such as the collector of information, the interpreter of this information, coach, advisor, negotiator, and caretaker. This model also depicts the need to take steps to participate in the shared decision-making process. To take steps means that there is an agreement between and among all involved that shared decision-making is necessary and preferred. Research about patient preferences, however, offers divergent views. The link between patient preferences for shared decision-making and the actuality of shared decision-making in practice is not strong. Research concerning patients and patient preferences on shared decision-making points to variations depending on age, education, socio-economic status, culture, and diagnosis. Healthcare providers may also hold preferences for shared decision-making; however, research in this area is not as comprehensive as is patient focused research. Elwyn et al. explored the views of general practice providers on involving patients in decisions. Both positive and negative views were identified ranging from receptive, noting potential benefits, to concern for the unrealistic nature of participation and sharing in the decision-making process. An example of this potential difficulty, from a healthcare provider perspective, is identifying the potential conflict that may develop when a patient's preference is different from clinical practice guidelines. This is further exemplified in healthcare encounters when a situation may not yield itself to a clear answer but rather lies in a grey area. These situations are challenging for healthcare providers.The notion of information sharing as a prerequisite to shared decision-making offers insight into another process. The healthcare provider must provide the patient the information that they need to know and understand in order to even consider and participate in the shared decision-making process. This information may include the disease, potential treatments, consequences of those treatments, and any alternatives, which may include the decision to do nothing. Without knowing this information the patient will not be able to participate in the shared decision-making process. The complexity of this step is realized if one considers what the healthcare provider needs to know in order to first assess what the patient knows and does not know, the readiness of the patient to participate in this educational process and learn the information, as well as, the individual learning styles of the patient taking into consideration the patient's ideas, values, beliefs, education, culture, literacy, and age. Depending on the results of this assessment the health care provider then must communicate the information to the patient. This is also a complex process that must take into consideration the relationship, comfort level, and trust between the healthcare provider and the patient.Finally, the treatment decision is reached between both the healthcare provider and the patient. Charles et al. portrays shared decision-making as a process with the end product, the shared decision, as the outcome. This outcome may be a decision as to the agreement of a treatment decision, no agreement reached as to a treatment decision, and disagreement as to a treatment decision. Negotiation is a part of the process as the "test of a shared decision (as distinct from the decision-making process) is if both parties agree on the treatment option."Towle and Godolphin developed a process model that further exemplifies the role of the healthcare provider and the patient in the shared decision-making process as mutual partners with mutual responsibilities. The capacity to engage in this shared decision-making rests, therefore, on competencies including knowledge, skills, and abilities for both the healthcare provider and the patient. This mutual partnership and the corresponding competencies are presented for both the healthcare provider and the patient in this model. The competencies noted for the healthcare provider for shared decision making include:Patient competencies include:This model illustrates the shared decision-making process with emphasis on the role of the healthcare provider and the patient very similar to the prior model. This model, however, gives greater emphasis to the process of the co-participation of the healthcare provider and the patient. The co-participation depicts a mutual partnership with mutual responsibilities that can be seen as "reciprocal relationships of dialogue." For this to take place the relationship between and among the participants of the shared decision-making process is important along with other internal and external influences such as communication, trust, mutual respect, honesty, time, continuity, and commitment. Cultural, social, and age group differences; evidence; and team and family are considered within this model.Elwyn et al. presents yet another model that depicts the shared decision-making process; however, this model offers a view where the healthcare provider holds greater responsibility in this process. In this particular model the process focuses on the healthcare provider and the essential skills needed to engage the patient in shard decisions. The competencies outlined in this model include:The healthcare provider must demonstrate knowledge, competencies, and skills as a communicator. The skills for communication competency require the healthcare provider to be able to elicit the patient's thoughts and input regarding treatment management throughout the consultation. The healthcare provider must also demonstrate competencies in assessment skills beyond physical assessment that includes the ability to assess the patient's perceptions and readiness to participate. In addition, the healthcare provider must be able to assess the patient's readiness to learn the information that the patient needs to know in order to fully engage in the shared decision-making process, assess what the patient already knows, what the patient does not know, and whether or not the information that the patient knows is accurate. Once this assessment is completed the healthcare provider then must draw on his/her knowledge, competencies, and skills necessary to teach the patient what the patient needs to know to be informed. This facilitates the notion of the tailor-made information noted previously. The healthcare provider also requires competencies in how to check and evaluate the entire process to ensure that the patient does understand and accept with comfort not only the plan being negotiated but the entire process of sharing in decision-making. In addition to the above, there are further competencies such as competence in working with groups and teams, competencies in terms of cultural knowledge, competencies with regard to negotiation skills, as well as, competencies when faced with ethical challenges.Shared decision-making has been associated with autonomy, empowerment, and effectiveness and efficiency. Both patients and health care providers have noted improvement in relationships and improved interactions when shared decision-making is in evidence. Along with this improved relationship and interaction enhanced compliance is noted. Additional research points to patient satisfaction and enhanced quality of life. There is some evidence to suggest that shared decision-making does facilitate positive health outcomes.In today's healthcare environment there is greater emphasis on patient-centered care that exemplifies patient engagement, participation, partnership, and shared decision-making. Given the shift from the more autocratic delivery of care to the shared approach there is a need to more fully understand the what of shared decision-making as well as how shared decision-making takes place along with what internal and external influences may encourage, support, and facilitate the shared decision-making process. These influences are intervening variables that may be of significance for the successful development of practice-based strategies that may foster shared decision-making in practice. The purpose of this qualitative systematic review is to identify internal and external influences on shared decision-making in all health care settings.A preliminary search of the Joanna Briggs Library of Systematic Reviews, MEDLINE, CINAHL, and PROSPERO did not identify any previously conducted qualitative systematic reviews on the meaningfulness of internal and external influences on shared decision-making.
Development of an evidence-based decision pathway for vestibular schwannoma treatment options.
Linkov, Faina; Valappil, Benita; McAfee, Jacob; Goughnour, Sharon L; Hildrew, Douglas M; McCall, Andrew A; Linkov, Igor; Hirsch, Barry; Snyderman, Carl
To integrate multiple sources of clinical information with patient feedback to build evidence-based decision support model to facilitate treatment selection for patients suffering from vestibular schwannomas (VS). This was a mixed methods study utilizing focus group and survey methodology to solicit feedback on factors important for making treatment decisions among patients. Two 90-minute focus groups were conducted by an experienced facilitator. Previously diagnosed VS patients were recruited by clinical investigators at the University of Pittsburgh Medical Center (UPMC). Classical content analysis was used for focus group data analysis. Providers were recruited from practices within the UPMC system and were surveyed using Delphi methods. This information can provide a basis for multi-criteria decision analysis (MCDA) framework to develop a treatment decision support system for patients with VS. Eight themes were derived from these data (focus group + surveys): doctor/health care system, side effects, effectiveness of treatment, anxiety, mortality, family/other people, quality of life, and post-operative symptoms. These data, as well as feedback from physicians were utilized in building a multi-criteria decision model. The study illustrated steps involved in the development of a decision support model that integrates evidence-based data and patient values to select treatment alternatives. Studies focusing on the actual development of the decision support technology for this group of patients are needed, as decisions are highly multifactorial. Such tools have the potential to improve decision making for complex medical problems with alternate treatment pathways. Copyright © 2016 Elsevier Inc. All rights reserved.
A Bayesian Attractor Model for Perceptual Decision Making
Bitzer, Sebastian; Bruineberg, Jelle; Kiebel, Stefan J.
2015-01-01
Even for simple perceptual decisions, the mechanisms that the brain employs are still under debate. Although current consensus states that the brain accumulates evidence extracted from noisy sensory information, open questions remain about how this simple model relates to other perceptual phenomena such as flexibility in decisions, decision-dependent modulation of sensory gain, or confidence about a decision. We propose a novel approach of how perceptual decisions are made by combining two influential formalisms into a new model. Specifically, we embed an attractor model of decision making into a probabilistic framework that models decision making as Bayesian inference. We show that the new model can explain decision making behaviour by fitting it to experimental data. In addition, the new model combines for the first time three important features: First, the model can update decisions in response to switches in the underlying stimulus. Second, the probabilistic formulation accounts for top-down effects that may explain recent experimental findings of decision-related gain modulation of sensory neurons. Finally, the model computes an explicit measure of confidence which we relate to recent experimental evidence for confidence computations in perceptual decision tasks. PMID:26267143
Menear, Matthew; Stacey, Dawn; Brière, Nathalie; Légaré, France
2016-01-01
Introduction: Healthcare research increasingly focuses on interprofessional collaboration and on shared decision making, but knowledge gaps remain about effective strategies for implementing interprofessional collaboration and shared decision-making together in clinical practice. We used Kuhn’s theory of scientific revolutions to reflect on how an integrated interprofessional shared decision-making approach was developed and implemented over time. Methods: In 2007, an interdisciplinary team initiated a new research program to promote the implementation of an interprofessional shared decision-making approach in clinical settings. For this reflective case study, two new team members analyzed the team’s four projects, six research publications, one unpublished and two published protocols and organized them into recognizable phases according to Kuhn’s theory. Results: The merging of two young disciplines led to challenges characteristic of emerging paradigms. Implementation of interprofessional shared-decision making was hindered by a lack of conceptual clarity, a dearth of theories and models, little methodological guidance, and insufficient evaluation instruments. The team developed a new model, identified new tools, and engaged knowledge users in a theory-based approach to implementation. However, several unresolved challenges remain. Discussion: This reflective case study sheds light on the evolution of interdisciplinary team science. It offers new approaches to implementing emerging knowledge in the clinical context. PMID:28435417
Dogba, Maman Joyce; Menear, Matthew; Stacey, Dawn; Brière, Nathalie; Légaré, France
2016-07-19
Healthcare research increasingly focuses on interprofessional collaboration and on shared decision making, but knowledge gaps remain about effective strategies for implementing interprofessional collaboration and shared decision-making together in clinical practice. We used Kuhn's theory of scientific revolutions to reflect on how an integrated interprofessional shared decision-making approach was developed and implemented over time. In 2007, an interdisciplinary team initiated a new research program to promote the implementation of an interprofessional shared decision-making approach in clinical settings. For this reflective case study, two new team members analyzed the team's four projects, six research publications, one unpublished and two published protocols and organized them into recognizable phases according to Kuhn's theory. The merging of two young disciplines led to challenges characteristic of emerging paradigms. Implementation of interprofessional shared-decision making was hindered by a lack of conceptual clarity, a dearth of theories and models, little methodological guidance, and insufficient evaluation instruments. The team developed a new model, identified new tools, and engaged knowledge users in a theory-based approach to implementation. However, several unresolved challenges remain. This reflective case study sheds light on the evolution of interdisciplinary team science. It offers new approaches to implementing emerging knowledge in the clinical context.
Risk perception and decision processes underlying informed consent to research participation.
Reynolds, William W; Nelson, Robert M
2007-11-01
According to the rational choice model, informed consent should consist of a systematic, step-by-step evaluation of all information pertinent to the treatment or research participation decision. Research shows that people frequently deviate from this normative model, however, employing decision-making shortcuts, or heuristics. In this paper we report findings from a qualitative study of 32 adolescents and (their) 31 parents who were recruited from two Northeastern US hospitals and asked to consider the risks of and make hypothetical decisions about research participation. The purpose of this study was to increase our understanding of how diabetic and at-risk adolescents (i.e., those who are obese and/or have a family history of diabetes) and their parents perceive risks and make decisions about research participation. Using data collected from adolescents and parents, we identify heuristic decision processes in which participant perceptions of risk magnitude, which are formed quickly and intuitively and appear to be based on affective responses to information, are far more prominent and central to the participation decision than are perceptions of probability. We discuss participants' use of decision-making heuristics in the context of recent research on affect and decision processes, and we consider the implications of these findings for researchers.
Corrigan, Patrick W.; Rüsch, Nicolas; Ben-Zeev, Dror; Sher, Tamara
2014-01-01
Purpose/Objective Many people with psychiatric disabilities do not benefit from evidence-based practices because they often do not seek out or fully adhere to them. One way psychologists have made sense of this rehabilitation and health decision process and subsequent behaviors (of which adherence might be viewed as one) is by proposing a “rational patient;” namely, that decisions are made deliberatively by weighing perceived costs and benefits of intervention options. Social psychological research, however, suggests limitations to a rational patient theory that impact models of health decision making. Design The research literature was reviewed for studies of rational patient models and alternative theories with empirical support. Special focus was on models specifically related to decisions about rehabilitation strategies for psychiatric disability. Results Notions of the rational patient evolved out of several psychological models including the health belief model, protection motivation theory, and theory of planned behavior. A variety of practice strategies evolved to promote rational decision making. However, research also suggests limitations to rational deliberations of health. (1) Rather than carefully and consciously considered, many health decisions are implicit, potentially occurring outside awareness. (2) Decisions are not always planful; often it is the immediate exigencies of a context rather than an earlier balance of costs and benefits that has the greatest effects. (3) Cool cognitions often do not dictate the process; emotional factors have an important role in health decisions. Each of these limitations suggests additional practice strategies that facilitate a person’s health decisions. Conclusions/Implications Old models of rational decision making need to be supplanted by multi-process models that explain supra-deliberative factors in health decisions and behaviors. PMID:24446671
Corrigan, Patrick W; Rüsch, Nicolas; Ben-Zeev, Dror; Sher, Tamara
2014-02-01
Many people with psychiatric disabilities do not benefit from evidence-based practices because they often do not seek out or fully adhere to them. One way psychologists have made sense of this rehabilitation and health decision process and subsequent behaviors (of which adherence might be viewed as one) is by proposing a "rational patient"; namely, that decisions are made deliberatively by weighing perceived costs and benefits of intervention options. Social psychological research, however, suggests limitations to a rational patient theory that impact models of health decision making. The research literature was reviewed for studies of rational patient models and alternative theories with empirical support. Special focus was on models specifically related to decisions about rehabilitation strategies for psychiatric disability. Notions of the rational patient evolved out of several psychological models including the health belief model, protection motivation theory, and theory of planned behavior. A variety of practice strategies evolved to promote rational decision making. However, research also suggests limitations to rational deliberations of health. (1) Rather than carefully and consciously considered, many health decisions are implicit, potentially occurring outside awareness. (2) Decisions are not always planful; often it is the immediate exigencies of a context rather than an earlier balance of costs and benefits that has the greatest effects. (3) Cool cognitions often do not dictate the process; emotional factors have an important role in health decisions. Each of these limitations suggests additional practice strategies that facilitate a person's health decisions. Old models of rational decision making need to be supplanted by multiprocess models that explain supradeliberative factors in health decisions and behaviors. PsycINFO Database Record (c) 2014 APA, all rights reserved.
