Simulation of the Beating Heart Based on Physically Modeling aDeformable Balloon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rohmer, Damien; Sitek, Arkadiusz; Gullberg, Grant T.
2006-07-18
The motion of the beating heart is complex and createsartifacts in SPECT and x-ray CT images. Phantoms such as the JaszczakDynamic Cardiac Phantom are used to simulate cardiac motion forevaluationof acquisition and data processing protocols used for cardiacimaging. Two concentric elastic membranes filled with water are connectedto tubing and pump apparatus for creating fluid flow in and out of theinner volume to simulate motion of the heart. In the present report, themovement of two concentric balloons is solved numerically in order tocreate a computer simulation of the motion of the moving membranes in theJaszczak Dynamic Cardiac Phantom. A system ofmore » differential equations,based on the physical properties, determine the motion. Two methods aretested for solving the system of differential equations. The results ofboth methods are similar providing a final shape that does not convergeto a trivial circular profile. Finally,a tomographic imaging simulationis performed by acquiring static projections of the moving shape andreconstructing the result to observe motion artifacts. Two cases aretaken into account: in one case each projection angle is sampled for ashort time interval and the other case is sampled for a longer timeinterval. The longer sampling acquisition shows a clear improvement indecreasing the tomographic streaking artifacts.« less
A stress index model for ascending balloons
NASA Technical Reports Server (NTRS)
Smith, I. S.
1986-01-01
Attention is given to the development on the part of NASA of a simplified stress 'index' model to establish the relative stress magnitudes along a balloon's gore position as a function of altitude. Application of this model to several hundred balloon flights showed a good correlation between balloon failure rate and stress 'index' level. This model can be used during the balloon design process to lower the levels of stress in the balloon. By increasing the wall thickness of the balloon, adding caps, lengthening caps, or using external caps, lower stress can be accomplished. As a result, in January 1985, the NASA Balloon Program established a stress index specification to limit the design and flight stresses for NASA balloons.
Thermal performance modeling of NASA s scientific balloons
NASA Astrophysics Data System (ADS)
Franco, H.; Cathey, H.
The flight performance of a scientific balloon is highly dependant on the interaction between the balloon and its environment. The balloon is a thermal vehicle. Modeling a scientific balloon's thermal performance has proven to be a difficult analytical task. Most previous thermal models have attempted these analyses by using either a bulk thermal model approach, or by simplified representations of the balloon. These approaches to date have provided reasonable, but not very accurate results. Improvements have been made in recent years using thermal analysis tools developed for the thermal modeling of spacecraft and other sophisticated heat transfer problems. These tools, which now allow for accurate modeling of highly transmissive materials, have been applied to the thermal analysis of NASA's scientific balloons. A research effort has been started that utilizes the "Thermal Desktop" addition to AUTO CAD. This paper will discuss the development of thermal models for both conventional and Ultra Long Duration super-pressure balloons. This research effort has focused on incremental analysis stages of development to assess the accuracy of the tool and the required model resolution to produce usable data. The first stage balloon thermal analyses started with simple spherical balloon models with a limited number of nodes, and expanded the number of nodes to determine required model resolution. These models were then modified to include additional details such as load tapes. The second stage analyses looked at natural shaped Zero Pressure balloons. Load tapes were then added to these shapes, again with the goal of determining the required modeling accuracy by varying the number of gores. The third stage, following the same steps as the Zero Pressure balloon efforts, was directed at modeling super-pressure pumpkin shaped balloons. The results were then used to develop analysis guidelines and an approach for modeling balloons for both simple first order estimates and detailed full models. The development of the radiative environment and program input files, the development of the modeling techniques for balloons, and the development of appropriate data output handling techniques for both the raw data and data plots will be discussed. A general guideline to match predicted balloon performance with known flight data will also be presented. One long-term goal of this effort is to develop simplified approaches and techniques to include results in performance codes being developed.
Advances in Scientific Balloon Thermal Modeling
NASA Technical Reports Server (NTRS)
Bohaboj, T.; Cathey, H. M., Jr.
2004-01-01
The National Aeronautics and Space Administration's Balloon Program office has long acknowledged that the accurate modeling of balloon performance and flight prediction is dependant on how well the balloon is thermally modeled. This ongoing effort is focused on developing accurate balloon thermal models that can be used to quickly predict balloon temperatures and balloon performance. The ability to model parametric changes is also a driver for this effort. This paper will present the most recent advances made in this area. This research effort continues to utilize the "Thrmal Desktop" addition to AUTO CAD for the modeling. Recent advances have been made by using this analytical tool. A number of analyses have been completed to test the applicability of this tool to the problem with very positive results. Progressively detailed models have been developed to explore the capabilities of the tool as well as to provide guidance in model formulation. A number of parametric studies have been completed. These studies have varied the shape of the structure, material properties, environmental inputs, and model geometry. These studies have concentrated on spherical "proxy models" for the initial development stages and then to transition to the natural shaped zero pressure and super pressure balloons. An assessment of required model resolution has also been determined. Model solutions have been cross checked with known solutions via hand calculations. The comparison of these cases will also be presented. One goal is to develop analysis guidelines and an approach for modeling balloons for both simple first order estimates and detailed full models. This papa presents the step by step advances made as part of this effort, capabilities, limitations, and the lessons learned. Also presented are the plans for further thermal modeling work.
LISA: a java API for performing simulations of trajectories for all types of balloons
NASA Astrophysics Data System (ADS)
Conessa, Huguette
2016-07-01
LISA (LIbrarie de Simulation pour les Aerostats) is a java API for performing simulations of trajectories for all types of balloons (Zero Pressure Balloons, Pressurized Balloons, Infrared Montgolfier), and for all phases of flight (ascent, ceiling, descent). This library has for goals to establish a reliable repository of Balloons flight physics models, to capitalize developments and control models used in different tools. It is already used for flight physics study software in CNES, to understand and reproduce the behavior of balloons, observed during real flights. It will be used operationally for the ground segment of the STRATEOLE2 mission. It was developed with quality rules of "critical software." It is based on fundamental generic concepts, linking the simulation state variables to interchangeable calculation models. Each LISA model defines how to calculate a consistent set of state variables combining validity checks. To perform a simulation for a type of balloon and a phase of flight, it is necessary to select or create a macro-model that is to say, a consistent set of models to choose from among those offered by LISA, defining the behavior of the environment and the balloon. The purpose of this presentation is to introduce the main concepts of LISA, and the new perspectives offered by this library.
Flow Past a Descending Balloon
NASA Technical Reports Server (NTRS)
Baginski, Frank
2001-01-01
In this report, we present our findings related to aerodynamic loading of partially inflated balloon shapes. This report will consider aerodynamic loading of partially inflated inextensible natural shape balloons and some relevant problems in potential flow. For the axisymmetric modeling, we modified our Balloon Design Shape Program (BDSP) to handle axisymmetric inextensible ascent shapes with aerodynamic loading. For a few simple examples of two dimensional potential flows, we used the Matlab PDE Toolbox. In addition, we propose a model for aerodynamic loading of strained energy minimizing balloon shapes with lobes. Numerical solutions are presented for partially inflated strained balloon shapes with lobes and no aerodynamic loading.
Aye, Thin Pa Pa; Htet, Zwe Lin; Singhavilai, Thamvarit; Naiyanetr, Phornphop
2015-01-01
Intra-aortic balloon pump (IABP) has been used in clinical treatment as a mechanical circulatory support device for patients with heart failure. A computer model is used to study the effect on coronary blood flow (CBF) with different balloon cycles under both normal and pathological conditions. The model of cardiovascular and IABP is developed by using MATLAB SIMULINK. The effect on coronary blood flow has been studied under both normal and pathological conditions using different balloon cycles (balloon off; 1:4; 1:2; 1:1). A pathological heart is implemented by reducing the left ventricular contractility. The result of this study shows that the rate of balloon cycles is related to the level of coronary blood flow.
Modeling the ascent of sounding balloons: derivation of the vertical air motion
NASA Astrophysics Data System (ADS)
Gallice, A.; Wienhold, F. G.; Hoyle, C. R.; Immler, F.; Peter, T.
2011-10-01
A new model to describe the ascent of sounding balloons in the troposphere and lower stratosphere (up to ∼30-35 km altitude) is presented. Contrary to previous models, detailed account is taken of both the variation of the drag coefficient with altitude and the heat imbalance between the balloon and the atmosphere. To compensate for the lack of data on the drag coefficient of sounding balloons, a reference curve for the relationship between drag coefficient and Reynolds number is derived from a dataset of flights launched during the Lindenberg Upper Air Methods Intercomparisons (LUAMI) campaign. The transfer of heat from the surrounding air into the balloon is accounted for by solving the radial heat diffusion equation inside the balloon. In its present state, the model does not account for solar radiation, i.e. it is only able to describe the ascent of balloons during the night. It could however be adapted to also represent daytime soundings, with solar radiation modeled as a diffusive process. The potential applications of the model include the forecast of the trajectory of sounding balloons, which can be used to increase the accuracy of the match technique, and the derivation of the air vertical velocity. The latter is obtained by subtracting the ascent rate of the balloon in still air calculated by the model from the actual ascent rate. This technique is shown to provide an approximation for the vertical air motion with an uncertainty error of 0.5 m s-1 in the troposphere and 0.2 m s-1 in the stratosphere. An example of extraction of the air vertical velocity is provided in this paper. We show that the air vertical velocities derived from the balloon soundings in this paper are in general agreement with small-scale atmospheric velocity fluctuations related to gravity waves, mechanical turbulence, or other small-scale air motions measured during the SUCCESS campaign (Subsonic Aircraft: Contrail and Cloud Effects Special Study) in the orographically unperturbed mid-latitude middle troposphere.
