Scoring and staging systems using cox linear regression modeling and recursive partitioning.
Lee, J W; Um, S H; Lee, J B; Mun, J; Cho, H
2006-01-01
Scoring and staging systems are used to determine the order and class of data according to predictors. Systems used for medical data, such as the Child-Turcotte-Pugh scoring and staging systems for ordering and classifying patients with liver disease, are often derived strictly from physicians' experience and intuition. We construct objective and data-based scoring/staging systems using statistical methods. We consider Cox linear regression modeling and recursive partitioning techniques for censored survival data. In particular, to obtain a target number of stages we propose cross-validation and amalgamation algorithms. We also propose an algorithm for constructing scoring and staging systems by integrating local Cox linear regression models into recursive partitioning, so that we can retain the merits of both methods such as superior predictive accuracy, ease of use, and detection of interactions between predictors. The staging system construction algorithms are compared by cross-validation evaluation of real data. The data-based cross-validation comparison shows that Cox linear regression modeling is somewhat better than recursive partitioning when there are only continuous predictors, while recursive partitioning is better when there are significant categorical predictors. The proposed local Cox linear recursive partitioning has better predictive accuracy than Cox linear modeling and simple recursive partitioning. This study indicates that integrating local linear modeling into recursive partitioning can significantly improve prediction accuracy in constructing scoring and staging systems.
Decision tree modeling using R.
Zhang, Zhongheng
2016-08-01
In machine learning field, decision tree learner is powerful and easy to interpret. It employs recursive binary partitioning algorithm that splits the sample in partitioning variable with the strongest association with the response variable. The process continues until some stopping criteria are met. In the example I focus on conditional inference tree, which incorporates tree-structured regression models into conditional inference procedures. While growing a single tree is subject to small changes in the training data, random forests procedure is introduced to address this problem. The sources of diversity for random forests come from the random sampling and restricted set of input variables to be selected. Finally, I introduce R functions to perform model based recursive partitioning. This method incorporates recursive partitioning into conventional parametric model building.
Pirkle, Catherine M; Wu, Yan Yan; Zunzunegui, Maria-Victoria; Gómez, José Fernando
2018-01-01
Objective Conceptual models underpinning much epidemiological research on ageing acknowledge that environmental, social and biological systems interact to influence health outcomes. Recursive partitioning is a data-driven approach that allows for concurrent exploration of distinct mixtures, or clusters, of individuals that have a particular outcome. Our aim is to use recursive partitioning to examine risk clusters for metabolic syndrome (MetS) and its components, in order to identify vulnerable populations. Study design Cross-sectional analysis of baseline data from a prospective longitudinal cohort called the International Mobility in Aging Study (IMIAS). Setting IMIAS includes sites from three middle-income countries—Tirana (Albania), Natal (Brazil) and Manizales (Colombia)—and two from Canada—Kingston (Ontario) and Saint-Hyacinthe (Quebec). Participants Community-dwelling male and female adults, aged 64–75 years (n=2002). Primary and secondary outcome measures We apply recursive partitioning to investigate social and behavioural risk factors for MetS and its components. Model-based recursive partitioning (MOB) was used to cluster participants into age-adjusted risk groups based on variabilities in: study site, sex, education, living arrangements, childhood adversities, adult occupation, current employment status, income, perceived income sufficiency, smoking status and weekly minutes of physical activity. Results 43% of participants had MetS. Using MOB, the primary partitioning variable was participant sex. Among women from middle-incomes sites, the predicted proportion with MetS ranged from 58% to 68%. Canadian women with limited physical activity had elevated predicted proportions of MetS (49%, 95% CI 39% to 58%). Among men, MetS ranged from 26% to 41% depending on childhood social adversity and education. Clustering for MetS components differed from the syndrome and across components. Study site was a primary partitioning variable for all components except HDL cholesterol. Sex was important for most components. Conclusion MOB is a promising technique for identifying disease risk clusters (eg, vulnerable populations) in modestly sized samples. PMID:29500203
Binary recursive partitioning: background, methods, and application to psychology.
Merkle, Edgar C; Shaffer, Victoria A
2011-02-01
Binary recursive partitioning (BRP) is a computationally intensive statistical method that can be used in situations where linear models are often used. Instead of imposing many assumptions to arrive at a tractable statistical model, BRP simply seeks to accurately predict a response variable based on values of predictor variables. The method outputs a decision tree depicting the predictor variables that were related to the response variable, along with the nature of the variables' relationships. No significance tests are involved, and the tree's 'goodness' is judged based on its predictive accuracy. In this paper, we describe BRP methods in a detailed manner and illustrate their use in psychological research. We also provide R code for carrying out the methods.
Blankers, Matthijs; Frijns, Tom; Belackova, Vendula; Rossi, Carla; Svensson, Bengt; Trautmann, Franz; van Laar, Margriet
2014-01-01
Cannabis is Europe's most commonly used illicit drug. Some users do not develop dependence or other problems, whereas others do. Many factors are associated with the occurrence of cannabis-related disorders. This makes it difficult to identify key risk factors and markers to profile at-risk cannabis users using traditional hypothesis-driven approaches. Therefore, the use of a data-mining technique called binary recursive partitioning is demonstrated in this study by creating a classification tree to profile at-risk users. 59 variables on cannabis use and drug market experiences were extracted from an internet-based survey dataset collected in four European countries (Czech Republic, Italy, Netherlands and Sweden), n = 2617. These 59 potential predictors of problematic cannabis use were used to partition individual respondents into subgroups with low and high risk of having a cannabis use disorder, based on their responses on the Cannabis Abuse Screening Test. Both a generic model for the four countries combined and four country-specific models were constructed. Of the 59 variables included in the first analysis step, only three variables were required to construct a generic partitioning model to classify high risk cannabis users with 65-73% accuracy. Based on the generic model for the four countries combined, the highest risk for cannabis use disorder is seen in participants reporting a cannabis use on more than 200 days in the last 12 months. In comparison to the generic model, the country-specific models led to modest, non-significant improvements in classification accuracy, with an exception for Italy (p = 0.01). Using recursive partitioning, it is feasible to construct classification trees based on only a few variables with acceptable performance to classify cannabis users into groups with low or high risk of meeting criteria for cannabis use disorder. The number of cannabis use days in the last 12 months is the most relevant variable. The identified variables may be considered for use in future screeners for cannabis use disorders.
A Recursive Method for Calculating Certain Partition Functions.
ERIC Educational Resources Information Center
Woodrum, Luther; And Others
1978-01-01
Describes a simple recursive method for calculating the partition function and average energy of a system consisting of N electrons and L energy levels. Also, presents an efficient APL computer program to utilize the recursion relation. (Author/GA)
TREAT (TREe-based Association Test)
TREAT is an R package for detecting complex joint effects in case-control studies. The test statistic is derived from a tree-structure model by recursive partitioning the data. Ultra-fast algorithm is designed to evaluate the significance of association between candidate gene and disease outcome
Liao, Quan; Yao, Jianhua; Yuan, Shengang
2007-05-01
The study of prediction of toxicity is very important and necessary because measurement of toxicity is typically time-consuming and expensive. In this paper, Recursive Partitioning (RP) method was used to select descriptors. RP and Support Vector Machines (SVM) were used to construct structure-toxicity relationship models, RP model and SVM model, respectively. The performances of the two models are different. The prediction accuracies of the RP model are 80.2% for mutagenic compounds in MDL's toxicity database, 83.4% for compounds in CMC and 84.9% for agrochemicals in in-house database respectively. Those of SVM model are 81.4%, 87.0% and 87.3% respectively.
Censored quantile regression with recursive partitioning-based weights
Wey, Andrew; Wang, Lan; Rudser, Kyle
2014-01-01
Censored quantile regression provides a useful alternative to the Cox proportional hazards model for analyzing survival data. It directly models the conditional quantile of the survival time and hence is easy to interpret. Moreover, it relaxes the proportionality constraint on the hazard function associated with the popular Cox model and is natural for modeling heterogeneity of the data. Recently, Wang and Wang (2009. Locally weighted censored quantile regression. Journal of the American Statistical Association 103, 1117–1128) proposed a locally weighted censored quantile regression approach that allows for covariate-dependent censoring and is less restrictive than other censored quantile regression methods. However, their kernel smoothing-based weighting scheme requires all covariates to be continuous and encounters practical difficulty with even a moderate number of covariates. We propose a new weighting approach that uses recursive partitioning, e.g. survival trees, that offers greater flexibility in handling covariate-dependent censoring in moderately high dimensions and can incorporate both continuous and discrete covariates. We prove that this new weighting scheme leads to consistent estimation of the quantile regression coefficients and demonstrate its effectiveness via Monte Carlo simulations. We also illustrate the new method using a widely recognized data set from a clinical trial on primary biliary cirrhosis. PMID:23975800
Fokkema, M; Smits, N; Zeileis, A; Hothorn, T; Kelderman, H
2017-10-25
Identification of subgroups of patients for whom treatment A is more effective than treatment B, and vice versa, is of key importance to the development of personalized medicine. Tree-based algorithms are helpful tools for the detection of such interactions, but none of the available algorithms allow for taking into account clustered or nested dataset structures, which are particularly common in psychological research. Therefore, we propose the generalized linear mixed-effects model tree (GLMM tree) algorithm, which allows for the detection of treatment-subgroup interactions, while accounting for the clustered structure of a dataset. The algorithm uses model-based recursive partitioning to detect treatment-subgroup interactions, and a GLMM to estimate the random-effects parameters. In a simulation study, GLMM trees show higher accuracy in recovering treatment-subgroup interactions, higher predictive accuracy, and lower type II error rates than linear-model-based recursive partitioning and mixed-effects regression trees. Also, GLMM trees show somewhat higher predictive accuracy than linear mixed-effects models with pre-specified interaction effects, on average. We illustrate the application of GLMM trees on an individual patient-level data meta-analysis on treatments for depression. We conclude that GLMM trees are a promising exploratory tool for the detection of treatment-subgroup interactions in clustered datasets.
Differential diagnosis of jaw pain using informatics technology.
Nam, Y; Kim, H-G; Kho, H-S
2018-05-21
This study aimed to deduce evidence-based clinical clues that differentiate temporomandibular disorders (TMD)-mimicking conditions from genuine TMD by text mining using natural language processing (NLP) and recursive partitioning. We compared the medical records of 29 patients diagnosed with TMD-mimicking conditions and 290 patients diagnosed with genuine TMD. Chief complaints and medical histories were preprocessed via NLP to compare the frequency of word usage. In addition, recursive partitioning was used to deduce the optimal size of mouth opening, which could differentiate TMD-mimicking from genuine TMD groups. The prevalence of TMD-mimicking conditions was more evenly distributed across all age groups and showed a nearly equal gender ratio, which was significantly different from genuine TMD. TMD-mimicking conditions were caused by inflammation, infection, hereditary disease and neoplasm. Patients with TMD-mimicking conditions frequently used "mouth opening limitation" (P < .001), but less commonly used words such as "noise" (P < .001) and "temporomandibular joint" (P < .001) than patients with genuine TMD. A diagnostic classification tree on the basis of recursive partitioning suggested that 12.0 mm of comfortable mouth opening and 26.5 mm of maximum mouth opening were deduced as the most optimal mouth-opening cutoff sizes. When the combined analyses were performed based on both the text mining and clinical examination data, the predictive performance of the model was 96.6% with 69.0% sensitivity and 99.3% specificity in predicting TMD-mimicking conditions. In conclusion, this study showed that AI technology-based methods could be applied in the field of differential diagnosis of orofacial pain disorders. © 2018 John Wiley & Sons Ltd.
Discovery of novel SERCA inhibitors by virtual screening of a large compound library.
Elam, Christopher; Lape, Michael; Deye, Joel; Zultowsky, Jodie; Stanton, David T; Paula, Stefan
2011-05-01
Two screening protocols based on recursive partitioning and computational ligand docking methodologies, respectively, were employed for virtual screens of a compound library with 345,000 entries for novel inhibitors of the enzyme sarco/endoplasmic reticulum calcium ATPase (SERCA), a potential target for cancer chemotherapy. A total of 72 compounds that were predicted to be potential inhibitors of SERCA were tested in bioassays and 17 displayed inhibitory potencies at concentrations below 100 μM. The majority of these inhibitors were composed of two phenyl rings tethered to each other by a short link of one to three atoms. Putative interactions between SERCA and the inhibitors were identified by inspection of docking-predicted poses and some of the structural features required for effective SERCA inhibition were determined by analysis of the classification pattern employed by the recursive partitioning models. Copyright © 2011 Elsevier Masson SAS. All rights reserved.
An Element-Based Concurrent Partitioner for Unstructured Finite Element Meshes
NASA Technical Reports Server (NTRS)
Ding, Hong Q.; Ferraro, Robert D.
1996-01-01
A concurrent partitioner for partitioning unstructured finite element meshes on distributed memory architectures is developed. The partitioner uses an element-based partitioning strategy. Its main advantage over the more conventional node-based partitioning strategy is its modular programming approach to the development of parallel applications. The partitioner first partitions element centroids using a recursive inertial bisection algorithm. Elements and nodes then migrate according to the partitioned centroids, using a data request communication template for unpredictable incoming messages. Our scalable implementation is contrasted to a non-scalable implementation which is a straightforward parallelization of a sequential partitioner.
Chan, An-Wen; Fung, Kinwah; Tran, Jennifer M; Kitchen, Jessica; Austin, Peter C; Weinstock, Martin A; Rochon, Paula A
2016-10-01
Keratinocyte carcinoma (nonmelanoma skin cancer) accounts for substantial burden in terms of high incidence and health care costs but is excluded by most cancer registries in North America. Administrative health insurance claims databases offer an opportunity to identify these cancers using diagnosis and procedural codes submitted for reimbursement purposes. To apply recursive partitioning to derive and validate a claims-based algorithm for identifying keratinocyte carcinoma with high sensitivity and specificity. Retrospective study using population-based administrative databases linked to 602 371 pathology episodes from a community laboratory for adults residing in Ontario, Canada, from January 1, 1992, to December 31, 2009. The final analysis was completed in January 2016. We used recursive partitioning (classification trees) to derive an algorithm based on health insurance claims. The performance of the derived algorithm was compared with 5 prespecified algorithms and validated using an independent academic hospital clinic data set of 2082 patients seen in May and June 2011. Sensitivity, specificity, positive predictive value, and negative predictive value using the histopathological diagnosis as the criterion standard. We aimed to achieve maximal specificity, while maintaining greater than 80% sensitivity. Among 602 371 pathology episodes, 131 562 (21.8%) had a diagnosis of keratinocyte carcinoma. Our final derived algorithm outperformed the 5 simple prespecified algorithms and performed well in both community and hospital data sets in terms of sensitivity (82.6% and 84.9%, respectively), specificity (93.0% and 99.0%, respectively), positive predictive value (76.7% and 69.2%, respectively), and negative predictive value (95.0% and 99.6%, respectively). Algorithm performance did not vary substantially during the 18-year period. This algorithm offers a reliable mechanism for ascertaining keratinocyte carcinoma for epidemiological research in the absence of cancer registry data. Our findings also demonstrate the value of recursive partitioning in deriving valid claims-based algorithms.
Recursive inverse factorization.
Rubensson, Emanuel H; Bock, Nicolas; Holmström, Erik; Niklasson, Anders M N
2008-03-14
A recursive algorithm for the inverse factorization S(-1)=ZZ(*) of Hermitian positive definite matrices S is proposed. The inverse factorization is based on iterative refinement [A.M.N. Niklasson, Phys. Rev. B 70, 193102 (2004)] combined with a recursive decomposition of S. As the computational kernel is matrix-matrix multiplication, the algorithm can be parallelized and the computational effort increases linearly with system size for systems with sufficiently sparse matrices. Recent advances in network theory are used to find appropriate recursive decompositions. We show that optimization of the so-called network modularity results in an improved partitioning compared to other approaches. In particular, when the recursive inverse factorization is applied to overlap matrices of irregularly structured three-dimensional molecules.
Recursions for the exchangeable partition function of the seedbank coalescent.
Kurt, Noemi; Rafler, Mathias
2017-04-01
For the seedbank coalescent with mutation under the infinite alleles assumption, which describes the gene genealogy of a population with a strong seedbank effect subject to mutations, we study the distribution of the final partition with mutation. This generalizes the coalescent with freeze by Dong et al. (2007) to coalescents where ancestral lineages are blocked from coalescing. We derive an implicit recursion which we show to have a unique solution and give an interpretation in terms of absorption problems of a random walk. Moreover, we derive recursions for the distribution of the number of blocks in the final partition. Copyright © 2017 Elsevier Inc. All rights reserved.
Cooperating reduction machines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kluge, W.E.
1983-11-01
This paper presents a concept and a system architecture for the concurrent execution of program expressions of a concrete reduction language based on lamda-expressions. If formulated appropriately, these expressions are well-suited for concurrent execution, following a demand-driven model of computation. In particular, recursive program expressions with nonlinear expansion may, at run time, recursively be partitioned into a hierarchy of independent subexpressions which can be reduced by a corresponding hierarchy of virtual reduction machines. This hierarchy unfolds and collapses dynamically, with virtual machines recursively assuming the role of masters that create and eventually terminate, or synchronize with, slaves. The paper alsomore » proposes a nonhierarchically organized system of reduction machines, each featuring a stack architecture, that effectively supports the allocation of virtual machines to the real machines of the system in compliance with their hierarchical order of creation and termination. 25 references.« less
Fragment-based prediction of skin sensitization using recursive partitioning
NASA Astrophysics Data System (ADS)
Lu, Jing; Zheng, Mingyue; Wang, Yong; Shen, Qiancheng; Luo, Xiaomin; Jiang, Hualiang; Chen, Kaixian
2011-09-01
Skin sensitization is an important toxic endpoint in the risk assessment of chemicals. In this paper, structure-activity relationships analysis was performed on the skin sensitization potential of 357 compounds with local lymph node assay data. Structural fragments were extracted by GASTON (GrAph/Sequence/Tree extractiON) from the training set. Eight fragments with accuracy significantly higher than 0.73 ( p < 0.1) were retained to make up an indicator descriptor fragment. The fragment descriptor and eight other physicochemical descriptors closely related to the endpoint were calculated to construct the recursive partitioning tree (RP tree) for classification. The balanced accuracy of the training set, test set I, and test set II in the leave-one-out model were 0.846, 0.800, and 0.809, respectively. The results highlight that fragment-based RP tree is a preferable method for identifying skin sensitizers. Moreover, the selected fragments provide useful structural information for exploring sensitization mechanisms, and RP tree creates a graphic tree to identify the most important properties associated with skin sensitization. They can provide some guidance for designing of drugs with lower sensitization level.
Multi-jagged: A scalable parallel spatial partitioning algorithm
Deveci, Mehmet; Rajamanickam, Sivasankaran; Devine, Karen D.; ...
2015-03-18
Geometric partitioning is fast and effective for load-balancing dynamic applications, particularly those requiring geometric locality of data (particle methods, crash simulations). We present, to our knowledge, the first parallel implementation of a multidimensional-jagged geometric partitioner. In contrast to the traditional recursive coordinate bisection algorithm (RCB), which recursively bisects subdomains perpendicular to their longest dimension until the desired number of parts is obtained, our algorithm does recursive multi-section with a given number of parts in each dimension. By computing multiple cut lines concurrently and intelligently deciding when to migrate data while computing the partition, we minimize data movement compared to efficientmore » implementations of recursive bisection. We demonstrate the algorithm's scalability and quality relative to the RCB implementation in Zoltan on both real and synthetic datasets. Our experiments show that the proposed algorithm performs and scales better than RCB in terms of run-time without degrading the load balance. Lastly, our implementation partitions 24 billion points into 65,536 parts within a few seconds and exhibits near perfect weak scaling up to 6K cores.« less
Item-focussed Trees for the Identification of Items in Differential Item Functioning.
Tutz, Gerhard; Berger, Moritz
2016-09-01
A novel method for the identification of differential item functioning (DIF) by means of recursive partitioning techniques is proposed. We assume an extension of the Rasch model that allows for DIF being induced by an arbitrary number of covariates for each item. Recursive partitioning on the item level results in one tree for each item and leads to simultaneous selection of items and variables that induce DIF. For each item, it is possible to detect groups of subjects with different item difficulties, defined by combinations of characteristics that are not pre-specified. The way a DIF item is determined by covariates is visualized in a small tree and therefore easily accessible. An algorithm is proposed that is based on permutation tests. Various simulation studies, including the comparison with traditional approaches to identify items with DIF, show the applicability and the competitive performance of the method. Two applications illustrate the usefulness and the advantages of the new method.
High Performance Computing Based Parallel HIearchical Modal Association Clustering (HPAR HMAC)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patlolla, Dilip R; Surendran Nair, Sujithkumar; Graves, Daniel A.
For many applications, clustering is a crucial step in order to gain insight into the makeup of a dataset. The best approach to a given problem often depends on a variety of factors, such as the size of the dataset, time restrictions, and soft clustering requirements. The HMAC algorithm seeks to combine the strengths of 2 particular clustering approaches: model-based and linkage-based clustering. One particular weakness of HMAC is its computational complexity. HMAC is not practical for mega-scale data clustering. For high-definition imagery, a user would have to wait months or years for a result; for a 16-megapixel image, themore » estimated runtime skyrockets to over a decade! To improve the execution time of HMAC, it is reasonable to consider an multi-core implementation that utilizes available system resources. An existing imple-mentation (Ray and Cheng 2014) divides the dataset into N partitions - one for each thread prior to executing the HMAC algorithm. This implementation benefits from 2 types of optimization: parallelization and divide-and-conquer. By running each partition in parallel, the program is able to accelerate computation by utilizing more system resources. Although the parallel implementation provides considerable improvement over the serial HMAC, it still suffers from poor computational complexity, O(N2). Once the maximum number of cores on a system is exhausted, the program exhibits slower behavior. We now consider a modification to HMAC that involves a recursive partitioning scheme. Our modification aims to exploit divide-and-conquer benefits seen by the parallel HMAC implementation. At each level in the recursion tree, partitions are divided into 2 sub-partitions until a threshold size is reached. When the partition can no longer be divided without falling below threshold size, the base HMAC algorithm is applied. This results in a significant speedup over the parallel HMAC.« less
Condensate statistics and thermodynamics of weakly interacting Bose gas: Recursion relation approach
NASA Astrophysics Data System (ADS)
Dorfman, K. E.; Kim, M.; Svidzinsky, A. A.
2011-03-01
We study condensate statistics and thermodynamics of weakly interacting Bose gas with a fixed total number N of particles in a cubic box. We find the exact recursion relation for the canonical ensemble partition function. Using this relation, we calculate the distribution function of condensate particles for N=200. We also calculate the distribution function based on multinomial expansion of the characteristic function. Similar to the ideal gas, both approaches give exact statistical moments for all temperatures in the framework of Bogoliubov model. We compare them with the results of unconstraint canonical ensemble quasiparticle formalism and the hybrid master equation approach. The present recursion relation can be used for any external potential and boundary conditions. We investigate the temperature dependence of the first few statistical moments of condensate fluctuations as well as thermodynamic potentials and heat capacity analytically and numerically in the whole temperature range.
ERIC Educational Resources Information Center
Strobl, Carolin; Malley, James; Tutz, Gerhard
2009-01-01
Recursive partitioning methods have become popular and widely used tools for nonparametric regression and classification in many scientific fields. Especially random forests, which can deal with large numbers of predictor variables even in the presence of complex interactions, have been applied successfully in genetics, clinical medicine, and…
Recurrence relations in one-dimensional Ising models.
da Conceição, C M Silva; Maia, R N P
2017-09-01
The exact finite-size partition function for the nonhomogeneous one-dimensional (1D) Ising model is found through an approach using algebra operators. Specifically, in this paper we show that the partition function can be computed through a trace from a linear second-order recurrence relation with nonconstant coefficients in matrix form. A relation between the finite-size partition function and the generalized Lucas polynomials is found for the simple homogeneous model, thus establishing a recursive formula for the partition function. This is an important property and it might indicate the possible existence of recurrence relations in higher-dimensional Ising models. Moreover, assuming quenched disorder for the interactions within the model, the quenched averaged magnetic susceptibility displays a nontrivial behavior due to changes in the ferromagnetic concentration probability.
Van Hulst, Andraea; Roy-Gagnon, Marie-Hélène; Gauvin, Lise; Kestens, Yan; Henderson, Mélanie; Barnett, Tracie A
2015-02-15
Few studies consider how risk factors within multiple levels of influence operate synergistically to determine childhood obesity. We used recursive partitioning analysis to identify unique combinations of individual, familial, and neighborhood factors that best predict obesity in children, and tested whether these predict 2-year changes in body mass index (BMI). Data were collected in 2005-2008 and in 2008-2011 for 512 Quebec youth (8-10 years at baseline) with a history of parental obesity (QUALITY study). CDC age- and sex-specific BMI percentiles were computed and children were considered obese if their BMI was ≥95th percentile. Individual (physical activity and sugar-sweetened beverage intake), familial (household socioeconomic status and measures of parental obesity including both BMI and waist circumference), and neighborhood (disadvantage, prestige, and presence of parks, convenience stores, and fast food restaurants) factors were examined. Recursive partitioning, a method that generates a classification tree predicting obesity based on combined exposure to a series of variables, was used. Associations between resulting varying risk group membership and BMI percentile at baseline and 2-year follow up were examined using linear regression. Recursive partitioning yielded 7 subgroups with a prevalence of obesity equal to 8%, 11%, 26%, 28%, 41%, 60%, and 63%, respectively. The 2 highest risk subgroups comprised i) children not meeting physical activity guidelines, with at least one BMI-defined obese parent and 2 abdominally obese parents, living in disadvantaged neighborhoods without parks and, ii) children with these characteristics, except with access to ≥1 park and with access to ≥1 convenience store. Group membership was strongly associated with BMI at baseline, but did not systematically predict change in BMI. Findings support the notion that obesity is predicted by multiple factors in different settings and provide some indications of potentially obesogenic environments. Alternate group definitions as well as longer duration of follow up should be investigated to predict change in obesity.
Abe, Toshikazu; Tokuda, Yasuharu; Cook, E Francis
2011-01-01
Optimal acceptable time intervals from collapse to bystander cardiopulmonary resuscitation (CPR) for neurologically favorable outcome among adults with witnessed out-of-hospital cardiopulmonary arrest (CPA) have been unclear. Our aim was to assess the optimal acceptable thresholds of the time intervals of CPR for neurologically favorable outcome and survival using a recursive partitioning model. From January 1, 2005 through December 31, 2009, we conducted a prospective population-based observational study across Japan involving consecutive out-of-hospital CPA patients (N = 69,648) who received a witnessed bystander CPR. Of 69,648 patients, 34,605 were assigned to the derivation data set and 35,043 to the validation data set. Time factors associated with better outcomes: the better outcomes were survival and neurologically favorable outcome at one month, defined as category one (good cerebral performance) or two (moderate cerebral disability) of the cerebral performance categories. Based on the recursive partitioning model from the derivation dataset (n = 34,605) to predict the neurologically favorable outcome at one month, 5 min threshold was the acceptable time interval from collapse to CPR initiation; 11 min from collapse to ambulance arrival; 18 min from collapse to return of spontaneous circulation (ROSC); and 19 min from collapse to hospital arrival. Among the validation dataset (n = 35,043), 209/2,292 (9.1%) in all patients with the acceptable time intervals and 1,388/2,706 (52.1%) in the subgroup with the acceptable time intervals and pre-hospital ROSC showed neurologically favorable outcome. Initiation of CPR should be within 5 min for obtaining neurologically favorable outcome among adults with witnessed out-of-hospital CPA. Patients with the acceptable time intervals of bystander CPR and pre-hospital ROSC within 18 min could have 50% chance of neurologically favorable outcome.
Perceived Organizational Support for Enhancing Welfare at Work: A Regression Tree Model
Giorgi, Gabriele; Dubin, David; Perez, Javier Fiz
2016-01-01
When trying to examine outcomes such as welfare and well-being, research tends to focus on main effects and take into account limited numbers of variables at a time. There are a number of techniques that may help address this problem. For example, many statistical packages available in R provide easy-to-use methods of modeling complicated analysis such as classification and tree regression (i.e., recursive partitioning). The present research illustrates the value of recursive partitioning in the prediction of perceived organizational support in a sample of more than 6000 Italian bankers. Utilizing the tree function party package in R, we estimated a regression tree model predicting perceived organizational support from a multitude of job characteristics including job demand, lack of job control, lack of supervisor support, training, etc. The resulting model appears particularly helpful in pointing out several interactions in the prediction of perceived organizational support. In particular, training is the dominant factor. Another dimension that seems to influence organizational support is reporting (perceived communication about safety and stress concerns). Results are discussed from a theoretical and methodological point of view. PMID:28082924
Venous tree separation in the liver: graph partitioning using a non-ising model.
O'Donnell, Thomas; Kaftan, Jens N; Schuh, Andreas; Tietjen, Christian; Soza, Grzegorz; Aach, Til
2011-01-01
Entangled tree-like vascular systems are commonly found in the body (e.g., in the peripheries and lungs). Separation of these systems in medical images may be formulated as a graph partitioning problem given an imperfect segmentation and specification of the tree roots. In this work, we show that the ubiquitous Ising-model approaches (e.g., Graph Cuts, Random Walker) are not appropriate for tackling this problem and propose a novel method based on recursive minimal paths for doing so. To motivate our method, we focus on the intertwined portal and hepatic venous systems in the liver. Separation of these systems is critical for liver intervention planning, in particular when resection is involved. We apply our method to 34 clinical datasets, each containing well over a hundred vessel branches, demonstrating its effectiveness.
Accounting for Individual Differences in Bradley-Terry Models by Means of Recursive Partitioning
ERIC Educational Resources Information Center
Strobl, Carolin; Wickelmaier, Florian; Zeileis, Achim
2011-01-01
The preference scaling of a group of subjects may not be homogeneous, but different groups of subjects with certain characteristics may show different preference scalings, each of which can be derived from paired comparisons by means of the Bradley-Terry model. Usually, either different models are fit in predefined subsets of the sample or the…
Hu, Chen; Steingrimsson, Jon Arni
2018-01-01
A crucial component of making individualized treatment decisions is to accurately predict each patient's disease risk. In clinical oncology, disease risks are often measured through time-to-event data, such as overall survival and progression/recurrence-free survival, and are often subject to censoring. Risk prediction models based on recursive partitioning methods are becoming increasingly popular largely due to their ability to handle nonlinear relationships, higher-order interactions, and/or high-dimensional covariates. The most popular recursive partitioning methods are versions of the Classification and Regression Tree (CART) algorithm, which builds a simple interpretable tree structured model. With the aim of increasing prediction accuracy, the random forest algorithm averages multiple CART trees, creating a flexible risk prediction model. Risk prediction models used in clinical oncology commonly use both traditional demographic and tumor pathological factors as well as high-dimensional genetic markers and treatment parameters from multimodality treatments. In this article, we describe the most commonly used extensions of the CART and random forest algorithms to right-censored outcomes. We focus on how they differ from the methods for noncensored outcomes, and how the different splitting rules and methods for cost-complexity pruning impact these algorithms. We demonstrate these algorithms by analyzing a randomized Phase III clinical trial of breast cancer. We also conduct Monte Carlo simulations to compare the prediction accuracy of survival forests with more commonly used regression models under various scenarios. These simulation studies aim to evaluate how sensitive the prediction accuracy is to the underlying model specifications, the choice of tuning parameters, and the degrees of missing covariates.
Chang, Jee Suk; Kim, Kyung Hwan; Keum, Ki Chang; Noh, Sung Hoon; Lim, Joon Seok; Kim, Hyo Song; Rha, Sun Young; Lee, Yong Chan; Hyung, Woo Jin; Koom, Woong Sub
2016-12-01
To classify patients with nonmetastatic advanced gastric cancer who underwent D2-gastrectomy into prognostic groups based on peritoneal and systemic recurrence risks. Between 2004 and 2007, 1,090 patients with T3-4 or N+ gastric cancer were identified from our registry. Recurrence rates were estimated using a competing-risk analysis. Different prognostic groups were defined using recursive partitioning analysis (RPA). Median follow-up was 7 years. In the RPA-model for peritoneal recurrence risk, the initial node was split by T stage, indicating that differences between patients with T1-3 and T4 cancer were the greatest. The 5-year peritoneal recurrence rates for patients with T4 (n = 627) and T1-3 (n = 463) disease were 34.3% and 9.1%, respectively. N stage and neural invasion had an additive impact on high-risk patients. The RPA model for systemic relapse incorporated N stage alone and gave two terminal nodes: N0-2 (n = 721) and N3 (n = 369). The 5-year cumulative incidences were 7.7% and 24.5%, respectively. We proposed risk stratification models of peritoneal and systemic recurrence in patients undergoing D2-gastrectomy. This classification could be used for stratification protocols in future studies evaluating adjuvant therapies such as preoperative chemoradiotherapy. J. Surg. Oncol. 2016;114:859-864. © 2016 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Adventures in Topological Field Theory
NASA Astrophysics Data System (ADS)
Horne, James H.
1990-01-01
This thesis consists of 5 parts. In part I, the topological Yang-Mills theory and the topological sigma model are presented in a superspace formulation. This greatly simplifies the field content of the theories, and makes the Q-invariance more obvious. The Feynman rules for the topological Yang -Mills theory are derived. We calculate the one-loop beta-functions of the topological sigma model in superspace. The lattice version of these theories is presented. The self-duality constraints of both models lead to spectrum doubling. In part II, we show that conformally invariant gravity in three dimensions is equivalent to the Yang-Mills gauge theory of the conformal group in three dimensions, with a Chern-Simons action. This means that conformal gravity is finite and exactly soluble. In part III, we derive the skein relations for the fundamental representations of SO(N), Sp(2n), Su(m| n), and OSp(m| 2n). These relations can be used recursively to calculate the expectation values of Wilson lines in three-dimensional Chern-Simons gauge theory with these gauge groups. A combination of braiding and tying of Wilson lines completely describes the skein relations. In part IV, we show that the k = 1 two dimensional gravity amplitudes at genus 3 agree precisely with the results from intersection theory on moduli space. Predictions for the genus 4 intersection numbers follow from the two dimensional gravity theory. In part V, we discuss the partition function in two dimensional gravity. For the one matrix model at genus 2, we use the partition function to derive a recursion relation. We show that the k = 1 amplitudes completely determine the partition function at arbitrary genus. We present a conjecture for the partition function for the arbitrary topological field theory coupled to topological gravity.
Detection of Problem Gambler Subgroups Using Recursive Partitioning
ERIC Educational Resources Information Center
Markham, Francis; Young, Martin; Doran, Bruce
2013-01-01
The multivariate socio-demographic risk factors for problem gambling have been well documented. While this body of research is valuable in determining risk factors aggregated across various populations, the majority of studies tend not to specifically identify particular subgroups of problem gamblers based on the interaction between variables. The…
Beating the Odds: Trees to Success in Different Countries
ERIC Educational Resources Information Center
Finch, W. Holmes; Marchant, Gregory J.
2017-01-01
A recursive partitioning model approach in the form of classification and regression trees (CART) was used with 2012 PISA data for five countries (Canada, Finland, Germany, Singapore-China, and the Unites States). The objective of the study was to determine demographic and educational variables that differentiated between low SES student that were…
Wang, Xin; Jin, Jing; Yang, Yong; Liu, Wen-Yang; Ren, Hua; Feng, Yan-Ru; Xiao, Qin; Li, Ning; Deng, Lei; Fang, Hui; Jing, Hao; Lu, Ning-Ning; Tang, Yu; Wang, Jian-Yang; Wang, Shu-Lian; Wang, Wei-Hu; Song, Yong-Wen; Liu, Yue-Ping; Li, Ye-Xiong
2016-10-04
The role of adjuvant chemoradiotherapy (ACRT) or adjuvant chemotherapy (ACT) in treating patients with locally advanced upper rectal cancer (URC) after total mesorectal excision (TME) surgery remains unclear. We developed a clinical nomogram and a recursive partitioning analysis (RPA)-based risk stratification system for predicting 5-year cancer-specific survival (CSS) to determine whether these individuals require ACRT or ACT. This retrospective analysis included 547 patients with primary URC. A nomogram was developed based on the Cox regression model. The performance of the model was assessed by concordance index (C-index) and calibration curve in internal validation with bootstrapping. RPA stratified patients into risk groups based on their tumor characteristics. Five independent prognostic factors (age, preoperative increased carcinoembryonic antigen and carcinoma antigen 19-9, positive lymph node [PLN] number, tumor deposit [TD], pathological T classification) were identified and entered into the predictive nomogram. The bootstrap-corrected C-index was 0.757. RPA stratification of the three prognostic groups showed obviously different prognosis. Only the high-risk group (patients with PLN ≤ 6 and TD, or PLN > 6) benefited from ACRT plus ACT when compared with surgery followed by ACRT or ACT, and surgery alone (5-year CSS: 70.8% vs. 57.8% vs. 15.6%, P < 0.001). Our nomogram predicts 5-year CSS after TME surgery for locally advanced rectal cancer and RPA-based stratification indicates that ACRT plus ACT post-surgery may be an important treatment plan with potentially ignificant survival advantages in high-risk URC. This may help to select candidates of adjuvant treatment in prospective studies.
Kronholm, Scott C.; Capel, Paul D.; Terziotti, Silvia
2016-01-01
Accurate estimation of total nitrogen loads is essential for evaluating conditions in the aquatic environment. Extrapolation of estimates beyond measured streams will greatly expand our understanding of total nitrogen loading to streams. Recursive partitioning and random forest regression were used to assess 85 geospatial, environmental, and watershed variables across 636 small (<585 km2) watersheds to determine which variables are fundamentally important to the estimation of annual loads of total nitrogen. Initial analysis led to the splitting of watersheds into three groups based on predominant land use (agricultural, developed, and undeveloped). Nitrogen application, agricultural and developed land area, and impervious or developed land in the 100-m stream buffer were commonly extracted variables by both recursive partitioning and random forest regression. A series of multiple linear regression equations utilizing the extracted variables were created and applied to the watersheds. As few as three variables explained as much as 76 % of the variability in total nitrogen loads for watersheds with predominantly agricultural land use. Catchment-scale national maps were generated to visualize the total nitrogen loads and yields across the USA. The estimates provided by these models can inform water managers and help identify areas where more in-depth monitoring may be beneficial.
CD process control through machine learning
NASA Astrophysics Data System (ADS)
Utzny, Clemens
2016-10-01
For the specific requirements of the 14nm and 20nm site applications a new CD map approach was developed at the AMTC. This approach relies on a well established machine learning technique called recursive partitioning. Recursive partitioning is a powerful technique which creates a decision tree by successively testing whether the quantity of interest can be explained by one of the supplied covariates. The test performed is generally a statistical test with a pre-supplied significance level. Once the test indicates significant association between the variable of interest and a covariate a split performed at a threshold value which minimizes the variation within the newly attained groups. This partitioning is recurred until either no significant association can be detected or the resulting sub group size falls below a pre-supplied level.
Recursive partitioned inversion of large (1500 x 1500) symmetric matrices
NASA Technical Reports Server (NTRS)
Putney, B. H.; Brownd, J. E.; Gomez, R. A.
1976-01-01
A recursive algorithm was designed to invert large, dense, symmetric, positive definite matrices using small amounts of computer core, i.e., a small fraction of the core needed to store the complete matrix. The described algorithm is a generalized Gaussian elimination technique. Other algorithms are also discussed for the Cholesky decomposition and step inversion techniques. The purpose of the inversion algorithm is to solve large linear systems of normal equations generated by working geodetic problems. The algorithm was incorporated into a computer program called SOLVE. In the past the SOLVE program has been used in obtaining solutions published as the Goddard earth models.
Greg C. Liknes; Christopher W. Woodall; Charles H. Perry
2009-01-01
Climate information frequently is included in geospatial modeling efforts to improve the predictive capability of other data sources. The selection of an appropriate climate data source requires consideration given the number of choices available. With regard to climate data, there are a variety of parameters (e.g., temperature, humidity, precipitation), time intervals...
Ejlskov, Linda; Wulff, Jesper; Bøggild, Henrik; Kuh, Diana; Stafford, Mai
2017-09-08
Improving the design and targeting of interventions is important for alleviating loneliness among older adults. This requires identifying which correlates are the most important predictors of loneliness. This study demonstrates the use of recursive partitioning in exploring the characteristics and assessing the relative importance of correlates of loneliness in older adults. Using exploratory regression trees and random forests, we examined combinations and the relative importance of 42 correlates in relation to loneliness at age 68 among 2453 participants from the birth cohort study the MRC National Survey of Health and Development. Positive mental well-being, personal mastery, identifying the spouse as the closest confidant, being extrovert and informal social contact were the most important correlates of lower loneliness levels. Participation in organised groups and demographic correlates were poor identifiers of loneliness. The regression tree suggested that loneliness was not raised among those with poor mental wellbeing if they identified their partner as closest confidante and had frequent social contact. Recursive partitioning can identify which combinations of experiences and circumstances characterise high-risk groups. Poor mental wellbeing and sparse social contact emerged as especially important and classical demographic factors as insufficient in identifying high loneliness levels among older adults.
A Random Walk Approach to Query Informative Constraints for Clustering.
Abin, Ahmad Ali
2017-08-09
This paper presents a random walk approach to the problem of querying informative constraints for clustering. The proposed method is based on the properties of the commute time, that is the expected time taken for a random walk to travel between two nodes and return, on the adjacency graph of data. Commute time has the nice property of that, the more short paths connect two given nodes in a graph, the more similar those nodes are. Since computing the commute time takes the Laplacian eigenspectrum into account, we use this property in a recursive fashion to query informative constraints for clustering. At each recursion, the proposed method constructs the adjacency graph of data and utilizes the spectral properties of the commute time matrix to bipartition the adjacency graph. Thereafter, the proposed method benefits from the commute times distance on graph to query informative constraints between partitions. This process iterates for each partition until the stop condition becomes true. Experiments on real-world data show the efficiency of the proposed method for constraints selection.
NASA Astrophysics Data System (ADS)
Vanfleteren, Diederik; Van Neck, Dimitri; Bultinck, Patrick; Ayers, Paul W.; Waroquier, Michel
2012-01-01
A previously introduced partitioning of the molecular one-electron density matrix over atoms and bonds [D. Vanfleteren et al., J. Chem. Phys. 133, 231103 (2010)] is investigated in detail. Orthogonal projection operators are used to define atomic subspaces, as in Natural Population Analysis. The orthogonal projection operators are constructed with a recursive scheme. These operators are chemically relevant and obey a stockholder principle, familiar from the Hirshfeld-I partitioning of the electron density. The stockholder principle is extended to density matrices, where the orthogonal projectors are considered to be atomic fractions of the summed contributions. All calculations are performed as matrix manipulations in one-electron Hilbert space. Mathematical proofs and numerical evidence concerning this recursive scheme are provided in the present paper. The advantages associated with the use of these stockholder projection operators are examined with respect to covalent bond orders, bond polarization, and transferability.
Subarachnoid hemorrhage admissions retrospectively identified using a prediction model
McIntyre, Lauralyn; Fergusson, Dean; Turgeon, Alexis; dos Santos, Marlise P.; Lum, Cheemun; Chassé, Michaël; Sinclair, John; Forster, Alan; van Walraven, Carl
2016-01-01
Objective: To create an accurate prediction model using variables collected in widely available health administrative data records to identify hospitalizations for primary subarachnoid hemorrhage (SAH). Methods: A previously established complete cohort of consecutive primary SAH patients was combined with a random sample of control hospitalizations. Chi-square recursive partitioning was used to derive and internally validate a model to predict the probability that a patient had primary SAH (due to aneurysm or arteriovenous malformation) using health administrative data. Results: A total of 10,322 hospitalizations with 631 having primary SAH (6.1%) were included in the study (5,122 derivation, 5,200 validation). In the validation patients, our recursive partitioning algorithm had a sensitivity of 96.5% (95% confidence interval [CI] 93.9–98.0), a specificity of 99.8% (95% CI 99.6–99.9), and a positive likelihood ratio of 483 (95% CI 254–879). In this population, patients meeting criteria for the algorithm had a probability of 45% of truly having primary SAH. Conclusions: Routinely collected health administrative data can be used to accurately identify hospitalized patients with a high probability of having a primary SAH. This algorithm may allow, upon validation, an easy and accurate method to create validated cohorts of primary SAH from either ruptured aneurysm or arteriovenous malformation. PMID:27629096
P-HARP: A parallel dynamic spectral partitioner
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sohn, A.; Biswas, R.; Simon, H.D.
1997-05-01
Partitioning unstructured graphs is central to the parallel solution of problems in computational science and engineering. The authors have introduced earlier the sequential version of an inertial spectral partitioner called HARP which maintains the quality of recursive spectral bisection (RSB) while forming the partitions an order of magnitude faster than RSB. The serial HARP is known to be the fastest spectral partitioner to date, three to four times faster than similar partitioners on a variety of meshes. This paper presents a parallel version of HARP, called P-HARP. Two types of parallelism have been exploited: loop level parallelism and recursive parallelism.more » P-HARP has been implemented in MPI on the SGI/Cray T3E and the IBM SP2. Experimental results demonstrate that P-HARP can partition a mesh of over 100,000 vertices into 256 partitions in 0.25 seconds on a 64-processor T3E. Experimental results further show that P-HARP can give nearly a 20-fold speedup on 64 processors. These results indicate that graph partitioning is no longer a major bottleneck that hinders the advancement of computational science and engineering for dynamically-changing real-world applications.« less
Rodeberg, David A.; Stoner, Julie A.; Garcia-Henriquez, Norbert; Randall, R. Lor; Spunt, Sheri L.; Arndt, Carola A.; Kao, Simon; Paidas, Charles N.; Million, Lynn; Hawkins, Douglas S.
2010-01-01
Background To compare tumor volume and patient weight vs. traditional factors of tumor diameter and patient age, to determine which parameters best discriminates outcome among intermediate risk RMS patients. Methods Complete patient information for non-metastatic RMS patients enrolled in the Children’s Oncology Group (COG) intermediate risk study D9803 (1999–2005) was available for 370 patients. The Kaplan-Meier method was used to estimate survival distributions. A recursive partitioning model was used to identify prognostic factors associated with event-free survival (EFS). Cox-proportional hazards regression models were used to estimate the association between patient characteristics and the risk of failure or death. Results For all intermediate risk patients with RMS, a recursive partitioning algorithm for EFS suggests that prognostic groups should optimally be defined by tumor volume (transition point 20 cm3), weight (transition point 50 kg), and embryonal histology. Tumor volume and patient weight added significant outcome information to the standard prognostic factors including tumor diameter and age (p=0.02). The ability to resect the tumor completely was not significantly associated with the size of the patient, and patient weight did not significantly modify the association between tumor volume and EFS after adjustment for standard risk factors (p=0.2). Conclusion The factors most strongly associated with EFS were tumor volume, patient weight, and histology. Based on regression modeling, volume and weight are superior predictors of outcome compared to tumor diameter and patient age in children with intermediate risk RMS. Prognostic performance of tumor volume and patient weight should be assessed in an independent prospective study. PMID:24048802
Major depressive disorder subtypes to predict long-term course
van Loo, Hanna M.; Cai, Tianxi; Gruber, Michael J.; Li, Junlong; de Jonge, Peter; Petukhova, Maria; Rose, Sherri; Sampson, Nancy A.; Schoevers, Robert A.; Wardenaar, Klaas J.; Wilcox, Marsha A.; Al-Hamzawi, Ali Obaid; Andrade, Laura Helena; Bromet, Evelyn J.; Bunting, Brendan; Fayyad, John; Florescu, Silvia E.; Gureje, Oye; Hu, Chiyi; Huang, Yueqin; Levinson, Daphna; Medina-Mora, Maria Elena; Nakane, Yoshibumi; Posada-Villa, Jose; Scott, Kate M.; Xavier, Miguel; Zarkov, Zahari; Kessler, Ronald C.
2016-01-01
Background Variation in course of major depressive disorder (MDD) is not strongly predicted by existing subtype distinctions. A new subtyping approach is considered here. Methods Two data mining techniques, ensemble recursive partitioning and Lasso generalized linear models (GLMs) followed by k-means cluster analysis, are used to search for subtypes based on index episode symptoms predicting subsequent MDD course in the World Mental Health (WMH) Surveys. The WMH surveys are community surveys in 16 countries. Lifetime DSM-IV MDD was reported by 8,261 respondents. Retrospectively reported outcomes included measures of persistence (number of years with an episode; number of with an episode lasting most of the year) and severity (hospitalization for MDD; disability due to MDD). Results Recursive partitioning found significant clusters defined by the conjunctions of early onset, suicidality, and anxiety (irritability, panic, nervousness-worry-anxiety) during the index episode. GLMs found additional associations involving a number of individual symptoms. Predicted values of the four outcomes were strongly correlated. Cluster analysis of these predicted values found three clusters having consistently high, intermediate, or low predicted scores across all outcomes. The high-risk cluster (30.0% of respondents) accounted for 52.9-69.7% of high persistence and severity and was most strongly predicted by index episode severe dysphoria, suicidality, anxiety, and early onset. A total symptom count, in comparison, was not a significant predictor. Conclusions Despite being based on retrospective reports, results suggest that useful MDD subtyping distinctions can be made using data mining methods. Further studies are needed to test and expand these results with prospective data. PMID:24425049
Reumann, Matthias; Fitch, Blake G; Rayshubskiy, Aleksandr; Pitman, Michael C; Rice, John J
2011-06-01
We present the orthogonal recursive bisection algorithm that hierarchically segments the anatomical model structure into subvolumes that are distributed to cores. The anatomy is derived from the Visible Human Project, with electrophysiology based on the FitzHugh-Nagumo (FHN) and ten Tusscher (TT04) models with monodomain diffusion. Benchmark simulations with up to 16,384 and 32,768 cores on IBM Blue Gene/P and L supercomputers for both FHN and TT04 results show good load balancing with almost perfect speedup factors that are close to linear with the number of cores. Hence, strong scaling is demonstrated. With 32,768 cores, a 1000 ms simulation of full heart beat requires about 6.5 min of wall clock time for a simulation of the FHN model. For the largest machine partitions, the simulations execute at a rate of 0.548 s (BG/P) and 0.394 s (BG/L) of wall clock time per 1 ms of simulation time. To our knowledge, these simulations show strong scaling to substantially higher numbers of cores than reported previously for organ-level simulation of the heart, thus significantly reducing run times. The ability to reduce runtimes could play a critical role in enabling wider use of cardiac models in research and clinical applications.
2012-06-01
neoadjuvant therapies on disease-free, progression-free, and overall survival will vary across prognostically distinct groups. 3. Specific molecular... prognostically distinct subpopulations of patients with resectable NSCLC, and to assess the extent to which these molecular profiles correlate with tumor...overall survival, and will use Cox proportional hazards models and recursive partitioning methods to identify important biomarkers and prognostically
Data-driven process decomposition and robust online distributed modelling for large-scale processes
NASA Astrophysics Data System (ADS)
Shu, Zhang; Lijuan, Li; Lijuan, Yao; Shipin, Yang; Tao, Zou
2018-02-01
With the increasing attention of networked control, system decomposition and distributed models show significant importance in the implementation of model-based control strategy. In this paper, a data-driven system decomposition and online distributed subsystem modelling algorithm was proposed for large-scale chemical processes. The key controlled variables are first partitioned by affinity propagation clustering algorithm into several clusters. Each cluster can be regarded as a subsystem. Then the inputs of each subsystem are selected by offline canonical correlation analysis between all process variables and its controlled variables. Process decomposition is then realised after the screening of input and output variables. When the system decomposition is finished, the online subsystem modelling can be carried out by recursively block-wise renewing the samples. The proposed algorithm was applied in the Tennessee Eastman process and the validity was verified.
Pieters, Thomas A; Conner, Christopher R; Tandon, Nitin
2013-05-01
Precise localization of subdural electrodes (SDEs) is essential for the interpretation of data from intracranial electrocorticography recordings. Blood and fluid accumulation underneath the craniotomy flap leads to a nonlinear deformation of the brain surface and of the SDE array on postoperative CT scans and adversely impacts the accurate localization of electrodes located underneath the craniotomy. Older methods that localize electrodes based on their identification on a postimplantation CT scan with coregistration to a preimplantation MR image can result in significant problems with accuracy of the electrode localization. The authors report 3 novel methods that rely on the creation of a set of 3D mesh models to depict the pial surface and a smoothed pial envelope. Two of these new methods are designed to localize electrodes, and they are compared with 6 methods currently in use to determine their relative accuracy and reliability. The first method involves manually localizing each electrode using digital photographs obtained at surgery. This is highly accurate, but requires time intensive, operator-dependent input. The second uses 4 electrodes localized manually in conjunction with an automated, recursive partitioning technique to localize the entire electrode array. The authors evaluated the accuracy of previously published methods by applying the methods to their data and comparing them against the photograph-based localization. Finally, the authors further enhanced the usability of these methods by using automatic parcellation techniques to assign anatomical labels to individual electrodes as well as by generating an inflated cortical surface model while still preserving electrode locations relative to the cortical anatomy. The recursive grid partitioning had the least error compared with older methods (672 electrodes, 6.4-mm maximum electrode error, 2.0-mm mean error, p < 10(-18)). The maximum errors derived using prior methods of localization ranged from 8.2 to 11.7 mm for an individual electrode, with mean errors ranging between 2.9 and 4.1 mm depending on the method used. The authors also noted a larger error in all methods that used CT scans alone to localize electrodes compared with those that used both postoperative CT and postoperative MRI. The large mean errors reported with these methods are liable to affect intermodal data comparisons (for example, with functional mapping techniques) and may impact surgical decision making. The authors have presented several aspects of using new techniques to visualize electrodes implanted for localizing epilepsy. The ability to use automated labeling schemas to denote which gyrus a particular electrode overlies is potentially of great utility in planning resections and in corroborating the results of extraoperative stimulation mapping. Dilation of the pial mesh model provides, for the first time, a sense of the cortical surface not sampled by the electrode, and the potential roles this "electrophysiologically hidden" cortex may play in both eloquent function and seizure onset.
NASA Astrophysics Data System (ADS)
Morozov, A.
2012-08-01
Partition functions of eigenvalue matrix models possess a number of very different descriptions: as matrix integrals, as solutions to linear and nonlinear equations, as τ-functions of integrable hierarchies and as special-geometry prepotentials, as result of the action of W-operators and of various recursions on elementary input data, as gluing of certain elementary building blocks. All this explains the central role of such matrix models in modern mathematical physics: they provide the basic "special functions" to express the answers and relations between them, and they serve as a dream model of what one should try to achieve in any other field.
Teh, Seng Khoon; Zheng, Wei; Lau, David P; Huang, Zhiwei
2009-06-01
In this work, we evaluated the diagnostic ability of near-infrared (NIR) Raman spectroscopy associated with the ensemble recursive partitioning algorithm based on random forests for identifying cancer from normal tissue in the larynx. A rapid-acquisition NIR Raman system was utilized for tissue Raman measurements at 785 nm excitation, and 50 human laryngeal tissue specimens (20 normal; 30 malignant tumors) were used for NIR Raman studies. The random forests method was introduced to develop effective diagnostic algorithms for classification of Raman spectra of different laryngeal tissues. High-quality Raman spectra in the range of 800-1800 cm(-1) can be acquired from laryngeal tissue within 5 seconds. Raman spectra differed significantly between normal and malignant laryngeal tissues. Classification results obtained from the random forests algorithm on tissue Raman spectra yielded a diagnostic sensitivity of 88.0% and specificity of 91.4% for laryngeal malignancy identification. The random forests technique also provided variables importance that facilitates correlation of significant Raman spectral features with cancer transformation. This study shows that NIR Raman spectroscopy in conjunction with random forests algorithm has a great potential for the rapid diagnosis and detection of malignant tumors in the larynx.
Efficient method for computing the electronic transport properties of a multiterminal system
NASA Astrophysics Data System (ADS)
Lima, Leandro R. F.; Dusko, Amintor; Lewenkopf, Caio
2018-04-01
We present a multiprobe recursive Green's function method to compute the transport properties of mesoscopic systems using the Landauer-Büttiker approach. By introducing an adaptive partition scheme, we map the multiprobe problem into the standard two-probe recursive Green's function method. We apply the method to compute the longitudinal and Hall resistances of a disordered graphene sample, a system of current interest. We show that the performance and accuracy of our method compares very well with other state-of-the-art schemes.
Linear-algebraic bath transformation for simulating complex open quantum systems
Huh, Joonsuk; Mostame, Sarah; Fujita, Takatoshi; ...
2014-12-02
In studying open quantum systems, the environment is often approximated as a collection of non-interacting harmonic oscillators, a configuration also known as the star-bath model. It is also well known that the star-bath can be transformed into a nearest-neighbor interacting chain of oscillators. The chain-bath model has been widely used in renormalization group approaches. The transformation can be obtained by recursion relations or orthogonal polynomials. Based on a simple linear algebraic approach, we propose a bath partition strategy to reduce the system-bath coupling strength. As a result, the non-interacting star-bath is transformed into a set of weakly coupled multiple parallelmore » chains. Furthermore, the transformed bath model allows complex problems to be practically implemented on quantum simulators, and it can also be employed in various numerical simulations of open quantum dynamics.« less
D'Ambrosio, Antonio; Heiser, Willem J
2016-09-01
Preference rankings usually depend on the characteristics of both the individuals judging a set of objects and the objects being judged. This topic has been handled in the literature with log-linear representations of the generalized Bradley-Terry model and, recently, with distance-based tree models for rankings. A limitation of these approaches is that they only work with full rankings or with a pre-specified pattern governing the presence of ties, and/or they are based on quite strict distributional assumptions. To overcome these limitations, we propose a new prediction tree method for ranking data that is totally distribution-free. It combines Kemeny's axiomatic approach to define a unique distance between rankings with the CART approach to find a stable prediction tree. Furthermore, our method is not limited by any particular design of the pattern of ties. The method is evaluated in an extensive full-factorial Monte Carlo study with a new simulation design.
Ibáñez-Escriche, N; López de Maturana, E; Noguera, J L; Varona, L
2010-11-01
We developed and implemented change-point recursive models and compared them with a linear recursive model and a standard mixed model (SMM), in the scope of the relationship between litter size (LS) and number of stillborns (NSB) in pigs. The proposed approach allows us to estimate the point of change in multiple-segment modeling of a nonlinear relationship between phenotypes. We applied the procedure to a data set provided by a commercial Large White selection nucleus. The data file consisted of LS and NSB records of 4,462 parities. The results of the analysis clearly identified the location of the change points between different structural regression coefficients. The magnitude of these coefficients increased with LS, indicating an increasing incidence of LS on the NSB ratio. However, posterior distributions of correlations were similar across subpopulations (defined by the change points on LS), except for those between residuals. The heritability estimates of NSB did not present differences between recursive models. Nevertheless, these heritabilities were greater than those obtained for SMM (0.05) with a posterior probability of 85%. These results suggest a nonlinear relationship between LS and NSB, which supports the adequacy of a change-point recursive model for its analysis. Furthermore, the results from model comparisons support the use of recursive models. However, the adequacy of the different recursive models depended on the criteria used: the linear recursive model was preferred on account of its smallest deviance value, whereas nonlinear recursive models provided a better fit and predictive ability based on the cross-validation approach.
Cross-Validation of Survival Bump Hunting by Recursive Peeling Methods.
Dazard, Jean-Eudes; Choe, Michael; LeBlanc, Michael; Rao, J Sunil
2014-08-01
We introduce a survival/risk bump hunting framework to build a bump hunting model with a possibly censored time-to-event type of response and to validate model estimates. First, we describe the use of adequate survival peeling criteria to build a survival/risk bump hunting model based on recursive peeling methods. Our method called "Patient Recursive Survival Peeling" is a rule-induction method that makes use of specific peeling criteria such as hazard ratio or log-rank statistics. Second, to validate our model estimates and improve survival prediction accuracy, we describe a resampling-based validation technique specifically designed for the joint task of decision rule making by recursive peeling (i.e. decision-box) and survival estimation. This alternative technique, called "combined" cross-validation is done by combining test samples over the cross-validation loops, a design allowing for bump hunting by recursive peeling in a survival setting. We provide empirical results showing the importance of cross-validation and replication.
Cross-Validation of Survival Bump Hunting by Recursive Peeling Methods
Dazard, Jean-Eudes; Choe, Michael; LeBlanc, Michael; Rao, J. Sunil
2015-01-01
We introduce a survival/risk bump hunting framework to build a bump hunting model with a possibly censored time-to-event type of response and to validate model estimates. First, we describe the use of adequate survival peeling criteria to build a survival/risk bump hunting model based on recursive peeling methods. Our method called “Patient Recursive Survival Peeling” is a rule-induction method that makes use of specific peeling criteria such as hazard ratio or log-rank statistics. Second, to validate our model estimates and improve survival prediction accuracy, we describe a resampling-based validation technique specifically designed for the joint task of decision rule making by recursive peeling (i.e. decision-box) and survival estimation. This alternative technique, called “combined” cross-validation is done by combining test samples over the cross-validation loops, a design allowing for bump hunting by recursive peeling in a survival setting. We provide empirical results showing the importance of cross-validation and replication. PMID:26997922
NASA Technical Reports Server (NTRS)
Kattan, Michael W.; Hess, Kenneth R.; Kattan, Michael W.
1998-01-01
New computationally intensive tools for medical survival analyses include recursive partitioning (also called CART) and artificial neural networks. A challenge that remains is to better understand the behavior of these techniques in effort to know when they will be effective tools. Theoretically they may overcome limitations of the traditional multivariable survival technique, the Cox proportional hazards regression model. Experiments were designed to test whether the new tools would, in practice, overcome these limitations. Two datasets in which theory suggests CART and the neural network should outperform the Cox model were selected. The first was a published leukemia dataset manipulated to have a strong interaction that CART should detect. The second was a published cirrhosis dataset with pronounced nonlinear effects that a neural network should fit. Repeated sampling of 50 training and testing subsets was applied to each technique. The concordance index C was calculated as a measure of predictive accuracy by each technique on the testing dataset. In the interaction dataset, CART outperformed Cox (P less than 0.05) with a C improvement of 0.1 (95% Cl, 0.08 to 0.12). In the nonlinear dataset, the neural network outperformed the Cox model (P less than 0.05), but by a very slight amount (0.015). As predicted by theory, CART and the neural network were able to overcome limitations of the Cox model. Experiments like these are important to increase our understanding of when one of these new techniques will outperform the standard Cox model. Further research is necessary to predict which technique will do best a priori and to assess the magnitude of superiority.
Fogelman, David R; Morris, J; Xiao, L; Hassan, M; Vadhan, S; Overman, M; Javle, S; Shroff, R; Varadhachary, G; Wolff, R; Vence, L; Maitra, A; Cleeland, C; Wang, X S
2017-06-01
Cachexia is a frequent manifestation of pancreatic cancer, can limit a patient's ability to take chemotherapy, and is associated with shortened survival. We developed a model to predict the early onset of cachexia in advanced pancreatic cancer patients. Patients with newly diagnosed, untreated metastatic or locally advanced pancreatic cancer were included. Serum cytokines were drawn prior to therapy. Patient symptoms were recorded using the M.D. Anderson Symptom Inventory (MDASI). Our primary endpoint was either 10% weight loss or death within 60 days of the start of therapy. Twenty-seven of 89 patients met the primary endpoint (either having lost 10% of body weight or having died within 60 days of the start of treatment). In a univariate analysis, smoking, history symptoms of pain and difficulty swallowing, high levels of MK, CXCL-16, IL-6, TNF-a, and low IL-1b all correlated with this endpoint. We used recursive partition to fit a regression tree model, selecting four of 26 variables (CXCL-16, IL-1b, pain, swallowing difficulty) as important in predicting cachexia. From these, a model of two cytokines (CXCL-16 > 5.135 ng/ml and IL-1b < 0.08 ng/ml) demonstrated a better sensitivity and specificity for this outcome (0.70 and 0.86, respectively) than any individual cytokine or tumor marker. Cachexia is frequent in pancreatic cancer; one in three patients met our endpoint of 10% weight loss or death within 60 days. Inflammatory cytokines are better than conventional tumor markers at predicting this outcome. Recursive partitioning analysis suggests that a model of CXCL-16 and IL-1B may offer a better ability than individual cytokines to predict this outcome.
Prognostic Indexes for Brain Metastases: Which Is the Most Powerful?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arruda Viani, Gustavo, E-mail: gusviani@gmail.com; Bernardes da Silva, Lucas Godoi; Stefano, Eduardo Jose
Purpose: The purpose of the present study was to compare the prognostic indexes (PIs) of patients with brain metastases (BMs) treated with whole brain radiotherapy (WBRT) using an artificial neural network. This analysis is important, because it evaluates the prognostic power of each PI to guide clinical decision-making and outcomes research. Methods and Materials: A retrospective prognostic study was conducted of 412 patients with BMs who underwent WBRT between April 1998 and March 2010. The eligibility criteria for patients included having undergone WBRT or WBRT plus neurosurgery. The data were analyzed using the artificial neural network. The input neural datamore » consisted of all prognostic factors included in the 5 PIs (recursive partitioning analysis, graded prognostic assessment [GPA], basic score for BMs, Rotterdam score, and Germany score). The data set was randomly divided into 300 training and 112 testing examples for survival prediction. All 5 PIs were compared using our database of 412 patients with BMs. The sensibility of the 5 indexes to predict survival according to their input variables was determined statistically using receiver operating characteristic curves. The importance of each variable from each PI was subsequently evaluated. Results: The overall 1-, 2-, and 3-year survival rate was 22%, 10.2%, and 5.1%, respectively. All classes of PIs were significantly associated with survival (recursive partitioning analysis, P < .0001; GPA, P < .0001; basic score for BMs, P = .002; Rotterdam score, P = .001; and Germany score, P < .0001). Comparing the areas under the curves, the GPA was statistically most sensitive in predicting survival (GPA, 86%; recursive partitioning analysis, 81%; basic score for BMs, 79%; Rotterdam, 73%; and Germany score, 77%; P < .001). Among the variables included in each PI, the performance status and presence of extracranial metastases were the most important factors. Conclusion: A variety of prognostic models describe the survival of patients with BMs to a more or less satisfactory degree. Among the 5 PIs evaluated in the present study, GPA was the most powerful in predicting survival. Additional studies should include emerging biologic prognostic factors to improve the sensibility of these PIs.« less
What contributes to perceived stress in later life? A recursive partitioning approach.
Scott, Stacey B; Jackson, Brenda R; Bergeman, C S
2011-12-01
One possible explanation for the individual differences in outcomes of stress is the diversity of inputs that produce perceptions of being stressed. The current study examines how combinations of contextual features (e.g., social isolation, neighborhood quality, health problems, age discrimination, financial concerns, and recent life events) of later life contribute to overall feelings of stress. Recursive partitioning techniques (regression trees and random forests) were used to examine unique interrelations between predictors of perceived stress in a sample of 282 community-dwelling adults. Trees provided possible examples of equifinality (i.e., subsets of people with similar levels of perceived stress but different predictors) as well as identification both of contextual combinations that separated participants with very high and very low perceived stress. Random forest analyses aggregated across many trees based on permuted versions of the data and predictors; loneliness, financial strain, neighborhood strain, ageism, and to some extent life events emerged as important predictors. Interviews with a subsample of participants provided both thick description of the complex relationships identified in the trees, as well as additional risks not appearing in the survey results. Together, the analyses highlight what may be missed when stress is used as a simple unidimensional construct and can guide differential intervention efforts.
What contributes to perceived stress in later life? A recursive partitioning approach
Scott, Stacey B.; Jackson, Brenda R.; Bergeman, C. S.
2011-01-01
One possible explanation for the individual differences in outcomes of stress is the diversity of inputs that produce perceptions of being stressed. The current study examines how combinations of contextual features (e.g., social isolation, neighborhood quality, health problems, age discrimination, financial concerns, and recent life events) of later life contribute to overall feelings of stress. Recursive partitioning techniques (regression trees and random forests) were used to examine unique interrelations between predictors of perceived stress in a sample of 282 community-dwelling adults. Trees provided possible examples of equifinality (i.e., subsets of people with similar levels of perceived stress but different predictors) as well as for the identification both of contextual combinations that separated participants with very high and very low perceived stress. Random forest analyses aggregated across many trees based on permuted versions of the data and predictors; loneliness, financial strain, neighborhood strain, ageism, and to some extent life events emerged as important predictors. Interviews with a subsample of participants provided both thick description of the complex relationships identified in the trees, as well as additional risks not appearing in the survey results. Together, the analyses highlight what may be missed when stress is used as a simple unidimensional construct and can guide differential intervention efforts. PMID:21604885
Pathways to Early Coital Debut for Adolescent Girls: A Recursive Partitioning Analysis
Pearson, Matthew R.; Kholodkov, Tatyana; Henson, James M.; Impett, Emily A.
2011-01-01
The current study examined pathways to early coital debut among early to middle adolescent girls in the United States. In a two-year longitudinal study of 104 adolescent girls, we conducted Recursive Partitioning (RP) analyses to examine the specific factors that were related to engaging in first intercourse by the 10th grade among adolescent girls who had not yet engaged in sexual intercourse by the 8th grade. RP analyses identified subsamples of girls who had low, medium, and high likelihoods of engaging in early coital debut based on six variables (i.e., school aspirations, early physical intimacy experiences, depression, body objectification, body image, and relationship inauthenticity). For example, girls in the lowest likelihood group (3% had engaged in sex by the 10th grade) reported no prior experiences with being touched under their clothes, low body objectification, high aspirations to complete graduate education, and low depressive symptoms; girls in the highest likelihood group (75% had engaged in sex by the 10th grade) also reported no prior experiences with being touched under their clothes but had high levels of body objectification. The implications of these analyses for the development of female adolescent sexuality as well as for advances in quantitative methods are discussed. PMID:21512947
ERIC Educational Resources Information Center
Cai, Li
2013-01-01
Lord and Wingersky's (1984) recursive algorithm for creating summed score based likelihoods and posteriors has a proven track record in unidimensional item response theory (IRT) applications. Extending the recursive algorithm to handle multidimensionality is relatively simple, especially with fixed quadrature because the recursions can be defined…
Zhang, Pan; Moore, Cristopher
2014-01-01
Modularity is a popular measure of community structure. However, maximizing the modularity can lead to many competing partitions, with almost the same modularity, that are poorly correlated with each other. It can also produce illusory ‘‘communities’’ in random graphs where none exist. We address this problem by using the modularity as a Hamiltonian at finite temperature and using an efficient belief propagation algorithm to obtain the consensus of many partitions with high modularity, rather than looking for a single partition that maximizes it. We show analytically and numerically that the proposed algorithm works all of the way down to the detectability transition in networks generated by the stochastic block model. It also performs well on real-world networks, revealing large communities in some networks where previous work has claimed no communities exist. Finally we show that by applying our algorithm recursively, subdividing communities until no statistically significant subcommunities can be found, we can detect hierarchical structure in real-world networks more efficiently than previous methods. PMID:25489096
Ronald, Lisa A; Campbell, Jonathon R; Balshaw, Robert F; Romanowski, Kamila; Roth, David Z; Marra, Fawziah; Cook, Victoria J; Johnston, James C
2018-02-26
Canadian tuberculosis (TB) guidelines recommend targeting postlanding screening for and treatment of latent tuberculosis infection (LTBI) in people migrating to Canada who are at increased risk for TB reactivation. Our objectives were to calculate robust longitudinal estimates of TB incidence in a cohort of people migrating to British Columbia, Canada, over a 29-year period, and to identify groups at highest risk of developing TB based on demographic characteristics at time of landing. We included all individuals ( n = 1 080 908) who became permanent residents of Canada between Jan. 1, 1985, and Dec. 31, 2012, and were resident in BC at any time between 1985 and 2013. Multiple administrative databases were linked to the provincial TB registry. We used recursive partitioning models to identify populations with high TB yield. Active TB was diagnosed in 2814 individuals (incidence rate 24.2/100 000 person-years). Demographic factors (live-in caregiver, family, refugee immigration classes; higher TB incidence in country of birth; and older age) were strong predictors of TB incidence in BC, with elevated rates continuing many years after entry into the cohort. Recursive partitioning identified refugees 18-64 years of age from countries with a TB incidence greater than 224/100 000 population as a high-yield group, with 1% developing TB within the first 10 years. These findings support recommendations in Canadian guidelines to target postlanding screening for and treatment of LTBI in adult refugees from high-incidence countries. Because high-yield populations can be identified at entry via demographic data, screening at this point may be practical and high-impact, particularly if the LTBI care cascade can be optimized. © 2018 Joule Inc. or its licensors.