78 FR 9698 - Agency Forms Undergoing Paperwork Reduction Act Review
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-11
... effective at improving health care quality. While evidence-based approaches for decision-making have become standard in healthcare, this has been limited in laboratory medicine. No single-evidence-based model for... (LMBP) initiative to develop new systematic evidence reviews methods for making evidence-based...
Decision making generalized by a cumulative probability weighting function
NASA Astrophysics Data System (ADS)
dos Santos, Lindomar Soares; Destefano, Natália; Martinez, Alexandre Souto
2018-01-01
Typical examples of intertemporal decision making involve situations in which individuals must choose between a smaller reward, but more immediate, and a larger one, delivered later. Analogously, probabilistic decision making involves choices between options whose consequences differ in relation to their probability of receiving. In Economics, the expected utility theory (EUT) and the discounted utility theory (DUT) are traditionally accepted normative models for describing, respectively, probabilistic and intertemporal decision making. A large number of experiments confirmed that the linearity assumed by the EUT does not explain some observed behaviors, as nonlinear preference, risk-seeking and loss aversion. That observation led to the development of new theoretical models, called non-expected utility theories (NEUT), which include a nonlinear transformation of the probability scale. An essential feature of the so-called preference function of these theories is that the probabilities are transformed by decision weights by means of a (cumulative) probability weighting function, w(p) . We obtain in this article a generalized function for the probabilistic discount process. This function has as particular cases mathematical forms already consecrated in the literature, including discount models that consider effects of psychophysical perception. We also propose a new generalized function for the functional form of w. The limiting cases of this function encompass some parametric forms already proposed in the literature. Far beyond a mere generalization, our function allows the interpretation of probabilistic decision making theories based on the assumption that individuals behave similarly in the face of probabilities and delays and is supported by phenomenological models.
Conceptualizing intragroup and intergroup dynamics within a controlled crowd evacuation.
Elzie, Terra; Frydenlund, Erika; Collins, Andrew J; Robinson, R Michael
2015-01-01
Social dynamics play a critical role in successful pedestrian evacuations. Crowd modeling research has made progress in capturing the way individual and group dynamics affect evacuations; however, few studies have simultaneously examined how individuals and groups interact with one another during egress. To address this gap, the researchers present a conceptual agent-based model (ABM) designed to study the ways in which autonomous, heterogeneous, decision-making individuals negotiate intragroup and intergroup behavior while exiting a large venue. A key feature of this proposed model is the examination of the dynamics among and between various groupings, where heterogeneity at the individual level dynamically affects group behavior and subsequently group/group interactions. ABM provides a means of representing the important social factors that affect decision making among diverse social groups. Expanding on the 2013 work of Vizzari et al., the researchers focus specifically on social factors and decision making at the individual/group and group/group levels to more realistically portray dynamic crowd systems during a pedestrian evacuation. By developing a model with individual, intragroup, and intergroup interactions, the ABM provides a more representative approximation of real-world crowd egress. The simulation will enable more informed planning by disaster managers, emergency planners, and other decision makers. This pedestrian behavioral concept is one piece of a larger simulation model. Future research will build toward an integrated model capturing decision-making interactions between pedestrians and vehicles that affect evacuation outcomes.
Fuzzy methods in decision making process - A particular approach in manufacturing systems
NASA Astrophysics Data System (ADS)
Coroiu, A. M.
2015-11-01
We are living in a competitive environment, so we can see and understand that the most of manufacturing firms do the best in order to accomplish meeting demand, increasing quality, decreasing costs, and delivery rate. In present a stake point of interest is represented by the development of fuzzy technology. A particular approach for this is represented through the development of methodologies to enhance the ability to managed complicated optimization and decision making aspects involving non-probabilistic uncertainty with the reason to understand, development, and practice the fuzzy technologies to be used in fields such as economic, engineering, management, and societal problems. Fuzzy analysis represents a method for solving problems which are related to uncertainty and vagueness; it is used in multiple areas, such as engineering and has applications in decision making problems, planning and production. As a definition for decision making process we can use the next one: result of mental processes based upon cognitive process with a main role in the selection of a course of action among several alternatives. Every process of decision making can be represented as a result of a final choice and the output can be represented as an action or as an opinion of choice. Different types of uncertainty can be discovered in a wide variety of optimization and decision making problems related to planning and operation of power systems and subsystems. The mixture of the uncertainty factor in the construction of different models serves for increasing their adequacy and, as a result, the reliability and factual efficiency of decisions based on their analysis. Another definition of decision making process which came to illustrate and sustain the necessity of using fuzzy method: the decision making is an approach of choosing a strategy among many different projects in order to achieve some purposes and is formulated as three different models: high risk decision, usual risk decision and low risk decision - some specific formulas of fuzzy logic. The fuzzy set concepts has some certain parameterization features which are certain extensions of crisp and fuzzy relations respectively and have a rich potential for application to the decision making problems. The proposed approach from this paper presents advantages of fuzzy approach, in comparison with other paradigm and presents a particular way in which fuzzy logic can emerge in decision making process and planning process with implication, as a simulation, in manufacturing - involved in measuring performance of advanced manufacturing systems. Finally, an example is presented to illustrate our simulation.
Nakao, Takashi; Ohira, Hideki; Northoff, Georg
2012-01-01
Most experimental studies of decision-making have specifically examined situations in which a single less-predictable correct answer exists (externally guided decision-making under uncertainty). Along with such externally guided decision-making, there are instances of decision-making in which no correct answer based on external circumstances is available for the subject (internally guided decision-making). Such decisions are usually made in the context of moral decision-making as well as in preference judgment, where the answer depends on the subject’s own, i.e., internal, preferences rather than on external, i.e., circumstantial, criteria. The neuronal and psychological mechanisms that allow guidance of decisions based on more internally oriented criteria in the absence of external ones remain unclear. This study was undertaken to compare decision-making of these two kinds empirically and theoretically. First, we reviewed studies of decision-making to clarify experimental–operational differences between externally guided and internally guided decision-making. Second, using multi-level kernel density analysis, a whole-brain-based quantitative meta-analysis of neuroimaging studies was performed. Our meta-analysis revealed that the neural network used predominantly for internally guided decision-making differs from that for externally guided decision-making under uncertainty. This result suggests that studying only externally guided decision-making under uncertainty is insufficient to account for decision-making processes in the brain. Finally, based on the review and results of the meta-analysis, we discuss the differences and relations between decision-making of these two types in terms of their operational, neuronal, and theoretical characteristics. PMID:22403525
ERIC Educational Resources Information Center
Weasel, Lisa H.; Finkel, Liza
2016-01-01
Deliberative democracy, a consensus model of decision making, has been used in real-life policy making involving controversial, science-related issues to increase citizen participation and engagement. Here, we describe a pedagogical approach based on this model implemented in a large, lecture-based, nonmajors introductory biology course at an…
Eckman, Mark H.; Alonso-Coello, Pablo; Guyatt, Gordon H.; Ebrahim, Shanil; Tikkinen, Kari A.O.; Lopes, Luciane Cruz; Neumann, Ignacio; McDonald, Sarah D.; Zhang, Yuqing; Zhou, Qi; Akl, Elie A.; Jacobsen, Ann Flem; Santamaría, Amparo; Annichino-Bizzacchi, Joyce Maria; Bitar, Wael; Sandset, Per Morten; Bates, Shannon M.
2016-01-01
Background Women with a history of venous thromboembolism (VTE) have an increased recurrence risk during pregnancy. Low molecular weight heparin (LMWH) reduces this risk, but is costly, burdensome, and may increase risk of bleeding. The decision to start thromboprophylaxis during pregnancy is sensitive to women's values and preferences. Our objective was to compare women's choices using a holistic approach in which they were presented all of the relevant information (direct-choice) versus a personalized decision analysis in which a mathematical model incorporated their preferences and VTE risk to make a treatment recommendation. Methods Multicenter, international study. Structured interviews were on women with a history of VTE who were pregnant, planning, or considering pregnancy. Women indicated their willingness to receive thromboprophylaxis based on scenarios using personalized estimates of VTE recurrence and bleeding risks. We also obtained women's values for health outcomes using a visual analog scale. We performed individualized decision analyses for each participant and compared model recommendations to decisions made when presented with the direct-choice exercise. Results Of the 123 women in the study, the decision model recommended LMWH for 51 women and recommended against LMWH for 72 women. 12% (6/51) of women for whom the decision model recommended thromboprophylaxis chose not to take LMWH; 72% (52/72) of women for whom the decision model recommended against thromboprophylaxis chose LMWH. Conclusions We observed a high degree of discordance between decisions in the direct-choice exercise and decision model recommendations. Although which approach best captures individuals’ true values remains uncertain, personalized decision support tools presenting results based on personalized risks and values may improve decision making. PMID:26033397
Eckman, Mark H; Alonso-Coello, Pablo; Guyatt, Gordon H; Ebrahim, Shanil; Tikkinen, Kari A O; Lopes, Luciane Cruz; Neumann, Ignacio; McDonald, Sarah D; Zhang, Yuqing; Zhou, Qi; Akl, Elie A; Jacobsen, Ann Flem; Santamaría, Amparo; Annichino-Bizzacchi, Joyce Maria; Bitar, Wael; Sandset, Per Morten; Bates, Shannon M
2015-08-01
Women with a history of venous thromboembolism (VTE) have an increased recurrence risk during pregnancy. Low molecular weight heparin (LMWH) reduces this risk, but is costly, burdensome, and may increase risk of bleeding. The decision to start thromboprophylaxis during pregnancy is sensitive to women's values and preferences. Our objective was to compare women's choices using a holistic approach in which they were presented all of the relevant information (direct-choice) versus a personalized decision analysis in which a mathematical model incorporated their preferences and VTE risk to make a treatment recommendation. Multicenter, international study. Structured interviews were on women with a history of VTE who were pregnant, planning, or considering pregnancy. Women indicated their willingness to receive thromboprophylaxis based on scenarios using personalized estimates of VTE recurrence and bleeding risks. We also obtained women's values for health outcomes using a visual analog scale. We performed individualized decision analyses for each participant and compared model recommendations to decisions made when presented with the direct-choice exercise. Of the 123 women in the study, the decision model recommended LMWH for 51 women and recommended against LMWH for 72 women. 12% (6/51) of women for whom the decision model recommended thromboprophylaxis chose not to take LMWH; 72% (52/72) of women for whom the decision model recommended against thromboprophylaxis chose LMWH. We observed a high degree of discordance between decisions in the direct-choice exercise and decision model recommendations. Although which approach best captures individuals' true values remains uncertain, personalized decision support tools presenting results based on personalized risks and values may improve decision making. Copyright © 2015 Elsevier Ltd. All rights reserved.
ENABLING SMART MANUFACTURING TECHNOLOGIES FOR DECISION-MAKING SUPPORT
Helu, Moneer; Libes, Don; Lubell, Joshua; Lyons, Kevin; Morris, KC
2017-01-01
Smart manufacturing combines advanced manufacturing capabilities and digital technologies throughout the product lifecycle. These technologies can provide decision-making support to manufacturers through improved monitoring, analysis, modeling, and simulation that generate more and better intelligence about manufacturing systems. However, challenges and barriers have impeded the adoption of smart manufacturing technologies. To begin to address this need, this paper defines requirements for data-driven decision making in manufacturing based on a generalized description of decision making. Using these requirements, we then focus on identifying key barriers that prevent the development and use of data-driven decision making in industry as well as examples of technologies and standards that have the potential to overcome these barriers. The goal of this research is to promote a common understanding among the manufacturing community that can enable standardization efforts and innovation needed to continue adoption and use of smart manufacturing technologies. PMID:28649678
Fontaine, Reid Griffith; Dodge, Kenneth A.
2009-01-01
Considerable scientific and intervention attention has been paid to judgment and decision-making systems associated with aggressive behavior in youth. However, most empirical studies have investigated social-cognitive correlates of stable child and adolescent aggressiveness, and less is known about real-time decision making to engage in aggressive behavior. A model of real-time decision making must incorporate both impulsive actions and rational thought. The present paper advances a process model (response evaluation and decision; RED) of real-time behavioral judgments and decision making in aggressive youths with mathematic representations that may be used to quantify response strength. These components are a heuristic to describe decision making, though it is doubtful that individuals always mentally complete these steps. RED represents an organization of social–cognitive operations believed to be active during the response decision step of social information processing. The model posits that RED processes can be circumvented through impulsive responding. This article provides a description and integration of thoughtful, rational decision making and nonrational impulsivity in aggressive behavioral interactions. PMID:20802851
Fontaine, Reid Griffith; Dodge, Kenneth A
2006-11-01
Considerable scientific and intervention attention has been paid to judgment and decision-making systems associated with aggressive behavior in youth. However, most empirical studies have investigated social-cognitive correlates of stable child and adolescent aggressiveness, and less is known about real-time decision making to engage in aggressive behavior. A model of real-time decision making must incorporate both impulsive actions and rational thought. The present paper advances a process model (response evaluation and decision; RED) of real-time behavioral judgments and decision making in aggressive youths with mathematic representations that may be used to quantify response strength. These components are a heuristic to describe decision making, though it is doubtful that individuals always mentally complete these steps. RED represents an organization of social-cognitive operations believed to be active during the response decision step of social information processing. The model posits that RED processes can be circumvented through impulsive responding. This article provides a description and integration of thoughtful, rational decision making and nonrational impulsivity in aggressive behavioral interactions.
Models and theories of prescribing decisions: A review and suggested a new model.
Murshid, Mohsen Ali; Mohaidin, Zurina
2017-01-01
To date, research on the prescribing decisions of physician lacks sound theoretical foundations. In fact, drug prescribing by doctors is a complex phenomenon influenced by various factors. Most of the existing studies in the area of drug prescription explain the process of decision-making by physicians via the exploratory approach rather than theoretical. Therefore, this review is an attempt to suggest a value conceptual model that explains the theoretical linkages existing between marketing efforts, patient and pharmacist and physician decision to prescribe the drugs. The paper follows an inclusive review approach and applies the previous theoretical models of prescribing behaviour to identify the relational factors. More specifically, the report identifies and uses several valuable perspectives such as the 'persuasion theory - elaboration likelihood model', the stimuli-response marketing model', the 'agency theory', the theory of planned behaviour,' and 'social power theory,' in developing an innovative conceptual paradigm. Based on the combination of existing methods and previous models, this paper suggests a new conceptual model of the physician decision-making process. This unique model has the potential for use in further research.
Grau-Moya, Jordi; Ortega, Pedro A.; Braun, Daniel A.