ERIC Educational Resources Information Center
Brimicombe, M. W.
1991-01-01
A macroscopic way of modeling hot air balloons using a Newtonian approach is presented. Misleading examples using a car tire and the concept of hot air rising are discussed. Pressure gradient changes in the atmosphere are used to explain how hot air balloons work. (KR)
Diurnal forcing of planetary atmospheres
NASA Technical Reports Server (NTRS)
Houben, Howard C.
1991-01-01
The utility of the Mars Planetary Boundary Layer Model (MPBL) for calculations in support of the Mars 94 balloon mission was substantially enhanced by the introduction of a balloon equation of motion into the model. Both vertical and horizontal excursions of the balloon are calculated along with its volume, temperature, and pressure. The simulations reproduce the expected 5-min vertical oscillations of a constant density balloon at altitude on Mars. The results of these calculations are presented for the nominal target location of the balloon. A nonlinear balanced model was developed for the Martian atmosphere. It was used to initialize a primitive equation model for the simulations of the Earth's atmosphere at the time of the El Chichon eruption in 1982. It is also used as an assimilation model to update the temperature and wind fields at frequent intervals.
The NASA super pressure balloon - A path to flight
NASA Astrophysics Data System (ADS)
Cathey, H. M.
2009-07-01
The National Aeronautics and Space Administration's Balloon Program Office has invested significant time and effort in extensive ground testing of model super pressure balloons. The testing path has been developed as an outgrowth of the results of the super pressure balloon test flight in 2006. Summary results of the June 2006 super pressure test flight from Kiruna, Sweden are presented including the balloon performance and "lessons learned". This balloons flight performance exceeded expectations, but did not fully deploy. The flight was safely terminated by command. The results of this test flight refocused the project's efforts toward additional ground testing and analysis; a path to flight. A series of small 4 m diameter models were made and tested to further explore the deployment and structural capabilities of the balloons and materials. A series of ˜27 m model balloons were successfully tested indoors. These balloons successfully replicated the cleft seen in the Sweden flight, explored the deployment trade space to help characterize better design approaches, and demonstrated an acceptable fix to the deployment issue. Photogrammetry was employed during these ˜27 m model tests to help characterize both the balloon and gore shape evolution under pressurization. A ˜8.5 m ground model was used to explore the design and materials performance. Results of these tests will be presented. A general overview of some of the other project advancements made related to demonstrating the strain arresting nature of the proposed design, materials and analysis work will also be presented. All of this work has prepared a clear path toward a renewed round of test flights. This paper will give an overview of the development approach pursued for this super pressure balloon development. A description of the balloon design, including the modifications made as a result of the lessons learned, is presented. A short deployment test flight of the National Aeronautics and Space Administration's super pressure balloon took place in June 2008. This flight was from Ft. Sumner, New Mexico. Preliminary results of this flight are presented. Future plans for both ground testing and additional test flights are also presented. Goals of the future test flights, which are staged in increments of increasing suspended load and altitude, are presented. This includes the projected balloon volumes, payload capabilities, test flight locations, and proposed flight schedule.
Ballooning Comes of Age: Make Your Own Balloon.
ERIC Educational Resources Information Center
Eckford, Jim
1983-01-01
Provides instructions for building a working model of a hot-air balloon, offering suggestions for a successful flight. Indicates that children can be involved in the projects, for example, by filling in colors in the panels of a balloon drawing. (JN)
Heat Transfer Model for Hot Air Balloons
NASA Astrophysics Data System (ADS)
Llado-Gambin, Adriana
A heat transfer model and analysis for hot air balloons is presented in this work, backed with a flow simulation using SolidWorks. The objective is to understand the major heat losses in the balloon and to identify the parameters that affect most its flight performance. Results show that more than 70% of the heat losses are due to the emitted radiation from the balloon envelope and that convection losses represent around 20% of the total. A simulated heating source is also included in the modeling based on typical thermal input from a balloon propane burner. The burner duty cycle to keep a constant altitude can vary from 10% to 28% depending on the atmospheric conditions, and the ambient temperature is the parameter that most affects the total thermal input needed. The simulation and analysis also predict that the gas temperature inside the balloon decreases at a rate of -0.25 K/s when there is no burner activity, and it increases at a rate of +1 K/s when the balloon pilot operates the burner. The results were compared to actual flight data and they show very good agreement indicating that the major physical processes responsible for balloon performance aloft are accurately captured in the simulation.
NASA Astrophysics Data System (ADS)
Chaabane, Makram; Chaabane, Makram; Dalverny, Olivier; Deramecourt, Arnaud; Mistou, Sébastien
The super-pressure balloons developed by CNES are a great challenge in scientific ballooning. Whatever the balloon type considered (spherical, pumpkin...), it is necessary to have good knowledge of the mechanical behavior of the envelope regarding to the flight level and the lifespan of the balloon. It appears during the working stages of the super pressure balloons that these last can exploded prematurely in the course of the first hours of flight. For this reason CNES and LGP are carrying out research programs about experimentations and modelling in order to predict a good stability of the balloons flight and guarantee a life time in adequacy with the technical requirement. This study deals with multilayered polymeric film damage which induce balloons failure. These experimental and numerical study aims, are a better understanding and predicting of the damage mechanisms bringing the premature explosion of balloons. The following damages phenomena have different origins. The firsts are simple and triple wrinkles owed during the process and the stocking stages of the balloons. The second damage phenomenon is associated to the creep of the polymeric film during the flight of the balloon. The first experimental results we present in this paper, concern the mechanical characterization of three different damage phenomena. The severe damage induced by the wrinkles of the film involves a significant loss of mechanical properties. In a second part the theoretical study, concerns the choice and the development of a non linear viscoelastic coupled damage behavior model in a finite element code.
NASA Astrophysics Data System (ADS)
Tsvetkov, Yu.; Filippov, S.; Frunze, A.
2013-12-01
Three global analytical models of a main geomagnetic field constructed by satellite data are used: model IGRF, Daily Mean Spherical Harmonic Models (DMSHM), and model EMM/2010, and also scalar data of geomagnetic field and its gradients, received in stratospheric balloon gradient magnetic surveys at altitudes of ~30 km. At these altitudes the regional magnetic field is formed from all sources of the Earth's crust. It enables to receive along lengthy routes of surveys the fullest data on regional and longwave-lenght magnetic anomalies. Model DMSHM is used at extracting of magnetic anomalies for elimination of a secular variation up to significant value 0,2 nT. The model can be constructed within the limits of ± 1 months from the moment stratospheric balloon surveys with beneficial day terms with magnetic activity up to Kp <20, that leads to an error of representation of main MFE equal ±5 нТл. It is possible at presence acting for the period of stratospheric balloon magnetic survey of the satellite, for example, Swarm. On stratospheric balloon data it is shown, that model EMM/2010 unsatisfactorily displays MFE at altitude of 30 km. Hence, the qualitative model of the constant (main and anomaly) magnetic field cannot be constructed only with use of satellite and ground data. The improved model constant MFE, constructed according to satellite and stratospheric balloon magnetic surveys, developed up to a degree and the order m=n=720, will have a reliable data about regional crust magnetic field, hence, and about deep magnetic structure of the Earth's crust. The use gradient magnetic surveys aboard stratospheric balloons allows to find the places alternating approximately through 3000 km in which there are no magnetic anomalies. In these places probably to supervise satellite magnetic models for a range of altitude of 20-40 km, timed to stratospheric balloon magnetic surveys.
Modeling the ascent of sounding balloons: derivation of the vertical air motion
NASA Astrophysics Data System (ADS)
Gallice, A.; Wienhold, F. G.; Hoyle, C. R.; Immler, F.; Peter, T.
2011-06-01
A new model to describe the ascent of sounding balloons in the troposphere and lower stratosphere (up to ~30-35 km altitude) is presented. Contrary to previous models, detailed account is taken of both the variation of the drag coefficient with altitude and the heat imbalance between the balloon and the atmosphere. To compensate for the lack of data on the drag coefficient of sounding balloons, a reference curve for the relationship between drag coefficient and Reynolds number is derived from a dataset of flights launched during the Lindenberg Upper Air Methods Intercomparisons (LUAMI) campaign. The transfer of heat from the surrounding air into the balloon is accounted for by solving the radial heat diffusion equation inside the balloon. The potential applications of the model include the forecast of the trajectory of sounding balloons, which can be used to increase the accuracy of the match technique, and the derivation of the air vertical velocity. The latter is obtained by subtracting the ascent rate of the balloon in still air calculated by the model from the actual ascent rate. This technique is shown to provide an approximation for the vertical air motion with an uncertainty error of 0.5 m s-1 in the troposphere and 0.2 m s-1 in the stratosphere. An example of extraction of the air vertical velocity is provided in this paper. We show that the air vertical velocities derived from the balloon soundings in this paper are in general agreement with small-scale atmospheric velocity fluctuations related to gravity waves, mechanical turbulence, or other small-scale air motions measured during the SUCCESS campaign (Subsonic Aircraft: Contrail and Cloud Effects Special Study) in the orographically unperturbed mid-latitude middle troposphere.