Ronald, Lisa A.; Campbell, Jonathon R.; Balshaw, Robert F.; Romanowski, Kamila; Roth, David Z.; Marra, Fawziah; Cook, Victoria J.; Johnston, James C.
2018-01-01
BACKGROUND: Canadian tuberculosis (TB) guidelines recommend targeting postlanding screening for and treatment of latent tuberculosis infection (LTBI) in people migrating to Canada who are at increased risk for TB reactivation. Our objectives were to calculate robust longitudinal estimates of TB incidence in a cohort of people migrating to British Columbia, Canada, over a 29-year period, and to identify groups at highest risk of developing TB based on demographic characteristics at time of landing. METHODS: We included all individuals (n = 1 080 908) who became permanent residents of Canada between Jan. 1, 1985, and Dec. 31, 2012, and were resident in BC at any time between 1985 and 2013. Multiple administrative databases were linked to the provincial TB registry. We used recursive partitioning models to identify populations with high TB yield. RESULTS: Active TB was diagnosed in 2814 individuals (incidence rate 24.2/100 000 person-years). Demographic factors (live-in caregiver, family, refugee immigration classes; higher TB incidence in country of birth; and older age) were strong predictors of TB incidence in BC, with elevated rates continuing many years after entry into the cohort. Recursive partitioning identified refugees 18–64 years of age from countries with a TB incidence greater than 224/100 000 population as a high-yield group, with 1% developing TB within the first 10 years. INTERPRETATION: These findings support recommendations in Canadian guidelines to target postlanding screening for and treatment of LTBI in adult refugees from high-incidence countries. Because high-yield populations can be identified at entry via demographic data, screening at this point may be practical and high-impact, particularly if the LTBI care cascade can be optimized. PMID:29483329
Goodin, Douglas S.; Jones, Jason; Li, David; Traboulsee, Anthony; Reder, Anthony T.; Beckmann, Karola; Konieczny, Andreas; Knappertz, Volker
2011-01-01
Context Establishing the long-term benefit of therapy in chronic diseases has been challenging. Long-term studies require non-randomized designs and, thus, are often confounded by biases. For example, although disease-modifying therapy in MS has a convincing benefit on several short-term outcome-measures in randomized trials, its impact on long-term function remains uncertain. Objective Data from the 16-year Long-Term Follow-up study of interferon-beta-1b is used to assess the relationship between drug-exposure and long-term disability in MS patients. Design/Setting To mitigate the bias of outcome-dependent exposure variation in non-randomized long-term studies, drug-exposure was measured as the medication-possession-ratio, adjusted up or down according to multiple different weighting-schemes based on MS severity and MS duration at treatment initiation. A recursive-partitioning algorithm assessed whether exposure (using any weighing scheme) affected long-term outcome. The optimal cut-point that was used to define “high” or “low” exposure-groups was chosen by the algorithm. Subsequent to verification of an exposure-impact that included all predictor variables, the two groups were compared using a weighted propensity-stratified analysis in order to mitigate any treatment-selection bias that may have been present. Finally, multiple sensitivity-analyses were undertaken using different definitions of long-term outcome and different assumptions about the data. Main Outcome Measure Long-Term Disability. Results In these analyses, the same weighting-scheme was consistently selected by the recursive-partitioning algorithm. This scheme reduced (down-weighted) the effectiveness of drug exposure as either disease duration or disability at treatment-onset increased. Applying this scheme and using propensity-stratification to further mitigate bias, high-exposure had a consistently better clinical outcome compared to low-exposure (Cox proportional hazard ratio = 0.30–0.42; p<0.0001). Conclusions Early initiation and sustained use of interferon-beta-1b has a beneficial impact on long-term outcome in MS. Our analysis strategy provides a methodological framework for bias-mitigation in the analysis of non-randomized clinical data. Trial Registration Clinicaltrials.gov NCT00206635 PMID:22140424
Impact of triple-negative phenotype on prognosis of patients with breast cancer brain metastases.
Xu, Zhiyuan; Schlesinger, David; Toulmin, Sushila; Rich, Tyvin; Sheehan, Jason
2012-11-01
To elucidate survival times and identify potential prognostic factors in patients with triple-negative (TN) phenotype who harbored brain metastases arising from breast cancer and who underwent stereotactic radiosurgery (SRS). A total of 103 breast cancer patients with brain metastases were treated with SRS and then studied retrospectively. Twenty-four patients (23.3%) were TN. Survival times were estimated using the Kaplan-Meier method, with a log-rank test computing the survival time difference between groups. Univariate and multivariate analyses to predict potential prognostic factors were performed using a Cox proportional hazard regression model. The presence of TN phenotype was associated with worse survival times, including overall survival after the diagnosis of primary breast cancer (43 months vs. 82 months), neurologic survival after the diagnosis of intracranial metastases, and radiosurgical survival after SRS, with median survival times being 13 months vs. 25 months and 6 months vs. 16 months, respectively (p < 0.002 in all three comparisons). On multivariate analysis, radiosurgical survival benefit was associated with non-TN status and lower recursive partitioning analysis class at the initial SRS. The TN phenotype represents a significant adverse prognostic factor with respect to overall survival, neurologic survival, and radiosurgical survival in breast cancer patients with intracranial metastasis. Recursive partitioning analysis class also served as an important and independent prognostic factor. Copyright © 2012 Elsevier Inc. All rights reserved.
A Method to Predict the Structure and Stability of RNA/RNA Complexes.
Xu, Xiaojun; Chen, Shi-Jie
2016-01-01
RNA/RNA interactions are essential for genomic RNA dimerization and regulation of gene expression. Intermolecular loop-loop base pairing is a widespread and functionally important tertiary structure motif in RNA machinery. However, computational prediction of intermolecular loop-loop base pairing is challenged by the entropy and free energy calculation due to the conformational constraint and the intermolecular interactions. In this chapter, we describe a recently developed statistical mechanics-based method for the prediction of RNA/RNA complex structures and stabilities. The method is based on the virtual bond RNA folding model (Vfold). The main emphasis in the method is placed on the evaluation of the entropy and free energy for the loops, especially tertiary kissing loops. The method also uses recursive partition function calculations and two-step screening algorithm for large, complicated structures of RNA/RNA complexes. As case studies, we use the HIV-1 Mal dimer and the siRNA/HIV-1 mutant (T4) to illustrate the method.
Carnes, Bruce A.; Chen, Randi; Donlon, Timothy A.; He, Qimei; Grove, John S.; Masaki, Kamal H.; Elliott, Ayako; Willcox, Donald C.; Allsopp, Richard; Willcox, Bradley J.
2015-01-01
BACKGROUND The mechanistic target of rapamycin (mTOR) pathway is pivotal for cell growth. Regulatory associated protein of mTOR complex I (Raptor) is a unique component of this pro-growth complex. The present study tested whether variation across the raptor gene (RPTOR) is associated with overweight and hypertension. METHODS We tested 61 common (allele frequency ≥ 0.1) tagging single nucleotide polymorphisms (SNPs) that captured most of the genetic variation across RPTOR in 374 subjects of normal lifespan and 439 subjects with a lifespan exceeding 95 years for association with overweight/obesity, essential hypertension, and isolated systolic hypertension. Subjects were drawn from the Honolulu Heart Program, a homogeneous population of American men of Japanese ancestry, well characterized for phenotypes relevant to conditions of aging. Hypertension status was ascertained when subjects were 45–68 years old. Statistical evaluation involved contingency table analysis, logistic regression, and the powerful method of recursive partitioning. RESULTS After analysis of RPTOR genotypes by each statistical approach, we found no significant association between genetic variation in RPTOR and either essential hypertension or isolated systolic hypertension. Models generated by recursive partitioning analysis showed that RPTOR SNPs significantly enhanced the ability of the model to accurately assign individuals to either the overweight/obese or the non-overweight/obese groups (P = 0.008 by 1-tailed Z test). CONCLUSION Common genetic variation in RPTOR is associated with overweight/obesity but does not discernibly contribute to either essential hypertension or isolated systolic hypertension in the population studied. PMID:25249372
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nomura, Motoo, E-mail: excell@hkg.odn.ne.jp; Department of Clinical Oncology, Aichi Cancer Center Hospital, Nagoya; Department of Radiation Oncology, Aichi Cancer Center Hospital, Nagoya
2012-11-01
Background: The 7th edition of the American Joint Committee on Cancer staging system does not include lymph node size in the guidelines for staging patients with esophageal cancer. The objectives of this study were to determine the prognostic impact of the maximum metastatic lymph node diameter (ND) on survival and to develop and validate a new staging system for patients with esophageal squamous cell cancer who were treated with definitive chemoradiotherapy (CRT). Methods: Information on 402 patients with esophageal cancer undergoing CRT at two institutions was reviewed. Univariate and multivariate analyses of data from one institution were used to assessmore » the impact of clinical factors on survival, and recursive partitioning analysis was performed to develop the new staging classification. To assess its clinical utility, the new classification was validated using data from the second institution. Results: By multivariate analysis, gender, T, N, and ND stages were independently and significantly associated with survival (p < 0.05). The resulting new staging classification was based on the T and ND. The four new stages led to good separation of survival curves in both the developmental and validation datasets (p < 0.05). Conclusions: Our results showed that lymph node size is a strong independent prognostic factor and that the new staging system, which incorporated lymph node size, provided good prognostic power, and discriminated effectively for patients with esophageal cancer undergoing CRT.« less
Tear fluid proteomics multimarkers for diabetic retinopathy screening
2013-01-01
Background The aim of the project was to develop a novel method for diabetic retinopathy screening based on the examination of tear fluid biomarker changes. In order to evaluate the usability of protein biomarkers for pre-screening purposes several different approaches were used, including machine learning algorithms. Methods All persons involved in the study had diabetes. Diabetic retinopathy (DR) was diagnosed by capturing 7-field fundus images, evaluated by two independent ophthalmologists. 165 eyes were examined (from 119 patients), 55 were diagnosed healthy and 110 images showed signs of DR. Tear samples were taken from all eyes and state-of-the-art nano-HPLC coupled ESI-MS/MS mass spectrometry protein identification was performed on all samples. Applicability of protein biomarkers was evaluated by six different optimally parameterized machine learning algorithms: Support Vector Machine, Recursive Partitioning, Random Forest, Naive Bayes, Logistic Regression, K-Nearest Neighbor. Results Out of the six investigated machine learning algorithms the result of Recursive Partitioning proved to be the most accurate. The performance of the system realizing the above algorithm reached 74% sensitivity and 48% specificity. Conclusions Protein biomarkers selected and classified with machine learning algorithms alone are at present not recommended for screening purposes because of low specificity and sensitivity values. This tool can be potentially used to improve the results of image processing methods as a complementary tool in automatic or semiautomatic systems. PMID:23919537
Zhou, Shu; Li, Guo-Bo; Huang, Lu-Yi; Xie, Huan-Zhang; Zhao, Ying-Lan; Chen, Yu-Zong; Li, Lin-Li; Yang, Sheng-Yong
2014-08-01
Drug-induced ototoxicity, as a toxic side effect, is an important issue needed to be considered in drug discovery. Nevertheless, current experimental methods used to evaluate drug-induced ototoxicity are often time-consuming and expensive, indicating that they are not suitable for a large-scale evaluation of drug-induced ototoxicity in the early stage of drug discovery. We thus, in this investigation, established an effective computational prediction model of drug-induced ototoxicity using an optimal support vector machine (SVM) method, GA-CG-SVM. Three GA-CG-SVM models were developed based on three training sets containing agents bearing different risk levels of drug-induced ototoxicity. For comparison, models based on naïve Bayesian (NB) and recursive partitioning (RP) methods were also used on the same training sets. Among all the prediction models, the GA-CG-SVM model II showed the best performance, which offered prediction accuracies of 85.33% and 83.05% for two independent test sets, respectively. Overall, the good performance of the GA-CG-SVM model II indicates that it could be used for the prediction of drug-induced ototoxicity in the early stage of drug discovery. Copyright © 2014 Elsevier Ltd. All rights reserved.
Moren, Alexis Marika; Hamptom, David; Diggs, Brian; Kiraly, Laszlo; Fox, Erin E; Holcomb, John B; Rahbar, Mohammad Hossein; Brasel, Karen J; Cohen, Mitchell Jay; Bulger, Eileen M; Schreiber, Martin A
2015-12-01
Massive transfusion (MT) is classically defined as greater than 10 U of packed red blood cells (PRBCs) in 24 hours. This fails to capture the most severely injured patients. Extending the previous work of Savage and Rahbar, a rolling hourly rate-based definition of MT may more accurately define critically injured patients requiring early, aggressive resuscitation. The Prospective Observational Multicenter Major Trauma Transfusion (PROMMTT) trial collected data from 10 Level 1 trauma centers. Patients were placed into rate-based transfusion groups by maximal number of PRBCs transfused in any hour within the first 6 hours. A nonparametric analysis using classification trees partitioned data according to mortality at 24 hours using a predictor variable of maximum number PRBC units transfused in an hour. Dichotomous variables significant in previous scores and models as predictors of MT were used to identify critically ill patients: a positive finding on Focused Assessment with Sonography in Trauma (FAST) examination, Glasgow Coma Scale (GCS) score less than 8, heart rate greater than 120 beats/min, systolic blood pressure less than 90 mm Hg, penetrating mechanism of injury, international normalized ratio greater than 1.5, hemoglobin less than 11, and base deficit greater than 5. These critical indicators were then compared among the nodes of the classification tree. Patients omitted included those who did not receive PRBCs (n = 24) and those who did not have all eight critical indicators reported (n = 449). In a population of 1,245 patients, the classification tree included 772 patients. Analysis by recursive partitioning showed increased mortality among patients receiving greater than 13 U/h (73.9%, p < 0.01). In those patients receiving less than or equal to 13 U/h, mortality was greater in patients who received more than 4 U/h (16.7% vs. 6.0%, p < 0.01) (Fig. 1). Nodal analysis showed that the median number of critical indicators for each node was 3 (2-4) (≤4 U/h), 4 (3-5) (>4 U/h and ≤13 U/h), and 5 (4-5.5) (>13 U/h). A rate-based transfusion definition identifies a difference in mortality in patients who receive greater than 4 U/h of PRBCs. Redefining MT to greater than 4 U/h allows early identification of patients with a significant mortality risk who may be missed by the current definition. Prognostic/epidemiologic study, level III.
Finch, Holmes W; Davis, Andrew; Dean, Raymond S
2015-03-01
The accurate and early identification of individuals with pervasive conditions such as attention deficit hyperactivity disorder (ADHD) is crucial to ensuring that they receive appropriate and timely assistance and treatment. Heretofore, identification of such individuals has proven somewhat difficult, typically involving clinical decision making based on descriptions and observations of behavior, in conjunction with the administration of cognitive assessments. The present study reports on the use of a sensory motor battery in conjunction with a recursive partitioning computer algorithm, boosted trees, to develop a prediction heuristic for identifying individuals with ADHD. Results of the study demonstrate that this method is able to do so with accuracy rates of over 95 %, much higher than the popular logistic regression model against which it was compared. Implications of these results for practice are provided.
Recursive time-varying filter banks for subband image coding
NASA Technical Reports Server (NTRS)
Smith, Mark J. T.; Chung, Wilson C.
1992-01-01
Filter banks and wavelet decompositions that employ recursive filters have been considered previously and are recognized for their efficiency in partitioning the frequency spectrum. This paper presents an analysis of a new infinite impulse response (IIR) filter bank in which these computationally efficient filters may be changed adaptively in response to the input. The filter bank is presented and discussed in the context of finite-support signals with the intended application in subband image coding. In the absence of quantization errors, exact reconstruction can be achieved and by the proper choice of an adaptation scheme, it is shown that IIR time-varying filter banks can yield improvement over conventional ones.
Development of a recursion RNG-based turbulence model
NASA Technical Reports Server (NTRS)
Zhou, YE; Vahala, George; Thangam, S.
1993-01-01
Reynolds stress closure models based on the recursion renormalization group theory are developed for the prediction of turbulent separated flows. The proposed model uses a finite wavenumber truncation scheme to account for the spectral distribution of energy. In particular, the model incorporates effects of both local and nonlocal interactions. The nonlocal interactions are shown to yield a contribution identical to that from the epsilon-renormalization group (RNG), while the local interactions introduce higher order dispersive effects. A formal analysis of the model is presented and its ability to accurately predict separated flows is analyzed from a combined theoretical and computational stand point. Turbulent flow past a backward facing step is chosen as a test case and the results obtained based on detailed computations demonstrate that the proposed recursion -RNG model with finite cut-off wavenumber can yield very good predictions for the backstep problem.
NASA Astrophysics Data System (ADS)
Kim, S. K.; Lee, J.; Zhang, C.; Ames, S.; Williams, D. N.
2017-12-01
Deep learning techniques have been successfully applied to solve many problems in climate and geoscience using massive-scaled observed and modeled data. For extreme climate event detections, several models based on deep neural networks have been recently proposed and attend superior performance that overshadows all previous handcrafted expert based method. The issue arising, though, is that accurate localization of events requires high quality of climate data. In this work, we propose framework capable of detecting and localizing extreme climate events in very coarse climate data. Our framework is based on two models using deep neural networks, (1) Convolutional Neural Networks (CNNs) to detect and localize extreme climate events, and (2) Pixel recursive recursive super resolution model to reconstruct high resolution climate data from low resolution climate data. Based on our preliminary work, we have presented two CNNs in our framework for different purposes, detection and localization. Our results using CNNs for extreme climate events detection shows that simple neural nets can capture the pattern of extreme climate events with high accuracy from very coarse reanalysis data. However, localization accuracy is relatively low due to the coarse resolution. To resolve this issue, the pixel recursive super resolution model reconstructs the resolution of input of localization CNNs. We present a best networks using pixel recursive super resolution model that synthesizes details of tropical cyclone in ground truth data while enhancing their resolution. Therefore, this approach not only dramat- ically reduces the human effort, but also suggests possibility to reduce computing cost required for downscaling process to increase resolution of data.
Cai, Li
2015-06-01
Lord and Wingersky's (Appl Psychol Meas 8:453-461, 1984) recursive algorithm for creating summed score based likelihoods and posteriors has a proven track record in unidimensional item response theory (IRT) applications. Extending the recursive algorithm to handle multidimensionality is relatively simple, especially with fixed quadrature because the recursions can be defined on a grid formed by direct products of quadrature points. However, the increase in computational burden remains exponential in the number of dimensions, making the implementation of the recursive algorithm cumbersome for truly high-dimensional models. In this paper, a dimension reduction method that is specific to the Lord-Wingersky recursions is developed. This method can take advantage of the restrictions implied by hierarchical item factor models, e.g., the bifactor model, the testlet model, or the two-tier model, such that a version of the Lord-Wingersky recursive algorithm can operate on a dramatically reduced set of quadrature points. For instance, in a bifactor model, the dimension of integration is always equal to 2, regardless of the number of factors. The new algorithm not only provides an effective mechanism to produce summed score to IRT scaled score translation tables properly adjusted for residual dependence, but leads to new applications in test scoring, linking, and model fit checking as well. Simulated and empirical examples are used to illustrate the new applications.
Greedy feature selection for glycan chromatography data with the generalized Dirichlet distribution
2013-01-01
Background Glycoproteins are involved in a diverse range of biochemical and biological processes. Changes in protein glycosylation are believed to occur in many diseases, particularly during cancer initiation and progression. The identification of biomarkers for human disease states is becoming increasingly important, as early detection is key to improving survival and recovery rates. To this end, the serum glycome has been proposed as a potential source of biomarkers for different types of cancers. High-throughput hydrophilic interaction liquid chromatography (HILIC) technology for glycan analysis allows for the detailed quantification of the glycan content in human serum. However, the experimental data from this analysis is compositional by nature. Compositional data are subject to a constant-sum constraint, which restricts the sample space to a simplex. Statistical analysis of glycan chromatography datasets should account for their unusual mathematical properties. As the volume of glycan HILIC data being produced increases, there is a considerable need for a framework to support appropriate statistical analysis. Proposed here is a methodology for feature selection in compositional data. The principal objective is to provide a template for the analysis of glycan chromatography data that may be used to identify potential glycan biomarkers. Results A greedy search algorithm, based on the generalized Dirichlet distribution, is carried out over the feature space to search for the set of “grouping variables” that best discriminate between known group structures in the data, modelling the compositional variables using beta distributions. The algorithm is applied to two glycan chromatography datasets. Statistical classification methods are used to test the ability of the selected features to differentiate between known groups in the data. Two well-known methods are used for comparison: correlation-based feature selection (CFS) and recursive partitioning (rpart). CFS is a feature selection method, while recursive partitioning is a learning tree algorithm that has been used for feature selection in the past. Conclusions The proposed feature selection method performs well for both glycan chromatography datasets. It is computationally slower, but results in a lower misclassification rate and a higher sensitivity rate than both correlation-based feature selection and the classification tree method. PMID:23651459
Predictive Value of Morphological Features in Patients with Autism versus Normal Controls
ERIC Educational Resources Information Center
Ozgen, H.; Hellemann, G. S.; de Jonge, M. V.; Beemer, F. A.; van Engeland, H.
2013-01-01
We investigated the predictive power of morphological features in 224 autistic patients and 224 matched-pairs controls. To assess the relationship between the morphological features and autism, we used the receiver operator curves (ROC). In addition, we used recursive partitioning (RP) to determine a specific pattern of abnormalities that is…
Efficiently Exploring Multilevel Data with Recursive Partitioning
ERIC Educational Resources Information Center
Martin, Daniel P.; von Oertzen, Timo; Rimm-Kaufman, Sara E.
2015-01-01
There is an increasing number of datasets with many participants, variables, or both, in education and other fields that often deal with large, multilevel data structures. Once initial confirmatory hypotheses are exhausted, it can be difficult to determine how best to explore the dataset to discover hidden relationships that could help to inform…
ERIC Educational Resources Information Center
Finch, W. Holmes; Hernández Finch, Maria E.; French, Brian F.
2016-01-01
Differential item functioning (DIF) assessment is key in score validation. When DIF is present scores may not accurately reflect the construct of interest for some groups of examinees, leading to incorrect conclusions from the scores. Given rising immigration, and the increased reliance of educational policymakers on cross-national assessments…
A recursive vesicle-based model protocell with a primitive model cell cycle
NASA Astrophysics Data System (ADS)
Kurihara, Kensuke; Okura, Yusaku; Matsuo, Muneyuki; Toyota, Taro; Suzuki, Kentaro; Sugawara, Tadashi
2015-09-01
Self-organized lipid structures (protocells) have been proposed as an intermediate between nonliving material and cellular life. Synthetic production of model protocells can demonstrate the potential processes by which living cells first arose. While we have previously described a giant vesicle (GV)-based model protocell in which amplification of DNA was linked to self-reproduction, the ability of a protocell to recursively self-proliferate for multiple generations has not been demonstrated. Here we show that newborn daughter GVs can be restored to the status of their parental GVs by pH-induced vesicular fusion of daughter GVs with conveyer GVs filled with depleted substrates. We describe a primitive model cell cycle comprising four discrete phases (ingestion, replication, maturity and division), each of which is selectively activated by a specific external stimulus. The production of recursive self-proliferating model protocells represents a step towards eventual production of model protocells that are able to mimic evolution.
Morris, Brian J; Carnes, Bruce A; Chen, Randi; Donlon, Timothy A; He, Qimei; Grove, John S; Masaki, Kamal H; Elliott, Ayako; Willcox, Donald C; Allsopp, Richard; Willcox, Bradley J
2015-04-01
The mechanistic target of rapamycin (mTOR) pathway is pivotal for cell growth. Regulatory associated protein of mTOR complex I (Raptor) is a unique component of this pro-growth complex. The present study tested whether variation across the raptor gene (RPTOR) is associated with overweight and hypertension. We tested 61 common (allele frequency ≥ 0.1) tagging single nucleotide polymorphisms (SNPs) that captured most of the genetic variation across RPTOR in 374 subjects of normal lifespan and 439 subjects with a lifespan exceeding 95 years for association with overweight/obesity, essential hypertension, and isolated systolic hypertension. Subjects were drawn from the Honolulu Heart Program, a homogeneous population of American men of Japanese ancestry, well characterized for phenotypes relevant to conditions of aging. Hypertension status was ascertained when subjects were 45-68 years old. Statistical evaluation involved contingency table analysis, logistic regression, and the powerful method of recursive partitioning. After analysis of RPTOR genotypes by each statistical approach, we found no significant association between genetic variation in RPTOR and either essential hypertension or isolated systolic hypertension. Models generated by recursive partitioning analysis showed that RPTOR SNPs significantly enhanced the ability of the model to accurately assign individuals to either the overweight/obese or the non-overweight/obese groups (P = 0.008 by 1-tailed Z test). Common genetic variation in RPTOR is associated with overweight/obesity but does not discernibly contribute to either essential hypertension or isolated systolic hypertension in the population studied. © American Journal of Hypertension, Ltd 2014. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Experimental evaluation of a recursive model identification technique for type 1 diabetes.
Finan, Daniel A; Doyle, Francis J; Palerm, Cesar C; Bevier, Wendy C; Zisser, Howard C; Jovanovic, Lois; Seborg, Dale E
2009-09-01
A model-based controller for an artificial beta cell requires an accurate model of the glucose-insulin dynamics in type 1 diabetes subjects. To ensure the robustness of the controller for changing conditions (e.g., changes in insulin sensitivity due to illnesses, changes in exercise habits, or changes in stress levels), the model should be able to adapt to the new conditions by means of a recursive parameter estimation technique. Such an adaptive strategy will ensure that the most accurate model is used for the current conditions, and thus the most accurate model predictions are used in model-based control calculations. In a retrospective analysis, empirical dynamic autoregressive exogenous input (ARX) models were identified from glucose-insulin data for nine type 1 diabetes subjects in ambulatory conditions. Data sets consisted of continuous (5-minute) glucose concentration measurements obtained from a continuous glucose monitor, basal insulin infusion rates and times and amounts of insulin boluses obtained from the subjects' insulin pumps, and subject-reported estimates of the times and carbohydrate content of meals. Two identification techniques were investigated: nonrecursive, or batch methods, and recursive methods. Batch models were identified from a set of training data, whereas recursively identified models were updated at each sampling instant. Both types of models were used to make predictions of new test data. For the purpose of comparison, model predictions were compared to zero-order hold (ZOH) predictions, which were made by simply holding the current glucose value constant for p steps into the future, where p is the prediction horizon. Thus, the ZOH predictions are model free and provide a base case for the prediction metrics used to quantify the accuracy of the model predictions. In theory, recursive identification techniques are needed only when there are changing conditions in the subject that require model adaptation. Thus, the identification and validation techniques were performed with both "normal" data and data collected during conditions of reduced insulin sensitivity. The latter were achieved by having the subjects self-administer a medication, prednisone, for 3 consecutive days. The recursive models were allowed to adapt to this condition of reduced insulin sensitivity, while the batch models were only identified from normal data. Data from nine type 1 diabetes subjects in ambulatory conditions were analyzed; six of these subjects also participated in the prednisone portion of the study. For normal test data, the batch ARX models produced 30-, 45-, and 60-minute-ahead predictions that had average root mean square error (RMSE) values of 26, 34, and 40 mg/dl, respectively. For test data characterized by reduced insulin sensitivity, the batch ARX models produced 30-, 60-, and 90-minute-ahead predictions with average RMSE values of 27, 46, and 59 mg/dl, respectively; the recursive ARX models demonstrated similar performance with corresponding values of 27, 45, and 61 mg/dl, respectively. The identified ARX models (batch and recursive) produced more accurate predictions than the model-free ZOH predictions, but only marginally. For test data characterized by reduced insulin sensitivity, RMSE values for the predictions of the batch ARX models were 9, 5, and 5% more accurate than the ZOH predictions for prediction horizons of 30, 60, and 90 minutes, respectively. In terms of RMSE values, the 30-, 60-, and 90-minute predictions of the recursive models were more accurate than the ZOH predictions, by 10, 5, and 2%, respectively. In this experimental study, the recursively identified ARX models resulted in predictions of test data that were similar, but not superior, to the batch models. Even for the test data characteristic of reduced insulin sensitivity, the batch and recursive models demonstrated similar prediction accuracy. The predictions of the identified ARX models were only marginally more accurate than the model-free ZOH predictions. Given the simplicity of the ARX models and the computational ease with which they are identified, however, even modest improvements may justify the use of these models in a model-based controller for an artificial beta cell. 2009 Diabetes Technology Society.
Marcotte, Thomas D.; Deutsch, Reena; Michael, Benedict Daniel; Franklin, Donald; Cookson, Debra Rosario; Bharti, Ajay R.; Grant, Igor; Letendre, Scott L.
2013-01-01
Background Neurocognitive (NC) impairment (NCI) occurs commonly in people living with HIV. Despite substantial effort, no biomarkers have been sufficiently validated for diagnosis and prognosis of NCI in the clinic. The goal of this project was to identify diagnostic or prognostic biomarkers for NCI in a comprehensively characterized HIV cohort. Methods Multidisciplinary case review selected 98 HIV-infected individuals and categorized them into four NC groups using normative data: stably normal (SN), stably impaired (SI), worsening (Wo), or improving (Im). All subjects underwent comprehensive NC testing, phlebotomy, and lumbar puncture at two timepoints separated by a median of 6.2 months. Eight biomarkers were measured in CSF and blood by immunoassay. Results were analyzed using mixed model linear regression and staged recursive partitioning. Results At the first visit, subjects were mostly middle-aged (median 45) white (58%) men (84%) who had AIDS (70%). Of the 73% who took antiretroviral therapy (ART), 54% had HIV RNA levels below 50 c/mL in plasma. Mixed model linear regression identified that only MCP-1 in CSF was associated with neurocognitive change group. Recursive partitioning models aimed at diagnosis (i.e., correctly classifying neurocognitive status at the first visit) were complex and required most biomarkers to achieve misclassification limits. In contrast, prognostic models were more efficient. A combination of three biomarkers (sCD14, MCP-1, SDF-1α) correctly classified 82% of Wo and SN subjects, including 88% of SN subjects. A combination of two biomarkers (MCP-1, TNF-α) correctly classified 81% of Im and SI subjects, including 100% of SI subjects. Conclusions This analysis of well-characterized individuals identified concise panels of biomarkers associated with NC change. Across all analyses, the two most frequently identified biomarkers were sCD14 and MCP-1, indicators of monocyte/macrophage activation. While the panels differed depending on the outcome and on the degree of misclassification, nearly all stable patients were correctly classified. PMID:24101401
E. Matthew Hansen; Barbara J. Bentz; A. Steven Munson; James C. Vandygriff; David L. Turner
2006-01-01
Although funnel traps are routinely used to manage bark beetles, little is known regarding the relationship between trap captures of spruce beetle (Dendroctonus rufipennis Kirby) and mortality of Engelmann spruce (Picea engelmannii Parry ex Engelm.) within a 10 ha block of the trap. Using recursive partitioning tree analyses, rules...
NASA Technical Reports Server (NTRS)
Charlesworth, Arthur
1990-01-01
The nondeterministic divide partitions a vector into two non-empty slices by allowing the point of division to be chosen nondeterministically. Support for high-level divide-and-conquer programming provided by the nondeterministic divide is investigated. A diva algorithm is a recursive divide-and-conquer sequential algorithm on one or more vectors of the same range, whose division point for a new pair of recursive calls is chosen nondeterministically before any computation is performed and whose recursive calls are made immediately after the choice of division point; also, access to vector components is only permitted during activations in which the vector parameters have unit length. The notion of diva algorithm is formulated precisely as a diva call, a restricted call on a sequential procedure. Diva calls are proven to be intimately related to associativity. Numerous applications of diva calls are given and strategies are described for translating a diva call into code for a variety of parallel computers. Thus diva algorithms separate logical correctness concerns from implementation concerns.
A recursive vesicle-based model protocell with a primitive model cell cycle
Kurihara, Kensuke; Okura, Yusaku; Matsuo, Muneyuki; Toyota, Taro; Suzuki, Kentaro; Sugawara, Tadashi
2015-01-01
Self-organized lipid structures (protocells) have been proposed as an intermediate between nonliving material and cellular life. Synthetic production of model protocells can demonstrate the potential processes by which living cells first arose. While we have previously described a giant vesicle (GV)-based model protocell in which amplification of DNA was linked to self-reproduction, the ability of a protocell to recursively self-proliferate for multiple generations has not been demonstrated. Here we show that newborn daughter GVs can be restored to the status of their parental GVs by pH-induced vesicular fusion of daughter GVs with conveyer GVs filled with depleted substrates. We describe a primitive model cell cycle comprising four discrete phases (ingestion, replication, maturity and division), each of which is selectively activated by a specific external stimulus. The production of recursive self-proliferating model protocells represents a step towards eventual production of model protocells that are able to mimic evolution. PMID:26418735
Early symptom burden predicts recovery after sport-related concussion
Mannix, Rebekah; Monuteaux, Michael C.; Stein, Cynthia J.; Bachur, Richard G.
2014-01-01
Objective: To identify independent predictors of and use recursive partitioning to develop a multivariate regression tree predicting symptom duration greater than 28 days after a sport-related concussion. Methods: We conducted a prospective cohort study of patients in a sports concussion clinic. Participants completed questionnaires that included the Post-Concussion Symptom Scale (PCSS). Participants were asked to record the date on which they last experienced symptoms. Potential predictor variables included age, sex, score on symptom inventories, history of prior concussions, performance on computerized neurocognitive assessments, loss of consciousness and amnesia at the time of injury, history of prior medical treatment for headaches, history of migraines, and family history of concussion. We used recursive partitioning analysis to develop a multivariate prediction model for identifying athletes at risk for a prolonged recovery from concussion. Results: A total of 531 patients ranged in age from 7 to 26 years (mean 14.6 ± 2.9 years). The mean PCSS score at the initial visit was 26 ± 26; mean time to presentation was 12 ± 5 days. Only total score on symptom inventory was independently associated with symptoms lasting longer than 28 days (adjusted odds ratio 1.044; 95% confidence interval [CI] 1.034, 1.054 for PCSS). No other potential predictor variables were independently associated with symptom duration or useful in developing the optimal regression decision tree. Most participants (86%; 95% CI 80%, 90%) with an initial PCSS score of <13 had resolution of their symptoms within 28 days of injury. Conclusions: The only independent predictor of prolonged symptoms after sport-related concussion is overall symptom burden. PMID:25381296
Early symptom burden predicts recovery after sport-related concussion.
Meehan, William P; Mannix, Rebekah; Monuteaux, Michael C; Stein, Cynthia J; Bachur, Richard G
2014-12-09
To identify independent predictors of and use recursive partitioning to develop a multivariate regression tree predicting symptom duration greater than 28 days after a sport-related concussion. We conducted a prospective cohort study of patients in a sports concussion clinic. Participants completed questionnaires that included the Post-Concussion Symptom Scale (PCSS). Participants were asked to record the date on which they last experienced symptoms. Potential predictor variables included age, sex, score on symptom inventories, history of prior concussions, performance on computerized neurocognitive assessments, loss of consciousness and amnesia at the time of injury, history of prior medical treatment for headaches, history of migraines, and family history of concussion. We used recursive partitioning analysis to develop a multivariate prediction model for identifying athletes at risk for a prolonged recovery from concussion. A total of 531 patients ranged in age from 7 to 26 years (mean 14.6 ± 2.9 years). The mean PCSS score at the initial visit was 26 ± 26; mean time to presentation was 12 ± 5 days. Only total score on symptom inventory was independently associated with symptoms lasting longer than 28 days (adjusted odds ratio 1.044; 95% confidence interval [CI] 1.034, 1.054 for PCSS). No other potential predictor variables were independently associated with symptom duration or useful in developing the optimal regression decision tree. Most participants (86%; 95% CI 80%, 90%) with an initial PCSS score of <13 had resolution of their symptoms within 28 days of injury. The only independent predictor of prolonged symptoms after sport-related concussion is overall symptom burden. © 2014 American Academy of Neurology.
Virasoro constraints and polynomial recursion for the linear Hodge integrals
NASA Astrophysics Data System (ADS)
Guo, Shuai; Wang, Gehao
2017-04-01
The Hodge tau-function is a generating function for the linear Hodge integrals. It is also a tau-function of the KP hierarchy. In this paper, we first present the Virasoro constraints for the Hodge tau-function in the explicit form of the Virasoro equations. The expression of our Virasoro constraints is simply a linear combination of the Virasoro operators, where the coefficients are restored from a power series for the Lambert W function. Then, using this result, we deduce a simple version of the Virasoro constraints for the linear Hodge partition function, where the coefficients are restored from the Gamma function. Finally, we establish the equivalence relation between the Virasoro constraints and polynomial recursion formula for the linear Hodge integrals.
Orhan, U.; Erdogmus, D.; Roark, B.; Oken, B.; Purwar, S.; Hild, K. E.; Fowler, A.; Fried-Oken, M.
2013-01-01
RSVP Keyboard™ is an electroencephalography (EEG) based brain computer interface (BCI) typing system, designed as an assistive technology for the communication needs of people with locked-in syndrome (LIS). It relies on rapid serial visual presentation (RSVP) and does not require precise eye gaze control. Existing BCI typing systems which uses event related potentials (ERP) in EEG suffer from low accuracy due to low signal-to-noise ratio. Henceforth, RSVP Keyboard™ utilizes a context based decision making via incorporating a language model, to improve the accuracy of letter decisions. To further improve the contributions of the language model, we propose recursive Bayesian estimation, which relies on non-committing string decisions, and conduct an offline analysis, which compares it with the existing naïve Bayesian fusion approach. The results indicate the superiority of the recursive Bayesian fusion and in the next generation of RSVP Keyboard™ we plan to incorporate this new approach. PMID:23366432
ReHypar: A Recursive Hybrid Chunk Partitioning Method Using NAND-Flash Memory SSD
Park, Sung-Soon; Lim, Cheol-Su
2014-01-01
Due to the rapid development of flash memory, SSD is considered to be the replacement of HDD in the storage market. Although SSD retains several promising characteristics, such as high random I/O performance and nonvolatility, its high expense per capacity is the main obstacle in replacing HDD in all storage solutions. An alternative is to provide a hybrid structure where a small portion of SSD address space is combined with the much larger HDD address space. In such a structure, maximizing the space utilization of SSD in a cost-effective way is extremely important to generate high I/O performance. We developed ReHypar (recursive hybrid chunk partitioning) that enables improving the space utilization of SSD in the hybrid structure. The first objective of ReHypar is to mitigate the fragmentation overhead of SSD address space, by reusing the remaining free space of I/O units as much as possible. Furthermore, ReHypar allows defining several, logical data sections in SSD address space, with each of those sections being configured with the different I/O unit. We integrated ReHypar with ext2 and ext4 and evaluated it using two public benchmarks including IOzone and Postmark. PMID:24987741
Topological string, supersymmetric gauge theory and bps counting
NASA Astrophysics Data System (ADS)
Pan, Guang
In this thesis we study the Donaldson-Thomas theory on the local curve geometry, which arises in the context of geometric engineering of supersymmetric gauge theory from type IIA string compactification. The topological A-model amplitude gives the F-term interaction of the compactified theory. In particular, it is related to the instanton partition function via Nekrasov conjecture. We will introduce ADHM sheaves on curve, as an alternative description of local Donaldson-Thomas theory. We derive the wallcrossing of ADHM invariants and their refinements. We show that it is equivalent to the semi-primitive wallcrossing from supergravity, and the Kontsevich-Soibelman wallcrossing formula. As an application, we discuss the connection between ADHM moduli space with Hitchin system. In particular we give a recursive formula for the Poincare polynomial of Hitchin system in terms of instanton partition function, from refined wallcrossing. We also introduce higher rank generalization of Donaldson-Thomas invariant in the context of ADHM sheaves. We study their wallcrossing and discuss their physical interpretation via string duality.
Reumann, Matthias; Fitch, Blake G; Rayshubskiy, Aleksandr; Keller, David U J; Seemann, Gunnar; Dossel, Olaf; Pitman, Michael C; Rice, John J
2009-01-01
Orthogonal recursive bisection (ORB) algorithm can be used as data decomposition strategy to distribute a large data set of a cardiac model to a distributed memory supercomputer. It has been shown previously that good scaling results can be achieved using the ORB algorithm for data decomposition. However, the ORB algorithm depends on the distribution of computational load of each element in the data set. In this work we investigated the dependence of data decomposition and load balancing on different rotations of the anatomical data set to achieve optimization in load balancing. The anatomical data set was given by both ventricles of the Visible Female data set in a 0.2 mm resolution. Fiber orientation was included. The data set was rotated by 90 degrees around x, y and z axis, respectively. By either translating or by simply taking the magnitude of the resulting negative coordinates we were able to create 14 data set of the same anatomy with different orientation and position in the overall volume. Computation load ratios for non - tissue vs. tissue elements used in the data decomposition were 1:1, 1:2, 1:5, 1:10, 1:25, 1:38.85, 1:50 and 1:100 to investigate the effect of different load ratios on the data decomposition. The ten Tusscher et al. (2004) electrophysiological cell model was used in monodomain simulations of 1 ms simulation time to compare performance using the different data sets and orientations. The simulations were carried out for load ratio 1:10, 1:25 and 1:38.85 on a 512 processor partition of the IBM Blue Gene/L supercomputer. Th results show that the data decomposition does depend on the orientation and position of the anatomy in the global volume. The difference in total run time between the data sets is 10 s for a simulation time of 1 ms. This yields a difference of about 28 h for a simulation of 10 s simulation time. However, given larger processor partitions, the difference in run time decreases and becomes less significant. Depending on the processor partition size, future work will have to consider the orientation of the anatomy in the global volume for longer simulation runs.
CHENG, JIANLIN; EICKHOLT, JESSE; WANG, ZHENG; DENG, XIN
2013-01-01
After decades of research, protein structure prediction remains a very challenging problem. In order to address the different levels of complexity of structural modeling, two types of modeling techniques — template-based modeling and template-free modeling — have been developed. Template-based modeling can often generate a moderate- to high-resolution model when a similar, homologous template structure is found for a query protein but fails if no template or only incorrect templates are found. Template-free modeling, such as fragment-based assembly, may generate models of moderate resolution for small proteins of low topological complexity. Seldom have the two techniques been integrated together to improve protein modeling. Here we develop a recursive protein modeling approach to selectively and collaboratively apply template-based and template-free modeling methods to model template-covered (i.e. certain) and template-free (i.e. uncertain) regions of a protein. A preliminary implementation of the approach was tested on a number of hard modeling cases during the 9th Critical Assessment of Techniques for Protein Structure Prediction (CASP9) and successfully improved the quality of modeling in most of these cases. Recursive modeling can signicantly reduce the complexity of protein structure modeling and integrate template-based and template-free modeling to improve the quality and efficiency of protein structure prediction. PMID:22809379
Predicting DPP-IV inhibitors with machine learning approaches
NASA Astrophysics Data System (ADS)
Cai, Jie; Li, Chanjuan; Liu, Zhihong; Du, Jiewen; Ye, Jiming; Gu, Qiong; Xu, Jun
2017-04-01
Dipeptidyl peptidase IV (DPP-IV) is a promising Type 2 diabetes mellitus (T2DM) drug target. DPP-IV inhibitors prolong the action of glucagon-like peptide-1 (GLP-1) and gastric inhibitory peptide (GIP), improve glucose homeostasis without weight gain, edema, and hypoglycemia. However, the marketed DPP-IV inhibitors have adverse effects such as nasopharyngitis, headache, nausea, hypersensitivity, skin reactions and pancreatitis. Therefore, it is still expected for novel DPP-IV inhibitors with minimal adverse effects. The scaffolds of existing DPP-IV inhibitors are structurally diversified. This makes it difficult to build virtual screening models based upon the known DPP-IV inhibitor libraries using conventional QSAR approaches. In this paper, we report a new strategy to predict DPP-IV inhibitors with machine learning approaches involving naïve Bayesian (NB) and recursive partitioning (RP) methods. We built 247 machine learning models based on 1307 known DPP-IV inhibitors with optimized molecular properties and topological fingerprints as descriptors. The overall predictive accuracies of the optimized models were greater than 80%. An external test set, composed of 65 recently reported compounds, was employed to validate the optimized models. The results demonstrated that both NB and RP models have a good predictive ability based on different combinations of descriptors. Twenty "good" and twenty "bad" structural fragments for DPP-IV inhibitors can also be derived from these models for inspiring the new DPP-IV inhibitor scaffold design.
Developing the surveillance algorithm for detection of failure to recognize and treat severe sepsis.
Harrison, Andrew M; Thongprayoon, Charat; Kashyap, Rahul; Chute, Christopher G; Gajic, Ognjen; Pickering, Brian W; Herasevich, Vitaly
2015-02-01
To develop and test an automated surveillance algorithm (sepsis "sniffer") for the detection of severe sepsis and monitoring failure to recognize and treat severe sepsis in a timely manner. We conducted an observational diagnostic performance study using independent derivation and validation cohorts from an electronic medical record database of the medical intensive care unit (ICU) of a tertiary referral center. All patients aged 18 years and older who were admitted to the medical ICU from January 1 through March 31, 2013 (N=587), were included. The criterion standard for severe sepsis/septic shock was manual review by 2 trained reviewers with a third superreviewer for cases of interobserver disagreement. Critical appraisal of false-positive and false-negative alerts, along with recursive data partitioning, was performed for algorithm optimization. An algorithm based on criteria for suspicion of infection, systemic inflammatory response syndrome, organ hypoperfusion and dysfunction, and shock had a sensitivity of 80% and a specificity of 96% when applied to the validation cohort. In order, low systolic blood pressure, systemic inflammatory response syndrome positivity, and suspicion of infection were determined through recursive data partitioning to be of greatest predictive value. Lastly, 117 alert-positive patients (68% of the 171 patients with severe sepsis) had a delay in recognition and treatment, defined as no lactate and central venous pressure measurement within 2 hours of the alert. The optimized sniffer accurately identified patients with severe sepsis that bedside clinicians failed to recognize and treat in a timely manner. Copyright © 2015 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.
Recursive least-squares learning algorithms for neural networks
NASA Astrophysics Data System (ADS)
Lewis, Paul S.; Hwang, Jenq N.
1990-11-01
This paper presents the development of a pair of recursive least squares (ItLS) algorithms for online training of multilayer perceptrons which are a class of feedforward artificial neural networks. These algorithms incorporate second order information about the training error surface in order to achieve faster learning rates than are possible using first order gradient descent algorithms such as the generalized delta rule. A least squares formulation is derived from a linearization of the training error function. Individual training pattern errors are linearized about the network parameters that were in effect when the pattern was presented. This permits the recursive solution of the least squares approximation either via conventional RLS recursions or by recursive QR decomposition-based techniques. The computational complexity of the update is 0(N2) where N is the number of network parameters. This is due to the estimation of the N x N inverse Hessian matrix. Less computationally intensive approximations of the ilLS algorithms can be easily derived by using only block diagonal elements of this matrix thereby partitioning the learning into independent sets. A simulation example is presented in which a neural network is trained to approximate a two dimensional Gaussian bump. In this example RLS training required an order of magnitude fewer iterations on average (527) than did training with the generalized delta rule (6 1 BACKGROUND Artificial neural networks (ANNs) offer an interesting and potentially useful paradigm for signal processing and pattern recognition. The majority of ANN applications employ the feed-forward multilayer perceptron (MLP) network architecture in which network parameters are " trained" by a supervised learning algorithm employing the generalized delta rule (GDIt) [1 2]. The GDR algorithm approximates a fixed step steepest descent algorithm using derivatives computed by error backpropagatiori. The GDII algorithm is sometimes referred to as the backpropagation algorithm. However in this paper we will use the term backpropagation to refer only to the process of computing error derivatives. While multilayer perceptrons provide a very powerful nonlinear modeling capability GDR training can be very slow and inefficient. In linear adaptive filtering the analog of the GDR algorithm is the leastmean- squares (LMS) algorithm. Steepest descent-based algorithms such as GDR or LMS are first order because they use only first derivative or gradient information about the training error to be minimized. To speed up the training process second order algorithms may be employed that take advantage of second derivative or Hessian matrix information. Second order information can be incorporated into MLP training in different ways. In many applications especially in the area of pattern recognition the training set is finite. In these cases block learning can be applied using standard nonlinear optimization techniques [3 4 5].
Algorithms for the automatic generation of 2-D structured multi-block grids
NASA Technical Reports Server (NTRS)
Schoenfeld, Thilo; Weinerfelt, Per; Jenssen, Carl B.
1995-01-01
Two different approaches to the fully automatic generation of structured multi-block grids in two dimensions are presented. The work aims to simplify the user interactivity necessary for the definition of a multiple block grid topology. The first approach is based on an advancing front method commonly used for the generation of unstructured grids. The original algorithm has been modified toward the generation of large quadrilateral elements. The second method is based on the divide-and-conquer paradigm with the global domain recursively partitioned into sub-domains. For either method each of the resulting blocks is then meshed using transfinite interpolation and elliptic smoothing. The applicability of these methods to practical problems is demonstrated for typical geometries of fluid dynamics.
Multi-fidelity Gaussian process regression for prediction of random fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parussini, L.; Venturi, D., E-mail: venturi@ucsc.edu; Perdikaris, P.
We propose a new multi-fidelity Gaussian process regression (GPR) approach for prediction of random fields based on observations of surrogate models or hierarchies of surrogate models. Our method builds upon recent work on recursive Bayesian techniques, in particular recursive co-kriging, and extends it to vector-valued fields and various types of covariances, including separable and non-separable ones. The framework we propose is general and can be used to perform uncertainty propagation and quantification in model-based simulations, multi-fidelity data fusion, and surrogate-based optimization. We demonstrate the effectiveness of the proposed recursive GPR techniques through various examples. Specifically, we study the stochastic Burgersmore » equation and the stochastic Oberbeck–Boussinesq equations describing natural convection within a square enclosure. In both cases we find that the standard deviation of the Gaussian predictors as well as the absolute errors relative to benchmark stochastic solutions are very small, suggesting that the proposed multi-fidelity GPR approaches can yield highly accurate results.« less
Drug Distribution. Part 1. Models to Predict Membrane Partitioning.
Nagar, Swati; Korzekwa, Ken
2017-03-01
Tissue partitioning is an important component of drug distribution and half-life. Protein binding and lipid partitioning together determine drug distribution. Two structure-based models to predict partitioning into microsomal membranes are presented. An orientation-based model was developed using a membrane template and atom-based relative free energy functions to select drug conformations and orientations for neutral and basic drugs. The resulting model predicts the correct membrane positions for nine compounds tested, and predicts the membrane partitioning for n = 67 drugs with an average fold-error of 2.4. Next, a more facile descriptor-based model was developed for acids, neutrals and bases. This model considers the partitioning of neutral and ionized species at equilibrium, and can predict membrane partitioning with an average fold-error of 2.0 (n = 92 drugs). Together these models suggest that drug orientation is important for membrane partitioning and that membrane partitioning can be well predicted from physicochemical properties.
S-HARP: A parallel dynamic spectral partitioner
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sohn, A.; Simon, H.
1998-01-01
Computational science problems with adaptive meshes involve dynamic load balancing when implemented on parallel machines. This dynamic load balancing requires fast partitioning of computational meshes at run time. The authors present in this report a fast parallel dynamic partitioner, called S-HARP. The underlying principles of S-HARP are the fast feature of inertial partitioning and the quality feature of spectral partitioning. S-HARP partitions a graph from scratch, requiring no partition information from previous iterations. Two types of parallelism have been exploited in S-HARP, fine grain loop level parallelism and coarse grain recursive parallelism. The parallel partitioner has been implemented in Messagemore » Passing Interface on Cray T3E and IBM SP2 for portability. Experimental results indicate that S-HARP can partition a mesh of over 100,000 vertices into 256 partitions in 0.2 seconds on a 64 processor Cray T3E. S-HARP is much more scalable than other dynamic partitioners, giving over 15 fold speedup on 64 processors while ParaMeTiS1.0 gives a few fold speedup. Experimental results demonstrate that S-HARP is three to 10 times faster than the dynamic partitioners ParaMeTiS and Jostle on six computational meshes of size over 100,000 vertices.« less
Health monitoring system for transmission shafts based on adaptive parameter identification
NASA Astrophysics Data System (ADS)
Souflas, I.; Pezouvanis, A.; Ebrahimi, K. M.
2018-05-01
A health monitoring system for a transmission shaft is proposed. The solution is based on the real-time identification of the physical characteristics of the transmission shaft i.e. stiffness and damping coefficients, by using a physical oriented model and linear recursive identification. The efficacy of the suggested condition monitoring system is demonstrated on a prototype transient engine testing facility equipped with a transmission shaft capable of varying its physical properties. Simulation studies reveal that coupling shaft faults can be detected and isolated using the proposed condition monitoring system. Besides, the performance of various recursive identification algorithms is addressed. The results of this work recommend that the health status of engine dynamometer shafts can be monitored using a simple lumped-parameter shaft model and a linear recursive identification algorithm which makes the concept practically viable.
NASA Astrophysics Data System (ADS)
Luke, Denneko; McLaren, Kurt
2018-05-01
In situ measurements of leaf level photosynthetic response to light were collected from seedlings of ten tree species from a tropical montane wet forest, the John Crow Mountains, Jamaica. A model-based recursive partitioning ('mob') algorithm was then used to identify species associations based on their fitted photosynthetic response curves. Leaf area dark respiration (RD) and light saturated maximum photosynthetic (Amax) rates were also used as 'mob' partitioning variables, to identify species associations based on seedling demographic patterns (from June 2007 to May 2010) following a hurricane (Aug. 2007) and the spatiotemporal distribution patterns of stems in 2006 and 2012. RD and Amax rates ranged from 1.14 to 2.02 μmol (CO2) m-2s-1 and 2.97-5.87 μmol (CO2) m-2s-1, respectively, placing the ten species in the range of intermediate shade tolerance. Several parsimonious species 'mob' groups were formed based on 1) interspecific differences among species response curves, 2) variations in post-hurricane seedling demographic trends and 3) RD rates and species spatiotemporal distribution patterns at aspects that are more or less exposed to hurricanes. The composition of parsimonious groupings based on photosynthetic curves was not concordant with the groups based on demographic trends but was partially concordant with the RD - species spatiotemporal distribution groups. Our results indicated that the influence of photosynthetic characteristics on demographic traits and species distributions was not straightforward. Rather, there was a complex pattern of interaction between ecophysiological and demographic traits, which determined species successional status, post-hurricane response and ultimately, species distribution at our study site.
Subbiah, Ishwaria M; Lei, Xiudong; Weinberg, Jeffrey S; Sulman, Erik P; Chavez-MacGregor, Mariana; Tripathy, Debu; Gupta, Rohan; Varma, Ankur; Chouhan, Jay; Guevarra, Richard P; Valero, Vicente; Gilbert, Mark R; Gonzalez-Angulo, Ana M
2015-07-10
Several indices have been developed to predict overall survival (OS) in patients with breast cancer with brain metastases, including the breast graded prognostic assessment (breast-GPA), comprising age, tumor subtype, and Karnofsky performance score. However, number of brain metastases-a highly relevant clinical variable-is less often incorporated into the final model. We sought to validate the existing breast-GPA in an independent larger cohort and refine it integrating number of brain metastases. Data were retrospectively gathered from a prospectively maintained institutional database. Patients with newly diagnosed brain metastases from 1996 to 2013 were identified. After validating the breast-GPA, multivariable Cox regression and recursive partitioning analysis led to the development of the modified breast-GPA. The performances of the breast-GPA and modified breast-GPA were compared using the concordance index. In our cohort of 1,552 patients, the breast-GPA was validated as a prognostic tool for OS (P < .001). In multivariable analysis of the breast-GPA and number of brain metastases (> three v ≤ three), both were independent predictors of OS. We therefore developed the modified breast-GPA integrating a fourth clinical parameter. Recursive partitioning analysis reinforced the prognostic significance of these four factors. Concordance indices were 0.78 (95% CI, 0.77 to 0.80) and 0.84 (95% CI, 0.83 to 0.85) for the breast-GPA and modified breast-GPA, respectively (P < .001). The modified breast-GPA incorporates four simple clinical parameters of high prognostic significance. This index has an immediate role in the clinic as a formative part of the clinician's discussion of prognosis and direction of care and as a potential patient selection tool for clinical trials. © 2015 by American Society of Clinical Oncology.
Gabrielian, Sonya; Bromley, Elizabeth; Hellemann, Gerhard S.; Kern, Robert S.; Goldenson, Nicholas I.; Danley, Megan E.; Young, Alexander S.
2015-01-01
Objective We sought to understand the housing trajectories of homeless consumers with serious mental illness (SMI) and co-occurring substance use disorders (SUD) and to identify factors that best-predicted achievement of independent housing. Methods Using administrative data, we identified homeless persons with SMI and SUD admitted to a residential rehabilitation program from 12/2008-11/2011. On a random sample (n=36), we assessed a range of potential predictors of housing outcomes, including symptoms, cognition, and social/community supports. We used the Residential Time-Line Follow-Back (TLFB) Inventory to gather housing histories since exiting rehabilitation and identify housing outcomes. We used recursive partitioning to identify variables that best-differentiated participants by these outcomes. Results We identified three housing trajectories: stable housing (n=14); unstable housing (n=15); and continuously engaged in housing services (n=7). Using recursive partitioning, two variables (symbol digit modalities test (SDMT), a neurocognitive speed of processing measure and Behavior and Symptom Identification Scale (BASIS)-relationships subscale, which quantifies symptoms affecting relationships) were sufficient to capture information provided by 26 predictors to classify participants by housing outcome. Participants predicted to continuously engage in services had impaired processing speeds (SDMT score<32.5). Among consumers with SDMT score≥32.5, those predicted to achieve stable housing had fewer interpersonal symptoms (BASIS-relationships score<0.81) than those predicted to have unstable housing. This model explains 57% of this sample's variability and 14% of this population's variability in housing outcomes. Conclusion As cognition and symptoms influencing relationships predicted housing outcomes for homeless adults with SMI and SUD, cognitive and social skills trainings may be useful for this population. PMID:25919839
A Novel Space Partitioning Algorithm to Improve Current Practices in Facility Placement
Jimenez, Tamara; Mikler, Armin R; Tiwari, Chetan
2012-01-01
In the presence of naturally occurring and man-made public health threats, the feasibility of regional bio-emergency contingency plans plays a crucial role in the mitigation of such emergencies. While the analysis of in-place response scenarios provides a measure of quality for a given plan, it involves human judgment to identify improvements in plans that are otherwise likely to fail. Since resource constraints and government mandates limit the availability of service provided in case of an emergency, computational techniques can determine optimal locations for providing emergency response assuming that the uniform distribution of demand across homogeneous resources will yield and optimal service outcome. This paper presents an algorithm that recursively partitions the geographic space into sub-regions while equally distributing the population across the partitions. For this method, we have proven the existence of an upper bound on the deviation from the optimal population size for sub-regions. PMID:23853502
An introduction to tree-structured modeling with application to quality of life data.
Su, Xiaogang; Azuero, Andres; Cho, June; Kvale, Elizabeth; Meneses, Karen M; McNees, M Patrick
2011-01-01
Investigators addressing nursing research are faced increasingly with the need to analyze data that involve variables of mixed types and are characterized by complex nonlinearity and interactions. Tree-based methods, also called recursive partitioning, are gaining popularity in various fields. In addition to efficiency and flexibility in handling multifaceted data, tree-based methods offer ease of interpretation. The aims of this study were to introduce tree-based methods, discuss their advantages and pitfalls in application, and describe their potential use in nursing research. In this article, (a) an introduction to tree-structured methods is presented, (b) the technique is illustrated via quality of life (QOL) data collected in the Breast Cancer Education Intervention study, and (c) implications for their potential use in nursing research are discussed. As illustrated by the QOL analysis example, tree methods generate interesting and easily understood findings that cannot be uncovered via traditional linear regression analysis. The expanding breadth and complexity of nursing research may entail the use of new tools to improve efficiency and gain new insights. In certain situations, tree-based methods offer an attractive approach that help address such needs.
Furlanello, Cesare; Serafini, Maria; Merler, Stefano; Jurman, Giuseppe
2003-11-06
We describe the E-RFE method for gene ranking, which is useful for the identification of markers in the predictive classification of array data. The method supports a practical modeling scheme designed to avoid the construction of classification rules based on the selection of too small gene subsets (an effect known as the selection bias, in which the estimated predictive errors are too optimistic due to testing on samples already considered in the feature selection process). With E-RFE, we speed up the recursive feature elimination (RFE) with SVM classifiers by eliminating chunks of uninteresting genes using an entropy measure of the SVM weights distribution. An optimal subset of genes is selected according to a two-strata model evaluation procedure: modeling is replicated by an external stratified-partition resampling scheme, and, within each run, an internal K-fold cross-validation is used for E-RFE ranking. Also, the optimal number of genes can be estimated according to the saturation of Zipf's law profiles. Without a decrease of classification accuracy, E-RFE allows a speed-up factor of 100 with respect to standard RFE, while improving on alternative parametric RFE reduction strategies. Thus, a process for gene selection and error estimation is made practical, ensuring control of the selection bias, and providing additional diagnostic indicators of gene importance.
NASA Astrophysics Data System (ADS)
Fu, Y.; Yang, W.; Xu, O.; Zhou, L.; Wang, J.
2017-04-01
To investigate time-variant and nonlinear characteristics in industrial processes, a soft sensor modelling method based on time difference, moving-window recursive partial least square (PLS) and adaptive model updating is proposed. In this method, time difference values of input and output variables are used as training samples to construct the model, which can reduce the effects of the nonlinear characteristic on modelling accuracy and retain the advantages of recursive PLS algorithm. To solve the high updating frequency of the model, a confidence value is introduced, which can be updated adaptively according to the results of the model performance assessment. Once the confidence value is updated, the model can be updated. The proposed method has been used to predict the 4-carboxy-benz-aldehyde (CBA) content in the purified terephthalic acid (PTA) oxidation reaction process. The results show that the proposed soft sensor modelling method can reduce computation effectively, improve prediction accuracy by making use of process information and reflect the process characteristics accurately.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Niwinska, Anna, E-mail: alphaonetau@poczta.onet.pl; Murawska, Magdalena
2012-04-01
Purpose: The aim of the study was to present a new breast cancer recursive partitioning analysis (RPA) prognostic index for patients with newly diagnosed brain metastases as a guide in clinical decision making. Methods and Materials: A prospectively collected group of 441 consecutive patients with breast cancer and brain metastases treated between the years 2003 and 2009 was assessed. Prognostic factors significant for univariate analysis were included into RPA. Results: Three prognostic classes of a new breast cancer RPA prognostic index were selected. The median survival of patients within prognostic Classes I, II, and III was 29, 9, and 2.4more » months, respectively (p < 0.0001). Class I included patients with one or two brain metastases, without extracranial disease or with controlled extracranial disease, and with Karnofsky performance status (KPS) of 100. Class III included patients with multiple brain metastases with KPS of {<=}60. Class II included all other cases. Conclusions: The breast cancer RPA prognostic index is an easy and valuable tool for use in clinical practice. It can select patients who require aggressive treatment and those in whom whole-brain radiotherapy or symptomatic therapy is the most reasonable option. An individual approach is required for patients from prognostic Class II.« less
Methods for assessing movement path recursion with application to African buffalo in South Africa
Bar-David, S.; Bar-David, I.; Cross, P.C.; Ryan, S.J.; Knechtel, C.U.; Getz, W.M.
2009-01-01
Recent developments of automated methods for monitoring animal movement, e.g., global positioning systems (GPS) technology, yield high-resolution spatiotemporal data. To gain insights into the processes creating movement patterns, we present two new techniques for extracting information from these data on repeated visits to a particular site or patch ("recursions"). Identification of such patches and quantification of recursion pathways, when combined with patch-related ecological data, should contribute to our understanding of the habitat requirements of large herbivores, of factors governing their space-use patterns, and their interactions with the ecosystem. We begin by presenting output from a simple spatial model that simulates movements of large-herbivore groups based on minimal parameters: resource availability and rates of resource recovery after a local depletion. We then present the details of our new techniques of analyses (recursion analysis and circle analysis) and apply them to data generated by our model, as well as two sets of empirical data on movements of African buffalo (Syncerus coffer): the first collected in Klaserie Private Nature Reserve and the second in Kruger National Park, South Africa. Our recursion analyses of model outputs provide us with a basis for inferring aspects of the processes governing the production of buffalo recursion patterns, particularly the potential influence of resource recovery rate. Although the focus of our simulations was a comparison of movement patterns produced by different resource recovery rates, we conclude our paper with a comprehensive discussion of how recursion analyses can be used when appropriate ecological data are available to elucidate various factors influencing movement. Inter alia, these include the various limiting and preferred resources, parasites, and topographical and landscape factors. ?? 2009 by the Ecological Society of America.
Krischer, Jeffrey P.
2016-01-01
OBJECTIVE To define prognostic classification factors associated with the progression from single to multiple autoantibodies, multiple autoantibodies to dysglycemia, and dysglycemia to type 1 diabetes onset in relatives of individuals with type 1 diabetes. RESEARCH DESIGN AND METHODS Three distinct cohorts of subjects from the Type 1 Diabetes TrialNet Pathway to Prevention Study were investigated separately. A recursive partitioning analysis (RPA) was used to determine the risk classes. Clinical characteristics, including genotype, antibody titers, and metabolic markers were analyzed. RESULTS Age and GAD65 autoantibody (GAD65Ab) titers defined three risk classes for progression from single to multiple autoantibodies. The 5-year risk was 11% for those subjects >16 years of age with low GAD65Ab titers, 29% for those ≤16 years of age with low GAD65Ab titers, and 45% for those subjects with high GAD65Ab titers regardless of age. Progression to dysglycemia was associated with islet antigen 2 Ab titers, and 2-h glucose and fasting C-peptide levels. The 5-year risk is 28%, 39%, and 51% for respective risk classes defined by the three predictors. Progression to type 1 diabetes was associated with the number of positive autoantibodies, peak C-peptide level, HbA1c level, and age. Four risk classes defined by RPA had a 5-year risk of 9%, 33%, 62%, and 80%, respectively. CONCLUSIONS The use of RPA offered a new classification approach that could predict the timing of transitions from one preclinical stage to the next in the development of type 1 diabetes. Using these RPA classes, new prevention techniques can be tailored based on the individual prognostic risk characteristics at different preclinical stages. PMID:27208341
Klein, Lauren R; Money, Joel; Maharaj, Kaveesh; Robinson, Aaron; Lai, Tarissa; Driver, Brian E
2017-11-01
Assessing the likelihood of a variceal versus nonvariceal source of upper gastrointestinal bleeding (UGIB) guides therapy, but can be difficult to determine on clinical grounds. The objective of this study was to determine if there are easily ascertainable clinical and laboratory findings that can identify a patient as low risk for a variceal source of hemorrhage. This was a retrospective cohort study of adult ED patients with UGIB between January 2008 and December 2014 who had upper endoscopy performed during hospitalization. Clinical and laboratory data were abstracted from the medical record. The source of the UGIB was defined as variceal or nonvariceal based on endoscopic reports. Binary recursive partitioning was utilized to create a clinical decision rule. The rule was internally validated and test characteristics were calculated with 1,000 bootstrap replications. A total of 719 patients were identified; mean age was 55 years and 61% were male. There were 71 (10%) patients with a variceal UGIB identified on endoscopy. Binary recursive partitioning yielded a two-step decision rule (platelet count > 200 × 10 9 /L and an international normalized ratio [INR] < 1.3), which identified patients who were low risk for a variceal source of hemorrhage. For the bootstrapped samples, the rule performed with 97% sensitivity (95% confidence interval [CI] = 91%-100%) and 49% specificity (95% CI = 44%-53%). Although this derivation study must be externally validated before widespread use, patients presenting to the ED with an acute UGIB with platelet count of >200 × 10 9 /L and an INR of <1.3 may be at very low risk for a variceal source of their upper gastrointestinal hemorrhage. © 2017 by the Society for Academic Emergency Medicine.
Zhang, Qian; Chen, Jian; Yu, Xiaoli; Ma, Jinli; Cai, Gang; Yang, Zhaozhi; Cao, Lu; Chen, Xingxing; Guo, Xiaomao; Chen, Jiayi
2013-09-01
Whole brain radiotherapy (WBRT) is the most widely used treatment for brain metastasis (BM), especially for patients with multiple intracranial lesions. The purpose of this study was to examine the efficacy of systemic treatments following WBRT in breast cancer patients with BM who had different clinical characteristics, based on the classification of the Radiation Therapy Oncology Group recursive partitioning analysis (RPA) and the breast cancer-specific Graded Prognostic Assessment (Breast-GPA). One hundred and one breast cancer patients with BM treated between 2006 and 2010 were analyzed. The median interval between breast cancer diagnosis and identification of BM in the triple-negative patients was shorter than in the luminal A subtype (26 vs. 36 months, respectively; P = 0.021). Univariate analysis indicated that age at BM diagnosis, Karnofsky performance status/recursive partitioning analysis (KPS/RPA) classes, number of BMs, primary tumor control, extracranial metastases and systemic treatment following WBRT were significant prognostic factors for overall survival (OS) (P < 0.05). Multivariate analysis revealed that KPS/RPA classes and systemic treatments following WBRT remained the significant prognostic factors for OS. For RPA class I, the median survival with and without systemic treatments following WBRT was 25 and 22 months, respectively (P = 0.819), while for RPA class II/III systemic treatments significantly improved OS from 7 and 2 months to 11 and 5 months, respectively (P < 0.05). Our results suggested that triple-negative patients had a shorter interval between initial diagnosis and the development of BM than luminal A patients. Systemic treatments following WBRT improved the survival of RPA class II/III patients.