2016-01-01
A number of recent studies have investigated differences in human choice behavior depending on task framing, especially comparing economic decision-making to choice behavior in equivalent sensorimotor tasks. Here we test whether decision-making under ambiguity exhibits effects of task framing in motor vs. non-motor context. In a first experiment, we designed an experience-based urn task with varying degrees of ambiguity and an equivalent motor task where subjects chose between hitting partially occluded targets. In a second experiment, we controlled for the different stimulus design in the two tasks by introducing an urn task with bar stimuli matching those in the motor task. We found ambiguity attitudes to be mainly influenced by stimulus design. In particular, we found that the same subjects tended to be ambiguity-preferring when choosing between ambiguous bar stimuli, but ambiguity-avoiding when choosing between ambiguous urn sample stimuli. In contrast, subjects’ choice pattern was not affected by changing from a target hitting task to a non-motor context when keeping the stimulus design unchanged. In both tasks subjects’ choice behavior was continuously modulated by the degree of ambiguity. We show that this modulation of behavior can be explained by an information-theoretic model of ambiguity that generalizes Bayes-optimal decision-making by combining Bayesian inference with robust decision-making under model uncertainty. Our results demonstrate the benefits of information-theoretic models of decision-making under varying degrees of ambiguity for a given context, but also demonstrate the sensitivity of ambiguity attitudes across contexts that theoretical models struggle to explain. PMID:27124723
Grau-Moya, Jordi; Ortega, Pedro A; Braun, Daniel A
2016-01-01
A number of recent studies have investigated differences in human choice behavior depending on task framing, especially comparing economic decision-making to choice behavior in equivalent sensorimotor tasks. Here we test whether decision-making under ambiguity exhibits effects of task framing in motor vs. non-motor context. In a first experiment, we designed an experience-based urn task with varying degrees of ambiguity and an equivalent motor task where subjects chose between hitting partially occluded targets. In a second experiment, we controlled for the different stimulus design in the two tasks by introducing an urn task with bar stimuli matching those in the motor task. We found ambiguity attitudes to be mainly influenced by stimulus design. In particular, we found that the same subjects tended to be ambiguity-preferring when choosing between ambiguous bar stimuli, but ambiguity-avoiding when choosing between ambiguous urn sample stimuli. In contrast, subjects' choice pattern was not affected by changing from a target hitting task to a non-motor context when keeping the stimulus design unchanged. In both tasks subjects' choice behavior was continuously modulated by the degree of ambiguity. We show that this modulation of behavior can be explained by an information-theoretic model of ambiguity that generalizes Bayes-optimal decision-making by combining Bayesian inference with robust decision-making under model uncertainty. Our results demonstrate the benefits of information-theoretic models of decision-making under varying degrees of ambiguity for a given context, but also demonstrate the sensitivity of ambiguity attitudes across contexts that theoretical models struggle to explain.
Chen, Xudong; Xu, Zhongwen; Yao, Liming; Ma, Ning
2018-03-05
This study considers the two factors of environmental protection and economic benefits to address municipal sewage treatment. Based on considerations regarding the sewage treatment plant construction site, processing technology, capital investment, operation costs, water pollutant emissions, water quality and other indicators, we establish a general multi-objective decision model for optimizing municipal sewage treatment plant construction. Using the construction of a sewage treatment plant in a suburb of Chengdu as an example, this paper tests the general model of multi-objective decision-making for the sewage treatment plant construction by implementing a genetic algorithm. The results show the applicability and effectiveness of the multi-objective decision model for the sewage treatment plant. This paper provides decision and technical support for the optimization of municipal sewage treatment.
Pakhomov, Anton; Sudin, Natalya
2013-12-01
This research is devoted to possible mechanisms of decision-making in frames of thermodynamic principles. It is also shown that the decision-making system in reply to emotion includes vector component which seems to be often a necessary condition to transfer system from one state to another. The phases of decision-making system can be described as supposed to be nonequilibrium and irreversible to which thermodynamics laws are applied. The mathematical model of a decision choice, proceeding from principles of the nonlinear dynamics considering instability of movement and bifurcation is offered. The thermodynamic component of decision-making process on the basis of vector transfer of energy induced by emotion at the given time is surveyed. It is proposed a three-modular model of decision making based on principles of thermodynamics. Here it is suggested that at entropy impact due to effect of emotion, on the closed system-the human brain,-initially arises chaos, then after fluctuations of possible alternatives which were going on-reactions of brain zones in reply to external influence, an order is forming and there is choice of alternatives, according to primary entrance conditions and a state of the closed system. Entropy calculation of a choice expectation of negative and positive emotion shows judgment possibility of existence of "the law of emotion conservation" in accordance with several experimental data.
Clarity versus complexity: land-use modeling as a practical tool for decision-makers
Sohl, Terry L.; Claggett, Peter
2013-01-01
The last decade has seen a remarkable increase in the number of modeling tools available to examine future land-use and land-cover (LULC) change. Integrated modeling frameworks, agent-based models, cellular automata approaches, and other modeling techniques have substantially improved the representation of complex LULC systems, with each method using a different strategy to address complexity. However, despite the development of new and better modeling tools, the use of these tools is limited for actual planning, decision-making, or policy-making purposes. LULC modelers have become very adept at creating tools for modeling LULC change, but complicated models and lack of transparency limit their utility for decision-makers. The complicated nature of many LULC models also makes it impractical or even impossible to perform a rigorous analysis of modeling uncertainty. This paper provides a review of land-cover modeling approaches and the issues causes by the complicated nature of models, and provides suggestions to facilitate the increased use of LULC models by decision-makers and other stakeholders. The utility of LULC models themselves can be improved by 1) providing model code and documentation, 2) through the use of scenario frameworks to frame overall uncertainties, 3) improving methods for generalizing key LULC processes most important to stakeholders, and 4) adopting more rigorous standards for validating models and quantifying uncertainty. Communication with decision-makers and other stakeholders can be improved by increasing stakeholder participation in all stages of the modeling process, increasing the transparency of model structure and uncertainties, and developing user-friendly decision-support systems to bridge the link between LULC science and policy. By considering these options, LULC science will be better positioned to support decision-makers and increase real-world application of LULC modeling results.
Evidence-based decision making in health care settings: from theory to practice.
Kohn, Melanie Kazman; Berta, Whitney; Langley, Ann; Davis, David
2011-01-01
The relatively recent attention that evidence-based decision making has received in health care management has been at least in part due to the profound influence of evidence-based medicine. The result has been several comparisons in the literature between the use of evidence in health care management decisions and the use of evidence in medical decision making. Direct comparison, however, may be problematic, given the differences between medicine and management as they relate to (1) the nature of evidence that is brought to bear on decision making; (2) the maturity of empirical research in each field (in particular, studies that have substantiated whether or not and how evidence-based decision making is enacted); and (3) the context within which evidence-based decisions are made. By simultaneously reviewing evidence-based medicine and management, this chapter aims to inform future theorizing and empirical research on evidence-based decision making in health care settings.
Interactive Management and Updating of Spatial Data Bases
NASA Technical Reports Server (NTRS)
French, P.; Taylor, M.
1982-01-01
The decision making process, whether for power plant siting, load forecasting or energy resource planning, invariably involves a blend of analytical methods and judgement. Management decisions can be improved by the implementation of techniques which permit an increased comprehension of results from analytical models. Even where analytical procedures are not required, decisions can be aided by improving the methods used to examine spatially and temporally variant data. How the use of computer aided planning (CAP) programs and the selection of a predominant data structure, can improve the decision making process is discussed.
Gullo, Matthew J; Stieger, Adam A
2011-09-01
Substance abusers are characterized by hypersensitivity to reward. This leads to maladaptive decisions generally, as well as those on laboratory-based decision-making tasks, such as the Iowa Gambling Task (IGT). Negative affect has also been shown to disrupt the decision-making of healthy individuals, particularly decisions made under uncertainty. Neuropsychological theories of learning, including the Somatic Marker Hypothesis (SMH), argue this occurs by amplifying affective responses to punishment. In substance abusers, this might serve to rebalance their sensitivity to reward with punishment, and improve decision-making. Before completing the IGT, 45 heavy and 47 light drinkers were randomly assigned to a control condition, or led to believe they had to give a stressful public speech. IGT performance was analyzed with the Expectancy-Valence (EV) learning model. Working memory and IQ were also assessed. Heavy drinkers made more disadvantageous decisions than light drinkers, due to higher attention to gains (versus losses) on the IGT. Anticipatory stress increased participants' attention to losses, significantly improving heavy drinkers' decision-making. Anticipatory stress increased attention to losses, effectively restoring decision-making deficits in heavy drinkers by rebalancing their reward sensitivity with punishment sensitivity. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Influence of prior information on pain involves biased perceptual decision-making.
Wiech, Katja; Vandekerckhove, Joachim; Zaman, Jonas; Tuerlinckx, Francis; Vlaeyen, Johan W S; Tracey, Irene
2014-08-04
Prior information about features of a stimulus is a strong modulator of perception. For instance, the prospect of more intense pain leads to an increased perception of pain, whereas the expectation of analgesia reduces pain, as shown in placebo analgesia and expectancy modulations during drug administration. This influence is commonly assumed to be rooted in altered sensory processing and expectancy-related modulations in the spinal cord, are often taken as evidence for this notion. Contemporary models of perception, however, suggest that prior information can also modulate perception by biasing perceptual decision-making - the inferential process underlying perception in which prior information is used to interpret sensory information. In this type of bias, the information is already present in the system before the stimulus is observed. Computational models can distinguish between changes in sensory processing and altered decision-making as they result in different response times for incorrect choices in a perceptual decision-making task (Figure S1A,B). Using a drift-diffusion model, we investigated the influence of both processes in two independent experiments. The results of both experiments strongly suggest that these changes in pain perception are predominantly based on altered perceptual decision-making. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Stochastic Watershed Models for Risk Based Decision Making
NASA Astrophysics Data System (ADS)
Vogel, R. M.
2017-12-01
Over half a century ago, the Harvard Water Program introduced the field of operational or synthetic hydrology providing stochastic streamflow models (SSMs), which could generate ensembles of synthetic streamflow traces useful for hydrologic risk management. The application of SSMs, based on streamflow observations alone, revolutionized water resources planning activities, yet has fallen out of favor due, in part, to their inability to account for the now nearly ubiquitous anthropogenic influences on streamflow. This commentary advances the modern equivalent of SSMs, termed `stochastic watershed models' (SWMs) useful as input to nearly all modern risk based water resource decision making approaches. SWMs are deterministic watershed models implemented using stochastic meteorological series, model parameters and model errors, to generate ensembles of streamflow traces that represent the variability in possible future streamflows. SWMs combine deterministic watershed models, which are ideally suited to accounting for anthropogenic influences, with recent developments in uncertainty analysis and principles of stochastic simulation
van de Pol, M H J; Fluit, C R M G; Lagro, J; Lagro-Janssen, A L M; Olde Rikkert, M G M
2017-01-01
To develop a model for shared decision-making with frail older patients. Online Delphi forum. We used a three-round Delphi technique to reach consensus on the structure of a model for shared decision-making with older patients. The expert panel consisted of 16 patients (round 1), and 59 professionals (rounds 1-3). In round 1, the panel of experts was asked about important steps in the process of shared decision-making and the draft model was introduced. Rounds 2 and 3 were used to adapt the model and test it for 'importance' and 'feasibility'. Consensus for the dynamic shared decision-making model as a whole was achieved for both importance (91% panel agreement) and feasibility (76% panel agreement). Shared decision-making with older patients is a dynamic process. It requires a continuous supportive dialogue between health care professional and patient.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-22
...--Evidence-Based Decision Making in State and Local Criminal Justice Systems: Planning and Development for... Evidence-Based Decision Making (EBDM) in Local Criminal Justice Systems initiative. It will require the... will also revise ``A Framework for Evidence- Based Decision Making in Local Criminal Justice Systems...
Boutkhoum, Omar; Hanine, Mohamed; Agouti, Tarik; Tikniouine, Abdessadek
2015-01-01
In this paper, we examine the issue of strategic industrial location selection in uncertain decision making environments for implanting new industrial corporation. In fact, the industrial location issue is typically considered as a crucial factor in business research field which is related to many calculations about natural resources, distributors, suppliers, customers, and most other things. Based on the integration of environmental, economic and social decisive elements of sustainable development, this paper presents a hybrid decision making model combining fuzzy multi-criteria analysis with analytical capabilities that OLAP systems can provide for successful and optimal industrial location selection. The proposed model mainly consists in three stages. In the first stage, a decision-making committee has been established to identify the evaluation criteria impacting the location selection process. In the second stage, we develop fuzzy AHP software based on the extent analysis method to assign the importance weights to the selected criteria, which allows us to model the linguistic vagueness, ambiguity, and incomplete knowledge. In the last stage, OLAP analysis integrated with multi-criteria analysis employs these weighted criteria as inputs to evaluate, rank and select the strategic industrial location for implanting new business corporation in the region of Casablanca, Morocco. Finally, a sensitivity analysis is performed to evaluate the impact of criteria weights and the preferences given by decision makers on the final rankings of strategic industrial locations.
Bornstein, Aaron M.; Daw, Nathaniel D.
2013-01-01
How do we use our memories of the past to guide decisions we've never had to make before? Although extensive work describes how the brain learns to repeat rewarded actions, decisions can also be influenced by associations between stimuli or events not directly involving reward — such as when planning routes using a cognitive map or chess moves using predicted countermoves — and these sorts of associations are critical when deciding among novel options. This process is known as model-based decision making. While the learning of environmental relations that might support model-based decisions is well studied, and separately this sort of information has been inferred to impact decisions, there is little evidence concerning the full cycle by which such associations are acquired and drive choices. Of particular interest is whether decisions are directly supported by the same mnemonic systems characterized for relational learning more generally, or instead rely on other, specialized representations. Here, building on our previous work, which isolated dual representations underlying sequential predictive learning, we directly demonstrate that one such representation, encoded by the hippocampal memory system and adjacent cortical structures, supports goal-directed decisions. Using interleaved learning and decision tasks, we monitor predictive learning directly and also trace its influence on decisions for reward. We quantitatively compare the learning processes underlying multiple behavioral and fMRI observables using computational model fits. Across both tasks, a quantitatively consistent learning process explains reaction times, choices, and both expectation- and surprise-related neural activity. The same hippocampal and ventral stream regions engaged in anticipating stimuli during learning are also engaged in proportion to the difficulty of decisions. These results support a role for predictive associations learned by the hippocampal memory system to be recalled during choice formation. PMID:24339770
A software development and evolution model based on decision-making
NASA Technical Reports Server (NTRS)
Wild, J. Christian; Dong, Jinghuan; Maly, Kurt
1991-01-01
Design is a complex activity whose purpose is to construct an artifact which satisfies a set of constraints and requirements. However the design process is not well understood. The software design and evolution process is the focus of interest, and a three dimensional software development space organized around a decision-making paradigm is presented. An initial instantiation of this model called 3DPM(sub p) which was partly implemented, is presented. Discussion of the use of this model in software reuse and process management is given.