NASA Technical Reports Server (NTRS)
Nigro, N. J.; Elkouh, A. F.; Shen, K. S.; Nimityongskul, P.; Jhaveri, V. N.; Sethi, A.
1975-01-01
A mathematical model for predicting the three dimensional motion of the balloon system is developed, which includes the effects of bounce, pendulation and spin of each subsystem. Boundary layer effects are also examined, along with the aerodynamic forces acting on the balloon. Various simplified forms of the system mathematical model were developed, based on an order of magnitude analysis.
NASA Astrophysics Data System (ADS)
Brimicombe, N. W.
1991-07-01
Hot air balloons can be modelled in a number of different ways. The most satisfactory, but least useful model is at a microscopic level. Macroscopic models are easier to use but can be very misleading.
NASA Technical Reports Server (NTRS)
Carlson, L. A.; Horn, W. J.
1981-01-01
A computer model for the prediction of the trajectory and thermal behavior of zero-pressure high altitude balloon was developed. In accord with flight data, the model permits radiative emission and absorption of the lifting gas and daytime gas temperatures above that of the balloon film. It also includes ballasting, venting, and valving. Predictions obtained with the model are compared with flight data from several flights and newly discovered features are discussed.
Analysis of intra-aortic balloon pump model with ovine myocardial infarction.
Abdolrazaghi, Mona; Navidbakhsh, Mahdi; Hassani, Kamran; Rabbani, Shahram; Ahmadi, Hossein
2009-12-01
In this study, we have tried to model the effects of intra-aortic balloon pump (IABP) on myocardial infarction (MI) using the standardized data of MI in sheep which was obtained by ligation of the left anterior descending coronary artery. Mathematical model of whole cardiovascular system was presented in accordance to the arterial tree. The lumped parameter model was primarily obtained for a rigid vessel regarding the vessel diameter. In this study, the proper lumped model of every vessel was obtained by incorporating the rigid vessel lumped model into the capacitance as a compliance of the vessel. Intra-aortic balloon pump was modeled with the hemodynamic parameters of the aorta. It was assumed that balloon pump inflates at the beginning of the diastole and deflates near the beginning of the next systole. During balloon pumping, the vessel diameter variation function counter pulsates sinusoidally with the same period of the cardiac cycle. End systolic pressure and end diastolic pressure decreases along with hemodynamic flow optimized through systemic arteries due to balloon pumping in diastole. It has been shown that the blood flow in subclavian artery increases as well. Moreover, the cardiac work keeps low, which prone to lower oxygen consumption. The results of modeling are in good agreement with IABP documentation. The presented model is a useful tool for studying of the cardiovascular system pathology and the presented modeling data are in good agreement with the experimental ones.
Hasan, Nazia; Gross, Seth A; Gralnek, Ian M; Pochapin, Mark; Kiesslich, Ralf; Halpern, Zamir
2014-12-01
Although standard colonoscopy is considered the optimal test to detect adenomas, it can have a significant adenoma miss rate. A major contributing factor to high miss rates is the inability to visualize adenomas behind haustral folds and at anatomic flexures. To compare the diagnostic yield of balloon-assisted colonoscopy versus standard colonoscopy in the detection of simulated polyps in a colon model. Prospective, cohort study. International gastroenterology meeting. A colon model composed of elastic material, which mimics the flexible structure of haustral folds, allowing for dynamic responses to balloon inflation, with embedded simulated colon polyps (n = 12 silicone "polyps"). Fifty gastroenterologists were recruited to identify simulated colon polyps in a colon model, first using standard colonoscopy immediately followed by balloon-assisted colonoscopy. Detection of simulated polyps. The median polyp detection rate for all simulated polyps was significantly higher with balloon-assisted as compared with standard colonoscopy (91.7% vs 45.8%, respectively; P < .0001). The significantly higher simulated polyp detection rate with balloon-assisted versus standard colonoscopy was notable both for non-obscured polyps (100.0% vs 75.0%; P < .0001) and obscured polyps (88.0% vs 25.0%; P < .0001). Non-randomized design, use of a colon model, and simulated colon polyps. As compared with standard colonoscopy, balloon-assisted colonoscopy detected significantly more obscured and non-obscured simulated polyps in a colon model. Clinical studies in human participants are being pursued to further evaluate this new colonoscopic technology. Copyright © 2014 American Society for Gastrointestinal Endoscopy. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mizuno, T
2004-09-03
Cosmic-ray background fluxes were modeled based on existing measurements and theories and are presented here. The model, originally developed for the Gamma-ray Large Area Space Telescope (GLAST) Balloon Experiment, covers the entire solid angle (4{pi} sr), the sensitive energy range of the instrument ({approx} 10 MeV to 100 GeV) and abundant components (proton, alpha, e{sup -}, e{sup +}, {mu}{sup -}, {mu}{sup +} and gamma). It is expressed in analytic functions in which modulations due to the solar activity and the Earth geomagnetism are parameterized. Although the model is intended to be used primarily for the GLAST Balloon Experiment, model functionsmore » in low-Earth orbit are also presented and can be used for other high energy astrophysical missions. The model has been validated via comparison with the data of the GLAST Balloon Experiment.« less
Ignition of Hydrogen Balloons by Model-Rocket-Engine Igniters.
ERIC Educational Resources Information Center
Hartman, Nicholas T.
2003-01-01
Describes an alternative method for exploding hydrogen balloons as a classroom demonstration. Uses the method of igniting the balloons via an electronic match. Includes necessary materials to conduct the demonstration and discusses potential hazards. (SOE)
Wind Tunnel Investigation of a Balloon as Decelerator at Mach Numbers from 1.47 to 2.50
NASA Technical Reports Server (NTRS)
McShera, John T.; Keyes, J. Wayne
1961-01-01
A wind-tunnel investigation was conducted to study the characteristics of a towed spherical balloon as a drag device at Mach numbers from 1.47 to 2.50, Reynolds numbers from 0.36 x 10(exp 6) to 1.0 x 10(exp 6) , and angles of attack from -15 to 15 degrees. Tow-cable length was approximately 24 inches from asymmetric body to cone on the upstream side of the balloon. As the tow cable was lengthened the balloon reached a point in the test section where wall-reflected shocks intersected the balloon and caused severe oscillations. As a result, the tow cable broke and the inflatable balloon model was destroyed. Further tests used a model rigid plastic sphere 6.75 inches in diameter. Tow cable length was approximately 24 inches from asymmetric body to the upstream side of the sphere.
Taking the Hot Air Out of Balloons.
ERIC Educational Resources Information Center
Brinks, Virgil L.; Brinks, Robyn L.
1994-01-01
Describes how a teacher can give their students the challenge of designing and building model balloons or blimps. The project helps students learn the basics of balloon flight and what it really means to be "lighter than air." (PR)
Percutaneous Mitral Valve Dilatation: Single Balloon versus Double Balloon - A Finite Element Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schievano, Silvia; Kunzelman, Karyn; Nicosia, Mark
2009-01-01
Background: Percutaneous mitral valve (MV) dilatation is performed with either a single balloon (SB) or double balloon (DB) technique. The aim of this study was to compare the two balloon system results using the finite element (FE) method. Methods and Results: An established FE model of the MV was modified by fusing the MV leaflet edges at commissure level to simulate a stenotic valve (orifice area=180mm2). A FE model of a 30mm SB (low-pressure, elastomeric balloon) and an 18mm DB system (high-pressure, non-elastic balloon) was created. Both SB and DB simulations resulted in splitting of the commissures and subsequent stenosismore » dilatation (final MV area=610mm2 and 560mm2 respectively). Stresses induced by the two balloon systems varied across the valve. At the end of inflation, SB showed higher stresses in the central part of the leaflets and at the commissures compared to DB simulation, which demonstrated a more uniform stress distribution. The higher stresses in the SB analysis were due to the mismatch of the round balloon shape with the oval mitral orifice. The commissural split was not easily accomplished with the SB due to its high compliance. The high pressure applied to the DB guaranteed the commissural split even when high forces were required to break the commissure welds. Conclusions: The FE model demonstrated that MV dilatation can be accomplished by both SB and DB techniques. However, the DB method resulted in higher probability of splitting of the fused commissures and less damage caused to the MV leaflets by overstretching.« less
A Spreadsheet Simulation Tool for Terrestrial and Planetary Balloon Design
NASA Technical Reports Server (NTRS)
Raquea, Steven M.