Liang, Hong-Ming; Lin, Ting-Hsiang; Chiou, Jeng-Min; Yeh, Kuo-Chen
2009-06-01
Evaluation of the remediation ability of zinc/cadmium in hyper- and non-hyperaccumulator plant species through greenhouse studies is limited. To bridge the gap between greenhouse studies and field applications for phytoextraction, we used published data to examine the partitioning of heavy metals between plants and soil (defined as the bioconcentration factor). We compared the remediation ability of the Zn/Cd hyperaccumulators Thlaspi caerulescens and Arabidopsis halleri and the non-hyperaccumulators Nicotiana tabacum and Brassica juncea using a hierarchical linear model (HLM). A recursive algorithm was then used to evaluate how many harvest cycles were required to clean a contaminated site to meet Taiwan Environmental Protection Agency regulations. Despite the high bioconcentration factor of both hyperaccumulators, metal removal was still limited because of the plants' small biomass. Simulation with N. tabacum and the Cadmium model suggests further study and development of plants with high biomass and improved phytoextraction potential for use in environmental cleanup.
NASA Astrophysics Data System (ADS)
Shen, Yuxuan; Wang, Zidong; Shen, Bo; Alsaadi, Fuad E.
2018-07-01
In this paper, the recursive filtering problem is studied for a class of time-varying nonlinear systems with stochastic parameter matrices. The measurement transmission between the sensor and the filter is conducted through a fading channel characterized by the Rice fading model. An event-based transmission mechanism is adopted to decide whether the sensor measurement should be transmitted to the filter. A recursive filter is designed such that, in the simultaneous presence of the stochastic parameter matrices and fading channels, the filtering error covariance is guaranteed to have an upper bound and such an upper bound is then minimized by appropriately choosing filter gain matrix. Finally, a simulation example is presented to demonstrate the effectiveness of the proposed filtering scheme.
A Diagnostic Model for Impending Death in Cancer Patients: Preliminary Report
Hui, David; Hess, Kenneth; dos Santos, Renata; Chisholm, Gary; Bruera, Eduardo
2015-01-01
Background We recently identified several highly specific bedside physical signs associated with impending death within 3 days among patients with advanced cancer. In this study, we developed and assessed a diagnostic model for impending death based on these physical signs. Methods We systematically documented 62 physical signs every 12 hours from admission to death or discharge in 357 patients with advanced cancer admitted to acute palliative care units (APCUs) at two tertiary care cancer centers. We used recursive partitioning analysis (RPA) to develop a prediction model for impending death in 3 days using admission data. We validated the model with 5 iterations of 10-fold cross-validation, and also applied the model to APCU days 2/3/4/5/6. Results Among 322/357 (90%) patients with complete data for all signs, the 3-day mortality was 24% on admission. The final model was based on 2 variables (palliative performance scale [PPS] and drooping of nasolabial fold) and had 4 terminal leaves: PPS≤20% and drooping of nasolabial fold present, PPS≤20% and drooping of nasolabial fold absent, PPS 30–60% and PPS ≥ 70%, with 3-day mortality of 94%, 42%, 16% and 3%, respectively. The diagnostic accuracy was 81% for the original tree, 80% for cross-validation, and 79%–84% for subsequent APCU days. Conclusion(s) We developed a diagnostic model for impending death within 3 days based on 2 objective bedside physical signs. This model was applicable to both APCU admission and subsequent days. Upon further external validation, this model may help clinicians to formulate the diagnosis of impending death. PMID:26218612
The Recursive Paradigm: Suppose We Already Knew.
ERIC Educational Resources Information Center
Maurer, Stephen B.
1995-01-01
Explains the recursive model in discrete mathematics through five examples and problems. Discusses the relationship between the recursive model, mathematical induction, and inductive reasoning and the relevance of these concepts in the school curriculum. Provides ideas for approaching this material with students. (Author/DDD)
Evaluating uses of data mining techniques in propensity score estimation: a simulation study.
Setoguchi, Soko; Schneeweiss, Sebastian; Brookhart, M Alan; Glynn, Robert J; Cook, E Francis
2008-06-01
In propensity score modeling, it is a standard practice to optimize the prediction of exposure status based on the covariate information. In a simulation study, we examined in what situations analyses based on various types of exposure propensity score (EPS) models using data mining techniques such as recursive partitioning (RP) and neural networks (NN) produce unbiased and/or efficient results. We simulated data for a hypothetical cohort study (n = 2000) with a binary exposure/outcome and 10 binary/continuous covariates with seven scenarios differing by non-linear and/or non-additive associations between exposure and covariates. EPS models used logistic regression (LR) (all possible main effects), RP1 (without pruning), RP2 (with pruning), and NN. We calculated c-statistics (C), standard errors (SE), and bias of exposure-effect estimates from outcome models for the PS-matched dataset. Data mining techniques yielded higher C than LR (mean: NN, 0.86; RPI, 0.79; RP2, 0.72; and LR, 0.76). SE tended to be greater in models with higher C. Overall bias was small for each strategy, although NN estimates tended to be the least biased. C was not correlated with the magnitude of bias (correlation coefficient [COR] = -0.3, p = 0.1) but increased SE (COR = 0.7, p < 0.001). Effect estimates from EPS models by simple LR were generally robust. NN models generally provided the least numerically biased estimates. C was not associated with the magnitude of bias but was with the increased SE.
Chang, M; Raimondi, S C; Ravindranath, Y; Carroll, A J; Camitta, B; Gresik, M V; Steuber, C P; Weinstein, H
2000-07-01
The purpose of the paper was to define clinical or biological features associated with the risk for treatment failure for children with acute myeloid leukemia. Data from 560 children and adolescents with newly diagnosed acute myeloid leukemia who entered the Pediatric Oncology Group Study 8821 from June 1988 to March 1993 were analyzed by univariate and recursive partitioning methods. Children with Down syndrome or acute promyelocytic leukemia were excluded from the study. Factors examined included age, number of leukocytes, sex, FAB morphologic subtype, cytogenetic findings, and extramedullary disease at the time of diagnosis. The overall event-free survival (EFS) rate at 4 years was 32.7% (s.e. = 2.2%). Age > or =2 years, fewer than 50 x 10(9)/I leukocytes, and t(8;21) or inv(16), and normal chromosomes were associated with higher rates of EFS (P value = 0.003, 0.049, 0.0003, 0.031, respectively), whereas the M5 subtype of AML (P value = 0.0003) and chromosome abnormalities other than t(8;21) and inv(16) were associated with lower rates of EFS (P value = 0.0001). Recursive partitioning analysis defined three groups of patients with widely varied prognoses: female patients with t(8;21), inv(16), or a normal karyotype (n = 89) had the best prognosis (4-year EFS = 55.1%, s.e. = 5.7%); male patients with t(8;21), inv(16) or normal chromosomes (n = 106) had an intermediate prognosis (4-year EFS = 38.1%, s.e. = 5.3%); patients with chromosome abnormalities other than t(8;21) and inv(16) (n = 233) had the worst prognosis (4-year EFS = 27.0%, s.e. = 3.2%). One hundred and thirty-two patients (24%) could not be grouped because of missing cytogenetic data, mainly due to inadequate marrow samples. The results suggest that pediatric patients with acute myeloid leukemia can be categorized into three potential risk groups for prognosis and that differences in sex and chromosomal abnormalities are associated with differences in estimates of EFS. These results are tentative and must be confirmed by a large prospective clinical trial.
Klein, M D; Rabbani, A B; Rood, K D; Durham, T; Rosenberg, N M; Bahr, M J; Thomas, R L; Langenburg, S E; Kuhns, L R
2001-09-01
The authors compared 3 quantitative methods for assisting clinicians in the differential diagnosis of abdominal pain in children, where the most common important endpoint is whether the patient has appendicitis. Pretest probability in different age and sex groups were determined to perform Bayesian analysis, binary logistic regression was used to determine which variables were statistically significantly likely to contribute to a diagnosis, and recursive partitioning was used to build decision trees with quantitative endpoints. The records of all children (1,208) seen at a large urban emergency department (ED) with a chief complaint of abdominal pain were immediately reviewed retrospectively (24 to 72 hours after the encounter). Attempts were made to contact all the patients' families to determine an accurate final diagnosis. A total of 1,008 (83%) families were contacted. Data were analyzed by calculation of the posttest probability, recursive partitioning, and binary logistic regression. In all groups the most common diagnosis was abdominal pain (ICD-9 Code 789). After this, however, the order of the most common final diagnoses for abdominal pain varied significantly. The entire group had a pretest probability of appendicitis of 0.06. This varied with age and sex from 0.02 in boys 2 to 5 years old to 0.16 in boys older than 12 years. In boys age 5 to 12, recursive partitioning and binary logistic regression agreed on guarding and anorexia as important variables. Guarding and tenderness were important in girls age 5 to 12. In boys age greater than 12, both agreed on guarding and anorexia. Using sensitivities and specificities from the literature, computed tomography improved the posttest probability for the group from.06 to.33; ultrasound improved it from.06 to.48; and barium enema improved it from.06 to.58. Knowing the pretest probabilities in a specific population allows the physician to evaluate the likely diagnoses first. Other quantitative methods can help judge how much importance a certain criterion should have in the decision making and how much a particular test is likely to influence the probability of a correct diagnosis. It now should be possible to make these sophisticated quantitative methods readily available to clinicians via the computer. Copyright 2001 by W.B. Saunders Company.
A Framework for Parallel Unstructured Grid Generation for Complex Aerodynamic Simulations
NASA Technical Reports Server (NTRS)
Zagaris, George; Pirzadeh, Shahyar Z.; Chrisochoides, Nikos
2009-01-01
A framework for parallel unstructured grid generation targeting both shared memory multi-processors and distributed memory architectures is presented. The two fundamental building-blocks of the framework consist of: (1) the Advancing-Partition (AP) method used for domain decomposition and (2) the Advancing Front (AF) method used for mesh generation. Starting from the surface mesh of the computational domain, the AP method is applied recursively to generate a set of sub-domains. Next, the sub-domains are meshed in parallel using the AF method. The recursive nature of domain decomposition naturally maps to a divide-and-conquer algorithm which exhibits inherent parallelism. For the parallel implementation, the Master/Worker pattern is employed to dynamically balance the varying workloads of each task on the set of available CPUs. Performance results by this approach are presented and discussed in detail as well as future work and improvements.
ERIC Educational Resources Information Center
Tsai, Tien-Lung; Shau, Wen-Yi; Hu, Fu-Chang
2006-01-01
This article generalizes linear path analysis (PA) and simultaneous equations models (SiEM) to deal with mixed responses of different types in a recursive or triangular system. An efficient instrumental variable (IV) method for estimating the structural coefficients of a 2-equation partially recursive generalized path analysis (GPA) model and…
Gülbaş, Hülya; Erkal, Haldun Sükrü; Serin, Meltem
2006-04-01
This study evaluates the use of recursive partitioning analysis (RPA) grouping in an attempt to predict the survival probabilities in patients with brain metastases from non-small-cell lung cancer (NSCLC). Seventy-two patients with brain metastases from NSCLC treated with radiation therapy were included in the study. Sixty-three patients were male and nine patients were female. Their median age was 57 years and their median Karnofsky performance status was 70. At the time of brain metastases, there was no evidence of the intrathoracic disease in 27 patients and the extrathoracic disease was limited to the intracranial disease in 42 patients. In accordance with RPA grouping, 12 patients were in Group 1, 24 patients were in Group 2, and 36 patients were in Group 3. Radiation therapy was delivered to the whole brain at a dose of 30 Gy in 10 fractions in most of the patients. The median survival time was 7 months for Group 1, 5 months for Group 2 and 3 months for Group 3. The survival probability at 1 year was 50% for Group 1, 26% for Group 2 and 14% for Group 3. This study presents evidence supporting the use of RPA grouping in an attempt to predict the survival probabilities in patients with brain metastases from NSCLC.
Atmospheric turbulence simulation for Shuttle orbiter
NASA Technical Reports Server (NTRS)
Tatom, F. B.; Smith, S. R.
1979-01-01
An improved non-recursive model for atmospheric turbulence along the flight path of the Shuttle Orbiter is developed which provides for simulation of instantaneous vertical and horizontal gusts at the vehicle center-of-gravity, and also for simulation of instantaneous gust gradients. Based on this model the time series for both gusts and gust gradients are generated and stored on a series of magnetic tapes. Section 2 provides a description of the various technical considerations associated with the turbulence simulation model. Included in this section are descriptions of the digital filter simulation model, the von Karman spectra with finite upper limits, and the final non recursive turbulence simulation model which was used to generate the time series. Section 2 provides a description of the various technical considerations associated with the turbulence simulation model. Included in this section are descriptions of the digial filter simulation model, the von Karman spectra with finite upper limits, and the final non recursive turbulence simulation model which was used to generate the time series. Section 3 provides a description of the time series as currently recorded on magnetic tape. Conclusions and recommendations are presented in Section 4.
Recursion Removal as an Instructional Method to Enhance the Understanding of Recursion Tracing
ERIC Educational Resources Information Center
Velázquez-Iturbide, J. Ángel; Castellanos, M. Eugenia; Hijón-Neira, Raquel
2016-01-01
Recursion is one of the most difficult programming topics for students. In this paper, an instructional method is proposed to enhance students' understanding of recursion tracing. The proposal is based on the use of rules to translate linear recursion algorithms into equivalent, iterative ones. The paper has two main contributions: the…
NASA Astrophysics Data System (ADS)
Karczewicz, Marta; Chen, Peisong; Joshi, Rajan; Wang, Xianglin; Chien, Wei-Jung; Panchal, Rahul; Coban, Muhammed; Chong, In Suk; Reznik, Yuriy A.
2011-01-01
This paper describes video coding technology proposal submitted by Qualcomm Inc. in response to a joint call for proposal (CfP) issued by ITU-T SG16 Q.6 (VCEG) and ISO/IEC JTC1/SC29/WG11 (MPEG) in January 2010. Proposed video codec follows a hybrid coding approach based on temporal prediction, followed by transform, quantization, and entropy coding of the residual. Some of its key features are extended block sizes (up to 64x64), recursive integer transforms, single pass switched interpolation filters with offsets (single pass SIFO), mode dependent directional transform (MDDT) for intra-coding, luma and chroma high precision filtering, geometry motion partitioning, adaptive motion vector resolution. It also incorporates internal bit-depth increase (IBDI), and modified quadtree based adaptive loop filtering (QALF). Simulation results are presented for a variety of bit rates, resolutions and coding configurations to demonstrate the high compression efficiency achieved by the proposed video codec at moderate level of encoding and decoding complexity. For random access hierarchical B configuration (HierB), the proposed video codec achieves an average BD-rate reduction of 30.88c/o compared to the H.264/AVC alpha anchor. For low delay hierarchical P (HierP) configuration, the proposed video codec achieves an average BD-rate reduction of 32.96c/o and 48.57c/o, compared to the H.264/AVC beta and gamma anchors, respectively.
Kazemi, Mahdi; Arefi, Mohammad Mehdi
2017-03-01
In this paper, an online identification algorithm is presented for nonlinear systems in the presence of output colored noise. The proposed method is based on extended recursive least squares (ERLS) algorithm, where the identified system is in polynomial Wiener form. To this end, an unknown intermediate signal is estimated by using an inner iterative algorithm. The iterative recursive algorithm adaptively modifies the vector of parameters of the presented Wiener model when the system parameters vary. In addition, to increase the robustness of the proposed method against variations, a robust RLS algorithm is applied to the model. Simulation results are provided to show the effectiveness of the proposed approach. Results confirm that the proposed method has fast convergence rate with robust characteristics, which increases the efficiency of the proposed model and identification approach. For instance, the FIT criterion will be achieved 92% in CSTR process where about 400 data is used. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
HARP: A Dynamic Inertial Spectral Partitioner
NASA Technical Reports Server (NTRS)
Simon, Horst D.; Sohn, Andrew; Biswas, Rupak
1997-01-01
Partitioning unstructured graphs is central to the parallel solution of computational science and engineering problems. Spectral partitioners, such recursive spectral bisection (RSB), have proven effecfive in generating high-quality partitions of realistically-sized meshes. The major problem which hindered their wide-spread use was their long execution times. This paper presents a new inertial spectral partitioner, called HARP. The main objective of the proposed approach is to quickly partition the meshes at runtime in a manner that works efficiently for real applications in the context of distributed-memory machines. The underlying principle of HARP is to find the eigenvectors of the unpartitioned vertices and then project them onto the eigerivectors of the original mesh. Results for various meshes ranging in size from 1000 to 100,000 vertices indicate that HARP can indeed partition meshes rapidly at runtime. Experimental results show that our largest mesh can be partitioned sequentially in only a few seconds on an SP2 which is several times faster than other spectral partitioners while maintaining the solution quality of the proven RSB method. A parallel WI version of HARP has also been implemented on IBM SP2 and Cray T3E. Parallel HARP, running on 64 processors SP2 and T3E, can partition a mesh containing more than 100,000 vertices into 64 subgrids in about half a second. These results indicate that graph partitioning can now be truly embedded in dynamically-changing real-world applications.
Recursive flexible multibody system dynamics using spatial operators
NASA Technical Reports Server (NTRS)
Jain, A.; Rodriguez, G.
1992-01-01
This paper uses spatial operators to develop new spatially recursive dynamics algorithms for flexible multibody systems. The operator description of the dynamics is identical to that for rigid multibody systems. Assumed-mode models are used for the deformation of each individual body. The algorithms are based on two spatial operator factorizations of the system mass matrix. The first (Newton-Euler) factorization of the mass matrix leads to recursive algorithms for the inverse dynamics, mass matrix evaluation, and composite-body forward dynamics for the systems. The second (innovations) factorization of the mass matrix, leads to an operator expression for the mass matrix inverse and to a recursive articulated-body forward dynamics algorithm. The primary focus is on serial chains, but extensions to general topologies are also described. A comparison of computational costs shows that the articulated-body, forward dynamics algorithm is much more efficient than the composite-body algorithm for most flexible multibody systems.
Teaching and Learning Recursive Programming: A Review of the Research Literature
ERIC Educational Resources Information Center
McCauley, Renée; Grissom, Scott; Fitzgerald, Sue; Murphy, Laurie
2015-01-01
Hundreds of articles have been published on the topics of teaching and learning recursion, yet fewer than 50 of them have published research results. This article surveys the computing education research literature and presents findings on challenges students encounter in learning recursion, mental models students develop as they learn recursion,…
Introduction in IND and recursive partitioning
NASA Technical Reports Server (NTRS)
Buntine, Wray; Caruana, Rich
1991-01-01
This manual describes the IND package for learning tree classifiers from data. The package is an integrated C and C shell re-implementation of tree learning routines such as CART, C4, and various MDL and Bayesian variations. The package includes routines for experiment control, interactive operation, and analysis of tree building. The manual introduces the system and its many options, gives a basic review of tree learning, contains a guide to the literature and a glossary, and lists the manual pages for the routines and instructions on installation.
A mean field neural network for hierarchical module placement
NASA Technical Reports Server (NTRS)
Unaltuna, M. Kemal; Pitchumani, Vijay
1992-01-01
This paper proposes a mean field neural network for the two-dimensional module placement problem. An efficient coding scheme with only O(N log N) neurons is employed where N is the number of modules. The neurons are evolved in groups of N in log N iteration steps such that the circuit is recursively partitioned in alternating vertical and horizontal directions. In our simulations, the network was able to find optimal solutions to all test problems with up to 128 modules.
Bayesian Weibull tree models for survival analysis of clinico-genomic data
Clarke, Jennifer; West, Mike
2008-01-01
An important goal of research involving gene expression data for outcome prediction is to establish the ability of genomic data to define clinically relevant risk factors. Recent studies have demonstrated that microarray data can successfully cluster patients into low- and high-risk categories. However, the need exists for models which examine how genomic predictors interact with existing clinical factors and provide personalized outcome predictions. We have developed clinico-genomic tree models for survival outcomes which use recursive partitioning to subdivide the current data set into homogeneous subgroups of patients, each with a specific Weibull survival distribution. These trees can provide personalized predictive distributions of the probability of survival for individuals of interest. Our strategy is to fit multiple models; within each model we adopt a prior on the Weibull scale parameter and update this prior via Empirical Bayes whenever the sample is split at a given node. The decision to split is based on a Bayes factor criterion. The resulting trees are weighted according to their relative likelihood values and predictions are made by averaging over models. In a pilot study of survival in advanced stage ovarian cancer we demonstrate that clinical and genomic data are complementary sources of information relevant to survival, and we use the exploratory nature of the trees to identify potential genomic biomarkers worthy of further study. PMID:18618012
Ultra-precise tracking control of piezoelectric actuators via a fuzzy hysteresis model.
Li, Pengzhi; Yan, Feng; Ge, Chuan; Zhang, Mingchao
2012-08-01
In this paper, a novel Takagi-Sugeno (T-S) fuzzy system based model is proposed for hysteresis in piezoelectric actuators. The antecedent and consequent structures of the fuzzy hysteresis model (FHM) can be, respectively, identified on-line through uniform partition approach and recursive least squares (RLS) algorithm. With respect to controller design, the inverse of FHM is used to develop a feedforward controller to cancel out the hysteresis effect. Then a hybrid controller is designed for high-performance tracking. It combines the feedforward controller with a proportional integral differential (PID) controller favourable for stabilization and disturbance compensation. To achieve nanometer-scale tracking precision, the enhanced adaptive hybrid controller is further developed. It uses real-time input and output data to update FHM, thus changing the feedforward controller to suit the on-site hysteresis character of the piezoelectric actuator. Finally, as to 3 cases of 50 Hz sinusoidal, multiple frequency sinusoidal and 50 Hz triangular trajectories tracking, experimental results demonstrate the efficiency of the proposed controllers. Especially, being only 0.35% of the maximum desired displacement, the maximum error of 50 Hz sinusoidal tracking is greatly reduced to 5.8 nm, which clearly shows the ultra-precise nanometer-scale tracking performance of the developed adaptive hybrid controller.
Teaching and learning recursive programming: a review of the research literature
NASA Astrophysics Data System (ADS)
McCauley, Renée; Grissom, Scott; Fitzgerald, Sue; Murphy, Laurie
2015-01-01
Hundreds of articles have been published on the topics of teaching and learning recursion, yet fewer than 50 of them have published research results. This article surveys the computing education research literature and presents findings on challenges students encounter in learning recursion, mental models students develop as they learn recursion, and best practices in introducing recursion. Effective strategies for introducing the topic include using different contexts such as recurrence relations, programming examples, fractal images, and a description of how recursive methods are processed using a call stack. Several studies compared the efficacy of introducing iteration before recursion and vice versa. The paper concludes with suggestions for future research into how students learn and understand recursion, including a look at the possible impact of instructor attitude and newer pedagogies.
Goodman, Katherine E; Lessler, Justin; Cosgrove, Sara E; Harris, Anthony D; Lautenbach, Ebbing; Han, Jennifer H; Milstone, Aaron M; Massey, Colin J; Tamma, Pranita D
2016-10-01
Timely identification of extended-spectrum β-lactamase (ESBL) bacteremia can improve clinical outcomes while minimizing unnecessary use of broad-spectrum antibiotics, including carbapenems. However, most clinical microbiology laboratories currently require at least 24 additional hours from the time of microbial genus and species identification to confirm ESBL production. Our objective was to develop a user-friendly decision tree to predict which organisms are ESBL producing, to guide appropriate antibiotic therapy. We included patients ≥18 years of age with bacteremia due to Escherichia coli or Klebsiella species from October 2008 to March 2015 at Johns Hopkins Hospital. Isolates with ceftriaxone minimum inhibitory concentrations ≥2 µg/mL underwent ESBL confirmatory testing. Recursive partitioning was used to generate a decision tree to determine the likelihood that a bacteremic patient was infected with an ESBL producer. Discrimination of the original and cross-validated models was evaluated using receiver operating characteristic curves and by calculation of C-statistics. A total of 1288 patients with bacteremia met eligibility criteria. For 194 patients (15%), bacteremia was due to a confirmed ESBL producer. The final classification tree for predicting ESBL-positive bacteremia included 5 predictors: history of ESBL colonization/infection, chronic indwelling vascular hardware, age ≥43 years, recent hospitalization in an ESBL high-burden region, and ≥6 days of antibiotic exposure in the prior 6 months. The decision tree's positive and negative predictive values were 90.8% and 91.9%, respectively. Our findings suggest that a clinical decision tree can be used to estimate a bacteremic patient's likelihood of infection with ESBL-producing bacteria. Recursive partitioning offers a practical, user-friendly approach for addressing important diagnostic questions. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.
Rosen, Lisa M.; Liu, Tao; Merchant, Roland C.
2016-01-01
BACKGROUND Blood and body fluid exposures are frequently evaluated in emergency departments (EDs). However, efficient and effective methods for estimating their incidence are not yet established. OBJECTIVE Evaluate the efficiency and accuracy of estimating statewide ED visits for blood or body fluid exposures using International Classification of Diseases, Ninth Revision (ICD-9), code searches. DESIGN Secondary analysis of a database of ED visits for blood or body fluid exposure. SETTING EDs of 11 civilian hospitals throughout Rhode Island from January 1, 1995, through June 30, 2001. PATIENTS Patients presenting to the ED for possible blood or body fluid exposure were included, as determined by prespecified ICD-9 codes. METHODS Positive predictive values (PPVs) were estimated to determine the ability of 10 ICD-9 codes to distinguish ED visits for blood or body fluid exposure from ED visits that were not for blood or body fluid exposure. Recursive partitioning was used to identify an optimal subset of ICD-9 codes for this purpose. Random-effects logistic regression modeling was used to examine variations in ICD-9 coding practices and styles across hospitals. Cluster analysis was used to assess whether the choice of ICD-9 codes was similar across hospitals. RESULTS The PPV for the original 10 ICD-9 codes was 74.4% (95% confidence interval [CI], 73.2%–75.7%), whereas the recursive partitioning analysis identified a subset of 5 ICD-9 codes with a PPV of 89.9% (95% CI, 88.9%–90.8%) and a misclassification rate of 10.1%. The ability, efficiency, and use of the ICD-9 codes to distinguish types of ED visits varied across hospitals. CONCLUSIONS Although an accurate subset of ICD-9 codes could be identified, variations across hospitals related to hospital coding style, efficiency, and accuracy greatly affected estimates of the number of ED visits for blood or body fluid exposure. PMID:22561713
A diagnostic model for impending death in cancer patients: Preliminary report.
Hui, David; Hess, Kenneth; dos Santos, Renata; Chisholm, Gary; Bruera, Eduardo
2015-11-01
Several highly specific bedside physical signs associated with impending death within 3 days for patients with advanced cancer were recently identified. A diagnostic model for impending death based on these physical signs was developed and assessed. Sixty-two physical signs were systematically documented every 12 hours from admission to death or discharge for 357 patients with advanced cancer who were admitted to acute palliative care units (APCUs) at 2 tertiary care cancer centers. Recursive partitioning analysis was used to develop a prediction model for impending death within 3 days with admission data. The model was validated with 5 iterations of 10-fold cross-validation, and the model was also applied to APCU days 2 to 6. For the 322 of 357 patients (90%) with complete data for all signs, the 3-day mortality rate was 24% on admission. The final model was based on 2 variables (Palliative Performance Scale [PPS] and drooping of nasolabial folds) and had 4 terminal leaves: PPS score ≤ 20% and drooping of nasolabial folds present, PPS score ≤ 20% and drooping of nasolabial folds absent, PPS score of 30% to 60%, and PPS score ≥ 70%. The 3-day mortality rates were 94%, 42%, 16%, and 3%, respectively. The diagnostic accuracy was 81% for the original tree, 80% for cross-validation, and 79% to 84% for subsequent APCU days. Based on 2 objective bedside physical signs, a diagnostic model was developed for impending death within 3 days. This model was applicable to both APCU admission and subsequent days. Upon further external validation, this model may help clinicians to formulate the diagnosis of impending death. © 2015 American Cancer Society.
Hypoglycemia early alarm systems based on recursive autoregressive partial least squares models.
Bayrak, Elif Seyma; Turksoy, Kamuran; Cinar, Ali; Quinn, Lauretta; Littlejohn, Elizabeth; Rollins, Derrick
2013-01-01
Hypoglycemia caused by intensive insulin therapy is a major challenge for artificial pancreas systems. Early detection and prevention of potential hypoglycemia are essential for the acceptance of fully automated artificial pancreas systems. Many of the proposed alarm systems are based on interpretation of recent values or trends in glucose values. In the present study, subject-specific linear models are introduced to capture glucose variations and predict future blood glucose concentrations. These models can be used in early alarm systems of potential hypoglycemia. A recursive autoregressive partial least squares (RARPLS) algorithm is used to model the continuous glucose monitoring sensor data and predict future glucose concentrations for use in hypoglycemia alarm systems. The partial least squares models constructed are updated recursively at each sampling step with a moving window. An early hypoglycemia alarm algorithm using these models is proposed and evaluated. Glucose prediction models based on real-time filtered data has a root mean squared error of 7.79 and a sum of squares of glucose prediction error of 7.35% for six-step-ahead (30 min) glucose predictions. The early alarm systems based on RARPLS shows good performance. A sensitivity of 86% and a false alarm rate of 0.42 false positive/day are obtained for the early alarm system based on six-step-ahead predicted glucose values with an average early detection time of 25.25 min. The RARPLS models developed provide satisfactory glucose prediction with relatively smaller error than other proposed algorithms and are good candidates to forecast and warn about potential hypoglycemia unless preventive action is taken far in advance. © 2012 Diabetes Technology Society.
Hypoglycemia Early Alarm Systems Based on Recursive Autoregressive Partial Least Squares Models
Bayrak, Elif Seyma; Turksoy, Kamuran; Cinar, Ali; Quinn, Lauretta; Littlejohn, Elizabeth; Rollins, Derrick
2013-01-01
Background Hypoglycemia caused by intensive insulin therapy is a major challenge for artificial pancreas systems. Early detection and prevention of potential hypoglycemia are essential for the acceptance of fully automated artificial pancreas systems. Many of the proposed alarm systems are based on interpretation of recent values or trends in glucose values. In the present study, subject-specific linear models are introduced to capture glucose variations and predict future blood glucose concentrations. These models can be used in early alarm systems of potential hypoglycemia. Methods A recursive autoregressive partial least squares (RARPLS) algorithm is used to model the continuous glucose monitoring sensor data and predict future glucose concentrations for use in hypoglycemia alarm systems. The partial least squares models constructed are updated recursively at each sampling step with a moving window. An early hypoglycemia alarm algorithm using these models is proposed and evaluated. Results Glucose prediction models based on real-time filtered data has a root mean squared error of 7.79 and a sum of squares of glucose prediction error of 7.35% for six-step-ahead (30 min) glucose predictions. The early alarm systems based on RARPLS shows good performance. A sensitivity of 86% and a false alarm rate of 0.42 false positive/day are obtained for the early alarm system based on six-step-ahead predicted glucose values with an average early detection time of 25.25 min. Conclusions The RARPLS models developed provide satisfactory glucose prediction with relatively smaller error than other proposed algorithms and are good candidates to forecast and warn about potential hypoglycemia unless preventive action is taken far in advance. PMID:23439179
Raffensperger, Jeff P.; Baker, Anna C.; Blomquist, Joel D.; Hopple, Jessica A.
2017-06-26
Quantitative estimates of base flow are necessary to address questions concerning the vulnerability and response of the Nation’s water supply to natural and human-induced change in environmental conditions. An objective of the U.S. Geological Survey National Water-Quality Assessment Project is to determine how hydrologic systems are affected by watershed characteristics, including land use, land cover, water use, climate, and natural characteristics (geology, soil type, and topography). An important component of any hydrologic system is base flow, generally described as the part of streamflow that is sustained between precipitation events, fed to stream channels by delayed (usually subsurface) pathways, and more specifically as the volumetric discharge of water, estimated at a measurement site or gage at the watershed scale, which represents groundwater that discharges directly or indirectly to stream reaches and is then routed to the measurement point.Hydrograph separation using a recursive digital filter was applied to 225 sites in the Chesapeake Bay watershed. The recursive digital filter was chosen for the following reasons: it is based in part on the assumption that groundwater acts as a linear reservoir, and so has a physical basis; it has only two adjustable parameters (alpha, obtained directly from recession analysis, and beta, the maximum value of the base-flow index that can be modeled by the filter), which can be determined objectively and with the same physical basis of groundwater reservoir linearity, or that can be optimized by applying a chemical-mass-balance constraint. Base-flow estimates from the recursive digital filter were compared with those from five other hydrograph-separation methods with respect to two metrics: the long-term average fraction of streamflow that is base flow, or base-flow index, and the fraction of days where streamflow is entirely base flow. There was generally good correlation between the methods, with some biased slightly high and some biased slightly low compared to the recursive digital filter. There were notable differences between the days at base flow estimated by the different methods, with the recursive digital filter having a smaller range of values. This was attributed to how the different methods determine cessation of quickflow (the part of streamflow which is not base flow).For 109 Chesapeake Bay watershed sites with available specific conductance data, the parameters of the filter were optimized using a chemical-mass-balance constraint and two different models for the time-dependence of base-flow specific conductance. Sixty-seven models were deemed acceptable and the results compared well with non-optimized results. There are a number of limitations to the optimal hydrograph-separation approach resulting from the assumptions implicit in the conceptual model, the mathematical model, and the approach taken to impose chemical mass balance (including tracer choice). These limitations may be evidenced by poor model results; conversely, poor model fit may provide an indication that two-component separation does not adequately describe the hydrologic system’s runoff response.The results of this study may be used to address a number of questions regarding the role of groundwater in understanding past changes in stream-water quality and forecasting possible future changes, such as the timing and magnitude of land-use and management practice effects on stream and groundwater quality. Ongoing and future modeling efforts may benefit from the estimates of base flow as calibration targets or as a means to filter chemical data to model base-flow loads and trends. Ultimately, base-flow estimation might provide the basis for future work aimed at improving the ability to quantify groundwater discharge, not only at the scale of a gaged watershed, but at the scale of individual reaches as well.
In silico models for the prediction of dose-dependent human hepatotoxicity
NASA Astrophysics Data System (ADS)
Cheng, Ailan; Dixon, Steven L.
2003-12-01
The liver is extremely vulnerable to the effects of xenobiotics due to its critical role in metabolism. Drug-induced hepatotoxicity may involve any number of different liver injuries, some of which lead to organ failure and, ultimately, patient death. Understandably, liver toxicity is one of the most important dose-limiting considerations in the drug development cycle, yet there remains a serious shortage of methods to predict hepatotoxicity from chemical structure. We discuss our latest findings in this area and present a new, fully general in silico model which is able to predict the occurrence of dose-dependent human hepatotoxicity with greater than 80% accuracy. Utilizing an ensemble recursive partitioning approach, the model classifies compounds as toxic or non-toxic and provides a confidence level to indicate which predictions are most likely to be correct. Only 2D structural information is required and predictions can be made quite rapidly, so this approach is entirely appropriate for data mining applications and for profiling large synthetic and/or virtual libraries.
Automatic Tortuosity-Based Retinopathy of Prematurity Screening System
NASA Astrophysics Data System (ADS)
Sukkaew, Lassada; Uyyanonvara, Bunyarit; Makhanov, Stanislav S.; Barman, Sarah; Pangputhipong, Pannet
Retinopathy of Prematurity (ROP) is an infant disease characterized by increased dilation and tortuosity of the retinal blood vessels. Automatic tortuosity evaluation from retinal digital images is very useful to facilitate an ophthalmologist in the ROP screening and to prevent childhood blindness. This paper proposes a method to automatically classify the image into tortuous and non-tortuous. The process imitates expert ophthalmologists' screening by searching for clearly tortuous vessel segments. First, a skeleton of the retinal blood vessels is extracted from the original infant retinal image using a series of morphological operators. Next, we propose to partition the blood vessels recursively using an adaptive linear interpolation scheme. Finally, the tortuosity is calculated based on the curvature of the resulting vessel segments. The retinal images are then classified into two classes using segments characterized by the highest tortuosity. For an optimal set of training parameters the prediction is as high as 100%.
Structural Group-based Auditing of Missing Hierarchical Relationships in UMLS
Chen, Yan; Gu, Huanying(Helen); Perl, Yehoshua; Geller, James
2009-01-01
The Metathesaurus of the UMLS was created by integrating various source terminologies. The inter-concept relationships were either integrated into the UMLS from the source terminologies or specially generated. Due to the extensive size and inherent complexity of the Metathesaurus, the accidental omission of some hierarchical relationships was inevitable. We present a recursive procedure which allows a human expert, with the support of an algorithm, to locate missing hierarchical relationships. The procedure starts with a group of concepts with exactly the same (correct) semantic type assignments. It then partitions the concepts, based on child-of hierarchical relationships, into smaller, singly rooted, hierarchically connected subgroups. The auditor only needs to focus on the subgroups with very few concepts and their concepts with semantic type reassignments. The procedure was evaluated by comparing it with a comprehensive manual audit and it exhibits a perfect error recall. PMID:18824248
Race and acute abdominal pain in a pediatric emergency department.
Caperell, Kerry; Pitetti, Raymond; Cross, Keith P
2013-06-01
To investigate the demographic and clinical factors of children who present to the pediatric emergency department (ED) with abdominal pain and their outcomes. A review of the electronic medical record of patients 1 to 18 years old, who presented to the Children's Hospital of Pittsburgh ED with a complaint of abdominal pain over the course of 2 years, was conducted. Demographic and clinical characteristics, as well as visit outcomes, were reviewed. Subjects were grouped by age, race, and gender. Results of evaluation, treatment, and clinical outcomes were compared between groups by using multivariate analysis and recursive partitioning. There were 9424 patient visits during the study period that met inclusion and exclusion criteria. Female gender comprised 61% of African American children compared with 52% of white children. Insurance was characterized as private for 75% of white and 37% of African American children. A diagnosis of appendicitis was present in 1.9% of African American children and 5.1% of white children. Older children were more likely to be admitted and have an operation associated with their ED visit. Appendicitis was uncommon in younger children. Constipation was commonly diagnosed. Multivariate analysis by diagnosis as well as recursive partitioning analysis did not reflect any racial differences in evaluation, treatment, or outcome. Constipation is the most common diagnosis in children presenting with abdominal pain. Our data demonstrate that no racial differences exist in the evaluation, treatment, and disposition of children with abdominal pain.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Videtic, Gregory M.M., E-mail: videtig@ccf.or; Reddy, Chandana A.; Chao, Samuel T.
Purpose: To explore whether gender and race influence survival in non-small-cell lung cancer (NSCLC) in patients with brain metastases, using our large single-institution brain tumor database and the Radiation Therapy Oncology Group recursive partitioning analysis (RPA) brain metastases classification. Methods and materials: A retrospective review of a single-institution brain metastasis database for the interval January 1982 to September 2004 yielded 835 NSCLC patients with brain metastases for analysis. Patient subsets based on combinations of gender, race, and RPA class were then analyzed for survival differences. Results: Median follow-up was 5.4 months (range, 0-122.9 months). There were 485 male patients (M)more » (58.4%) and 346 female patients (F) (41.6%). Of the 828 evaluable patients (99%), 143 (17%) were black/African American (B) and 685 (83%) were white/Caucasian (W). Median survival time (MST) from time of brain metastasis diagnosis for all patients was 5.8 months. Median survival time by gender (F vs. M) and race (W vs. B) was 6.3 months vs. 5.5 months (p = 0.013) and 6.0 months vs. 5.2 months (p = 0.08), respectively. For patients stratified by RPA class, gender, and race, MST significantly favored BFs over BMs in Class II: 11.2 months vs. 4.6 months (p = 0.021). On multivariable analysis, significant variables were gender (p = 0.041, relative risk [RR] 0.83) and RPA class (p < 0.0001, RR 0.28 for I vs. III; p < 0.0001, RR 0.51 for II vs. III) but not race. Conclusions: Gender significantly influences NSCLC brain metastasis survival. Race trended to significance in overall survival but was not significant on multivariable analysis. Multivariable analysis identified gender and RPA classification as significant variables with respect to survival.« less
Xu, Ping; Krischer, Jeffrey P
2016-06-01
To define prognostic classification factors associated with the progression from single to multiple autoantibodies, multiple autoantibodies to dysglycemia, and dysglycemia to type 1 diabetes onset in relatives of individuals with type 1 diabetes. Three distinct cohorts of subjects from the Type 1 Diabetes TrialNet Pathway to Prevention Study were investigated separately. A recursive partitioning analysis (RPA) was used to determine the risk classes. Clinical characteristics, including genotype, antibody titers, and metabolic markers were analyzed. Age and GAD65 autoantibody (GAD65Ab) titers defined three risk classes for progression from single to multiple autoantibodies. The 5-year risk was 11% for those subjects >16 years of age with low GAD65Ab titers, 29% for those ≤16 years of age with low GAD65Ab titers, and 45% for those subjects with high GAD65Ab titers regardless of age. Progression to dysglycemia was associated with islet antigen 2 Ab titers, and 2-h glucose and fasting C-peptide levels. The 5-year risk is 28%, 39%, and 51% for respective risk classes defined by the three predictors. Progression to type 1 diabetes was associated with the number of positive autoantibodies, peak C-peptide level, HbA1c level, and age. Four risk classes defined by RPA had a 5-year risk of 9%, 33%, 62%, and 80%, respectively. The use of RPA offered a new classification approach that could predict the timing of transitions from one preclinical stage to the next in the development of type 1 diabetes. Using these RPA classes, new prevention techniques can be tailored based on the individual prognostic risk characteristics at different preclinical stages. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.
Alternatives for jet engine control
NASA Technical Reports Server (NTRS)
Sain, M. K.
1983-01-01
Tensor model order reduction, recursive tensor model identification, input design for tensor model identification, software development for nonlinear feedback control laws based upon tensors, and development of the CATNAP software package for tensor modeling, identification and simulation were studied. The last of these are discussed.
Strong scaling and speedup to 16,384 processors in cardiac electro-mechanical simulations.
Reumann, Matthias; Fitch, Blake G; Rayshubskiy, Aleksandr; Keller, David U J; Seemann, Gunnar; Dossel, Olaf; Pitman, Michael C; Rice, John J
2009-01-01
High performance computing is required to make feasible simulations of whole organ models of the heart with biophysically detailed cellular models in a clinical setting. Increasing model detail by simulating electrophysiology and mechanical models increases computation demands. We present scaling results of an electro - mechanical cardiac model of two ventricles and compare them to our previously published results using an electrophysiological model only. The anatomical data-set was given by both ventricles of the Visible Female data-set in a 0.2 mm resolution. Fiber orientation was included. Data decomposition for the distribution onto the distributed memory system was carried out by orthogonal recursive bisection. Load weight ratios for non-tissue vs. tissue elements used in the data decomposition were 1:1, 1:2, 1:5, 1:10, 1:25, 1:38.85, 1:50 and 1:100. The ten Tusscher et al. (2004) electrophysiological cell model was used and the Rice et al. (1999) model for the computation of the calcium transient dependent force. Scaling results for 512, 1024, 2048, 4096, 8192 and 16,384 processors were obtained for 1 ms simulation time. The simulations were carried out on an IBM Blue Gene/L supercomputer. The results show linear scaling from 512 to 16,384 processors with speedup factors between 1.82 and 2.14 between partitions. The most optimal load ratio was 1:25 for on all partitions. However, a shift towards load ratios with higher weight for the tissue elements can be recognized as can be expected when adding computational complexity to the model while keeping the same communication setup. This work demonstrates that it is potentially possible to run simulations of 0.5 s using the presented electro-mechanical cardiac model within 1.5 hours.
Diagnostic performance and safety of a three-dimensional 14-core systematic biopsy method.
Takeshita, Hideki; Kawakami, Satoru; Numao, Noboru; Sakura, Mizuaki; Tatokoro, Manabu; Yamamoto, Shinya; Kijima, Toshiki; Komai, Yoshinobu; Saito, Kazutaka; Koga, Fumitaka; Fujii, Yasuhisa; Fukui, Iwao; Kihara, Kazunori
2015-03-01
To investigate the diagnostic performance and safety of a three-dimensional 14-core biopsy (3D14PBx) method, which is a combination of the transrectal six-core and transperineal eight-core biopsy methods. Between December 2005 and August 2010, 1103 men underwent 3D14PBx at our institutions and were analysed prospectively. Biopsy criteria included a PSA level of 2.5-20 ng/mL or abnormal digital rectal examination (DRE) findings, or both. The primary endpoint of the study was diagnostic performance and the secondary endpoint was safety. We applied recursive partitioning to the entire study cohort to delineate the unique contribution of each sampling site to overall and clinically significant cancer detection. Prostate cancer was detected in 503 of the 1103 patients (45.6%). Age, family history of prostate cancer, DRE, PSA, percentage of free PSA and prostate volume were associated with the positive biopsy results significantly and independently. Of the 503 cancers detected, 39 (7.8%) were clinically locally advanced (≥cT3a), 348 (69%) had a biopsy Gleason score (GS) of ≥7, and 463 (92%) met the definition of biopsy-based significant cancer. Recursive partitioning analysis showed that each sampling site contributed uniquely to both the overall and the biopsy-based significant cancer detection rate of the 3D14PBx method. The overall cancer-positive rate of each sampling site ranged from 14.5% in the transrectal far lateral base to 22.8% in the transrectal far lateral apex. As of August 2010, 210 patients (42%) had undergone radical prostatectomy, of whom 55 (26%) were found to have pathologically non-organ-confined disease, 174 (83%) had prostatectomy GS ≥7 and 185 (88%) met the definition of prostatectomy-based significant cancer. This is the first prospective analysis of the diagnostic performance of an extended biopsy method, which is a simplified version of the somewhat redundant super-extended three-dimensional 26-core biopsy. As expected, each sampling site uniquely contributed not only to overall cancer detection, but also to significant cancer detection. 3D14PBx is a feasible systematic biopsy method in men with PSA <20 ng/mL. © 2014 The Authors. BJU International © 2014 BJU International.
High effective inverse dynamics modelling for dual-arm robot
NASA Astrophysics Data System (ADS)
Shen, Haoyu; Liu, Yanli; Wu, Hongtao
2018-05-01
To deal with the problem of inverse dynamics modelling for dual arm robot, a recursive inverse dynamics modelling method based on decoupled natural orthogonal complement is presented. In this model, the concepts and methods of Decoupled Natural Orthogonal Complement matrices are used to eliminate the constraint forces in the Newton-Euler kinematic equations, and the screws is used to express the kinematic and dynamics variables. On this basis, the paper has developed a special simulation program with symbol software of Mathematica and conducted a simulation research on the a dual-arm robot. Simulation results show that the proposed method based on decoupled natural orthogonal complement can save an enormous amount of CPU time that was spent in computing compared with the recursive Newton-Euler kinematic equations and the results is correct and reasonable, which can verify the reliability and efficiency of the method.
Strong monogamy of bipartite and genuine multipartite entanglement: the Gaussian case.
Adesso, Gerardo; Illuminati, Fabrizio
2007-10-12
We demonstrate the existence of general constraints on distributed quantum correlations, which impose a trade-off on bipartite and multipartite entanglement at once. For all N-mode Gaussian states under permutation invariance, we establish exactly a monogamy inequality, stronger than the traditional one, that by recursion defines a proper measure of genuine N-partite entanglement. Strong monogamy holds as well for subsystems of arbitrary size, and the emerging multipartite entanglement measure is found to be scale invariant. We unveil its operational connection with the optimal fidelity of continuous variable teleportation networks.
Introduction to IND and recursive partitioning, version 1.0
NASA Technical Reports Server (NTRS)
Buntine, Wray; Caruana, Rich
1991-01-01
This manual describes the IND package for learning tree classifiers from data. The package is an integrated C and C shell re-implementation of tree learning routines such as CART, C4, and various MDL and Bayesian variations. The package includes routines for experiment control, interactive operation, and analysis of tree building. The manual introduces the system and its many options, gives a basic review of tree learning, contains a guide to the literature and a glossary, lists the manual pages for the routines, and instructions on installation.
A new Bayesian recursive technique for parameter estimation
NASA Astrophysics Data System (ADS)
Kaheil, Yasir H.; Gill, M. Kashif; McKee, Mac; Bastidas, Luis
2006-08-01
The performance of any model depends on how well its associated parameters are estimated. In the current application, a localized Bayesian recursive estimation (LOBARE) approach is devised for parameter estimation. The LOBARE methodology is an extension of the Bayesian recursive estimation (BARE) method. It is applied in this paper on two different types of models: an artificial intelligence (AI) model in the form of a support vector machine (SVM) application for forecasting soil moisture and a conceptual rainfall-runoff (CRR) model represented by the Sacramento soil moisture accounting (SAC-SMA) model. Support vector machines, based on statistical learning theory (SLT), represent the modeling task as a quadratic optimization problem and have already been used in various applications in hydrology. They require estimation of three parameters. SAC-SMA is a very well known model that estimates runoff. It has a 13-dimensional parameter space. In the LOBARE approach presented here, Bayesian inference is used in an iterative fashion to estimate the parameter space that will most likely enclose a best parameter set. This is done by narrowing the sampling space through updating the "parent" bounds based on their fitness. These bounds are actually the parameter sets that were selected by BARE runs on subspaces of the initial parameter space. The new approach results in faster convergence toward the optimal parameter set using minimum training/calibration data and fewer sets of parameter values. The efficacy of the localized methodology is also compared with the previously used BARE algorithm.
A novel tree-based procedure for deciphering the genomic spectrum of clinical disease entities.
Mbogning, Cyprien; Perdry, Hervé; Toussile, Wilson; Broët, Philippe
2014-01-01
Dissecting the genomic spectrum of clinical disease entities is a challenging task. Recursive partitioning (or classification trees) methods provide powerful tools for exploring complex interplay among genomic factors, with respect to a main factor, that can reveal hidden genomic patterns. To take confounding variables into account, the partially linear tree-based regression (PLTR) model has been recently published. It combines regression models and tree-based methodology. It is however computationally burdensome and not well suited for situations for which a large number of exploratory variables is expected. We developed a novel procedure that represents an alternative to the original PLTR procedure, and considered different selection criteria. A simulation study with different scenarios has been performed to compare the performances of the proposed procedure to the original PLTR strategy. The proposed procedure with a Bayesian Information Criterion (BIC) achieved good performances to detect the hidden structure as compared to the original procedure. The novel procedure was used for analyzing patterns of copy-number alterations in lung adenocarcinomas, with respect to Kirsten Rat Sarcoma Viral Oncogene Homolog gene (KRAS) mutation status, while controlling for a cohort effect. Results highlight two subgroups of pure or nearly pure wild-type KRAS tumors with particular copy-number alteration patterns. The proposed procedure with a BIC criterion represents a powerful and practical alternative to the original procedure. Our procedure performs well in a general framework and is simple to implement.
Predicting human liver microsomal stability with machine learning techniques.
Sakiyama, Yojiro; Yuki, Hitomi; Moriya, Takashi; Hattori, Kazunari; Suzuki, Misaki; Shimada, Kaoru; Honma, Teruki
2008-02-01
To ensure a continuing pipeline in pharmaceutical research, lead candidates must possess appropriate metabolic stability in the drug discovery process. In vitro ADMET (absorption, distribution, metabolism, elimination, and toxicity) screening provides us with useful information regarding the metabolic stability of compounds. However, before the synthesis stage, an efficient process is required in order to deal with the vast quantity of data from large compound libraries and high-throughput screening. Here we have derived a relationship between the chemical structure and its metabolic stability for a data set of in-house compounds by means of various in silico machine learning such as random forest, support vector machine (SVM), logistic regression, and recursive partitioning. For model building, 1952 proprietary compounds comprising two classes (stable/unstable) were used with 193 descriptors calculated by Molecular Operating Environment. The results using test compounds have demonstrated that all classifiers yielded satisfactory results (accuracy > 0.8, sensitivity > 0.9, specificity > 0.6, and precision > 0.8). Above all, classification by random forest as well as SVM yielded kappa values of approximately 0.7 in an independent validation set, slightly higher than other classification tools. These results suggest that nonlinear/ensemble-based classification methods might prove useful in the area of in silico ADME modeling.
SH c realization of minimal model CFT: triality, poset and Burge condition
NASA Astrophysics Data System (ADS)
Fukuda, M.; Nakamura, S.; Matsuo, Y.; Zhu, R.-D.
2015-11-01
Recently an orthogonal basis of {{W}}_N -algebra (AFLT basis) labeled by N-tuple Young diagrams was found in the context of 4D/2D duality. Recursion relations among the basis are summarized in the form of an algebra SH c which is universal for any N. We show that it has an {{S}}_3 automorphism which is referred to as triality. We study the level-rank duality between minimal models, which is a special example of the automorphism. It is shown that the nonvanishing states in both systems are described by N or M Young diagrams with the rows of boxes appropriately shuffled. The reshuffling of rows implies there exists partial ordering of the set which labels them. For the simplest example, one can compute the partition functions for the partially ordered set (poset) explicitly, which reproduces the Rogers-Ramanujan identities. We also study the description of minimal models by SH c . Simple analysis reproduces some known properties of minimal models, the structure of singular vectors and the N-Burge condition in the Hilbert space.
Design and Implementation of C-iLearning: A Cloud-Based Intelligent Learning System
ERIC Educational Resources Information Center
Xiao, Jun; Wang, Minjuan; Wang, Lamei; Zhu, Xiaoxiao
2013-01-01
The gradual development of intelligent learning (iLearning) systems has prompted the changes of teaching and learning. This paper presents the architecture of an intelligent learning (iLearning) system built upon the recursive iLearning model and the key technologies associated with this model. Based on this model and the technical structure of a…
Recursive linearization of multibody dynamics equations of motion
NASA Technical Reports Server (NTRS)
Lin, Tsung-Chieh; Yae, K. Harold
1989-01-01
The equations of motion of a multibody system are nonlinear in nature, and thus pose a difficult problem in linear control design. One approach is to have a first-order approximation through the numerical perturbations at a given configuration, and to design a control law based on the linearized model. Here, a linearized model is generated analytically by following the footsteps of the recursive derivation of the equations of motion. The equations of motion are first written in a Newton-Euler form, which is systematic and easy to construct; then, they are transformed into a relative coordinate representation, which is more efficient in computation. A new computational method for linearization is obtained by applying a series of first-order analytical approximations to the recursive kinematic relationships. The method has proved to be computationally more efficient because of its recursive nature. It has also turned out to be more accurate because of the fact that analytical perturbation circumvents numerical differentiation and other associated numerical operations that may accumulate computational error, thus requiring only analytical operations of matrices and vectors. The power of the proposed linearization algorithm is demonstrated, in comparison to a numerical perturbation method, with a two-link manipulator and a seven degrees of freedom robotic manipulator. Its application to control design is also demonstrated.
NASA Astrophysics Data System (ADS)
Ise, Takeshi; Litton, Creighton M.; Giardina, Christian P.; Ito, Akihiko
2010-12-01
Partitioning of gross primary production (GPP) to aboveground versus belowground, to growth versus respiration, and to short versus long-lived tissues exerts a strong influence on ecosystem structure and function, with potentially large implications for the global carbon budget. A recent meta-analysis of forest ecosystems suggests that carbon partitioning to leaves, stems, and roots varies consistently with GPP and that the ratio of net primary production (NPP) to GPP is conservative across environmental gradients. To examine influences of carbon partitioning schemes employed by global ecosystem models, we used this meta-analysis-based model and a satellite-based (MODIS) terrestrial GPP data set to estimate global woody NPP and equilibrium biomass, and then compared it to two process-based ecosystem models (Biome-BGC and VISIT) using the same GPP data set. We hypothesized that different carbon partitioning schemes would result in large differences in global estimates of woody NPP and equilibrium biomass. Woody NPP estimated by Biome-BGC and VISIT was 25% and 29% higher than the meta-analysis-based model for boreal forests, with smaller differences in temperate and tropics. Global equilibrium woody biomass, calculated from model-specific NPP estimates and a single set of tissue turnover rates, was 48 and 226 Pg C higher for Biome-BGC and VISIT compared to the meta-analysis-based model, reflecting differences in carbon partitioning to structural versus metabolically active tissues. In summary, we found that different carbon partitioning schemes resulted in large variations in estimates of global woody carbon flux and storage, indicating that stand-level controls on carbon partitioning are not yet accurately represented in ecosystem models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campione, Salvatore; Warne, Larry K.; Sainath, Kamalesh
In this report we overview the fundamental concepts for a pair of techniques which together greatly hasten computational predictions of electromagnetic pulse (EMP) excitation of finite-length dissipative conductors over a ground plane. In a time- domain, transmission line (TL) model implementation, predictions are computationally bottlenecked time-wise, either for late-time predictions (about 100ns-10000ns range) or predictions concerning EMP excitation of long TLs (order of kilometers or more ). This is because the method requires a temporal convolution to account for the losses in the ground. Addressing this to facilitate practical simulation of EMP excitation of TLs, we first apply a techniquemore » to extract an (approximate) complex exponential function basis-fit to the ground/Earth's impedance function, followed by incorporating this into a recursion-based convolution acceleration technique. Because the recursion-based method only requires the evaluation of the most recent voltage history data (versus the entire history in a "brute-force" convolution evaluation), we achieve necessary time speed- ups across a variety of TL/Earth geometry/material scenarios. Intentionally Left Blank« less
Developing a Conceptual Architecture for a Generalized Agent-based Modeling Environment (GAME)
2008-03-01
4. REPAST (Java, Python , C#, Open Source) ........28 5. MASON: Multi-Agent Modeling Language (Swarm Extension... Python , C#, Open Source) Repast (Recursive Porous Agent Simulation Toolkit) was designed for building agent-based models and simulations in the...Repast makes it easy for inexperienced users to build models by including a built-in simple model and provide interfaces through which menus and Python
A model-based approach for the evaluation of vagal and sympathetic activities in a newborn lamb.
Le Rolle, Virginie; Ojeda, David; Beuchée, Alain; Praud, Jean-Paul; Pladys, Patrick; Hernández, Alfredo I
2013-01-01
This paper proposes a baroreflex model and a recursive identification method to estimate the time-varying vagal and sympathetic contributions to heart rate variability during autonomic maneuvers. The baroreflex model includes baroreceptors, cardiovascular control center, parasympathetic and sympathetic pathways. The gains of the global afferent sympathetic and vagal pathways are identified recursively. The method has been validated on data from newborn lambs, which have been acquired during the application of an autonomic maneuver, without medication and under beta-blockers. Results show a close match between experimental and simulated signals under both conditions. The vagal and sympathetic contributions have been simulated and, as expected, it is possible to observe different baroreflex responses under beta-blockers compared to baseline conditions.
Probabilistic multi-person localisation and tracking in image sequences
NASA Astrophysics Data System (ADS)
Klinger, T.; Rottensteiner, F.; Heipke, C.
2017-05-01
The localisation and tracking of persons in image sequences in commonly guided by recursive filters. Especially in a multi-object tracking environment, where mutual occlusions are inherent, the predictive model is prone to drift away from the actual target position when not taking context into account. Further, if the image-based observations are imprecise, the trajectory is prone to be updated towards a wrong position. In this work we address both these problems by using a new predictive model on the basis of Gaussian Process Regression, and by using generic object detection, as well as instance-specific classification, for refined localisation. The predictive model takes into account the motion of every tracked pedestrian in the scene and the prediction is executed with respect to the velocities of neighbouring persons. In contrast to existing methods our approach uses a Dynamic Bayesian Network in which the state vector of a recursive Bayes filter, as well as the location of the tracked object in the image, are modelled as unknowns. This allows the detection to be corrected before it is incorporated into the recursive filter. Our method is evaluated on a publicly available benchmark dataset and outperforms related methods in terms of geometric precision and tracking accuracy.
NASA Astrophysics Data System (ADS)
Ma, Zhi-Sai; Liu, Li; Zhou, Si-Da; Yu, Lei; Naets, Frank; Heylen, Ward; Desmet, Wim
2018-01-01
The problem of parametric output-only identification of time-varying structures in a recursive manner is considered. A kernelized time-dependent autoregressive moving average (TARMA) model is proposed by expanding the time-varying model parameters onto the basis set of kernel functions in a reproducing kernel Hilbert space. An exponentially weighted kernel recursive extended least squares TARMA identification scheme is proposed, and a sliding-window technique is subsequently applied to fix the computational complexity for each consecutive update, allowing the method to operate online in time-varying environments. The proposed sliding-window exponentially weighted kernel recursive extended least squares TARMA method is employed for the identification of a laboratory time-varying structure consisting of a simply supported beam and a moving mass sliding on it. The proposed method is comparatively assessed against an existing recursive pseudo-linear regression TARMA method via Monte Carlo experiments and shown to be capable of accurately tracking the time-varying dynamics. Furthermore, the comparisons demonstrate the superior achievable accuracy, lower computational complexity and enhanced online identification capability of the proposed kernel recursive extended least squares TARMA approach.
Viani, Gustavo Arruda; Godoi da Silva, Lucas Bernardes; Viana, Bruno Silveira; Rossi, Bruno Tiago; Suguikawa, Elton; Zuliani, Gisele
2016-01-01
The intention of this study is to compare whole brain radiotherapy and stereotactic radiosurgery (WBRT + SRS) with WBRT in patients with 1-4 brain metastases to find a subgroup of patients that have a great benefit with aggressive treatment. Between December 2002 and December 2013, 60 patients with 1-4 brain metastases were treated by WBRT + SRS. In this period, 60 patients treated with WBRT were matched with patients treated with WBRT + SRS. The median survival for the entire cohort was 8.3 months. In the univariate analysis, WBRT + SRS (0.031), the presence of extracranial disease (P = 0.02), Karnofsky performance score <70 (P = 0.0001), and age >65 (P = 0.001) years were significant factors for survival. In the entire cohort, the median survival for recursive partitioning analysis (RPA) classes I, II, and III was 11, 7, and 3 months, respectively (P = 0.0001). In a stratified analysis, only RPA class I achieved statistical significance for 1-year survival between the groups (WBRT + SRS = 51% and WBRT = 23%, P = 0.03). Cox regression analysis revealed WBRT + SRS, age >65 years, and extracranial disease as independent prognostic factors. In the univariate analysis, lesion volume ≤5 cm 3 (P = 0.002) and WBRT + SRS (P = 0.003) were the significant factors associated with better brain control. WBRT plus SRS was an independent prognostic factor for survival. However, the combined treatment appears to be justified only in patients with RPA I and lesion volume ≤5 cm 3, independently of the number of lesions.
Relationship between financial impact and coverage of drugs in Australia.
Mauskopf, Josephine; Chirila, Costel; Masaquel, Catherine; Boye, Kristina S; Bowman, Lee; Birt, Julie; Grainger, David
2013-01-01
The aim of this study was to estimate the relationship between the financial impact of a new drug and the recommendation for reimbursement by the Australian Pharmaceutical Benefits Advisory Committee (PBAC). Data in the PBAC summary database were abstracted for decisions made between July 2005 and November 2009. Financial impact-the upper bound of the values presented in the PBAC summary database-was categorized as ≤A$0, >A$0 up to A$10 million, A$10 million up to A$30 million, and >A$30 million per year. Descriptive, logistic, survival, and recursive partitioning decision analyses were used to estimate the relationship between the financial impact of a new drug indication and the recommendation for reimbursement. Multivariable analyses controlled for other clinical and economic variables, including cost per quality-adjusted life-year gained. Financial impact was a significant predictor of the recommendation for reimbursement. In the logistic analysis, the odds ratios of reimbursement for drug submissions with financial impacts ≥A$10 million to ≥A$30 million or >A$0 to
Bouchard, M
2001-01-01
In recent years, a few articles describing the use of neural networks for nonlinear active control of sound and vibration were published. Using a control structure with two multilayer feedforward neural networks (one as a nonlinear controller and one as a nonlinear plant model), steepest descent algorithms based on two distinct gradient approaches were introduced for the training of the controller network. The two gradient approaches were sometimes called the filtered-x approach and the adjoint approach. Some recursive-least-squares algorithms were also introduced, using the adjoint approach. In this paper, an heuristic procedure is introduced for the development of recursive-least-squares algorithms based on the filtered-x and the adjoint gradient approaches. This leads to the development of new recursive-least-squares algorithms for the training of the controller neural network in the two networks structure. These new algorithms produce a better convergence performance than previously published algorithms. Differences in the performance of algorithms using the filtered-x and the adjoint gradient approaches are discussed in the paper. The computational load of the algorithms discussed in the paper is evaluated for multichannel systems of nonlinear active control. Simulation results are presented to compare the convergence performance of the algorithms, showing the convergence gain provided by the new algorithms.
NASA Astrophysics Data System (ADS)
Setlur Nagesh, S. V.; Khobragade, P.; Ionita, C.; Bednarek, D. R.; Rudin, S.
2015-03-01
Because x-ray based image-guided vascular interventions are minimally invasive they are currently the most preferred method of treating disorders such as stroke, arterial stenosis, and aneurysms; however, the x-ray exposure to the patient during long image-guided interventional procedures could cause harmful effects such as cancer in the long run and even tissue damage in the short term. ROI fluoroscopy reduces patient dose by differentially attenuating the incident x-rays outside the region-of-interest. To reduce the noise in the dose-reduced regions previously recursive temporal filtering was successfully demonstrated for neurovascular interventions. However, in cardiac interventions, anatomical motion is significant and excessive recursive filtering could cause blur. In this work the effects of three noise-reduction schemes, including recursive temporal filtering, spatial mean filtering, and a combination of spatial and recursive temporal filtering, were investigated in a simulated ROI dose-reduced cardiac intervention. First a model to simulate the aortic arch and its movement was built. A coronary stent was used to simulate a bioprosthetic valve used in TAVR procedures and was deployed under dose-reduced ROI fluoroscopy during the simulated heart motion. The images were then retrospectively processed for noise reduction in the periphery, using recursive temporal filtering, spatial filtering and a combination of both. Quantitative metrics for all three noise reduction schemes are calculated and are presented as results. From these it can be concluded that with significant anatomical motion, a combination of spatial and recursive temporal filtering scheme is best suited for reducing the excess quantum noise in the periphery. This new noise-reduction technique in combination with ROI fluoroscopy has the potential for substantial patient-dose savings in cardiac interventions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kishi, Takahiro; Matsuo, Yukinori, E-mail: ymatsuo@kuhp.kyoto-u.ac.jp; Ueki, Nami
Purpose: This study aimed to evaluate the prognostic significance of the modified Glasgow Prognostic Score (mGPS) in patients with non-small cell lung cancer (NSCLC) who received stereotactic body radiation therapy (SBRT). Methods and Materials: Data from 165 patients who underwent SBRT for stage I NSCLC with histologic confirmation from January 1999 to September 2010 were collected retrospectively. Factors, including age, performance status, histology, Charlson comorbidity index, mGPS, and recursive partitioning analysis (RPA) class based on sex and T stage, were evaluated with regard to overall survival (OS) using the Cox proportional hazards model. The impact of the mGPS on causemore » of death and failure patterns was also analyzed. Results: The 3-year OS was 57.9%, with a median follow-up time of 3.5 years. A higher mGPS correlated significantly with poor OS (P<.001). The 3-year OS of lower mGPS patients was 66.4%, whereas that of higher mGPS patients was 44.5%. On multivariate analysis, mGPS and RPA class were significant factors for OS. A higher mGPS correlated significantly with lung cancer death (P=.019) and distant metastasis (P=.013). Conclusions: The mGPS was a significant predictor of clinical outcomes for SBRT in NSCLC patients.« less
Application of recursive approaches to differential orbit correction of near Earth asteroids
NASA Astrophysics Data System (ADS)
Dmitriev, Vasily; Lupovka, Valery; Gritsevich, Maria
2016-10-01
Comparison of three approaches to the differential orbit correction of celestial bodies was performed: batch least squares fitting, Kalman filter, and recursive least squares filter. The first two techniques are well known and widely used (Montenbruck, O. & Gill, E., 2000). The most attention is paid to the algorithm and details of program realization of recursive least squares filter. The filter's algorithm was derived based on recursive least squares technique that are widely used in data processing applications (Simon, D, 2006). Usage recursive least squares filter, makes possible to process a new set of observational data, without reprocessing data, which has been processed before. Specific feature of such approach is that number of observation in data set may be variable. This feature makes recursive least squares filter more flexible approach compare to batch least squares (process complete set of observations in each iteration) and Kalman filtering (suppose updating state vector on each epoch with measurements).Advantages of proposed approach are demonstrated by processing of real astrometric observations of near Earth asteroids. The case of 2008 TC3 was studied. 2008 TC3 was discovered just before its impact with Earth. There are a many closely spaced observations of 2008 TC3 on the interval between discovering and impact, which creates favorable conditions for usage of recursive approaches. Each of approaches has very similar precision in case of 2008 TC3. At the same time, recursive least squares approaches have much higher performance. Thus, this approach more favorable for orbit fitting of a celestial body, which was detected shortly before the collision or close approach to the Earth.This work was carried out at MIIGAiK and supported by the Russian Science Foundation, Project no. 14-22-00197.References:O. Montenbruck and E. Gill, "Satellite Orbits, Models, Methods and Applications," Springer-Verlag, 2000, pp. 1-369.D. Simon, "Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches",1 edition. Hoboken, N.J.: Wiley-Interscience, 2006.
Recursive model for the fragmentation of polarized quarks
NASA Astrophysics Data System (ADS)
Kerbizi, A.; Artru, X.; Belghobsi, Z.; Bradamante, F.; Martin, A.
2018-04-01
We present a model for Monte Carlo simulation of the fragmentation of a polarized quark. The model is based on string dynamics and the 3P0 mechanism of quark pair creation at string breaking. The fragmentation is treated as a recursive process, where the splitting function of the subprocess q →h +q' depends on the spin density matrix of the quark q . The 3P0 mechanism is parametrized by a complex mass parameter μ , the imaginary part of which is responsible for single spin asymmetries. The model has been implemented in a Monte Carlo program to simulate jets made of pseudoscalar mesons. Results for single hadron and hadron pair transverse-spin asymmetries are found to be in agreement with experimental data from SIDIS and e+e- annihilation. The model predictions on the jet-handedness are also discussed.
NASA Astrophysics Data System (ADS)
Wu, Hongjie; Yuan, Shifei; Zhang, Xi; Yin, Chengliang; Ma, Xuerui
2015-08-01
To improve the suitability of lithium-ion battery model under varying scenarios, such as fluctuating temperature and SoC variation, dynamic model with parameters updated realtime should be developed. In this paper, an incremental analysis-based auto regressive exogenous (I-ARX) modeling method is proposed to eliminate the modeling error caused by the OCV effect and improve the accuracy of parameter estimation. Then, its numerical stability, modeling error, and parametric sensitivity are analyzed at different sampling rates (0.02, 0.1, 0.5 and 1 s). To identify the model parameters recursively, a bias-correction recursive least squares (CRLS) algorithm is applied. Finally, the pseudo random binary sequence (PRBS) and urban dynamic driving sequences (UDDSs) profiles are performed to verify the realtime performance and robustness of the newly proposed model and algorithm. Different sampling rates (1 Hz and 10 Hz) and multiple temperature points (5, 25, and 45 °C) are covered in our experiments. The experimental and simulation results indicate that the proposed I-ARX model can present high accuracy and suitability for parameter identification without using open circuit voltage.
NASA Astrophysics Data System (ADS)
Ise, T.; Litton, C. M.; Giardina, C. P.; Ito, A.