Zhang, Yi-Fan; Tian, Yu; Zhou, Tian-Shu; Araki, Kenji; Li, Jing-Song
2016-01-01
The broad adoption of clinical decision support systems within clinical practice has been hampered mainly by the difficulty in expressing domain knowledge and patient data in a unified formalism. This paper presents a semantic-based approach to the unified representation of healthcare domain knowledge and patient data for practical clinical decision making applications. A four-phase knowledge engineering cycle is implemented to develop a semantic healthcare knowledge base based on an HL7 reference information model, including an ontology to model domain knowledge and patient data and an expression repository to encode clinical decision making rules and queries. A semantic clinical decision support system is designed to provide patient-specific healthcare recommendations based on the knowledge base and patient data. The proposed solution is evaluated in the case study of type 2 diabetes mellitus inpatient management. The knowledge base is successfully instantiated with relevant domain knowledge and testing patient data. Ontology-level evaluation confirms model validity. Application-level evaluation of diagnostic accuracy reaches a sensitivity of 97.5%, a specificity of 100%, and a precision of 98%; an acceptance rate of 97.3% is given by domain experts for the recommended care plan orders. The proposed solution has been successfully validated in the case study as providing clinical decision support at a high accuracy and acceptance rate. The evaluation results demonstrate the technical feasibility and application prospect of our approach. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Network approaches for expert decisions in sports.
Glöckner, Andreas; Heinen, Thomas; Johnson, Joseph G; Raab, Markus
2012-04-01
This paper focuses on a model comparison to explain choices based on gaze behavior via simulation procedures. We tested two classes of models, a parallel constraint satisfaction (PCS) artificial neuronal network model and an accumulator model in a handball decision-making task from a lab experiment. Both models predict action in an option-generation task in which options can be chosen from the perspective of a playmaker in handball (i.e., passing to another player or shooting at the goal). Model simulations are based on a dataset of generated options together with gaze behavior measurements from 74 expert handball players for 22 pieces of video footage. We implemented both classes of models as deterministic vs. probabilistic models including and excluding fitted parameters. Results indicated that both classes of models can fit and predict participants' initially generated options based on gaze behavior data, and that overall, the classes of models performed about equally well. Early fixations were thereby particularly predictive for choices. We conclude that the analyses of complex environments via network approaches can be successfully applied to the field of experts' decision making in sports and provide perspectives for further theoretical developments. Copyright © 2011 Elsevier B.V. All rights reserved.
Making sense of information in noisy networks: human communication, gossip, and distortion.
Laidre, Mark E; Lamb, Alex; Shultz, Susanne; Olsen, Megan
2013-01-21
Information from others can be unreliable. Humans nevertheless act on such information, including gossip, to make various social calculations, thus raising the question of whether individuals can sort through social information to identify what is, in fact, true. Inspired by empirical literature on people's decision-making when considering gossip, we built an agent-based simulation model to examine how well simple decision rules could make sense of information as it propagated through a network. Our simulations revealed that a minimalistic decision-rule 'Bit-wise mode' - which compared information from multiple sources and then sought a consensus majority for each component bit within the message - was consistently the most successful at converging upon the truth. This decision rule attained high relative fitness even in maximally noisy networks, composed entirely of nodes that distorted the message. The rule was also superior to other decision rules regardless of its frequency in the population. Simulations carried out with variable agent memory constraints, different numbers of observers who initiated information propagation, and a variety of network types suggested that the single most important factor in making sense of information was the number of independent sources that agents could consult. Broadly, our model suggests that despite the distortion information is subject to in the real world, it is nevertheless possible to make sense of it based on simple Darwinian computations that integrate multiple sources. Copyright © 2012 Elsevier Ltd. All rights reserved.
Prospect theory on the brain? Toward a cognitive neuroscience of decision under risk.
Trepel, Christopher; Fox, Craig R; Poldrack, Russell A
2005-04-01
Most decisions must be made without advance knowledge of their consequences. Economists and psychologists have devoted much attention to modeling decisions made under conditions of risk in which options can be characterized by a known probability distribution over possible outcomes. The descriptive shortcomings of classical economic models motivated the development of prospect theory (D. Kahneman, A. Tversky, Prospect theory: An analysis of decision under risk. Econometrica, 4 (1979) 263-291; A. Tversky, D. Kahneman, Advances in prospect theory: Cumulative representation of uncertainty. Journal of Risk and Uncertainty, 5 (4) (1992) 297-323) the most successful behavioral model of decision under risk. In the prospect theory, subjective value is modeled by a value function that is concave for gains, convex for losses, and steeper for losses than for gains; the impact of probabilities are characterized by a weighting function that overweights low probabilities and underweights moderate to high probabilities. We outline the possible neural bases of the components of prospect theory, surveying evidence from human imaging, lesion, and neuropharmacology studies as well as animal neurophysiology studies. These results provide preliminary suggestions concerning the neural bases of prospect theory that include a broad set of brain regions and neuromodulatory systems. These data suggest that focused studies of decision making in the context of quantitative models may provide substantial leverage towards a fuller understanding of the cognitive neuroscience of decision making.
A judgment and decision-making model for plant behavior.
Karban, Richard; Orrock, John L
2018-06-12
Recently plant biologists have documented that plants, like animals, engage in many activities that can be considered as behaviors, although plant biologists currently lack a conceptual framework to understand these processes. Borrowing the well-established framework developed by psychologists, we propose that plant behaviors can be constructively modeled by identifying four distinct components: 1) a cue or stimulus that provides information, 2) a judgment whereby the plant perceives and processes this informative cue, 3) a decision whereby the plant chooses among several options based on their relative costs and benefits, and 4) action. Judgment for plants can be determined empirically by monitoring signaling associated with electrical, calcium, or hormonal fluxes. Decision-making can be evaluated empirically by monitoring gene expression or differential allocation of resources. We provide examples of the utility of this judgment and decision-making framework by considering cases in which plants either successfully or unsuccessfully induced resistance against attacking herbivores. Separating judgment from decision-making suggests new analytical paradigms (i.e., Bayesian methods for judgment and economic utility models for decision-making). Following this framework, we propose an experimental approach to plant behavior that explicitly manipulates the stimuli provided to plants, uses plants that vary in sensory abilities, and examines how environmental context affects plant responses. The concepts and approaches that follow from the judgment and decision-making framework can shape how we study and understand plant-herbivore interactions, biological invasions, plant responses to climate change, and the susceptibility of plants to evolutionary traps. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
A queueing model of pilot decision making in a multi-task flight management situation
NASA Technical Reports Server (NTRS)
Walden, R. S.; Rouse, W. B.
1977-01-01
Allocation of decision making responsibility between pilot and computer is considered and a flight management task, designed for the study of pilot-computer interaction, is discussed. A queueing theory model of pilot decision making in this multi-task, control and monitoring situation is presented. An experimental investigation of pilot decision making and the resulting model parameters are discussed.
Decision on risk-averse dual-channel supply chain under demand disruption
NASA Astrophysics Data System (ADS)
Yan, Bo; Jin, Zijie; Liu, Yanping; Yang, Jianbo
2018-02-01
We studied dual-channel supply chains using centralized and decentralized decision-making models. We also conducted a comparative analysis of the decisions before and after demand disruption. The study shows that the amount of change in decision-making is a linear function of the amount of demand disruption, and it is independent of the risk-averse coefficient. The optimal sales volume decision of the disturbing supply chain is related to market share and demand disruption in the decentralized decision-making model. The optimal decision is only influenced by demand disruption in the centralized decision-making model. The stability of the sales volume of the two models is related to market share and demand disruption. The optimal system production of the two models shows robustness, but their stable internals are different.
The BCD of response time analysis in experimental economics.
Spiliopoulos, Leonidas; Ortmann, Andreas
2018-01-01
For decisions in the wild, time is of the essence. Available decision time is often cut short through natural or artificial constraints, or is impinged upon by the opportunity cost of time. Experimental economists have only recently begun to conduct experiments with time constraints and to analyze response time (RT) data, in contrast to experimental psychologists. RT analysis has proven valuable for the identification of individual and strategic decision processes including identification of social preferences in the latter case, model comparison/selection, and the investigation of heuristics that combine speed and performance by exploiting environmental regularities. Here we focus on the benefits, challenges, and desiderata of RT analysis in strategic decision making. We argue that unlocking the potential of RT analysis requires the adoption of process-based models instead of outcome-based models, and discuss how RT in the wild can be captured by time-constrained experiments in the lab. We conclude that RT analysis holds considerable potential for experimental economics, deserves greater attention as a methodological tool, and promises important insights on strategic decision making in naturally occurring environments.
Shoemaker, Lorie K; Kazley, Abby Swanson; White, Andrea
2010-01-01
The aim of this study was to describe the organizational decision-making process used in the selection of evidence-based design (EBD) concepts, the criteria used to make these decisions, and the extent to which leadership style may have influenced the decision-making process. Five research questions were formulated to frame the direction of this study, including: (1) How did healthcare leaders learn of innovations in design? (2) How did healthcare leaders make decisions in the selection of healthcare design concepts? (3) What criteria did healthcare leaders use in the decision-making process? (4) How did healthcare leaders consider input from the staff in design decisions? and (5) To what extent did the leadership style of administrators affect the outcomes of the decision-making process? Current issues affecting healthcare in the community led the principal investigator's organization to undertake an ambitious facilities expansion project. As part of its planning process, the organization learned of EBD principles that seemingly had a positive impact on patient care and safety and staff working conditions. Although promising, a paucity of empirical research addressed the cost/benefit of incorporating many EBD concepts into one hospital setting, and there was no research that articulated the organizational decision-making process used by healthcare administrators when considering the use of EBD in expansion projects. A mixed-method, descriptive, qualitative, single-case study and quantitative design were used to address the five research questions. The Systems Research Organizing Model provided the theoretical framework. A variety of data collection methods was used, including interviews of key respondents, the review of documentary evidence, and the Multifactor Leadership Questionnaire. A participatory process was used throughout the design decision phases, involving staff at all levels of the organization. The Internet and architects facilitated learning about EBD. Financial considerations were a factor in decision making. The prevalence of the transformational leadership style among the organization's administrators exceeded the U.S. mean.
Vernazza, Christopher R; Rousseau, Nikki; Steele, Jimmy G; Ellis, Janice S; Thomason, John Mark; Eastham, Jane; Exley, Catherine
2015-02-01
The decision-making process within health care has been widely researched, with shared decision-making, where both patients and clinicians share technical and personal information, often being cited as the ideal model. To date, much of this research has focused on systems where patients receive their care and treatment free at the point of contact (either in government-funded schemes or in insurance-based schemes). Oral health care often involves patients making direct payments for their care and treatment, and less is known about how this payment affects the decision-making process. It is clear that patient characteristics influence decision-making, but previous evidence suggests that clinicians may assume characteristics rather than eliciting them directly. The aim was to explore the influences on how dentists' engaged in the decision-making process surrounding a high-cost item of health care, dental implant treatments (DITs). A qualitative study using semi-structured interviews was undertaken using a purposive sample of primary care dentists (n = 25). Thematic analysis was undertaken to reveal emerging key themes. There were differences in how dentists discussed and offered implants. Dentists made decisions about whether to offer implants based on business factors, professional and legal obligations and whether they perceived the patient to be motivated to have treatment and their ability to pay. There was evidence that assessment of these characteristics was often based on assumptions derived from elements such as the appearance of the patient, the state of the patient's mouth and demographic details. The data suggest that there is a conflict between three elements of acting as a healthcare professional: minimizing provision of unneeded treatment, trying to fully involve patients in shared decisions and acting as a business person with the potential for financial gain. It might be expected that in the context of a high-cost healthcare intervention for which patients pay the bill themselves, that decision-making would be closer to an informed than a paternalistic model. Our research suggests that paternalistic decision-making is still practised and is influenced by assumptions about patient characteristics. Better tools and training may be required to support clinicians in this area of practice. © 2014 The Authors. Community Dentistry and Oral Epidemiology Published by John Wiley & Sons Ltd.
Evolution of quantum-like modeling in decision making processes
NASA Astrophysics Data System (ADS)
Khrennikova, Polina
2012-12-01
The application of the mathematical formalism of quantum mechanics to model behavioral patterns in social science and economics is a novel and constantly emerging field. The aim of the so called 'quantum like' models is to model the decision making processes in a macroscopic setting, capturing the particular 'context' in which the decisions are taken. Several subsequent empirical findings proved that when making a decision people tend to violate the axioms of expected utility theory and Savage's Sure Thing principle, thus violating the law of total probability. A quantum probability formula was devised to describe more accurately the decision making processes. A next step in the development of QL-modeling in decision making was the application of Schrödinger equation to describe the evolution of people's mental states. A shortcoming of Schrödinger equation is its inability to capture dynamics of an open system; the brain of the decision maker can be regarded as such, actively interacting with the external environment. Recently the master equation, by which quantum physics describes the process of decoherence as the result of interaction of the mental state with the environmental 'bath', was introduced for modeling the human decision making. The external environment and memory can be referred to as a complex 'context' influencing the final decision outcomes. The master equation can be considered as a pioneering and promising apparatus for modeling the dynamics of decision making in different contexts.
NASA Astrophysics Data System (ADS)
Alexandridis, Konstantinos T.
This dissertation adopts a holistic and detailed approach to modeling spatially explicit agent-based artificial intelligent systems, using the Multi Agent-based Behavioral Economic Landscape (MABEL) model. The research questions that addresses stem from the need to understand and analyze the real-world patterns and dynamics of land use change from a coupled human-environmental systems perspective. Describes the systemic, mathematical, statistical, socio-economic and spatial dynamics of the MABEL modeling framework, and provides a wide array of cross-disciplinary modeling applications within the research, decision-making and policy domains. Establishes the symbolic properties of the MABEL model as a Markov decision process, analyzes the decision-theoretic utility and optimization attributes of agents towards comprising statistically and spatially optimal policies and actions, and explores the probabilogic character of the agents' decision-making and inference mechanisms via the use of Bayesian belief and decision networks. Develops and describes a Monte Carlo methodology for experimental replications of agent's decisions regarding complex spatial parcel acquisition and learning. Recognizes the gap on spatially-explicit accuracy assessment techniques for complex spatial models, and proposes an ensemble of statistical tools designed to address this problem. Advanced information assessment techniques such as the Receiver-Operator Characteristic curve, the impurity entropy and Gini functions, and the Bayesian classification functions are proposed. The theoretical foundation for modular Bayesian inference in spatially-explicit multi-agent artificial intelligent systems, and the ensembles of cognitive and scenario assessment modular tools build for the MABEL model are provided. Emphasizes the modularity and robustness as valuable qualitative modeling attributes, and examines the role of robust intelligent modeling as a tool for improving policy-decisions related to land use change. Finally, the major contributions to the science are presented along with valuable directions for future research.