1999-01-01
During the early stages of new balloon design and development, it is necessary to conduct many trade studies. These trade studies are required to determine the design space, and aid significantly in determining overall feasibility. Numerous point designs then need to be generated as details of payloads, materials, mission, and manufacturing are determined. To accomplish these numerous designs, transient models are both unnecessary and time intensive. A steady state model that uses appropriate design inputs to generate system-level descriptive parameters can be very flexible and fast. Just such a steady state model has been developed and has been used during both the MABS 2001 Mars balloon study and the Ultra Long Duration Balloon Project. Using Microsoft Excel's built-in iteration routine, a model was built. Separate sheets were used for performance, structural design, materials, and thermal analysis as well as input and output sheets. As can be seen from figure 1, the model takes basic performance requirements, weight estimates, design parameters, and environmental conditions and generates a system level balloon design. Figure 2 shows a sample output of the model. By changing the inputs and a few of the equations in the model, balloons on earth or other planets can be modeled. There are currently several variations of the model for terrestrial and Mars balloons, as well there are versions of the model that perform crude material design based on strength and weight requirements. To perform trade studies, the Visual Basic language built into Excel was used to create an automated matrix of designs. This trade study module allows a three dimensional trade surface to be generated by using a series of values for any two design variables. Once the fixed and variable inputs are defined, the model automatically steps through the input matrix and fills a spreadsheet with the resulting point designs. The proposed paper will describe the model in detail, including current variations. The assumptions, governing equations, and capabilities will be addressed. Detailed examples of the model in practice will also be used.
ERIC Educational Resources Information Center
Jee-Yon Lee; Hee-Soo Yoo; Jong Sook Park; Kwang-Jin Hwang; Jin Seog Kim
2005-01-01
The spontaneous mixing of helium and air in a helium-inflated balloon is described in an experiment in which the partial pressure of the gases in the balloon are determined from the mole factions and the total pressure measured in the balloon. The results described provide a model for teaching concepts of partial pressure, chemical potential, and…
Gelsomino, Sandro; Lozekoot, Pieter W J; Lorusso, Roberto; de Jong, Monique M J; Parise, Orlando; Matteucci, Francesco; Lucà, Fabiana; La Meir, Mark; Gensini, Gian Franco; Maessen, Jos G
2016-05-01
We compare a short and a standard-size balloon with same filling volumes to verify the differences in terms of visceral flow, coronary circulation and haemodynamic performance during aortic counterpulsation in an animal model of myocardial ischaemia-reperfusion injury. Eighteen healthy pigs underwent 120-min ligation of the left anterior descending coronary artery followed by 6 h of reperfusion, and they were randomly assigned to have intra-aortic balloon counterpulsation (IABP) with a 40-ml short-balloon (n = 6) or a 40-ml standard-length balloon (n = 6), or to undergo no IABP implantation (controls, n = 6). Haemodynamics and visceral and coronary flows were measured at baseline (t0), at 2 h of ischaemia (t1) and every hour thereafter until 6 h of reperfusion (from tR1 to tR6), respectively. Mesenteric flows increased significantly at tR1 only in the short-balloon group (P < 0.001) and it was constantly higher than in the standard-balloon group regardless of mean arterial pressure, systemic vascular resistance and cardiac output (CO; all, P < 0.001). Renal blood flows were significantly increased during IABP treatment with values constantly and significantly higher in short balloons at any following experimental step (all, P < 0.05). IABP improved CO and coronary blood flow, and reduced afterload, myocardial resistances and myocardial oxygen consumption without differences between the short and the standard-length balloon (all, P > 0.05). The short balloon prevents visceral ischaemia and, compared with the standard-size balloon, it does not lose IABP beneficial cardiac and coronary-related effects. Further studies are warranted to confirm our findings. © The Author 2015. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.
A new noninvasive controlled intra-articular ankle distraction technique on a cadaver model.
Aydin, Ahmet T; Ozcanli, Haluk; Soyuncu, Yetkin; Dabak, Tayyar K
2006-08-01
Effective joint distraction is crucial in arthroscopic ankle surgery. We describe an effective and controlled intra-articular ankle distraction technique that we have studied by means of a fresh-frozen cadaver model. Using a kyphoplasty balloon, which is currently used in spine surgery, we tried to achieve a controlled distraction. After the fixation of the cadaver model, standard anteromedial and anterolateral portals were used for ankle arthroscopy. From the same portals, the kyphoplasty balloon was inserted and placed in an appropriate position intra-articularly. The necessary amount of distraction was achieved by inflating the kyphoplasty balloon with a pressure regulation pump. All anatomic sites of the ankle joint were easily visualized with the arthroscope during surgery by changing the pressure and the intra-articular position of the kyphoplasty balloon. Ankle distraction was clearly seen on the arthroscopic and image intensifier view. The kyphoplasty balloon is simple to place through the standard portals and the advantage is that it allows easy manipulation of the arthroscopic instruments from the same portal.
Generalized math model for simulation of high-altitude balloon systems
NASA Technical Reports Server (NTRS)
Nigro, N. J.; Elkouh, A. F.; Hinton, D. E.; Yang, J. K.
1985-01-01
Balloon systems have proved to be a cost-effective means for conducting research experiments (e.g., infrared astronomy) in the earth's atmosphere. The purpose of this paper is to present a generalized mathematical model that can be used to simulate the motion of these systems once they have attained float altitude. The resulting form of the model is such that the pendulation and spin motions of the system are uncoupled and can be analyzed independently. The model is evaluated by comparing the simulation results with data obtained from an actual balloon system flown by NASA.
Shape Analysis and Deployment of the ExaVolt Antenna
NASA Astrophysics Data System (ADS)
Baginski, Frank; Zhao, Kaiyu; Furer, Joshua; Landay, Justin; Bailoor, Shantanu; Gorham, Peter; Varner, Gary; Miki, Christian; Hill, Brian; Schoorlemmer, Harm; Nguyen, Liem; Romero-Wolf, Andrew; Liewer, Kurt; Sauder, Jonathan; Brakke, Kenneth; Beatty, Jim; Connolly, Amy; Allison, Patrick; Pfendner, Carl; Dailey, Brian; Fairbrother, Debra; Said, Magdi; Lang, Steven; Young, Leyland
The ExaVolt Antenna (EVA) is the next generation balloon-borne ultra-high energy (UHE) particle observatory under development for NASA’s suborbital super-pressure balloon program in Antarctica. Unlike a typical mission where the balloon lifts a gondola that carries the primary scientific instrument, the EVA mission is a first-of-its-kind in that the balloon itself is part of the science instrument. Specifically, a toroidal RF reflector is mounted onto the outside surface of a superpressure balloon (SPB) and a feed antenna is suspended inside the balloon, creating a high-gain antenna system with a synoptic view of the Antarctic ice sheet. The EVA mission presents a number of technical challenges. For example, can a stowed feed antenna be inserted through an opening in the top-plate? Can the feed antenna be deployed during the ascent? Once float altitude is achieved, how might small shape changes in the balloon shape affect the antenna performance over the life of the EVA mission? The EVA team utilized a combination of testing with a 1/20-scale physical model, mathematical modeling and numerical simulations to probe these and related questions. While the problems are challenging, they are solvable with current technology and expertise. Experiments with a 1/20-scale EVA physical model outline a pathway for inserting a stowed feed into a SPB. Analysis indicates the EVA system will ascend, deploy and assume a stable configuration at float altitude. Nominal shape changes in an Antarctic SPB are sufficiently small to allow the use of the surface of the balloon as a high-gain reflector.
Bloss, P; Werner, C
2000-06-01
We propose a simple model to describe pressure-time and pressure-volume curves for the free balloon (balloon in air) of balloon catheters, taking into account the dynamics of the inflation device. On the basis of our investigations of the flow rate-dependence of characteristic parameters of the pressure-time curves, the appropriateness of this simple model is demonstrated using a representative example. Basic considerations lead to the following assumptions: (1) the flow within the shaft of the catheter is laminar, and (ii) the volume decrease of the liquid used for inflation due to pressurization can be neglected if the liquid is carefully degassed prior to inflation, and if the total volume of the liquid in the system is less than 2 ml. Taking into account the dynamics of the inflation device used for pumping the liquid into the proximal end of the shaft during inflation, the inflation process can be subdivided into the following three phases: initial phase, filling phase and dilatation phase. For these three phases, the transformation of the time into the volume coordinates is given. On the basis of our model, the following parameters of the balloon catheter can be determined from a measured pressure-time curve: (1) the resistance to flow of the liquid through the shaft of the catheter and the resulting pressure drop across the shaft, (2) the residual volume and residual pressure of the balloon, and (3) the volume compliance of the balloon catheter with and without the inflation device.
O'Shea, Owen R; Hamann, Mark; Smith, Walter; Taylor, Heidi
2014-02-15
Efforts to curb pollution in the marine environment are covered by national and international legislation, yet weather balloons are released into the environment with no salvage agenda. Here, we assess impacts associated with weather balloons in the Great Barrier Reef World Heritage Area (GBRWHA). We use modeling to assess the probability of ocean endpoints for released weather balloons and predict pathways post-release. In addition, we use 21 months of data from beach cleanup events to validate our results and assess the abundance and frequency of weather balloon fragments in the GBRWHA. We found between 65% and 70% of balloons land in the ocean and ocean currents largely determine final endpoints. Beach cleanup data revealed 2460 weather balloon fragments were recovered from 24 sites within the GBRWHA. This is the first attempt to quantify this problem and these data will add support to a much-needed mitigation strategy for weather balloon waste. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Siguier, J.; Guigue, P.; Karama, M.; Mistou, S.; Dalverny, O.; Granier, S.