2009-12-01
Plant partitioning of carbon (C) to above- vs. belowground, to growth vs. respiration, and to short vs. long lived tissues exerts a large influence on ecosystem structure and function with implications for the global C budget. Importantly, outcomes of process-based terrestrial vegetation models are likely to vary substantially with different C partitioning algorithms. However, controls on C partitioning patterns remain poorly quantified, and studies have yielded variable, and at times contradictory, results. A recent meta-analysis of forest studies suggests that the ratio of net primary production (NPP) and gross primary production (GPP) is fairly conservative across large scales. To illustrate the effect of this unique meta-analysis-based partitioning scheme (MPS), we compared an application of MPS to a terrestrial satellite-based (MODIS) GPP to estimate NPP vs. two global process-based vegetation models (Biome-BGC and VISIT) to examine the influence of C partitioning on C budgets of woody plants. Due to the temperature dependence of maintenance respiration, NPP/GPP predicted by the process-based models increased with latitude while the ratio remained constant with MPS. Overall, global NPP estimated with MPS was 17 and 27% lower than the process-based models for temperate and boreal biomes, respectively, with smaller differences in the tropics. Global equilibrium biomass of woody plants was then calculated from the NPP estimates and tissue turnover rates from VISIT. Since turnover rates differed greatly across tissue types (i.e., metabolically active vs. structural), global equilibrium biomass estimates were sensitive to the partitioning scheme employed. The MPS estimate of global woody biomass was 7-21% lower than that of the process-based models. In summary, we found that model output for NPP and equilibrium biomass was quite sensitive to the choice of C partitioning schemes. Carbon use efficiency (CUE; NPP/GPP) by forest biome and the globe. Values are means for 2001-2006.
Recursive regularization for inferring gene networks from time-course gene expression profiles
Shimamura, Teppei; Imoto, Seiya; Yamaguchi, Rui; Fujita, André; Nagasaki, Masao; Miyano, Satoru
2009-01-01
Background Inferring gene networks from time-course microarray experiments with vector autoregressive (VAR) model is the process of identifying functional associations between genes through multivariate time series. This problem can be cast as a variable selection problem in Statistics. One of the promising methods for variable selection is the elastic net proposed by Zou and Hastie (2005). However, VAR modeling with the elastic net succeeds in increasing the number of true positives while it also results in increasing the number of false positives. Results By incorporating relative importance of the VAR coefficients into the elastic net, we propose a new class of regularization, called recursive elastic net, to increase the capability of the elastic net and estimate gene networks based on the VAR model. The recursive elastic net can reduce the number of false positives gradually by updating the importance. Numerical simulations and comparisons demonstrate that the proposed method succeeds in reducing the number of false positives drastically while keeping the high number of true positives in the network inference and achieves two or more times higher true discovery rate (the proportion of true positives among the selected edges) than the competing methods even when the number of time points is small. We also compared our method with various reverse-engineering algorithms on experimental data of MCF-7 breast cancer cells stimulated with two ErbB ligands, EGF and HRG. Conclusion The recursive elastic net is a powerful tool for inferring gene networks from time-course gene expression profiles. PMID:19386091
Investigating the Role of Model-Based Reasoning While Troubleshooting an Electric Circuit
ERIC Educational Resources Information Center
Dounas-Frazer, Dimitri R.; Van De Bogart, Kevin L.; Stetzer, MacKenzie R.; Lewandowski, H. J.
2016-01-01
We explore the overlap of two nationally recognized learning outcomes for physics lab courses, namely, the ability to model experimental systems and the ability to troubleshoot a malfunctioning apparatus. Modeling and troubleshooting are both nonlinear, recursive processes that involve using models to inform revisions to an apparatus. To probe the…
Improving the Statistical Modeling of the TRMM Extreme Precipitation Monitoring System
NASA Astrophysics Data System (ADS)
Demirdjian, L.; Zhou, Y.; Huffman, G. J.
2016-12-01
This project improves upon an existing extreme precipitation monitoring system based on the Tropical Rainfall Measuring Mission (TRMM) daily product (3B42) using new statistical models. The proposed system utilizes a regional modeling approach, where data from similar grid locations are pooled to increase the quality and stability of the resulting model parameter estimates to compensate for the short data record. The regional frequency analysis is divided into two stages. In the first stage, the region defined by the TRMM measurements is partitioned into approximately 27,000 non-overlapping clusters using a recursive k-means clustering scheme. In the second stage, a statistical model is used to characterize the extreme precipitation events occurring in each cluster. Instead of utilizing the block-maxima approach used in the existing system, where annual maxima are fit to the Generalized Extreme Value (GEV) probability distribution at each cluster separately, the present work adopts the peak-over-threshold (POT) method of classifying points as extreme if they exceed a pre-specified threshold. Theoretical considerations motivate the use of the Generalized-Pareto (GP) distribution for fitting threshold exceedances. The fitted parameters can be used to construct simple and intuitive average recurrence interval (ARI) maps which reveal how rare a particular precipitation event is given its spatial location. The new methodology eliminates much of the random noise that was produced by the existing models due to a short data record, producing more reasonable ARI maps when compared with NOAA's long-term Climate Prediction Center (CPC) ground based observations. The resulting ARI maps can be useful for disaster preparation, warning, and management, as well as increased public awareness of the severity of precipitation events. Furthermore, the proposed methodology can be applied to various other extreme climate records.
Waltman, Ludo; Yan, Erjia; van Eck, Nees Jan
2011-10-01
Two commonly used ideas in the development of citation-based research performance indicators are the idea of normalizing citation counts based on a field classification scheme and the idea of recursive citation weighing (like in PageRank-inspired indicators). We combine these two ideas in a single indicator, referred to as the recursive mean normalized citation score indicator, and we study the validity of this indicator. Our empirical analysis shows that the proposed indicator is highly sensitive to the field classification scheme that is used. The indicator also has a strong tendency to reinforce biases caused by the classification scheme. Based on these observations, we advise against the use of indicators in which the idea of normalization based on a field classification scheme and the idea of recursive citation weighing are combined.
ERIC Educational Resources Information Center
Gibbons, Pamela
1995-01-01
Describes a study that investigated individual differences in the construction of mental models of recursion in LOGO programming. The learning process was investigated from the perspective of Norman's mental models theory and employed diSessa's ontology regarding distributed, functional, and surrogate mental models, and the Luria model of brain…
Doulamis, A D; Doulamis, N D; Kollias, S D
2003-01-01
Multimedia services and especially digital video is expected to be the major traffic component transmitted over communication networks [such as internet protocol (IP)-based networks]. For this reason, traffic characterization and modeling of such services are required for an efficient network operation. The generated models can be used as traffic rate predictors, during the network operation phase (online traffic modeling), or as video generators for estimating the network resources, during the network design phase (offline traffic modeling). In this paper, an adaptable neural-network architecture is proposed covering both cases. The scheme is based on an efficient recursive weight estimation algorithm, which adapts the network response to current conditions. In particular, the algorithm updates the network weights so that 1) the network output, after the adaptation, is approximately equal to current bit rates (current traffic statistics) and 2) a minimal degradation over the obtained network knowledge is provided. It can be shown that the proposed adaptable neural-network architecture simulates a recursive nonlinear autoregressive model (RNAR) similar to the notation used in the linear case. The algorithm presents low computational complexity and high efficiency in tracking traffic rates in contrast to conventional retraining schemes. Furthermore, for the problem of offline traffic modeling, a novel correlation mechanism is proposed for capturing the burstness of the actual MPEG video traffic. The performance of the model is evaluated using several real-life MPEG coded video sources of long duration and compared with other linear/nonlinear techniques used for both cases. The results indicate that the proposed adaptable neural-network architecture presents better performance than other examined techniques.
The simultaneous evolution of author and paper networks
Börner, Katy; Maru, Jeegar T.; Goldstone, Robert L.
2004-01-01
There has been a long history of research into the structure and evolution of mankind's scientific endeavor. However, recent progress in applying the tools of science to understand science itself has been unprecedented because only recently has there been access to high-volume and high-quality data sets of scientific output (e.g., publications, patents, grants) and computers and algorithms capable of handling this enormous stream of data. This article reviews major work on models that aim to capture and recreate the structure and dynamics of scientific evolution. We then introduce a general process model that simultaneously grows coauthor and paper citation networks. The statistical and dynamic properties of the networks generated by this model are validated against a 20-year data set of articles published in PNAS. Systematic deviations from a power law distribution of citations to papers are well fit by a model that incorporates a partitioning of authors and papers into topics, a bias for authors to cite recent papers, and a tendency for authors to cite papers cited by papers that they have read. In this TARL model (for topics, aging, and recursive linking), the number of topics is linearly related to the clustering coefficient of the simulated paper citation network. PMID:14976254
Recursive Feature Extraction in Graphs
DOE Office of Scientific and Technical Information (OSTI.GOV)
2014-08-14
ReFeX extracts recursive topological features from graph data. The input is a graph as a csv file and the output is a csv file containing feature values for each node in the graph. The features are based on topological counts in the neighborhoods of each nodes, as well as recursive summaries of neighbors' features.
Wang, Shuangquan; Sun, Huiyong; Liu, Hui; Li, Dan; Li, Youyong; Hou, Tingjun
2016-08-01
Blockade of human ether-à-go-go related gene (hERG) channel by compounds may lead to drug-induced QT prolongation, arrhythmia, and Torsades de Pointes (TdP), and therefore reliable prediction of hERG liability in the early stages of drug design is quite important to reduce the risk of cardiotoxicity-related attritions in the later development stages. In this study, pharmacophore modeling and machine learning approaches were combined to construct classification models to distinguish hERG active from inactive compounds based on a diverse data set. First, an optimal ensemble of pharmacophore hypotheses that had good capability to differentiate hERG active from inactive compounds was identified by the recursive partitioning (RP) approach. Then, the naive Bayesian classification (NBC) and support vector machine (SVM) approaches were employed to construct classification models by integrating multiple important pharmacophore hypotheses. The integrated classification models showed improved predictive capability over any single pharmacophore hypothesis, suggesting that the broad binding polyspecificity of hERG can only be well characterized by multiple pharmacophores. The best SVM model achieved the prediction accuracies of 84.7% for the training set and 82.1% for the external test set. Notably, the accuracies for the hERG blockers and nonblockers in the test set reached 83.6% and 78.2%, respectively. Analysis of significant pharmacophores helps to understand the multimechanisms of action of hERG blockers. We believe that the combination of pharmacophore modeling and SVM is a powerful strategy to develop reliable theoretical models for the prediction of potential hERG liability.
The Free Energy in the Derrida-Retaux Recursive Model
NASA Astrophysics Data System (ADS)
Hu, Yueyun; Shi, Zhan
2018-05-01
We are interested in a simple max-type recursive model studied by Derrida and Retaux (J Stat Phys 156:268-290, 2014) in the context of a physics problem, and find a wide range for the exponent in the free energy in the nearly supercritical regime.
Deep Learning Accurately Predicts Estrogen Receptor Status in Breast Cancer Metabolomics Data.
Alakwaa, Fadhl M; Chaudhary, Kumardeep; Garmire, Lana X
2018-01-05
Metabolomics holds the promise as a new technology to diagnose highly heterogeneous diseases. Conventionally, metabolomics data analysis for diagnosis is done using various statistical and machine learning based classification methods. However, it remains unknown if deep neural network, a class of increasingly popular machine learning methods, is suitable to classify metabolomics data. Here we use a cohort of 271 breast cancer tissues, 204 positive estrogen receptor (ER+), and 67 negative estrogen receptor (ER-) to test the accuracies of feed-forward networks, a deep learning (DL) framework, as well as six widely used machine learning models, namely random forest (RF), support vector machines (SVM), recursive partitioning and regression trees (RPART), linear discriminant analysis (LDA), prediction analysis for microarrays (PAM), and generalized boosted models (GBM). DL framework has the highest area under the curve (AUC) of 0.93 in classifying ER+/ER- patients, compared to the other six machine learning algorithms. Furthermore, the biological interpretation of the first hidden layer reveals eight commonly enriched significant metabolomics pathways (adjusted P-value <0.05) that cannot be discovered by other machine learning methods. Among them, protein digestion and absorption and ATP-binding cassette (ABC) transporters pathways are also confirmed in integrated analysis between metabolomics and gene expression data in these samples. In summary, deep learning method shows advantages for metabolomics based breast cancer ER status classification, with both the highest prediction accuracy (AUC = 0.93) and better revelation of disease biology. We encourage the adoption of feed-forward networks based deep learning method in the metabolomics research community for classification.
Phillips, Steven; Wilson, William H.
2012-01-01
Human cognitive capacity includes recursively definable concepts, which are prevalent in domains involving lists, numbers, and languages. Cognitive science currently lacks a satisfactory explanation for the systematic nature of such capacities (i.e., why the capacity for some recursive cognitive abilities–e.g., finding the smallest number in a list–implies the capacity for certain others–finding the largest number, given knowledge of number order). The category-theoretic constructs of initial F-algebra, catamorphism, and their duals, final coalgebra and anamorphism provide a formal, systematic treatment of recursion in computer science. Here, we use this formalism to explain the systematicity of recursive cognitive capacities without ad hoc assumptions (i.e., to the same explanatory standard used in our account of systematicity for non-recursive capacities). The presence of an initial algebra/final coalgebra explains systematicity because all recursive cognitive capacities, in the domain of interest, factor through (are composed of) the same component process. Moreover, this factorization is unique, hence no further (ad hoc) assumptions are required to establish the intrinsic connection between members of a group of systematically-related capacities. This formulation also provides a new perspective on the relationship between recursive cognitive capacities. In particular, the link between number and language does not depend on recursion, as such, but on the underlying functor on which the group of recursive capacities is based. Thus, many species (and infants) can employ recursive processes without having a full-blown capacity for number and language. PMID:22514704
Ghosal, Sayan; Gannepalli, Anil; Salapaka, Murti
2017-08-11
In this article, we explore methods that enable estimation of material properties with the dynamic mode atomic force microscopy suitable for soft matter investigation. The article presents the viewpoint of casting the system, comprising of a flexure probe interacting with the sample, as an equivalent cantilever system and compares a steady-state analysis based method with a recursive estimation technique for determining the parameters of the equivalent cantilever system in real time. The steady-state analysis of the equivalent cantilever model, which has been implicitly assumed in studies on material property determination, is validated analytically and experimentally. We show that the steady-state based technique yields results that quantitatively agree with the recursive method in the domain of its validity. The steady-state technique is considerably simpler to implement, however, slower compared to the recursive technique. The parameters of the equivalent system are utilized to interpret storage and dissipative properties of the sample. Finally, the article identifies key pitfalls that need to be avoided toward the quantitative estimation of material properties.
Geomagnetic modeling by optimal recursive filtering
NASA Technical Reports Server (NTRS)
Gibbs, B. P.; Estes, R. H.
1981-01-01
The results of a preliminary study to determine the feasibility of using Kalman filter techniques for geomagnetic field modeling are given. Specifically, five separate field models were computed using observatory annual means, satellite, survey and airborne data for the years 1950 to 1976. Each of the individual field models used approximately five years of data. These five models were combined using a recursive information filter (a Kalman filter written in terms of information matrices rather than covariance matrices.) The resulting estimate of the geomagnetic field and its secular variation was propogated four years past the data to the time of the MAGSAT data. The accuracy with which this field model matched the MAGSAT data was evaluated by comparisons with predictions from other pre-MAGSAT field models. The field estimate obtained by recursive estimation was found to be superior to all other models.
Werner-Wasik, M; Scott, C; Cox, J D; Sause, W T; Byhardt, R W; Asbell, S; Russell, A; Komaki, R; Lee, J S
2000-12-01
Survival of patients with locally-advanced non-small-cell lung cancer (LA-NSCLC) is predicted by the stage of the disease and other characteristics. This analysis was undertaken to identify these characteristics in a large cooperative group patient population, as well as to define subgroups of the population with differing outcomes. Analysis included 1,999 patients treated in 9 RTOG trials between 1983 and 1994 with thoracic irradiation (RT) with (n = 355) or without chemotherapy (CT). In univariate analysis, the following characteristics were significantly associated with an improved survival: use of CT, CT delivered without major deviation, abnormal pulmonary function tests, normal hemoglobin, protein, LDH and BUN, presence of dyspnea, hemoptysis, cough or hoarseness, uninvolved lymph nodes, T1 or T2 stage, no malignant pleural effusion (PE), weight loss of < 8%, Karnofsky performance status (KPS) of at least 90, adenocarcinoma histology, female gender, and age less than 70 years. Recursive partitioning analysis (RPA) was subsequently applied to identify 5 patient subgroups with significantly different median survival times (MST): Group I, KPS of > or = 90, who received chemotherapy (MST 16.2 months); Group II, KPS of > or = 90, who received no CT, but had no PE (MST 11.9 months); Group III, KPS < 90, younger than 70 years, with non-large cell histology (MST 9.6 months); Group IV, KPS > or = 90, but with PE, or KPS < 90, younger than 70 years, and with large cell histology, or older than 70 years, but without PE (MST 5.6-6.4 months); Group V, older than 70, with PE (MST 2.9 months). Cisplatinum-based CT improves survival, for excellent prognosis of LA-NSCLC patients, over RT alone. The presence of a malignant pleural effusion is a major negative prognostic factor for survival. The identification of RPA prognostic groups among patients with LA-NSCLC provides prognostic information and may serve as a basis of stratification in future trials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Castle, Katherine O., E-mail: kocastle@mdanderson.org; Hoffman, Karen E.; Levy, Lawrence B.
Purpose: The benefit of adding androgen deprivation therapy (ADT) to dose-escalated radiation therapy (RT) for men with intermediate-risk prostate cancer is unclear; therefore, we assessed the impact of adding ADT to dose-escalated RT on freedom from failure (FFF). Methods: Three groups of men treated with intensity modulated RT or 3-dimensional conformal RT (75.6-78 Gy) from 1993-2008 for prostate cancer were categorized as (1) 326 intermediate-risk patients treated with RT alone, (2) 218 intermediate-risk patients treated with RT and ≤6 months of ADT, and (3) 274 low-risk patients treated with definitive RT. Median follow-up was 58 months. Recursive partitioning analysis basedmore » on FFF using Gleason score (GS), T stage, and pretreatment PSA concentration was applied to the intermediate-risk patients treated with RT alone. The Kaplan-Meier method was used to estimate 5-year FFF. Results: Based on recursive partitioning analysis, intermediate-risk patients treated with RT alone were divided into 3 prognostic groups: (1) 188 favorable patients: GS 6, ≤T2b or GS 3+4, ≤T1c; (2) 71 marginal patients: GS 3+4, T2a-b; and (3) 68 unfavorable patients: GS 4+3 or T2c disease. Hazard ratios (HR) for recurrence in each group were 1.0, 2.1, and 4.6, respectively. When intermediate-risk patients treated with RT alone were compared to intermediate-risk patients treated with RT and ADT, the greatest benefit from ADT was seen for the unfavorable intermediate-risk patients (FFF, 74% vs 94%, respectively; P=.005). Favorable intermediate-risk patients had no significant benefit from the addition of ADT to RT (FFF, 94% vs 95%, respectively; P=.85), and FFF for favorable intermediate-risk patients treated with RT alone approached that of low-risk patients treated with RT alone (98%). Conclusions: Patients with favorable intermediate-risk prostate cancer did not benefit from the addition of ADT to dose-escalated RT, and their FFF was nearly as good as patients with low-risk disease. In patients with GS 4+3 or T2c disease, the addition of ADT to dose-escalated RT did improve FFF.« less
Cross-validation and Peeling Strategies for Survival Bump Hunting using Recursive Peeling Methods
Dazard, Jean-Eudes; Choe, Michael; LeBlanc, Michael; Rao, J. Sunil
2015-01-01
We introduce a framework to build a survival/risk bump hunting model with a censored time-to-event response. Our Survival Bump Hunting (SBH) method is based on a recursive peeling procedure that uses a specific survival peeling criterion derived from non/semi-parametric statistics such as the hazards-ratio, the log-rank test or the Nelson--Aalen estimator. To optimize the tuning parameter of the model and validate it, we introduce an objective function based on survival or prediction-error statistics, such as the log-rank test and the concordance error rate. We also describe two alternative cross-validation techniques adapted to the joint task of decision-rule making by recursive peeling and survival estimation. Numerical analyses show the importance of replicated cross-validation and the differences between criteria and techniques in both low and high-dimensional settings. Although several non-parametric survival models exist, none addresses the problem of directly identifying local extrema. We show how SBH efficiently estimates extreme survival/risk subgroups unlike other models. This provides an insight into the behavior of commonly used models and suggests alternatives to be adopted in practice. Finally, our SBH framework was applied to a clinical dataset. In it, we identified subsets of patients characterized by clinical and demographic covariates with a distinct extreme survival outcome, for which tailored medical interventions could be made. An R package PRIMsrc (Patient Rule Induction Method in Survival, Regression and Classification settings) is available on CRAN (Comprehensive R Archive Network) and GitHub. PMID:27034730
Burant, Aniela; Thompson, Christopher; Lowry, Gregory V; Karamalidis, Athanasios K
2016-05-17
Partitioning coefficients of organic compounds between water and supercritical CO2 (sc-CO2) are necessary to assess the risk of migration of these chemicals from subsurface CO2 storage sites. Despite the large number of potential organic contaminants, the current data set of published water-sc-CO2 partitioning coefficients is very limited. Here, the partitioning coefficients of thiophene, pyrrole, and anisole were measured in situ over a range of temperatures and pressures using a novel pressurized batch-reactor system with dual spectroscopic detectors: a near-infrared spectrometer for measuring the organic analyte in the CO2 phase and a UV detector for quantifying the analyte in the aqueous phase. Our measured partitioning coefficients followed expected trends based on volatility and aqueous solubility. The partitioning coefficients and literature data were then used to update a published poly parameter linear free-energy relationship and to develop five new linear free-energy relationships for predicting water-sc-CO2 partitioning coefficients. A total of four of the models targeted a single class of organic compounds. Unlike models that utilize Abraham solvation parameters, the new relationships use vapor pressure and aqueous solubility of the organic compound at 25 °C and CO2 density to predict partitioning coefficients over a range of temperature and pressure conditions. The compound class models provide better estimates of partitioning behavior for compounds in that class than does the model built for the entire data set.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burant, Aniela; Thompson, Christopher; Lowry, Gregory V.
2016-05-17
Partitioning coefficients of organic compounds between water and supercritical CO2 (sc-CO2) are necessary to assess the risk of migration of these chemicals from subsurface CO2 storage sites. Despite the large number of potential organic contaminants, the current data set of published water-sc-CO2 partitioning coefficients is very limited. Here, the partitioning coefficients of thiophene, pyrrole, and anisole were measured in situ over a range of temperatures and pressures using a novel pressurized batch reactor system with dual spectroscopic detectors: a near infrared spectrometer for measuring the organic analyte in the CO2 phase, and a UV detector for quantifying the analyte inmore » the aqueous phase. Our measured partitioning coefficients followed expected trends based on volatility and aqueous solubility. The partitioning coefficients and literature data were then used to update a published poly-parameter linear free energy relationship and to develop five new linear free energy relationships for predicting water-sc-CO2 partitioning coefficients. Four of the models targeted a single class of organic compounds. Unlike models that utilize Abraham solvation parameters, the new relationships use vapor pressure and aqueous solubility of the organic compound at 25 °C and CO2 density to predict partitioning coefficients over a range of temperature and pressure conditions. The compound class models provide better estimates of partitioning behavior for compounds in that class than the model built for the entire dataset.« less
NASA Astrophysics Data System (ADS)
Zheng, Lianqing; Yang, Wei
2008-07-01
Recently, accelerated molecular dynamics (AMD) technique was generalized to realize essential energy space random walks so that further sampling enhancement and effective localized enhanced sampling could be achieved. This method is especially meaningful when essential coordinates of the target events are not priori known; moreover, the energy space metadynamics method was also introduced so that biasing free energy functions can be robustly generated. Despite the promising features of this method, due to the nonequilibrium nature of the metadynamics recursion, it is challenging to rigorously use the data obtained at the recursion stage to perform equilibrium analysis, such as free energy surface mapping; therefore, a large amount of data ought to be wasted. To resolve such problem so as to further improve simulation convergence, as promised in our original paper, we are reporting an alternate approach: the adaptive-length self-healing (ALSH) strategy for AMD simulations; this development is based on a recent self-healing umbrella sampling method. Here, the unit simulation length for each self-healing recursion is increasingly updated based on the Wang-Landau flattening judgment. When the unit simulation length for each update is long enough, all the following unit simulations naturally run into the equilibrium regime. Thereafter, these unit simulations can serve for the dual purposes of recursion and equilibrium analysis. As demonstrated in our model studies, by applying ALSH, both fast recursion and short nonequilibrium data waste can be compromised. As a result, combining all the data obtained from all the unit simulations that are in the equilibrium regime via the weighted histogram analysis method, efficient convergence can be robustly ensured, especially for the purpose of free energy surface mapping.
Exact partition functions for deformed N=2 theories with N_f=4 flavours
NASA Astrophysics Data System (ADS)
Beccaria, Matteo; Fachechi, Alberto; Macorini, Guido; Martina, Luigi
2016-12-01
We consider the Ω-deformed N=2 SU(2) gauge theory in four dimensions with N f = 4 massive fundamental hypermultiplets. The low energy effective action depends on the deformation parameters ɛ 1 , ɛ 2, the scalar field expectation value a, and the hypermultiplet masses m = ( m 1 , m 2 , m 3 , m 4). Motivated by recent findings in the N={2}^{*} theory, we explore the theories that are characterized by special fixed ratios ɛ 2 /ɛ 1 and m /ɛ 1 and propose a simple condition on the structure of the multi-instanton contributions to the prepotential determining the effective action. This condition determines a finite set Π N of special points such that the prepotential has N poles at fixed positions independent on the instanton number. In analogy with what happens in the N={2}^{*} gauge theory, the full prepotential of the Π N theories may be given in closed form as an explicit function of a and the modular parameter q appearing in special combinations of Eisenstein series and Jacobi theta functions with well defined modular properties. The resulting finite pole partition functions are related by AGT correspondence to special 4-point spherical conformal blocks of the Virasoro algebra. We examine in full details special cases where the closed expression of the block is known and confirms our Ansatz. We systematically study the special features of Zamolodchikov's recursion for the Π N conformal blocks. As a result, we provide a novel effective recursion relation that can be exactly solved and allows to prove the conjectured closed expressions analytically in the case of the Π1 and Π2 conformal blocks.
Wang, Fei
2015-06-01
With the rapid development of information technologies, tremendous amount of data became readily available in various application domains. This big data era presents challenges to many conventional data analytics research directions including data capture, storage, search, sharing, analysis, and visualization. It is no surprise to see that the success of next-generation healthcare systems heavily relies on the effective utilization of gigantic amounts of medical data. The ability of analyzing big data in modern healthcare systems plays a vital role in the improvement of the quality of care delivery. Specifically, patient similarity evaluation aims at estimating the clinical affinity and diagnostic proximity of patients. As one of the successful data driven techniques adopted in healthcare systems, patient similarity evaluation plays a fundamental role in many healthcare research areas such as prognosis, risk assessment, and comparative effectiveness analysis. However, existing algorithms for patient similarity evaluation are inefficient in handling massive patient data. In this paper, we propose an Adaptive Semi-Supervised Recursive Tree Partitioning (ART) framework for large scale patient indexing such that the patients with similar clinical or diagnostic patterns can be correctly and efficiently retrieved. The framework is designed for semi-supervised settings since it is crucial to leverage experts' supervision knowledge in medical scenario, which are fairly limited compared to the available data. Starting from the proposed ART framework, we will discuss several specific instantiations and validate them on both benchmark and real world healthcare data. Our results show that with the ART framework, the patients can be efficiently and effectively indexed in the sense that (1) similarity patients can be retrieved in a very short time; (2) the retrieval performance can beat the state-of-the art indexing methods. Copyright © 2015. Published by Elsevier Inc.
Bosi, Emanuele; Boulware, David C; Becker, Dorothy J; Buckner, Jane H; Geyer, Susan; Gottlieb, Peter A; Henderson, Courtney; Kinderman, Amanda; Sosenko, Jay M; Steck, Andrea K; Bingley, Polly J
2017-08-01
Islet autoantibodies are markers of type 1 diabetes, and an increase in number of autoantibodies detected during the preclinical phase predicts progression to overt disease. To refine the effect of age in relation to islet antibody type on progression from single to multiple autoantibodies in relatives of people with type 1 diabetes. We examined 994 relatives with normal glucose tolerance who were positive for a single autoantibody, followed prospectively in the TrialNet Pathway to Prevention. Antibodies to glutamic acid decarboxylase (GADA), insulin (IAA), insulinoma-associated antigen 2, and zinc transporter 8 and islet cell antibodies were tested every 6 to 12 months. The primary outcome was confirmed development of multiple autoantibodies. Age was categorized as <8 years, 8 to 11 years, 12 to 17 years, and ≥18 years, and optimal age breakpoints were identified by recursive partitioning analysis. After median follow-up of 2 years, 141 relatives had developed at least one additional autoantibodies. Five-year risk was inversely related to age, but the pattern differed by antibody type: Relatives with GADA showed a gradual decrease in risk over the four age groups, whereas relatives with IAA showed a sharp decrease above age 8 years. Recursive partitioning analysis identified age breakpoints at 14 years in relatives with GADA and at 4 years in relatives with IAA. In relatives with IAA, spread of islet autoimmunity is largely limited to early childhood, whereas immune responses initially directed at glutamic acid decarboxylase can mature over a longer period. These differences have important implications for monitoring these patients and for designing prevention trials. Copyright © 2017 Endocrine Society
Grossman, Rachel; Ram, Zvi
2014-12-01
Sarcoma rarely metastasizes to the brain, and there are no specific treatment guidelines for these tumors. The recursive partitioning analysis (RPA) classification is a well-established prognostic scale used in many malignancies. In this study we assessed the clinical characteristics of metastatic sarcoma to the brain and the validity of the RPA classification system in a subset of 21 patients who underwent surgical resection of metastatic sarcoma to the brain We retrospectively analyzed the medical, radiological, surgical, pathological, and follow-up clinical records of 21 patients who were operated for metastatic sarcoma to the brain between 1996 and 2012. Gliosarcomas, sarcomas of the head and neck with local extension into the brain, and metastatic sarcomas to the spine were excluded from this reported series. The patients' mean age was 49.6 ± 14.2 years (range, 25-75 years) at the time of diagnosis. Sixteen patients had a known history of systemic sarcoma, mostly in the extremities, and had previously received systemic chemotherapy and radiation therapy for their primary tumor. The mean maximal tumor diameter in the brain was 4.9 ± 1.7 cm (range 1.7-7.2 cm). The group's median preoperative Karnofsky Performance Scale was 80, with 14 patients presenting with Karnofsky Performance Scale of 70 or greater. The median overall survival was 7 months (range 0.2-204 months). The median survival time stratified by the Radiation Therapy Oncology Group RPA classes were 31, 7, and 2 months for RPA class I, II, and III, respectively (P = 0.0001). This analysis is the first to support the prognostic utility of the Radiation Therapy Oncology Group RPA classification for sarcoma brain metastases and may be used as a treatment guideline tool in this rare disease. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Chandramouli, Bharadwaj; Kamens, Richard M.
Decamethyl cyclopentasiloxane (D 5) and decamethyl tetrasiloxane (MD 2M) were injected into a smog chamber containing fine Arizona road dust particles (95% surface area <2.6 μM) and an urban smog atmosphere in the daytime. A photochemical reaction - gas-particle partitioning reaction scheme, was implemented to simulate the formation and gas-particle partitioning of hydroxyl oxidation products of D 5 and MD 2M. This scheme incorporated the reactions of D 5 and MD 2M into an existing urban smog chemical mechanism carbon bond IV and partitioned the products between gas and particle phase by treating gas-particle partitioning as a kinetic process and specifying an uptake and off-gassing rate. A photochemical model PKSS was used to simulate this set of reactions. A Langmuirian partitioning model was used to convert the measured and estimated mass-based partitioning coefficients ( KP) to a molar or volume-based form. The model simulations indicated that >99% of all product silanol formed in the gas-phase partition immediately to particle phase and the experimental data agreed with model predictions. One product, D 4TOH was observed and confirmed for the D 5 reaction and this system was modeled successfully. Experimental data was inadequate for MD 2M reaction products and it is likely that more than one product formed. The model set up a framework into which more reaction and partitioning steps can be easily added.
Recursive sequences in first-year calculus
NASA Astrophysics Data System (ADS)
Krainer, Thomas
2016-02-01
This article provides ready-to-use supplementary material on recursive sequences for a second-semester calculus class. It equips first-year calculus students with a basic methodical procedure based on which they can conduct a rigorous convergence or divergence analysis of many simple recursive sequences on their own without the need to invoke inductive arguments as is typically required in calculus textbooks. The sequences that are accessible to this kind of analysis are predominantly (eventually) monotonic, but also certain recursive sequences that alternate around their limit point as they converge can be considered.
Guided wave tomography in anisotropic media using recursive extrapolation operators
NASA Astrophysics Data System (ADS)
Volker, Arno
2018-04-01
Guided wave tomography is an advanced technology for quantitative wall thickness mapping to image wall loss due to corrosion or erosion. An inversion approach is used to match the measured phase (time) at a specific frequency to a model. The accuracy of the model determines the sizing accuracy. Particularly for seam welded pipes there is a measurable amount of anisotropy. Moreover, for small defects a ray-tracing based modelling approach is no longer accurate. Both issues are solved by applying a recursive wave field extrapolation operator assuming vertical transverse anisotropy. The inversion scheme is extended by not only estimating the wall loss profile but also the anisotropy, local material changes and transducer ring alignment errors. This makes the approach more robust. The approach will be demonstrated experimentally on different defect sizes, and a comparison will be made between this new approach and an isotropic ray-tracing approach. An example is given in Fig. 1 for a 75 mm wide, 5 mm deep defect. The wave field extrapolation based tomography clearly provides superior results.
Zhang, Hui; Yu, Peng; Ren, Ji-Xia; Li, Xi-Bo; Wang, He-Li; Ding, Lan; Kong, Wei-Bao
2017-12-01
Mitochondrial dysfunction has been considered as an important contributing factor in the etiology of drug-induced organ toxicity, and even plays an important role in the pathogenesis of some diseases. The objective of this investigation was to develop a novel prediction model of drug-induced mitochondrial toxicity by using a naïve Bayes classifier. For comparison, the recursive partitioning classifier prediction model was also constructed. Among these methods, the prediction performance of naïve Bayes classifier established here showed best, which yielded average overall prediction accuracies for the internal 5-fold cross validation of the training set and external test set were 95 ± 0.6% and 81 ± 1.1%, respectively. In addition, four important molecular descriptors and some representative substructures of toxicants produced by ECFP_6 fingerprints were identified. We hope the established naïve Bayes prediction model can be employed for the mitochondrial toxicity assessment, and these obtained important information of mitochondrial toxicants can provide guidance for medicinal chemists working in drug discovery and lead optimization. Copyright © 2017 Elsevier Ltd. All rights reserved.
A Synthetic Recursive “+1” Pathway for Carbon Chain Elongation
Marcheschi, Ryan J.; Li, Han; Zhang, Kechun; Noey, Elizabeth L.; Kim, Seonah; Chaubey, Asha; Houk, K. N.; Liao, James C.
2013-01-01
Nature uses four methods of carbon chain elongation for the production of 2-ketoacids, fatty acids, polyketides, and isoprenoids. Using a combination of quantum mechanical (QM) modeling, protein–substrate modeling, and protein and metabolic engineering, we have engineered the enzymes involved in leucine biosynthesis for use as a synthetic “+1” recursive metabolic pathway to extend the carbon chain of 2-ketoacids. This modified pathway preferentially selects longer-chain substrates for catalysis, as compared to the non-recursive natural pathway, and can recursively catalyze five elongation cycles to synthesize bulk chemicals, such as 1-heptanol, 1-octanol, and phenylpropanol directly from glucose. The “+1” chemistry is a valuable metabolic tool in addition to the “+5” chemistry and “+2” chemistry for the biosynthesis of isoprenoids, fatty acids, or polyketides. PMID:22242720
A spatial operator algebra for manipulator modeling and control
NASA Technical Reports Server (NTRS)
Rodriguez, G.; Kreutz, K.; Milman, M.
1988-01-01
A powerful new spatial operator algebra for modeling, control, and trajectory design of manipulators is discussed along with its implementation in the Ada programming language. Applications of this algebra to robotics include an operator representation of the manipulator Jacobian matrix; the robot dynamical equations formulated in terms of the spatial algebra, showing the complete equivalence between the recursive Newton-Euler formulations to robot dynamics; the operator factorization and inversion of the manipulator mass matrix which immediately results in O(N) recursive forward dynamics algorithms; the joint accelerations of a manipulator due to a tip contact force; the recursive computation of the equivalent mass matrix as seen at the tip of a manipulator; and recursive forward dynamics of a closed chain system. Finally, additional applications and current research involving the use of the spatial operator algebra are discussed in general terms.
NASA Astrophysics Data System (ADS)
Rueda, Sylvia; Udupa, Jayaram K.
2011-03-01
Landmark based statistical object modeling techniques, such as Active Shape Model (ASM), have proven useful in medical image analysis. Identification of the same homologous set of points in a training set of object shapes is the most crucial step in ASM, which has encountered challenges such as (C1) defining and characterizing landmarks; (C2) ensuring homology; (C3) generalizing to n > 2 dimensions; (C4) achieving practical computations. In this paper, we propose a novel global-to-local strategy that attempts to address C3 and C4 directly and works in Rn. The 2D version starts from two initial corresponding points determined in all training shapes via a method α, and subsequently by subdividing the shapes into connected boundary segments by a line determined by these points. A shape analysis method β is applied on each segment to determine a landmark on the segment. This point introduces more pairs of points, the lines defined by which are used to further subdivide the boundary segments. This recursive boundary subdivision (RBS) process continues simultaneously on all training shapes, maintaining synchrony of the level of recursion, and thereby keeping correspondence among generated points automatically by the correspondence of the homologous shape segments in all training shapes. The process terminates when no subdividing lines are left to be considered that indicate (as per method β) that a point can be selected on the associated segment. Examples of α and β are presented based on (a) distance; (b) Principal Component Analysis (PCA); and (c) the novel concept of virtual landmarks.
Recursive Bayesian recurrent neural networks for time-series modeling.
Mirikitani, Derrick T; Nikolaev, Nikolay
2010-02-01
This paper develops a probabilistic approach to recursive second-order training of recurrent neural networks (RNNs) for improved time-series modeling. A general recursive Bayesian Levenberg-Marquardt algorithm is derived to sequentially update the weights and the covariance (Hessian) matrix. The main strengths of the approach are a principled handling of the regularization hyperparameters that leads to better generalization, and stable numerical performance. The framework involves the adaptation of a noise hyperparameter and local weight prior hyperparameters, which represent the noise in the data and the uncertainties in the model parameters. Experimental investigations using artificial and real-world data sets show that RNNs equipped with the proposed approach outperform standard real-time recurrent learning and extended Kalman training algorithms for recurrent networks, as well as other contemporary nonlinear neural models, on time-series modeling.
Rehbein, Pia; Brügemann, Kerstin; Yin, Tong; V Borstel, U König; Wu, Xiao-Lin; König, Sven
2013-10-01
A dataset of test-day records, fertility traits, and one health trait including 1275 Brown Swiss cows kept in 46 small-scale organic farms was used to infer relationships among these traits based on recursive Gaussian-threshold models. Test-day records included milk yield (MY), protein percentage (PROT-%), fat percentage (FAT-%), somatic cell score (SCS), the ratio of FAT-% to PROT-% (FPR), lactose percentage (LAC-%), and milk urea nitrogen (MUN). Female fertility traits were defined as the interval from calving to first insemination (CTFS) and success of a first insemination (SFI), and the health trait was clinical mastitis (CM). First, a tri-trait model was used which postulated the recursive effect of a test-day observation in the early period of lactation on liability to CM (LCM), and further the recursive effect of LCM on the following test-day observation. For CM and female fertility traits, a bi-trait recursive Gaussian-threshold model was employed to estimate the effects from CM to CTFS and from CM on SFI. The recursive effects from CTFS and SFI onto CM were not relevant, because CM was recorded prior to the measurements for CTFS and SFI. Results show that the posterior heritability for LCM was 0.05, and for all other traits, heritability estimates were in reasonable ranges, each with a small posterior SD. Lowest heritability estimates were obtained for female reproduction traits, i.e. h(2)=0.02 for SFI, and h(2)≈0 for CTFS. Posterior estimates of genetic correlations between LCM and production traits (MY and MUN), and between LCM and somatic cell score (SCS), were large and positive (0.56-0.68). Results confirm the genetic antagonism between MY and LCM, and the suitability of SCS as an indicator trait for CM. Structural equation coefficients describe the impact of one trait on a second trait on the phenotypic pathway. Higher values for FAT-% and FPR were associated with a higher LCM. The rate of change in FAT-% and in FPR in the ongoing lactation with respect to the previous LCM was close to zero. Estimated recursive effects between SCS and CM were positive, implying strong phenotypic impacts between both traits. Structural equation coefficients explained a detrimental impact of CM on female fertility traits CTFS and SFI. The cow-specific CM treatment had no significant impact on performance traits in the ongoing lactation. For most treatments, beta-lactam-antibiotics were used, but test-day SCS and production traits after the beta-lactam-treatment were comparable to those after other antibiotic as well as homeopathic treatments. Copyright © 2013 Elsevier B.V. All rights reserved.
Accelerating calculations of RNA secondary structure partition functions using GPUs
2013-01-01
Background RNA performs many diverse functions in the cell in addition to its role as a messenger of genetic information. These functions depend on its ability to fold to a unique three-dimensional structure determined by the sequence. The conformation of RNA is in part determined by its secondary structure, or the particular set of contacts between pairs of complementary bases. Prediction of the secondary structure of RNA from its sequence is therefore of great interest, but can be computationally expensive. In this work we accelerate computations of base-pair probababilities using parallel graphics processing units (GPUs). Results Calculation of the probabilities of base pairs in RNA secondary structures using nearest-neighbor standard free energy change parameters has been implemented using CUDA to run on hardware with multiprocessor GPUs. A modified set of recursions was introduced, which reduces memory usage by about 25%. GPUs are fastest in single precision, and for some hardware, restricted to single precision. This may introduce significant roundoff error. However, deviations in base-pair probabilities calculated using single precision were found to be negligible compared to those resulting from shifting the nearest-neighbor parameters by a random amount of magnitude similar to their experimental uncertainties. For large sequences running on our particular hardware, the GPU implementation reduces execution time by a factor of close to 60 compared with an optimized serial implementation, and by a factor of 116 compared with the original code. Conclusions Using GPUs can greatly accelerate computation of RNA secondary structure partition functions, allowing calculation of base-pair probabilities for large sequences in a reasonable amount of time, with a negligible compromise in accuracy due to working in single precision. The source code is integrated into the RNAstructure software package and available for download at http://rna.urmc.rochester.edu. PMID:24180434
A combinatorial model for the Macdonald polynomials.
Haglund, J
2004-11-16
We introduce a polynomial C(mu)[Z; q, t], depending on a set of variables Z = z(1), z(2),..., a partition mu, and two extra parameters q, t. The definition of C(mu) involves a pair of statistics (maj(sigma, mu), inv(sigma, mu)) on words sigma of positive integers, and the coefficients of the z(i) are manifestly in N[q,t]. We conjecture that C(mu)[Z; q, t] is none other than the modified Macdonald polynomial H(mu)[Z; q, t]. We further introduce a general family of polynomials F(T)[Z; q, S], where T is an arbitrary set of squares in the first quadrant of the xy plane, and S is an arbitrary subset of T. The coefficients of the F(T)[Z; q, S] are in N[q], and C(mu)[Z; q, t] is a sum of certain F(T)[Z; q, S] times nonnegative powers of t. We prove F(T)[Z; q, S] is symmetric in the z(i) and satisfies other properties consistent with the conjecture. We also show how the coefficient of a monomial in F(T)[Z; q, S] can be expressed recursively. maple calculations indicate the F(T)[Z; q, S] are Schur-positive, and we present a combinatorial conjecture for their Schur coefficients when the set T is a partition with at most three columns.
A New Model for Optimal Mechanical and Thermal Performance of Cement-Based Partition Wall
Huang, Shiping; Hu, Mengyu; Cui, Nannan; Wang, Weifeng
2018-01-01
The prefabricated cement-based partition wall has been widely used in assembled buildings because of its high manufacturing efficiency, high-quality surface, and simple and convenient construction process. In this paper, a general porous partition wall that is made from cement-based materials was proposed to meet the optimal mechanical and thermal performance during transportation, construction and its service life. The porosity of the proposed partition wall is formed by elliptic-cylinder-type cavities. The finite element method was used to investigate the mechanical and thermal behaviour, which shows that the proposed model has distinct advantages over the current partition wall that is used in the building industry. It is found that, by controlling the eccentricity of the elliptic-cylinder cavities, the proposed wall stiffness can be adjusted to respond to the imposed loads and to improve the thermal performance, which can be used for the optimum design. Finally, design guidance is provided to obtain the optimal mechanical and thermal performance. The proposed model could be used as a promising candidate for partition wall in the building industry. PMID:29673176
A New Model for Optimal Mechanical and Thermal Performance of Cement-Based Partition Wall.
Huang, Shiping; Hu, Mengyu; Huang, Yonghui; Cui, Nannan; Wang, Weifeng
2018-04-17
The prefabricated cement-based partition wall has been widely used in assembled buildings because of its high manufacturing efficiency, high-quality surface, and simple and convenient construction process. In this paper, a general porous partition wall that is made from cement-based materials was proposed to meet the optimal mechanical and thermal performance during transportation, construction and its service life. The porosity of the proposed partition wall is formed by elliptic-cylinder-type cavities. The finite element method was used to investigate the mechanical and thermal behaviour, which shows that the proposed model has distinct advantages over the current partition wall that is used in the building industry. It is found that, by controlling the eccentricity of the elliptic-cylinder cavities, the proposed wall stiffness can be adjusted to respond to the imposed loads and to improve the thermal performance, which can be used for the optimum design. Finally, design guidance is provided to obtain the optimal mechanical and thermal performance. The proposed model could be used as a promising candidate for partition wall in the building industry.
ERIC Educational Resources Information Center
Chang, Huo-Tsan; Chi, Nai-Wen; Miao, Min-Chih
2007-01-01
This study explored the relationship between three-component organizational/occupational commitment and organizational/occupational turnover intention, and the reciprocal relationship between organizational and occupational turnover intention with a non-recursive model in collectivist cultural settings. We selected 177 nursing staffs out of 30…
Interacting multiple model forward filtering and backward smoothing for maneuvering target tracking
NASA Astrophysics Data System (ADS)
Nandakumaran, N.; Sutharsan, S.; Tharmarasa, R.; Lang, Tom; McDonald, Mike; Kirubarajan, T.
2009-08-01
The Interacting Multiple Model (IMM) estimator has been proven to be effective in tracking agile targets. Smoothing or retrodiction, which uses measurements beyond the current estimation time, provides better estimates of target states. Various methods have been proposed for multiple model smoothing in the literature. In this paper, a new smoothing method, which involves forward filtering followed by backward smoothing while maintaining the fundamental spirit of the IMM, is proposed. The forward filtering is performed using the standard IMM recursion, while the backward smoothing is performed using a novel interacting smoothing recursion. This backward recursion mimics the IMM estimator in the backward direction, where each mode conditioned smoother uses standard Kalman smoothing recursion. Resulting algorithm provides improved but delayed estimates of target states. Simulation studies are performed to demonstrate the improved performance with a maneuvering target scenario. The comparison with existing methods confirms the improved smoothing accuracy. This improvement results from avoiding the augmented state vector used by other algorithms. In addition, the new technique to account for model switching in smoothing is a key in improving the performance.
Recursive Directional Ligation Approach for Cloning Recombinant Spider Silks.
Dinjaski, Nina; Huang, Wenwen; Kaplan, David L
2018-01-01
Recent advances in genetic engineering have provided a route to produce various types of recombinant spider silks. Different cloning strategies have been applied to achieve this goal (e.g., concatemerization, step-by-step ligation, recursive directional ligation). Here we describe recursive directional ligation as an approach that allows for facile modularity and control over the size of the genetic cassettes. This approach is based on sequential ligation of genetic cassettes (monomers) where the junctions between them are formed without interrupting key gene sequences with additional base pairs.
Inner and Outer Recursive Neural Networks for Chemoinformatics Applications.
Urban, Gregor; Subrahmanya, Niranjan; Baldi, Pierre
2018-02-26
Deep learning methods applied to problems in chemoinformatics often require the use of recursive neural networks to handle data with graphical structure and variable size. We present a useful classification of recursive neural network approaches into two classes, the inner and outer approach. The inner approach uses recursion inside the underlying graph, to essentially "crawl" the edges of the graph, while the outer approach uses recursion outside the underlying graph, to aggregate information over progressively longer distances in an orthogonal direction. We illustrate the inner and outer approaches on several examples. More importantly, we provide open-source implementations [available at www.github.com/Chemoinformatics/InnerOuterRNN and cdb.ics.uci.edu ] for both approaches in Tensorflow which can be used in combination with training data to produce efficient models for predicting the physical, chemical, and biological properties of small molecules.
Recursive renormalization group theory based subgrid modeling
NASA Technical Reports Server (NTRS)
Zhou, YE
1991-01-01
Advancing the knowledge and understanding of turbulence theory is addressed. Specific problems to be addressed will include studies of subgrid models to understand the effects of unresolved small scale dynamics on the large scale motion which, if successful, might substantially reduce the number of degrees of freedom that need to be computed in turbulence simulation.
A basic recursion concept inventory
NASA Astrophysics Data System (ADS)
Hamouda, Sally; Edwards, Stephen H.; Elmongui, Hicham G.; Ernst, Jeremy V.; Shaffer, Clifford A.
2017-04-01
Recursion is both an important and a difficult topic for introductory Computer Science students. Students often develop misconceptions about the topic that need to be diagnosed and corrected. In this paper, we report on our initial attempts to develop a concept inventory that measures student misconceptions on basic recursion topics. We present a collection of misconceptions and difficulties encountered by students when learning introductory recursion as presented in a typical CS2 course. Based on this collection, a draft concept inventory in the form of a series of questions was developed and evaluated, with the question rubric tagged to the list of misconceptions and difficulties.
NASA Astrophysics Data System (ADS)
Burke, Mark E.
2010-11-01
Dubois coined the term incursion, for an inclusive or implicit recursion, to describe a discrete-time anticipatory system which computes its future states by reference to its future states as well as its current and past states. In this paper, we look at a model which has been proposed in the context of a social system which has functionally differentiated subsystems. The model is derived from a discrete-time compartmental SIS epidemic model. We analyse a low order instance of the model both in its form as a recursion with no anticipatory capacity, and also as an incursion with associated anticipatory capacity. The properties of the incursion are compared and contrasted with those of the underlying recursion.
NASA Astrophysics Data System (ADS)
Bichler, Andrea; Neumaier, Arnold; Hofmann, Thilo
2014-11-01
Microbial contamination of groundwater used for drinking water can affect public health and is of major concern to local water authorities and water suppliers. Potential hazards need to be identified in order to protect raw water resources. We propose a non-parametric data mining technique for exploring the presence of total coliforms (TC) in a groundwater abstraction well and its relationship to readily available, continuous time series of hydrometric monitoring parameters (seven year records of precipitation, river water levels, and groundwater heads). The original monitoring parameters were used to create an extensive generic dataset of explanatory variables by considering different accumulation or averaging periods, as well as temporal offsets of the explanatory variables. A classification tree based on the Chi-Squared Automatic Interaction Detection (CHAID) recursive partitioning algorithm revealed statistically significant relationships between precipitation and the presence of TC in both a production well and a nearby monitoring well. Different secondary explanatory variables were identified for the two wells. Elevated water levels and short-term water table fluctuations in the nearby river were found to be associated with TC in the observation well. The presence of TC in the production well was found to relate to elevated groundwater heads and fluctuations in groundwater levels. The generic variables created proved useful for increasing significance levels. The tree-based model was used to predict the occurrence of TC on the basis of hydrometric variables.
AlzhCPI: A knowledge base for predicting chemical-protein interactions towards Alzheimer's disease.
Fang, Jiansong; Wang, Ling; Li, Yecheng; Lian, Wenwen; Pang, Xiaocong; Wang, Hong; Yuan, Dongsheng; Wang, Qi; Liu, Ai-Lin; Du, Guan-Hua
2017-01-01
Alzheimer's disease (AD) is a complicated progressive neurodegeneration disorder. To confront AD, scientists are searching for multi-target-directed ligands (MTDLs) to delay disease progression. The in silico prediction of chemical-protein interactions (CPI) can accelerate target identification and drug discovery. Previously, we developed 100 binary classifiers to predict the CPI for 25 key targets against AD using the multi-target quantitative structure-activity relationship (mt-QSAR) method. In this investigation, we aimed to apply the mt-QSAR method to enlarge the model library to predict CPI towards AD. Another 104 binary classifiers were further constructed to predict the CPI for 26 preclinical AD targets based on the naive Bayesian (NB) and recursive partitioning (RP) algorithms. The internal 5-fold cross-validation and external test set validation were applied to evaluate the performance of the training sets and test set, respectively. The area under the receiver operating characteristic curve (ROC) for the test sets ranged from 0.629 to 1.0, with an average of 0.903. In addition, we developed a web server named AlzhCPI to integrate the comprehensive information of approximately 204 binary classifiers, which has potential applications in network pharmacology and drug repositioning. AlzhCPI is available online at http://rcidm.org/AlzhCPI/index.html. To illustrate the applicability of AlzhCPI, the developed system was employed for the systems pharmacology-based investigation of shichangpu against AD to enhance the understanding of the mechanisms of action of shichangpu from a holistic perspective.
Distribution-Preserving Stratified Sampling for Learning Problems.
Cervellera, Cristiano; Maccio, Danilo
2017-06-09
The need for extracting a small sample from a large amount of real data, possibly streaming, arises routinely in learning problems, e.g., for storage, to cope with computational limitations, obtain good training/test/validation sets, and select minibatches for stochastic gradient neural network training. Unless we have reasons to select the samples in an active way dictated by the specific task and/or model at hand, it is important that the distribution of the selected points is as similar as possible to the original data. This is obvious for unsupervised learning problems, where the goal is to gain insights on the distribution of the data, but it is also relevant for supervised problems, where the theory explains how the training set distribution influences the generalization error. In this paper, we analyze the technique of stratified sampling from the point of view of distances between probabilities. This allows us to introduce an algorithm, based on recursive binary partition of the input space, aimed at obtaining samples that are distributed as much as possible as the original data. A theoretical analysis is proposed, proving the (greedy) optimality of the procedure together with explicit error bounds. An adaptive version of the algorithm is also introduced to cope with streaming data. Simulation tests on various data sets and different learning tasks are also provided.
A Note on Local Stability Conditions for Two Types of Monetary Models with Recursive Utility
NASA Astrophysics Data System (ADS)
Miyazaki, Kenji; Utsunomiya, Hitoshi
2009-09-01
This note explores local stability conditions for money-in-utility-function (MIUF) and transaction-costs (TC) models with recursive utility. Although Chen et al. [Chen, B.-L., M. Hsu, and C.-H. Lin, 2008, Inflation and growth: impatience and a qualitative equivalent, Journal of Money, Credit, and Banking, Vol. 40, No. 6, 1310-1323] investigated the relationship between inflation and growth in MIUF and TC models with recursive utility, they conducted only a comparative static analysis in a steady state. By establishing sufficient conditions for local stability, this note proves that impatience should be increasing in consumption and real balances. Increasing impatience, although less plausible from an empirical point of view, receives more support from a theoretical viewpoint.
Estimation of object motion parameters from noisy images.
Broida, T J; Chellappa, R
1986-01-01
An approach is presented for the estimation of object motion parameters based on a sequence of noisy images. The problem considered is that of a rigid body undergoing unknown rotational and translational motion. The measurement data consists of a sequence of noisy image coordinates of two or more object correspondence points. By modeling the object dynamics as a function of time, estimates of the model parameters (including motion parameters) can be extracted from the data using recursive and/or batch techniques. This permits a desired degree of smoothing to be achieved through the use of an arbitrarily large number of images. Some assumptions regarding object structure are presently made. Results are presented for a recursive estimation procedure: the case considered here is that of a sequence of one dimensional images of a two dimensional object. Thus, the object moves in one transverse dimension, and in depth, preserving the fundamental ambiguity of the central projection image model (loss of depth information). An iterated extended Kalman filter is used for the recursive solution. Noise levels of 5-10 percent of the object image size are used. Approximate Cramer-Rao lower bounds are derived for the model parameter estimates as a function of object trajectory and noise level. This approach may be of use in situations where it is difficult to resolve large numbers of object match points, but relatively long sequences of images (10 to 20 or more) are available.
Temperature dependence of the kinetic energy in the Zr40Be60 amorphous alloy
NASA Astrophysics Data System (ADS)
Syrykh, G. F.; Stolyarov, A. A.; Krzystyniak, M.; Romanelli, G.; Sadykov, R. A.
2017-05-01
The average kinetic energy < E(T)> of the atomic nucleus for each element of the amorphous alloy Zr40Be60 in the temperature range 10-300 K has been measured for the first time using VESUVIO spectrometer (ISIS). The experimental values of < E(T)> have been compared to the partial ZrBe spectra refined by a recursion method based on the data obtained with thermal neutron scattering. The satisfactory agreement has been reached with the calculations using partial spectra based on thermal neutron spectra obtained with recursion method. In addition, the experimental data have been compared to the Debye model. The measurements at different temperatures (10, 200, and 300 K) will provide an opportunity to evaluate the significance of anharmonicity in the dynamics of metallic glasses.
NASA Technical Reports Server (NTRS)
Shareef, N. H.; Amirouche, F. M. L.
1991-01-01
A computational algorithmic procedure is developed and implemented for the dynamic analysis of a multibody system with rigid/flexible interconnected bodies. The algorithm takes into consideration the large rotation/translation and small elastic deformations associated with the rigid-body degrees of freedom and the flexibility of the bodies in the system respectively. Versatile three-dimensional isoparametric brick elements are employed for the modeling of the geometric configurations of the bodies. The formulation of the recursive dynamical equations of motion is based on the recursive Kane's equations, strain energy concepts, and the techniques of component mode synthesis. In order to minimize CPU-intensive matrix multiplication operations and speed up the execution process, the concepts of indexed arrays is utilized in the formulation of the equations of motion. A spin-up maneuver of a space robot with three flexible links carrying a solar panel is used as an illustrative example.
Recursive causality in evolution: a model for epigenetic mechanisms in cancer development.
Haslberger, A; Varga, F; Karlic, H
2006-01-01
Interactions between adaptative and selective processes are illustrated in the model of recursive causality as defined in Rupert Riedl's systems theory of evolution. One of the main features of this theory also termed as theory of evolving complexity is the centrality of the notion of 'recursive' or 'feedback' causality - 'the idea that every biological effect in living systems, in some way, feeds back to its own cause'. Our hypothesis is that "recursive" or "feedback" causality provides a model for explaining the consequences of interacting genetic and epigenetic mechanisms which are known to play a key role in development of cancer. Epigenetics includes any process that alters gene activity without changes of the DNA sequence. The most important epigenetic mechanisms are DNA-methylation and chromatin remodeling. Hypomethylation of so-called oncogenes and hypermethylation of tumor suppressor genes appear to be critical determinants of cancer. Folic acid, vitamin B12 and other nutrients influence the function of enzymes that participate in various methylation processes by affecting the supply of methyl groups into a variety of molecules which may be directly or indirectly associated with cancerogenesis. We present an example from our own studies by showing that vitamin D3 has the potential to de-methylate the osteocalcin-promoter in MG63 osteosarcoma cells. Consequently, a stimulation of osteocalcin synthesis can be observed. The above mentioned enzymes also play a role in development and differentiation of cells and organisms and thus illustrate the close association between evolutionary and developmental mechanisms. This enabled new ways to understand the interaction between the genome and environment and may improve biomedical concepts including environmental health aspects where epigenetic and genetic modifications are closely associated. Recent observations showed that methylated nucleotides in the gene promoter may serve as a target for solar UV-induced mutations of the p53 tumor suppressor gene. This illustrates the close interaction of genetic and epigenetic mechanisms in cancerogenesis resulting from changes in transcriptional regulation and its contribution to a phenotype at the micro- or macroevolutionary level. Above-mentioned interactions of genetic and epigenetic mechanisms in oncogenesis defy explanation by plain linear causality, things like the continuing adaptability of complex systems. They can be explained by the concept of recursive causality and has introduced molecular biology into the realm of cognition science and systems theory: based on the notion of so-called feedback- or recursive causality a model for epigenetic mechanisms with relevance for oncology and biomedicine is provided.
ERIC Educational Resources Information Center
Wright, Vince
2014-01-01
Pirie and Kieren (1989 "For the learning of mathematics", 9(3)7-11, 1992 "Journal of Mathematical Behavior", 11, 243-257, 1994a "Educational Studies in Mathematics", 26, 61-86, 1994b "For the Learning of Mathematics":, 14(1)39-43) created a model (P-K) that describes a dynamic and recursive process by which…
Neel, Maile C; Che-Castaldo, Judy P
2013-04-01
Recovery plans for species listed under the U.S. Endangered Species Act are required to specify measurable criteria that can be used to determine when the species can be delisted. For the 642 listed endangered and threatened plant species that have recovery plans, we applied recursive partitioning methods to test whether the number of individuals or populations required for delisting can be predicted on the basis of distributional and biological traits, previous abundance at multiple time steps, or a combination of traits and previous abundances. We also tested listing status (threatened or endangered) and the year the recovery plan was written as predictors of recovery criteria. We analyzed separately recovery criteria that were stated as number of populations and as number of individuals (population-based and individual-based criteria, respectively). Previous abundances alone were relatively good predictors of population-based recovery criteria. Fewer populations, but a greater proportion of historically known populations, were required to delist species that had few populations at listing compared with species that had more populations at listing. Previous abundances were also good predictors of individual-based delisting criteria when models included both abundances and traits. The physiographic division in which the species occur was also a good predictor of individual-based criteria. Our results suggest managers are relying on previous abundances and patterns of decline as guidelines for setting recovery criteria. This may be justifiable in that previous abundances inform managers of the effects of both intrinsic traits and extrinsic threats that interact and determine extinction risk. © 2013 Society for Conservation Biology.
NASA Astrophysics Data System (ADS)
Ťupek, Boris; Ortiz, Carina A.; Hashimoto, Shoji; Stendahl, Johan; Dahlgren, Jonas; Karltun, Erik; Lehtonen, Aleksi
2016-08-01
Inaccurate estimate of the largest terrestrial carbon pool, soil organic carbon (SOC) stock, is the major source of uncertainty in simulating feedback of climate warming on ecosystem-atmosphere carbon dioxide exchange by process-based ecosystem and soil carbon models. Although the models need to simplify complex environmental processes of soil carbon sequestration, in a large mosaic of environments a missing key driver could lead to a modeling bias in predictions of SOC stock change.We aimed to evaluate SOC stock estimates of process-based models (Yasso07, Q, and CENTURY soil sub-model v4) against a massive Swedish forest soil inventory data set (3230 samples) organized by a recursive partitioning method into distinct soil groups with underlying SOC stock development linked to physicochemical conditions.For two-thirds of measurements all models predicted accurate SOC stock levels regardless of the detail of input data, e.g., whether they ignored or included soil properties. However, in fertile sites with high N deposition, high cation exchange capacity, or moderately increased soil water content, Yasso07 and Q models underestimated SOC stocks. In comparison to Yasso07 and Q, accounting for the site-specific soil characteristics (e. g. clay content and topsoil mineral N) by CENTURY improved SOC stock estimates for sites with high clay content, but not for sites with high N deposition.Our analysis suggested that the soils with poorly predicted SOC stocks, as characterized by the high nutrient status and well-sorted parent material, indeed have had other predominant drivers of SOC stabilization lacking in the models, presumably the mycorrhizal organic uptake and organo-mineral stabilization processes. Our results imply that the role of soil nutrient status as regulator of organic matter mineralization has to be re-evaluated, since correct SOC stocks are decisive for predicting future SOC change and soil CO2 efflux.
Partitioning-based mechanisms under personalized differential privacy.
Li, Haoran; Xiong, Li; Ji, Zhanglong; Jiang, Xiaoqian
2017-05-01
Differential privacy has recently emerged in private statistical aggregate analysis as one of the strongest privacy guarantees. A limitation of the model is that it provides the same privacy protection for all individuals in the database. However, it is common that data owners may have different privacy preferences for their data. Consequently, a global differential privacy parameter may provide excessive privacy protection for some users, while insufficient for others. In this paper, we propose two partitioning-based mechanisms, privacy-aware and utility-based partitioning, to handle personalized differential privacy parameters for each individual in a dataset while maximizing utility of the differentially private computation. The privacy-aware partitioning is to minimize the privacy budget waste, while utility-based partitioning is to maximize the utility for a given aggregate analysis. We also develop a t -round partitioning to take full advantage of remaining privacy budgets. Extensive experiments using real datasets show the effectiveness of our partitioning mechanisms.
Partitioning-based mechanisms under personalized differential privacy
Li, Haoran; Xiong, Li; Ji, Zhanglong; Jiang, Xiaoqian
2017-01-01
Differential privacy has recently emerged in private statistical aggregate analysis as one of the strongest privacy guarantees. A limitation of the model is that it provides the same privacy protection for all individuals in the database. However, it is common that data owners may have different privacy preferences for their data. Consequently, a global differential privacy parameter may provide excessive privacy protection for some users, while insufficient for others. In this paper, we propose two partitioning-based mechanisms, privacy-aware and utility-based partitioning, to handle personalized differential privacy parameters for each individual in a dataset while maximizing utility of the differentially private computation. The privacy-aware partitioning is to minimize the privacy budget waste, while utility-based partitioning is to maximize the utility for a given aggregate analysis. We also develop a t-round partitioning to take full advantage of remaining privacy budgets. Extensive experiments using real datasets show the effectiveness of our partitioning mechanisms. PMID:28932827
The language faculty that wasn't: a usage-based account of natural language recursion
Christiansen, Morten H.; Chater, Nick
2015-01-01
In the generative tradition, the language faculty has been shrinking—perhaps to include only the mechanism of recursion. This paper argues that even this view of the language faculty is too expansive. We first argue that a language faculty is difficult to reconcile with evolutionary considerations. We then focus on recursion as a detailed case study, arguing that our ability to process recursive structure does not rely on recursion as a property of the grammar, but instead emerges gradually by piggybacking on domain-general sequence learning abilities. Evidence from genetics, comparative work on non-human primates, and cognitive neuroscience suggests that humans have evolved complex sequence learning skills, which were subsequently pressed into service to accommodate language. Constraints on sequence learning therefore have played an important role in shaping the cultural evolution of linguistic structure, including our limited abilities for processing recursive structure. Finally, we re-evaluate some of the key considerations that have often been taken to require the postulation of a language faculty. PMID:26379567
The language faculty that wasn't: a usage-based account of natural language recursion.
Christiansen, Morten H; Chater, Nick
2015-01-01
In the generative tradition, the language faculty has been shrinking-perhaps to include only the mechanism of recursion. This paper argues that even this view of the language faculty is too expansive. We first argue that a language faculty is difficult to reconcile with evolutionary considerations. We then focus on recursion as a detailed case study, arguing that our ability to process recursive structure does not rely on recursion as a property of the grammar, but instead emerges gradually by piggybacking on domain-general sequence learning abilities. Evidence from genetics, comparative work on non-human primates, and cognitive neuroscience suggests that humans have evolved complex sequence learning skills, which were subsequently pressed into service to accommodate language. Constraints on sequence learning therefore have played an important role in shaping the cultural evolution of linguistic structure, including our limited abilities for processing recursive structure. Finally, we re-evaluate some of the key considerations that have often been taken to require the postulation of a language faculty.
Nonstationary multivariate modeling of cerebral autoregulation during hypercapnia.
Kostoglou, Kyriaki; Debert, Chantel T; Poulin, Marc J; Mitsis, Georgios D
2014-05-01
We examined the time-varying characteristics of cerebral autoregulation and hemodynamics during a step hypercapnic stimulus by using recursively estimated multivariate (two-input) models which quantify the dynamic effects of mean arterial blood pressure (ABP) and end-tidal CO2 tension (PETCO2) on middle cerebral artery blood flow velocity (CBFV). Beat-to-beat values of ABP and CBFV, as well as breath-to-breath values of PETCO2 during baseline and sustained euoxic hypercapnia were obtained in 8 female subjects. The multiple-input, single-output models used were based on the Laguerre expansion technique, and their parameters were updated using recursive least squares with multiple forgetting factors. The results reveal the presence of nonstationarities that confirm previously reported effects of hypercapnia on autoregulation, i.e. a decrease in the MABP phase lead, and suggest that the incorporation of PETCO2 as an additional model input yields less time-varying estimates of dynamic pressure autoregulation obtained from single-input (ABP-CBFV) models. Copyright © 2013 IPEM. Published by Elsevier Ltd. All rights reserved.
Tang, Jinjun; Zou, Yajie; Ash, John; Zhang, Shen; Liu, Fang; Wang, Yinhai
2016-01-01
Travel time is an important measurement used to evaluate the extent of congestion within road networks. This paper presents a new method to estimate the travel time based on an evolving fuzzy neural inference system. The input variables in the system are traffic flow data (volume, occupancy, and speed) collected from loop detectors located at points both upstream and downstream of a given link, and the output variable is the link travel time. A first order Takagi-Sugeno fuzzy rule set is used to complete the inference. For training the evolving fuzzy neural network (EFNN), two learning processes are proposed: (1) a K-means method is employed to partition input samples into different clusters, and a Gaussian fuzzy membership function is designed for each cluster to measure the membership degree of samples to the cluster centers. As the number of input samples increases, the cluster centers are modified and membership functions are also updated; (2) a weighted recursive least squares estimator is used to optimize the parameters of the linear functions in the Takagi-Sugeno type fuzzy rules. Testing datasets consisting of actual and simulated data are used to test the proposed method. Three common criteria including mean absolute error (MAE), root mean square error (RMSE), and mean absolute relative error (MARE) are utilized to evaluate the estimation performance. Estimation results demonstrate the accuracy and effectiveness of the EFNN method through comparison with existing methods including: multiple linear regression (MLR), instantaneous model (IM), linear model (LM), neural network (NN), and cumulative plots (CP).