Sonuga-Barke, Edmund J S; Cortese, Samuele; Fairchild, Graeme; Stringaris, Argyris
2016-03-01
Ineffective decision making is a major source of everyday functional impairment and reduced quality of life for young people with mental disorders. However, very little is known about what distinguishes decision making by individuals with different disorders or the neuropsychological processes or brain systems underlying these. This is the focus of the current review. We first propose a neuroeconomic model of the decision-making process with separate stages for the prechoice evaluation of expected utility of future options; choice execution and postchoice management; the appraisal of outcome against expectation; and the updating of value estimates to guide future decisions. According to the proposed model, decision making is mediated by neuropsychological processes operating within three domains: (a) self-referential processes involved in autobiographical reflection on past, and prospection about future, experiences; (b) executive functions, such as working memory, inhibition, and planning, that regulate the implementation of decisions; and (c) processes involved in value estimation and outcome appraisal and learning. These processes are underpinned by the interplay of multiple brain networks, especially medial and lateralized cortical components of the default mode network, dorsal corticostriatal circuits underpinning higher order cognitive and behavioral control, and ventral frontostriatal circuits, connecting to brain regions implicated in emotion processing, that control valuation and learning processes. Based on clinical insights and considering each of the decision-making stages in turn, we outline disorder-specific hypotheses about impaired decision making in four childhood disorders: attention-deficit/hyperactivity disorder (ADHD), conduct disorder (CD), depression, and anxiety. We hypothesize that decision making in ADHD is deficient (i.e. inefficient, insufficiently reflective, and inconsistent) and impulsive (biased toward immediate over delayed alternatives). In CD, it is reckless and insensitive to negative consequences. In depression, it is disengaged, perseverative, and pessimistic, while in anxiety, it is hesitant, risk-averse, and self-deprecating. A survey of current empirical indications related to these disorder-specific hypotheses highlights the limited and fragmentary nature of the evidence base and illustrates the need for a major research initiative in decision making in childhood disorders. The final section highlights a number of important additional general themes that need to be considered in future research. © 2015 The Authors. Journal of Child Psychology and Psychiatry published by John Wiley & Sons Ltd on behalf of Association for Child and Adolescent Mental Health.
Improving Adolescent Judgment and Decision Making
Dansereau, Donald F.; Knight, Danica K.; Flynn, Patrick M.
2013-01-01
Human judgment and decision making (JDM) has substantial room for improvement, especially among adolescents. Increased technological and social complexity “ups the ante” for developing impactful JDM interventions and aids. Current explanatory advances in this field emphasize dual processing models that incorporate both experiential and analytic processing systems. According to these models, judgment and decisions based on the experiential system are rapid and stem from automatic reference to previously stored episodes. Those based on the analytic system are viewed as slower and consciously developed. These models also hypothesize that metacognitive (self-monitoring) activities embedded in the analytic system influence how and when the two systems are used. What is not included in these models is the development of an intersection between the two systems. Because such an intersection is strongly suggested by memory and educational research as the basis of wisdom/expertise, the present paper describes an Integrated Judgment and Decision-Making Model (IJDM) that incorporates this component. Wisdom/expertise is hypothesized to contain a collection of schematic structures that can emerge from the accumulation of similar episodes or repeated analytic practice. As will be argued, in comparisons to dual system models, the addition of this component provides a broader basis for selecting and designing interventions to improve adolescent JDM. Its development also has implications for generally enhancing cognitive interventions by adopting principles from athletic training to create automated, expert behaviors. PMID:24391350
A model of supervisor decision-making in the accommodation of workers with low back pain
Williams-Whitt, Kelly; Kristman, Vicki; Shaw, William S.; Soklaridis, Sophie; Reguly, Paula
2016-01-01
PURPOSE To explore supervisors’ perspectives and decision-making processes in the accommodation of back injured workers. METHODS Twenty-three semi-structured, in-depth interviews were conducted with supervisors from eleven Canadian organizations about their role in providing job accommodations. Supervisors were identified through an on-line survey and interviews were recorded, transcribed and entered into NVivo software. The initial analyses identified common units of meaning, which were used to develop a coding guide. Interviews were coded, and a model of supervisor decision-making was developed based on the themes, categories and connecting ideas identified in the data. RESULTS The decision-making model includes a process element that is described as iterative “trial and error” decision-making. Medical restrictions are compared to job demands, employee abilities and available alternatives. A feasible modification is identified through brainstorming and then implemented by the supervisor. Resources used for brainstorming include information, supervisor experience and autonomy, and organizational supports. The model also incorporates the experience of accommodation as a job demand that causes strain for the supervisor. Accommodation demands affect the supervisor’s attitude, brainstorming and monitoring effort and communication with returning employees. Resources and demands have a combined effect on accommodation decision complexity, which in turn affects the quality of the accommodation option selected. If the employee is unable to complete the tasks or is reinjured during the accommodation, the decision cycle repeats. More frequent iteration through the trial and error process reduces the likelihood of return to work success. CONCLUSIONS A series of propositions is developed to illustrate the relationships among categories in the model. The model and propositions show: a) the iterative, problem solving nature of the RTW process; b) decision resources necessary for accommodation planning, and c) the impact accommodation demands may have on supervisors and RTW quality. PMID:26811170
A Briefing on Metrics and Risks for Autonomous Decision-Making in Aerospace Applications
NASA Technical Reports Server (NTRS)
Frost, Susan; Goebel, Kai Frank; Galvan, Jose Ramon
2012-01-01
Significant technology advances will enable future aerospace systems to safely and reliably make decisions autonomously, or without human interaction. The decision-making may result in actions that enable an aircraft or spacecraft in an off-nominal state or with slightly degraded components to achieve mission performance and safety goals while reducing or avoiding damage to the aircraft or spacecraft. Some key technology enablers for autonomous decision-making include: a continuous state awareness through the maturation of the prognostics health management field, novel sensor development, and the considerable gains made in computation power and data processing bandwidth versus system size. Sophisticated algorithms and physics based models coupled with these technological advances allow reliable assessment of a system, subsystem, or components. Decisions that balance mission objectives and constraints with remaining useful life predictions can be made autonomously to maintain safety requirements, optimal performance, and ensure mission objectives. This autonomous approach to decision-making will come with new risks and benefits, some of which will be examined in this paper. To start, an account of previous work to categorize or quantify autonomy in aerospace systems will be presented. In addition, a survey of perceived risks in autonomous decision-making in the context of piloted aircraft and remotely piloted or completely autonomous unmanned autonomous systems (UAS) will be presented based on interviews that were conducted with individuals from industry, academia, and government.
PSYCHE: An Object-Oriented Approach to Simulating Medical Education
Mullen, Jamie A.
1990-01-01
Traditional approaches to computer-assisted instruction (CAI) do not provide realistic simulations of medical education, in part because they do not utilize heterogeneous knowledge bases for their source of domain knowledge. PSYCHE, a CAI program designed to teach hypothetico-deductive psychiatric decision-making to medical students, uses an object-oriented implementation of an intelligent tutoring system (ITS) to model the student, domain expert, and tutor. It models the transactions between the participants in complex transaction chains, and uses heterogeneous knowledge bases to represent both domain and procedural knowledge in clinical medicine. This object-oriented approach is a flexible and dynamic approach to modeling, and represents a potentially valuable tool for the investigation of medical education and decision-making.
Hosking, Jay G; Cocker, Paul J; Winstanley, Catharine A
2014-06-01
Personal success often requires the choice to expend greater effort for larger rewards, and deficits in such effortful decision making accompany a number of illnesses including depression, schizophrenia, and attention-deficit/hyperactivity disorder. Animal models have implicated brain regions such as the basolateral amygdala (BLA) and anterior cingulate cortex (ACC) in physical effort-based choice, but disentangling the unique contributions of these two regions has proven difficult, and effort demands in industrialized society are predominantly cognitive in nature. Here we utilize the rodent cognitive effort task (rCET), a modification of the five-choice serial reaction-time task, wherein animals can choose to expend greater visuospatial attention to obtain larger sucrose rewards. Temporary inactivation (via baclofen-muscimol) of BLA and ACC showed dissociable effects: BLA inactivation caused hard-working rats to 'slack off' and 'slacker' rats to work harder, whereas ACC inactivation caused all animals to reduce willingness to expend mental effort. Furthermore, BLA inactivation increased the time needed to make choices, whereas ACC inactivation increased motor impulsivity. These data illuminate unique contributions of BLA and ACC to effort-based decision making, and imply overlapping yet distinct circuitry for cognitive vs physical effort. Our understanding of effortful decision making may therefore require expanding our models beyond purely physical costs.
A Method for Formulizing Disaster Evacuation Demand Curves Based on SI Model
Song, Yulei; Yan, Xuedong
2016-01-01
The prediction of evacuation demand curves is a crucial step in the disaster evacuation plan making, which directly affects the performance of the disaster evacuation. In this paper, we discuss the factors influencing individual evacuation decision making (whether and when to leave) and summarize them into four kinds: individual characteristics, social influence, geographic location, and warning degree. In the view of social contagion of decision making, a method based on Susceptible-Infective (SI) model is proposed to formulize the disaster evacuation demand curves to address both social influence and other factors’ effects. The disaster event of the “Tianjin Explosions” is used as a case study to illustrate the modeling results influenced by the four factors and perform the sensitivity analyses of the key parameters of the model. Some interesting phenomena are found and discussed, which is meaningful for authorities to make specific evacuation plans. For example, due to the lower social influence in isolated communities, extra actions might be taken to accelerate evacuation process in those communities. PMID:27735875
People adopt optimal policies in simple decision-making, after practice and guidance.
Evans, Nathan J; Brown, Scott D
2017-04-01
Organisms making repeated simple decisions are faced with a tradeoff between urgent and cautious strategies. While animals can adopt a statistically optimal policy for this tradeoff, findings about human decision-makers have been mixed. Some studies have shown that people can optimize this "speed-accuracy tradeoff", while others have identified a systematic bias towards excessive caution. These issues have driven theoretical development and spurred debate about the nature of human decision-making. We investigated a potential resolution to the debate, based on two factors that routinely differ between human and animal studies of decision-making: the effects of practice, and of longer-term feedback. Our study replicated the finding that most people, by default, are overly cautious. When given both practice and detailed feedback, people moved rapidly towards the optimal policy, with many participants reaching optimality with less than 1 h of practice. Our findings have theoretical implications for cognitive and neural models of simple decision-making, as well as methodological implications.
Neural systems analysis of decision making during goal-directed navigation.
Penner, Marsha R; Mizumori, Sheri J Y
2012-01-01
The ability to make adaptive decisions during goal-directed navigation is a fundamental and highly evolved behavior that requires continual coordination of perceptions, learning and memory processes, and the planning of behaviors. Here, a neurobiological account for such coordination is provided by integrating current literatures on spatial context analysis and decision-making. This integration includes discussions of our current understanding of the role of the hippocampal system in experience-dependent navigation, how hippocampal information comes to impact midbrain and striatal decision making systems, and finally the role of the striatum in the implementation of behaviors based on recent decisions. These discussions extend across cellular to neural systems levels of analysis. Not only are key findings described, but also fundamental organizing principles within and across neural systems, as well as between neural systems functions and behavior, are emphasized. It is suggested that studying decision making during goal-directed navigation is a powerful model for studying interactive brain systems and their mediation of complex behaviors. Copyright © 2011. Published by Elsevier Ltd.
Assessment of credit risk based on fuzzy relations
NASA Astrophysics Data System (ADS)
Tsabadze, Teimuraz
2017-06-01
The purpose of this paper is to develop a new approach for an assessment of the credit risk to corporate borrowers. There are different models for borrowers' risk assessment. These models are divided into two groups: statistical and theoretical. When assessing the credit risk for corporate borrowers, statistical model is unacceptable due to the lack of sufficiently large history of defaults. At the same time, we cannot use some theoretical models due to the lack of stock exchange. In those cases, when studying a particular borrower given that statistical base does not exist, the decision-making process is always of expert nature. The paper describes a new approach that may be used in group decision-making. An example of the application of the proposed approach is given.
Alterations in choice behavior by manipulations of world model.
Green, C S; Benson, C; Kersten, D; Schrater, P
2010-09-14
How to compute initially unknown reward values makes up one of the key problems in reinforcement learning theory, with two basic approaches being used. Model-free algorithms rely on the accumulation of substantial amounts of experience to compute the value of actions, whereas in model-based learning, the agent seeks to learn the generative process for outcomes from which the value of actions can be predicted. Here we show that (i) "probability matching"-a consistent example of suboptimal choice behavior seen in humans-occurs in an optimal Bayesian model-based learner using a max decision rule that is initialized with ecologically plausible, but incorrect beliefs about the generative process for outcomes and (ii) human behavior can be strongly and predictably altered by the presence of cues suggestive of various generative processes, despite statistically identical outcome generation. These results suggest human decision making is rational and model based and not consistent with model-free learning.
Alterations in choice behavior by manipulations of world model
Green, C. S.; Benson, C.; Kersten, D.; Schrater, P.
2010-01-01
How to compute initially unknown reward values makes up one of the key problems in reinforcement learning theory, with two basic approaches being used. Model-free algorithms rely on the accumulation of substantial amounts of experience to compute the value of actions, whereas in model-based learning, the agent seeks to learn the generative process for outcomes from which the value of actions can be predicted. Here we show that (i) “probability matching”—a consistent example of suboptimal choice behavior seen in humans—occurs in an optimal Bayesian model-based learner using a max decision rule that is initialized with ecologically plausible, but incorrect beliefs about the generative process for outcomes and (ii) human behavior can be strongly and predictably altered by the presence of cues suggestive of various generative processes, despite statistically identical outcome generation. These results suggest human decision making is rational and model based and not consistent with model-free learning. PMID:20805507
Quantum-like dynamics of decision-making in prisoner's dilemma game
NASA Astrophysics Data System (ADS)
Asano, Masanari; Basieva, Irina; Khrennikov, Andrei; Ohya, Masanori; Tanaka, Yoshiharu
2012-03-01
In cognitive psychology, some experiments of games were reported [1, 2, 3, 4], and these demonstrated that real players did not use the "rational strategy" provided by classical game theory. To discuss probabilities of such "irrational choice", recently, we proposed a decision-making model which is based on the formalism of quantum mechanics [5, 6, 7, 8]. In this paper, we briefly explain the above model and calculate the probability of irrational choice in several prisoner's dilemma (PD) games.
On the scene: St Mary's Hospital, Madison, Wisconsin.