Long duration super-pressure balloons are a great challenge in scientific ballooning. Whatever the balloon type considered (spherical, pumpkin,...), it is necessary to have good knowledge of the mechanical behavior of the envelope regarding the flight level and the life-span of the balloon. For this reason CNES, ONERA and ENIT are carrying out a research program of modelization and experimentation in order to predict the envelope shape of a balloon in different conditions of temperature and differential pressure. On the one hand, we define the mechanical laws of envelope materials, that is the elasticity, plasticity and viscosity properties of polymers, and find the parameters of the law with unidirectional tests. These laws are introduced in a finite element code which predict the stress and strain state of a complex envelope structure. On the other hand, we are developing an experimental set-up to measure the 3D strain of a balloon sub-system, that is including the envelope, assemblies and apex parts, with realistic flight conditions. This facility, called NIRVANA, is a 1m3 vacuum chamber with cooled screens equipped with a stereoscopic CCD measurement system. We can submit a 1,5m diameter sample to differential pressure, regulate the temperature from +20°C to -120°C and apply a load to tendons of up to 6 tons if required. This paper presents the first results of the modelizations and m asurements of ane envelope sample submitted to axisymetrical stress due to the differential pressure. This sample consists of a 50μm multi-layer polymer film with an assembly, used in 10m diameter STRATEOLE super-pressure balloons. The modelization gives results which largely agree with the experiment and enable us to continue with cold conditions and more complex structures.
A Sensitivity Analysis of fMRI Balloon Model.
Zayane, Chadia; Laleg-Kirati, Taous Meriem
2015-01-01
Functional magnetic resonance imaging (fMRI) allows the mapping of the brain activation through measurements of the Blood Oxygenation Level Dependent (BOLD) contrast. The characterization of the pathway from the input stimulus to the output BOLD signal requires the selection of an adequate hemodynamic model and the satisfaction of some specific conditions while conducting the experiment and calibrating the model. This paper, focuses on the identifiability of the Balloon hemodynamic model. By identifiability, we mean the ability to estimate accurately the model parameters given the input and the output measurement. Previous studies of the Balloon model have somehow added knowledge either by choosing prior distributions for the parameters, freezing some of them, or looking for the solution as a projection on a natural basis of some vector space. In these studies, the identification was generally assessed using event-related paradigms. This paper justifies the reasons behind the need of adding knowledge, choosing certain paradigms, and completing the few existing identifiability studies through a global sensitivity analysis of the Balloon model in the case of blocked design experiment.
Apple, Marc; Waksman, Ron; Chan, Rosanna C; Vodovotz, Yoram; Fournadjiev, Jana; Bass, Bill G
2002-08-06
Ionizing radiation administered intraluminally via catheter-based systems using solid beta and gamma sources or liquid-filled balloons has shown reduction in the neointima formation after injury in the porcine model. We propose a novel system that uses a 133-Xenon (133Xe) radioactive gas-filled balloon catheter system. Overstretch balloon injury was performed in the coronary arteries of 33 domestic pigs. A novel 133Xe radioactive gas-filled balloon (3.5/45 mm) was positioned to overlap the injured segment with margins. After vacuum was obtained in the balloon catheter, approximately 2.5 cc of 133Xe gas was injected to fill the balloon. Doses of 0, 7.5, 15, and 30 Gy were delivered to a distance of 0.25 mm from the balloon surface. The dwell time ranged from 1.0 to 4.0 minutes, depending on the dose. Localization of 133Xe in the balloon was verified by a gamma camera. The average activity in a 3.5/45-mm balloon was measured at 67.7+/-12.1 mCi, and the total diffusion loss of the injected dose was 0.26% per minute of the injected dose. Bedside radiation exposure measured between 2 and 6 mR/h, and the shallow dose equivalent was calculated as 0.037 mrem per treatment. Histomorphometric analysis at 2 weeks showed inhibition of the intimal area (intimal area corrected for medial fracture length [IA/FL]) in the irradiated segments of 0.26+/-0.08 with 30 Gy, 0.07+/-0.24 with 15 Gy, and 0.12+/-0.89 with 7.5 Gy versus 0.76+/-0.08 with control P<0.001. 133Xe gas-filled balloon is feasible and effective in the reduction of neointima formation in the porcine model and safe for use in coronary arteries.
Feasibility of observer system for determining orientation of balloon borne observational platforms
NASA Technical Reports Server (NTRS)
Nigro, N. J.; Gagliardi, J. C.
1982-01-01
An observer model for predicting the orientation of balloon borne research platforms was developed. The model was employed in conjunction with data from the LACATE mission in order to determine the platform orientation as a function of time.
NASA Astrophysics Data System (ADS)
Tsvetkov, Yu. P.; Brekhov, O. M.; Bondar, T. N.; Filippov, S. V.; Petrov, V. G.; Tsvetkova, N. M.; Frunze, A. Kh.
2014-03-01
Two global analytical models of the main magnetic field of the Earth (MFE) have been used to determine their potential in deriving an anomalous MFE from balloon magnetic surveys conducted at altitudes of ˜30 km. The daily mean spherical harmonic model (DMSHM) constructed from satellite data on the day of balloon magnetic surveys was analyzed. This model for the day of magnetic surveys was shown to be almost free of errors associated with secular variations and can be recommended for deriving an anomalous MFE. The error of the enhanced magnetic model (EMM) was estimated depending on the number of harmonics used in the model. The model limited by the first 13 harmonics was shown to be able to lead to errors in the main MFE of around 15 nT. The EMM developed to n = m = 720 and constructed on the basis of satellite and ground-based magnetic data fails to adequately simulate the anomalous MFE at altitudes of 30 km. To construct a representative model developed to m = n = 720, ground-based magnetic data should be replaced by data of balloon magnetic surveys for altitudes of ˜30 km. The results of investigations were confirmed by a balloon experiment conducted by Pushkov Institute of Terrestrial Magnetism, Ionosphere, and Radio Wave Propagation of the Russian Academy of Sciences and the Moscow Aviation Institute.
In Vitro Determination of Drug Transfer from Drug-Coated Balloons
Seidlitz, Anne; Kotzan, Nadine; Nagel, Stefan; Reske, Thomas; Grabow, Niels; Harder, Claus; Petersen, Svea; Sternberg, Katrin; Weitschies, Werner
2013-01-01
Drug-coated balloons are medical devices designed to locally deliver drug to diseased segments of the vessel wall. For these dosage forms, drug transfer to the vessel wall needs to be examined in detail, since drug released into the blood is cleared from the site. In order to examine drug transfer, a new in vitro setup was developed combining the estimation of drug loss during advancement to the site of application in a model coronary artery pathway with a hydrogel compartment representing, as a very simplified model, the vessel wall. The transfer of fluorescent model substances as well as the drug paclitaxel from coated balloons to the simulated vessel wall was evaluated using this method. The model was suitable to quantify the fractions transferred to the hydrogel and also to qualitatively assess distribution patterns in the hydrogel film. In the case of fluorescein sodium, rhodamin b and paclitaxel, vast amounts of the coated substance were lost during the simulated passage and only very small fractions of about 1% of the total load were transferred to the gel. This must be attributed to good water solubility of the fluorescent substances and the mechanical instability of the paclitaxel coating. Transfer of the hydrophobic model substance triamterene was however nearly unaffected by the preliminary tracking procedure with transferred fractions ranging from 8% to 14%. Analysis of model substance distribution yielded inhomogeneous distributions indicating that the coating was not evenly distributed on the balloon surface and that a great fraction of the coating liquid did not penetrate the folds of the balloon. This finding is contradictory to the generally accepted assumption of a drug depot inside the folds and emphasizes the necessity to thoroughly characterize in vitro performance of drug-coated balloons to support the very promising clinical data. PMID:24391863
Single balloon versus double balloon bipedicular kyphoplasty: a systematic review and meta-analysis.
Jing, Zehao; Dong, Jianli; Li, Zhengwei; Nan, Feng
2018-06-19
Kyphoplasty has been widely used to treat vertebral compression fractures (VCFs). In standard procedure of kyphoplasty, two balloons were inserted into the vertebral body through bipedicular and inflated simultaneously, while using a single balloon two times is also a common method in clinic to lessen the financial burden of patients. However, the effect and safety of single balloon versus double balloon bipedicular kyphoplasty are still controversy. In this systematic review and meta-analysis, eligible studies were identified through a comprehensive literature search of PubMed, Cochrane library EMBASE, Web of Science, Wanfang, CNKI, VIP and CBM until January 1, 2018. Results from individual studies were pooled using a random or fixed effects model. Seven articles were included in the systematic review and five studies were consisted in meta-analysis. We observed no significant difference between single balloon and double balloon bipedicular kyphoplasty in visual analog scale (VAS), angle (kyphotic angle and Cobb angle), consumption (operation time, cement volume and volume of bleeding), vertebral height (anterior height, medium height and posterior height) and complications (cement leakage and new VCFs), while the cost of single balloon bipedicular kyphoplasty is lower than that of double balloon bipedicular kyphoplasty. The results of our meta-analysis also demonstrated that single balloon can significantly improve the VAS, angle and vertebral height of patients suffering from VCFs. This systematic review and meta-analysis collectively concludes that single balloon bipedicular kyphoplasty is as effective as double balloon bipedicular kyphoplasty in improving clinical symptoms, deformity and complications of VCFs but not so expensive. These slides can be retrieved under Electronic Supplementary Material.