Tang, Jinjun; Zou, Yajie; Ash, John; Zhang, Shen; Liu, Fang; Wang, Yinhai
2016-01-01
Travel time is an important measurement used to evaluate the extent of congestion within road networks. This paper presents a new method to estimate the travel time based on an evolving fuzzy neural inference system. The input variables in the system are traffic flow data (volume, occupancy, and speed) collected from loop detectors located at points both upstream and downstream of a given link, and the output variable is the link travel time. A first order Takagi-Sugeno fuzzy rule set is used to complete the inference. For training the evolving fuzzy neural network (EFNN), two learning processes are proposed: (1) a K-means method is employed to partition input samples into different clusters, and a Gaussian fuzzy membership function is designed for each cluster to measure the membership degree of samples to the cluster centers. As the number of input samples increases, the cluster centers are modified and membership functions are also updated; (2) a weighted recursive least squares estimator is used to optimize the parameters of the linear functions in the Takagi-Sugeno type fuzzy rules. Testing datasets consisting of actual and simulated data are used to test the proposed method. Three common criteria including mean absolute error (MAE), root mean square error (RMSE), and mean absolute relative error (MARE) are utilized to evaluate the estimation performance. Estimation results demonstrate the accuracy and effectiveness of the EFNN method through comparison with existing methods including: multiple linear regression (MLR), instantaneous model (IM), linear model (LM), neural network (NN), and cumulative plots (CP). PMID:26829639
Pitcher, Brandon; Alaqla, Ali; Noujeim, Marcel; Wealleans, James A; Kotsakis, Georgios; Chrepa, Vanessa
2017-03-01
Cone-beam computed tomographic (CBCT) analysis allows for 3-dimensional assessment of periradicular lesions and may facilitate preoperative periapical cyst screening. The purpose of this study was to develop and assess the predictive validity of a cyst screening method based on CBCT volumetric analysis alone or combined with designated radiologic criteria. Three independent examiners evaluated 118 presurgical CBCT scans from cases that underwent apicoectomies and had an accompanying gold standard histopathological diagnosis of either a cyst or granuloma. Lesion volume, density, and specific radiologic characteristics were assessed using specialized software. Logistic regression models with histopathological diagnosis as the dependent variable were constructed for cyst prediction, and receiver operating characteristic curves were used to assess the predictive validity of the models. A conditional inference binary decision tree based on a recursive partitioning algorithm was constructed to facilitate preoperative screening. Interobserver agreement was excellent for volume and density, but it varied from poor to good for the radiologic criteria. Volume and root displacement were strong predictors for cyst screening in all analyses. The binary decision tree classifier determined that if the volume of the lesion was >247 mm 3 , there was 80% probability of a cyst. If volume was <247 mm 3 and root displacement was present, cyst probability was 60% (78% accuracy). The good accuracy and high specificity of the decision tree classifier renders it a useful preoperative cyst screening tool that can aid in clinical decision making but not a substitute for definitive histopathological diagnosis after biopsy. Confirmatory studies are required to validate the present findings. Published by Elsevier Inc.
Is, Yusuf Serhat; Durdagi, Serdar; Aksoydan, Busecan; Yurtsever, Mine
2018-05-07
Monoamine oxidase (MAO) enzymes MAO-A and MAO-B play a critical role in the metabolism of monoamine neurotransmitters. Hence, MAO inhibitors are very important for the treatment of several neurodegenerative diseases such as Parkinson's disease (PD), Alzheimer's disease (AD), and amyotrophic lateral sclerosis (ALS). In this study, 256 750 molecules from Otava Green Chemical Collection were virtually screened for their binding activities as MAO-B inhibitors. Two hit molecules were identified after applying different filters such as high docking scores and selectivity to MAO-B, desired pharmacokinetic profile predictions with binary quantitative structure-activity relationship (QSAR) models. Therapeutic activity prediction as well as pharmacokinetic and toxicity profiles were investigated using MetaCore/MetaDrug platform which is based on a manually curated database of molecular interactions, molecular pathways, gene-disease associations, chemical metabolism, and toxicity information. Particular therapeutic activity and toxic effect predictions are based on the ChemTree ability to correlate structural descriptors to that property using recursive partitioning algorithm. Molecular dynamics (MD) simulations were also performed to make more detailed assessments beyond docking studies. All these calculations were made not only to determine if studied molecules possess the potential to be a MAO-B inhibitor but also to find out whether they carry MAO-B selectivity versus MAO-A. The evaluation of docking results and pharmacokinetic profile predictions together with the MD simulations enabled us to identify one hit molecule (ligand 1, Otava ID: 3463218) which displayed higher selectivity toward MAO-B than a positive control selegiline which is a commercially used drug for PD therapeutic purposes.
Pseudobulbar affect as a negative prognostic indicator in amyotrophic lateral sclerosis.
Tortelli, R; Arcuti, S; Copetti, M; Barone, R; Zecca, C; Capozzo, R; Barulli, M R; Simone, I L; Logroscino, G
2018-07-01
To evaluate whether the presence of pseudobulbar affect (PBA) in an early stage of the disease influences survival in a population-based incident cohort of amyotrophic lateral sclerosis (ALS). Incident ALS cases, diagnosed according to El Escorial criteria, were enrolled from a prospective population-based registry in Puglia, Southern Italy. The Center for Neurologic Study-Lability Scale (CNS-LS), a self-administered questionnaire, was used to evaluate PBA. Total scores range from 7 to 35. A score ≥13 was used to identify PBA. Cox proportional hazard models were used for survival analysis. The modified C-statistic for censored survival data was used for models' discrimination. RECursive Partitioning and AMalgamation (RECPAM) analysis was used to identify subgroups of patients with different patterns of risk, depending on baseline characteristics. We enrolled 94 sporadic ALS, median age of 64 years (range: 26-80). At the censoring date, 65 of 94 (69.2%), 39 of 60 (65.0%), and 26 of 34 (76.5%) patients reached the outcome (tracheotomy/death), in the whole, non-PBA and in the PBA groups, respectively. Kaplan-Meier survival curves for the two subgroups were not significantly different (log-rank test: 1.3, P = .25). The discrimination ability of a multivariable model with demographic and clinical variables of interest was not improved by adding PBA. In the RECPAM analysis, ALSFRSr and the total score of CNS-LS scale (≥10) were the most important variables for differentiating all risk categories. These preliminary results underlie that the presence of PBA at entry negatively influences survival in a specific subgroup of patients with ALS characterized by less functional impairment. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
ERIC Educational Resources Information Center
Recker, Margaret M.; Pirolli, Peter
Students learning to program recursive LISP functions in a typical school-like lesson on recursion were observed. The typical lesson contains text and examples and involves solving a series of programming problems. The focus of this study is on students' learning strategies in new domains. In this light, a Soar computational model of…
Towards Interactive Construction of Topical Hierarchy: A Recursive Tensor Decomposition Approach
Wang, Chi; Liu, Xueqing; Song, Yanglei; Han, Jiawei
2015-01-01
Automatic construction of user-desired topical hierarchies over large volumes of text data is a highly desirable but challenging task. This study proposes to give users freedom to construct topical hierarchies via interactive operations such as expanding a branch and merging several branches. Existing hierarchical topic modeling techniques are inadequate for this purpose because (1) they cannot consistently preserve the topics when the hierarchy structure is modified; and (2) the slow inference prevents swift response to user requests. In this study, we propose a novel method, called STROD, that allows efficient and consistent modification of topic hierarchies, based on a recursive generative model and a scalable tensor decomposition inference algorithm with theoretical performance guarantee. Empirical evaluation shows that STROD reduces the runtime of construction by several orders of magnitude, while generating consistent and quality hierarchies. PMID:26705505
Towards Interactive Construction of Topical Hierarchy: A Recursive Tensor Decomposition Approach.
Wang, Chi; Liu, Xueqing; Song, Yanglei; Han, Jiawei
2015-08-01
Automatic construction of user-desired topical hierarchies over large volumes of text data is a highly desirable but challenging task. This study proposes to give users freedom to construct topical hierarchies via interactive operations such as expanding a branch and merging several branches. Existing hierarchical topic modeling techniques are inadequate for this purpose because (1) they cannot consistently preserve the topics when the hierarchy structure is modified; and (2) the slow inference prevents swift response to user requests. In this study, we propose a novel method, called STROD, that allows efficient and consistent modification of topic hierarchies, based on a recursive generative model and a scalable tensor decomposition inference algorithm with theoretical performance guarantee. Empirical evaluation shows that STROD reduces the runtime of construction by several orders of magnitude, while generating consistent and quality hierarchies.
NASA Astrophysics Data System (ADS)
Nielsen, Roger L.; Ustunisik, Gokce; Weinsteiger, Allison B.; Tepley, Frank J.; Johnston, A. Dana; Kent, Adam J. R.
2017-09-01
Quantitative models of petrologic processes require accurate partition coefficients. Our ability to obtain accurate partition coefficients is constrained by their dependence on pressure temperature and composition, and on the experimental and analytical techniques we apply. The source and magnitude of error in experimental studies of trace element partitioning may go unrecognized if one examines only the processed published data. The most important sources of error are relict crystals, and analyses of more than one phase in the analytical volume. Because we have typically published averaged data, identification of compromised data is difficult if not impossible. We addressed this problem by examining unprocessed data from plagioclase/melt partitioning experiments, by comparing models based on that data with existing partitioning models, and evaluated the degree to which the partitioning models are dependent on the calibration data. We found that partitioning models are dependent on the calibration data in ways that result in erroneous model values, and that the error will be systematic and dependent on the value of the partition coefficient. In effect, use of different calibration datasets will result in partitioning models whose results are systematically biased, and that one can arrive at different and conflicting conclusions depending on how a model is calibrated, defeating the purpose of applying the models. Ultimately this is an experimental data problem, which can be solved if we publish individual analyses (not averages) or use a projection method wherein we use an independent compositional constraint to identify and estimate the uncontaminated composition of each phase.
Anonymizing and Sharing Medical Text Records
Li, Xiao-Bai; Qin, Jialun
2017-01-01
Health information technology has increased accessibility of health and medical data and benefited medical research and healthcare management. However, there are rising concerns about patient privacy in sharing medical and healthcare data. A large amount of these data are in free text form. Existing techniques for privacy-preserving data sharing deal largely with structured data. Current privacy approaches for medical text data focus on detection and removal of patient identifiers from the data, which may be inadequate for protecting privacy or preserving data quality. We propose a new systematic approach to extract, cluster, and anonymize medical text records. Our approach integrates methods developed in both data privacy and health informatics fields. The key novel elements of our approach include a recursive partitioning method to cluster medical text records based on the similarity of the health and medical information and a value-enumeration method to anonymize potentially identifying information in the text data. An experimental study is conducted using real-world medical documents. The results of the experiments demonstrate the effectiveness of the proposed approach. PMID:29569650
Proceedings of the second SISAL users` conference
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feo, J T; Frerking, C; Miller, P J
1992-12-01
This report contains papers on the following topics: A sisal code for computing the fourier transform on S{sub N}; five ways to fill your knapsack; simulating material dislocation motion in sisal; candis as an interface for sisal; parallelisation and performance of the burg algorithm on a shared-memory multiprocessor; use of genetic algorithm in sisal to solve the file design problem; implementing FFT`s in sisal; programming and evaluating the performance of signal processing applications in the sisal programming environment; sisal and Von Neumann-based languages: translation and intercommunication; an IF2 code generator for ADAM architecture; program partitioning for NUMA multiprocessor computer systems;more » mapping functional parallelism on distributed memory machines; implicit array copying: prevention is better than cure ; mathematical syntax for sisal; an approach for optimizing recursive functions; implementing arrays in sisal 2.0; Fol: an object oriented extension to the sisal language; twine: a portable, extensible sisal execution kernel; and investigating the memory performance of the optimizing sisal compiler.« less
Partition-based discrete-time quantum walks
NASA Astrophysics Data System (ADS)
Konno, Norio; Portugal, Renato; Sato, Iwao; Segawa, Etsuo
2018-04-01
We introduce a family of discrete-time quantum walks, called two-partition model, based on two equivalence-class partitions of the computational basis, which establish the notion of local dynamics. This family encompasses most versions of unitary discrete-time quantum walks driven by two local operators studied in literature, such as the coined model, Szegedy's model, and the 2-tessellable staggered model. We also analyze the connection of those models with the two-step coined model, which is driven by the square of the evolution operator of the standard discrete-time coined walk. We prove formally that the two-step coined model, an extension of Szegedy model for multigraphs, and the two-tessellable staggered model are unitarily equivalent. Then, selecting one specific model among those families is a matter of taste not generality.
Karakus, Mustafa C; Salkever, David S; Slade, Eric P; Ialongo, Nicholas; Stuart, Elizabeth
2012-01-01
The potentially serious adverse impacts of behavior problems during adolescence on employment outcomes in adulthood provide a key economic rationale for early intervention programs. However, the extent to which lower educational attainment accounts for the total impact of adolescent behavior problems on later employment remains unclear As an initial step in exploring this issue, we specify and estimate a recursive bivariate probit model that 1) relates middle school behavior problems to high school graduation and 2) models later employment in young adulthood as a function of these behavior problems and of high school graduation. Our model thus allows for both a direct effect of behavior problems on later employment as well as an indirect effect that operates via graduation from high school. Our empirical results, based on analysis of data from the NELS, suggest that the direct effects of externalizing behavior problems on later employment are not significant but that these problems have important indirect effects operating through high school graduation.
Corona graphs as a model of small-world networks
NASA Astrophysics Data System (ADS)
Lv, Qian; Yi, Yuhao; Zhang, Zhongzhi
2015-11-01
We introduce recursive corona graphs as a model of small-world networks. We investigate analytically the critical characteristics of the model, including order and size, degree distribution, average path length, clustering coefficient, and the number of spanning trees, as well as Kirchhoff index. Furthermore, we study the spectra for the adjacency matrix and the Laplacian matrix for the model. We obtain explicit results for all the quantities of the recursive corona graphs, which are similar to those observed in real-life networks.
Zhou, Miaolei; Wang, Shoubin; Gao, Wei
2013-01-01
As a new type of intelligent material, magnetically shape memory alloy (MSMA) has a good performance in its applications in the actuator manufacturing. Compared with traditional actuators, MSMA actuator has the advantages as fast response and large deformation; however, the hysteresis nonlinearity of the MSMA actuator restricts its further improving of control precision. In this paper, an improved Krasnosel'skii-Pokrovskii (KP) model is used to establish the hysteresis model of MSMA actuator. To identify the weighting parameters of the KP operators, an improved gradient correction algorithm and a variable step-size recursive least square estimation algorithm are proposed in this paper. In order to demonstrate the validity of the proposed modeling approach, simulation experiments are performed, simulations with improved gradient correction algorithm and variable step-size recursive least square estimation algorithm are studied, respectively. Simulation results of both identification algorithms demonstrate that the proposed modeling approach in this paper can establish an effective and accurate hysteresis model for MSMA actuator, and it provides a foundation for improving the control precision of MSMA actuator.
Hysteresis Modeling of Magnetic Shape Memory Alloy Actuator Based on Krasnosel'skii-Pokrovskii Model
Wang, Shoubin; Gao, Wei
2013-01-01
As a new type of intelligent material, magnetically shape memory alloy (MSMA) has a good performance in its applications in the actuator manufacturing. Compared with traditional actuators, MSMA actuator has the advantages as fast response and large deformation; however, the hysteresis nonlinearity of the MSMA actuator restricts its further improving of control precision. In this paper, an improved Krasnosel'skii-Pokrovskii (KP) model is used to establish the hysteresis model of MSMA actuator. To identify the weighting parameters of the KP operators, an improved gradient correction algorithm and a variable step-size recursive least square estimation algorithm are proposed in this paper. In order to demonstrate the validity of the proposed modeling approach, simulation experiments are performed, simulations with improved gradient correction algorithm and variable step-size recursive least square estimation algorithm are studied, respectively. Simulation results of both identification algorithms demonstrate that the proposed modeling approach in this paper can establish an effective and accurate hysteresis model for MSMA actuator, and it provides a foundation for improving the control precision of MSMA actuator. PMID:23737730
2009-09-01
SAS Statistical Analysis Software SE Systems Engineering SEP Systems Engineering Process SHP Shaft Horsepower SIGINT Signals Intelligence......management occurs (OSD 2002). The Systems Engineering Process (SEP), displayed in Figure 2, is a comprehensive , iterative and recursive problem
NASA Astrophysics Data System (ADS)
Odabasi, Mustafa; Cetin, Eylem; Sofuoglu, Aysun
Octanol-air partition coefficients ( KOA) for 14 polycyclic aromatic hydrocarbons (PAHs) were determined as a function of temperature using the gas chromatographic retention time method. log KOA values at 25° ranged over six orders of magnitude, between 6.34 (acenaphthylene) and 12.59 (dibenz[ a,h]anthracene). The determined KOA values were within factor of 0.7 (dibenz[ a,h]anthracene) to 15.1 (benz[ a]anthracene) of values calculated as the ratio of octanol-water partition coefficient to dimensionless Henry's law constant. Supercooled liquid vapor pressures ( PL) of 13 PAHs were also determined using the gas chromatographic retention time technique. Activity coefficients in octanol calculated using KOA and PL ranged between 3.2 and 6.2 indicating near-ideal solution behavior. Atmospheric concentrations measured in this study in Izmir, Turkey were used to investigate the partitioning of PAHs between particle and gas-phases. Experimental gas-particle partition coefficients ( Kp) were compared to the predictions of KOA absorption and KSA (soot-air partition coefficient) models. Octanol-based absorptive partitioning model predicted lower partition coefficients especially for relatively volatile PAHs. Ratios of measured/modeled partition coefficients ranged between 1.1 and 15.5 (4.5±6.0, average±SD) for KOA model. KSA model predictions were relatively better and measured to modeled ratios ranged between 0.6 and 5.6 (2.3±2.7, average±SD).
Partitioning of polar and non-polar neutral organic chemicals into human and cow milk.
Geisler, Anett; Endo, Satoshi; Goss, Kai-Uwe
2011-10-01
The aim of this work was to develop a predictive model for milk/water partition coefficients of neutral organic compounds. Batch experiments were performed for 119 diverse organic chemicals in human milk and raw and processed cow milk at 37°C. No differences (<0.3 log units) in the partition coefficients of these types of milk were observed. The polyparameter linear free energy relationship model fit the calibration data well (SD=0.22 log units). An experimental validation data set including hormones and hormone active compounds was predicted satisfactorily by the model. An alternative modelling approach based on log K(ow) revealed a poorer performance. The model presented here provides a significant improvement in predicting enrichment of potentially hazardous chemicals in milk. In combination with physiologically based pharmacokinetic modelling this improvement in the estimation of milk/water partitioning coefficients may allow a better risk assessment for a wide range of neutral organic chemicals. Copyright © 2011 Elsevier Ltd. All rights reserved.
2008-09-01
SEP) is a comprehensive , iterative and recursive problem solving process, applied sequentially top-down by integrated teams. It transforms needs...central integrated design repository. It includes a comprehensive behavior modeling notation to understand the dynamics of a design. CORE is a MBSE...37 F. DYNAMIC POSITIONING..........................................................................38 G. FIREFIGHTING
DOE Office of Scientific and Technical Information (OSTI.GOV)
Louie, Alexander V., E-mail: Dr.alexlouie@gmail.com; Department of Radiation Oncology, London Regional Cancer Program, University of Western Ontario, London, Ontario; Department of Epidemiology, Harvard School of Public Health, Harvard University, Boston, Massachusetts
Purpose: A prognostic model for 5-year overall survival (OS), consisting of recursive partitioning analysis (RPA) and a nomogram, was developed for patients with early-stage non-small cell lung cancer (ES-NSCLC) treated with stereotactic ablative radiation therapy (SABR). Methods and Materials: A primary dataset of 703 ES-NSCLC SABR patients was randomly divided into a training (67%) and an internal validation (33%) dataset. In the former group, 21 unique parameters consisting of patient, treatment, and tumor factors were entered into an RPA model to predict OS. Univariate and multivariate models were constructed for RPA-selected factors to evaluate their relationship with OS. A nomogrammore » for OS was constructed based on factors significant in multivariate modeling and validated with calibration plots. Both the RPA and the nomogram were externally validated in independent surgical (n=193) and SABR (n=543) datasets. Results: RPA identified 2 distinct risk classes based on tumor diameter, age, World Health Organization performance status (PS) and Charlson comorbidity index. This RPA had moderate discrimination in SABR datasets (c-index range: 0.52-0.60) but was of limited value in the surgical validation cohort. The nomogram predicting OS included smoking history in addition to RPA-identified factors. In contrast to RPA, validation of the nomogram performed well in internal validation (r{sup 2}=0.97) and external SABR (r{sup 2}=0.79) and surgical cohorts (r{sup 2}=0.91). Conclusions: The Amsterdam prognostic model is the first externally validated prognostication tool for OS in ES-NSCLC treated with SABR available to individualize patient decision making. The nomogram retained strong performance across surgical and SABR external validation datasets. RPA performance was poor in surgical patients, suggesting that 2 different distinct patient populations are being treated with these 2 effective modalities.« less
Recursive computer architecture for VLSI
DOE Office of Scientific and Technical Information (OSTI.GOV)
Treleaven, P.C.; Hopkins, R.P.
1982-01-01
A general-purpose computer architecture based on the concept of recursion and suitable for VLSI computer systems built from replicated (lego-like) computing elements is presented. The recursive computer architecture is defined by presenting a program organisation, a machine organisation and an experimental machine implementation oriented to VLSI. The experimental implementation is being restricted to simple, identical microcomputers each containing a memory, a processor and a communications capability. This future generation of lego-like computer systems are termed fifth generation computers by the Japanese. 30 references.
Wisk, Lauren E; Gangnon, Ronald; Vanness, David J; Galbraith, Alison A; Mullahy, John; Witt, Whitney P
2014-01-01
Objective To develop and validate a theoretically based and empirically driven objective measure of financial burden for U.S. families with children. Data Sources The measure was developed using 149,021 families with children from the National Health Interview Survey, and it was validated using 18,488 families with children from the Medical Expenditure Panel Survey. Study Design We estimated the marginal probability of unmet health care need due to cost using a bivariate tensor product spline for family income and out-of-pocket health care costs (OOPC; e.g., deductibles, copayments), while adjusting for confounders. Recursive partitioning was performed on these probabilities, as a function of income and OOPC, to establish thresholds demarcating levels of predicted risk. Principal Findings We successfully generated a novel measure of financial burden with four categories that were associated with unmet need (vs. low burden: midlow OR: 1.93, 95 percent CI: 1.78–2.09; midhigh OR: 2.78, 95 percent CI: 2.49–3.10; high OR: 4.38, 95 percent CI: 3.99–4.80). The novel burden measure demonstrated significantly better model fit and less underestimation of financial burden compared to an existing measure (OOPC/income ≥10 percent). Conclusion The newly developed measure of financial burden establishes thresholds based on different combinations of family income and OOPC that can be applied in future studies of health care utilization and expenditures and in policy development and evaluation. PMID:25328073
DOE Office of Scientific and Technical Information (OSTI.GOV)
Musunuru, Hima Bindu; Department of Radiation Oncology, University of Toronto, Toronto, Ontario; Davidson, Melanie
2016-04-01
Purpose: This study identified predictors of high-grade late hematochezia (HH) following 5-fraction gantry-based stereotactic ablative radiation therapy (SABR). Methods and Materials: Hematochezia data for 258 patients who received 35 to 40 Gy SABR in 5-fractions as part of sequential phase 2 prospective trials was retrieved. Grade 2 or higher late rectal bleeding was labeled HH. Hematochezia needing steroid suppositories, 4% formalin, or 1 to 2 sessions of argon plasma coagulation (APC) was labeled grade 2. More than 2 sessions of APC, blood transfusion, or a course of hyperbaric oxygen was grade 3 and development of visceral fistula, grade 4. Various dosimetricmore » and clinical factors were analyzed using univariate and multivariate analyses. Receiver operating characteristic (ROC) curve analysis and recursive partitioning analysis were used to determine clinically valid cut-off points and identify risk groups, respectively. Results: HH was observed in 19.4%, grade ≥3 toxicity in 3.1%. Median follow-up was 29.7 months (interquartile range [IQR]: 20.6-61.7) Median time to develop HH was 11.7 months (IQR: 9.0-15.2) from the start of radiation. At 2 years, cumulative HH was 4.9%, 27.2%, and 42.1% in patients who received 35 Gy to prostate (4-mm planning target volume [PTV] margin), 40 Gy to prostate (5-mm PTV margin), and 40 Gy to prostate/seminal vesicles (5-mm PTV margin), respectively (P<.0001). In the ROC analysis, volume of rectum receiving radiation dose of 38 Gy (V38) was a strong predictor of HH with an area under the curve of 0.65. In multivariate analysis, rectal V38 (≥2.0 cm{sup 3}; odds ratio [OR]: 4.7); use of anticoagulants in the follow-up period (OR: 6.5) and presence of hemorrhoids (OR: 2.7) were the strongest predictors. Recursive partitioning analysis showed rectal V38 < 2.0 cm{sup 3}, and use of anticoagulants or rectal V38 ≥ 2.0 cm{sup 3} plus 1 other risk factor resulted in an HH risk of >30%. Conclusions: Rectal V38 and 2 clinical factors were strong predictors of HH following 5-fraction SABR. Planning constraints should keep rectal V38 below 2.0 cm{sup 3}.« less
Remaining useful life assessment of lithium-ion batteries in implantable medical devices
NASA Astrophysics Data System (ADS)
Hu, Chao; Ye, Hui; Jain, Gaurav; Schmidt, Craig
2018-01-01
This paper presents a prognostic study on lithium-ion batteries in implantable medical devices, in which a hybrid data-driven/model-based method is employed for remaining useful life assessment. The method is developed on and evaluated against data from two sets of lithium-ion prismatic cells used in implantable applications exhibiting distinct fade performance: 1) eight cells from Medtronic, PLC whose rates of capacity fade appear to be stable and gradually decrease over a 10-year test duration; and 2) eight cells from Manufacturer X whose rates appear to be greater and show sharp increase after some period over a 1.8-year test duration. The hybrid method enables online prediction of remaining useful life for predictive maintenance/control. It consists of two modules: 1) a sparse Bayesian learning module (data-driven) for inferring capacity from charge-related features; and 2) a recursive Bayesian filtering module (model-based) for updating empirical capacity fade models and predicting remaining useful life. A generic particle filter is adopted to implement recursive Bayesian filtering for the cells from the first set, whose capacity fade behavior can be represented by a single fade model; a multiple model particle filter with fixed-lag smoothing is proposed for the cells from the second data set, whose capacity fade behavior switches between multiple fade models.
Yang, Senpei; Li, Lingyi; Chen, Tao; Han, Lujia; Lian, Guoping
2018-05-14
Sebum is an important shunt pathway for transdermal permeation and targeted delivery, but there have been limited studies on its permeation properties. Here we report a measurement and modelling study of solute partition to artificial sebum. Equilibrium experiments were carried out for the sebum-water partition coefficients of 23 neutral, cationic and anionic compounds at different pH. Sebum-water partition coefficients not only depend on the hydrophobicity of the chemical but also on pH. As pH increases from 4.2 to 7.4, the partition of cationic chemicals to sebum increased rapidly. This appears to be due to increased electrostatic attraction between the cationic chemical and the fatty acids in sebum. Whereas for anionic chemicals, their sebum partition coefficients are negligibly small, which might result from their electrostatic repulsion to fatty acids. Increase in pH also resulted in a slight decrease of sebum partition of neutral chemicals. Based on the observed pH impact on the sebum-water partition of neutral, cationic and anionic compounds, a new quantitative structure-property relationship (QSPR) model has been proposed. This mathematical model considers the hydrophobic interaction and electrostatic interaction as the main mechanisms for the partition of neutral, cationic and anionic chemicals to sebum.
Image defog algorithm based on open close filter and gradient domain recursive bilateral filter
NASA Astrophysics Data System (ADS)
Liu, Daqian; Liu, Wanjun; Zhao, Qingguo; Fei, Bowen
2017-11-01
To solve the problems of fuzzy details, color distortion, low brightness of the image obtained by the dark channel prior defog algorithm, an image defog algorithm based on open close filter and gradient domain recursive bilateral filter, referred to as OCRBF, was put forward. The algorithm named OCRBF firstly makes use of weighted quad tree to obtain more accurate the global atmospheric value, then exploits multiple-structure element morphological open and close filter towards the minimum channel map to obtain a rough scattering map by dark channel prior, makes use of variogram to correct the transmittance map,and uses gradient domain recursive bilateral filter for the smooth operation, finally gets recovery images by image degradation model, and makes contrast adjustment to get bright, clear and no fog image. A large number of experimental results show that the proposed defog method in this paper can be good to remove the fog , recover color and definition of the fog image containing close range image, image perspective, the image including the bright areas very well, compared with other image defog algorithms,obtain more clear and natural fog free images with details of higher visibility, what's more, the relationship between the time complexity of SIDA algorithm and the number of image pixels is a linear correlation.
Propensity score method: a non-parametric technique to reduce model dependence
2017-01-01
Propensity score analysis (PSA) is a powerful technique that it balances pretreatment covariates, making the causal effect inference from observational data as reliable as possible. The use of PSA in medical literature has increased exponentially in recent years, and the trend continue to rise. The article introduces rationales behind PSA, followed by illustrating how to perform PSA in R with MatchIt package. There are a variety of methods available for PS matching such as nearest neighbors, full matching, exact matching and genetic matching. The task can be easily done by simply assigning a string value to the method argument in the matchit() function. The generic summary() and plot() functions can be applied to an object of class matchit to check covariate balance after matching. Furthermore, there is a useful package PSAgraphics that contains several graphical functions to check covariate balance between treatment groups across strata. If covariate balance is not achieved, one can modify model specifications or use other techniques such as random forest and recursive partitioning to better represent the underlying structure between pretreatment covariates and treatment assignment. The process can be repeated until the desirable covariate balance is achieved. PMID:28164092
Recursive computation of mutual potential between two polyhedra
NASA Astrophysics Data System (ADS)
Hirabayashi, Masatoshi; Scheeres, Daniel J.
2013-11-01
Recursive computation of mutual potential, force, and torque between two polyhedra is studied. Based on formulations by Werner and Scheeres (Celest Mech Dyn Astron 91:337-349, 2005) and Fahnestock and Scheeres (Celest Mech Dyn Astron 96:317-339, 2006) who applied the Legendre polynomial expansion to gravity interactions and expressed each order term by a shape-dependent part and a shape-independent part, this paper generalizes the computation of each order term, giving recursive relations of the shape-dependent part. To consider the potential, force, and torque, we introduce three tensors. This method is applicable to any multi-body systems. Finally, we implement this recursive computation to simulate the dynamics of a two rigid-body system that consists of two equal-sized parallelepipeds.
Partitioning medical image databases for content-based queries on a Grid.
Montagnat, J; Breton, V; E Magnin, I
2005-01-01
In this paper we study the impact of executing a medical image database query application on the grid. For lowering the total computation time, the image database is partitioned into subsets to be processed on different grid nodes. A theoretical model of the application complexity and estimates of the grid execution overhead are used to efficiently partition the database. We show results demonstrating that smart partitioning of the database can lead to significant improvements in terms of total computation time. Grids are promising for content-based image retrieval in medical databases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosenthal, David I.; Chambers, Mark S.; Fuller, Clifton D.
2008-11-01
Background: Intensity-modulated radiation therapy (IMRT) beams traverse nontarget normal structures not irradiated during three-dimensional conformal RT (3D-CRT) for head and neck cancer (HNC). This study estimates the doses and toxicities to nontarget structures during IMRT. Materials and Methods: Oropharyngeal cancer IMRT and 3D-CRT cases were reviewed. Dose-volume histograms (DVH) were used to evaluate radiation dose to the lip, cochlea, brainstem, occipital scalp, and segments of the mandible. Toxicity rates were compared for 3D-CRT, IMRT alone, or IMRT with concurrent cisplatin. Descriptive statistics and exploratory recursive partitioning analysis were used to estimate dose 'breakpoints' associated with observed toxicities. Results: A totalmore » of 160 patients were evaluated for toxicity; 60 had detailed DVH evaluation and 15 had 3D-CRT plan comparison. Comparing IMRT with 3D-CRT, there was significant (p {<=} 0.002) nonparametric differential dose to all clinically significant structures of interest. Thirty percent of IMRT patients had headaches and 40% had occipital scalp alopecia. A total of 76% and 38% of patients treated with IMRT alone had nausea and vomiting, compared with 99% and 68%, respectively, of those with concurrent cisplatin. IMRT had a markedly distinct toxicity profile than 3D-CRT. In recursive partitioning analysis, National Cancer Institute's Common Toxicity Criteria adverse effects 3.0 nausea and vomiting, scalp alopecia and anterior mucositis were associated with reconstructed mean brainstem dose >36 Gy, occipital scalp dose >30 Gy, and anterior mandible dose >34 Gy, respectively. Conclusions: Dose reduction to specified structures during IMRT implies an increased beam path dose to alternate nontarget structures that may result in clinical toxicities that were uncommon with previous, less conformal approaches. These findings have implications for IMRT treatment planning and research, toxicity assessment, and multidisciplinary patient management.« less
Cassidy, Richard J; Patel, Pretesh R; Zhang, Xinyan; Press, Robert H; Switchenko, Jeffrey M; Pillai, Rathi N; Owonikoko, Taofeek K; Ramalingam, Suresh S; Fernandez, Felix G; Force, Seth D; Curran, Walter J; Higgins, Kristin A
2017-09-01
Stereotactic body radiotherapy (SBRT) is the standard of care for medically inoperable early-stage non-small-cell lung cancer. Despite the limited number of octogenarians and nonagenarians on trials of SBRT, its use is increasingly being offered in these patients, given the aging cancer population, medical fragility, or patient preference. Our purpose was to investigate the efficacy, safety, and survival of patients ≥ 80 years old treated with definitive lung SBRT. Patients who underwent SBRT were reviewed from 2009 to 2015 at 4 academic centers. Patients diagnosed at ≥ 80 years old were included. Kaplan-Meier and multivariate logistic regression and Cox proportional hazard regression analyses were performed. Recursive partitioning analysis was done to determine a subgroup of patients most likely to benefit from therapy. A total of 58 patients were included, with a median age of 84.9 years (range, 80.1-95.2 years), a median follow-up time of 19.9 months (range, 6.9-64.9 months), a median fraction size of 10.0 Gy (range, 7.0-20.0 Gy), and a median number of fractions of 5.0 (range, 3.0-8.0 fractions). On multivariate analysis, higher Karnofsky performance status (KPS) was associated with higher local recurrence-free survival (hazard ratio [HR], 0.92; P < .01), regional recurrence-free survival (HR, 0.94; P < .01), and overall survival (HR, 0.91; P < .01). On recursive partitioning analysis, patients with KPS ≥ 75 had improved 3-year cancer-specific and overall survival (99.4% and 91.9%, respectively) compared with patients with KPS < 75 (47.8% and 23.6%, respectively; P < .01). Definitive lung SBRT for early-stage non-small-cell lung cancer was efficacious and safe in patients ≥ 80 years old. Patients with a KPS of ≥ 75 derived the most benefit from therapy. Copyright © 2017 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rades, Dirk; Department of Radiation Oncology, University Medical Center, Hamburg; Kueter, Jan-Dirk
2009-03-15
Purpose: To compare the results of whole-brain radiotherapy plus stereotactic radiosurgery (WBRT+SRS) with those of surgery plus whole-brain radiotherapy and a boost to the metastatic site (OP+WBRT+boost) for patients with one or two brain metastases. Methods and Materials: Survival, intracerebral control, and local control of the treated metastases were retrospectively evaluated. To reduce the risk of selection bias, a matched-pair analysis was performed. The outcomes of 47 patients who received WBRT+SRS were compared with those of a second cohort of 47 patients who received OP+WBRT+boost. The two treatment groups were matched for the following potential prognostic factors: WBRT schedule, age,more » gender, performance status, tumor type, number of brain metastases, extracerebral metastases, recursive partitioning analysis class, and interval from tumor diagnosis to WBRT. Results: The 1-year survival rates were 65% after WBRT+SRS and 63% after OP+WBRT+boost (p = 0.19). The 1-year intracerebral control rates were 70% and 78% (p = 0.39), respectively. The 1-year local control rates were 84% and 83% (p = 0.87), respectively. On multivariate analyses, improved survival was significantly associated with better performance status (p = 0.009), no extracerebral metastases (p = 0.004), recursive partitioning analysis Class 1 (p = 0.004), and interval from tumor diagnosis to WBRT (p = 0.001). Intracerebral control was not significantly associated with any of the potential prognostic factors. Improved local control was significantly associated with no extracerebral metastases (p = 0.037). Conclusions: Treatment outcomes were not significantly different after WBRT+SRS compared with OP+WBRT+boost. However, WBRT+SRS is less invasive than OP+WBRT+boost and may be preferable for patients with one or two brain metastases. The results should be confirmed by randomized t0011ria.« less
Sim, K S; Lim, M S; Yeap, Z X
2016-07-01
A new technique to quantify signal-to-noise ratio (SNR) value of the scanning electron microscope (SEM) images is proposed. This technique is known as autocorrelation Levinson-Durbin recursion (ACLDR) model. To test the performance of this technique, the SEM image is corrupted with noise. The autocorrelation function of the original image and the noisy image are formed. The signal spectrum based on the autocorrelation function of image is formed. ACLDR is then used as an SNR estimator to quantify the signal spectrum of noisy image. The SNR values of the original image and the quantified image are calculated. The ACLDR is then compared with the three existing techniques, which are nearest neighbourhood, first-order linear interpolation and nearest neighbourhood combined with first-order linear interpolation. It is shown that ACLDR model is able to achieve higher accuracy in SNR estimation. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.
Lax, Leila R; Russell, M Lynn; Nelles, Laura J; Smith, Cathy M
2009-10-01
Professional behaviors, tacitly understood by Canadian-trained physicians, are difficult to teach and often create practice barriers for IMGs. The purpose of this design research study was to develop a Web-based program simulating Canadian medical literacy and culture, and to evaluate strategies of scaffolding individual knowledge building. Study 1 (N = 20) examined usability and pedagogic design. Studies 2 (N = 39) and 3 (N = 33) examined case participation patterns. Model design was validated in Study 1. Studies 2 and 3 demonstrated high levels of participation, on unprompted third tries, on knowledge tests. Recursive patterns were strongest on Reflective Exercises. Five strategies scaffolded knowledge building: (1) video simulations, (2) contextualized resources, (3) concurrent feedback, (4) Reflective Exercises, and (5) commentaries prompting "reflection on reflection." Scaffolded design supports complex knowledge building. These findings are concurrent with educational research on the importance of recursion and revision of knowledge for improvable and relational understanding.
[On the partition of acupuncture academic schools].
Yang, Pengyan; Luo, Xi; Xia, Youbing
2016-05-01
Nowadays extensive attention has been paid on the research of acupuncture academic schools, however, a widely accepted method of partition of acupuncture academic schools is still in need. In this paper, the methods of partition of acupuncture academic schools in the history have been arranged, and three typical methods of"partition of five schools" "partition of eighteen schools" and "two-stage based partition" are summarized. After adeep analysis on the disadvantages and advantages of these three methods, a new method of partition of acupuncture academic schools that is called "three-stage based partition" is proposed. In this method, after the overall acupuncture academic schools are divided into an ancient stage, a modern stage and a contemporary stage, each schoolis divided into its sub-school category. It is believed that this method of partition can remedy the weaknesses ofcurrent methods, but also explore a new model of inheritance and development under a different aspect through thedifferentiation and interaction of acupuncture academic schools at three stages.
A fast recursive algorithm for molecular dynamics simulation
NASA Technical Reports Server (NTRS)
Jain, A.; Vaidehi, N.; Rodriguez, G.
1993-01-01
The present recursive algorithm for solving molecular systems' dynamical equations of motion employs internal variable models that reduce such simulations' computation time by an order of magnitude, relative to Cartesian models. Extensive use is made of spatial operator methods recently developed for analysis and simulation of the dynamics of multibody systems. A factor-of-450 speedup over the conventional O(N-cubed) algorithm is demonstrated for the case of a polypeptide molecule with 400 residues.
A Scalable Distributed Syntactic, Semantic, and Lexical Language Model
2012-09-01
Here pa(τ) denotes the set of parent states of τ. If the recursive factorization refers to a graph , then we have a Bayesian network (Lauritzen 1996...Broadly speaking, however, the recursive factorization can refer to a representation more complicated than a graph with a fixed set of nodes and edges...factored language (FL) model (Bilmes and Kirchhoff 2003) is close to the smoothing technique we propose here, the major difference is that FL
Krajewski, C; Fain, M G; Buckley, L; King, D G
1999-11-01
ki ctes over whether molecular sequence data should be partitioned for phylogenetic analysis often confound two types of heterogeneity among partitions. We distinguish historical heterogeneity (i.e., different partitions have different evolutionary relationships) from dynamic heterogeneity (i.e., different partitions show different patterns of sequence evolution) and explore the impact of the latter on phylogenetic accuracy and precision with a two-gene, mitochondrial data set for cranes. The well-established phylogeny of cranes allows us to contrast tree-based estimates of relevant parameter values with estimates based on pairwise comparisons and to ascertain the effects of incorporating different amounts of process information into phylogenetic estimates. We show that codon positions in the cytochrome b and NADH dehydrogenase subunit 6 genes are dynamically heterogenous under both Poisson and invariable-sites + gamma-rates versions of the F84 model and that heterogeneity includes variation in base composition and transition bias as well as substitution rate. Estimates of transition-bias and relative-rate parameters from pairwise sequence comparisons were comparable to those obtained as tree-based maximum likelihood estimates. Neither rate-category nor mixed-model partitioning strategies resulted in a loss of phylogenetic precision relative to unpartitioned analyses. We suggest that weighted-average distances provide a computationally feasible alternative to direct maximum likelihood estimates of phylogeny for mixed-model analyses of large, dynamically heterogenous data sets. Copyright 1999 Academic Press.
Connolly, Patrick; van Deventer, Vasi
2017-01-01
The present paper argues that a systems theory epistemology (and particularly the notion of hierarchical recursive organization) provides the critical theoretical context within which the significance of Friston's (2010a) Free Energy Principle (FEP) for both evolution and psychoanalysis is best understood. Within this perspective, the FEP occupies a particular level of the hierarchical organization of the organism, which is the level of biological self-organization. This form of biological self-organization is in turn understood as foundational and pervasive to the higher levels of organization of the human organism that are of interest to both neuroscience as well as psychoanalysis. Consequently, central psychoanalytic claims should be restated, in order to be located in their proper place within a hierarchical recursive organization of the (situated) organism. In light of the FEP the realization of the psychoanalytic mind by the brain should be seen in terms of the evolution of different levels of systematic organization where the concepts of psychoanalysis describe a level of hierarchical recursive organization superordinate to that of biological self-organization and the FEP. The implication of this formulation is that while “psychoanalytic” mental processes are fundamentally subject to the FEP, they nonetheless also add their own principles of process over and above that of the FEP. A model found in Grobbelaar (1989) offers a recursive bottom-up description of the self-organization of the psychoanalytic ego as dependent on the organization of language (and affect), which is itself founded upon the tendency toward autopoiesis (self-making) within the organism, which is in turn described as formally similar to the FEP. Meaningful consilience between Grobbelaar's model and the hierarchical recursive description available in Friston's (2010a) theory is described. The paper concludes that the valuable contribution of the FEP to psychoanalysis underscores the necessity of reengagement with the core concepts of psychoanalytic theory, and the usefulness that a systems theory epistemology—particularly hierarchical recursive description—can have for this goal. PMID:29038652
Connolly, Patrick; van Deventer, Vasi
2017-01-01
The present paper argues that a systems theory epistemology (and particularly the notion of hierarchical recursive organization) provides the critical theoretical context within which the significance of Friston's (2010a) Free Energy Principle (FEP) for both evolution and psychoanalysis is best understood. Within this perspective, the FEP occupies a particular level of the hierarchical organization of the organism, which is the level of biological self-organization. This form of biological self-organization is in turn understood as foundational and pervasive to the higher levels of organization of the human organism that are of interest to both neuroscience as well as psychoanalysis. Consequently, central psychoanalytic claims should be restated, in order to be located in their proper place within a hierarchical recursive organization of the (situated) organism. In light of the FEP the realization of the psychoanalytic mind by the brain should be seen in terms of the evolution of different levels of systematic organization where the concepts of psychoanalysis describe a level of hierarchical recursive organization superordinate to that of biological self-organization and the FEP. The implication of this formulation is that while "psychoanalytic" mental processes are fundamentally subject to the FEP, they nonetheless also add their own principles of process over and above that of the FEP. A model found in Grobbelaar (1989) offers a recursive bottom-up description of the self-organization of the psychoanalytic ego as dependent on the organization of language (and affect), which is itself founded upon the tendency toward autopoiesis (self-making) within the organism, which is in turn described as formally similar to the FEP. Meaningful consilience between Grobbelaar's model and the hierarchical recursive description available in Friston's (2010a) theory is described. The paper concludes that the valuable contribution of the FEP to psychoanalysis underscores the necessity of reengagement with the core concepts of psychoanalytic theory, and the usefulness that a systems theory epistemology-particularly hierarchical recursive description-can have for this goal.
Recursive utility in a Markov environment with stochastic growth
Hansen, Lars Peter; Scheinkman, José A.
2012-01-01
Recursive utility models that feature investor concerns about the intertemporal composition of risk are used extensively in applied research in macroeconomics and asset pricing. These models represent preferences as the solution to a nonlinear forward-looking difference equation with a terminal condition. In this paper we study infinite-horizon specifications of this difference equation in the context of a Markov environment. We establish a connection between the solution to this equation and to an arguably simpler Perron–Frobenius eigenvalue equation of the type that occurs in the study of large deviations for Markov processes. By exploiting this connection, we establish existence and uniqueness results. Moreover, we explore a substantive link between large deviation bounds for tail events for stochastic consumption growth and preferences induced by recursive utility. PMID:22778428
Recursive utility in a Markov environment with stochastic growth.
Hansen, Lars Peter; Scheinkman, José A
2012-07-24
Recursive utility models that feature investor concerns about the intertemporal composition of risk are used extensively in applied research in macroeconomics and asset pricing. These models represent preferences as the solution to a nonlinear forward-looking difference equation with a terminal condition. In this paper we study infinite-horizon specifications of this difference equation in the context of a Markov environment. We establish a connection between the solution to this equation and to an arguably simpler Perron-Frobenius eigenvalue equation of the type that occurs in the study of large deviations for Markov processes. By exploiting this connection, we establish existence and uniqueness results. Moreover, we explore a substantive link between large deviation bounds for tail events for stochastic consumption growth and preferences induced by recursive utility.
A spatial operator algebra for manipulator modeling and control
NASA Technical Reports Server (NTRS)
Rodriguez, G.; Kreutz, K.; Jain, A.
1989-01-01
A spatial operator algebra for modeling the control and trajectory design of manipulation is discussed, with emphasis on its analytical formulation and implementation in the Ada programming language. The elements of this algebra are linear operators whose domain and range spaces consist of forces, moments, velocities, and accelerations. The effect of these operators is equivalent to a spatial recursion along the span of the manipulator. Inversion is obtained using techniques of recursive filtering and smoothing. The operator alegbra provides a high-level framework for describing the dynamic and kinematic behavior of a manipulator and control and trajectory design algorithms. Implementable recursive algorithms can be immediately derived from the abstract operator expressions by inspection, thus greatly simplifying the transition from an abstract problem formulation and solution to the detailed mechanization of a specific algorithm.
Natal, Rodrigo A; Vassallo, José; Paiva, Geisilene R; Pelegati, Vitor B; Barbosa, Guilherme O; Mendonça, Guilherme R; Bondarik, Caroline; Derchain, Sophie F; Carvalho, Hernandes F; Lima, Carmen S; Cesar, Carlos L; Sarian, Luís Otávio
2018-04-01
Second-harmonic generation microscopy represents an important tool to evaluate extracellular matrix collagen structure, which undergoes changes during cancer progression. Thus, it is potentially relevant to assess breast cancer development. We propose the use of second-harmonic generation images of tumor stroma selected on hematoxylin and eosin-stained slides to evaluate the prognostic value of collagen fibers analyses in peri and intratumoral areas in patients diagnosed with invasive ductal breast carcinoma. Quantitative analyses of collagen parameters were performed using ImageJ software. These parameters presented significantly higher values in peri than in intratumoral areas. Higher intratumoral collagen uniformity was associated with high pathological stages and with the presence of axillary lymph node metastasis. In patients with immunohistochemistry-based luminal subtype, higher intratumoral collagen uniformity and quantity were independently associated with poorer relapse-free and overall survival, respectively. A multivariate response recursive partitioning model determined 12.857 and 11.894 as the best cut-offs for intratumoral collagen quantity and uniformity, respectively. These values have shown high sensitivity and specificity to differentiate distinct outcomes. Values of intratumoral collagen quantity and uniformity exceeding the cut-offs were strongly associated with poorer relapse-free and overall survival. Our findings support a promising prognostic value of quantitative evaluation of intratumoral collagen by second-harmonic generation imaging mainly in the luminal subtype breast cancer.
Recursive heuristic classification
NASA Technical Reports Server (NTRS)
Wilkins, David C.
1994-01-01
The author will describe a new problem-solving approach called recursive heuristic classification, whereby a subproblem of heuristic classification is itself formulated and solved by heuristic classification. This allows the construction of more knowledge-intensive classification programs in a way that yields a clean organization. Further, standard knowledge acquisition and learning techniques for heuristic classification can be used to create, refine, and maintain the knowledge base associated with the recursively called classification expert system. The method of recursive heuristic classification was used in the Minerva blackboard shell for heuristic classification. Minerva recursively calls itself every problem-solving cycle to solve the important blackboard scheduler task, which involves assigning a desirability rating to alternative problem-solving actions. Knowing these ratings is critical to the use of an expert system as a component of a critiquing or apprenticeship tutoring system. One innovation of this research is a method called dynamic heuristic classification, which allows selection among dynamically generated classification categories instead of requiring them to be prenumerated.
Syntactic Recursion Facilitates and Working Memory Predicts Recursive Theory of Mind
Arslan, Burcu; Hohenberger, Annette; Verbrugge, Rineke
2017-01-01
In this study, we focus on the possible roles of second-order syntactic recursion and working memory in terms of simple and complex span tasks in the development of second-order false belief reasoning. We tested 89 Turkish children in two age groups, one younger (4;6–6;5 years) and one older (6;7–8;10 years). Although second-order syntactic recursion is significantly correlated with the second-order false belief task, results of ordinal logistic regressions revealed that the main predictor of second-order false belief reasoning is complex working memory span. Unlike simple working memory and second-order syntactic recursion tasks, the complex working memory task required processing information serially with additional reasoning demands that require complex working memory strategies. Based on our results, we propose that children’s second-order theory of mind develops when they have efficient reasoning rules to process embedded beliefs serially, thus overcoming a possible serial processing bottleneck. PMID:28072823
Wang, Hung-Ming; Cheng, Nai-Ming; Lee, Li-Yu; Fang, Yu-Hua Dean; Chang, Joseph Tung-Chieh; Tsan, Din-Li; Ng, Shu-Hang; Liao, Chun-Ta; Yang, Lan-Yan; Yen, Tzu-Chen
2016-02-01
The Ang's risk profile (based on p16, smoking and cancer stage) is a well-known prognostic factor in oropharyngeal squamous cell carcinoma (OPSCC). Whether heterogeneity in (18)F-fluorodeoxyglucose (FDG) positron emission tomographic (PET) images and epidermal growth factor receptor (EGFR) expression could provide additional information on clinical outcomes in advanced-stage OPSCC was investigated. Patients with stage III-IV OPSCC who completed primary therapy were eligible. Zone-size nonuniformity (ZSNU) extracted from pretreatment FDG PET scans was used as an index of image heterogeneity. EGFR and p16 expression were examined by immunohistochemistry. Disease-specific survival (DSS) and overall survival (OS) served as outcome measures. Kaplan-Meier estimates and Cox proportional hazards regression models were used for survival analysis. A bootstrap resampling technique was applied to investigate the stability of outcomes. Finally, a recursive partitioning analysis (RPA)-based model was constructed. A total of 113 patients were included, of which 28 were p16-positive. Multivariate analysis identified the Ang's profile, EGFR and ZSNU as independent predictors of both DSS and OS. Using RPA, the three risk factors were used to devise a prognostic scoring system that successfully predicted DSS in both p16-positive and -negative cases. The c-statistic of the prognostic index for DSS was 0.81, a value which was significantly superior to both AJCC stage (0.60) and the Ang's risk profile (0.68). In patients showing an Ang's high-risk profile (N = 77), the use of our scoring system clearly identified three distinct prognostic subgroups. It was concluded that a novel index may improve the prognostic stratification of patients with advanced-stage OPSCC. © 2015 UICC.
ERIC Educational Resources Information Center
??lekhina, ??rina Borisovna
2015-01-01
The present study examines the professional development problems of a high school teacher. A high school teacher is both a scientist and a teacher. Teaching and research activities are integrated by using methodical activity. Methodical competency of a teacher is defined as a basis in the context of Competence-based Education. The methodical…
Imbalance detection in a manufacturing system: An agent-based model usage
NASA Astrophysics Data System (ADS)
Shevchuk, G. K.; Zvereva, O. M.; Medvedev, M. A.
2017-11-01
This paper delivers the results of the research work targeted at communications in a manufacturing system. A computer agent-based model which simulates manufacturing system functioning has been engineered. The system lifecycle consists of two recursively repeated stages: a communication stage and a production stage. Model data sets were estimated with the static Leontief's equilibrium equation usage. In experiments relationships between the manufacturing system lifecycle time and conditions of equilibrium violations have been identified. The research results are to be used to propose violation negative influence compensation methods.
Teaching Non-Recursive Binary Searching: Establishing a Conceptual Framework.
ERIC Educational Resources Information Center
Magel, E. Terry
1989-01-01
Discusses problems associated with teaching non-recursive binary searching in computer language classes, and describes a teacher-directed dialog based on dictionary use that helps students use their previous searching experiences to conceptualize the binary search process. Algorithmic development is discussed and appropriate classroom discussion…
Karunasekara, Thushara; Poole, Colin F
2011-07-15
Partition coefficients for varied compounds were determined for the organic solvent-dimethyl sulfoxide biphasic partition system where the organic solvent is n-heptane or isopentyl ether. These partition coefficient databases are analyzed using the solvation parameter model facilitating a quantitative comparison of the dimethyl sulfoxide-based partition systems with other totally organic partition systems. Dimethyl sulfoxide is a moderately cohesive solvent, reasonably dipolar/polarizable and strongly hydrogen-bond basic. Although generally considered to be non-hydrogen-bond acidic, analysis of the partition coefficient database strongly supports reclassification as a weak hydrogen-bond acid in agreement with recent literature. The system constants for the n-heptane-dimethyl sulfoxide biphasic system provide an explanation of the mechanism for the selective isolation of polycyclic aromatic compounds from mixtures containing low-polarity hydrocarbons based on the capability of the polar interactions (dipolarity/polarizability and hydrogen-bonding) to overcome the opposing cohesive forces in dimethyl sulfoxide that are absent for the interactions with hydrocarbons of low polarity. In addition, dimethyl sulfoxide-organic solvent systems afford a complementary approach to other totally organic biphasic partition systems for descriptor measurements of compounds virtually insoluble in water. Copyright © 2011 Elsevier B.V. All rights reserved.
The Youth Labor Market: A Dynamic Overview.
ERIC Educational Resources Information Center
Antos, Joseph R.; Mellow, Wesley S.
Based on the National Longitudinal Surveys of over 10,000 men and women aged eighteen to twenty-seven who were interviewed annually from 1966 through 1971, this study investigates how the youth labor market operates and identifies its manpower problems that should be addressed by policymakers. A five-part recursive model is established for the…
NASA Astrophysics Data System (ADS)
Chair, Noureddine
2014-02-01
We have recently developed methods for obtaining exact two-point resistance of the complete graph minus N edges. We use these methods to obtain closed formulas of certain trigonometrical sums that arise in connection with one-dimensional lattice, in proving Scott's conjecture on permanent of Cauchy matrix, and in the perturbative chiral Potts model. The generalized trigonometrical sums of the chiral Potts model are shown to satisfy recursion formulas that are transparent and direct, and differ from those of Gervois and Mehta. By making a change of variables in these recursion formulas, the dimension of the space of conformal blocks of SU(2) and SO(3) WZW models may be computed recursively. Our methods are then extended to compute the corner-to-corner resistance, and the Kirchhoff index of the first non-trivial two-dimensional resistor network, 2×N. Finally, we obtain new closed formulas for variant of trigonometrical sums, some of which appear in connection with number theory.
NASA Astrophysics Data System (ADS)
Fajkus, Marcel; Nedoma, Jan; Martinek, Radek; Vasinek, Vladimir
2017-10-01
In this article, we describe an innovative non-invasive method of Fetal Phonocardiography (fPCG) using fiber-optic sensors and adaptive algorithm for the measurement of fetal heart rate (fHR). Conventional PCG is based on a noninvasive scanning of acoustic signals by means of a microphone placed on the thorax. As for fPCG, the microphone is placed on the maternal abdomen. Our solution is based on patent pending non-invasive scanning of acoustic signals by means of a fiber-optic interferometer. Fiber-optic sensors are resistant to technical artifacts such as electromagnetic interferences (EMI), thus they can be used in situations where it is impossible to use conventional EFM methods, e.g. during Magnetic Resonance Imaging (MRI) examination or in case of delivery in water. The adaptive evaluation system is based on Recursive least squares (RLS) algorithm. Based on real measurements provided on five volunteers with their written consent, we created a simplified dynamic signal model of a distribution of heartbeat sounds (HS) through the human body. Our created model allows us to verification of the proposed adaptive system RLS algorithm. The functionality of the proposed non-invasive adaptive system was verified by objective parameters such as Sensitivity (S+) and Signal to Noise Ratio (SNR).
Inference and Analysis of Population Structure Using Genetic Data and Network Theory.
Greenbaum, Gili; Templeton, Alan R; Bar-David, Shirli
2016-04-01
Clustering individuals to subpopulations based on genetic data has become commonplace in many genetic studies. Inference about population structure is most often done by applying model-based approaches, aided by visualization using distance-based approaches such as multidimensional scaling. While existing distance-based approaches suffer from a lack of statistical rigor, model-based approaches entail assumptions of prior conditions such as that the subpopulations are at Hardy-Weinberg equilibria. Here we present a distance-based approach for inference about population structure using genetic data by defining population structure using network theory terminology and methods. A network is constructed from a pairwise genetic-similarity matrix of all sampled individuals. The community partition, a partition of a network to dense subgraphs, is equated with population structure, a partition of the population to genetically related groups. Community-detection algorithms are used to partition the network into communities, interpreted as a partition of the population to subpopulations. The statistical significance of the structure can be estimated by using permutation tests to evaluate the significance of the partition's modularity, a network theory measure indicating the quality of community partitions. To further characterize population structure, a new measure of the strength of association (SA) for an individual to its assigned community is presented. The strength of association distribution (SAD) of the communities is analyzed to provide additional population structure characteristics, such as the relative amount of gene flow experienced by the different subpopulations and identification of hybrid individuals. Human genetic data and simulations are used to demonstrate the applicability of the analyses. The approach presented here provides a novel, computationally efficient model-free method for inference about population structure that does not entail assumption of prior conditions. The method is implemented in the software NetStruct (available at https://giligreenbaum.wordpress.com/software/). Copyright © 2016 by the Genetics Society of America.
NASA Astrophysics Data System (ADS)
Liu, X. Y.; Alfi, S.; Bruni, S.
2016-06-01
A model-based condition monitoring strategy for the railway vehicle suspension is proposed in this paper. This approach is based on recursive least square (RLS) algorithm focusing on the deterministic 'input-output' model. RLS has Kalman filtering feature and is able to identify the unknown parameters from a noisy dynamic system by memorising the correlation properties of variables. The identification of suspension parameter is achieved by machine learning of the relationship between excitation and response in a vehicle dynamic system. A fault detection method for the vertical primary suspension is illustrated as an instance of this condition monitoring scheme. Simulation results from the rail vehicle dynamics software 'ADTreS' are utilised as 'virtual measurements' considering a trailer car of Italian ETR500 high-speed train. The field test data from an E464 locomotive are also employed to validate the feasibility of this strategy for the real application. Results of the parameter identification performed indicate that estimated suspension parameters are consistent or approximate with the reference values. These results provide the supporting evidence that this fault diagnosis technique is capable of paving the way for the future vehicle condition monitoring system.
A fast ellipse extended target PHD filter using box-particle implementation
NASA Astrophysics Data System (ADS)
Zhang, Yongquan; Ji, Hongbing; Hu, Qi
2018-01-01
This paper presents a box-particle implementation of the ellipse extended target probability hypothesis density (ET-PHD) filter, called the ellipse extended target box particle PHD (EET-BP-PHD) filter, where the extended targets are described as a Poisson model developed by Gilholm et al. and the term "box" is here equivalent to the term "interval" used in interval analysis. The proposed EET-BP-PHD filter is capable of dynamically tracking multiple ellipse extended targets and estimating the target states and the number of targets, in the presence of clutter measurements, false alarms and missed detections. To derive the PHD recursion of the EET-BP-PHD filter, a suitable measurement likelihood is defined for a given partitioning cell, and the main implementation steps are presented along with the necessary box approximations and manipulations. The limitations and capabilities of the proposed EET-BP-PHD filter are illustrated by simulation examples. The simulation results show that a box-particle implementation of the ET-PHD filter can avoid the high number of particles and reduce computational burden, compared to a particle implementation of that for extended target tracking.
Karakus, Mustafa C.; Salkever, David S.; Slade, Eric P.; Ialongo, Nicholas; Stuart, Elizabeth
2013-01-01
The potentially serious adverse impacts of behavior problems during adolescence on employment outcomes in adulthood provide a key economic rationale for early intervention programs. However, the extent to which lower educational attainment accounts for the total impact of adolescent behavior problems on later employment remains unclear As an initial step in exploring this issue, we specify and estimate a recursive bivariate probit model that 1) relates middle school behavior problems to high school graduation and 2) models later employment in young adulthood as a function of these behavior problems and of high school graduation. Our model thus allows for both a direct effect of behavior problems on later employment as well as an indirect effect that operates via graduation from high school. Our empirical results, based on analysis of data from the NELS, suggest that the direct effects of externalizing behavior problems on later employment are not significant but that these problems have important indirect effects operating through high school graduation. PMID:23576834
Bridge Structure Deformation Prediction Based on GNSS Data Using Kalman-ARIMA-GARCH Model
Li, Xiaoqing; Wang, Yu
2018-01-01
Bridges are an essential part of the ground transportation system. Health monitoring is fundamentally important for the safety and service life of bridges. A large amount of structural information is obtained from various sensors using sensing technology, and the data processing has become a challenging issue. To improve the prediction accuracy of bridge structure deformation based on data mining and to accurately evaluate the time-varying characteristics of bridge structure performance evolution, this paper proposes a new method for bridge structure deformation prediction, which integrates the Kalman filter, autoregressive integrated moving average model (ARIMA), and generalized autoregressive conditional heteroskedasticity (GARCH). Firstly, the raw deformation data is directly pre-processed using the Kalman filter to reduce the noise. After that, the linear recursive ARIMA model is established to analyze and predict the structure deformation. Finally, the nonlinear recursive GARCH model is introduced to further improve the accuracy of the prediction. Simulation results based on measured sensor data from the Global Navigation Satellite System (GNSS) deformation monitoring system demonstrated that: (1) the Kalman filter is capable of denoising the bridge deformation monitoring data; (2) the prediction accuracy of the proposed Kalman-ARIMA-GARCH model is satisfactory, where the mean absolute error increases only from 3.402 mm to 5.847 mm with the increment of the prediction step; and (3) in comparision to the Kalman-ARIMA model, the Kalman-ARIMA-GARCH model results in superior prediction accuracy as it includes partial nonlinear characteristics (heteroscedasticity); the mean absolute error of five-step prediction using the proposed model is improved by 10.12%. This paper provides a new way for structural behavior prediction based on data processing, which can lay a foundation for the early warning of bridge health monitoring system based on sensor data using sensing technology. PMID:29351254
Bridge Structure Deformation Prediction Based on GNSS Data Using Kalman-ARIMA-GARCH Model.
Xin, Jingzhou; Zhou, Jianting; Yang, Simon X; Li, Xiaoqing; Wang, Yu
2018-01-19
Bridges are an essential part of the ground transportation system. Health monitoring is fundamentally important for the safety and service life of bridges. A large amount of structural information is obtained from various sensors using sensing technology, and the data processing has become a challenging issue. To improve the prediction accuracy of bridge structure deformation based on data mining and to accurately evaluate the time-varying characteristics of bridge structure performance evolution, this paper proposes a new method for bridge structure deformation prediction, which integrates the Kalman filter, autoregressive integrated moving average model (ARIMA), and generalized autoregressive conditional heteroskedasticity (GARCH). Firstly, the raw deformation data is directly pre-processed using the Kalman filter to reduce the noise. After that, the linear recursive ARIMA model is established to analyze and predict the structure deformation. Finally, the nonlinear recursive GARCH model is introduced to further improve the accuracy of the prediction. Simulation results based on measured sensor data from the Global Navigation Satellite System (GNSS) deformation monitoring system demonstrated that: (1) the Kalman filter is capable of denoising the bridge deformation monitoring data; (2) the prediction accuracy of the proposed Kalman-ARIMA-GARCH model is satisfactory, where the mean absolute error increases only from 3.402 mm to 5.847 mm with the increment of the prediction step; and (3) in comparision to the Kalman-ARIMA model, the Kalman-ARIMA-GARCH model results in superior prediction accuracy as it includes partial nonlinear characteristics (heteroscedasticity); the mean absolute error of five-step prediction using the proposed model is improved by 10.12%. This paper provides a new way for structural behavior prediction based on data processing, which can lay a foundation for the early warning of bridge health monitoring system based on sensor data using sensing technology.
NASA Astrophysics Data System (ADS)
Cheng, Ruida; Jackson, Jennifer N.; McCreedy, Evan S.; Gandler, William; Eijkenboom, J. J. F. A.; van Middelkoop, M.; McAuliffe, Matthew J.; Sheehan, Frances T.
2016-03-01
The paper presents an automatic segmentation methodology for the patellar bone, based on 3D gradient recalled echo and gradient recalled echo with fat suppression magnetic resonance images. Constricted search space outlines are incorporated into recursive ray-tracing to segment the outer cortical bone. A statistical analysis based on the dependence of information in adjacent slices is used to limit the search in each image to between an outer and inner search region. A section based recursive ray-tracing mechanism is used to skip inner noise regions and detect the edge boundary. The proposed method achieves higher segmentation accuracy (0.23mm) than the current state-of-the-art methods with the average dice similarity coefficient of 96.0% (SD 1.3%) agreement between the auto-segmentation and ground truth surfaces.
NASA Astrophysics Data System (ADS)
Die, Qingqi; Nie, Zhiqiang; Liu, Feng; Tian, Yajun; Fang, Yanyan; Gao, Hefeng; Tian, Shulei; He, Jie; Huang, Qifei
2015-10-01
Gas and particle phase air samples were collected in summer and winter around industrial sites in Shanghai, China, to allow the concentrations, profiles, and gas-particle partitioning of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) and dioxin-like polychlorinated biphenyls (dl-PCBs) to be determined. The total 2,3,7,8-substituted PCDD/F and dl-PCB toxic equivalent (TEQ) concentrations were 14.2-182 fg TEQ/m3 (mean 56.8 fg TEQ/m3) in summer and 21.9-479 fg TEQ/m3 (mean 145 fg TEQ/m3) in winter. The PCDD/Fs tended to be predominantly in the particulate phase, while the dl-PCBs were predominantly found in the gas phase, and the proportions of all of the PCDD/F and dl-PCB congeners in the particle phase increased as the temperature decreased. The logarithms of the gas-particle partition coefficients correlated well with the subcooled liquid vapor pressures of the PCDD/Fs and dl-PCBs for most of the samples. Gas-particle partitioning of the PCDD/Fs deviated from equilibrium either in summer or winter close to local sources, and the Junge-Pankow model and predictions made using a model based on the octanol-air partition coefficient fitted the measured particulate PCDD/F fractions well, indicating that absorption and adsorption mechanism both contributed to the partitioning process. However, gas-particle equilibrium of the dl-PCBs was reached more easily in winter than in summer. The Junge-Pankow model predictions fitted the dl-PCB data better than did the predictions made using the model based on the octanol-air partition coefficient, indicating that adsorption mechanism made dominated contribution to the partitioning process.
Cache Locality Optimization for Recursive Programs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lifflander, Jonathan; Krishnamoorthy, Sriram
We present an approach to optimize the cache locality for recursive programs by dynamically splicing--recursively interleaving--the execution of distinct function invocations. By utilizing data effect annotations, we identify concurrency and data reuse opportunities across function invocations and interleave them to reduce reuse distance. We present algorithms that efficiently track effects in recursive programs, detect interference and dependencies, and interleave execution of function invocations using user-level (non-kernel) lightweight threads. To enable multi-core execution, a program is parallelized using a nested fork/join programming model. Our cache optimization strategy is designed to work in the context of a random work stealing scheduler. Wemore » present an implementation using the MIT Cilk framework that demonstrates significant improvements in sequential and parallel performance, competitive with a state-of-the-art compile-time optimizer for loop programs and a domain- specific optimizer for stencil programs.« less
Parameter Uncertainty for Aircraft Aerodynamic Modeling using Recursive Least Squares
NASA Technical Reports Server (NTRS)
Grauer, Jared A.; Morelli, Eugene A.
2016-01-01
A real-time method was demonstrated for determining accurate uncertainty levels of stability and control derivatives estimated using recursive least squares and time-domain data. The method uses a recursive formulation of the residual autocorrelation to account for colored residuals, which are routinely encountered in aircraft parameter estimation and change the predicted uncertainties. Simulation data and flight test data for a subscale jet transport aircraft were used to demonstrate the approach. Results showed that the corrected uncertainties matched the observed scatter in the parameter estimates, and did so more accurately than conventional uncertainty estimates that assume white residuals. Only small differences were observed between batch estimates and recursive estimates at the end of the maneuver. It was also demonstrated that the autocorrelation could be reduced to a small number of lags to minimize computation and memory storage requirements without significantly degrading the accuracy of predicted uncertainty levels.
NASA Astrophysics Data System (ADS)
Murni, Bustamam, A.; Ernastuti, Handhika, T.; Kerami, D.
2017-07-01
Calculation of the matrix-vector multiplication in the real-world problems often involves large matrix with arbitrary size. Therefore, parallelization is needed to speed up the calculation process that usually takes a long time. Graph partitioning techniques that have been discussed in the previous studies cannot be used to complete the parallelized calculation of matrix-vector multiplication with arbitrary size. This is due to the assumption of graph partitioning techniques that can only solve the square and symmetric matrix. Hypergraph partitioning techniques will overcome the shortcomings of the graph partitioning technique. This paper addresses the efficient parallelization of matrix-vector multiplication through hypergraph partitioning techniques using CUDA GPU-based parallel computing. CUDA (compute unified device architecture) is a parallel computing platform and programming model that was created by NVIDIA and implemented by the GPU (graphics processing unit).
Kerfriden, P.; Goury, O.; Rabczuk, T.; Bordas, S.P.A.