Baker, Christine; Beglinger, Joan Ellis; Derosa, Jody; Griffin, Carla; Laham, Mary; Leonard, Mary Kay; Vanderkolk, Caprice
2009-01-01
In this article, we discuss Shared Governance as the foundation of our nursing professional practice model. Through the use of case examples and reflections from our management team, we demonstrate how this accountability-based practice model promotes excellence through developing, connecting, and engaging people, clarifying and communicating goals, using data to make decisions, and even shaping our organizational response to a critical incident. We close with a look to our future as our hospital embraces whole-system shared decision making.
A technology path to tactical agent-based modeling
NASA Astrophysics Data System (ADS)
James, Alex; Hanratty, Timothy P.
2017-05-01
Wargaming is a process of thinking through and visualizing events that could occur during a possible course of action. Over the past 200 years, wargaming has matured into a set of formalized processes. One area of growing interest is the application of agent-based modeling. Agent-based modeling and its additional supporting technologies has potential to introduce a third-generation wargaming capability to the Army, creating a positive overmatch decision-making capability. In its simplest form, agent-based modeling is a computational technique that helps the modeler understand and simulate how the "whole of a system" responds to change over time. It provides a decentralized method of looking at situations where individual agents are instantiated within an environment, interact with each other, and empowered to make their own decisions. However, this technology is not without its own risks and limitations. This paper explores a technology roadmap, identifying research topics that could realize agent-based modeling within a tactical wargaming context.
ERIC Educational Resources Information Center
Stranieri, Andrew; Yearwood, John
2008-01-01
This paper describes a narrative-based interactive learning environment which aims to elucidate reasoning using interactive scenarios that may be used in training novices in decision-making. Its design is based on an approach to generating narrative from knowledge that has been modelled in specific decision/reasoning domains. The approach uses a…
One Way of Thinking About Decision Making.
ERIC Educational Resources Information Center
Dalis, Gus T.; Strasser, Ben B.
The authors present the DALSTRA model of decision making, a descriptive statement of ways individuals or groups respond to different kinds of decision-making problems they encounter. Decision making is viewed in two phases: the decision-making antecedents (whether to decide, how to decide) and the modes of decision making (Chance/Impulse,…
Operationalising uncertainty in data and models for integrated water resources management.
Blind, M W; Refsgaard, J C
2007-01-01
Key sources of uncertainty of importance for water resources management are (1) uncertainty in data; (2) uncertainty related to hydrological models (parameter values, model technique, model structure); and (3) uncertainty related to the context and the framing of the decision-making process. The European funded project 'Harmonised techniques and representative river basin data for assessment and use of uncertainty information in integrated water management (HarmoniRiB)' has resulted in a range of tools and methods to assess such uncertainties, focusing on items (1) and (2). The project also engaged in a number of discussions surrounding uncertainty and risk assessment in support of decision-making in water management. Based on the project's results and experiences, and on the subsequent discussions a number of conclusions can be drawn on the future needs for successful adoption of uncertainty analysis in decision support. These conclusions range from additional scientific research on specific uncertainties, dedicated guidelines for operational use to capacity building at all levels. The purpose of this paper is to elaborate on these conclusions and anchoring them in the broad objective of making uncertainty and risk assessment an essential and natural part in future decision-making processes.
Clarke, Gemma; Galbraith, Sarah; Woodward, Jeremy; Holland, Anthony; Barclay, Stephen
2015-06-11
Some people with progressive neurological diseases find they need additional support with eating and drinking at mealtimes, and may require artificial nutrition and hydration. Decisions concerning artificial nutrition and hydration at the end of life are ethically complex, particularly if the individual lacks decision-making capacity. Decisions may concern issues of life and death: weighing the potential for increasing morbidity and prolonging suffering, with potentially shortening life. When individuals lack decision-making capacity, the standard processes of obtaining informed consent for medical interventions are disrupted. Increasingly multi-professional groups are being utilised to make difficult ethical decisions within healthcare. This paper reports upon a service evaluation which examined decision-making within a UK hospital Feeding Issues Multi-Professional Team. A three month observation of a hospital-based multi-professional team concerning feeding issues, and a one year examination of their records. The key research questions are: a) How are decisions made concerning artificial nutrition for individuals at risk of lacking decision-making capacity? b) What are the key decision-making factors that are balanced? c) Who is involved in the decision-making process? Decision-making was not a singular decision, but rather involved many different steps. Discussions involving relatives and other clinicians, often took place outside of meetings. Topics of discussion varied but the outcome relied upon balancing the information along four interdependent axes: (1) Risks, burdens and benefits; (2) Treatment goals; (3) Normative ethical values; (4) Interested parties. Decision-making was a dynamic ongoing process with many people involved. The multiple points of decision-making, and the number of people involved with the decision-making process, mean the question of 'who decides' cannot be fully answered. There is a potential for anonymity of multiple decision-makers to arise. Decisions in real world clinical practice may not fit precisely into a model of decision-making. The findings from this service evaluation illustrate that within multi-professional team decision-making; decisions may contain elements of both substituted and supported decision-making, and may be better represented as existing upon a continuum.
Légaré, France; Moumjid-Ferdjaoui, Nora; Drolet, Renée; Stacey, Dawn; Härter, Martin; Bastian, Hilda; Beaulieu, Marie-Dominique; Borduas, Francine; Charles, Cathy; Coulter, Angela; Desroches, Sophie; Friedrich, Gwendolyn; Gafni, Amiram; Graham, Ian D; Labrecque, Michel; LeBlanc, Annie; Légaré, Jean; Politi, Mary; Sargeant, Joan; Thomson, Richard
2013-01-01
Shared decision making is now making inroads in health care professionals' continuing education curriculum, but there is no consensus on what core competencies are required by clinicians for effectively involving patients in health-related decisions. Ready-made programs for training clinicians in shared decision making are in high demand, but existing programs vary widely in their theoretical foundations, length, and content. An international, interdisciplinary group of 25 individuals met in 2012 to discuss theoretical approaches to making health-related decisions, compare notes on existing programs, take stock of stakeholders concerns, and deliberate on core competencies. This article summarizes the results of those discussions. Some participants believed that existing models already provide a sufficient conceptual basis for developing and implementing shared decision making competency-based training programs on a wide scale. Others argued that this would be premature as there is still no consensus on the definition of shared decision making or sufficient evidence to recommend specific competencies for implementing shared decision making. However, all participants agreed that there were 2 broad types of competencies that clinicians need for implementing shared decision making: relational competencies and risk communication competencies. Further multidisciplinary research could broaden and deepen our understanding of core competencies for shared decision making training. Copyright © 2013 The Alliance for Continuing Education in the Health Professions, the Society for Academic Continuing Medical Education, and the Council on CME, Association for Hospital Medical Education.
Advancing reservoir operation description in physically based hydrological models
NASA Astrophysics Data System (ADS)
Anghileri, Daniela; Giudici, Federico; Castelletti, Andrea; Burlando, Paolo
2016-04-01
Last decades have seen significant advances in our capacity of characterizing and reproducing hydrological processes within physically based models. Yet, when the human component is considered (e.g. reservoirs, water distribution systems), the associated decisions are generally modeled with very simplistic rules, which might underperform in reproducing the actual operators' behaviour on a daily or sub-daily basis. For example, reservoir operations are usually described by a target-level rule curve, which represents the level that the reservoir should track during normal operating conditions. The associated release decision is determined by the current state of the reservoir relative to the rule curve. This modeling approach can reasonably reproduce the seasonal water volume shift due to reservoir operation. Still, it cannot capture more complex decision making processes in response, e.g., to the fluctuations of energy prices and demands, the temporal unavailability of power plants or varying amount of snow accumulated in the basin. In this work, we link a physically explicit hydrological model with detailed hydropower behavioural models describing the decision making process by the dam operator. In particular, we consider two categories of behavioural models: explicit or rule-based behavioural models, where reservoir operating rules are empirically inferred from observational data, and implicit or optimization based behavioural models, where, following a normative economic approach, the decision maker is represented as a rational agent maximising a utility function. We compare these two alternate modelling approaches on the real-world water system of Lake Como catchment in the Italian Alps. The water system is characterized by the presence of 18 artificial hydropower reservoirs generating almost 13% of the Italian hydropower production. Results show to which extent the hydrological regime in the catchment is affected by different behavioural models and reservoir operating strategies.
Saito, Hiroshi; Katahira, Kentaro; Okanoya, Kazuo; Okada, Masato
2014-01-01
The decision making behaviors of humans and animals adapt and then satisfy an "operant matching law" in certain type of tasks. This was first pointed out by Herrnstein in his foraging experiments on pigeons. The matching law has been one landmark for elucidating the underlying processes of decision making and its learning in the brain. An interesting question is whether decisions are made deterministically or probabilistically. Conventional learning models of the matching law are based on the latter idea; they assume that subjects learn choice probabilities of respective alternatives and decide stochastically with the probabilities. However, it is unknown whether the matching law can be accounted for by a deterministic strategy or not. To answer this question, we propose several deterministic Bayesian decision making models that have certain incorrect beliefs about an environment. We claim that a simple model produces behavior satisfying the matching law in static settings of a foraging task but not in dynamic settings. We found that the model that has a belief that the environment is volatile works well in the dynamic foraging task and exhibits undermatching, which is a slight deviation from the matching law observed in many experiments. This model also demonstrates the double-exponential reward history dependency of a choice and a heavier-tailed run-length distribution, as has recently been reported in experiments on monkeys.
NASA Astrophysics Data System (ADS)
Clavin, C.; Petropoulos, Z.
2017-12-01
Recovery phase decision making processes, as compared to mitigation and response phase decision making processes, require communities make significant financial and capital decisions in the months after a disaster. Collectively, these investments may significantly contribute to the resilience of a community to future hazards. Pre-disaster administrative decisions are well-established within existing planning processes. Post-event recovery requires community decision makers to quickly evaluate technical proposals and manage significant recovery financial resources to ensure their community rebuilds in a manner that will be more resilient to future events. These technical and administrative hurdles in the aftermath of a disaster create a challenging atmosphere to make sound, scientifically-informed decisions leading to resilient recovery. In September 2013, a 1,000-year rain event that resulted in flooding throughout the Front Range of Colorado, significantly impacting Boulder County. While the event is long past, disaster recovery efforts still continue in parts of Boulder County. Boulder County officials formed a county collaborative that adapted the NIST Community Resilience Planning Guide for Buildings and Infrastructure Systems to facilitate a goals-based multi-criteria decision making process. Rather than use hazard-based information to guide infrastructure design, the county's decision process established time-to-recovery goals for infrastructure systems that were used as criteria for project design. This presentation explores the decision-making process employed by Boulder County to specify design standards for resilient rebuilding of infrastructure systems and examine how this infrastructure planning model could be extrapolated to other situations where there is uncertainty regarding future infrastructure design standards.
Ren, Jingzheng; Liang, Hanwei; Dong, Liang; Sun, Lu; Gao, Zhiqiu
2016-08-15
Industrial symbiosis provides novel and practical pathway to the design for the sustainability. Decision support tool for its verification is necessary for practitioners and policy makers, while to date, quantitative research is limited. The objective of this work is to present an innovative approach for supporting decision-making in the design for the sustainability with the implementation of industrial symbiosis in chemical complex. Through incorporating the emergy theory, the model is formulated as a multi-objective approach that can optimize both the economic benefit and sustainable performance of the integrated industrial system. A set of emergy based evaluation index are designed. Multi-objective Particle Swarm Algorithm is proposed to solve the model, and the decision-makers are allowed to choose the suitable solutions form the Pareto solutions. An illustrative case has been studied by the proposed method, a few of compromises between high profitability and high sustainability can be obtained for the decision-makers/stakeholders to make decision. Copyright © 2016 Elsevier B.V. All rights reserved.
Improved Modeling of Three-Point Estimates for Decision Making: Going Beyond the Triangle
2016-03-01
OF THREE-POINT ESTIMATES FOR DECISION MAKING: GOING BEYOND THE TRIANGLE by Daniel W. Mulligan March 2016 Thesis Advisor: Mark Rhoades...REPORT TYPE AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE IMPROVED MODELING OF THREE-POINT ESTIMATES FOR DECISION MAKING: GOING BEYOND...unlimited IMPROVED MODELING OF THREE-POINT ESTIMATES FOR DECISION MAKING: GOING BEYOND THE TRIANGLE Daniel W. Mulligan Civilian, National
Grim, Katarina; Rosenberg, David; Svedberg, Petra; Schön, Ulla-Karin
2016-01-01
Shared decision-making (SDM) is an emergent research topic in the field of mental health care and is considered to be a central component of a recovery-oriented system. Despite the evidence suggesting the benefits of this change in the power relationship between users and practitioners, the method has not been widely implemented in clinical practice. The objective of this study was to investigate decisional and information needs among users with mental illness as a prerequisite for the development of a decision support tool aimed at supporting SDM in community-based mental health services in Sweden. Three semi-structured focus group interviews were conducted with 22 adult users with mental illness. The transcribed interviews were analyzed using a directed content analysis. This method was used to develop an in-depth understanding of the decisional process as well as to validate and conceptually extend Elwyn et al.'s model of SDM. The model Elwyn et al. have created for SDM in somatic care fits well for mental health services, both in terms of process and content. However, the results also suggest an extension of the model because decisions related to mental illness are often complex and involve a number of life domains. Issues related to social context and individual recovery point to the need for a preparation phase focused on establishing cooperation and mutual understanding as well as a clear follow-up phase that allows for feedback and adjustments to the decision-making process. The current study contributes to a deeper understanding of decisional and information needs among users of community-based mental health services that may reduce barriers to participation in decision-making. The results also shed light on attitudinal, relationship-based, and cognitive factors that are important to consider in adapting SDM in the mental health system.
Puskaric, Marin; von Helversen, Bettina; Rieskamp, Jörg
2017-08-01
Social information such as observing others can improve performance in decision making. In particular, social information has been shown to be useful when finding the best solution on one's own is difficult, costly, or dangerous. However, past research suggests that when making decisions people do not always consider other people's behaviour when it is at odds with their own experiences. Furthermore, the cognitive processes guiding the integration of social information with individual experiences are still under debate. Here, we conducted two experiments to test whether information about other persons' behaviour influenced people's decisions in a classification task. Furthermore, we examined how social information is integrated with individual learning experiences by testing different computational models. Our results show that social information had a small but reliable influence on people's classifications. The best computational model suggests that in categorization people first make up their own mind based on the non-social information, which is then updated by the social information.
Network-centric decision architecture for financial or 1/f data models
NASA Astrophysics Data System (ADS)
Jaenisch, Holger M.; Handley, James W.; Massey, Stoney; Case, Carl T.; Songy, Claude G.