Scientific Ballooning Technologies Workshop STO-2 Thermal Design and Analysis
NASA Technical Reports Server (NTRS)
Ferguson, Doug
2016-01-01
The heritage thermal model for the full STO-2 (Stratospheric Terahertz Observatory II), vehicle has been updated to model the CSBF (Columbia Scientific Balloon Facility) SIP-14 (Scientific Instrument Package) in detail. Analysis of this model has been performed for the Antarctica FY2017 launch season. Model temperature predictions are compared to previous results from STO-2 review documents.
NASA Astrophysics Data System (ADS)
Brekhov, O. M.; Tsvetkov, Yu. P.; Ivanov, V. V.; Filippov, S. V.; Tsvetkova, N. M.
2015-09-01
The results of stratospheric balloon gradient geomagnetic surveys at an altitude of ‘-~3O km with the use of the long (6 km) measuring base oriented along the vertical line are considered. The purposes of these surveys are the study of the magnetic field formed by deep sources, and the estimation of errors in modern analytical models of the geomagnetic field. The independent method of determination of errors in global analytical models of the normal magnetic field of the Earth (MFE) is substantiated. The new technique of identification of magnetic anomalies from surveys on long routes is considered. The analysis of gradient magnetic surveys on board the balloon, revealed the previously unknown features of the geomagnetic field. Using the balloon data, the EMM/720 model of the geomagnetic field (http://www.ngdc.noaa.gov/geomag/EMM) is investigated, and it is shown that this model unsatisfactorily represents the anomalous MFE, at least, at an altitude of 30 km, in the area our surveys. The unsatisfactory quality of aeromagnetic (ground-based) data is also revealed by the method of wavelet analysis of the ground-based and balloon magnetic profiles. It is shown, that the ground-based profiles do not contain inhomogeneities more than 1 30 km in size, whereas the balloon profiles (1000 km in the strike extent) contain inhomogeneities up to 600 km in size an the location of the latte coincides with the location of the satellite magnetic anomaly. On the basis of balloon data is shown, it that low-altitude aeromagnetic surveys, due to fundamental reasons, incorrectly reproduce the magnetic field of deep sources. This prevents the reliable conversion of ground-based magnetic anomalies upward from the surface of the Earth. It is shown, that an adequate global model of magnetic anomalies in the circumterrestrial space, developed up to 720 spherical harmonics, must be constructed only in accordance with the data obtained at satellite and stratospheric altitudes. Such a model can serve as a basis for the refined study of the structure and magnetic properties of the Earth's crust at its deep horizons, in order to search for resources at them, and so on.
Global electrodynamics from superpressure balloons
NASA Technical Reports Server (NTRS)
Holzworth, R. H.; Hu, H.
1995-01-01
Electric field and conductivity measurements in the stratosphere between November 1992 and March 1993 have been made using superpressure balloons in the southern hemisphere. Over 400 payload-days of data have been made during a record setting experiment called ELBBO (Extended Life Balloon Borne Observatories). This experiment resulted in 4 flights aloft simultaneously for over 2 months including one flight which lasted over 4 months. Electrodynamical coupling between the atmosphere and ionosphere is studied using the measured electric fields, and a simple empirical model of the stratospheric conductivity. Altitude profiles of conductivity have been obtained from several superpressure balloon flights using the large end-of-flight altitude swings on the last few days of each flight (as the balloon begins to loose superpressure). Coupling between the fields and atmospheric inertial waves has been observed. Effects and dynamics of the global circuit suggest that standard models are missing significant phenomena. Large scale ionospheric convection activity has been studied from the polar cap to the middle latitudes. Cusp latitude fields have been continuously measured for many days in a row.
Structure of micro-instabilities in tokamak plasmas: Stiff transport or plasma eruptions?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dickinson, D., E-mail: dd502@york.ac.uk; EURATOM/CCFE Fusion Association, Culham Science Centre, Abingdon, Oxon OX14 3DB; Roach, C. M.
2014-01-15
Solutions to a model 2D eigenmode equation describing micro-instabilities in tokamak plasmas are presented that demonstrate a sensitivity of the mode structure and stability to plasma profiles. In narrow regions of parameter space, with special plasma profiles, a maximally unstable mode is found that balloons on the outboard side of the tokamak. This corresponds to the conventional picture of a ballooning mode. However, for most profiles, this mode cannot exist, and instead, a more stable mode is found that balloons closer to the top or bottom of the plasma. Good quantitative agreement with a 1D ballooning analysis is found, providedmore » the constraints associated with higher order profile effects, often neglected, are taken into account. A sudden transition from this general mode to the more unstable ballooning mode can occur for a critical flow shear, providing a candidate model for why some experiments observe small plasma eruptions (Edge Localised Modes, or ELMs) in place of large Type I ELMs.« less
Development of a 5,000 m(3) super-pressure balloon with a diamond-shaped net
NASA Astrophysics Data System (ADS)
Saito, Yoshitaka; Tanaka, Shigeki; Nakashino, Kyoichi; Matsushima, Kiyoho; Goto, Ken; Furuta, Ryosuke; Domoto, Kodai; Akita, Daisuke; Hashimoto, Hiroyuki
A light super-pressure balloon of which weight will be comparable to the weight of the zero-pressure balloon has been developed using a method to cover a balloon with a diamond-shaped net of high-tensile fibers. The goal is to fly a payload of 900 kg to the altitude of 37 km with a 300,000 m(3) balloon. A flight test of a 3,000 m(3) balloon in the tandem balloon configuration with a 15,000 m(3) zero-pressure balloon was performed in 2012. Although a small gas leak occurred in the super-pressure balloon at the differential pressure of 400 to 500 Pa, the differential pressure reached the highest value of 814 Pa and kept positive through the level flight lasting for 25 minutes due to its slow leakage. To avoid a possible stress concentration to films at the polar area, a new design setting the meridian length of the balloon gore film equal to the length of the net was adopted. A 3-m balloon with the design was developed and its capacity to resist pressure at room temperature and at -30 (°) C was checked through the ground inflation tests. In 2013, a balloon of the same model was launched in the tandem balloon configuration with 2 kg rubber balloons. It was confirmed that the balloon could withstand the maximum differential pressure of 6,280 Pa, could withstand the differential pressure of 5,600 Pa for 2 hours, and there was a small gas leak through a hole with an area of 0.4 mm(2) which was also found in the ground leakage test. These results indicated that the improvement was adequate and there was no problem for the super-pressure balloon to fly in the environment of the stratosphere except for the problem of the small gas leak. In 2014, a flight test of a 5,000 m(3) balloon will be performed. In this paper, after reviewing the method to cover a balloon with a diamond-shaped net, the current status of the development will be reported.
Effect of wind gusts on the motion of a balloon-borne observation platform
NASA Technical Reports Server (NTRS)
Nigro, N. J.; Johanek, F. M.
1982-01-01
The effect of wind gusts on the magnitude of the pendulation angles of a balloon-borne observation platform is determined. A system mathematical model is developed and the solution of this model is used to determine the magnitude of the observation platforms pendulation angles.
Evaluation of balloon trajectory forecast routines for GAINS
NASA Astrophysics Data System (ADS)
Collander, R.; Girz, C.
The Global Air-ocean IN-situ System (GAINS) is a global observing system designed to augment current environmental observing and monitoring networks. GAINS is a network of long-duration, stratospheric platforms that carry onboard sensors and hundreds of dropsondes to acquire meteorological, air chemistry, and climate data over oceans and in remote land regions of the globe. Although GAINS platforms will include balloons and Remotely Operated Aircraft (ROA), the scope of this paper is limited to balloon-based platforms. A primary goal of GAINS balloon test flights is post-flight recovery of the balloon shell and payload, which requires information on the expected flight path and landing site prior to launch. Software has been developed for the prediction of the balloon trajectory and landing site, with separate versions written to generate predictions based upon rawinsonde data and model output. Balloon positions are calculated in 1-min increments based on wind data from the closest rawinsonde site or model grid point, given a known launch point, ascent and descent rate and flight duration. For short flights (< 6h), rawinsonde winds interpolated to 10-mb levels are used for trajectory calculations. Predictions for flight durations of 6 to 48h are based upon the initialization and 3 h forecast wind fields from NOAA's global aviation- (AVN) and Rapid Update Cycle (RUC) models. Given a limited number of actual balloon launches, trajectories computed from a chronological series of hourly RUC initializations are used as the baseline for comparison purposes. These baseline trajectories are compared to trajectory predictions from the rawinsonde and model-based versions on a monthly and seasonal basis over a 1-year period (January 1 - December 31, 2001) for flight durations of 3h, 6h and 48h. Predicted trajectories diverge from the baseline path, with the divergence increasing with increasing time. We examine the zonal, meridional and net magnitudes of these deviations, and attempt to determine directional biases in the predictions. This paper gives an overview of the software, including methods employed, physical considerations and limitations, and discusses results of this evaluation.
Effects of intra-aortic balloon counterpulsation in a model of septic shock.