2013-01-01
We propose in this paper a reduced order modelling technique based on domain partitioning for parametric problems of fracture. We show that coupling domain decomposition and projection-based model order reduction permits to focus the numerical effort where it is most needed: around the zones where damage propagates. No a priori knowledge of the damage pattern is required, the extraction of the corresponding spatial regions being based solely on algebra. The efficiency of the proposed approach is demonstrated numerically with an example relevant to engineering fracture. PMID:23750055
Watumull, Jeffrey; Hauser, Marc D; Roberts, Ian G; Hornstein, Norbert
2014-01-08
It is a truism that conceptual understanding of a hypothesis is required for its empirical investigation. However, the concept of recursion as articulated in the context of linguistic analysis has been perennially confused. Nowhere has this been more evident than in attempts to critique and extend Hauseretal's. (2002) articulation. These authors put forward the hypothesis that what is uniquely human and unique to the faculty of language-the faculty of language in the narrow sense (FLN)-is a recursive system that generates and maps syntactic objects to conceptual-intentional and sensory-motor systems. This thesis was based on the standard mathematical definition of recursion as understood by Gödel and Turing, and yet has commonly been interpreted in other ways, most notably and incorrectly as a thesis about the capacity for syntactic embedding. As we explain, the recursiveness of a function is defined independent of such output, whether infinite or finite, embedded or unembedded-existent or non-existent. And to the extent that embedding is a sufficient, though not necessary, diagnostic of recursion, it has not been established that the apparent restriction on embedding in some languages is of any theoretical import. Misunderstanding of these facts has generated research that is often irrelevant to the FLN thesis as well as to other theories of language competence that focus on its generative power of expression. This essay is an attempt to bring conceptual clarity to such discussions as well as to future empirical investigations by explaining three criterial properties of recursion: computability (i.e., rules in intension rather than lists in extension); definition by induction (i.e., rules strongly generative of structure); and mathematical induction (i.e., rules for the principled-and potentially unbounded-expansion of strongly generated structure). By these necessary and sufficient criteria, the grammars of all natural languages are recursive.
Watumull, Jeffrey; Hauser, Marc D.; Roberts, Ian G.; Hornstein, Norbert
2014-01-01
It is a truism that conceptual understanding of a hypothesis is required for its empirical investigation. However, the concept of recursion as articulated in the context of linguistic analysis has been perennially confused. Nowhere has this been more evident than in attempts to critique and extend Hauseretal's. (2002) articulation. These authors put forward the hypothesis that what is uniquely human and unique to the faculty of language—the faculty of language in the narrow sense (FLN)—is a recursive system that generates and maps syntactic objects to conceptual-intentional and sensory-motor systems. This thesis was based on the standard mathematical definition of recursion as understood by Gödel and Turing, and yet has commonly been interpreted in other ways, most notably and incorrectly as a thesis about the capacity for syntactic embedding. As we explain, the recursiveness of a function is defined independent of such output, whether infinite or finite, embedded or unembedded—existent or non-existent. And to the extent that embedding is a sufficient, though not necessary, diagnostic of recursion, it has not been established that the apparent restriction on embedding in some languages is of any theoretical import. Misunderstanding of these facts has generated research that is often irrelevant to the FLN thesis as well as to other theories of language competence that focus on its generative power of expression. This essay is an attempt to bring conceptual clarity to such discussions as well as to future empirical investigations by explaining three criterial properties of recursion: computability (i.e., rules in intension rather than lists in extension); definition by induction (i.e., rules strongly generative of structure); and mathematical induction (i.e., rules for the principled—and potentially unbounded—expansion of strongly generated structure). By these necessary and sufficient criteria, the grammars of all natural languages are recursive. PMID:24409164
On the Hosoya index of a family of deterministic recursive trees
NASA Astrophysics Data System (ADS)
Chen, Xufeng; Zhang, Jingyuan; Sun, Weigang
2017-01-01
In this paper, we calculate the Hosoya index in a family of deterministic recursive trees with a special feature that includes new nodes which are connected to existing nodes with a certain rule. We then obtain a recursive solution of the Hosoya index based on the operations of a determinant. The computational complexity of our proposed algorithm is O(log2 n) with n being the network size, which is lower than that of the existing numerical methods. Finally, we give a weighted tree shrinking method as a graphical interpretation of the recurrence formula for the Hosoya index.
Scene-based nonuniformity correction for airborne point target detection systems.
Zhou, Dabiao; Wang, Dejiang; Huo, Lijun; Liu, Rang; Jia, Ping
2017-06-26
Images acquired by airborne infrared search and track (IRST) systems are often characterized by nonuniform noise. In this paper, a scene-based nonuniformity correction method for infrared focal-plane arrays (FPAs) is proposed based on the constant statistics of the received radiation ratios of adjacent pixels. The gain of each pixel is computed recursively based on the ratios between adjacent pixels, which are estimated through a median operation. Then, an elaborate mathematical model describing the error propagation, derived from random noise and the recursive calculation procedure, is established. The proposed method maintains the characteristics of traditional methods in calibrating the whole electro-optics chain, in compensating for temporal drifts, and in not preserving the radiometric accuracy of the system. Moreover, the proposed method is robust since the frame number is the only variant, and is suitable for real-time applications owing to its low computational complexity and simplicity of implementation. The experimental results, on different scenes from a proof-of-concept point target detection system with a long-wave Sofradir FPA, demonstrate the compelling performance of the proposed method.
King, Abby C; Salvo, Deborah; Banda, Jorge A; Ahn, David K; Gill, Thomas M; Miller, Michael; Newman, Anne B; Fielding, Roger A; Siordia, Carlos; Moore, Spencer; Folta, Sara; Spring, Bonnie; Manini, Todd; Pahor, Marco
2015-12-18
Obesity is an increasingly prevalent condition among older adults, yet relatively little is known about how built environment variables may be associated with obesity in older age groups. This is particularly the case for more vulnerable older adults already showing functional limitations associated with subsequent disability. The Lifestyle Interventions and Independence for Elders (LIFE) trial dataset (n = 1600) was used to explore the associations between perceived built environment variables and baseline obesity levels. Age-stratified recursive partitioning methods were applied to identify distinct subgroups with varying obesity prevalence. Among participants aged 70-78 years, four distinct subgroups, defined by combinations of perceived environment and race-ethnicity variables, were identified. The subgroups with the lowest obesity prevalence (45.5-59.4%) consisted of participants who reported living in neighborhoods with higher residential density. Among participants aged 79-89 years, the subgroup (of three distinct subgroups identified) with the lowest obesity prevalence (19.4%) consisted of non-African American/Black participants who reported living in neighborhoods with friends or acquaintances similar in demographic characteristics to themselves. Overall support for the partitioned subgroupings was obtained using mixed model regression analysis. The results suggest that, in combination with race/ethnicity, features of the perceived neighborhood built and social environments differentiated distinct groups of vulnerable older adults from different age strata that differed in obesity prevalence. Pending further verification, the results may help to inform subsequent targeting of such subgroups for further investigation. Clinicaltrials.gov Identifier = NCT01072500.
Drug drug interaction extraction from the literature using a recursive neural network
Lim, Sangrak; Lee, Kyubum
2018-01-01
Detecting drug-drug interactions (DDI) is important because information on DDIs can help prevent adverse effects from drug combinations. Since there are many new DDI-related papers published in the biomedical domain, manually extracting DDI information from the literature is a laborious task. However, text mining can be used to find DDIs in the biomedical literature. Among the recently developed neural networks, we use a Recursive Neural Network to improve the performance of DDI extraction. Our recursive neural network model uses a position feature, a subtree containment feature, and an ensemble method to improve the performance of DDI extraction. Compared with the state-of-the-art models, the DDI detection and type classifiers of our model performed 4.4% and 2.8% better, respectively, on the DDIExtraction Challenge’13 test data. We also validated our model on the PK DDI corpus that consists of two types of DDIs data: in vivo DDI and in vitro DDI. Compared with the existing model, our detection classifier performed 2.3% and 6.7% better on in vivo and in vitro data respectively. The results of our validation demonstrate that our model can automatically extract DDIs better than existing models. PMID:29373599
Adaptive model reduction for continuous systems via recursive rational interpolation
NASA Technical Reports Server (NTRS)
Lilly, John H.
1994-01-01
A method for adaptive identification of reduced-order models for continuous stable SISO and MIMO plants is presented. The method recursively finds a model whose transfer function (matrix) matches that of the plant on a set of frequencies chosen by the designer. The algorithm utilizes the Moving Discrete Fourier Transform (MDFT) to continuously monitor the frequency-domain profile of the system input and output signals. The MDFT is an efficient method of monitoring discrete points in the frequency domain of an evolving function of time. The model parameters are estimated from MDFT data using standard recursive parameter estimation techniques. The algorithm has been shown in simulations to be quite robust to additive noise in the inputs and outputs. A significant advantage of the method is that it enables a type of on-line model validation. This is accomplished by simultaneously identifying a number of models and comparing each with the plant in the frequency domain. Simulations of the method applied to an 8th-order SISO plant and a 10-state 2-input 2-output plant are presented. An example of on-line model validation applied to the SISO plant is also presented.
Simple recursion relations for general field theories
Cheung, Clifford; Shen, Chia -Hsien; Trnka, Jaroslav
2015-06-17
On-shell methods offer an alternative definition of quantum field theory at tree-level, replacing Feynman diagrams with recursion relations and interaction vertices with a handful of seed scattering amplitudes. In this paper we determine the simplest recursion relations needed to construct a general four-dimensional quantum field theory of massless particles. For this purpose we define a covering space of recursion relations which naturally generalizes all existing constructions, including those of BCFW and Risager. The validity of each recursion relation hinges on the large momentum behavior of an n-point scattering amplitude under an m-line momentum shift, which we determine solely from dimensionalmore » analysis, Lorentz invariance, and locality. We show that all amplitudes in a renormalizable theory are 5-line constructible. Amplitudes are 3-line constructible if an external particle carries spin or if the scalars in the theory carry equal charge under a global or gauge symmetry. Remarkably, this implies the 3-line constructibility of all gauge theories with fermions and complex scalars in arbitrary representations, all supersymmetric theories, and the standard model. Moreover, all amplitudes in non-renormalizable theories without derivative interactions are constructible; with derivative interactions, a subset of amplitudes is constructible. We illustrate our results with examples from both renormalizable and non-renormalizable theories. In conclusion, our study demonstrates both the power and limitations of recursion relations as a self-contained formulation of quantum field theory.« less
Developing Cultural Literacy through the Writing Process: Empowering All Learners.
ERIC Educational Resources Information Center
Palmer, Barbara C.; And Others
Combining the expansion of cultural literacy with the development of process-based writing, this book addresses each stage of the writing process, with emphasis on the recursive and overlapping nature of these stages. Numerous related model activities at the end of each chapter show how to develop the writing process, while expanding the writer's…
Performance analysis of a dual-tree algorithm for computing spatial distance histograms
Chen, Shaoping; Tu, Yi-Cheng; Xia, Yuni
2011-01-01
Many scientific and engineering fields produce large volume of spatiotemporal data. The storage, retrieval, and analysis of such data impose great challenges to database systems design. Analysis of scientific spatiotemporal data often involves computing functions of all point-to-point interactions. One such analytics, the Spatial Distance Histogram (SDH), is of vital importance to scientific discovery. Recently, algorithms for efficient SDH processing in large-scale scientific databases have been proposed. These algorithms adopt a recursive tree-traversing strategy to process point-to-point distances in the visited tree nodes in batches, thus require less time when compared to the brute-force approach where all pairwise distances have to be computed. Despite the promising experimental results, the complexity of such algorithms has not been thoroughly studied. In this paper, we present an analysis of such algorithms based on a geometric modeling approach. The main technique is to transform the analysis of point counts into a problem of quantifying the area of regions where pairwise distances can be processed in batches by the algorithm. From the analysis, we conclude that the number of pairwise distances that are left to be processed decreases exponentially with more levels of the tree visited. This leads to the proof of a time complexity lower than the quadratic time needed for a brute-force algorithm and builds the foundation for a constant-time approximate algorithm. Our model is also general in that it works for a wide range of point spatial distributions, histogram types, and space-partitioning options in building the tree. PMID:21804753
A physically based catchment partitioning method for hydrological analysis
NASA Astrophysics Data System (ADS)
Menduni, Giovanni; Riboni, Vittoria
2000-07-01
We propose a partitioning method for the topographic surface, which is particularly suitable for hydrological distributed modelling and shallow-landslide distributed modelling. The model provides variable mesh size and appears to be a natural evolution of contour-based digital terrain models. The proposed method allows the drainage network to be derived from the contour lines. The single channels are calculated via a search for the steepest downslope lines. Then, for each network node, the contributing area is determined by means of a search for both steepest upslope and downslope lines. This leads to the basin being partitioned into physically based finite elements delimited by irregular polygons. In particular, the distributed computation of local geomorphological parameters (i.e. aspect, average slope and elevation, main stream length, concentration time, etc.) can be performed easily for each single element. The contributing area system, together with the information on the distribution of geomorphological parameters provide a useful tool for distributed hydrological modelling and simulation of environmental processes such as erosion, sediment transport and shallow landslides.
Lim, Jun-Seok; Pang, Hee-Suk
2016-01-01
In this paper an [Formula: see text]-regularized recursive total least squares (RTLS) algorithm is considered for the sparse system identification. Although recursive least squares (RLS) has been successfully applied in sparse system identification, the estimation performance in RLS based algorithms becomes worse, when both input and output are contaminated by noise (the error-in-variables problem). We proposed an algorithm to handle the error-in-variables problem. The proposed [Formula: see text]-RTLS algorithm is an RLS like iteration using the [Formula: see text] regularization. The proposed algorithm not only gives excellent performance but also reduces the required complexity through the effective inversion matrix handling. Simulations demonstrate the superiority of the proposed [Formula: see text]-regularized RTLS for the sparse system identification setting.
Overlapping communities detection based on spectral analysis of line graphs
NASA Astrophysics Data System (ADS)
Gui, Chun; Zhang, Ruisheng; Hu, Rongjing; Huang, Guoming; Wei, Jiaxuan
2018-05-01
Community in networks are often overlapping where one vertex belongs to several clusters. Meanwhile, many networks show hierarchical structure such that community is recursively grouped into hierarchical organization. In order to obtain overlapping communities from a global hierarchy of vertices, a new algorithm (named SAoLG) is proposed to build the hierarchical organization along with detecting the overlap of community structure. SAoLG applies the spectral analysis into line graphs to unify the overlap and hierarchical structure of the communities. In order to avoid the limitation of absolute distance such as Euclidean distance, SAoLG employs Angular distance to compute the similarity between vertices. Furthermore, we make a micro-improvement partition density to evaluate the quality of community structure and use it to obtain the more reasonable and sensible community numbers. The proposed SAoLG algorithm achieves a balance between overlap and hierarchy by applying spectral analysis to edge community detection. The experimental results on one standard network and six real-world networks show that the SAoLG algorithm achieves higher modularity and reasonable community number values than those generated by Ahn's algorithm, the classical CPM and GN ones.
NASA Astrophysics Data System (ADS)
Qin, Cheng-Zhi; Zhan, Lijun
2012-06-01
As one of the important tasks in digital terrain analysis, the calculation of flow accumulations from gridded digital elevation models (DEMs) usually involves two steps in a real application: (1) using an iterative DEM preprocessing algorithm to remove the depressions and flat areas commonly contained in real DEMs, and (2) using a recursive flow-direction algorithm to calculate the flow accumulation for every cell in the DEM. Because both algorithms are computationally intensive, quick calculation of the flow accumulations from a DEM (especially for a large area) presents a practical challenge to personal computer (PC) users. In recent years, rapid increases in hardware capacity of the graphics processing units (GPUs) provided in modern PCs have made it possible to meet this challenge in a PC environment. Parallel computing on GPUs using a compute-unified-device-architecture (CUDA) programming model has been explored to speed up the execution of the single-flow-direction algorithm (SFD). However, the parallel implementation on a GPU of the multiple-flow-direction (MFD) algorithm, which generally performs better than the SFD algorithm, has not been reported. Moreover, GPU-based parallelization of the DEM preprocessing step in the flow-accumulation calculations has not been addressed. This paper proposes a parallel approach to calculate flow accumulations (including both iterative DEM preprocessing and a recursive MFD algorithm) on a CUDA-compatible GPU. For the parallelization of an MFD algorithm (MFD-md), two different parallelization strategies using a GPU are explored. The first parallelization strategy, which has been used in the existing parallel SFD algorithm on GPU, has the problem of computing redundancy. Therefore, we designed a parallelization strategy based on graph theory. The application results show that the proposed parallel approach to calculate flow accumulations on a GPU performs much faster than either sequential algorithms or other parallel GPU-based algorithms based on existing parallelization strategies.
Method for implementation of recursive hierarchical segmentation on parallel computers
NASA Technical Reports Server (NTRS)
Tilton, James C. (Inventor)
2005-01-01
A method, computer readable storage, and apparatus for implementing a recursive hierarchical segmentation algorithm on a parallel computing platform. The method includes setting a bottom level of recursion that defines where a recursive division of an image into sections stops dividing, and setting an intermediate level of recursion where the recursive division changes from a parallel implementation into a serial implementation. The segmentation algorithm is implemented according to the set levels. The method can also include setting a convergence check level of recursion with which the first level of recursion communicates with when performing a convergence check.
Recursive Newton-Euler formulation of manipulator dynamics
NASA Technical Reports Server (NTRS)
Nasser, M. G.
1989-01-01
A recursive Newton-Euler procedure is presented for the formulation and solution of manipulator dynamical equations. The procedure includes rotational and translational joints and a topological tree. This model was verified analytically using a planar two-link manipulator. Also, the model was tested numerically against the Walker-Orin model using the Shuttle Remote Manipulator System data. The hinge accelerations obtained from both models were identical. The computational requirements of the model vary linearly with the number of joints. The computational efficiency of this method exceeds that of Walker-Orin methods. This procedure may be viewed as a considerable generalization of Armstrong's method. A six-by-six formulation is adopted which enhances both the computational efficiency and simplicity of the model.
Vicari, Giuseppe; Adenzato, Mauro
2014-05-01
In their 2002 seminal paper Hauser, Chomsky and Fitch hypothesize that recursion is the only human-specific and language-specific mechanism of the faculty of language. While debate focused primarily on the meaning of recursion in the hypothesis and on the human-specific and syntax-specific character of recursion, the present work focuses on the claim that recursion is language-specific. We argue that there are recursive structures in the domain of motor intentionality by way of extending John R. Searle's analysis of intentional action. We then discuss evidence from cognitive science and neuroscience supporting the claim that motor-intentional recursion is language-independent and suggest some explanatory hypotheses: (1) linguistic recursion is embodied in sensory-motor processing; (2) linguistic and motor-intentional recursions are distinct and mutually independent mechanisms. Finally, we propose some reflections about the epistemic status of HCF as presenting an empirically falsifiable hypothesis, and on the possibility of testing recursion in different cognitive domains. Copyright © 2014 Elsevier Inc. All rights reserved.
USDA-ARS?s Scientific Manuscript database
The thermal-based Two Source Energy Balance (TSEB) model partitions the water and energy fluxes from vegetation and soil components providing thus the ability for estimating soil evaporation (E) and canopy transpiration (T) separately. However, it is crucial for ET partitioning to retrieve reliable ...
THE DEVELOPMENT OF THE TEACHING SPACE DIVIDER.
ERIC Educational Resources Information Center
BELLOMY, CLEON C.; CAUDILL, WILLIAM W.
TYPES OF VERTICAL WORK SURFACES AND THE DEVELOPMENT OF A MODEL TEACHING SPACE DIVIDER ARE DISCUSSED IN THIS REPORT. THIS DESIGN IS BASED ON THE EXPRESSED NEED FOR MORE TACKBOARD AND SHELVING SPACE, AND FOR MOVABLE PARTITIONS. THE MODEL PANELS WHICH SERVE DIRECTLY AS PARTITIONS RATHER THAN BEING OVERLAID ON A PLASTERED SURFACE, INCLUDE THE…
Liu, Huihui; Wei, Mengbi; Yang, Xianhai; Yin, Cen; He, Xiao
2017-01-01
Partition coefficients are vital parameters for measuring accurately the chemicals concentrations by passive sampling devices. Given the wide use of low density polyethylene (LDPE) film in passive sampling, we developed a theoretical linear solvation energy relationship (TLSER) model and a quantitative structure-activity relationship (QSAR) model for the prediction of the partition coefficient of chemicals between LDPE and water (K pew ). For chemicals with the octanol-water partition coefficient (log K ow ) <8, a TLSER model with V x (McGowan volume) and qA - (the most negative charge on O, N, S, X atoms) as descriptors was developed, but the model had relatively low determination coefficient (R 2 ) and cross-validated coefficient (Q 2 ). In order to further explore the theoretical mechanisms involved in the partition process, a QSAR model with four descriptors (MLOGP (Moriguchi octanol-water partition coeff.), P_VSA_s_3 (P_VSA-like on I-state, bin 3), Hy (hydrophilic factor) and NssO (number of atoms of type ssO)) was established, and statistical analysis indicated that the model had satisfactory goodness-of-fit, robustness and predictive ability. For chemicals with log K OW >8, a TLSER model with V x and a QSAR model with MLOGP as descriptor were developed. This is the first paper to explore the models for highly hydrophobic chemicals. The applicability domain of the models, characterized by the Euclidean distance-based method and Williams plot, covered a large number of structurally diverse chemicals, which included nearly all the common hydrophobic organic compounds. Additionally, through mechanism interpretation, we explored the structural features those governing the partition behavior of chemicals between LDPE and water. Copyright © 2016 Elsevier B.V. All rights reserved.
EEG and MEG source localization using recursively applied (RAP) MUSIC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mosher, J.C.; Leahy, R.M.
1996-12-31
The multiple signal characterization (MUSIC) algorithm locates multiple asynchronous dipolar sources from electroencephalography (EEG) and magnetoencephalography (MEG) data. A signal subspace is estimated from the data, then the algorithm scans a single dipole model through a three-dimensional head volume and computes projections onto this subspace. To locate the sources, the user must search the head volume for local peaks in the projection metric. Here we describe a novel extension of this approach which we refer to as RAP (Recursively APplied) MUSIC. This new procedure automatically extracts the locations of the sources through a recursive use of subspace projections, which usesmore » the metric of principal correlations as a multidimensional form of correlation analysis between the model subspace and the data subspace. The dipolar orientations, a form of `diverse polarization,` are easily extracted using the associated principal vectors.« less
Missel, P J
2000-01-01
Four methods are proposed for modeling diffusion in heterogeneous media where diffusion and partition coefficients take on differing values in each subregion. The exercise was conducted to validate finite element modeling (FEM) procedures in anticipation of modeling drug diffusion with regional partitioning into ocular tissue, though the approach can be useful for other organs, or for modeling diffusion in laminate devices. Partitioning creates a discontinuous value in the dependent variable (concentration) at an intertissue boundary that is not easily handled by available general-purpose FEM codes, which allow for only one value at each node. The discontinuity is handled using a transformation on the dependent variable based upon the region-specific partition coefficient. Methods were evaluated by their ability to reproduce a known exact result, for the problem of the infinite composite medium (Crank, J. The Mathematics of Diffusion, 2nd ed. New York: Oxford University Press, 1975, pp. 38-39.). The most physically intuitive method is based upon the concept of chemical potential, which is continuous across an interphase boundary (method III). This method makes the equation of the dependent variable highly nonlinear. This can be linearized easily by a change of variables (method IV). Results are also given for a one-dimensional problem simulating bolus injection into the vitreous, predicting time disposition of drug in vitreous and retina.
TOPICAL REVIEW: Nonlinear aspects of the renormalization group flows of Dyson's hierarchical model
NASA Astrophysics Data System (ADS)
Meurice, Y.
2007-06-01
We review recent results concerning the renormalization group (RG) transformation of Dyson's hierarchical model (HM). This model can be seen as an approximation of a scalar field theory on a lattice. We introduce the HM and show that its large group of symmetry simplifies drastically the blockspinning procedure. Several equivalent forms of the recursion formula are presented with unified notations. Rigourous and numerical results concerning the recursion formula are summarized. It is pointed out that the recursion formula of the HM is inequivalent to both Wilson's approximate recursion formula and Polchinski's equation in the local potential approximation (despite the very small difference with the exponents of the latter). We draw a comparison between the RG of the HM and functional RG equations in the local potential approximation. The construction of the linear and nonlinear scaling variables is discussed in an operational way. We describe the calculation of non-universal critical amplitudes in terms of the scaling variables of two fixed points. This question appears as a problem of interpolation between these fixed points. Universal amplitude ratios are calculated. We discuss the large-N limit and the complex singularities of the critical potential calculable in this limit. The interpolation between the HM and more conventional lattice models is presented as a symmetry breaking problem. We briefly introduce models with an approximate supersymmetry. One important goal of this review is to present a configuration space counterpart, suitable for lattice formulations, of functional RG equations formulated in momentum space (often called exact RG equations and abbreviated ERGE).
NASA Astrophysics Data System (ADS)
Yang, Xue-Min; Li, Jin-Yan; Chai, Guo-Ming; Duan, Dong-Ping; Zhang, Jian
2016-08-01
According to the experimental results of hot metal dephosphorization by CaO-based slags at a commercial-scale hot metal pretreatment station, the collected 16 models of equilibrium quotient k_{{P}} or phosphorus partition L_{{P}} between CaO-based slags and iron-based melts from the literature have been evaluated. The collected 16 models for predicting equilibrium quotient k_{{P}} can be transferred to predict phosphorus partition L_{{P}} . The predicted results by the collected 16 models cannot be applied to be criteria for evaluating k_{{P}} or L_{{P}} due to various forms or definitions of k_{{P}} or L_{{P}} . Thus, the measured phosphorus content [pct P] in a hot metal bath at the end point of the dephosphorization pretreatment process is applied to be the fixed criteria for evaluating the collected 16 models. The collected 16 models can be described in the form of linear functions as y = c0 + c1 x , in which independent variable x represents the chemical composition of slags, intercept c0 including the constant term depicts the temperature effect and other unmentioned or acquiescent thermodynamic factors, and slope c1 is regressed by the experimental results of k_{{P}} or L_{{P}} . Thus, a general approach to developing the thermodynamic model for predicting equilibrium quotient k_{{P}} or phosphorus partition L P or [pct P] in iron-based melts during the dephosphorization process is proposed by revising the constant term in intercept c0 for the summarized 15 models except for Suito's model (M3). The better models with an ideal revising possibility or flexibility among the collected 16 models have been selected and recommended. Compared with the predicted result by the revised 15 models and Suito's model (M3), the developed IMCT- L_{{P}} model coupled with the proposed dephosphorization mechanism by the present authors can be applied to accurately predict phosphorus partition L_{{P}} with the lowest mean deviation δ_{{L_{{P}} }} of log L_{{P}} as 2.33, as well as to predict [pct P] in a hot metal bath with the smallest mean deviation δ_{{[% {{ P}}]}} of [pct P] as 12.31.
Vehicle Sprung Mass Estimation for Rough Terrain
2011-03-01
distributions are greater than zero. The multivariate polynomials are functions of the Legendre polynomials (Poularikas (1999...developed methods based on polynomial chaos theory and on the maximum likelihood approach to estimate the most likely value of the vehicle sprung...mass. The polynomial chaos estimator is compared to benchmark algorithms including recursive least squares, recursive total least squares, extended
ERIC Educational Resources Information Center
Reinertsen, Anne Beate
2014-01-01
This article is about developing school-based self-assessing recursive pedagogies and case/action research practices and/or approaches in schools, and teachers, teacher researchers and researchers simultaneously producing and theorising their own practices using second-order cybernetics as a thinking tool. It is a move towards pragmatic…
NASA Astrophysics Data System (ADS)
Yun, Wanying; Lu, Zhenzhou; Jiang, Xian
2018-06-01
To efficiently execute the variance-based global sensitivity analysis, the law of total variance in the successive intervals without overlapping is proved at first, on which an efficient space-partition sampling-based approach is subsequently proposed in this paper. Through partitioning the sample points of output into different subsets according to different inputs, the proposed approach can efficiently evaluate all the main effects concurrently by one group of sample points. In addition, there is no need for optimizing the partition scheme in the proposed approach. The maximum length of subintervals is decreased by increasing the number of sample points of model input variables in the proposed approach, which guarantees the convergence condition of the space-partition approach well. Furthermore, a new interpretation on the thought of partition is illuminated from the perspective of the variance ratio function. Finally, three test examples and one engineering application are employed to demonstrate the accuracy, efficiency and robustness of the proposed approach.
Application of dynamic recurrent neural networks in nonlinear system identification
NASA Astrophysics Data System (ADS)
Du, Yun; Wu, Xueli; Sun, Huiqin; Zhang, Suying; Tian, Qiang
2006-11-01
An adaptive identification method of simple dynamic recurrent neural network (SRNN) for nonlinear dynamic systems is presented in this paper. This method based on the theory that by using the inner-states feed-back of dynamic network to describe the nonlinear kinetic characteristics of system can reflect the dynamic characteristics more directly, deduces the recursive prediction error (RPE) learning algorithm of SRNN, and improves the algorithm by studying topological structure on recursion layer without the weight values. The simulation results indicate that this kind of neural network can be used in real-time control, due to its less weight values, simpler learning algorithm, higher identification speed, and higher precision of model. It solves the problems of intricate in training algorithm and slow rate in convergence caused by the complicate topological structure in usual dynamic recurrent neural network.
Investigating the role of model-based reasoning while troubleshooting an electric circuit
NASA Astrophysics Data System (ADS)
Dounas-Frazer, Dimitri R.; Van De Bogart, Kevin L.; Stetzer, MacKenzie R.; Lewandowski, H. J.
2016-06-01
We explore the overlap of two nationally recognized learning outcomes for physics lab courses, namely, the ability to model experimental systems and the ability to troubleshoot a malfunctioning apparatus. Modeling and troubleshooting are both nonlinear, recursive processes that involve using models to inform revisions to an apparatus. To probe the overlap of modeling and troubleshooting, we collected audiovisual data from think-aloud activities in which eight pairs of students from two institutions attempted to diagnose and repair a malfunctioning electrical circuit. We characterize the cognitive tasks and model-based reasoning that students employed during this activity. In doing so, we demonstrate that troubleshooting engages students in the core scientific practice of modeling.
Novel naïve Bayes classification models for predicting the chemical Ames mutagenicity.
Zhang, Hui; Kang, Yan-Li; Zhu, Yuan-Yuan; Zhao, Kai-Xia; Liang, Jun-Yu; Ding, Lan; Zhang, Teng-Guo; Zhang, Ji
2017-06-01
Prediction of drug candidates for mutagenicity is a regulatory requirement since mutagenic compounds could pose a toxic risk to humans. The aim of this investigation was to develop a novel prediction model of mutagenicity by using a naïve Bayes classifier. The established model was validated by the internal 5-fold cross validation and external test sets. For comparison, the recursive partitioning classifier prediction model was also established and other various reported prediction models of mutagenicity were collected. Among these methods, the prediction performance of naïve Bayes classifier established here displayed very well and stable, which yielded average overall prediction accuracies for the internal 5-fold cross validation of the training set and external test set I set were 89.1±0.4% and 77.3±1.5%, respectively. The concordance of the external test set II with 446 marketed drugs was 90.9±0.3%. In addition, four simple molecular descriptors (e.g., Apol, No. of H donors, Num-Rings and Wiener) related to mutagenicity and five representative substructures of mutagens (e.g., aromatic nitro, hydroxyl amine, nitroso, aromatic amine and N-methyl-N-methylenemethanaminum) produced by ECFP_14 fingerprints were identified. We hope the established naïve Bayes prediction model can be applied to risk assessment processes; and the obtained important information of mutagenic chemicals can guide the design of chemical libraries for hit and lead optimization. Copyright © 2017 Elsevier B.V. All rights reserved.
Moderate deviations-based importance sampling for stochastic recursive equations
Dupuis, Paul; Johnson, Dane
2017-11-17
Abstract Subsolutions to the Hamilton–Jacobi–Bellman equation associated with a moderate deviations approximation are used to design importance sampling changes of measure for stochastic recursive equations. Analogous to what has been done for large deviations subsolution-based importance sampling, these schemes are shown to be asymptotically optimal under the moderate deviations scaling. We present various implementations and numerical results to contrast their performance, and also discuss the circumstances under which a moderate deviation scaling might be appropriate.
Moderate deviations-based importance sampling for stochastic recursive equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dupuis, Paul; Johnson, Dane
Abstract Subsolutions to the Hamilton–Jacobi–Bellman equation associated with a moderate deviations approximation are used to design importance sampling changes of measure for stochastic recursive equations. Analogous to what has been done for large deviations subsolution-based importance sampling, these schemes are shown to be asymptotically optimal under the moderate deviations scaling. We present various implementations and numerical results to contrast their performance, and also discuss the circumstances under which a moderate deviation scaling might be appropriate.
Adaptable Iterative and Recursive Kalman Filter Schemes
NASA Technical Reports Server (NTRS)
Zanetti, Renato
2014-01-01
Nonlinear filters are often very computationally expensive and usually not suitable for real-time applications. Real-time navigation algorithms are typically based on linear estimators, such as the extended Kalman filter (EKF) and, to a much lesser extent, the unscented Kalman filter. The Iterated Kalman filter (IKF) and the Recursive Update Filter (RUF) are two algorithms that reduce the consequences of the linearization assumption of the EKF by performing N updates for each new measurement, where N is the number of recursions, a tuning parameter. This paper introduces an adaptable RUF algorithm to calculate N on the go, a similar technique can be used for the IKF as well.
Inference and Analysis of Population Structure Using Genetic Data and Network Theory
Greenbaum, Gili; Templeton, Alan R.; Bar-David, Shirli
2016-01-01
Clustering individuals to subpopulations based on genetic data has become commonplace in many genetic studies. Inference about population structure is most often done by applying model-based approaches, aided by visualization using distance-based approaches such as multidimensional scaling. While existing distance-based approaches suffer from a lack of statistical rigor, model-based approaches entail assumptions of prior conditions such as that the subpopulations are at Hardy-Weinberg equilibria. Here we present a distance-based approach for inference about population structure using genetic data by defining population structure using network theory terminology and methods. A network is constructed from a pairwise genetic-similarity matrix of all sampled individuals. The community partition, a partition of a network to dense subgraphs, is equated with population structure, a partition of the population to genetically related groups. Community-detection algorithms are used to partition the network into communities, interpreted as a partition of the population to subpopulations. The statistical significance of the structure can be estimated by using permutation tests to evaluate the significance of the partition’s modularity, a network theory measure indicating the quality of community partitions. To further characterize population structure, a new measure of the strength of association (SA) for an individual to its assigned community is presented. The strength of association distribution (SAD) of the communities is analyzed to provide additional population structure characteristics, such as the relative amount of gene flow experienced by the different subpopulations and identification of hybrid individuals. Human genetic data and simulations are used to demonstrate the applicability of the analyses. The approach presented here provides a novel, computationally efficient model-free method for inference about population structure that does not entail assumption of prior conditions. The method is implemented in the software NetStruct (available at https://giligreenbaum.wordpress.com/software/). PMID:26888080
Zukowska, Barbara; Breivik, Knut; Wania, Frank
2006-04-15
We recently proposed how to expand the applicability of multimedia models towards polar organic chemicals by expressing environmental phase partitioning with the help of poly-parameter linear free energy relationships (PP-LFERs). Here we elaborate on this approach by applying it to three pharmaceutical substances. A PP-LFER-based version of a Level III fugacity model calculates overall persistence, concentrations and intermedia fluxes of polar and non-polar organic chemicals between air, water, soil and sediments at steady-state. Illustrative modeling results for the pharmaceuticals within a defined coastal region are presented and discussed. The model results are highly sensitive to the degradation rate in water and the equilibrium partitioning between organic carbon and water, suggesting that an accurate description of this particular partitioning equilibrium is essential in order to obtain reliable predictions of environmental fate. The PP-LFER based modeling approach furthermore illustrates that the greatest mobility in aqueous phases may be experienced by pharmaceuticals that combines a small molecular size with strong H-acceptor properties.
Binary Disassembly Block Coverage by Symbolic Execution vs. Recursive Descent
2012-03-01
explores the effectiveness of symbolic execution on packed or obfuscated samples of the same binaries to generate a model-based evaluation of success...24 2.3.4.1 Packing . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.3.4.2 Techniques...inner workings of UPX (Universal Packer for eXecutables), a common packing tool, on a Windows binary. Image source: GFC08 . . . . . . . . . . . 25 3.1
Pintaudi, Basilio; Di Vieste, Giacoma; Corrado, Francesco; Lucisano, Giuseppe; Pellegrini, Fabio; Giunta, Loretta; Nicolucci, Antonio; D'Anna, Rosario; Di Benedetto, Antonino
2014-01-01
This study aimed to assess the predictive value of risk factors (RFs) for gestational diabetes mellitus (GDM) established by selective screening (SS) and to identify subgroups of women at a higher risk of developing GDM. A retrospective, single-center study design was employed. Data of 1015 women screened for GDM at 24-28 weeks of gestation and diagnosed according to the International Association of Diabetes and Pregnancy Study Groups criteria were evaluated. Information on RFs established by SS was also collected and their association with GDM was determined. To identify distinct and homogeneous subgroups of patients at a higher risk, the RECursive Partitioning and AMalgamation (RECPAM) method was used. Overall, 113 (11.1%) women were diagnosed as having GDM. The application of the SS criteria would result in the execution of an oral glucose tolerance test (OGTT) in 58.3% of women and 26 (23.0%) cases of GDM would not be detected due to the absence of any RF. The RECPAM analysis identified high-risk subgroups characterized by fasting plasma glucose values >5.1 mmol/l (odds ratio (OR)=26.5; 95% CI 14.3-49.0) and pre-pregnancy BMI (OR=7.0; 95% CI 3.9-12.8 for overweight women). In a final logistic model including RECPAM classes, previous macrosomia (OR=3.6; 95% CI 1.1-11.6), and family history of diabetes (OR=1.8; 95% CI 1.1-2.8), but not maternal age, were also found to be associated with an increased risk of developing GDM. A screening approach based on the RECPAM model would reduce by over 50% (23.0 vs 10.6%) the number of undiagnosed GDM cases when compared with the current SS approach, at the expense of 50 additional OGTTs required. A screening approach based on our RECPAM model results in a significant reduction in the number of undetected GDM cases compared with the current SS procedure.
Kalman-variant estimators for state of charge in lithium-sulfur batteries
NASA Astrophysics Data System (ADS)
Propp, Karsten; Auger, Daniel J.; Fotouhi, Abbas; Longo, Stefano; Knap, Vaclav
2017-03-01
Lithium-sulfur batteries are now commercially available, offering high specific energy density, low production costs and high safety. However, there is no commercially-available battery management system for them, and there are no published methods for determining state of charge in situ. This paper describes a study to address this gap. The properties and behaviours of lithium-sulfur are briefly introduced, and the applicability of 'standard' lithium-ion state-of-charge estimation methods is explored. Open-circuit voltage methods and 'Coulomb counting' are found to have a poor fit for lithium-sulfur, and model-based methods, particularly recursive Bayesian filters, are identified as showing strong promise. Three recursive Bayesian filters are implemented: an extended Kalman filter (EKF), an unscented Kalman filter (UKF) and a particle filter (PF). These estimators are tested through practical experimentation, considering both a pulse-discharge test and a test based on the New European Driving Cycle (NEDC). Experimentation is carried out at a constant temperature, mirroring the environment expected in the authors' target automotive application. It is shown that the estimators, which are based on a relatively simple equivalent-circuit-network model, can deliver useful results. If the three estimators implemented, the unscented Kalman filter gives the most robust and accurate performance, with an acceptable computational effort.
NASA Technical Reports Server (NTRS)
Mcclain, W. D.
1977-01-01
A recursively formulated, first-order, semianalytic artificial satellite theory, based on the generalized method of averaging is presented in two volumes. Volume I comprehensively discusses the theory of the generalized method of averaging applied to the artificial satellite problem. Volume II presents the explicit development in the nonsingular equinoctial elements of the first-order average equations of motion. The recursive algorithms used to evaluate the first-order averaged equations of motion are also presented in Volume II. This semianalytic theory is, in principle, valid for a term of arbitrary degree in the expansion of the third-body disturbing function (nonresonant cases only) and for a term of arbitrary degree and order in the expansion of the nonspherical gravitational potential function.
NASA Astrophysics Data System (ADS)
Wang, F.; Annable, M. D.; Jawitz, J. W.
2012-12-01
The equilibrium streamtube model (EST) has demonstrated the ability to accurately predict dense nonaqueous phase liquid (DNAPL) dissolution in laboratory experiments and numerical simulations. Here the model is applied to predict DNAPL dissolution at a PCE-contaminated dry cleaner site, located in Jacksonville, Florida. The EST is an analytical solution with field-measurable input parameters. Here, measured data from a field-scale partitioning tracer test were used to parameterize the EST model and the predicted PCE dissolution was compared to measured data from an in-situ alcohol (ethanol) flood. In addition, a simulated partitioning tracer test from a calibrated spatially explicit multiphase flow model (UTCHEM) was also used to parameterize the EST analytical solution. The ethanol prediction based on both the field partitioning tracer test and the UTCHEM tracer test simulation closely matched the field data. The PCE EST prediction showed a peak shift to an earlier arrival time that was concluded to be caused by well screen interval differences between the field tracer test and alcohol flood. This observation was based on a modeling assessment of potential factors that may influence predictions by using UTCHEM simulations. The imposed injection and pumping flow pattern at this site for both the partitioning tracer test and alcohol flood was more complex than the natural gradient flow pattern (NGFP). Both the EST model and UTCHEM were also used to predict PCE dissolution under natural gradient conditions, with much simpler flow patterns than the forced-gradient double five spot of the alcohol flood. The NGFP predictions based on parameters determined from tracer tests conducted with complex flow patterns underestimated PCE concentrations and total mass removal. This suggests that the flow patterns influence aqueous dissolution and that the aqueous dissolution under the NGFP is more efficient than dissolution under complex flow patterns.
New Parallel Algorithms for Landscape Evolution Model
NASA Astrophysics Data System (ADS)
Jin, Y.; Zhang, H.; Shi, Y.
2017-12-01
Most landscape evolution models (LEM) developed in the last two decades solve the diffusion equation to simulate the transportation of surface sediments. This numerical approach is difficult to parallelize due to the computation of drainage area for each node, which needs huge amount of communication if run in parallel. In order to overcome this difficulty, we developed two parallel algorithms for LEM with a stream net. One algorithm handles the partition of grid with traditional methods and applies an efficient global reduction algorithm to do the computation of drainage areas and transport rates for the stream net; the other algorithm is based on a new partition algorithm, which partitions the nodes in catchments between processes first, and then partitions the cells according to the partition of nodes. Both methods focus on decreasing communication between processes and take the advantage of massive computing techniques, and numerical experiments show that they are both adequate to handle large scale problems with millions of cells. We implemented the two algorithms in our program based on the widely used finite element library deal.II, so that it can be easily coupled with ASPECT.
Multivariate regression model for partitioning tree volume of white oak into round-product classes
Daniel A. Yaussy; David L. Sonderman
1984-01-01
Describes the development of multivariate equations that predict the expected cubic volume of four round-product classes from independent variables composed of individual tree-quality characteristics. Although the model has limited application at this time, it does demonstrate the feasibility of partitioning total tree cubic volume into round-product classes based on...
Farms, Families, and Markets: New Evidence on Completeness of Markets in Agricultural Settings
LaFave, Daniel; Thomas, Duncan
2016-01-01
The farm household model has played a central role in improving the understanding of small-scale agricultural households and non-farm enterprises. Under the assumptions that all current and future markets exist and that farmers treat all prices as given, the model simplifies households’ simultaneous production and consumption decisions into a recursive form in which production can be treated as independent of preferences of household members. These assumptions, which are the foundation of a large literature in labor and development, have been tested and not rejected in several important studies including Benjamin (1992). Using multiple waves of longitudinal survey data from Central Java, Indonesia, this paper tests a key prediction of the recursive model: demand for farm labor is unrelated to the demographic composition of the farm household. The prediction is unambiguously rejected. The rejection cannot be explained by contamination due to unobserved heterogeneity that is fixed at the farm level, local area shocks or farm-specific shocks that affect changes in household composition and farm labor demand. We conclude that the recursive form of the farm household model is not consistent with the data. Developing empirically tractable models of farm households when markets are incomplete remains an important challenge. PMID:27688430
Field-scale prediction of enhanced DNAPL dissolution based on partitioning tracers.
Wang, Fang; Annable, Michael D; Jawitz, James W
2013-09-01
The equilibrium streamtube model (EST) has demonstrated the ability to accurately predict dense nonaqueous phase liquid (DNAPL) dissolution in laboratory experiments and numerical simulations. Here the model is applied to predict DNAPL dissolution at a tetrachloroethylene (PCE)-contaminated dry cleaner site, located in Jacksonville, Florida. The EST model is an analytical solution with field-measurable input parameters. Measured data from a field-scale partitioning tracer test were used to parameterize the EST model and the predicted PCE dissolution was compared to measured data from an in-situ ethanol flood. In addition, a simulated partitioning tracer test from a calibrated, three-dimensional, spatially explicit multiphase flow model (UTCHEM) was also used to parameterize the EST analytical solution. The EST ethanol prediction based on both the field partitioning tracer test and the simulation closely matched the total recovery well field ethanol data with Nash-Sutcliffe efficiency E=0.96 and 0.90, respectively. The EST PCE predictions showed a peak shift to earlier arrival times for models based on either field-measured or simulated partitioning tracer tests, resulting in poorer matches to the field PCE data in both cases. The peak shifts were concluded to be caused by well screen interval differences between the field tracer test and ethanol flood. Both the EST model and UTCHEM were also used to predict PCE aqueous dissolution under natural gradient conditions, which has a much less complex flow pattern than the forced-gradient double five spot used for the ethanol flood. The natural gradient EST predictions based on parameters determined from tracer tests conducted with a complex flow pattern underestimated the UTCHEM-simulated natural gradient total mass removal by 12% after 170 pore volumes of water flushing indicating that some mass was not detected by the tracers likely due to stagnation zones in the flow field. These findings highlight the important influence of well configuration and the associated flow patterns on dissolution. © 2013.
Field-scale prediction of enhanced DNAPL dissolution based on partitioning tracers
NASA Astrophysics Data System (ADS)
Wang, Fang; Annable, Michael D.; Jawitz, James W.
2013-09-01
The equilibrium streamtube model (EST) has demonstrated the ability to accurately predict dense nonaqueous phase liquid (DNAPL) dissolution in laboratory experiments and numerical simulations. Here the model is applied to predict DNAPL dissolution at a tetrachloroethylene (PCE)-contaminated dry cleaner site, located in Jacksonville, Florida. The EST model is an analytical solution with field-measurable input parameters. Measured data from a field-scale partitioning tracer test were used to parameterize the EST model and the predicted PCE dissolution was compared to measured data from an in-situ ethanol flood. In addition, a simulated partitioning tracer test from a calibrated, three-dimensional, spatially explicit multiphase flow model (UTCHEM) was also used to parameterize the EST analytical solution. The EST ethanol prediction based on both the field partitioning tracer test and the simulation closely matched the total recovery well field ethanol data with Nash-Sutcliffe efficiency E = 0.96 and 0.90, respectively. The EST PCE predictions showed a peak shift to earlier arrival times for models based on either field-measured or simulated partitioning tracer tests, resulting in poorer matches to the field PCE data in both cases. The peak shifts were concluded to be caused by well screen interval differences between the field tracer test and ethanol flood. Both the EST model and UTCHEM were also used to predict PCE aqueous dissolution under natural gradient conditions, which has a much less complex flow pattern than the forced-gradient double five spot used for the ethanol flood. The natural gradient EST predictions based on parameters determined from tracer tests conducted with a complex flow pattern underestimated the UTCHEM-simulated natural gradient total mass removal by 12% after 170 pore volumes of water flushing indicating that some mass was not detected by the tracers likely due to stagnation zones in the flow field. These findings highlight the important influence of well configuration and the associated flow patterns on dissolution.
Recursion equations in predicting band width under gradient elution.
Liang, Heng; Liu, Ying
2004-06-18
The evolution of solute zone under gradient elution is a typical problem of non-linear continuity equation since the local diffusion coefficient and local migration velocity of the mass cells of solute zones are the functions of position and time due to space- and time-variable mobile phase composition. In this paper, based on the mesoscopic approaches (Lagrangian description, the continuity theory and the local equilibrium assumption), the evolution of solute zones in space- and time-dependent fields is described by the iterative addition of local probability density of the mass cells of solute zones. Furthermore, on macroscopic levels, the recursion equations have been proposed to simulate zone migration and spreading in reversed-phase high-performance liquid chromatography (RP-HPLC) through directly relating local retention factor and local diffusion coefficient to local mobile phase concentration. This new approach differs entirely from the traditional theories on plate concept with Eulerian description, since band width recursion equation is actually the accumulation of local diffusion coefficients of solute zones to discrete-time slices. Recursion equations and literature equations were used in dealing with same experimental data in RP-HPLC, and the comparison results show that the recursion equations can accurately predict band width under gradient elution.
Recursive inversion of externally defined linear systems
NASA Technical Reports Server (NTRS)
Bach, Ralph E., Jr.; Baram, Yoram
1988-01-01
The approximate inversion of an internally unknown linear system, given by its impulse response sequence, by an inverse system having a finite impulse response, is considered. The recursive least squares procedure is shown to have an exact initialization, based on the triangular Toeplitz structure of the matrix involved. The proposed approach also suggests solutions to the problems of system identification and compensation.
Stochastic calibration and learning in nonstationary hydroeconomic models
NASA Astrophysics Data System (ADS)
Maneta, M. P.; Howitt, R.
2014-05-01
Concern about water scarcity and adverse climate events over agricultural regions has motivated a number of efforts to develop operational integrated hydroeconomic models to guide adaptation and optimal use of water. Once calibrated, these models are used for water management and analysis assuming they remain valid under future conditions. In this paper, we present and demonstrate a methodology that permits the recursive calibration of economic models of agricultural production from noisy but frequently available data. We use a standard economic calibration approach, namely positive mathematical programming, integrated in a data assimilation algorithm based on the ensemble Kalman filter equations to identify the economic model parameters. A moving average kernel ensures that new and past information on agricultural activity are blended during the calibration process, avoiding loss of information and overcalibration for the conditions of a single year. A regularization constraint akin to the standard Tikhonov regularization is included in the filter to ensure its stability even in the presence of parameters with low sensitivity to observations. The results show that the implementation of the PMP methodology within a data assimilation framework based on the enKF equations is an effective method to calibrate models of agricultural production even with noisy information. The recursive nature of the method incorporates new information as an added value to the known previous observations of agricultural activity without the need to store historical information. The robustness of the method opens the door to the use of new remote sensing algorithms for operational water management.
Modeling of adipose/blood partition coefficient for environmental chemicals.
Papadaki, K C; Karakitsios, S P; Sarigiannis, D A
2017-12-01
A Quantitative Structure Activity Relationship (QSAR) model was developed in order to predict the adipose/blood partition coefficient of environmental chemical compounds. The first step of QSAR modeling was the collection of inputs. Input data included the experimental values of adipose/blood partition coefficient and two sets of molecular descriptors for 67 organic chemical compounds; a) the descriptors from Linear Free Energy Relationship (LFER) and b) the PaDEL descriptors. The datasets were split to training and prediction set and were analysed using two statistical methods; Genetic Algorithm based Multiple Linear Regression (GA-MLR) and Artificial Neural Networks (ANN). The models with LFER and PaDEL descriptors, coupled with ANN, produced satisfying performance results. The fitting performance (R 2 ) of the models, using LFER and PaDEL descriptors, was 0.94 and 0.96, respectively. The Applicability Domain (AD) of the models was assessed and then the models were applied to a large number of chemical compounds with unknown values of adipose/blood partition coefficient. In conclusion, the proposed models were checked for fitting, validity and applicability. It was demonstrated that they are stable, reliable and capable to predict the values of adipose/blood partition coefficient of "data poor" chemical compounds that fall within the applicability domain. Copyright © 2017. Published by Elsevier Ltd.
Random forests as cumulative effects models: A case study of lakes and rivers in Muskoka, Canada.
Jones, F Chris; Plewes, Rachel; Murison, Lorna; MacDougall, Mark J; Sinclair, Sarah; Davies, Christie; Bailey, John L; Richardson, Murray; Gunn, John
2017-10-01
Cumulative effects assessment (CEA) - a type of environmental appraisal - lacks effective methods for modeling cumulative effects, evaluating indicators of ecosystem condition, and exploring the likely outcomes of development scenarios. Random forests are an extension of classification and regression trees, which model response variables by recursive partitioning. Random forests were used to model a series of candidate ecological indicators that described lakes and rivers from a case study watershed (The Muskoka River Watershed, Canada). Suitability of the candidate indicators for use in cumulative effects assessment and watershed monitoring was assessed according to how well they could be predicted from natural habitat features and how sensitive they were to human land-use. The best models explained 75% of the variation in a multivariate descriptor of lake benthic-macroinvertebrate community structure, and 76% of the variation in the conductivity of river water. Similar results were obtained by cross-validation. Several candidate indicators detected a simulated doubling of urban land-use in their catchments, and a few were able to detect a simulated doubling of agricultural land-use. The paper demonstrates that random forests can be used to describe the combined and singular effects of multiple stressors and natural environmental factors, and furthermore, that random forests can be used to evaluate the performance of monitoring indicators. The numerical methods presented are applicable to any ecosystem and indicator type, and therefore represent a step forward for CEA. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Shope, C. L.; Maharjan, G. R.; Tenhunen, J.; Seo, B.; Kim, K.; Riley, J.; Arnhold, S.; Koellner, T.; Ok, Y. S.; Peiffer, S.; Kim, B.; Park, J.-H.; Huwe, B.
2014-02-01
Watershed-scale modeling can be a valuable tool to aid in quantification of water quality and yield; however, several challenges remain. In many watersheds, it is difficult to adequately quantify hydrologic partitioning. Data scarcity is prevalent, accuracy of spatially distributed meteorology is difficult to quantify, forest encroachment and land use issues are common, and surface water and groundwater abstractions substantially modify watershed-based processes. Our objective is to assess the capability of the Soil and Water Assessment Tool (SWAT) model to capture event-based and long-term monsoonal rainfall-runoff processes in complex mountainous terrain. To accomplish this, we developed a unique quality-control, gap-filling algorithm for interpolation of high-frequency meteorological data. We used a novel multi-location, multi-optimization calibration technique to improve estimations of catchment-wide hydrologic partitioning. The interdisciplinary model was calibrated to a unique combination of statistical, hydrologic, and plant growth metrics. Our results indicate scale-dependent sensitivity of hydrologic partitioning and substantial influence of engineered features. The addition of hydrologic and plant growth objective functions identified the importance of culverts in catchment-wide flow distribution. While this study shows the challenges of applying the SWAT model to complex terrain and extreme environments; by incorporating anthropogenic features into modeling scenarios, we can enhance our understanding of the hydroecological impact.
MODFLOW-CDSS, a version of MODFLOW-2005 with modifications for Colorado Decision Support Systems
Banta, Edward R.
2011-01-01
MODFLOW-CDSS is a three-dimensional, finite-difference groundwater-flow model based on MODFLOW-2005, with two modifications. The first modification is the introduction of a Partition Stress Boundaries capability, which enables the user to partition a selected subset of MODFLOW's stress-boundary packages, with each partition defined by a separate input file. Volumetric water-budget components of each partition are tracked and listed separately in the volumetric water-budget tables. The second modification enables the user to specify that execution of a simulation should continue despite failure of the solver to satisfy convergence criteria. This modification is particularly intended to be used in conjunction with automated model-analysis software; its use is not recommended for other purposes.
Robot Control Based On Spatial-Operator Algebra
NASA Technical Reports Server (NTRS)
Rodriguez, Guillermo; Kreutz, Kenneth K.; Jain, Abhinandan
1992-01-01
Method for mathematical modeling and control of robotic manipulators based on spatial-operator algebra providing concise representation and simple, high-level theoretical frame-work for solution of kinematical and dynamical problems involving complicated temporal and spatial relationships. Recursive algorithms derived immediately from abstract spatial-operator expressions by inspection. Transition from abstract formulation through abstract solution to detailed implementation of specific algorithms to compute solution greatly simplified. Complicated dynamical problems like two cooperating robot arms solved more easily.
Feenstra, Peter; Brunsteiner, Michael; Khinast, Johannes
2014-10-01
The interaction between drug products and polymeric packaging materials is an important topic in the pharmaceutical industry and often associated with high costs because of the required elaborative interaction studies. Therefore, a theoretical prediction of such interactions would be beneficial. Often, material parameters such as the octanol water partition coefficient are used to predict the partitioning of migrant molecules between a solvent and a polymeric packaging material. Here, we present the investigation of the partitioning of various migrant molecules between polymers and solvents using molecular dynamics simulations for the calculation of interaction energies. Our results show that the use of a model for the interaction between the migrant and the polymer at atomistic detail can yield significantly better results when predicting the polymer solvent partitioning than a model based on the octanol water partition coefficient. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.
Chiou, C.T.
1985-01-01
Triolein-water partition coefficients (KtW) have been determined for 38 slightly water-soluble organic compounds, and their magnitudes have been compared with the corresponding octanol-water partition coefficients (KOW). In the absence of major solvent-solute interaction effects in the organic solvent phase, the conventional treatment (based on Raoult's law) predicts sharply lower partition coefficients for most of the solutes in triolein because of its considerably higher molecular weight, whereas the Flory-Huggins treatment predicts higher partition coefficients with triolein. The data are in much better agreement with the Flory-Huggins model. As expected from the similarity in the partition coefficients, the water solubility (which was previously found to be the major determinant of the KOW) is also the major determinant for the Ktw. When the published BCF values (bioconcentration factors) of organic compounds in fish are based on the lipid content rather than on total mass, they are approximately equal to the Ktw, which suggests at least near equilibrium for solute partitioning between water and fish lipid. The close correlation between Ktw and Kow suggests that Kow is also a good predictor for lipid-water partition coefficients and bioconcentration factors.
Rades, Dirk; Bohlen, Guenther; Pluemer, Andre; Veninga, Theo; Hanssens, Patrick; Dunst, Juergen; Schild, Steven E
2007-06-15
The objective of this study was to compare stereotactic radiosurgery (SRS) alone with resection plus whole-brain radiotherapy (WBRT) for the treatment of patients in recursive partitioning analysis (RPA) class 1 and 2 who had 1 or 2 brain metastases. Two hundred six patients in RPA class 1 and 2 who had 1 or 2 brain metastases were analyzed retrospectively. Patients in Group A (n = 94) received from 18 grays (Gy) to 25 Gy SRS, and patients in Group B (n = 112) underwent resection of their metastases and received 10 x 3 Gy/20 x 2 Gy WBRT. Eight other potential prognostic factors were evaluated regarding overall survival (OS), brain control (BC), and local control (LC) of treated metastases: age, sex, performance status, tumor type, number of brain metastases, extracranial metastases, RPA class, and interval from tumor diagnosis to treatment of brain metastases. A comparison of the 2 treatment groups did not reveal significantly different OS (P = .19), BC (P = .52), or LC (P = .25). In RPA subgroup analyses, outcome also did not differ significantly for either RPA class of patients (P values from .21 to .83). On multivariate analysis, improved OS was associated with age < or =60 years (relative risk [RR], 1.75; P = .002), better performance status (RR, 1.67; P = .015), no extracranial metastases (RR, 2.84; P < .001), interval from tumor diagnosis to treatment >12 months (RR, 1.70; P = .003), and RPA class 1 (RR, 1.51; P = .016). Improved BC was associated with a single metastasis (RR, 1.54; P = .034) and an interval from tumor diagnosis to treatment >12 months (RR, 1.58; P = .019), and improved LC was associated with an interval from tumor diagnosis to treatment >12 months (RR, 1.59; P = .047). SRS alone appeared to be as effective as resection plus WBRT in the treatment of 1 or 2 brain metastases for patients in RPA class 1 and 2. Patient outcomes were associated with age, Karnofsky performance status, number of brain metastases, extracranial metastases, RPA class, and interval from tumor diagnosis to treatment. Copyright 2007 American Cancer Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verma, Jonathan; Sulman, Erik P.; Jhingran, Anuja
Purpose: To determine the incidence of duodenal toxicity in patients receiving intensity modulated radiation therapy (IMRT) for treatment of para-aortic nodes and to identify dosimetric parameters predictive of late duodenal toxicity. Methods and Materials: We identified 105 eligible patients with gynecologic malignancies who were treated with IMRT for gross metastatic disease in the para-aortic nodes from January 1, 2005, through December 31, 2009. Patients were treated to a nodal clinical target volume to 45 to 50.4 Gy with a boost to 60 to 66 Gy. The duodenum was contoured, and dosimetric data were exported for analysis. Duodenal toxicity was scoredmore » according to Radiation Therapy Oncology Group criteria. Univariate Cox proportional hazards analysis and recursive partitioning analysis were used to determine associations between dosimetric variables and time to toxicity and to identify the optimal threshold that separated patients according to risk of toxicity. Results: Nine of the 105 patients experienced grade 2 to grade 5 duodenal toxicity, confirmed by endoscopy in all cases. The 3-year actuarial rate of any duodenal toxicity was 11.7%. A larger volume of the duodenum receiving 55 Gy (V55) was associated with higher rates of duodenal toxicity. The 3-year actuarial rates of duodenal toxicity with V55 above and below 15 cm{sup 3} were 48.6% and 7.4%, respectively (P<.01). In Cox univariate analysis of dosimetric variables, V55 was associated with duodenal toxicity (P=.029). In recursive partitioning analysis, V55 less than 13.94% segregated all patients with duodenal toxicity. Conclusions: Dose-escalated IMRT can safely and effectively treat para-aortic nodal disease in gynecologic malignancies, provided that care is taken to limit the dose to the duodenum to reduce the risk of late duodenal toxicity. Limiting V55 to below 15 cm{sup 3} may reduce the risk of duodenal complications. In cases where the treatment cannot be delivered within these constraints, consideration should be given to other treatment approaches such as resection or initial chemotherapy.« less
1999-08-01
Funding for the work was provided in part by Dr. Harry Salem , SBCCOM/ECBC, Aberdeen Proving Grounds, Maryland. The research described in this report... PFA ) " CA Figure I - Physiologicallly Based Pharmacokinetic Model of the Pig (Sus scrofa). Abbreviations: CA, arterial concentration; CX, exhaled...order metabol. rate constant (/hr-1 kg)’ CONSTANT PLA=3.29 $ ’Liver/air partition coefficient’ CONSTANT PFA =70.27 $ ’Fat/air partition coefficient
NASA Technical Reports Server (NTRS)
Mueller, A. C.
1977-01-01
An analytical first order solution has been developed which describes the motion of an artificial satellite perturbed by an arbitrary number of zonal harmonics of the geopotential. A set of recursive relations for the solution, which was deduced from recursive relations of the geopotential, was derived. The method of solution is based on Von-Zeipel's technique applied to a canonical set of two-body elements in the extended phase space which incorporates the true anomaly as a canonical element. The elements are of Poincare type, that is, they are regular for vanishing eccentricities and inclinations. Numerical results show that this solution is accurate to within a few meters after 500 revolutions.
Plant interspecies competition for sunlight: a mathematical model of canopy partitioning.
Nevai, Andrew L; Vance, Richard R
2007-07-01
We examine the influence of canopy partitioning on the outcome of competition between two plant species that interact only by mutually shading each other. This analysis is based on a Kolmogorov-type canopy partitioning model for plant species with clonal growth form and fixed vertical leaf profiles (Vance and Nevai in J. Theor. Biol., 2007, to appear). We show that canopy partitioning is necessary for the stable coexistence of the two competing plant species. We also use implicit methods to show that, under certain conditions, the species' nullclines can intersect at most once. We use nullcline endpoint analysis to show that when the nullclines do intersect, and in such a way that they cross, then the resulting equilibrium point is always stable. We also construct surfaces that divide parameter space into regions within which the various outcomes of competition occur, and then study parameter dependence in the locations of these surfaces. The analysis presented here and in a companion paper (Nevai and Vance, The role of leaf height in plant competition for sunlight: analysis of a canopy partitioning model, in review) together shows that canopy partitioning is both necessary and, under appropriate parameter values, sufficient for the stable coexistence of two hypothetical plant species whose structure and growth are described by our model.
Barillot, Romain; Escobar-Gutiérrez, Abraham J.; Fournier, Christian; Huynh, Pierre; Combes, Didier
2014-01-01
Background and Aims Predicting light partitioning in crop mixtures is a critical step in improving the productivity of such complex systems, and light interception has been shown to be closely linked to plant architecture. The aim of the present work was to analyse the relationships between plant architecture and light partitioning within wheat–pea (Triticum aestivum–Pisum sativum) mixtures. An existing model for wheat was utilized and a new model for pea morphogenesis was developed. Both models were then used to assess the effects of architectural variations in light partitioning. Methods First, a deterministic model (L-Pea) was developed in order to obtain dynamic reconstructions of pea architecture. The L-Pea model is based on L-systems formalism and consists of modules for ‘vegetative development’ and ‘organ extension’. A tripartite simulator was then built up from pea and wheat models interfaced with a radiative transfer model. Architectural parameters from both plant models, selected on the basis of their contribution to leaf area index (LAI), height and leaf geometry, were then modified in order to generate contrasting architectures of wheat and pea. Key results By scaling down the analysis to the organ level, it could be shown that the number of branches/tillers and length of internodes significantly determined the partitioning of light within mixtures. Temporal relationships between light partitioning and the LAI and height of the different species showed that light capture was mainly related to the architectural traits involved in plant LAI during the early stages of development, and in plant height during the onset of interspecific competition. Conclusions In silico experiments enabled the study of the intrinsic effects of architectural parameters on the partitioning of light in crop mixtures of wheat and pea. The findings show that plant architecture is an important criterion for the identification/breeding of plant ideotypes, particularly with respect to light partitioning. PMID:24907314
Soft sensor modeling based on variable partition ensemble method for nonlinear batch processes
NASA Astrophysics Data System (ADS)
Wang, Li; Chen, Xiangguang; Yang, Kai; Jin, Huaiping
2017-01-01
Batch processes are always characterized by nonlinear and system uncertain properties, therefore, the conventional single model may be ill-suited. A local learning strategy soft sensor based on variable partition ensemble method is developed for the quality prediction of nonlinear and non-Gaussian batch processes. A set of input variable sets are obtained by bootstrapping and PMI criterion. Then, multiple local GPR models are developed based on each local input variable set. When a new test data is coming, the posterior probability of each best performance local model is estimated based on Bayesian inference and used to combine these local GPR models to get the final prediction result. The proposed soft sensor is demonstrated by applying to an industrial fed-batch chlortetracycline fermentation process.
Quantitative identification of riverine nitrogen from point, direct runoff and base flow sources.
Huang, Hong; Zhang, Baifa; Lu, Jun
2014-01-01
We present a methodological example for quantifying the contributions of riverine total nitrogen (TN) from point, direct runoff and base flow sources by combining a recursive digital filter technique and statistical methods. First, we separated daily riverine flow into direct runoff and base flow using a recursive digital filter technique; then, a statistical model was established using daily simultaneous data for TN load, direct runoff rate, base flow rate, and temperature; and finally, the TN loading from direct runoff and base flow sources could be inversely estimated. As a case study, this approach was adopted to identify the TN source contributions in Changle River, eastern China. Results showed that, during 2005-2009, the total annual TN input to the river was 1,700.4±250.2 ton, and the contributions of point, direct runoff and base flow sources were 17.8±2.8%, 45.0±3.6%, and 37.2±3.9%, respectively. The innovation of the approach is that the nitrogen from direct runoff and base flow sources could be separately quantified. The approach is simple but detailed enough to take the major factors into account, providing an effective and reliable method for riverine nitrogen loading estimation and source apportionment.
Potential implementation of reservoir computing models based on magnetic skyrmions
NASA Astrophysics Data System (ADS)
Bourianoff, George; Pinna, Daniele; Sitte, Matthias; Everschor-Sitte, Karin
2018-05-01
Reservoir Computing is a type of recursive neural network commonly used for recognizing and predicting spatio-temporal events relying on a complex hierarchy of nested feedback loops to generate a memory functionality. The Reservoir Computing paradigm does not require any knowledge of the reservoir topology or node weights for training purposes and can therefore utilize naturally existing networks formed by a wide variety of physical processes. Most efforts to implement reservoir computing prior to this have focused on utilizing memristor techniques to implement recursive neural networks. This paper examines the potential of magnetic skyrmion fabrics and the complex current patterns which form in them as an attractive physical instantiation for Reservoir Computing. We argue that their nonlinear dynamical interplay resulting from anisotropic magnetoresistance and spin-torque effects allows for an effective and energy efficient nonlinear processing of spatial temporal events with the aim of event recognition and prediction.
Mining IP to Domain Name Interactions to Detect DNS Flood Attacks on Recursive DNS Servers.
Alonso, Roberto; Monroy, Raúl; Trejo, Luis A
2016-08-17
The Domain Name System (DNS) is a critical infrastructure of any network, and, not surprisingly a common target of cybercrime. There are numerous works that analyse higher level DNS traffic to detect anomalies in the DNS or any other network service. By contrast, few efforts have been made to study and protect the recursive DNS level. In this paper, we introduce a novel abstraction of the recursive DNS traffic to detect a flooding attack, a kind of Distributed Denial of Service (DDoS). The crux of our abstraction lies on a simple observation: Recursive DNS queries, from IP addresses to domain names, form social groups; hence, a DDoS attack should result in drastic changes on DNS social structure. We have built an anomaly-based detection mechanism, which, given a time window of DNS usage, makes use of features that attempt to capture the DNS social structure, including a heuristic that estimates group composition. Our detection mechanism has been successfully validated (in a simulated and controlled setting) and with it the suitability of our abstraction to detect flooding attacks. To the best of our knowledge, this is the first time that work is successful in using this abstraction to detect these kinds of attacks at the recursive level. Before concluding the paper, we motivate further research directions considering this new abstraction, so we have designed and tested two additional experiments which exhibit promising results to detect other types of anomalies in recursive DNS servers.
Mining IP to Domain Name Interactions to Detect DNS Flood Attacks on Recursive DNS Servers
Alonso, Roberto; Monroy, Raúl; Trejo, Luis A.
2016-01-01
The Domain Name System (DNS) is a critical infrastructure of any network, and, not surprisingly a common target of cybercrime. There are numerous works that analyse higher level DNS traffic to detect anomalies in the DNS or any other network service. By contrast, few efforts have been made to study and protect the recursive DNS level. In this paper, we introduce a novel abstraction of the recursive DNS traffic to detect a flooding attack, a kind of Distributed Denial of Service (DDoS). The crux of our abstraction lies on a simple observation: Recursive DNS queries, from IP addresses to domain names, form social groups; hence, a DDoS attack should result in drastic changes on DNS social structure. We have built an anomaly-based detection mechanism, which, given a time window of DNS usage, makes use of features that attempt to capture the DNS social structure, including a heuristic that estimates group composition. Our detection mechanism has been successfully validated (in a simulated and controlled setting) and with it the suitability of our abstraction to detect flooding attacks. To the best of our knowledge, this is the first time that work is successful in using this abstraction to detect these kinds of attacks at the recursive level. Before concluding the paper, we motivate further research directions considering this new abstraction, so we have designed and tested two additional experiments which exhibit promising results to detect other types of anomalies in recursive DNS servers. PMID:27548169
Huhn, Carolin; Pyell, Ute
2008-07-11
It is investigated whether those relationships derived within an optimization scheme developed previously to optimize separations in micellar electrokinetic chromatography can be used to model effective electrophoretic mobilities of analytes strongly differing in their properties (polarity and type of interaction with the pseudostationary phase). The modeling is based on two parameter sets: (i) carbon number equivalents or octanol-water partition coefficients as analyte descriptors and (ii) four coefficients describing properties of the separation electrolyte (based on retention data for a homologous series of alkyl phenyl ketones used as reference analytes). The applicability of the proposed model is validated comparing experimental and calculated effective electrophoretic mobilities. The results demonstrate that the model can effectively be used to predict effective electrophoretic mobilities of neutral analytes from the determined carbon number equivalents or from octanol-water partition coefficients provided that the solvation parameters of the analytes of interest are similar to those of the reference analytes.