2002-12-01
This paper presents a decision architecture algorithm for training neural equation based networks to make autonomous multi-goal oriented, multi-class decisions. These architectures make decisions based on their individual goals and draw from the same network centric feature set. Traditionally, these architectures are comprised of neural networks that offer marginal performance due to lack of convergence of the training set. We present an approach for autonomously extracting sample points as I/O exemplars for generation of multi-branch, multi-node decision architectures populated by adaptively derived neural equations. To test the robustness of this architecture, open source data sets in the form of financial time series were used, requiring a three-class decision space analogous to the lethal, non-lethal, and clutter discrimination problem. This algorithm and the results of its application are presented here.
Samantra, Chitrasen; Datta, Saurav; Mahapatra, Siba Sankar
2017-03-01
In the context of underground coal mining industry, the increased economic issues regarding implementation of additional safety measure systems, along with growing public awareness to ensure high level of workers safety, have put great pressure on the managers towards finding the best solution to ensure safe as well as economically viable alternative selection. Risk-based decision support system plays an important role in finding such solutions amongst candidate alternatives with respect to multiple decision criteria. Therefore, in this paper, a unified risk-based decision-making methodology has been proposed for selecting an appropriate safety measure system in relation to an underground coal mining industry with respect to multiple risk criteria such as financial risk, operating risk, and maintenance risk. The proposed methodology uses interval-valued fuzzy set theory for modelling vagueness and subjectivity in the estimates of fuzzy risk ratings for making appropriate decision. The methodology is based on the aggregative fuzzy risk analysis and multi-criteria decision making. The selection decisions are made within the context of understanding the total integrated risk that is likely to incur while adapting the particular safety system alternative. Effectiveness of the proposed methodology has been validated through a real-time case study. The result in the context of final priority ranking is seemed fairly consistent.
What is adaptive about adaptive decision making? A parallel constraint satisfaction account.
Glöckner, Andreas; Hilbig, Benjamin E; Jekel, Marc
2014-12-01
There is broad consensus that human cognition is adaptive. However, the vital question of how exactly this adaptivity is achieved has remained largely open. Herein, we contrast two frameworks which account for adaptive decision making, namely broad and general single-mechanism accounts vs. multi-strategy accounts. We propose and fully specify a single-mechanism model for decision making based on parallel constraint satisfaction processes (PCS-DM) and contrast it theoretically and empirically against a multi-strategy account. To achieve sufficiently sensitive tests, we rely on a multiple-measure methodology including choice, reaction time, and confidence data as well as eye-tracking. Results show that manipulating the environmental structure produces clear adaptive shifts in choice patterns - as both frameworks would predict. However, results on the process level (reaction time, confidence), in information acquisition (eye-tracking), and from cross-predicting choice consistently corroborate single-mechanisms accounts in general, and the proposed parallel constraint satisfaction model for decision making in particular. Copyright © 2014 Elsevier B.V. All rights reserved.
The Self in Decision Making and Decision Implementation.
ERIC Educational Resources Information Center
Beach, Lee Roy; Mitchell, Terence R.
Since the early 1950's the principal prescriptive model in the psychological study of decision making has been maximization of Subjective Expected Utility (SEU). This SEU maximization has come to be regarded as a description of how people go about making decisions. However, while observed decision processes sometimes resemble the SEU model,…
ERIC Educational Resources Information Center
Archbald, Doug
2010-01-01
This article offers lessons from an initiative refashioning the doctoral thesis in an education leadership program. The program serves a practitioner clientele; most are teachers and administrators. The new model for the thesis emphasizes leadership, problem solving, decision making, and organizational improvement. The former model was a…
Puig, Rita; Fullana-I-Palmer, Pere; Baquero, Grau; Riba, Jordi-Roger; Bala, Alba
2013-12-01
Life cycle thinking is a good approach to be used for environmental decision-support, although the complexity of the Life Cycle Assessment (LCA) studies sometimes prevents their wide use. The purpose of this paper is to show how LCA methodology can be simplified to be more useful for certain applications. In order to improve waste management in Catalonia (Spain), a Cumulative Energy Demand indicator (LCA-based) has been used to obtain four mathematical models to help the government in the decision of preventing or allowing a specific waste from going out of the borders. The conceptual equations and all the subsequent developments and assumptions made to obtain the simplified models are presented. One of the four models is discussed in detail, presenting the final simplified equation to be subsequently used by the government in decision making. The resulting model has been found to be scientifically robust, simple to implement and, above all, fulfilling its purpose: the limitation of waste transport out of Catalonia unless the waste recovery operations are significantly better and justify this transport. Copyright © 2013. Published by Elsevier Ltd.
Couple decision making and use of cultural scripts in Malawi.
Mbweza, Ellen; Norr, Kathleen F; McElmurry, Beverly
2008-01-01
To examine the decision-making processes of husband and wife dyads in matrilineal and patrilineal marriage traditions of Malawi in the areas of money, food, pregnancy, contraception, and sexual relations. Qualitative grounded theory using simultaneous interviews of 60 husbands and wives (30 couples). Data were analyzed according to the guidelines of simultaneous data collection and analysis. The analysis resulted in development of core categories and categories of decision-making process. Data matrixes were used to identify similarities and differences within couples and across cases. Most couples reported using a mix of final decision-making approaches: husband-dominated, wife-dominated, and shared. Gender based and nongender based cultural scripts provided rationales for their approaches to decision making. Gender based cultural scripts (husband-dominant and wife-dominant) were used to justify decision-making approaches. Non-gender based cultural scripts (communicating openly, maintaining harmony, and children's welfare) supported shared decision making. Gender based cultural scripts were used in decision making more often among couples from the district with a patrilineal marriage tradition and where the husband had less than secondary school education and was not formally employed. Nongender based cultural scripts to encourage shared decision making can be used in designing culturally tailored reproductive health interventions for couples. Nurses who work with women and families should be aware of the variations that occur in actual couple decision-making approaches. Shared decision making can be used to encourage the involvement of men in reproductive health programs.
Evans, Simon; Fleming, Stephen M.; Dolan, Raymond J.; Averbeck, Bruno B.
2012-01-01
Real-world decision-making often involves social considerations. Consequently, the social value of stimuli can induce preferences in choice behavior. However, it is unknown how financial and social values are integrated in the brain. Here, we investigated how smiling and angry face stimuli interacted with financial reward feedback in a stochastically-rewarded decision-making task. Subjects reliably preferred the smiling faces despite equivalent reward feedback, demonstrating a socially driven bias. We fit a Bayesian reinforcement learning model to factor the effects of financial rewards and emotion preferences in individual subjects, and regressed model predictions on the trial-by-trial fMRI signal. Activity in the sub-callosal cingulate and the ventral striatum, both involved in reward learning, correlated with financial reward feedback, whereas the differential contribution of social value activated dorsal temporo-parietal junction and dorsal anterior cingulate cortex, previously proposed as components of a mentalizing network. We conclude that the impact of social stimuli on value-based decision processes is mediated by effects in brain regions partially separable from classical reward circuitry. PMID:20946058
Symonds, Erin L; Simpson, Kalindra; Coats, Michelle; Chaplin, Angela; Saxty, Karen; Sandford, Jayne; Young Am, Graeme P; Cock, Charles; Fraser, Robert; Bampton, Peter A
2018-06-18
To examine the compliance of colorectal cancer surveillance decisions for individuals at greater risk with current evidence-based guidelines and to determine whether compliance differs between surveillance models. Prospective auditing of compliance of surveillance decisions with evidence-based guidelines (NHMRC) in two decision-making models: nurse coordinator-led decision making in public academic hospitals and physician-led decision making in private non-academic hospitals. Selected South Australian hospitals participating in the Southern Co-operative Program for the Prevention of Colorectal Cancer (SCOOP). Proportions of recall recommendations that matched NHMRC guideline recommendations (March-May 2015); numbers of surveillance colonoscopies undertaken more than 6 months ahead of schedule (January-December 2015); proportions of significant neoplasia findings during the 15 years of SCOOP operation (2000-2015). For the nurse-led/public academic hospital model, the recall interval recommendation following 398 of 410 colonoscopies (97%) with findings covered by NHMRC guidelines corresponded to the guideline recommendations; for the physician-led/private non-academic hospital model, this applied to 257 of 310 colonoscopies (83%) (P < 0.001). During 2015, 27% of colonoscopies in public academic hospitals (mean, 27 months; SD, 13 months) and 20% of those in private non-academic hospitals (mean, 23 months; SD, 12 months) were performed more than 6 months earlier than scheduled, in most cases because of patient-related factors (symptoms, faecal occult blood test results). The ratio of the numbers of high risk adenomas to cancers increased from 6.6:1 during 2001-2005 to 16:1 during 2011-2015. The nurse-led/public academic hospital model for decisions about colorectal cancer surveillance intervals achieves a high degree of compliance with guideline recommendations, which should relieve burdening of colonoscopy resources.
NASA Astrophysics Data System (ADS)
Liu, Bingsheng; Fu, Meiqing; Zhang, Shuibo; Xue, Bin; Zhou, Qi; Zhang, Shiruo
2018-01-01
The Choquet integral (IL) operator is an effective approach for handling interdependence among decision attributes in complex decision-making problems. However, the fuzzy measures of attributes and attribute sets required by IL are difficult to achieve directly, which limits the application of IL. This paper proposes a new method for determining fuzzy measures of attributes by extending Marichal's concept of entropy for fuzzy measure. To well represent the assessment information, interval-valued 2-tuple linguistic context is utilised to represent information. Then, we propose a Choquet integral operator in an interval-valued 2-tuple linguistic environment, which can effectively handle the correlation between attributes. In addition, we apply these methods to solve multi-attribute group decision-making problems. The feasibility and validity of the proposed operator is demonstrated by comparisons with other models in illustrative example part.
The professional medical ethics model of decision making under conditions of clinical uncertainty.
McCullough, Laurence B
2013-02-01
The professional medical ethics model of decision making may be applied to decisions clinicians and patients make under the conditions of clinical uncertainty that exist when evidence is low or very low. This model uses the ethical concepts of medicine as a profession, the professional virtues of integrity and candor and the patient's virtue of prudence, the moral management of medical uncertainty, and trial of intervention. These features combine to justifiably constrain clinicians' and patients' autonomy with the goal of preventing nondeliberative decisions of patients and clinicians. To prevent biased recommendations by the clinician that promote such nondeliberative decisions, medically reasonable alternatives supported by low or very low evidence should be offered but not recommended. The professional medical ethics model of decision making aims to improve the quality of decisions by reducing the unacceptable variation that can result from nondeliberative decision making by patients and clinicians when evidence is low or very low.
IT vendor selection model by using structural equation model & analytical hierarchy process
NASA Astrophysics Data System (ADS)
Maitra, Sarit; Dominic, P. D. D.
2012-11-01
Selecting and evaluating the right vendors is imperative for an organization's global marketplace competitiveness. Improper selection and evaluation of potential vendors can dwarf an organization's supply chain performance. Numerous studies have demonstrated that firms consider multiple criteria when selecting key vendors. This research intends to develop a new hybrid model for vendor selection process with better decision making. The new proposed model provides a suitable tool for assisting decision makers and managers to make the right decisions and select the most suitable vendor. This paper proposes a Hybrid model based on Structural Equation Model (SEM) and Analytical Hierarchy Process (AHP) for long-term strategic vendor selection problems. The five steps framework of the model has been designed after the thorough literature study. The proposed hybrid model will be applied using a real life case study to assess its effectiveness. In addition, What-if analysis technique will be used for model validation purpose.
Clinical data warehousing for evidence based decision making.
Narra, Lekha; Sahama, Tony; Stapleton, Peta
2015-01-01
Large volumes of heterogeneous health data silos pose a big challenge when exploring for information to allow for evidence based decision making and ensuring quality outcomes. In this paper, we present a proof of concept for adopting data warehousing technology to aggregate and analyse disparate health data in order to understand the impact various lifestyle factors on obesity. We present a practical model for data warehousing with detailed explanation which can be adopted similarly for studying various other health issues.
Real-Time Optimal Flood Control Decision Making and Risk Propagation Under Multiple Uncertainties
NASA Astrophysics Data System (ADS)
Zhu, Feilin; Zhong, Ping-An; Sun, Yimeng; Yeh, William W.-G.
2017-12-01
Multiple uncertainties exist in the optimal flood control decision-making process, presenting risks involving flood control decisions. This paper defines the main steps in optimal flood control decision making that constitute the Forecast-Optimization-Decision Making (FODM) chain. We propose a framework for supporting optimal flood control decision making under multiple uncertainties and evaluate risk propagation along the FODM chain from a holistic perspective. To deal with uncertainties, we employ stochastic models at each link of the FODM chain. We generate synthetic ensemble flood forecasts via the martingale model of forecast evolution. We then establish a multiobjective stochastic programming with recourse model for optimal flood control operation. The Pareto front under uncertainty is derived via the constraint method coupled with a two-step process. We propose a novel SMAA-TOPSIS model for stochastic multicriteria decision making. Then we propose the risk assessment model, the risk of decision-making errors and rank uncertainty degree to quantify the risk propagation process along the FODM chain. We conduct numerical experiments to investigate the effects of flood forecast uncertainty on optimal flood control decision making and risk propagation. We apply the proposed methodology to a flood control system in the Daduhe River basin in China. The results indicate that the proposed method can provide valuable risk information in each link of the FODM chain and enable risk-informed decisions with higher reliability.
Wolf, Lisa
2013-02-01
To explore the relationship between multiple variables within a model of critical thinking and moral reasoning. A quantitative descriptive correlational design using a purposive sample of 200 emergency nurses. Measured variables were accuracy in clinical decision-making, moral reasoning, perceived care environment, and demographics. Analysis was by bivariate correlation using Pearson's product-moment correlation coefficients, chi square and multiple linear regression analysis. The elements as identified in the integrated ethically-driven environmental model of clinical decision-making (IEDEM-CD) corrected depict moral reasoning and environment of care as factors significantly affecting accuracy in decision-making. The integrated, ethically driven environmental model of clinical decision making is a framework useful for predicting clinical decision making accuracy for emergency nurses in practice, with further implications in education, research and policy. A diagnostic and therapeutic framework for identifying and remediating individual and environmental challenges to accurate clinical decision making. © 2012, The Author. International Journal of Nursing Knowledge © 2012, NANDA International.