Solomon, Steven B; Minneci, Peter C; Deans, Katherine J; Feng, Jing; Eichacker, Peter Q; Banks, Steven M; Danner, Robert L; Natanson, Charles; Solomon, Michael A
2009-01-01
Fluid refractory septic shock can develop into a hypodynamic cardiovascular state in both children and adults. Despite management of these patients with empirical inotropic therapy (with or without a vasodilator), mortality remains high. The effect of cardiovascular support using intra-aortic balloon counterpulsation was investigated in a hypodynamic, mechanically ventilated canine sepsis model in which cardiovascular and pulmonary support were titrated based on treatment protocols. Each week, three animals (n = 33, 10-12 kg) were administered intrabronchial Staphylococcus aureus challenge and then randomized to receive intra-aortic balloon counterpulsation for 68 hrs or no intra-aortic balloon counterpulsation (control). Bacterial doses were increased over the study (4-8 x 10(9) cfu/kg) to assess the effects of intra-aortic balloon counterpulsation during sepsis with increasing risk of death. Compared with lower bacterial doses (4-7 x 10(9) colony-forming units/kg), control animals challenged with the highest dose (8 x 10(9) colony-forming units/kg) had a greater risk of death (mortality rate 86% vs. 17%), with worse lung injury ([A - a]O2), and renal dysfunction (creatinine). These sicker animals required higher norepinephrine infusion rates to maintain blood pressure (and higher FIO2) and positive end-expiratory pressure levels to maintain oxygenation (p < or = 0.04 for all). In animals receiving the highest bacterial dose, intra-aortic balloon counterpulsation improved survival time (23.4 +/- 10 hrs longer; p = 0.003) and lowered norepinephrine requirements (0.43 +/- 0.17 microg/kg/min; p = 0.002) and systemic vascular resistance index (1.44 +/- 0.57 dynes/s/cm5/kg; p = 0.0001) compared with controls. Despite these beneficial effects, intra-aortic balloon counterpulsation was associated with an increase in blood urea nitrogen (p = 0.002) and creatinine (p = 0.12). In animals receiving lower doses of bacteria, intra-aortic balloon counterpulsation had no significant effects on survival or renal function. In a canine model of severe septic shock with a low cardiac index, intra-aortic balloon counterpulsation prolongs survival time and lowers vasopressor requirements.
Balloon Ascent: 3-D Simulation Tool for the Ascent and Float of High-Altitude Balloons
NASA Technical Reports Server (NTRS)
Farley, Rodger E.
2005-01-01
The BalloonAscent balloon flight simulation code represents a from-scratch development using Visual Basic 5 as the software platform. The simulation code is a transient analysis of balloon flight, predicting the skin and gas temperatures along with the 3-D position and velocity in a time and spatially varying environment. There are manual and automated controls for gas valving and the dropping of ballast. Also, there are many handy calculators, such as appropriate free lift, and steady-state thermal solutions with temperature gradients. The strength of this simulation model over others in the past is that the infrared environment is deterministic rather than guessed at. The ground temperature is specified along with the emissivity, which creates a ground level IR environment that is then partially absorbed as it travels upward through the atmosphere to the altitude of the balloon.
NASA Technical Reports Server (NTRS)
Tatom, F. B.; King, R. L.
1977-01-01
The proper application of constant-volume balloons (CVB) for measurement of atmospheric phenomena was determined. And with the proper interpretation of the resulting data. A literature survey covering 176 references is included. the governing equations describing the three-dimensional motion of a CVB immersed in a flow field are developed. The flowfield model is periodic, three-dimensional, and nonhomogeneous, with mean translational motion. The balloon motion and flow field equations are cast into dimensionless form for greater generality, and certain significant dimensionless groups are identified. An alternate treatment of the balloon motion, based on first-order perturbation analysis, is also presented. A description of the digital computer program, BALLOON, used for numerically integrating the governing equations is provided.
NASA Astrophysics Data System (ADS)
Siguier, J.-M.; Guigue, P.; Karama, M.; Mistou, S.; Dalverny, O.; Granier, S.
2004-01-01
Long duration super-pressure balloons constitute a great challenge in scientific ballooning. For any type of balloons (spherical, pumpkin, …), it is necessary to have a good knowledge of the mechanical behavior of envelopes regarding the level and the lifetime of the flight. For this reason CNES, ONERA and ENIT are carrying out a research program of modelization and experimentation in order to predict the envelope shape of a balloon in different conditions of temperature and differential pressure. This study was conducted in two parts. During the first one, we defined, with parameters obtained from unidirectional tests, the mechanical laws (elasticity, plasticity and viscosity properties of polymers) of materials involved in the envelope. These laws are introduced in a finite element code, which predicts the stress and strain status of a complex envelope structure. During the second one, we developed an experimental set-up to measure the 3D strain on a balloon subsystem, which includes envelope, assemblies and apex parts, in real flight conditions. This facility, called NIRVANA, is a 1 m 3 vacuum chamber with cooled screens equipped with a stereoscopic CCD measurement system. A 1.5 m diameter sample can be tested under differential pressure, regulated temperature (from +20 to -120 °C) and a load (up to 6 tonnes) applied on tendons. This paper presents the first results obtained from the modelizations and measurements done on an envelope sample submitted to axisymmetrical stress due to the differential pressure. This sample consists of a 50 μm multilayer polymer film with an assembly, used in 10 m diameter STRATEOLE super-pressure balloons. The modelization gives results in good accordance with the experiments and will enable us to follow this work with cold conditions, time dependence (creeping) and more complex structures.
Reference level winds from balloon platforms
NASA Technical Reports Server (NTRS)
Lally, Vincent E.
1985-01-01
The superpressure balloon was developed to provide a method of obtaining global winds at all altitudes from 5 to 30 km. If a balloon could be made to fly for several weeks at a constant altitude, and if it could be tracked accurately on its global circuits, the balloon would provide a tag for the air parcel in which it was embedded. The Lagrangian data on the atmospheric circulation would provide a superior data input to the numerical model. The Global Atmospheric Research Program (GARP) was initiated in large part based on the promise of this technique coupled with free-floating ocean buoys and satellite radiometers. The initial name proposed by Charney for GARP was SABABURA 'SAtellite BAlloon BUoy RAdiometric system' (Charney, 1966). However, although the superpressure balloon exceeded its designers' expectations for flight duration in the stratosphere (longest flight duration of 744 days), flight duration below 10 km was limited by icing in super-cooled clouds to a few days. The balloon was relegated to a secondary role during the GARP Special Observing Periods. The several major superpressure balloon programs for global wind measurement are described as well as those new developments which make the balloon once again an attractive vehicle for measurement of global winds as a reference and bench-mark system for future satellite systems.
Ballooning Interest in Science.
ERIC Educational Resources Information Center
Kim, Hy
1992-01-01
Presents an activity in which students construct model hot air balloons to introduce the concepts of convection current, the principles of Charles' gas law, and three-dimensional geometric shapes. Provides construction and launching instructions. (MDH)
QUANTITATIVE TESTS OF ELMS AS INTERMEDIATE N PEELING-BALLOONING MODES
DOE Office of Scientific and Technical Information (OSTI.GOV)
LAO, LL; SNYDER, PB; LEONARD, AW
2002-07-01
OAK A271 QUANTITATIVE TESTS OF ELMS AS INTERMEDIATE N PEELING-BALLOONING MODES. Two of the major issues crucial for the design of the next generation tokamak burning plasma devices are the predictability of the edge pedestal height and control of the divertor heat load in H-mode configurations. Both of these are strongly impacted by edge localized modes (ELMs) and their size. A working model for ELMs is that they are intermediate toroidal mode number, n {approx} 5-30, peeling-ballooning modes driven by the large edge pedestal pressure gradient P{prime} and the associated large edge bootstrap current density J{sub BS}. the interplay betweenmore » P{prime} and J{sub BS} as a discharge evolves can excite peeling-ballooning modes over a wide spectrum of n. The pedestal current density plays a dual role by stabilizing the high n ballooning modes via opening access to second stability but providing free energy to drive the intermediate n peeling modes. This makes a systematic evaluation of this model particularly challenging. This paper describes recent quantitative tests of this model using experimental data from the DIII-D and the JT-60U tokamaks. These tests are made possible by recent improvements to the ELITE MHD stability code, which allow an efficient evaluation of the unstable peeling-ballooning modes, as well as by improvements to other diagnostic and analysis techniques. Some of the key testable features of this model are: (1) ELMs are triggered when the growth rates of intermediate n MHD modes become significantly large; (2) ELM sizes are related to the radial widths of the unstable modes; (3) the unstable modes have a strong ballooning character localized in the outboard bad curvature region; (4) at high collisionality, ELM size generally becomes smaller because J{sub BS} is reduced.« less
NASA Astrophysics Data System (ADS)
Wakefield, David
Tensys have a long-established background in the shape generation and load analysis of architectural stressed membrane structures. Founded upon their inTENS finite element analysis suite, these activities have broadened to encompass ‘lighter than air' structures such as aerostats, hybrid air-vehicles and stratospheric balloons. Since 2004 Tensys have acted as consultants to the NASA Ultra Long Duration Balloon (ULDB) Program. Early implementations of the super-pressure balloon design chosen for ULDB have shown problems of geometric instability, characterised by improper deployment and the potential for overall geometric instability once deployed. The latter has been reproduced numerically using inTENS, and the former are better understood following a series of large-scale hangar tests simulating launch and ascent. In both cases the solution lies in minimising the film lobing between the tendons. These tendons, which span between base and apex end fittings, cause the characteristic pumpkin shape of the balloons and also provide valuable constraint against excessive film deformation. There is also the requirement to generate a biaxial stress field in order to mobilise in-plane shear stiffness. A consequence of reduced lobing between tendons is the development of higher stresses in the balloon film under pressure. The different thermal characteristics between tendons and film lead to further significant meridional stress under low temperature flight conditions. The non-linear viscoelastic response of the envelope film acts positively to help dissipate excessive stress and local concentrations. However, creep over time may produce lobe geometry variations sufficient to compromise the geometric stability of the balloon. The design of a balloon requires an analysis approach that addresses the questions of stress and stability over the duration of a flight by time stepping analyses using an appropriate material model. This paper summarises the Dynamic Relaxation approach to stress and stability analysis inherent in inTENS, and focuses in particular on: Implementation of an alternative application of the Incremental Schapery Rand (ISR) representation of the non-linear visco-elastic response of the polyethylene balloon film. This is based upon the relaxation modulus, rather than the creep compliance, and as such fits more efficiently into the Dynamic Relaxation analysis procedure used within inTENS. Comparisons of results between the two approaches are given. Verification of the material model by comparison with material tests. Verification of the application to pumpkin balloon structures by comparison with scale model tests. Application of inTENS with ISR to time-stepping analyses of a balloon flight including diurnal variations of temperature and pressure. This includes the demonstration of a method for checking the likely hood of overall instability developing at any particular time in the flight as both balloon geometry and film properties change due to visco-elastic effects.