Nonlinear system modeling based on bilinear Laguerre orthonormal bases.
Garna, Tarek; Bouzrara, Kais; Ragot, José; Messaoud, Hassani
2013-05-01
This paper proposes a new representation of discrete bilinear model by developing its coefficients associated to the input, to the output and to the crossed product on three independent Laguerre orthonormal bases. Compared to classical bilinear model, the resulting model entitled bilinear-Laguerre model ensures a significant parameter number reduction as well as simple recursive representation. However, such reduction still constrained by an optimal choice of Laguerre pole characterizing each basis. To do so, we develop a pole optimization algorithm which constitutes an extension of that proposed by Tanguy et al.. The bilinear-Laguerre model as well as the proposed pole optimization algorithm are illustrated and tested on a numerical simulations and validated on the Continuous Stirred Tank Reactor (CSTR) System. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.
Recursive inversion of externally defined linear systems by FIR filters
NASA Technical Reports Server (NTRS)
Bach, Ralph E., Jr.; Baram, Yoram
1989-01-01
The approximate inversion of an internally unknown linear system, given by its impulse response sequence, by an inverse system having a finite impulse response, is considered. The recursive least-squares procedure is shown to have an exact initialization, based on the triangular Toeplitz structure of the matrix involved. The proposed approach also suggests solutions to the problem of system identification and compensation.
NASA Astrophysics Data System (ADS)
Ripamonti, Francesco; Resta, Ferruccio; Borroni, Massimo; Cazzulani, Gabriele
2014-04-01
A new method for the real-time identification of mechanical system modal parameters is used in order to design different adaptive control logics aiming to reduce the vibrations in a carbon fiber plate smart structure. It is instrumented with three piezoelectric actuators, three accelerometers and three strain gauges. The real-time identification is based on a recursive subspace tracking algorithm whose outputs are elaborated by an ARMA model. A statistical approach is finally applied to choose the modal parameter correct values. These are given in input to model-based control logics such as a gain scheduling and an adaptive LQR control.
Fermionic Approach to Weighted Hurwitz Numbers and Topological Recursion
NASA Astrophysics Data System (ADS)
Alexandrov, A.; Chapuy, G.; Eynard, B.; Harnad, J.
2017-12-01
A fermionic representation is given for all the quantities entering in the generating function approach to weighted Hurwitz numbers and topological recursion. This includes: KP and 2D Toda {τ} -functions of hypergeometric type, which serve as generating functions for weighted single and double Hurwitz numbers; the Baker function, which is expanded in an adapted basis obtained by applying the same dressing transformation to all vacuum basis elements; the multipair correlators and the multicurrent correlators. Multiplicative recursion relations and a linear differential system are deduced for the adapted bases and their duals, and a Christoffel-Darboux type formula is derived for the pair correlator. The quantum and classical spectral curves linking this theory with the topological recursion program are derived, as well as the generalized cut-and-join equations. The results are detailed for four special cases: the simple single and double Hurwitz numbers, the weakly monotone case, corresponding to signed enumeration of coverings, the strongly monotone case, corresponding to Belyi curves and the simplest version of quantum weighted Hurwitz numbers.
Fermionic Approach to Weighted Hurwitz Numbers and Topological Recursion
NASA Astrophysics Data System (ADS)
Alexandrov, A.; Chapuy, G.; Eynard, B.; Harnad, J.
2018-06-01
A fermionic representation is given for all the quantities entering in the generating function approach to weighted Hurwitz numbers and topological recursion. This includes: KP and 2 D Toda {τ} -functions of hypergeometric type, which serve as generating functions for weighted single and double Hurwitz numbers; the Baker function, which is expanded in an adapted basis obtained by applying the same dressing transformation to all vacuum basis elements; the multipair correlators and the multicurrent correlators. Multiplicative recursion relations and a linear differential system are deduced for the adapted bases and their duals, and a Christoffel-Darboux type formula is derived for the pair correlator. The quantum and classical spectral curves linking this theory with the topological recursion program are derived, as well as the generalized cut-and-join equations. The results are detailed for four special cases: the simple single and double Hurwitz numbers, the weakly monotone case, corresponding to signed enumeration of coverings, the strongly monotone case, corresponding to Belyi curves and the simplest version of quantum weighted Hurwitz numbers.
Analytical recursive method to ascertain multisite entanglement in doped quantum spin ladders
NASA Astrophysics Data System (ADS)
Roy, Sudipto Singha; Dhar, Himadri Shekhar; Rakshit, Debraj; SenDe, Aditi; Sen, Ujjwal
2017-08-01
We formulate an analytical recursive method to generate the wave function of doped short-range resonating valence bond (RVB) states as a tool to efficiently estimate multisite entanglement as well as other physical quantities in doped quantum spin ladders. We prove that doped RVB ladder states are always genuine multipartite entangled. Importantly, our results show that within specific doping concentration and model parameter regimes, the doped RVB state essentially characterizes the trends of genuine multiparty entanglement in the exact ground states of the Hubbard model with large on-site interactions, in the limit that yields the t -J Hamiltonian.
Least square neural network model of the crude oil blending process.
Rubio, José de Jesús
2016-06-01
In this paper, the recursive least square algorithm is designed for the big data learning of a feedforward neural network. The proposed method as the combination of the recursive least square and feedforward neural network obtains four advantages over the alone algorithms: it requires less number of regressors, it is fast, it has the learning ability, and it is more compact. Stability, convergence, boundedness of parameters, and local minimum avoidance of the proposed technique are guaranteed. The introduced strategy is applied for the modeling of the crude oil blending process. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ťupek, Boris; Ortiz, Carina; Hashimoto, Shoji; Stendahl, Johan; Dahlgren, Jonas; Karltun, Erik; Lehtonen, Aleksi
2016-04-01
The soil organic carbon stock (SOC) changes estimated by the most process based soil carbon models (e.g. Yasso07, Q and CENTURY), needed for reporting of changes in soil carbon amounts for the United Nations Framework Convention on Climate Change (UNFCCC) and for mitigation of anthropogenic CO2 emissions by soil carbon management, can be biased if in a large mosaic of environments the models are missing a key factor driving SOC sequestration. To our knowledge soil nutrient status as a missing driver of these models was not tested in previous studies. Although, it's known that models fail to reconstruct the spatial variation and that soil nutrient status drives the ecosystem carbon use efficiency and soil carbon sequestration. We evaluated SOC stock estimates of Yasso07, Q and CENTURY process based models against the field data from Swedish Forest Soil National Inventories (3230 samples) organized by recursive partitioning method (RPART) into distinct soil groups with underlying SOC stock development linked to physicochemical conditions. These models worked for most soils with approximately average SOC stocks, but could not reproduce higher measured SOC stocks in our application. The Yasso07 and Q models that used only climate and litterfall input data and ignored soil properties generally agreed with two third of measurements. However, in comparison with measurements grouped according to the gradient of soil nutrient status we found that the models underestimated for the Swedish boreal forest soils with higher site fertility. Accounting for soil texture (clay, silt, and sand content) and structure (bulk density) in CENTURY model showed no improvement on carbon stock estimates, as CENTURY deviated in similar manner. We highlighted the mechanisms why models deviate from the measurements and the ways of considering soil nutrient status in further model development. Our analysis suggested that the models indeed lack other predominat drivers of SOC stabilization presumably the different role of microbes in carbon mineralization in relation to nitrogen availability and the organo - mineral carbon associations. Our results imply that the role of soil nutrient status as a regulator of carbon mineralization has to be re-evaluated, because we should have models that have their steady state SOC stocks at right level in order to predict future SOC change.
Predicting appointment misses in hospitals using data analytics
Karpagam, Sylvia; Ma, Nang Laik
2017-01-01
Background There is growing attention over the last few years about non-attendance in hospitals and its clinical and economic consequences. There have been several studies documenting the various aspects of non-attendance in hospitals. Project Predicting Appoint Misses (PAM) was started with the intention of being able to predict the type of patients that would not come for appointments after making bookings. Methods Historic hospital appointment data merged with “distance from hospital” variable was used to run Logistic Regression, Support Vector Machine and Recursive Partitioning to decide the contributing variables to missed appointments. Results Variables that are “class”, “time”, “demographics” related have an effect on the target variable, however, prediction models may not perform effectively due to very subtle influence on the target variable. Previously assumed major contributors like “age”, “distance” did not have a major effect on the target variable. Conclusions With the given data it will be very difficult to make any moderate/strong prediction of the Appointment misses. That being said with the help of the cut off we are able to capture all of the “appointment misses” in addition to also capturing the actualized appointments. PMID:28567409
Parsing recursive sentences with a connectionist model including a neural stack and synaptic gating.
Fedor, Anna; Ittzés, Péter; Szathmáry, Eörs
2011-02-21
It is supposed that humans are genetically predisposed to be able to recognize sequences of context-free grammars with centre-embedded recursion while other primates are restricted to the recognition of finite state grammars with tail-recursion. Our aim was to construct a minimalist neural network that is able to parse artificial sentences of both grammars in an efficient way without using the biologically unrealistic backpropagation algorithm. The core of this network is a neural stack-like memory where the push and pop operations are regulated by synaptic gating on the connections between the layers of the stack. The network correctly categorizes novel sentences of both grammars after training. We suggest that the introduction of the neural stack memory will turn out to be substantial for any biological 'hierarchical processor' and the minimalist design of the model suggests a quest for similar, realistic neural architectures. Copyright © 2010 Elsevier Ltd. All rights reserved.
A spatial operator algebra for manipulator modeling and control
NASA Technical Reports Server (NTRS)
Rodriguez, G.; Kreutz, Kenneth; Jain, Abhinandan
1989-01-01
A recently developed spatial operator algebra, useful for modeling, control, and trajectory design of manipulators is discussed. The elements of this algebra are linear operators whose domain and range spaces consist of forces, moments, velocities, and accelerations. The effect of these operators is equivalent to a spatial recursion along the span of a manipulator. Inversion of operators can be efficiently obtained via techniques of recursive filtering and smoothing. The operator algebra provides a high level framework for describing the dynamic and kinematic behavior of a manipulator and control and trajectory design algorithms. The interpretation of expressions within the algebraic framework leads to enhanced conceptual and physical understanding of manipulator dynamics and kinematics. Furthermore, implementable recursive algorithms can be immediately derived from the abstract operator expressions by inspection. Thus, the transition from an abstract problem formulation and solution to the detailed mechanizaton of specific algorithms is greatly simplified. The analytical formulation of the operator algebra, as well as its implementation in the Ada programming language are discussed.
The determination of third order linear models from a seventh order nonlinear jet engine model
NASA Technical Reports Server (NTRS)
Lalonde, Rick J.; Hartley, Tom T.; De Abreu-Garcia, J. Alex
1989-01-01
Results are presented that demonstrate how good reduced-order models can be obtained directly by recursive parameter identification using input/output (I/O) data of high-order nonlinear systems. Three different methods of obtaining a third-order linear model from a seventh-order nonlinear turbojet engine model are compared. The first method is to obtain a linear model from the original model and then reduce the linear model by standard reduction techniques such as residualization and balancing. The second method is to identify directly a third-order linear model by recursive least-squares parameter estimation using I/O data of the original model. The third method is to obtain a reduced-order model from the original model and then linearize the reduced model. Frequency responses are used as the performance measure to evaluate the reduced models. The reduced-order models along with their Bode plots are presented for comparison purposes.
Multi-Parent Clustering Algorithms from Stochastic Grammar Data Models
NASA Technical Reports Server (NTRS)
Mjoisness, Eric; Castano, Rebecca; Gray, Alexander
1999-01-01
We introduce a statistical data model and an associated optimization-based clustering algorithm which allows data vectors to belong to zero, one or several "parent" clusters. For each data vector the algorithm makes a discrete decision among these alternatives. Thus, a recursive version of this algorithm would place data clusters in a Directed Acyclic Graph rather than a tree. We test the algorithm with synthetic data generated according to the statistical data model. We also illustrate the algorithm using real data from large-scale gene expression assays.
Efficient block processing of long duration biotelemetric brain data for health care monitoring
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soumya, I.; Zia Ur Rahman, M., E-mail: mdzr-5@ieee.org; Rama Koti Reddy, D. V.
In real time clinical environment, the brain signals which doctor need to analyze are usually very long. Such a scenario can be made simple by partitioning the input signal into several blocks and applying signal conditioning. This paper presents various block based adaptive filter structures for obtaining high resolution electroencephalogram (EEG) signals, which estimate the deterministic components of the EEG signal by removing noise. To process these long duration signals, we propose Time domain Block Least Mean Square (TDBLMS) algorithm for brain signal enhancement. In order to improve filtering capability, we introduce normalization in the weight update recursion of TDBLMS,more » which results TD-B-normalized-least mean square (LMS). To increase accuracy and resolution in the proposed noise cancelers, we implement the time domain cancelers in frequency domain which results frequency domain TDBLMS and FD-B-Normalized-LMS. Finally, we have applied these algorithms on real EEG signals obtained from human using Emotive Epoc EEG recorder and compared their performance with the conventional LMS algorithm. The results show that the performance of the block based algorithms is superior to the LMS counter-parts in terms of signal to noise ratio, convergence rate, excess mean square error, misadjustment, and coherence.« less
Padró, Juan M; Pellegrino Vidal, Rocío B; Reta, Mario
2014-12-01
The partition coefficients, P IL/w, of several compounds, some of them of biological and pharmacological interest, between water and room-temperature ionic liquids based on the imidazolium, pyridinium, and phosphonium cations, namely 1-octyl-3-methylimidazolium hexafluorophosphate, N-octylpyridinium tetrafluorophosphate, trihexyl(tetradecyl)phosphonium chloride, trihexyl(tetradecyl)phosphonium bromide, trihexyl(tetradecyl)phosphonium bis(trifluoromethylsulfonyl)imide, and trihexyl(tetradecyl)phosphonium dicyanamide, were accurately measured. In this way, we extended our database of partition coefficients in room-temperature ionic liquids previously reported. We employed the solvation parameter model with different probe molecules (the training set) to elucidate the chemical interactions involved in the partition process and discussed the most relevant differences among the three types of ionic liquids. The multiparametric equations obtained with the aforementioned model were used to predict the partition coefficients for compounds (the test set) not present in the training set, most being of biological and pharmacological interest. An excellent agreement between calculated and experimental log P IL/w values was obtained. Thus, the obtained equations can be used to predict, a priori, the extraction efficiency for any compound using these ionic liquids as extraction solvents in liquid-liquid extractions.
Da, Yang
2015-12-18
The amount of functional genomic information has been growing rapidly but remains largely unused in genomic selection. Genomic prediction and estimation using haplotypes in genome regions with functional elements such as all genes of the genome can be an approach to integrate functional and structural genomic information for genomic selection. Towards this goal, this article develops a new haplotype approach for genomic prediction and estimation. A multi-allelic haplotype model treating each haplotype as an 'allele' was developed for genomic prediction and estimation based on the partition of a multi-allelic genotypic value into additive and dominance values. Each additive value is expressed as a function of h - 1 additive effects, where h = number of alleles or haplotypes, and each dominance value is expressed as a function of h(h - 1)/2 dominance effects. For a sample of q individuals, the limit number of effects is 2q - 1 for additive effects and is the number of heterozygous genotypes for dominance effects. Additive values are factorized as a product between the additive model matrix and the h - 1 additive effects, and dominance values are factorized as a product between the dominance model matrix and the h(h - 1)/2 dominance effects. Genomic additive relationship matrix is defined as a function of the haplotype model matrix for additive effects, and genomic dominance relationship matrix is defined as a function of the haplotype model matrix for dominance effects. Based on these results, a mixed model implementation for genomic prediction and variance component estimation that jointly use haplotypes and single markers is established, including two computing strategies for genomic prediction and variance component estimation with identical results. The multi-allelic genetic partition fills a theoretical gap in genetic partition by providing general formulations for partitioning multi-allelic genotypic values and provides a haplotype method based on the quantitative genetics model towards the utilization of functional and structural genomic information for genomic prediction and estimation.
Structure of the conversion laws in quantum integrable spin chains with short range interactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grabowski, M.P.; Mathieu, P.
1995-11-01
The authors present a detailed analysis of the structure of the conservation laws in quantum integrable chains of the XYZ-type and in the Hubbard model. The essential tool for the former class of models is the boost operator, which provides a recursive way of calculating the integrals of motion. With its help, they establish the general form of the XYZ conserved charges in terms of simple polynomials in spin variables and derive recursion relations for the relative coefficients of these polynomials. Although these relations are difficult to solve in general, a subset of the coefficients can be determined. Moreover, formore » two submodels of the XYZ chain, namely the XXX and XY cases, all the charges can be calculated in closed form. Using this approach, the authors rederive the known expressions for the XY charges in a novel way. For the XXX case. a simple description of conserved charges is found in terms of a Catalan tree. This construction is generalized for the su(M) invariant integrable chain. They also investigate the circumstances permitting the existence of a recursive (ladder) operator in general quantum integrable systems. They indicate that a quantum ladder operator can be traced back to the presence of a Hamiltonian mastersymmetry of degree one in the classical continuous version of the model. In this way, quantum chains endowed with a recursive structure can be identified from the properties of their classical relatives. The authors also show that in the quantum continuous limits of the XYZ model, the ladder property of the boost operator disappears. For the Hubbard model they demonstrate the nonexistence of a ladder operator. Nevertheless, the general structure of the conserved charges is indicated, and the expression for the terms linear in the model`s free parameter for all charges is derived in closed form. 62 refs., 4 figs.« less
Probabilistic Multi-Person Tracking Using Dynamic Bayes Networks
NASA Astrophysics Data System (ADS)
Klinger, T.; Rottensteiner, F.; Heipke, C.
2015-08-01
Tracking-by-detection is a widely used practice in recent tracking systems. These usually rely on independent single frame detections that are handled as observations in a recursive estimation framework. If these observations are imprecise the generated trajectory is prone to be updated towards a wrong position. In contrary to existing methods our novel approach uses a Dynamic Bayes Network in which the state vector of a recursive Bayes filter, as well as the location of the tracked object in the image are modelled as unknowns. These unknowns are estimated in a probabilistic framework taking into account a dynamic model, and a state-of-the-art pedestrian detector and classifier. The classifier is based on the Random Forest-algorithm and is capable of being trained incrementally so that new training samples can be incorporated at runtime. This allows the classifier to adapt to the changing appearance of a target and to unlearn outdated features. The approach is evaluated on a publicly available benchmark. The results confirm that our approach is well suited for tracking pedestrians over long distances while at the same time achieving comparatively good geometric accuracy.
Li, Zhenping; Zhang, Xiang-Sun; Wang, Rui-Sheng; Liu, Hongwei; Zhang, Shihua
2013-01-01
Identification of communities in complex networks is an important topic and issue in many fields such as sociology, biology, and computer science. Communities are often defined as groups of related nodes or links that correspond to functional subunits in the corresponding complex systems. While most conventional approaches have focused on discovering communities of nodes, some recent studies start partitioning links to find overlapping communities straightforwardly. In this paper, we propose a new quantity function for link community identification in complex networks. Based on this quantity function we formulate the link community partition problem into an integer programming model which allows us to partition a complex network into overlapping communities. We further propose a genetic algorithm for link community detection which can partition a network into overlapping communities without knowing the number of communities. We test our model and algorithm on both artificial networks and real-world networks. The results demonstrate that the model and algorithm are efficient in detecting overlapping community structure in complex networks. PMID:24386268
Ju, Yun-Ru; Yang, Ying-Fei; Tsai, Jeng-Wei; Cheng, Yi-Hsien; Chen, Wei-Yu; Liao, Chung-Min
2017-07-01
Fluctuation exposure of trace metal copper (Cu) is ubiquitous in aquatic environments. The purpose of this study was to investigate the impacts of chronically pulsed exposure on biodynamics and subcellular partitioning of Cu in freshwater tilapia (Oreochromis mossambicus). Long-term 28-day pulsed Cu exposure experiments were performed to explore subcellular partitioning and toxicokinetics/toxicodynamics of Cu in tilapia. Subcellular partitioning linking with a metal influx scheme was used to estimate detoxification and elimination rates. A biotic ligand model-based damage assessment model was used to take into account environmental effects and biological mechanisms of Cu toxicity. We demonstrated that the probability causing 50% of susceptibility risk in response to pulse Cu exposure in generic Taiwan aquaculture ponds was ~33% of Cu in adverse physiologically associated, metabolically active pool, implicating no significant susceptibility risk for tilapia. We suggest that our integrated ecotoxicological models linking chronic exposure measurements with subcellular partitioning can facilitate a risk assessment framework that provides a predictive tool for preventive susceptibility reduction strategies for freshwater fish exposed to pulse metal stressors.
Recursive Hierarchical Image Segmentation by Region Growing and Constrained Spectral Clustering
NASA Technical Reports Server (NTRS)
Tilton, James C.
2002-01-01
This paper describes an algorithm for hierarchical image segmentation (referred to as HSEG) and its recursive formulation (referred to as RHSEG). The HSEG algorithm is a hybrid of region growing and constrained spectral clustering that produces a hierarchical set of image segmentations based on detected convergence points. In the main, HSEG employs the hierarchical stepwise optimization (HS WO) approach to region growing, which seeks to produce segmentations that are more optimized than those produced by more classic approaches to region growing. In addition, HSEG optionally interjects between HSWO region growing iterations merges between spatially non-adjacent regions (i.e., spectrally based merging or clustering) constrained by a threshold derived from the previous HSWO region growing iteration. While the addition of constrained spectral clustering improves the segmentation results, especially for larger images, it also significantly increases HSEG's computational requirements. To counteract this, a computationally efficient recursive, divide-and-conquer, implementation of HSEG (RHSEG) has been devised and is described herein. Included in this description is special code that is required to avoid processing artifacts caused by RHSEG s recursive subdivision of the image data. Implementations for single processor and for multiple processor computer systems are described. Results with Landsat TM data are included comparing HSEG with classic region growing. Finally, an application to image information mining and knowledge discovery is discussed.
NASA Astrophysics Data System (ADS)
Chen, Naijin
2013-03-01
Level Based Partitioning (LBP) algorithm, Cluster Based Partitioning (CBP) algorithm and Enhance Static List (ESL) temporal partitioning algorithm based on adjacent matrix and adjacent table are designed and implemented in this paper. Also partitioning time and memory occupation based on three algorithms are compared. Experiment results show LBP partitioning algorithm possesses the least partitioning time and better parallel character, as far as memory occupation and partitioning time are concerned, algorithms based on adjacent table have less partitioning time and less space memory occupation.
A Measurement and Modeling Study of Hair Partition of Neutral, Cationic, and Anionic Chemicals.
Li, Lingyi; Yang, Senpei; Chen, Tao; Han, Lujia; Lian, Guoping
2018-04-01
Various neutral, cationic, and anionic chemicals contained in hair care products can be absorbed into hair fiber to modulate physicochemical properties such as color, strength, style, and volume. For environmental safety, there is also an interest in understanding hair absorption to wide chemical pollutants. There have been very limited studies on the absorption properties of chemicals into hair. Here, an experimental and modeling study has been carried out for the hair-water partition of a range of neutral, cationic, and anionic chemicals at different pH. The data showed that hair-water partition not only depends on the hydrophobicity of the chemical but also the pH. The partition of cationic chemicals to hair increased with pH, and this is due to their electrostatic interaction with hair increased from repulsion to attraction. For anionic chemicals, their hair-water partition coefficients decreased with increasing pH due to their electrostatic interaction with hair decreased from attraction to repulsion. Increase in pH did not change the partition of neutral chemicals significantly. Based on the new physicochemical insight of the pH effect on hair-water partition, a new quantitative structure property relationship model has been proposed, taking into account of both the hydrophobic interaction and electrostatic interaction of chemical with hair fiber. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Parallelization of a Fully-Distributed Hydrologic Model using Sub-basin Partitioning
NASA Astrophysics Data System (ADS)
Vivoni, E. R.; Mniszewski, S.; Fasel, P.; Springer, E.; Ivanov, V. Y.; Bras, R. L.
2005-12-01
A primary obstacle towards advances in watershed simulations has been the limited computational capacity available to most models. The growing trend of model complexity, data availability and physical representation has not been matched by adequate developments in computational efficiency. This situation has created a serious bottleneck which limits existing distributed hydrologic models to small domains and short simulations. In this study, we present novel developments in the parallelization of a fully-distributed hydrologic model. Our work is based on the TIN-based Real-time Integrated Basin Simulator (tRIBS), which provides continuous hydrologic simulation using a multiple resolution representation of complex terrain based on a triangulated irregular network (TIN). While the use of TINs reduces computational demand, the sequential version of the model is currently limited over large basins (>10,000 km2) and long simulation periods (>1 year). To address this, a parallel MPI-based version of the tRIBS model has been implemented and tested using high performance computing resources at Los Alamos National Laboratory. Our approach utilizes domain decomposition based on sub-basin partitioning of the watershed. A stream reach graph based on the channel network structure is used to guide the sub-basin partitioning. Individual sub-basins or sub-graphs of sub-basins are assigned to separate processors to carry out internal hydrologic computations (e.g. rainfall-runoff transformation). Routed streamflow from each sub-basin forms the major hydrologic data exchange along the stream reach graph. Individual sub-basins also share subsurface hydrologic fluxes across adjacent boundaries. We demonstrate how the sub-basin partitioning provides computational feasibility and efficiency for a set of test watersheds in northeastern Oklahoma. We compare the performance of the sequential and parallelized versions to highlight the efficiency gained as the number of processors increases. We also discuss how the coupled use of TINs and parallel processing can lead to feasible long-term simulations in regional watersheds while preserving basin properties at high-resolution.
Adaptive control of large space structures using recursive lattice filters
NASA Technical Reports Server (NTRS)
Sundararajan, N.; Goglia, G. L.
1985-01-01
The use of recursive lattice filters for identification and adaptive control of large space structures is studied. Lattice filters were used to identify the structural dynamics model of the flexible structures. This identification model is then used for adaptive control. Before the identified model and control laws are integrated, the identified model is passed through a series of validation procedures and only when the model passes these validation procedures is control engaged. This type of validation scheme prevents instability when the overall loop is closed. Another important area of research, namely that of robust controller synthesis, was investigated using frequency domain multivariable controller synthesis methods. The method uses the Linear Quadratic Guassian/Loop Transfer Recovery (LQG/LTR) approach to ensure stability against unmodeled higher frequency modes and achieves the desired performance.
NASA Technical Reports Server (NTRS)
Kelly, D. A.; Fermelia, A.; Lee, G. K. F.
1990-01-01
An adaptive Kalman filter design that utilizes recursive maximum likelihood parameter identification is discussed. At the center of this design is the Kalman filter itself, which has the responsibility for attitude determination. At the same time, the identification algorithm is continually identifying the system parameters. The approach is applicable to nonlinear, as well as linear systems. This adaptive Kalman filter design has much potential for real time implementation, especially considering the fast clock speeds, cache memory and internal RAM available today. The recursive maximum likelihood algorithm is discussed in detail, with special attention directed towards its unique matrix formulation. The procedure for using the algorithm is described along with comments on how this algorithm interacts with the Kalman filter.
Deciding Termination for Ancestor Match- Bounded String Rewriting Systems
NASA Technical Reports Server (NTRS)
Geser, Alfons; Hofbauer, Dieter; Waldmann, Johannes
2005-01-01
Termination of a string rewriting system can be characterized by termination on suitable recursively defined languages. This kind of termination criteria has been criticized for its lack of automation. In an earlier paper we have shown how to construct an automated termination criterion if the recursion is aligned with the rewrite relation. We have demonstrated the technique with Dershowitz's forward closure criterion. In this paper we show that a different approach is suitable when the recursion is aligned with the inverse of the rewrite relation. We apply this idea to Kurth's ancestor graphs and obtain ancestor match-bounded string rewriting systems. Termination is shown to be decidable for this class. The resulting method improves upon those based on match-boundedness or inverse match-boundedness.
NASA Technical Reports Server (NTRS)
Kim, S.-W.; Chen, C.-P.
1987-01-01
A multiple-time-scale turbulence model of a single point closure and a simplified split-spectrum method is presented. In the model, the effect of the ratio of the production rate to the dissipation rate on eddy viscosity is modeled by use of the multiple-time-scales and a variable partitioning of the turbulent kinetic energy spectrum. The concept of a variable partitioning of the turbulent kinetic energy spectrum and the rest of the model details are based on the previously reported algebraic stress turbulence model. Example problems considered include: a fully developed channel flow, a plane jet exhausting into a moving stream, a wall jet flow, and a weakly coupled wake-boundary layer interaction flow. The computational results compared favorably with those obtained by using the algebraic stress turbulence model as well as experimental data. The present turbulence model, as well as the algebraic stress turbulence model, yielded significantly improved computational results for the complex turbulent boundary layer flows, such as the wall jet flow and the wake boundary layer interaction flow, compared with available computational results obtained by using the standard kappa-epsilon turbulence model.
NASA Technical Reports Server (NTRS)
Kim, S.-W.; Chen, C.-P.
1989-01-01
A multiple-time-scale turbulence model of a single point closure and a simplified split-spectrum method is presented. In the model, the effect of the ratio of the production rate to the dissipation rate on eddy viscosity is modeled by use of the multiple-time-scales and a variable partitioning of the turbulent kinetic energy spectrum. The concept of a variable partitioning of the turbulent kinetic energy spectrum and the rest of the model details are based on the previously reported algebraic stress turbulence model. Example problems considered include: a fully developed channel flow, a plane jet exhausting into a moving stream, a wall jet flow, and a weakly coupled wake-boundary layer interaction flow. The computational results compared favorably with those obtained by using the algebraic stress turbulence model as well as experimental data. The present turbulence model, as well as the algebraic stress turbulence model, yielded significantly improved computational results for the complex turbulent boundary layer flows, such as the wall jet flow and the wake boundary layer interaction flow, compared with available computational results obtained by using the standard kappa-epsilon turbulence model.
Disparities in pediatric leukemia early survival in Argentina: a population-based study.
Garibotti, Gilda; Moreno, Florencia; Dussel, Veronica; Orellana, Liliana
2014-10-01
To identify disparities-using recursive partitioning (RP)-in early survival for children with leukemias treated in Argentina, and to depict the main characteristics of the most vulnerable groups. This secondary data analysis evaluated 12-month survival (12-ms) in 3 987 children diagnosed between 2000 and 2008 with lymphoid leukemia (LL) and myeloid leukemia (ML) and registered in Argentina's population-based oncopediatric registry. Prognostic groups based on age at diagnosis, gender, socioeconomic index of the province of residence, and migration to a different province to receive health care were identified using the RP method. Overall 12-ms for LL and ML cases was 83.7% and 59.9% respectively. RP detected major gaps in 12-ms. Among 1-10-year-old LL patients from poorer provinces, 12-ms for those who did and did not migrate was 87.0% and 78.2% respectively. Survival of ML patients < 2 years old from provinces with a low/medium socioeconomic index was 38.9% compared to 62.1% for those in the same age group from richer provinces. For 2-14-year-old ML patients living in poor provinces, patient migration was associated with a 30% increase in 12-ms. Major disparities in leukemia survival among Argentine children were found. Patient migration and socioeconomic index of residence province were associated with survival. The RP method was instrumental in identifying and characterizing vulnerable groups.
Trace element partitioning between ionic crystal and liquid
NASA Technical Reports Server (NTRS)
Tsang, T.; Philpotts, J. A.; Yin, L.
1978-01-01
The partitioning of trace elements between ionic crystals and the melt has been correlated with lattice energy of the host. The solid-liquid partition coefficient has been expressed in terms of the difference in relative ionic radius of the trace element and the homogeneous and heterogeneous strain of the host lattice. Predictions based on this model appear to be in general agreement with data for alkali nitrates and for rare-earth elements in natural garnet phenocrysts.
Reduced kernel recursive least squares algorithm for aero-engine degradation prediction
NASA Astrophysics Data System (ADS)
Zhou, Haowen; Huang, Jinquan; Lu, Feng
2017-10-01
Kernel adaptive filters (KAFs) generate a linear growing radial basis function (RBF) network with the number of training samples, thereby lacking sparseness. To deal with this drawback, traditional sparsification techniques select a subset of original training data based on a certain criterion to train the network and discard the redundant data directly. Although these methods curb the growth of the network effectively, it should be noted that information conveyed by these redundant samples is omitted, which may lead to accuracy degradation. In this paper, we present a novel online sparsification method which requires much less training time without sacrificing the accuracy performance. Specifically, a reduced kernel recursive least squares (RKRLS) algorithm is developed based on the reduced technique and the linear independency. Unlike conventional methods, our novel methodology employs these redundant data to update the coefficients of the existing network. Due to the effective utilization of the redundant data, the novel algorithm achieves a better accuracy performance, although the network size is significantly reduced. Experiments on time series prediction and online regression demonstrate that RKRLS algorithm requires much less computational consumption and maintains the satisfactory accuracy performance. Finally, we propose an enhanced multi-sensor prognostic model based on RKRLS and Hidden Markov Model (HMM) for remaining useful life (RUL) estimation. A case study in a turbofan degradation dataset is performed to evaluate the performance of the novel prognostic approach.
NASA Technical Reports Server (NTRS)
Willis, Jerry; Willis, Dee Anna; Walsh, Clare; Stephens, Elizabeth; Murphy, Timothy; Price, Jerry; Stevens, William; Jackson, Kevin; Villareal, James A.; Way, Bob
1994-01-01
An important part of NASA's mission involves the secondary application of its technologies in the public and private sectors. One current application under development is LiteraCity, a simulation-based instructional package for adults who do not have functional reading skills. Using fuzzy logic routines and other technologies developed by NASA's Information Systems Directorate and hypermedia sound, graphics, and animation technologies the project attempts to overcome the limited impact of adult literacy assessment and instruction by involving the adult in an interactive simulation of real-life literacy activities. The project uses a recursive instructional development model and authentic instruction theory. This paper describes one component of a project to design, develop, and produce a series of computer-based, multimedia instructional packages. The packages are being developed for use in adult literacy programs, particularly in correctional education centers. They use the concepts of authentic instruction and authentic assessment to guide development. All the packages to be developed are instructional simulations. The first is a simulation of 'finding a friend a job.'
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akhil Datta-Gupta
2003-08-01
We explore the use of efficient streamline-based simulation approaches for modeling partitioning interwell tracer tests in hydrocarbon reservoirs. Specifically, we utilize the unique features of streamline models to develop an efficient approach for interpretation and history matching of field tracer response. A critical aspect here is the underdetermined and highly ill-posed nature of the associated inverse problems. We have adopted an integrated approach whereby we combine data from multiple sources to minimize the uncertainty and non-uniqueness in the interpreted results. For partitioning interwell tracer tests, these are primarily the distribution of reservoir permeability and oil saturation distribution. A novel approachmore » to multiscale data integration using Markov Random Fields (MRF) has been developed to integrate static data sources from the reservoir such as core, well log and 3-D seismic data. We have also explored the use of a finite difference reservoir simulator, UTCHEM, for field-scale design and optimization of partitioning interwell tracer tests. The finite-difference model allows us to include detailed physics associated with reactive tracer transport, particularly those related with transverse and cross-streamline mechanisms. We have investigated the potential use of downhole tracer samplers and also the use of natural tracers for the design of partitioning tracer tests. Finally, the behavior of partitioning tracer tests in fractured reservoirs is investigated using a dual-porosity finite-difference model.« less
What's special about human language? The contents of the "narrow language faculty" revisited.
Traxler, Matthew J; Boudewyn, Megan; Loudermilk, Jessica
2012-10-01
In this review we re-evaluate the recursion-only hypothesis, advocated by Fitch, Hauser and Chomsky (Hauser, Chomsky & Fitch, 2002; Fitch, Hauser & Chomsky, 2005). According to the recursion-only hypothesis, the property that distinguishes human language from animal communication systems is recursion, which refers to the potentially infinite embedding of one linguistic representation within another of the same type. This hypothesis predicts (1) that non-human primates and other animals lack the ability to learn recursive grammar, and (2) that recursive grammar is the sole cognitive mechanism that is unique to human language. We first review animal studies of recursive grammar, before turning to the claim that recursion is a property of all human languages. Finally, we discuss other views on what abilities may be unique to human language.
Improved image decompression for reduced transform coding artifacts
NASA Technical Reports Server (NTRS)
Orourke, Thomas P.; Stevenson, Robert L.
1994-01-01
The perceived quality of images reconstructed from low bit rate compression is severely degraded by the appearance of transform coding artifacts. This paper proposes a method for producing higher quality reconstructed images based on a stochastic model for the image data. Quantization (scalar or vector) partitions the transform coefficient space and maps all points in a partition cell to a representative reconstruction point, usually taken as the centroid of the cell. The proposed image estimation technique selects the reconstruction point within the quantization partition cell which results in a reconstructed image which best fits a non-Gaussian Markov random field (MRF) image model. This approach results in a convex constrained optimization problem which can be solved iteratively. At each iteration, the gradient projection method is used to update the estimate based on the image model. In the transform domain, the resulting coefficient reconstruction points are projected to the particular quantization partition cells defined by the compressed image. Experimental results will be shown for images compressed using scalar quantization of block DCT and using vector quantization of subband wavelet transform. The proposed image decompression provides a reconstructed image with reduced visibility of transform coding artifacts and superior perceived quality.
Performance of chromatographic systems to model soil-water sorption.
Hidalgo-Rodríguez, Marta; Fuguet, Elisabet; Ràfols, Clara; Rosés, Martí
2012-08-24
A systematic approach for evaluating the goodness of chromatographic systems to model the sorption of neutral organic compounds by soil from water is presented in this work. It is based on the examination of the three sources of error that determine the overall variance obtained when soil-water partition coefficients are correlated against chromatographic retention factors: the variance of the soil-water sorption data, the variance of the chromatographic data, and the variance attributed to the dissimilarity between the two systems. These contributions of variance are easily predicted through the characterization of the systems by the solvation parameter model. According to this method, several chromatographic systems besides the reference octanol-water partition system have been selected to test their performance in the emulation of soil-water sorption. The results from the experimental correlations agree with the predicted variances. The high-performance liquid chromatography system based on an immobilized artificial membrane and the micellar electrokinetic chromatography systems of sodium dodecylsulfate and sodium taurocholate provide the most precise correlation models. They have shown to predict well soil-water sorption coefficients of several tested herbicides. Octanol-water partitions and high-performance liquid chromatography measurements using C18 columns are less suited for the estimation of soil-water partition coefficients. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Cui, Binge; Ma, Xiudan; Xie, Xiaoyun; Ren, Guangbo; Ma, Yi
2017-03-01
The classification of hyperspectral images with a few labeled samples is a major challenge which is difficult to meet unless some spatial characteristics can be exploited. In this study, we proposed a novel spectral-spatial hyperspectral image classification method that exploited spatial autocorrelation of hyperspectral images. First, image segmentation is performed on the hyperspectral image to assign each pixel to a homogeneous region. Second, the visible and infrared bands of hyperspectral image are partitioned into multiple subsets of adjacent bands, and each subset is merged into one band. Recursive edge-preserving filtering is performed on each merged band which utilizes the spectral information of neighborhood pixels. Third, the resulting spectral and spatial feature band set is classified using the SVM classifier. Finally, bilateral filtering is performed to remove "salt-and-pepper" noise in the classification result. To preserve the spatial structure of hyperspectral image, edge-preserving filtering is applied independently before and after the classification process. Experimental results on different hyperspectral images prove that the proposed spectral-spatial classification approach is robust and offers more classification accuracy than state-of-the-art methods when the number of labeled samples is small.
Keegan, Theresa H M; Hurley, Susan; Goldberg, Debbie; Nelson, David O; Reynolds, Peggy; Bernstein, Leslie; Horn-Ross, Pam L; Gomez, Scarlett L
2012-04-01
We considered interactions between physical activity and body mass index (BMI) and neighborhood factors. We used recursive partitioning to identify predictors of low recreational physical activity (< 2.5 hours/week) and overweight and obesity (BMI ≥ 25.0 kg/m(2)) among 118,315 women in the California Teachers Study. Neighborhood characteristics were based on 2000 US Census data and Reference US business listings. Low physical activity and being overweight or obese were associated with individual sociodemographic characteristics, including race/ethnicity and age. Among White women aged 36 to 75 years, living in neighborhoods with more household crowding was associated with a higher probability of low physical activity (54% vs 45% to 51%). In less crowded neighborhoods where more people worked outside the home, the existence of fewer neighborhood amenities was associated with a higher probability of low physical activity (51% vs 46%). Among non-African American middle-aged women, living in neighborhoods with a lower socioeconomic status was associated with a higher probability of being overweight or obese (46% to 59% vs 38% in high-socioeconomic status neighborhoods). Associations between physical activity, overweight and obesity, and the built environment varied by sociodemographic characteristics in this educated population.
Adaptive MPC based on MIMO ARX-Laguerre model.
Ben Abdelwahed, Imen; Mbarek, Abdelkader; Bouzrara, Kais
2017-03-01
This paper proposes a method for synthesizing an adaptive predictive controller using a reduced complexity model. This latter is given by the projection of the ARX model on Laguerre bases. The resulting model is entitled MIMO ARX-Laguerre and it is characterized by an easy recursive representation. The adaptive predictive control law is computed based on multi-step-ahead finite-element predictors, identified directly from experimental input/output data. The model is tuned in each iteration by an online identification algorithms of both model parameters and Laguerre poles. The proposed approach avoids time consuming numerical optimization algorithms associated with most common linear predictive control strategies, which makes it suitable for real-time implementation. The method is used to synthesize and test in numerical simulations adaptive predictive controllers for the CSTR process benchmark. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhao, Hongshan; Li, Wei; Wang, Li; Zhou, Shu; Jin, Xuejun
2016-08-01
T wo types of multiphase steels containing blocky or fine martensite have been used to study the phase interaction and the TRIP effect. These steels were obtained by step-quenching and partitioning (S-QP820) or intercritical-quenching and partitioning (I-QP800 & I-QP820). The retained austenite (RA) in S-QP820 specimen containing blocky martensite transformed too early to prevent the local failure at high strain due to the local strain concentration. In contrast, plentiful RA in I-QP800 specimen containing finely dispersed martensite transformed uniformly at high strain, which led to optimized strength and elongation. By applying a coordinate conversion method to the microhardness test, the load partitioning between ferrite and partitioned martensite was proved to follow the linear mixture law. The mechanical behavior of multiphase S-QP820 steel can be modeled based on the Mecking-Kocks theory, Bouquerel's spherical assumption, and Gladman-type mixture law. Finally, the transformation-induced martensite hardening effect has been studied on a bake-hardened specimen.
NASA Technical Reports Server (NTRS)
Lin, Shu; Fossorier, Marc
1998-01-01
The Viterbi algorithm is indeed a very simple and efficient method of implementing the maximum likelihood decoding. However, if we take advantage of the structural properties in a trellis section, other efficient trellis-based decoding algorithms can be devised. Recently, an efficient trellis-based recursive maximum likelihood decoding (RMLD) algorithm for linear block codes has been proposed. This algorithm is more efficient than the conventional Viterbi algorithm in both computation and hardware requirements. Most importantly, the implementation of this algorithm does not require the construction of the entire code trellis, only some special one-section trellises of relatively small state and branch complexities are needed for constructing path (or branch) metric tables recursively. At the end, there is only one table which contains only the most likely code-word and its metric for a given received sequence r = (r(sub 1), r(sub 2),...,r(sub n)). This algorithm basically uses the divide and conquer strategy. Furthermore, it allows parallel/pipeline processing of received sequences to speed up decoding.
What's special about human language? The contents of the "narrow language faculty" revisited
Traxler, Matthew J.; Boudewyn, Megan; Loudermilk, Jessica
2012-01-01
In this review we re-evaluate the recursion-only hypothesis, advocated by Fitch, Hauser and Chomsky (Hauser, Chomsky & Fitch, 2002; Fitch, Hauser & Chomsky, 2005). According to the recursion-only hypothesis, the property that distinguishes human language from animal communication systems is recursion, which refers to the potentially infinite embedding of one linguistic representation within another of the same type. This hypothesis predicts (1) that non-human primates and other animals lack the ability to learn recursive grammar, and (2) that recursive grammar is the sole cognitive mechanism that is unique to human language. We first review animal studies of recursive grammar, before turning to the claim that recursion is a property of all human languages. Finally, we discuss other views on what abilities may be unique to human language. PMID:23105948
NASA Astrophysics Data System (ADS)
Gobbato, Maurizio; Kosmatka, John B.; Conte, Joel P.
2014-04-01
Fatigue-induced damage is one of the most uncertain and highly unpredictable failure mechanisms for a large variety of mechanical and structural systems subjected to cyclic and random loads during their service life. A health monitoring system capable of (i) monitoring the critical components of these systems through non-destructive evaluation (NDE) techniques, (ii) assessing their structural integrity, (iii) recursively predicting their remaining fatigue life (RFL), and (iv) providing a cost-efficient reliability-based inspection and maintenance plan (RBIM) is therefore ultimately needed. In contribution to these objectives, the first part of the paper provides an overview and extension of a comprehensive reliability-based fatigue damage prognosis methodology — previously developed by the authors — for recursively predicting and updating the RFL of critical structural components and/or sub-components in aerospace structures. In the second part of the paper, a set of experimental fatigue test data, available in the literature, is used to provide a numerical verification and an experimental validation of the proposed framework at the reliability component level (i.e., single damage mechanism evolving at a single damage location). The results obtained from this study demonstrate (i) the importance and the benefits of a nearly continuous NDE monitoring system, (ii) the efficiency of the recursive Bayesian updating scheme, and (iii) the robustness of the proposed framework in recursively updating and improving the RFL estimations. This study also demonstrates that the proposed methodology can lead to either an extent of the RFL (with a consequent economical gain without compromising the minimum safety requirements) or an increase of safety by detecting a premature fault and therefore avoiding a very costly catastrophic failure.
NASA Astrophysics Data System (ADS)
Michael, R. A.; Stuart, A. L.
2007-12-01
Phase partitioning during freezing affects the transport and distribution of volatile chemical species in convective clouds. This consequently can have impacts on tropospheric chemistry, air quality, pollutant deposition, and climate change. Here, we discuss the development, evaluation, and application of a mechanistic model for the study and prediction of volatile chemical partitioning during steady-state hailstone growth. The model estimates the fraction of a chemical species retained in a two-phase freezing hailstone. It is based upon mass rate balances over water and solute for accretion under wet-growth conditions. Expressions for the calculation of model components, including the rates of super-cooled drop collection, shedding, evaporation, and hail growth were developed and implemented based on available cloud microphysics literature. Solute fate calculations assume equilibrium partitioning at air-liquid and liquid-ice interfaces. Currently, we are testing the model by performing mass balance calculations, sensitivity analyses, and comparison to available experimental data. Application of the model will improve understanding of the effects of cloud conditions and chemical properties on the fate of dissolved chemical species during hail growth.
A Survey on Teaching and Learning Recursive Programming
ERIC Educational Resources Information Center
Rinderknecht, Christian
2014-01-01
We survey the literature about the teaching and learning of recursive programming. After a short history of the advent of recursion in programming languages and its adoption by programmers, we present curricular approaches to recursion, including a review of textbooks and some programming methodology, as well as the functional and imperative…
Kumar, Rajesh; Dogra, Vishal; Rani, Khushbu; Sahu, Kanti
2017-01-01
District level determinants of total fertility rate in Empowered Action Group states of India can help in ongoing population stabilization programs in India. Present study intends to assess the role of district level determinants in predicting total fertility rate among districts of the Empowered Action Group states of India. Data from Annual Health Survey (2011-12) was analysed using STATA and R software packages. Multiple linear regression models were built and evaluated using Akaike Information Criterion. For further understanding, recursive partitioning was used to prepare a regression tree. Female married illiteracy positively associated with total fertility rate and explained more than half (53%) of variance. Under multiple linear regression model, married illiteracy, infant mortality rate, Ante natal care registration, household size, median age of live birth and sex ratio explained 70% of total variance in total fertility rate. In regression tree, female married illiteracy was the root node and splits at 42% determined TFR <= 2.7. The next left side branch was again married illiteracy with splits at 23% to determine TFR <= 2.1. We conclude that female married illiteracy is one of the most important determinants explaining total fertility rate among the districts of an Empowered Action Group states. Focus on female literacy is required to stabilize the population growth in long run.
ITFITS model for vibration--translation energy partitioning in atom-- polyatomic molecule collisions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shobatake, K.; Rice, S.A.; Lee, Y.T.
1973-09-01
A model for vibration-translation energy partitioning in the collinear collision of an atom and an axially symmetric polyatonaic molecule is proposed. The model is based on an extension of the ideas of Mahan and Heidrich, Wilson, and Rapp. Comparison of energy transfers computed from classical trajesctory calculations and the model proposed indicate good agreement when the mass of the free atom is small relative to the mass of the bound atom it strikes. The agreement is less satisfactory when that mass ratio becomes large. (auth)
An Accelerated Recursive Doubling Algorithm for Block Tridiagonal Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seal, Sudip K
2014-01-01
Block tridiagonal systems of linear equations arise in a wide variety of scientific and engineering applications. Recursive doubling algorithm is a well-known prefix computation-based numerical algorithm that requires O(M^3(N/P + log P)) work to compute the solution of a block tridiagonal system with N block rows and block size M on P processors. In real-world applications, solutions of tridiagonal systems are most often sought with multiple, often hundreds and thousands, of different right hand sides but with the same tridiagonal matrix. Here, we show that a recursive doubling algorithm is sub-optimal when computing solutions of block tridiagonal systems with multiplemore » right hand sides and present a novel algorithm, called the accelerated recursive doubling algorithm, that delivers O(R) improvement when solving block tridiagonal systems with R distinct right hand sides. Since R is typically about 100 1000, this improvement translates to very significant speedups in practice. Detailed complexity analyses of the new algorithm with empirical confirmation of runtime improvements are presented. To the best of our knowledge, this algorithm has not been reported before in the literature.« less
Rotational-path decomposition based recursive planning for spacecraft attitude reorientation
NASA Astrophysics Data System (ADS)
Xu, Rui; Wang, Hui; Xu, Wenming; Cui, Pingyuan; Zhu, Shengying
2018-02-01
The spacecraft reorientation is a common task in many space missions. With multiple pointing constraints, it is greatly difficult to solve the constrained spacecraft reorientation planning problem. To deal with this problem, an efficient rotational-path decomposition based recursive planning (RDRP) method is proposed in this paper. The uniform pointing-constraint-ignored attitude rotation planning process is designed to solve all rotations without considering pointing constraints. Then the whole path is checked node by node. If any pointing constraint is violated, the nearest critical increment approach will be used to generate feasible alternative nodes in the process of rotational-path decomposition. As the planning path of each subdivision may still violate pointing constraints, multiple decomposition is needed and the reorientation planning is designed as a recursive manner. Simulation results demonstrate the effectiveness of the proposed method. The proposed method has been successfully applied in two SPARK microsatellites to solve onboard constrained attitude reorientation planning problem, which were developed by the Shanghai Engineering Center for Microsatellites and launched on 22 December 2016.
NASA Astrophysics Data System (ADS)
Li, Y.-F.; Ma, W.-L.; Yang, M.
2015-02-01
Gas/particle (G/P) partitioning of semi-volatile organic compounds (SVOCs) is an important process that primarily governs their atmospheric fate, long-range atmospheric transport, and their routes of entering the human body. All previous studies on this issue are hypothetically based on equilibrium conditions, the results of which do not predict results from monitoring studies well in most cases. In this study, a steady-state model instead of an equilibrium-state model for the investigation of the G/P partitioning behavior of polybrominated diphenyl ethers (PBDEs) was established, and an equation for calculating the partition coefficients under steady state (KPS) of PBDEs (log KPS = log KPE + logα) was developed in which an equilibrium term (log KPE = log KOA + logfOM -11.91 where fOM is organic matter content of the particles) and a non-equilibrium term (log α, caused by dry and wet depositions of particles), both being functions of log KOA (octanol-air partition coefficient), are included. It was found that the equilibrium is a special case of steady state when the non-equilibrium term equals zero. A criterion to classify the equilibrium and non-equilibrium status of PBDEs was also established using two threshold values of log KOA, log KOA1, and log KOA2, which divide the range of log KOA into three domains: equilibrium, non-equilibrium, and maximum partition domain. Accordingly, two threshold values of temperature t, tTH1 when log KOA = log KOA1 and tTH2 when log KOA = log KOA2, were identified, which divide the range of temperature also into the same three domains for each PBDE congener. We predicted the existence of the maximum partition domain (the values of log KPS reach a maximum constant of -1.53) that every PBDE congener can reach when log KOA ≥ log KOA2, or t ≤ tTH2. The novel equation developed in this study was applied to predict the G/P partition coefficients of PBDEs for our Chinese persistent organic pollutants (POPs) Soil and Air Monitoring Program, Phase 2 (China-SAMP-II) program and other monitoring programs worldwide, including in Asia, Europe, North America, and the Arctic, and the results matched well with all the monitoring data, except those obtained at e-waste sites due to the unpredictable PBDE emissions at these sites. This study provided evidence that the newly developed steady-state-based equation is superior to the equilibrium-state-based equation that has been used in describing the G/P partitioning behavior over decades. We suggest that the investigation on G/P partitioning behavior for PBDEs should be based onsteady-state, not equilibrium state, and equilibrium is just a special case of steady-state when non-equilibrium factors can be ignored. We also believe that our new equation provides a useful tool for environmental scientists in both monitoring and modeling research on G/P partitioning of PBDEs and can be extended to predict G/P partitioning behavior for other SVOCs as well.
Total strain version of strainrange partitioning for thermomechanical fatigue at low strains
NASA Technical Reports Server (NTRS)
Halford, G. R.; Saltsman, J. F.
1987-01-01
A new method is proposed for characterizing and predicting the thermal fatigue behavior of materials. The method is based on three innovations in characterizing high temperature material behavior: (1) the bithermal concept of fatigue testing; (2) advanced, nonlinear, cyclic constitutive models; and (3) the total strain version of traditional strainrange partitioning.
Bánréti, Zoltán
2010-11-01
This study investigates how aphasic impairment impinges on syntactic and/or semantic recursivity of human language. A series of tests has been conducted with the participation of five Hungarian speaking aphasic subjects and 10 control subjects. Photographs representing simple situations were presented to subjects and questions were asked about them. The responses are supposed to involve formal structural recursion, but they contain semantic-pragmatic operations instead, with 'theory of mind' type embeddings. Aphasic individuals tend to exploit the parallel between 'theory of mind' embeddings and syntactic-structural embeddings in order to avoid formal structural recursion. Formal structural recursion may be more impaired in Broca's aphasia and semantic recursivity may remain selectively unimpaired in this type of aphasia.
Handling Data Skew in MapReduce Cluster by Using Partition Tuning
Gao, Yufei; Zhou, Yanjie; Zhou, Bing; Shi, Lei; Zhang, Jiacai
2017-01-01
The healthcare industry has generated large amounts of data, and analyzing these has emerged as an important problem in recent years. The MapReduce programming model has been successfully used for big data analytics. However, data skew invariably occurs in big data analytics and seriously affects efficiency. To overcome the data skew problem in MapReduce, we have in the past proposed a data processing algorithm called Partition Tuning-based Skew Handling (PTSH). In comparison with the one-stage partitioning strategy used in the traditional MapReduce model, PTSH uses a two-stage strategy and the partition tuning method to disperse key-value pairs in virtual partitions and recombines each partition in case of data skew. The robustness and efficiency of the proposed algorithm were tested on a wide variety of simulated datasets and real healthcare datasets. The results showed that PTSH algorithm can handle data skew in MapReduce efficiently and improve the performance of MapReduce jobs in comparison with the native Hadoop, Closer, and locality-aware and fairness-aware key partitioning (LEEN). We also found that the time needed for rule extraction can be reduced significantly by adopting the PTSH algorithm, since it is more suitable for association rule mining (ARM) on healthcare data. © 2017 Yufei Gao et al.
Handling Data Skew in MapReduce Cluster by Using Partition Tuning.
Gao, Yufei; Zhou, Yanjie; Zhou, Bing; Shi, Lei; Zhang, Jiacai
2017-01-01
The healthcare industry has generated large amounts of data, and analyzing these has emerged as an important problem in recent years. The MapReduce programming model has been successfully used for big data analytics. However, data skew invariably occurs in big data analytics and seriously affects efficiency. To overcome the data skew problem in MapReduce, we have in the past proposed a data processing algorithm called Partition Tuning-based Skew Handling (PTSH). In comparison with the one-stage partitioning strategy used in the traditional MapReduce model, PTSH uses a two-stage strategy and the partition tuning method to disperse key-value pairs in virtual partitions and recombines each partition in case of data skew. The robustness and efficiency of the proposed algorithm were tested on a wide variety of simulated datasets and real healthcare datasets. The results showed that PTSH algorithm can handle data skew in MapReduce efficiently and improve the performance of MapReduce jobs in comparison with the native Hadoop, Closer, and locality-aware and fairness-aware key partitioning (LEEN). We also found that the time needed for rule extraction can be reduced significantly by adopting the PTSH algorithm, since it is more suitable for association rule mining (ARM) on healthcare data.
Handling Data Skew in MapReduce Cluster by Using Partition Tuning
Zhou, Yanjie; Zhou, Bing; Shi, Lei
2017-01-01
The healthcare industry has generated large amounts of data, and analyzing these has emerged as an important problem in recent years. The MapReduce programming model has been successfully used for big data analytics. However, data skew invariably occurs in big data analytics and seriously affects efficiency. To overcome the data skew problem in MapReduce, we have in the past proposed a data processing algorithm called Partition Tuning-based Skew Handling (PTSH). In comparison with the one-stage partitioning strategy used in the traditional MapReduce model, PTSH uses a two-stage strategy and the partition tuning method to disperse key-value pairs in virtual partitions and recombines each partition in case of data skew. The robustness and efficiency of the proposed algorithm were tested on a wide variety of simulated datasets and real healthcare datasets. The results showed that PTSH algorithm can handle data skew in MapReduce efficiently and improve the performance of MapReduce jobs in comparison with the native Hadoop, Closer, and locality-aware and fairness-aware key partitioning (LEEN). We also found that the time needed for rule extraction can be reduced significantly by adopting the PTSH algorithm, since it is more suitable for association rule mining (ARM) on healthcare data. PMID:29065568
How Learning Logic Programming Affects Recursion Comprehension
ERIC Educational Resources Information Center
Haberman, Bruria
2004-01-01
Recursion is a central concept in computer science, yet it is difficult for beginners to comprehend. Israeli high-school students learn recursion in the framework of a special modular program in computer science (Gal-Ezer & Harel, 1999). Some of them are introduced to the concept of recursion in two different paradigms: the procedural…
Recursive Objects--An Object Oriented Presentation of Recursion
ERIC Educational Resources Information Center
Sher, David B.
2004-01-01
Generally, when recursion is introduced to students the concept is illustrated with a toy (Towers of Hanoi) and some abstract mathematical functions (factorial, power, Fibonacci). These illustrate recursion in the same sense that counting to 10 can be used to illustrate a for loop. These are all good illustrations, but do not represent serious…
NASA Astrophysics Data System (ADS)
Li, Y.-F.; Ma, W.-L.; Yang, M.
2014-09-01
Gas/particle (G / P) partitioning for most semivolatile organic compounds (SVOCs) is an important process that primarily governs their atmospheric fate, long-range atmospheric transport potential, and their routs to enter human body. All previous studies on this issue have been hypothetically derived from equilibrium conditions, the results of which do not predict results from monitoring studies well in most cases. In this study, a steady-state model instead of an equilibrium-state model for the investigation of the G / P partitioning behavior for polybrominated diphenyl ethers (PBDEs) was established, and an equation for calculating the partition coefficients under steady state (KPS) for PBDE congeners (log KPS = log KPE + logα) was developed, in which an equilibrium term (log KPE = log KOA + logfOM -11.91, where fOM is organic matter content of the particles) and a nonequilibrium term (logα, mainly caused by dry and wet depositions of particles), both being functions of log KOA (octanol-air partition coefficient), are included, and the equilibrium is a special case of steady state when the nonequilibrium term equals to zero. A criterion to classify the equilibrium and nonequilibrium status for PBDEs was also established using two threshold values of log KOA, log KOA1 and log KOA2, which divide the range of log KOA into 3 domains: equilibrium, nonequilibrium, and maximum partition domains; and accordingly, two threshold values of temperature t, tTH1 when log KOA = log KOA1 and tTH2 when log KOA = log KOA2, were identified, which divide the range of temperature also into the same 3 domains for each BDE congener. We predicted the existence of the maximum partition domain (the values of log KPS reach a maximum constant of -1.53) that every PBDE congener can reach when log KOA ≥ log KOA2, or t ≤ tTH2. The novel equation developed in this study was applied to predict the G / P partition coefficients of PBDEs for the published monitoring data worldwide, including Asia, Europe, North America, and the Arctic, and the results matched well with all the monitoring data, except those obtained at e-waste sites due to the unpredictable PBDE emissions at these sites. This study provided evidence that, the new developed steady-state-based equation is superior to the equilibrium-state-based equation that has been used in describing the G / P partitioning behavior in decades. We suggest that, the investigation on G / P partitioning behavior for PBDEs should be based on steady state, not equilibrium state, and equilibrium is just a special case of steady state when nonequilibrium factors can be ignored. We also believe that our new equation provides a useful tool for environmental scientists in both monitoring and modeling research on G / P partitioning for PBDEs and can be extended to predict G / P partitioning behavior for other SVOCs as well.
Rapid Discovery of Tribological Materials with Improved Performance Using Materials Informatics
2014-03-10
of New Solid State Lubricants The recursive portioning model illustrated in Fig. 3 has been applied to about 500 compounds from the FileMakerPro...neighboring cation. Based on this assumption, the large cationic charge of mineral compounds indicates the number of anions tends to be larger than the...The formation of bond types is highly dependent on the difference of electronegativity (EN) between the two elements in the compound . For instance
Őri, Zsolt P
2017-05-01
A mathematical model has been developed to facilitate indirect measurements of difficult to measure variables of the human energy metabolism on a daily basis. The model performs recursive system identification of the parameters of the metabolic model of the human energy metabolism using the law of conservation of energy and principle of indirect calorimetry. Self-adaptive models of the utilized energy intake prediction, macronutrient oxidation rates, and daily body composition changes were created utilizing Kalman filter and the nominal trajectory methods. The accuracy of the models was tested in a simulation study utilizing data from the Minnesota starvation and overfeeding study. With biweekly macronutrient intake measurements, the average prediction error of the utilized carbohydrate intake was -23.2 ± 53.8 kcal/day, fat intake was 11.0 ± 72.3 kcal/day, and protein was 3.7 ± 16.3 kcal/day. The fat and fat-free mass changes were estimated with an error of 0.44 ± 1.16 g/day for fat and -2.6 ± 64.98 g/day for fat-free mass. The daily metabolized macronutrient energy intake and/or daily macronutrient oxidation rate and the daily body composition change from directly measured serial data are optimally predicted with a self-adaptive model with Kalman filter that uses recursive system identification.
How children perceive fractals: Hierarchical self-similarity and cognitive development
Martins, Maurício Dias; Laaha, Sabine; Freiberger, Eva Maria; Choi, Soonja; Fitch, W. Tecumseh
2014-01-01
The ability to understand and generate hierarchical structures is a crucial component of human cognition, available in language, music, mathematics and problem solving. Recursion is a particularly useful mechanism for generating complex hierarchies by means of self-embedding rules. In the visual domain, fractals are recursive structures in which simple transformation rules generate hierarchies of infinite depth. Research on how children acquire these rules can provide valuable insight into the cognitive requirements and learning constraints of recursion. Here, we used fractals to investigate the acquisition of recursion in the visual domain, and probed for correlations with grammar comprehension and general intelligence. We compared second (n = 26) and fourth graders (n = 26) in their ability to represent two types of rules for generating hierarchical structures: Recursive rules, on the one hand, which generate new hierarchical levels; and iterative rules, on the other hand, which merely insert items within hierarchies without generating new levels. We found that the majority of fourth graders, but not second graders, were able to represent both recursive and iterative rules. This difference was partially accounted by second graders’ impairment in detecting hierarchical mistakes, and correlated with between-grade differences in grammar comprehension tasks. Empirically, recursion and iteration also differed in at least one crucial aspect: While the ability to learn recursive rules seemed to depend on the previous acquisition of simple iterative representations, the opposite was not true, i.e., children were able to acquire iterative rules before they acquired recursive representations. These results suggest that the acquisition of recursion in vision follows learning constraints similar to the acquisition of recursion in language, and that both domains share cognitive resources involved in hierarchical processing. PMID:24955884
Wagener, Thorsten; McGlynn, Brian
2015-01-01
Abstract Ungauged headwater basins are an abundant part of the river network, but dominant influences on headwater hydrologic response remain difficult to predict. To address this gap, we investigated the ability of a physically based watershed model (the Distributed Hydrology‐Soil‐Vegetation Model) to represent controls on metrics of hydrologic partitioning across five adjacent headwater subcatchments. The five study subcatchments, located in Tenderfoot Creek Experimental Forest in central Montana, have similar climate but variable topography and vegetation distribution. This facilitated a comparative hydrology approach to interpret how parameters that influence partitioning, detected via global sensitivity analysis, differ across catchments. Model parameters were constrained a priori using existing regional information and expert knowledge. Influential parameters were compared to perceptions of catchment functioning and its variability across subcatchments. Despite between‐catchment differences in topography and vegetation, hydrologic partitioning across all metrics and all subcatchments was sensitive to a similar subset of snow, vegetation, and soil parameters. Results also highlighted one subcatchment with low certainty in parameter sensitivity, indicating that the model poorly represented some complexities in this subcatchment likely because an important process is missing or poorly characterized in the mechanistic model. For use in other basins, this method can assess parameter sensitivities as a function of the specific ungauged system to which it is applied. Overall, this approach can be employed to identify dominant modeled controls on catchment response and their agreement with system understanding. PMID:27642197
NASA Astrophysics Data System (ADS)
Krishnan, M.; Bhowmik, B.; Tiwari, A. K.; Hazra, B.
2017-08-01
In this paper, a novel baseline free approach for continuous online damage detection of multi degree of freedom vibrating structures using recursive principal component analysis (RPCA) in conjunction with online damage indicators is proposed. In this method, the acceleration data is used to obtain recursive proper orthogonal modes in online using the rank-one perturbation method, and subsequently utilized to detect the change in the dynamic behavior of the vibrating system from its pristine state to contiguous linear/nonlinear-states that indicate damage. The RPCA algorithm iterates the eigenvector and eigenvalue estimates for sample covariance matrices and new data point at each successive time instants, using the rank-one perturbation method. An online condition indicator (CI) based on the L2 norm of the error between actual response and the response projected using recursive eigenvector matrix updates over successive iterations is proposed. This eliminates the need for offline post processing and facilitates online damage detection especially when applied to streaming data. The proposed CI, named recursive residual error, is also adopted for simultaneous spatio-temporal damage detection. Numerical simulations performed on five-degree of freedom nonlinear system under white noise and El Centro excitations, with different levels of nonlinearity simulating the damage scenarios, demonstrate the robustness of the proposed algorithm. Successful results obtained from practical case studies involving experiments performed on a cantilever beam subjected to earthquake excitation, for full sensors and underdetermined cases; and data from recorded responses of the UCLA Factor building (full data and its subset) demonstrate the efficacy of the proposed methodology as an ideal candidate for real-time, reference free structural health monitoring.
Miranian, A; Abdollahzade, M
2013-02-01
Local modeling approaches, owing to their ability to model different operating regimes of nonlinear systems and processes by independent local models, seem appealing for modeling, identification, and prediction applications. In this paper, we propose a local neuro-fuzzy (LNF) approach based on the least-squares support vector machines (LSSVMs). The proposed LNF approach employs LSSVMs, which are powerful in modeling and predicting time series, as local models and uses hierarchical binary tree (HBT) learning algorithm for fast and efficient estimation of its parameters. The HBT algorithm heuristically partitions the input space into smaller subdomains by axis-orthogonal splits. In each partitioning, the validity functions automatically form a unity partition and therefore normalization side effects, e.g., reactivation, are prevented. Integration of LSSVMs into the LNF network as local models, along with the HBT learning algorithm, yield a high-performance approach for modeling and prediction of complex nonlinear time series. The proposed approach is applied to modeling and predictions of different nonlinear and chaotic real-world and hand-designed systems and time series. Analysis of the prediction results and comparisons with recent and old studies demonstrate the promising performance of the proposed LNF approach with the HBT learning algorithm for modeling and prediction of nonlinear and chaotic systems and time series.
NASA Astrophysics Data System (ADS)
McCaul, G. M. G.; Lorenz, C. D.; Kantorovich, L.
2017-03-01
We present a partition-free approach to the evolution of density matrices for open quantum systems coupled to a harmonic environment. The influence functional formalism combined with a two-time Hubbard-Stratonovich transformation allows us to derive a set of exact differential equations for the reduced density matrix of an open system, termed the extended stochastic Liouville-von Neumann equation. Our approach generalizes previous work based on Caldeira-Leggett models and a partitioned initial density matrix. This provides a simple, yet exact, closed-form description for the evolution of open systems from equilibriated initial conditions. The applicability of this model and the potential for numerical implementations are also discussed.
NASA Astrophysics Data System (ADS)
Meng, Deyuan; Tao, Guoliang; Liu, Hao; Zhu, Xiaocong
2014-07-01
Friction compensation is particularly important for motion trajectory tracking control of pneumatic cylinders at low speed movement. However, most of the existing model-based friction compensation schemes use simple classical models, which are not enough to address applications with high-accuracy position requirements. Furthermore, the friction force in the cylinder is time-varying, and there exist rather severe unmodelled dynamics and unknown disturbances in the pneumatic system. To deal with these problems effectively, an adaptive robust controller with LuGre model-based dynamic friction compensation is constructed. The proposed controller employs on-line recursive least squares estimation (RLSE) to reduce the extent of parametric uncertainties, and utilizes the sliding mode control method to attenuate the effects of parameter estimation errors, unmodelled dynamics and disturbances. In addition, in order to realize LuGre model-based friction compensation, the modified dual-observer structure for estimating immeasurable friction internal state is developed. Therefore, a prescribed motion tracking transient performance and final tracking accuracy can be guaranteed. Since the system model uncertainties are unmatched, the recursive backstepping design technology is applied. In order to solve the conflicts between the sliding mode control design and the adaptive control design, the projection mapping is used to condition the RLSE algorithm so that the parameter estimates are kept within a known bounded convex set. Finally, the proposed controller is tested for tracking sinusoidal trajectories and smooth square trajectory under different loads and sudden disturbance. The testing results demonstrate that the achievable performance of the proposed controller is excellent and is much better than most other studies in literature. Especially when a 0.5 Hz sinusoidal trajectory is tracked, the maximum tracking error is 0.96 mm and the average tracking error is 0.45 mm. This paper constructs an adaptive robust controller which can compensate the friction force in the cylinder.