Bertsimas, Dimitris; Silberholz, John; Trikalinos, Thomas
2018-03-01
Important decisions related to human health, such as screening strategies for cancer, need to be made without a satisfactory understanding of the underlying biological and other processes. Rather, they are often informed by mathematical models that approximate reality. Often multiple models have been made to study the same phenomenon, which may lead to conflicting decisions. It is natural to seek a decision making process that identifies decisions that all models find to be effective, and we propose such a framework in this work. We apply the framework in prostate cancer screening to identify prostate-specific antigen (PSA)-based strategies that perform well under all considered models. We use heuristic search to identify strategies that trade off between optimizing the average across all models' assessments and being "conservative" by optimizing the most pessimistic model assessment. We identified three recently published mathematical models that can estimate quality-adjusted life expectancy (QALE) of PSA-based screening strategies and identified 64 strategies that trade off between maximizing the average and the most pessimistic model assessments. All prescribe PSA thresholds that increase with age, and 57 involve biennial screening. Strategies with higher assessments with the pessimistic model start screening later, stop screening earlier, and use higher PSA thresholds at earlier ages. The 64 strategies outperform 22 previously published expert-generated strategies. The 41 most "conservative" ones remained better than no screening with all models in extensive sensitivity analyses. We augment current comparative modeling approaches by identifying strategies that perform well under all models, for various degrees of decision makers' conservativeness.
Floer, B; Schnee, M; Böcken, J; Streich, W; Kunstmann, W; Isfort, J; Butzlaff, M
2004-10-29
The demand for integration of patients in medical decisions becomes more and more obvious. Little is known about whether patients are willing and ready to share therapeutic decisions. So far information is lacking, whether existing communication skills of both -- patients and physicians -- are sufficient for shared decision making (SDM). This paper presents new data on patients perspectives regarding SDM. Standardized survey of 3058 German speaking people (1565 females, 1493 males), aged 18-79 years, a population based random sample of an access panel (pool of german households available for specific surveys) regarding the following topics: medical decision making in practice, communication skills and behaviour of physicians. A majority of patients approved the model of SDM. However, some subgroups of patients, especially older patients, were less interested in the concept of SDM. Necessary communication skills which may help patients to participate in decision making were used rather scarcely. Patients who approved the model of SDM more often experienced a common and trustful exchange of information. Most patients favour the concept of SDM. The communication skills necessary for this process are to be promoted and extended. Research on patients' preferences and their participation in health care reform should be intensified. Academic and continuous medical education should focus on knowledge transfer to patients.
Administrative decision making: a stepwise method.
Oetjen, Reid M; Oetjen, Dawn M; Rotarius, Timothy
2008-01-01
Today's health care organizations face tremendous challenges and fierce competition. These pressures impact the decisions that managers must execute on any given day, not to mention the ever-present constraints of time, personnel, competencies, and finances. The importance of making quality and informed decisions cannot be underestimated. Traditional decision making methods are inadequate for today's larger, more complex health care organizations and the rapidly changing health care environment. As a result, today's health care managers and their teams need new approaches to making decisions for their organizations. This article examines the managerial decision making process and offers a model that can be used as a decision making template to help managers successfully navigate the choppy health care seas. The administrative decision making model will enable health care managers and other key decision makers to avoid the common pitfalls of poor decision making and guide their organizations to success.
Categorization = Decision Making + Generalization
Seger, Carol A; Peterson, Erik J.
2013-01-01
We rarely, if ever, repeatedly encounter exactly the same situation. This makes generalization crucial for real world decision making. We argue that categorization, the study of generalizable representations, is a type of decision making, and that categorization learning research would benefit from approaches developed to study the neuroscience of decision making. Similarly, methods developed to examine generalization and learning within the field of categorization may enhance decision making research. We first discuss perceptual information processing and integration, with an emphasis on accumulator models. We then examine learning the value of different decision making choices via experience, emphasizing reinforcement learning modeling approaches. Next we discuss how value is combined with other factors in decision making, emphasizing the effects of uncertainty. Finally, we describe how a final decision is selected via thresholding processes implemented by the basal ganglia and related regions. We also consider how memory related functions in the hippocampus may be integrated with decision making mechanisms and contribute to categorization. PMID:23548891
Quantum decision-maker theory and simulation
NASA Astrophysics Data System (ADS)
Zak, Michail; Meyers, Ronald E.; Deacon, Keith S.
2000-07-01
A quantum device simulating the human decision making process is introduced. It consists of quantum recurrent nets generating stochastic processes which represent the motor dynamics, and of classical neural nets describing the evolution of probabilities of these processes which represent the mental dynamics. The autonomy of the decision making process is achieved by a feedback from the mental to motor dynamics which changes the stochastic matrix based upon the probability distribution. This feedback replaces unavailable external information by an internal knowledge- base stored in the mental model in the form of probability distributions. As a result, the coupled motor-mental dynamics is described by a nonlinear version of Markov chains which can decrease entropy without an external source of information. Applications to common sense based decisions as well as to evolutionary games are discussed. An example exhibiting self-organization is computed using quantum computer simulation. Force on force and mutual aircraft engagements using the quantum decision maker dynamics are considered.
The need for consumer behavior analysis in health care coverage decisions.
Thompson, A M; Rao, C P
1990-01-01
Demographic analysis has been the primary form of analysis connected with health care coverage decisions. This paper reviews past demographic research and shows the need to use behavioral analyses for health care coverage policy decisions. A behavioral model based research study is presented and a case is made for integrated study into why consumers make health care coverage decisions.
Follow the heart or the head? The interactive influence model of emotion and cognition.
Luo, Jiayi; Yu, Rongjun
2015-01-01
The experience of emotion has a powerful influence on daily-life decision making. Following Plato's description of emotion and reason as two horses pulling us in opposite directions, modern dual-system models of decision making endorse the antagonism between reason and emotion. Decision making is perceived as the competition between an emotion system that is automatic but prone to error and a reason system that is slow but rational. The reason system (in "the head") reins in our impulses (from "the heart") and overrides our snap judgments. However, from Darwin's evolutionary perspective, emotion is adaptive, guiding us to make sound decisions in uncertainty. Here, drawing findings from behavioral economics and neuroeconomics, we provide a new model, labeled "The interactive influence model of emotion and cognition," to elaborate the relationship of emotion and reason in decision making. Specifically, in our model, we identify factors that determine when emotions override reason and delineate the type of contexts in which emotions help or hurt decision making. We then illustrate how cognition modulates emotion and how they cooperate to affect decision making.
Dynamic decision making for dam-break emergency management - Part 1: Theoretical framework
NASA Astrophysics Data System (ADS)
Peng, M.; Zhang, L. M.
2013-02-01
An evacuation decision for dam breaks is a very serious issue. A late decision may lead to loss of lives and properties, but a very early evacuation will incur unnecessary expenses. This paper presents a risk-based framework of dynamic decision making for dam-break emergency management (DYDEM). The dam-break emergency management in both time scale and space scale is introduced first to define the dynamic decision problem. The probability of dam failure is taken as a stochastic process and estimated using a time-series analysis method. The flood consequences are taken as functions of warning time and evaluated with a human risk analysis model (HURAM) based on Bayesian networks. A decision criterion is suggested to decide whether to evacuate the population at risk (PAR) or to delay the decision. The optimum time for evacuating the PAR is obtained by minimizing the expected total loss, which integrates the time-related probabilities and flood consequences. When a delayed decision is chosen, the decision making can be updated with available new information. A specific dam-break case study is presented in a companion paper to illustrate the application of this framework to complex dam-breaching problems.
White, Eoin J; McMahon, Muireann; Walsh, Michael T; Coffey, J Calvin; O Sullivan, Leonard
To create a human information-processing model for laparoscopic surgery based on already established literature and primary research to enhance laparoscopic surgical education in this context. We reviewed the literature for information-processing models most relevant to laparoscopic surgery. Our review highlighted the necessity for a model that accounts for dynamic environments, perception, allocation of attention resources between the actions of both hands of an operator, and skill acquisition and retention. The results of the literature review were augmented through intraoperative observations of 7 colorectal surgical procedures, supported by laparoscopic video analysis of 12 colorectal procedures. The Wickens human information-processing model was selected as the most relevant theoretical model to which we make adaptions for this specific application. We expanded the perception subsystem of the model to involve all aspects of perception during laparoscopic surgery. We extended the decision-making system to include dynamic decision-making to account for case/patient-specific and surgeon-specific deviations. The response subsystem now includes dual-task performance and nontechnical skills, such as intraoperative communication. The memory subsystem is expanded to include skill acquisition and retention. Surgical decision-making during laparoscopic surgery is the result of a highly complex series of processes influenced not only by the operator's knowledge, but also patient anatomy and interaction with the surgical team. Newer developments in simulation-based education must focus on the theoretically supported elements and events that underpin skill acquisition and affect the cognitive abilities of novice surgeons. The proposed human information-processing model builds on established literature regarding information processing, accounting for a dynamic environment of laparoscopic surgery. This revised model may be used as a foundation for a model describing robotic surgery. Copyright © 2017 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.
Understandings of the nature of science and decision making on science and technology-based issues
NASA Astrophysics Data System (ADS)
Bell, Randy Lee
Current reforms emphasize the development of scientific literacy as the principal goal of science education. The nature of science is considered a critical component of scientific literacy and is assumed to be an important factor in decision making on science and technology based issues. However, little research exists that delineates the role of the nature of science in decision making. The purpose of this investigation was to explicate the role of the nature of science in decision making on science and technology based issues and to delineate the reasoning and factors associated with these types of decisions. The 15-item, open-ended "Decision Making Questionnaire" (DMQ) based on four different scenarios concerning science and technology issues was developed to assess decision making. Twenty-one volunteer participants purposively selected from the faculty of geographically diverse universities completed the questionnaire and follow-up interviews. Participants were subsequently grouped according to their understandings of the nature of science, based on responses to a second open-ended questionnaire and follow-up interview. Profiles of each group's decision making were constructed, based on their previous responses to the DMQ and follow-up interviews. Finally, the two groups' decisions, decision making factors, and decision making strategies were compared. No differences were found between the decisions of the two groups, despite their disparate views of the nature of science. While their reasoning did not follow formal lines of argumentation, several influencing factors and general reasoning patterns were identified. Participants in both groups based their decisions primarily on personal values, morals/ethics, and social concerns. While all participants said they considered scientific evidence in their decision making, most did not require absolute "proof," even though Group B participants held more absolute conceptions of the nature of science. Overall, the nature of science did not figure prominently in either group's decisions. These findings contrast with the assumptions of the science education community and current reform efforts and call for a reexamination of the goals of nature of science instruction. Developing better decision making skills---even on science and technology based issues---may involve other factors, including more values-based instruction and attention to intellectual/moral development.
Personalized Clinical Diagnosis in Data Bases for Treatment Support in Phthisiology.
Lugovkina, T K; Skornyakov, S N; Golubev, D N; Egorov, E A; Medvinsky, I D
2016-01-01
The decision-making is a key event in the clinical practice. The program products with clinical decision support models in electronic data-base as well as with fixed decision moments of the real clinical practice and treatment results are very actual instruments for improving phthisiological practice and may be useful in the severe cases caused by the resistant strains of Mycobacterium tuberculosis. The methodology for gathering and structuring of useful information (critical clinical signals for decisions) is described. Additional coding of clinical diagnosis characteristics was implemented for numeric reflection of the personal situations. The created methodology for systematization and coding Clinical Events allowed to improve the clinical decision models for better clinical results.
A Model For Change: An Approach for Forecasting Well-Being ...
Every community decision incorporates a "forecasting" strategy (whether formal or implicit) to help visualize expected results and evaluate the potential “feelings” that people living in that community may have about those results. With more communities seeking to make decisions based on sustainable alternatives, forecasting efforts that examine potential impacts of decisions on overall community well-being may prove to be valuable for not only gaging future benefits and trade-offs, but also for recognizing a community’s affective response to the outcomes of those decisions. This paper describes a forecasting approach based on concepts introduced in the development of the U.S. Environmental Protection Agency’s (US EPA) Human Well-Being Index (HWBI) (Smith, et. al. 2014; Summers et al. 2014). The approach examines the relationships among selected economic, environmental and social services that can be directly impacted by community decisions and eight domains of human well-being. Using models developed from constructed- or fixed-effect step-wise and multiple regressions and eleven years of data (2000-2010), these relationship functions may be used to characterize likely direct impacts of decisions on future well-being as well as the possible intended and unintended secondary and tertiary effects relative to any main decision effects. This paper describes an approach to using HWBI in decision making models to characterize likely impacts of decisions on fut
NASA Astrophysics Data System (ADS)
Lowe, Robert; Ziemke, Tom
2010-09-01
The somatic marker hypothesis (SMH) posits that the role of emotions and mental states in decision-making manifests through bodily responses to stimuli of import to the organism's welfare. The Iowa Gambling Task (IGT), proposed by Bechara and Damasio in the mid-1990s, has provided the major source of empirical validation to the role of somatic markers in the service of flexible and cost-effective decision-making in humans. In recent years the IGT has been the subject of much criticism concerning: (1) whether measures of somatic markers reveal that they are important for decision-making as opposed to behaviour preparation; (2) the underlying neural substrate posited as critical to decision-making of the type relevant to the task; and (3) aspects of the methodological approach used, particularly on the canonical version of the task. In this paper, a cognitive robotics methodology is proposed to explore a dynamical systems approach as it applies to the neural computation of reward-based learning and issues concerning embodiment. This approach is particularly relevant in light of a strongly emerging alternative hypothesis to the SMH, the reversal learning hypothesis, which links, behaviourally and neurocomputationally, a number of more or less complex reward-based decision-making tasks, including the 'A-not-B' task - already subject to dynamical systems investigations with a focus on neural activation dynamics. It is also suggested that the cognitive robotics methodology may be used to extend systematically the IGT benchmark to more naturalised, but nevertheless controlled, settings that might better explore the extent to which the SMH, and somatic states per se, impact on complex decision-making.
Capalbo, Susan M; Antle, John M; Seavert, Clark
2017-07-01
Research on next generation agricultural systems models shows that the most important current limitation is data, both for on-farm decision support and for research investment and policy decision making. One of the greatest data challenges is to obtain reliable data on farm management decision making, both for current conditions and under scenarios of changed bio-physical and socio-economic conditions. This paper presents a framework for the use of farm-level and landscape-scale models and data to provide analysis that could be used in NextGen knowledge products, such as mobile applications or personal computer data analysis and visualization software. We describe two analytical tools - AgBiz Logic and TOA-MD - that demonstrate the current capability of farmlevel and landscape-scale models. The use of these tools is explored with a case study of an oilseed crop, Camelina sativa , which could be used to produce jet aviation fuel. We conclude with a discussion of innovations needed to facilitate the use of farm and policy-level models to generate data and analysis for improved knowledge products.
The Role of Intent in Ethical Decision Making: The Ethical Choice Model
ERIC Educational Resources Information Center
King, Christine; Powell, Toni
2007-01-01
This paper reviews the major theories, studies and models concerning ethical decision making in organizations. The authors drew upon Jones' Model (1991) as the foundation for their Ethical Choice Model, which is designed to further clarify the ethical decision making process as it relates to the construct of intentionality. The model, illustrated…