Clustering of financial time series
NASA Astrophysics Data System (ADS)
D'Urso, Pierpaolo; Cappelli, Carmela; Di Lallo, Dario; Massari, Riccardo
2013-05-01
This paper addresses the topic of classifying financial time series in a fuzzy framework proposing two fuzzy clustering models both based on GARCH models. In general clustering of financial time series, due to their peculiar features, needs the definition of suitable distance measures. At this aim, the first fuzzy clustering model exploits the autoregressive representation of GARCH models and employs, in the framework of a partitioning around medoids algorithm, the classical autoregressive metric. The second fuzzy clustering model, also based on partitioning around medoids algorithm, uses the Caiado distance, a Mahalanobis-like distance, based on estimated GARCH parameters and covariances that takes into account the information about the volatility structure of time series. In order to illustrate the merits of the proposed fuzzy approaches an application to the problem of classifying 29 time series of Euro exchange rates against international currencies is presented and discussed, also comparing the fuzzy models with their crisp version.
On models of the genetic code generated by binary dichotomic algorithms.
Gumbel, Markus; Fimmel, Elena; Danielli, Alberto; Strüngmann, Lutz
2015-02-01
In this paper we introduce the concept of a BDA-generated model of the genetic code which is based on binary dichotomic algorithms (BDAs). A BDA-generated model is based on binary dichotomic algorithms (BDAs). Such a BDA partitions the set of 64 codons into two disjoint classes of size 32 each and provides a generalization of known partitions like the Rumer dichotomy. We investigate what partitions can be generated when a set of different BDAs is applied sequentially to the set of codons. The search revealed that these models are able to generate code tables with very different numbers of classes ranging from 2 to 64. We have analyzed whether there are models that map the codons to their amino acids. A perfect matching is not possible. However, we present models that describe the standard genetic code with only few errors. There are also models that map all 64 codons uniquely to 64 classes showing that BDAs can be used to identify codons precisely. This could serve as a basis for further mathematical analysis using coding theory, for example. The hypothesis that BDAs might reflect a molecular mechanism taking place in the decoding center of the ribosome is discussed. The scan demonstrated that binary dichotomic partitions are able to model different aspects of the genetic code very well. The search was performed with our tool Beady-A. This software is freely available at http://mi.informatik.hs-mannheim.de/beady-a. It requires a JVM version 6 or higher. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Entanglement distillation protocols and number theory
NASA Astrophysics Data System (ADS)
Bombin, H.; Martin-Delgado, M. A.
2005-09-01
We show that the analysis of entanglement distillation protocols for qudits of arbitrary dimension D benefits from applying basic concepts from number theory, since the set ZDn associated with Bell diagonal states is a module rather than a vector space. We find that a partition of ZDn into divisor classes characterizes the invariant properties of mixed Bell diagonal states under local permutations. We construct a very general class of recursion protocols by means of unitary operations implementing these local permutations. We study these distillation protocols depending on whether we use twirling operations in the intermediate steps or not, and we study them both analytically and numerically with Monte Carlo methods. In the absence of twirling operations, we construct extensions of the quantum privacy algorithms valid for secure communications with qudits of any dimension D . When D is a prime number, we show that distillation protocols are optimal both qualitatively and quantitatively.
Excess BMI in Childhood: A Modifiable Risk Factor for Type 1 Diabetes Development?
Ferrara, Christine Therese; Geyer, Susan Michelle; Liu, Yuk-Fun; Evans-Molina, Carmella; Libman, Ingrid M; Besser, Rachel; Becker, Dorothy J; Rodriguez, Henry; Moran, Antoinette; Gitelman, Stephen E; Redondo, Maria J
2017-05-01
We aimed to determine the effect of elevated BMI over time on the progression to type 1 diabetes in youth. We studied 1,117 children in the TrialNet Pathway to Prevention cohort (autoantibody-positive relatives of patients with type 1 diabetes). Longitudinally accumulated BMI above the 85th age- and sex-adjusted percentile generated a cumulative excess BMI (ceBMI) index. Recursive partitioning and multivariate analyses yielded sex- and age-specific ceBMI thresholds for greatest type 1 diabetes risk. Higher ceBMI conferred significantly greater risk of progressing to type 1 diabetes. The increased diabetes risk occurred at lower ceBMI values in children <12 years of age compared with older subjects and in females versus males. Elevated BMI is associated with increased risk of diabetes progression in pediatric autoantibody-positive relatives, but the effect varies by sex and age. © 2017 by the American Diabetes Association.
Excess BMI in Childhood: A Modifiable Risk Factor for Type 1 Diabetes Development?
Liu, Yuk-Fun; Evans-Molina, Carmella; Libman, Ingrid M.; Besser, Rachel; Becker, Dorothy J.; Rodriguez, Henry; Moran, Antoinette; Gitelman, Stephen E.; Redondo, Maria J.
2017-01-01
OBJECTIVE We aimed to determine the effect of elevated BMI over time on the progression to type 1 diabetes in youth. RESEARCH DESIGN AND METHODS We studied 1,117 children in the TrialNet Pathway to Prevention cohort (autoantibody-positive relatives of patients with type 1 diabetes). Longitudinally accumulated BMI above the 85th age- and sex-adjusted percentile generated a cumulative excess BMI (ceBMI) index. Recursive partitioning and multivariate analyses yielded sex- and age-specific ceBMI thresholds for greatest type 1 diabetes risk. RESULTS Higher ceBMI conferred significantly greater risk of progressing to type 1 diabetes. The increased diabetes risk occurred at lower ceBMI values in children <12 years of age compared with older subjects and in females versus males. CONCLUSIONS Elevated BMI is associated with increased risk of diabetes progression in pediatric autoantibody-positive relatives, but the effect varies by sex and age. PMID:28202550
Copula-based analysis of rhythm
NASA Astrophysics Data System (ADS)
García, J. E.; González-López, V. A.; Viola, M. L. Lanfredi
2016-06-01
In this paper we establish stochastic profiles of the rhythm for three languages: English, Japanese and Spanish. We model the increase or decrease of the acoustical energy, collected into three bands coming from the acoustic signal. The number of parameters needed to specify a discrete multivariate Markov chain grows exponentially with the order and dimension of the chain. In this case the size of the database is not large enough for a consistent estimation of the model. We apply a strategy to estimate a multivariate process with an order greater than the order achieved using standard procedures. The new strategy consist on obtaining a partition of the state space which is constructed from a combination of the partitions corresponding to the three marginal processes, one for each band of energy, and the partition coming from to the multivariate Markov chain. Then, all the partitions are linked using a copula, in order to estimate the transition probabilities.
Lara, A; Riquelme, M; Vöhringer-Martinez, E
2018-05-11
Partition coefficients serve in various areas as pharmacology and environmental sciences to predict the hydrophobicity of different substances. Recently, they have also been used to address the accuracy of force fields for various organic compounds and specifically the methylated DNA bases. In this study, atomic charges were derived by different partitioning methods (Hirshfeld and Minimal Basis Iterative Stockholder) directly from the electron density obtained by electronic structure calculations in a vacuum, with an implicit solvation model or with explicit solvation taking the dynamics of the solute and the solvent into account. To test the ability of these charges to describe electrostatic interactions in force fields for condensed phases, the original atomic charges of the AMBER99 force field were replaced with the new atomic charges and combined with different solvent models to obtain the hydration and chloroform solvation free energies by molecular dynamics simulations. Chloroform-water partition coefficients derived from the obtained free energies were compared to experimental and previously reported values obtained with the GAFF or the AMBER-99 force field. The results show that good agreement with experimental data is obtained when the polarization of the electron density by the solvent has been taken into account, and when the energy needed to polarize the electron density of the solute has been considered in the transfer free energy. These results were further confirmed by hydration free energies of polar and aromatic amino acid side chain analogs. Comparison of the two partitioning methods, Hirshfeld-I and Minimal Basis Iterative Stockholder (MBIS), revealed some deficiencies in the Hirshfeld-I method related to the unstable isolated anionic nitrogen pro-atom used in the method. Hydration free energies and partitioning coefficients obtained with atomic charges from the MBIS partitioning method accounting for polarization by the implicit solvation model are in good agreement with the experimental values. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.
Modelling and Closed-Loop System Identification of a Quadrotor-Based Aerial Manipulator
NASA Astrophysics Data System (ADS)
Dube, Chioniso; Pedro, Jimoh O.
2018-05-01
This paper presents the modelling and system identification of a quadrotor-based aerial manipulator. The aerial manipulator model is first derived analytically using the Newton-Euler formulation for the quadrotor and Recursive Newton-Euler formulation for the manipulator. The aerial manipulator is then simulated with the quadrotor under Proportional Derivative (PD) control, with the manipulator in motion. The simulation data is then used for system identification of the aerial manipulator. Auto Regressive with eXogenous inputs (ARX) models are obtained from the system identification for linear accelerations \\ddot{X} and \\ddot{Y} and yaw angular acceleration \\ddot{\\psi }. For linear acceleration \\ddot{Z}, and pitch and roll angular accelerations \\ddot{θ } and \\ddot{φ }, Auto Regressive Moving Average with eXogenous inputs (ARMAX) models are identified.
Ravichandiran, Mayoorendra; Ravichandiran, Nisanthini; Ravichandiran, Kajeandra; McKee, Nancy H; Richardson, Denyse; Oliver, Michele; Agur, Anne M
2012-04-01
Differential activation of specific regions within a skeletal muscle has been linked to the presence of neuromuscular compartments. However, few studies have investigated the extra- or intramuscular innervation throughout the muscle volume of extensor carpi radialis longus (ECRL) and brevis (ECRB). The aim of this study was to determine the presence of neuromuscular partitions in ECRL and ECRB based on the extra- and intramuscular innervation using three-dimensional modeling. The extra- and intramuscular nerve distribution was digitized and reconstructed in 3D in all the muscle volumes using Autodesk Maya in seven formalin embalmed cadaveric specimens (mean age, 75.7 ± 15.2 years). The intramuscular nerve distribution was modeled in all the muscle volumes. ECRL was found to have two neuromuscular compartments, superficial and deep. One branch from the radial nerve proper was found to innervate ECRL. This branch was divided into anterior and posterior branches to the superficial and deep compartments, respectively. Five innervation patterns were identified in ECRB with partitioning of the muscle belly into two, three, or four compartments, in a proximal to distal direction depending on the number of nerve branches entering the muscle belly. The ECRL and ECRB both demonstrated neuromuscular compartmentalization based on intramuscular innervation. According to the partitioning hypothesis, a muscle may be differentially activated depending on the required function of the muscle, thus allowing multifunctional muscles to contribute to a variety of movements. Therefore, the increased number of neuromuscular partitions in ECRB when compared with ECRL could be due to the need for more differential recruitment in the ECRB depending on force requirements. Copyright © 2011 Wiley Periodicals, Inc.
A fast new algorithm for a robot neurocontroller using inverse QR decomposition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morris, A.S.; Khemaissia, S.
2000-01-01
A new adaptive neural network controller for robots is presented. The controller is based on direct adaptive techniques. Unlike many neural network controllers in the literature, inverse dynamical model evaluation is not required. A numerically robust, computationally efficient processing scheme for neutral network weight estimation is described, namely, the inverse QR decomposition (INVQR). The inverse QR decomposition and a weighted recursive least-squares (WRLS) method for neural network weight estimation is derived using Cholesky factorization of the data matrix. The algorithm that performs the efficient INVQR of the underlying space-time data matrix may be implemented in parallel on a triangular array.more » Furthermore, its systolic architecture is well suited for VLSI implementation. Another important benefit is well suited for VLSI implementation. Another important benefit of the INVQR decomposition is that it solves directly for the time-recursive least-squares filter vector, while avoiding the sequential back-substitution step required by the QR decomposition approaches.« less
Flatness-based control and Kalman filtering for a continuous-time macroeconomic model
NASA Astrophysics Data System (ADS)
Rigatos, G.; Siano, P.; Ghosh, T.; Busawon, K.; Binns, R.
2017-11-01
The article proposes flatness-based control for a nonlinear macro-economic model of the UK economy. The differential flatness properties of the model are proven. This enables to introduce a transformation (diffeomorphism) of the system's state variables and to express the state-space description of the model in the linear canonical (Brunowsky) form in which both the feedback control and the state estimation problem can be solved. For the linearized equivalent model of the macroeconomic system, stabilizing feedback control can be achieved using pole placement methods. Moreover, to implement stabilizing feedback control of the system by measuring only a subset of its state vector elements the Derivative-free nonlinear Kalman Filter is used. This consists of the Kalman Filter recursion applied on the linearized equivalent model of the financial system and of an inverse transformation that is based again on differential flatness theory. The asymptotic stability properties of the control scheme are confirmed.
A spatial operator algebra for manipulator modeling and control
NASA Technical Reports Server (NTRS)
Rodriguez, G.; Jain, A.; Kreutz-Delgado, K.
1991-01-01
A recently developed spatial operator algebra for manipulator modeling, control, and trajectory design is discussed. The elements of this algebra are linear operators whose domain and range spaces consist of forces, moments, velocities, and accelerations. The effect of these operators is equivalent to a spatial recursion along the span of a manipulator. Inversion of operators can be efficiently obtained via techniques of recursive filtering and smoothing. The operator algebra provides a high-level framework for describing the dynamic and kinematic behavior of a manipulator and for control and trajectory design algorithms. The interpretation of expressions within the algebraic framework leads to enhanced conceptual and physical understanding of manipulator dynamics and kinematics.
Weak-value amplification and optimal parameter estimation in the presence of correlated noise
NASA Astrophysics Data System (ADS)
Sinclair, Josiah; Hallaji, Matin; Steinberg, Aephraim M.; Tollaksen, Jeff; Jordan, Andrew N.
2017-11-01
We analytically and numerically investigate the performance of weak-value amplification (WVA) and related parameter estimation methods in the presence of temporally correlated noise. WVA is a special instance of a general measurement strategy that involves sorting data into separate subsets based on the outcome of a second "partitioning" measurement. Using a simplified correlated noise model that can be analyzed exactly together with optimal statistical estimators, we compare WVA to a conventional measurement method. We find that WVA indeed yields a much lower variance of the parameter of interest than the conventional technique does, optimized in the absence of any partitioning measurements. In contrast, a statistically optimal analysis that employs partitioning measurements, incorporating all partitioned results and their known correlations, is found to yield an improvement—typically slight—over the noise reduction achieved by WVA. This result occurs because the simple WVA technique is not tailored to any specific noise environment and therefore does not make use of correlations between the different partitions. We also compare WVA to traditional background subtraction, a familiar technique where measurement outcomes are partitioned to eliminate unknown offsets or errors in calibration. Surprisingly, for the cases we consider, background subtraction turns out to be a special case of the optimal partitioning approach, possessing a similar typically slight advantage over WVA. These results give deeper insight into the role of partitioning measurements (with or without postselection) in enhancing measurement precision, which some have found puzzling. They also resolve previously made conflicting claims about the usefulness of weak-value amplification to precision measurement in the presence of correlated noise. We finish by presenting numerical results to model a more realistic laboratory situation of time-decaying correlations, showing that our conclusions hold for a wide range of statistical models.
Martins, Mauricio Dias; Gingras, Bruno; Puig-Waldmueller, Estela; Fitch, W Tecumseh
2017-04-01
The human ability to process hierarchical structures has been a longstanding research topic. However, the nature of the cognitive machinery underlying this faculty remains controversial. Recursion, the ability to embed structures within structures of the same kind, has been proposed as a key component of our ability to parse and generate complex hierarchies. Here, we investigated the cognitive representation of both recursive and iterative processes in the auditory domain. The experiment used a two-alternative forced-choice paradigm: participants were exposed to three-step processes in which pure-tone sequences were built either through recursive or iterative processes, and had to choose the correct completion. Foils were constructed according to generative processes that did not match the previous steps. Both musicians and non-musicians were able to represent recursion in the auditory domain, although musicians performed better. We also observed that general 'musical' aptitudes played a role in both recursion and iteration, although the influence of musical training was somehow independent from melodic memory. Moreover, unlike iteration, recursion in audition was well correlated with its non-auditory (recursive) analogues in the visual and action sequencing domains. These results suggest that the cognitive machinery involved in establishing recursive representations is domain-general, even though this machinery requires access to information resulting from domain-specific processes. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Multi-model approach to characterize human handwriting motion.
Chihi, I; Abdelkrim, A; Benrejeb, M
2016-02-01
This paper deals with characterization and modelling of human handwriting motion from two forearm muscle activity signals, called electromyography signals (EMG). In this work, an experimental approach was used to record the coordinates of a pen tip moving on the (x, y) plane and EMG signals during the handwriting act. The main purpose is to design a new mathematical model which characterizes this biological process. Based on a multi-model approach, this system was originally developed to generate letters and geometric forms written by different writers. A Recursive Least Squares algorithm is used to estimate the parameters of each sub-model of the multi-model basis. Simulations show good agreement between predicted results and the recorded data.
Semi-implicit time integration of atmospheric flows with characteristic-based flux partitioning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghosh, Debojyoti; Constantinescu, Emil M.
2016-06-23
Here, this paper presents a characteristic-based flux partitioning for the semi-implicit time integration of atmospheric flows. Nonhydrostatic models require the solution of the compressible Euler equations. The acoustic time scale is significantly faster than the advective scale, yet it is typically not relevant to atmospheric and weather phenomena. The acoustic and advective components of the hyperbolic flux are separated in the characteristic space. High-order, conservative additive Runge-Kutta methods are applied to the partitioned equations so that the acoustic component is integrated in time implicitly with an unconditionally stable method, while the advective component is integrated explicitly. The time step ofmore » the overall algorithm is thus determined by the advective scale. Benchmark flow problems are used to demonstrate the accuracy, stability, and convergence of the proposed algorithm. The computational cost of the partitioned semi-implicit approach is compared with that of explicit time integration.« less
Langenbucher, Frieder
2007-08-01
This paper discusses Excel applications related to the prediction of drug absorbability from physicochemical constants. PHDISSOC provides a generalized model for pH profiles of electrolytic dissociation, water solubility, and partition coefficient. SKMODEL predicts drug absorbability, based on a log-log plot of water solubility and O/W partitioning; augmented by additional features such as electrolytic dissociation, melting point, and the dose administered. GIABS presents a mechanistic model of g.i. drug absorption. BIODATCO presents a database compiling relevant drug data to be used for quantitative predictions.
The rid-redundant procedure in C-Prolog
NASA Technical Reports Server (NTRS)
Chen, Huo-Yan; Wah, Benjamin W.
1987-01-01
C-Prolog can conveniently be used for logical inferences on knowledge bases. However, as similar to many search methods using backward chaining, a large number of redundant computation may be produced in recursive calls. To overcome this problem, the 'rid-redundant' procedure was designed to rid all redundant computations in running multi-recursive procedures. Experimental results obtained for C-Prolog on the Vax 11/780 computer show that there is an order of magnitude improvement in the running time and solvable problem size.
NASA Astrophysics Data System (ADS)
Shrivastava, Akash; Mohanty, A. R.
2018-03-01
This paper proposes a model-based method to estimate single plane unbalance parameters (amplitude and phase angle) in a rotor using Kalman filter and recursive least square based input force estimation technique. Kalman filter based input force estimation technique requires state-space model and response measurements. A modified system equivalent reduction expansion process (SEREP) technique is employed to obtain a reduced-order model of the rotor system so that limited response measurements can be used. The method is demonstrated using numerical simulations on a rotor-disk-bearing system. Results are presented for different measurement sets including displacement, velocity, and rotational response. Effects of measurement noise level, filter parameters (process noise covariance and forgetting factor), and modeling error are also presented and it is observed that the unbalance parameter estimation is robust with respect to measurement noise.
USE OF A PHYSIOLOGICALLY BASED TOXICOKINETIC MODEL TO SIMULATE CHRONIC DIETARY EXPOSURE IN FISH
A physiologically based toxicokinetic (PBTK) model was developed to describe dietary uptake of hydrophobic organic chemicals by fish. The GI tract was modeled as four compartments corresponding to the stomach, pyloric ceca, upper intestine, and lower intestine. Partitioning coeff...
PiTS-1: Carbon Partitioning in Loblolly Pine after 13C Labeling and Shade Treatments
Warren, J. M.; Iversen, C. M.; Garten, Jr., C. T.; Norby, R. J.; Childs, J.; Brice, D.; Evans, R. M.; Gu, L.; Thornton, P.; Weston, D. J.
2013-01-01
The PiTS task was established with the objective of improving the C partitioning routines in existing ecosystem models by exploring mechanistic model representations of partitioning tested against field observations. We used short-term field manipulations of C flow, through 13CO2 labeling, canopy shading and stem girdling, to dramatically alter C partitioning, and resultant data are being used to test model representation of C partitioning processes in the Community Land Model (CLM4 or CLM4.5).
Aerial robot intelligent control method based on back-stepping
NASA Astrophysics Data System (ADS)
Zhou, Jian; Xue, Qian
2018-05-01
The aerial robot is characterized as strong nonlinearity, high coupling and parameter uncertainty, a self-adaptive back-stepping control method based on neural network is proposed in this paper. The uncertain part of the aerial robot model is compensated online by the neural network of Cerebellum Model Articulation Controller and robust control items are designed to overcome the uncertainty error of the system during online learning. At the same time, particle swarm algorithm is used to optimize and fix parameters so as to improve the dynamic performance, and control law is obtained by the recursion of back-stepping regression. Simulation results show that the designed control law has desired attitude tracking performance and good robustness in case of uncertainties and large errors in the model parameters.
Analytical results for a stochastic model of gene expression with arbitrary partitioning of proteins
NASA Astrophysics Data System (ADS)
Tschirhart, Hugo; Platini, Thierry
2018-05-01
In biophysics, the search for analytical solutions of stochastic models of cellular processes is often a challenging task. In recent work on models of gene expression, it was shown that a mapping based on partitioning of Poisson arrivals (PPA-mapping) can lead to exact solutions for previously unsolved problems. While the approach can be used in general when the model involves Poisson processes corresponding to creation or degradation, current applications of the method and new results derived using it have been limited to date. In this paper, we present the exact solution of a variation of the two-stage model of gene expression (with time dependent transition rates) describing the arbitrary partitioning of proteins. The methodology proposed makes full use of the PPA-mapping by transforming the original problem into a new process describing the evolution of three biological switches. Based on a succession of transformations, the method leads to a hierarchy of reduced models. We give an integral expression of the time dependent generating function as well as explicit results for the mean, variance, and correlation function. Finally, we discuss how results for time dependent parameters can be extended to the three-stage model and used to make inferences about models with parameter fluctuations induced by hidden stochastic variables.
Communication-Avoiding Parallel Recursive Algorithms for Matrix Multiplication
2013-05-17
cost recurrence is FUM(n, P ) = 15 ( n2 4P ) + FUM ( n 2 , P 7 ) with base case FUM(n, 1) = csn ω0 − 5n2, where cs is the constant of Strassen-Winograd...message varies according to the recursion depth, and is the number of words a processor owns of any Si, Ti, or Qi, namely n2 4P words. 1If one does not...recurrence for the entire UM scheme: WUM(n, P ) = 36 n2 4P +WUM ( n 2 , P 7 ) SUM(n, P ) = 36 + SUM ( n 2 , P 7 ) with base case SUM(n, 1) = WUM(n, 1
Recursive feature selection with significant variables of support vectors.
Tsai, Chen-An; Huang, Chien-Hsun; Chang, Ching-Wei; Chen, Chun-Houh
2012-01-01
The development of DNA microarray makes researchers screen thousands of genes simultaneously and it also helps determine high- and low-expression level genes in normal and disease tissues. Selecting relevant genes for cancer classification is an important issue. Most of the gene selection methods use univariate ranking criteria and arbitrarily choose a threshold to choose genes. However, the parameter setting may not be compatible to the selected classification algorithms. In this paper, we propose a new gene selection method (SVM-t) based on the use of t-statistics embedded in support vector machine. We compared the performance to two similar SVM-based methods: SVM recursive feature elimination (SVMRFE) and recursive support vector machine (RSVM). The three methods were compared based on extensive simulation experiments and analyses of two published microarray datasets. In the simulation experiments, we found that the proposed method is more robust in selecting informative genes than SVMRFE and RSVM and capable to attain good classification performance when the variations of informative and noninformative genes are different. In the analysis of two microarray datasets, the proposed method yields better performance in identifying fewer genes with good prediction accuracy, compared to SVMRFE and RSVM.
Modeling level change in Lake Urmia using hybrid artificial intelligence approaches
NASA Astrophysics Data System (ADS)
Esbati, M.; Ahmadieh Khanesar, M.; Shahzadi, Ali
2017-06-01
The investigation of water level fluctuations in lakes for protecting them regarding the importance of these water complexes in national and regional scales has found a special place among countries in recent years. The importance of the prediction of water level balance in Lake Urmia is necessary due to several-meter fluctuations in the last decade which help the prevention from possible future losses. For this purpose, in this paper, the performance of adaptive neuro-fuzzy inference system (ANFIS) for predicting the lake water level balance has been studied. In addition, for the training of the adaptive neuro-fuzzy inference system, particle swarm optimization (PSO) and hybrid backpropagation-recursive least square method algorithm have been used. Moreover, a hybrid method based on particle swarm optimization and recursive least square (PSO-RLS) training algorithm for the training of ANFIS structure is introduced. In order to have a more fare comparison, hybrid particle swarm optimization and gradient descent are also applied. The models have been trained, tested, and validated based on lake level data between 1991 and 2014. For performance evaluation, a comparison is made between these methods. Numerical results obtained show that the proposed methods with a reasonable error have a good performance in water level balance prediction. It is also clear that with continuing the current trend, Lake Urmia will experience more drop in the water level balance in the upcoming years.
NASA Astrophysics Data System (ADS)
Fleischer, Christian; Waag, Wladislaw; Heyn, Hans-Martin; Sauer, Dirk Uwe
2014-09-01
Lithium-ion battery systems employed in high power demanding systems such as electric vehicles require a sophisticated monitoring system to ensure safe and reliable operation. Three major states of the battery are of special interest and need to be constantly monitored. These include: battery state of charge (SoC), battery state of health (capacity fade determination, SoH), and state of function (power fade determination, SoF). The second paper concludes the series by presenting a multi-stage online parameter identification technique based on a weighted recursive least quadratic squares parameter estimator to determine the parameters of the proposed battery model from the first paper during operation. A novel mutation based algorithm is developed to determine the nonlinear current dependency of the charge-transfer resistance. The influence of diffusion is determined by an on-line identification technique and verified on several batteries at different operation conditions. This method guarantees a short response time and, together with its fully recursive structure, assures a long-term stable monitoring of the battery parameters. The relative dynamic voltage prediction error of the algorithm is reduced to 2%. The changes of parameters are used to determine the states of the battery. The algorithm is real-time capable and can be implemented on embedded systems.
Thermal bioaerosol cloud tracking with Bayesian classification
NASA Astrophysics Data System (ADS)
Smith, Christian W.; Dupuis, Julia R.; Schundler, Elizabeth C.; Marinelli, William J.
2017-05-01
The development of a wide area, bioaerosol early warning capability employing existing uncooled thermal imaging systems used for persistent perimeter surveillance is discussed. The capability exploits thermal imagers with other available data streams including meteorological data and employs a recursive Bayesian classifier to detect, track, and classify observed thermal objects with attributes consistent with a bioaerosol plume. Target detection is achieved based on similarity to a phenomenological model which predicts the scene-dependent thermal signature of bioaerosol plumes. Change detection in thermal sensor data is combined with local meteorological data to locate targets with the appropriate thermal characteristics. Target motion is tracked utilizing a Kalman filter and nearly constant velocity motion model for cloud state estimation. Track management is performed using a logic-based upkeep system, and data association is accomplished using a combinatorial optimization technique. Bioaerosol threat classification is determined using a recursive Bayesian classifier to quantify the threat probability of each tracked object. The classifier can accept additional inputs from visible imagers, acoustic sensors, and point biological sensors to improve classification confidence. This capability was successfully demonstrated for bioaerosol simulant releases during field testing at Dugway Proving Grounds. Standoff detection at a range of 700m was achieved for as little as 500g of anthrax simulant. Developmental test results will be reviewed for a range of simulant releases, and future development and transition plans for the bioaerosol early warning platform will be discussed.
Study of VOCs transport and storage in porous media and assemblies
NASA Astrophysics Data System (ADS)
Xu, Jing
Indoor VOCs concentrations are influenced greatly by the transport and storage of VOCs in building and furnishing materials, majority of which belong to porous media. The transport and storage ability of a porous media for a given VOC can be characterized by its diffusion coefficient and partition coefficient, respectively, and such data are currently lacking. Besides, environmental conditions are another important factor that affects the VOCs emission. The main purposes of this dissertation are: (1) validate the similarity hypothesis between the transport of water vapor and VOCs in porous materials, and help build a database of VOC transport and storage properties with the assistance of the similarity hypothesis; (2) investigate the effect of relative humidity on the diffusion and partition coefficients; (3) develop a numerical multilayer model to simulate the VOCs' emission characteristics in both short and long term. To better understand the similarity and difference between moisture and volatile organic compounds (VOCs) diffusion through porous media, a dynamic dual-chamber experimental system was developed. The diffusion coefficients and partition coefficients of moisture and selected VOCs in materials were compared. Based on the developed similarity theory, the diffusion behavior of each particular VOC in porous media is predictable as long as the similarity coefficient of the VOC is known. Experimental results showed that relative humidity in the 80%RH led to a higher partition coefficient for formaldehyde compared to 50%RH. However, between 25% and 50% RH, there was no significant difference in partition coefficient. The partition coefficient of toluene decreased with the increase of humidity due to competition with water molecules for pore surface area and the non-soluble nature of toluene. The solubility of VOCs was found to correlate well with the partition coefficient of VOCs. The partition coefficient of VOCs was not simply inversely proportional to the vapor pressure of the compound, but also increased with the increase of the Henry's law constant. Experiment results also showed that a higher relative humidity led to a larger effective diffusion coefficient for both conventional wallboard and green wallboard. The partition coefficient (Kma) of formaldehyde in conventional wallboard was larger at 50% RH than at 20% RH, while the difference in partition coefficient between 50% RH and 70% RH was insignificant. For the green wallboard and green carpet, the partition coefficient increased slightly with the increase of relative humidity from 20% to 50% and 70%. Engineered wood products such as particleboard have widely been used with wood veneer and laminate to form multilayer assembly work surfaces or panels. The multilayer model study in this dissertation comprised both numerical and experimental investigation of the VOCs emission from such an assembly. A coupled 1D multilayer model based on CHAMPS (coupled heat, air, moisture and pollutant simulations) was first described. Later, the transport properties of each material layer were determined. Several emission cases from a three-layered heterogeneous work assembly were modeled using a developed simulation model. At last, the numerical model was verified by the experimental data of both hexanal and acetaldehyde emissions in a 50L standard small scale chamber. The model is promising in predicting VOCs' emissions for multilayered porous materials in emission tests.
Sparse Regression as a Sparse Eigenvalue Problem
NASA Technical Reports Server (NTRS)
Moghaddam, Baback; Gruber, Amit; Weiss, Yair; Avidan, Shai
2008-01-01
We extend the l0-norm "subspectral" algorithms for sparse-LDA [5] and sparse-PCA [6] to general quadratic costs such as MSE in linear (kernel) regression. The resulting "Sparse Least Squares" (SLS) problem is also NP-hard, by way of its equivalence to a rank-1 sparse eigenvalue problem (e.g., binary sparse-LDA [7]). Specifically, for a general quadratic cost we use a highly-efficient technique for direct eigenvalue computation using partitioned matrix inverses which leads to dramatic x103 speed-ups over standard eigenvalue decomposition. This increased efficiency mitigates the O(n4) scaling behaviour that up to now has limited the previous algorithms' utility for high-dimensional learning problems. Moreover, the new computation prioritizes the role of the less-myopic backward elimination stage which becomes more efficient than forward selection. Similarly, branch-and-bound search for Exact Sparse Least Squares (ESLS) also benefits from partitioned matrix inverse techniques. Our Greedy Sparse Least Squares (GSLS) generalizes Natarajan's algorithm [9] also known as Order-Recursive Matching Pursuit (ORMP). Specifically, the forward half of GSLS is exactly equivalent to ORMP but more efficient. By including the backward pass, which only doubles the computation, we can achieve lower MSE than ORMP. Experimental comparisons to the state-of-the-art LARS algorithm [3] show forward-GSLS is faster, more accurate and more flexible in terms of choice of regularization
Modeling Adsorption Based Filters (Bio-remediation of Heavy Metal Contaminated Water)
NASA Astrophysics Data System (ADS)
McCarthy, Chris
I will discuss kinetic models of adsorption, as well as models of filters based on those mechanisms. These mathematical models have been developed in support of our interdisciplinary lab group, which is centered at BMCC/CUNY (City University of New York). Our group conducts research into bio-remediation of heavy metal contaminated water via filtration. The filters are constructed out of biomass, such as spent tea leaves. The spent tea leaves are available in large quantities as a result of the industrial production of tea beverages. The heavy metals bond with the surfaces of the tea leaves (adsorption). The models involve differential equations, stochastic methods, and recursive functions. I will compare the models' predictions to data obtained from computer simulations and experimentally by our lab group. Funding: CUNY Collaborative Incentive Research Grant (Round 12); CUNY Research Scholars Program.
Recursive Subsystems in Aphasia and Alzheimer's Disease: Case Studies in Syntax and Theory of Mind.
Bánréti, Zoltán; Hoffmann, Ildikó; Vincze, Veronika
2016-01-01
The relationship between recursive sentence embedding and theory-of-mind (ToM) inference is investigated in three persons with Broca's aphasia, two persons with Wernicke's aphasia, and six persons with mild and moderate Alzheimer's disease (AD). We asked questions of four types about photographs of various real-life situations. Type 4 questions asked participants about intentions, thoughts, or utterances of the characters in the pictures ("What may X be thinking/asking Y to do?"). The expected answers typically involved subordinate clauses introduced by conjunctions or direct quotations of the characters' utterances. Broca's aphasics did not produce answers with recursive sentence embedding. Rather, they projected themselves into the characters' mental states and gave direct answers in the first person singular, with relevant ToM content. We call such replies "situative statements." Where the question concerned the mental state of the character but did not require an answer with sentence embedding ("What does X hate?"), aphasics gave descriptive answers rather than situative statements. Most replies given by persons with AD to Type 4 questions were grammatical instances of recursive sentence embedding. They also gave a few situative statements but the ToM content of these was irrelevant. In more than one third of their well-formed sentence embeddings, too, they conveyed irrelevant ToM contents. Persons with moderate AD were unable to pass secondary false belief tests. The results reveal double dissociation: Broca's aphasics are unable to access recursive sentence embedding but they can make appropriate ToM inferences; moderate AD persons make the wrong ToM inferences but they are able to access recursive sentence embedding. The double dissociation may be relevant for the nature of the relationship between the two recursive capacities. Broca's aphasics compensated for the lack of recursive sentence embedding by recursive ToM reasoning represented in very simple syntactic forms: they used one recursive subsystem to stand in for another recursive subsystem.
Recursive Subsystems in Aphasia and Alzheimer's Disease: Case Studies in Syntax and Theory of Mind
Bánréti, Zoltán; Hoffmann, Ildikó; Vincze, Veronika
2016-01-01
The relationship between recursive sentence embedding and theory-of-mind (ToM) inference is investigated in three persons with Broca's aphasia, two persons with Wernicke's aphasia, and six persons with mild and moderate Alzheimer's disease (AD). We asked questions of four types about photographs of various real-life situations. Type 4 questions asked participants about intentions, thoughts, or utterances of the characters in the pictures (“What may X be thinking/asking Y to do?”). The expected answers typically involved subordinate clauses introduced by conjunctions or direct quotations of the characters' utterances. Broca's aphasics did not produce answers with recursive sentence embedding. Rather, they projected themselves into the characters' mental states and gave direct answers in the first person singular, with relevant ToM content. We call such replies “situative statements.” Where the question concerned the mental state of the character but did not require an answer with sentence embedding (“What does X hate?”), aphasics gave descriptive answers rather than situative statements. Most replies given by persons with AD to Type 4 questions were grammatical instances of recursive sentence embedding. They also gave a few situative statements but the ToM content of these was irrelevant. In more than one third of their well-formed sentence embeddings, too, they conveyed irrelevant ToM contents. Persons with moderate AD were unable to pass secondary false belief tests. The results reveal double dissociation: Broca's aphasics are unable to access recursive sentence embedding but they can make appropriate ToM inferences; moderate AD persons make the wrong ToM inferences but they are able to access recursive sentence embedding. The double dissociation may be relevant for the nature of the relationship between the two recursive capacities. Broca's aphasics compensated for the lack of recursive sentence embedding by recursive ToM reasoning represented in very simple syntactic forms: they used one recursive subsystem to stand in for another recursive subsystem. PMID:27064887
Partitioning behavior of aromatic components in jet fuel into diverse membrane-coated fibers.
Baynes, Ronald E; Xia, Xin-Rui; Barlow, Beth M; Riviere, Jim E
2007-11-01
Jet fuel components are known to partition into skin and produce occupational irritant contact dermatitis (OICD) and potentially adverse systemic effects. The purpose of this study was to determine how jet fuel components partition (1) from solvent mixtures into diverse membrane-coated fibers (MCFs) and (2) from biological media into MCFs to predict tissue distribution. Three diverse MCFs, polydimethylsiloxane (PDMS, lipophilic), polyacrylate (PA, polarizable), and carbowax (CAR, polar), were selected to simulate the physicochemical properties of skin in vivo. Following an appropriate equilibrium time between the MCF and dosing solutions, the MCF was injected directly into a gas chromatograph/mass spectrometer (GC-MS) to quantify the amount that partitioned into the membrane. Three vehicles (water, 50% ethanol-water, and albumin-containing media solution) were studied for selected jet fuel components. The more hydrophobic the component, the greater was the partitioning into the membranes across all MCF types, especially from water. The presence of ethanol as a surrogate solvent resulted in significantly reduced partitioning into the MCFs with discernible differences across the three fibers based on their chemistries. The presence of a plasma substitute (media) also reduced partitioning into the MCF, with the CAR MCF system being better correlated to the predicted partitioning of aromatic components into skin. This study demonstrated that a single or multiple set of MCF fibers may be used as a surrogate for octanol/water systems and skin to assess partitioning behavior of nine aromatic components frequently formulated with jet fuels. These diverse inert fibers were able to assess solute partitioning from a blood substitute such as media into a membrane possessing physicochemical properties similar to human skin. This information may be incorporated into physiologically based pharmacokinetic (PBPK) models to provide a more accurate assessment of tissue dosimetry of related toxicants.
Zheng, Huijie; Gong, Jixian; Chen, Tao; Chen, Xun; Zhao, Xueming
2010-02-01
Improvement of acid tolerance and production of D-lactic acid by Sporolactobacillus inulinus ATCC 15538 was performed by using recursive protoplast fusion in a genome shuffling format. The starting population was generated by ultraviolet irradiation, diethyl sulfate mutagenesis, and pH-gradient filter and then, subjected for the recursive protoplast fusion. The concentration of lysozyme, time, and temperature for enzyme treatment were optimized by response surface methodology based on the central composite design. Based on contour plots and variance analysis, the model predicted a maximum Y (multiply protoplasts formation ratio by protoplasts regeneration ratio), 60.4%, and the corresponding above used values were 7.75 mg/ml lysozyme, 1.59 h, and 38 degrees C. A pH-5-resistant recombinant, F3-4, was obtained after three rounds of genome shuffling and its production of D-lactic acid reached 93.4 g/l in a 5 L bioreactor, which was increased by 39.8% and 119% in comparison with that of UV generated strain and the original strain S. inulinus ATCC 15538, respectively. The subculture experiments indicated that F3-4 was genetically stable.
Distributed Memory Parallel Computing with SEAWAT
NASA Astrophysics Data System (ADS)
Verkaik, J.; Huizer, S.; van Engelen, J.; Oude Essink, G.; Ram, R.; Vuik, K.
2017-12-01
Fresh groundwater reserves in coastal aquifers are threatened by sea-level rise, extreme weather conditions, increasing urbanization and associated groundwater extraction rates. To counteract these threats, accurate high-resolution numerical models are required to optimize the management of these precious reserves. The major model drawbacks are long run times and large memory requirements, limiting the predictive power of these models. Distributed memory parallel computing is an efficient technique for reducing run times and memory requirements, where the problem is divided over multiple processor cores. A new Parallel Krylov Solver (PKS) for SEAWAT is presented. PKS has recently been applied to MODFLOW and includes Conjugate Gradient (CG) and Biconjugate Gradient Stabilized (BiCGSTAB) linear accelerators. Both accelerators are preconditioned by an overlapping additive Schwarz preconditioner in a way that: a) subdomains are partitioned using Recursive Coordinate Bisection (RCB) load balancing, b) each subdomain uses local memory only and communicates with other subdomains by Message Passing Interface (MPI) within the linear accelerator, c) it is fully integrated in SEAWAT. Within SEAWAT, the PKS-CG solver replaces the Preconditioned Conjugate Gradient (PCG) solver for solving the variable-density groundwater flow equation and the PKS-BiCGSTAB solver replaces the Generalized Conjugate Gradient (GCG) solver for solving the advection-diffusion equation. PKS supports the third-order Total Variation Diminishing (TVD) scheme for computing advection. Benchmarks were performed on the Dutch national supercomputer (https://userinfo.surfsara.nl/systems/cartesius) using up to 128 cores, for a synthetic 3D Henry model (100 million cells) and the real-life Sand Engine model ( 10 million cells). The Sand Engine model was used to investigate the potential effect of the long-term morphological evolution of a large sand replenishment and climate change on fresh groundwater resources. Speed-ups up to 40 were obtained with the new PKS solver.
Analysis of red blood cell partitioning at bifurcations in simulated microvascular networks
NASA Astrophysics Data System (ADS)
Balogh, Peter; Bagchi, Prosenjit
2018-05-01
Partitioning of red blood cells (RBCs) at vascular bifurcations has been studied over many decades using in vivo, in vitro, and theoretical models. These studies have shown that RBCs usually do not distribute to the daughter vessels with the same proportion as the blood flow. Such disproportionality occurs, whereby the cell distribution fractions are either higher or lower than the flow fractions and have been referred to as classical partitioning and reverse partitioning, respectively. The current work presents a study of RBC partitioning based on, for the first time, a direct numerical simulation (DNS) of a flowing cell suspension through modeled vascular networks that are comprised of multiple bifurcations and have topological similarity to microvasculature in vivo. The flow of deformable RBCs at physiological hematocrits is considered through the networks, and the 3D dynamics of each individual cell are accurately resolved. The focus is on the detailed analysis of the partitioning, based on the DNS data, as it develops naturally in successive bifurcations, and the underlying mechanisms. We find that while the time-averaged partitioning at a bifurcation manifests in one of two ways, namely, the classical or reverse partitioning, the time-dependent behavior can cycle between these two types. We identify and analyze four different cellular-scale mechanisms underlying the time-dependent partitioning. These mechanisms arise, in general, either due to an asymmetry in the RBC distribution in the feeding vessels caused by the events at an upstream bifurcation or due to a temporary increase in cell concentration near capillary bifurcations. Using the DNS results, we show that a positive skewness in the hematocrit profile in the feeding vessel is associated with the classical partitioning, while a negative skewness is associated with the reverse one. We then present a detailed analysis of the two components of disproportionate partitioning as identified in prior studies, namely, plasma skimming and cell screening. The plasma skimming component is shown to under-predict the disproportionality, leaving the cell screening component to make up for the difference. The crossing of the separation surface by the cells is observed to be a dominant mechanism underlying the cell screening, which is shown to mitigate extreme heterogeneity in RBC distribution across the networks.
Luchko, Tyler; Blinov, Nikolay; Limon, Garrett C; Joyce, Kevin P; Kovalenko, Andriy
2016-11-01
Implicit solvent methods for classical molecular modeling are frequently used to provide fast, physics-based hydration free energies of macromolecules. Less commonly considered is the transferability of these methods to other solvents. The Statistical Assessment of Modeling of Proteins and Ligands 5 (SAMPL5) distribution coefficient dataset and the accompanying explicit solvent partition coefficient reference calculations provide a direct test of solvent model transferability. Here we use the 3D reference interaction site model (3D-RISM) statistical-mechanical solvation theory, with a well tested water model and a new united atom cyclohexane model, to calculate partition coefficients for the SAMPL5 dataset. The cyclohexane model performed well in training and testing ([Formula: see text] for amino acid neutral side chain analogues) but only if a parameterized solvation free energy correction was used. In contrast, the same protocol, using single solute conformations, performed poorly on the SAMPL5 dataset, obtaining [Formula: see text] compared to the reference partition coefficients, likely due to the much larger solute sizes. Including solute conformational sampling through molecular dynamics coupled with 3D-RISM (MD/3D-RISM) improved agreement with the reference calculation to [Formula: see text]. Since our initial calculations only considered partition coefficients and not distribution coefficients, solute sampling provided little benefit comparing against experiment, where ionized and tautomer states are more important. Applying a simple [Formula: see text] correction improved agreement with experiment from [Formula: see text] to [Formula: see text], despite a small number of outliers. Better agreement is possible by accounting for tautomers and improving the ionization correction.
NASA Astrophysics Data System (ADS)
Luchko, Tyler; Blinov, Nikolay; Limon, Garrett C.; Joyce, Kevin P.; Kovalenko, Andriy
2016-11-01
Implicit solvent methods for classical molecular modeling are frequently used to provide fast, physics-based hydration free energies of macromolecules. Less commonly considered is the transferability of these methods to other solvents. The Statistical Assessment of Modeling of Proteins and Ligands 5 (SAMPL5) distribution coefficient dataset and the accompanying explicit solvent partition coefficient reference calculations provide a direct test of solvent model transferability. Here we use the 3D reference interaction site model (3D-RISM) statistical-mechanical solvation theory, with a well tested water model and a new united atom cyclohexane model, to calculate partition coefficients for the SAMPL5 dataset. The cyclohexane model performed well in training and testing (R=0.98 for amino acid neutral side chain analogues) but only if a parameterized solvation free energy correction was used. In contrast, the same protocol, using single solute conformations, performed poorly on the SAMPL5 dataset, obtaining R=0.73 compared to the reference partition coefficients, likely due to the much larger solute sizes. Including solute conformational sampling through molecular dynamics coupled with 3D-RISM (MD/3D-RISM) improved agreement with the reference calculation to R=0.93. Since our initial calculations only considered partition coefficients and not distribution coefficients, solute sampling provided little benefit comparing against experiment, where ionized and tautomer states are more important. Applying a simple pK_{ {a}} correction improved agreement with experiment from R=0.54 to R=0.66, despite a small number of outliers. Better agreement is possible by accounting for tautomers and improving the ionization correction.
Intracochlear Scala Media Pressure Measurement: Implications for Models of Cochlear Mechanics.
Kale, Sushrut S; Olson, Elizabeth S
2015-12-15
Models of the active cochlea build upon the underlying passive mechanics. Passive cochlear mechanics is based on physical and geometrical properties of the cochlea and the fluid-tissue interaction between the cochlear partition and the surrounding fluid. Although the fluid-tissue interaction between the basilar membrane and the fluid in scala tympani (ST) has been explored in both active and passive cochleae, there was no experimental data on the fluid-tissue interaction on the scala media (SM) side of the partition. To this aim, we measured sound-evoked intracochlear pressure in SM close to the partition using micropressure sensors. All the SM pressure data are from passive cochleae, likely because the SM cochleostomy led to loss of endocochlear potential. Thus, these experiments are studies of passive cochlear mechanics. SM pressure close to the tissue showed a pattern of peaks and notches, which could be explained as an interaction between fast and slow (i.e., traveling wave) pressure modes. In several animals SM and ST pressure were measured in the same cochlea. Similar to previous studies, ST-pressure was dominated by a slow, traveling wave mode at stimulus frequencies in the vicinity of the best frequency of the measurement location, and by a fast mode above best frequency. Antisymmetric pressure between SM and ST supported the classic single-partition cochlear models, or a dual-partition model with tight coupling between partitions. From the SM and ST pressure we calculated slow and fast modes, and from active ST pressure we extrapolated the passive findings to the active case. The passive slow mode estimated from SM and ST data was low-pass in nature, as predicted by cochlear models. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Intracochlear Scala Media Pressure Measurement: Implications for Models of Cochlear Mechanics
Kale, Sushrut S.; Olson, Elizabeth S.
2015-01-01
Models of the active cochlea build upon the underlying passive mechanics. Passive cochlear mechanics is based on physical and geometrical properties of the cochlea and the fluid-tissue interaction between the cochlear partition and the surrounding fluid. Although the fluid-tissue interaction between the basilar membrane and the fluid in scala tympani (ST) has been explored in both active and passive cochleae, there was no experimental data on the fluid-tissue interaction on the scala media (SM) side of the partition. To this aim, we measured sound-evoked intracochlear pressure in SM close to the partition using micropressure sensors. All the SM pressure data are from passive cochleae, likely because the SM cochleostomy led to loss of endocochlear potential. Thus, these experiments are studies of passive cochlear mechanics. SM pressure close to the tissue showed a pattern of peaks and notches, which could be explained as an interaction between fast and slow (i.e., traveling wave) pressure modes. In several animals SM and ST pressure were measured in the same cochlea. Similar to previous studies, ST-pressure was dominated by a slow, traveling wave mode at stimulus frequencies in the vicinity of the best frequency of the measurement location, and by a fast mode above best frequency. Antisymmetric pressure between SM and ST supported the classic single-partition cochlear models, or a dual-partition model with tight coupling between partitions. From the SM and ST pressure we calculated slow and fast modes, and from active ST pressure we extrapolated the passive findings to the active case. The passive slow mode estimated from SM and ST data was low-pass in nature, as predicted by cochlear models. PMID:26682824
Srinivasaiah, Nishant M.; Vaidyanathan, Srinivas; Sinha, Anindya
2012-01-01
Background A dearth in understanding the behavior of Asian elephants (Elephas maximus) at the scale of populations and individuals has left important management issues, particularly related to human-elephant conflict (HEC), unresolved. Evaluation of differences in behavior and decision-making among individual elephants across groups in response to changing local ecological settings is essential to fill this gap in knowledge and to improve our approaches towards the management and conservation of elephants. Methodology/Principal Findings We hypothesized certain behavioral decisions that would be made by Asian elephants as reflected in their residence time and movement rates, time-activity budgets, social interactions and group dynamics in response to resource availability and human disturbance in their habitat. This study is based on 200 h of behavioral observations on 60 individually identified elephants and a 184-km2 grid-based survey of their natural and anthropogenic habitats within and outside the Bannerghatta National Park, southern India during the dry season. At a general population level, the behavioral decisions appeared to be guided by the gender, age and group-type of the elephants. At the individual level, the observed variation could be explained only by the idiosyncratic behaviors of individuals and that of their associating conspecific individuals. Recursive partitioning classification trees for residence time of individual elephants indicated that the primary decisions were taken by individuals, independently of their above-mentioned biological and ecological attributes. Conclusions/Significance Decision-making by Asian elephants thus appears to be determined at two levels, that of the population and, more importantly, the individual. Models based on decision-making by individual elephants have the potential to predict conflict in fragmented landscapes that, in turn, could aid in mitigating HEC. Thus, we must target individuals, in addition to populations, in our efforts to manage and conserve this threatened species, particularly in human-dominated landscapes. PMID:22916135
Srinivasaiah, Nishant M; Anand, Vijay D; Vaidyanathan, Srinivas; Sinha, Anindya
2012-01-01
A dearth in understanding the behavior of Asian elephants (Elephas maximus) at the scale of populations and individuals has left important management issues, particularly related to human-elephant conflict (HEC), unresolved. Evaluation of differences in behavior and decision-making among individual elephants across groups in response to changing local ecological settings is essential to fill this gap in knowledge and to improve our approaches towards the management and conservation of elephants. We hypothesized certain behavioral decisions that would be made by Asian elephants as reflected in their residence time and movement rates, time-activity budgets, social interactions and group dynamics in response to resource availability and human disturbance in their habitat. This study is based on 200 h of behavioral observations on 60 individually identified elephants and a 184-km(2) grid-based survey of their natural and anthropogenic habitats within and outside the Bannerghatta National Park, southern India during the dry season. At a general population level, the behavioral decisions appeared to be guided by the gender, age and group-type of the elephants. At the individual level, the observed variation could be explained only by the idiosyncratic behaviors of individuals and that of their associating conspecific individuals. Recursive partitioning classification trees for residence time of individual elephants indicated that the primary decisions were taken by individuals, independently of their above-mentioned biological and ecological attributes. Decision-making by Asian elephants thus appears to be determined at two levels, that of the population and, more importantly, the individual. Models based on decision-making by individual elephants have the potential to predict conflict in fragmented landscapes that, in turn, could aid in mitigating HEC. Thus, we must target individuals, in addition to populations, in our efforts to manage and conserve this threatened species, particularly in human-dominated landscapes.
NASA Astrophysics Data System (ADS)
Wright, N.; Polashenski, C. M.; Deeb, E. J.; Morriss, B. F.; Song, A.; Chen, J.
2015-12-01
One of the key processes controlling sea ice mass balance in the Arctic is the partitioning of solar energy between reflection back to the atmosphere and absorption into the ice and upper ocean. We investigate the solar energy balance in the ice-ocean system using in-situ data collected from Arctic Observing Network (AON) sea ice sites and imagery from high resolution optical satellites. AON assets, including ice mass balance buoys and ice tethered profilers, monitor the storage and fluxes of heat in the ice-ocean system. High resolution satellite imagery, processed using object-based image classification techniques, allows us to quantify the evolution of surrounding ice conditions, including melt pond coverage and floe size distribution, at aggregate scale. We present results from regionally representative sites that constrain the partitioning of absorbed solar energy between ice melt and ocean storage, and quantify the strength of the ice-albedo feedback. We further demonstrate how the results can be used to validate model representations of the physical processes controlling ice-albedo feedbacks. The techniques can be extended to understand solar partitioning across the Arctic basin using additional sites and model based data integration.
Solute partitioning under continuous cooling conditions as a cooling rate indicator. [in lunar rocks
NASA Technical Reports Server (NTRS)
Onorato, P. I. K.; Hopper, R. W.; Yinnon, H.; Uhlmann, D. R.; Taylor, L. A.; Garrison, J. R.; Hunter, R.
1981-01-01
A model of solute partitioning in a finite body under conditions of continuous cooling is developed for the determination of cooling rates from concentration profile data, and applied to the partitioning of zirconium between ilmenite and ulvospinel in the Apollo 15 Elbow Crater rocks. Partitioning in a layered composite solid is described numerically in terms of concentration profiles and diffusion coefficients which are functions of time and temperature, respectively; a program based on the model can be used to calculate concentration profiles for various assumed cooling rates given the diffusion coefficients in the two phases and the equilibrium partitioning ratio over a range of temperatures. In the case of the Elbow Rock gabbros, the cooling rates are calculated from measured concentration ratios 10 microns from the interphase boundaries under the assumptions of uniform and equilibrium initial conditions at various starting temperatures. It is shown that the specimens could not have had uniform concentrations profiles at the previously suggested initial temperature of 1350 K. It is concluded that even under conditions where the initial temperature, grain sizes and solute diffusion coefficients are not well characterized, the model can be used to estimate the cooling rate of a grain assemblage to within an order of magnitude.
Human motion planning based on recursive dynamics and optimal control techniques
NASA Technical Reports Server (NTRS)
Lo, Janzen; Huang, Gang; Metaxas, Dimitris
2002-01-01
This paper presents an efficient optimal control and recursive dynamics-based computer animation system for simulating and controlling the motion of articulated figures. A quasi-Newton nonlinear programming technique (super-linear convergence) is implemented to solve minimum torque-based human motion-planning problems. The explicit analytical gradients needed in the dynamics are derived using a matrix exponential formulation and Lie algebra. Cubic spline functions are used to make the search space for an optimal solution finite. Based on our formulations, our method is well conditioned and robust, in addition to being computationally efficient. To better illustrate the efficiency of our method, we present results of natural looking and physically correct human motions for a variety of human motion tasks involving open and closed loop kinematic chains.
Some practicable applications of quadtree data structures/representation in astronomy
NASA Technical Reports Server (NTRS)
Pasztor, L.
1992-01-01
Development of quadtree as hierarchical data structuring technique for representing spatial data (like points, regions, surfaces, lines, curves, volumes, etc.) has been motivated to a large extent by storage requirements of images, maps, and other multidimensional (spatially structured) data. For many spatial algorithms, time-efficiency of quadtrees in terms of execution may be as important as their space-efficiency concerning storage conditions. Briefly, the quadtree is a class of hierarchical data structures which is based on the recursive partition of a square region into quadrants and sub-quadrants until a predefined limit. Beyond the wide applicability of quadtrees in image processing, spatial information analysis, and building digital databases (processes becoming ordinary for the astronomical community), there may be numerous further applications in astronomy. Some of these practicable applications based on quadtree representation of astronomical data are presented and suggested for further considerations. Examples are shown for use of point as well as region quadtrees. Statistics of different leaf and non-leaf nodes (homogeneous and heterogeneous sub-quadrants respectively) at different levels may provide useful information on spatial structure of astronomical data in question. By altering the principle guiding the decomposition process, different types of spatial data may be focused on. Finally, a sampling method based on quadtree representation of an image is proposed which may prove to be efficient in the elaboration of sampling strategy in a region where observations were carried out previously either with different resolution or/and in different bands.
NASA Astrophysics Data System (ADS)
Yuan, Quan; Ma, Guangcai; Xu, Ting; Serge, Bakire; Yu, Haiying; Chen, Jianrong; Lin, Hongjun
2016-10-01
Poly-/perfluoroalkyl substances (PFASs) are a class of synthetic fluorinated organic substances that raise increasing concern because of their environmental persistence, bioaccumulation and widespread presence in various environment media and organisms. PFASs can be released into the atmosphere through both direct and indirect sources, and the gas/particle partition coefficient (KP) is an important parameter that helps us to understand their atmospheric behavior. In this study, we developed a temperature-dependent predictive model for log KP of PFASs and analyzed the molecular mechanism that governs their partitioning equilibrium between gas phase and particle phase. All theoretical computation was carried out at B3LYP/6-31G (d, p) level based on neutral molecular structures by Gaussian 09 program package. The regression model has a good statistical performance and robustness. The application domain has also been defined according to OECD guidance. The mechanism analysis shows that electrostatic interaction and dispersion interaction play the most important role in the partitioning equilibrium. The developed model can be used to predict log KP values of neutral fluorotelomer alcohols and perfluor sulfonamides/sulfonamidoethanols with different substitutions at nitrogen atoms, providing basic data for their ecological risk assessment.
Copula-based prediction of economic movements
NASA Astrophysics Data System (ADS)
García, J. E.; González-López, V. A.; Hirsh, I. D.
2016-06-01
In this paper we model the discretized returns of two paired time series BM&FBOVESPA Dividend Index and BM&FBOVESPA Public Utilities Index using multivariate Markov models. The discretization corresponds to three categories, high losses, high profits and the complementary periods of the series. In technical terms, the maximal memory that can be considered for a Markov model, can be derived from the size of the alphabet and dataset. The number of parameters needed to specify a discrete multivariate Markov chain grows exponentially with the order and dimension of the chain. In this case the size of the database is not large enough for a consistent estimation of the model. We apply a strategy to estimate a multivariate process with an order greater than the order achieved using standard procedures. The new strategy consist on obtaining a partition of the state space which is constructed from a combination, of the partitions corresponding to the two marginal processes and the partition corresponding to the multivariate Markov chain. In order to estimate the transition probabilities, all the partitions are linked using a copula. In our application this strategy provides a significant improvement in the movement predictions.
Impedance measurements of the human cochlear partition
NASA Astrophysics Data System (ADS)
Raufer, Stefan; Nakajima, Hideko H.
2018-05-01
The cochlea is a mechanical frequency analyzer, owing its characteristics to the impedance of the cochlear partition. In humans, the impedance of the partition has not been measured directly, and estimates of the stiffness (a principal component of the impedance) are based on loose assumptions. In this study, we examine not only the stiffness of the basilar membrane (BM), but also the osseous spiral lamina (OSL), which, in human, vibrates substantially. We hypothesize that the OSL contributes significantly to the volume stiffness of the cochlear partition (CP). We measured velocities of the BM and OSL at different radial locations 1 mm from the base of the cochlea in a fresh human cadaveric specimen. Simultaneously, we measured intracochlear pressures on the other side of the partition, in scala vestibuli. With the velocity and pressure measurements we can estimate the specific acoustic impedance of the BM and OSL (Z = p/v). At frequencies well below the resonant frequency, the stiffness of these structures can be extracted by multiplying the impedance by the radian frequency. The specific acoustic stiffness was found to be 1.2 GPa/m on the BM, 6 GPa/m at the juncture where the BM attaches to the OSL, and 10 GPa/m at the midpoint of the OSL. A beam model, appropriate to model the radial motion of the BM in guinea pig or gerbil, cannot describe the displacement of the human CP in the base. Instead, we find that the OSL is hinged near the modiolus and vibrates significantly near the connection to the more compliant BM, contributing greatly the volume compliance of the CP.
González, Janneth; Gálvez, Angela; Morales, Ludis; Barreto, George E.; Capani, Francisco; Sierra, Omar; Torres, Yolima
2013-01-01
Three-dimensional models of the alpha- and beta-1 subunits of the calcium-activated potassium channel (BK) were predicted by threading modeling. A recursive approach comprising of sequence alignment and model building based on three templates was used to build these models, with the refinement of non-conserved regions carried out using threading techniques. The complex formed by the subunits was studied by means of docking techniques, using 3D models of the two subunits, and an approach based on rigid-body structures. Structural effects of the complex were analyzed with respect to hydrogen-bond interactions and binding-energy calculations. Potential interaction sites of the complex were determined by referencing a study of the difference accessible surface area (DASA) of the protein subunits in the complex. PMID:23492851
Fu, Zhiqiang; Chen, Jingwen; Li, Xuehua; Wang, Ya'nan; Yu, Haiying
2016-04-01
The octanol-air partition coefficient (KOA) is needed for assessing multimedia transport and bioaccumulability of organic chemicals in the environment. As experimental determination of KOA for various chemicals is costly and laborious, development of KOA estimation methods is necessary. We investigated three methods for KOA prediction, conventional quantitative structure-activity relationship (QSAR) models based on molecular structural descriptors, group contribution models based on atom-centered fragments, and a novel model that predicts KOA via solvation free energy from air to octanol phase (ΔGO(0)), with a collection of 939 experimental KOA values for 379 compounds at different temperatures (263.15-323.15 K) as validation or training sets. The developed models were evaluated with the OECD guidelines on QSAR models validation and applicability domain (AD) description. Results showed that although the ΔGO(0) model is theoretically sound and has a broad AD, the prediction accuracy of the model is the poorest. The QSAR models perform better than the group contribution models, and have similar predictability and accuracy with the conventional method that estimates KOA from the octanol-water partition coefficient and Henry's law constant. One QSAR model, which can predict KOA at different temperatures, was recommended for application as to assess the long-range transport potential of chemicals. Copyright © 2016 Elsevier Ltd. All rights reserved.
Du, Lihong; White, Robert L
2009-02-01
A previously proposed partition equilibrium model for quantitative prediction of analyte response in electrospray ionization mass spectrometry is modified to yield an improved linear relationship. Analyte mass spectrometer response is modeled by a competition mechanism between analyte and background electrolytes that is based on partition equilibrium considerations. The correlation between analyte response and solution composition is described by the linear model over a wide concentration range and the improved model is shown to be valid for a wide range of experimental conditions. The behavior of an analyte in a salt solution, which could not be explained by the original model, is correctly predicted. The ion suppression effects of 16:0 lysophosphatidylcholine (LPC) on analyte signals are attributed to a combination of competition for excess charge and reduction of total charge due to surface tension effects. In contrast to the complicated mathematical forms that comprise the original model, the simplified model described here can more easily be employed to predict analyte mass spectrometer responses for solutions containing multiple components. Copyright (c) 2008 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Hopcroft, Peter O.; Gallagher, Kerry; Pain, Christopher C.
2009-08-01
Collections of suitably chosen borehole profiles can be used to infer large-scale trends in ground-surface temperature (GST) histories for the past few hundred years. These reconstructions are based on a large database of carefully selected borehole temperature measurements from around the globe. Since non-climatic thermal influences are difficult to identify, representative temperature histories are derived by averaging individual reconstructions to minimize the influence of these perturbing factors. This may lead to three potentially important drawbacks: the net signal of non-climatic factors may not be zero, meaning that the average does not reflect the best estimate of past climate; the averaging over large areas restricts the useful amount of more local climate change information available; and the inversion methods used to reconstruct the past temperatures at each site must be mathematically identical and are therefore not necessarily best suited to all data sets. In this work, we avoid these issues by using a Bayesian partition model (BPM), which is computed using a trans-dimensional form of a Markov chain Monte Carlo algorithm. This then allows the number and spatial distribution of different GST histories to be inferred from a given set of borehole data by partitioning the geographical area into discrete partitions. Profiles that are heavily influenced by non-climatic factors will be partitioned separately. Conversely, profiles with climatic information, which is consistent with neighbouring profiles, will then be inferred to lie in the same partition. The geographical extent of these partitions then leads to information on the regional extent of the climatic signal. In this study, three case studies are described using synthetic and real data. The first demonstrates that the Bayesian partition model method is able to correctly partition a suite of synthetic profiles according to the inferred GST history. In the second, more realistic case, a series of temperature profiles are calculated using surface air temperatures of a global climate model simulation. In the final case, 23 real boreholes from the United Kingdom, previously used for climatic reconstructions, are examined and the results compared with a local instrumental temperature series and the previous estimate derived from the same borehole data. The results indicate that the majority (17) of the 23 boreholes are unsuitable for climatic reconstruction purposes, at least without including other thermal processes in the forward model.
Time and Space Partition Platform for Safe and Secure Flight Software
NASA Astrophysics Data System (ADS)
Esquinas, Angel; Zamorano, Juan; de la Puente, Juan A.; Masmano, Miguel; Crespo, Alfons
2012-08-01
There are a number of research and development activities that are exploring Time and Space Partition (TSP) to implement safe and secure flight software. This approach allows to execute different real-time applications with different levels of criticality in the same computer board. In order to do that, flight applications must be isolated from each other in the temporal and spatial domains. This paper presents the first results of a partitioning platform based on the Open Ravenscar Kernel (ORK+) and the XtratuM hypervisor. ORK+ is a small, reliable realtime kernel supporting the Ada Ravenscar Computational model that is central to the ASSERT development process. XtratuM supports multiple virtual machines, i.e. partitions, on a single computer and is being used in the Integrated Modular Avionics for Space study. ORK+ executes in an XtratuM partition enabling Ada applications to share the computer board with other applications.
NASA Technical Reports Server (NTRS)
King, James; Nickling, W. G.; Gilliles, J. A.
2006-01-01
A field study was conducted to ascertain the amount of protection that mesquite-dominated communities provide to the surface from wind erosion. The dynamics of the locally accelerated evolution of a mesquite/coppice dune landscape and the undetermined spatial dependence of potential erosion by wind from a shear stress partition model were investigated. Sediment transport and dust emission processes are governed by the amount of protection that can be provided by roughness elements. Although shear stress partition models exist that can describe this, their accuracy has only been tested against a limited dataset because instrumentation has previously been unable to provide the necessary measurements. This study combines the use of meteorological towers and surface shear stress measurements with Irwin sensors to measure the partition of shear stress in situ. The surface shear stress within preferentially aligned vegetation (within coppice dune development) exhibited highly skewed distributions, while a more homogenous surface stress was recorded at a site with less developed coppice dunes. Above the vegetation, the logarithmic velocity profile deduced roughness length (based on 10-min averages) exhibited a distinct correlation with compass direction for the site with vegetation preferentially aligned, while the site with more homogenously distributed vegetation showed very little variation in the roughness length. This distribution in roughness length within an area, defines a distribution of a resolved shear stress partitioning model based on these measurements, ultimately providing potential closure to a previously uncorrelated model parameter.
NASA Astrophysics Data System (ADS)
King, James; Nickling, W. G.; Gillies, J. A.
2006-12-01
A field study was conducted to ascertain the amount of protection that mesquite-dominated communities provide to the surface from wind erosion. The dynamics of the locally accelerated evolution of a mesquite/coppice dune landscape and the undetermined spatial dependence of potential erosion by wind from a shear stress partition model were investigated. Sediment transport and dust emission processes are governed by the amount of protection that can be provided by roughness elements. Although shear stress partition models exist that can describe this, their accuracy has only been tested against a limited dataset because instrumentation has previously been unable to provide the necessary measurements. This study combines the use of meteorological towers and surface shear stress measurements with Irwin sensors to measure the partition of shear stress in situ. The surface shear stress within preferentially aligned vegetation (within coppice dune development) exhibited highly skewed distributions, while a more homogenous surface stress was recorded at a site with less developed coppice dunes. Above the vegetation, the logarithmic velocity profile deduced roughness length (based on 10-min averages) exhibited a distinct correlation with compass direction for the site with vegetation preferentially aligned, while the site with more homogenously distributed vegetation showed very little variation in the roughness length. This distribution in roughness length within an area, defines a distribution of a resolved shear stress partitioning model based on these measurements, ultimately providing potential closure to a previously uncorrelated model parameter.
NASA Astrophysics Data System (ADS)
Liu, X.; Zhang, M.; Zhang, D.; Wang, Z.; Wang, Y.
2017-12-01
Mixed-phase clouds are persistently observed over the Arctic and the phase partitioning between cloud liquid and ice hydrometeors in mixed-phase clouds has important impacts on the surface energy budget and Arctic climate. In this study, we test the NCAR Community Atmosphere Model Version 5 (CAM5) with the single-column and weather forecast configurations and evaluate the model performance against observation data from the DOE Atmospheric Radiation Measurement (ARM) Program's M-PACE field campaign in October 2004 and long-term ground-based multi-sensor remote sensing measurements. Like most global climate models, we find that CAM5 also poorly simulates the phase partitioning in mixed-phase clouds by significantly underestimating the cloud liquid water content. Assuming pocket structures in the distribution of cloud liquid and ice in mixed-phase clouds as suggested by in situ observations provides a plausible solution to improve the model performance by reducing the Wegner-Bergeron-Findeisen (WBF) process rate. In this study, the modification of the WBF process in the CAM5 model has been achieved with applying a stochastic perturbation to the time scale of the WBF process relevant to both ice and snow to account for the heterogeneous mixture of cloud liquid and ice. Our results show that this modification of WBF process improves the modeled phase partitioning in the mixed-phase clouds. The seasonal variation of mixed-phase cloud properties is also better reproduced in the model in comparison with the long-term ground-based remote sensing observations. Furthermore, the phase partitioning is insensitive to the reassignment time step of perturbations.