Intra-Aortic Balloon Pump Malposition Reduces Visceral Artery Perfusion in an Acute Animal Model.
Vondran, Maximilian; Rastan, Ardawan J; Tillmann, Eugen; Seeburger, Jörg; Schröter, Thomas; Dhein, Stefan; Bakhtiary, Farhad; Mohr, Friedrich-Wilhelm
2016-04-01
Visceral artery perfusion can be potentially affected by intra-aortic balloon pump (IABP) catheters. We utilized an animal model to quantify the acute impact of a low balloon position on mesenteric artery perfusion. In six pigs (78 ± 7 kg), a 30-cc IABP was placed in the descending aorta in a transfemoral procedure. The celiac artery (CA) and the cranial mesenteric artery (CMA) were surgically dissected. Transit time blood flow was measured for (i) baseline, (ii) 1:1 augmentation with the balloon proximal to the visceral arteries, and (iii) 1:1 augmentation with the balloon covering the visceral arteries. Blood flow in the CMA and CA was reduced by 17 and 24%, respectively, when the balloon compromised visceral arteries compared with a position above the visceral arteries (flow in mL/min: CMA: (i) 1281 ± 512, (ii) 1389 ± 287, (iii) 1064 ± 276, P < 0.05 for 3 vs. 1 and 3 vs. 2; CA: (i) 885 ± 370, (ii) 819 ± 297, (iii) 673 ± 315; P < 0.05 for 3 vs. 1). The covering of visceral arteries by an IABP balloon causes a significant reduction of visceral artery perfusion; thus, the positioning of this device during implantation is critical for obtaining a satisfactory outcome. Copyright © 2015 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
2002-01-01
Cosmic-ray background fluxes were modeled based on existing measurements and theories and are presented here. The model, originally developed for the Gamma-ray Large Area Space Telescope (GLAST) Balloon Experiment, covers the entire solid angle (4(pi) sr), the sensitive energy range of the instrument ((approx) 10 MeV to 100 GeV) and abundant components (proton, alpha, e(sup -), e(sup +), (mu)(sup -), (mu)(sup +) and gamma). It is expressed in analytic functions in which modulations due to the solar activity and the Earth geomagnetism are parameterized. Although the model is intended to be used primarily for the GLAST Balloon Experiment, model functions in low-Earth orbit are also presented and can be used for other high energy astrophysical missions. The model has been validated via comparison with the data of the GLAST Balloon Experiment.
NASA Technical Reports Server (NTRS)
Dorsey, D. R., Jr.
1975-01-01
A mathematical model was developed of the three-dimensional dynamics of a high-altitude scientific research balloon system perturbed from its equilibrium configuration by an arbitrary gust loading. The platform is modelled as a system of four coupled pendula, and the equations of motion were developed in the Lagrangian formalism assuming a small-angle approximation. Three-dimensional pendulation, torsion, and precessional motion due to Coriolis forces are considered. Aerodynamic and viscous damping effects on the pendulatory and torsional motions are included. A general model of the gust field incident upon the balloon system was developed. The digital computer simulation program is described, and a guide to its use is given.
Launching a Tethered Balloon in the Artic
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2017-08-14
Sandia atmospheric scientist Dari Dexheimer regularly flies tethered balloons out of Sandia’s dedicated Arctic airspace on Oliktok Point, the northernmost point of Alaska’s Prudhoe Bay. These 13-foot-tall balloons carry distributed temperature sensors to collect Arctic atmospheric temperature profiles, or the temperature of the air at different heights above the ground, among other atmospheric sensors. The data Sandia collects is critical for understanding Arctic clouds to inform global climate models.
Schampaert, Stéphanie; Rutten, Marcel C M; van T Veer, Marcel; van Nunen, Lokien X; Tonino, Pim A L; Pijls, Nico H J; van de Vosse, Frans N
2013-01-01
Because of the large number of interaction factors involved, the effects of the intra-aortic balloon pump (IABP) have not been investigated deeply. To enhance its clinical efficiency and to better define indications for use, advanced models are required to test the interaction between the IABP and the cardiovascular system. A patient with mild blood pressure depression and a lowered cardiac output is modeled in a lumped parameter computational model, developed with physiologically representative elements for relevant components of circulation and device. IABP support is applied, and the moments of balloon inflation and deflation are varied around their conventional timing modes. For validation purposes, timing is adapted within acceptable ranges in ten patients undergoing IABP therapy for typical clinical indications. In both model and patients, the IABP induces a diastolic blood pressure augmentation as well as a systolic reduction in afterload. The support capabilities of the IABP benefit the most when the balloon is deflated simultaneously with ventricular contraction, whereas inflation before onset of diastole unconditionally interferes with ejection. The physiologic response makes the model an excellent tool for testing the interaction between the IABP and the cardiovascular system, and how alterations of specific IABP parameters (i.e., timing) affect this coupling.
Short intra-aortic balloon pump in a swine model of myocardial ischaemia: a proof-of-concept study.
Gelsomino, Sandro; Lozekoot, Pieter W J; Lorusso, Roberto; de Jong, Monique M J; Parise, Orlando; Matteucci, Francesco; Lucà, Fabiana; La Meir, Mark; Gensini, Gian Franco; Maessen, Jos G
2016-03-01
This proof-of-concept study examined the haemodynamic performance as well as the coronary and visceral organ perfusion using a new short balloon for intra-aortic counterpulsation (IABP) in a swine model of myocardial ischaemia. Eighteen healthy pigs underwent 120-min ligation of the left anterior descending coronary artery followed by 6 h of reperfusion, and they were randomly assigned into 3 groups undergoing IABP implantation with a 35-ml short balloon (n = 6), a 40-ml short balloon (n = 6) or no IABP implantation (controls, n = 6). Haemodynamics, and visceral and coronary flows were measured at baseline (t0), at 2 h of ischaemia (t1) and every hour thereafter until 6 h of reperfusion (from tR1 to tR6), respectively. Mesenteric and renal flows increased significantly at tR1 only in the IABP groups (all, P < 0.001) and were significantly higher than controls throughout the reperfusion periods (P < 0.001). Coronary systolic and diastolic blood flows increased only at tR1 in the IABP groups (all, P < 0.001) but were higher than controls at tR1-tR6. The IABP was associated with enhanced haemodynamics compared with controls. No difference was detected using different balloon volumes (all, P > 0.05). The new short balloon significantly increased visceral flow, enhanced haemodynamics and improved coronary circulation during reperfusion following myocardial ischaemia in our experimental model. © The Author 2015. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.
Tubbs, Kyle J; Silva, Rodrigo C; Ramirez, Harvey E; Castleman, William L; Collins, William O
2013-01-01
Balloon dilation is accepted as a first line treatment of acute subglottic stenosis, but its effects on the subglottic tissue remain largely unknown. We aimed to develop an animal model of acute subglottic stenosis using endoscopic techniques. Once developed, this model was used to compare the immediate effects of balloon dilation and endotracheal tube dilation on subglottic tissue. Prospective randomized animal study. Acute subglottic injury was induced in 10 ferrets by endoscopic cauterization with silver nitrate. After 48-72 hours of observation, eight animals were randomized to undergo subglottic dilation with either a 5-mm balloon or endotracheal tubes of increasing diameter. These eight ferrets were euthanized within 10 minutes after dilation. The other two ferrets served as controls and were euthanized following observation only. The larynx from each ferret was harvested, and the subglottis was examined histologically by a pathologist blinded to the treatment arms. Acute subglottic stenosis was induced in all 10 ferrets using the endoscopic technique. Both balloon and endotracheal tube dilation resulted in comparable improvement in the subglottic airway diameter. A decreased thickness of submucosa/lamina propria was seen in the balloon dilation group. Acute subglottic stenosis can be reliably induced in ferrets using endoscopic techniques. Multiple dilation methods can be used to relieve acute obstruction. Balloon dilators seem to improve airway patency, in part, by decreasing the thickness of the submucosa and lamina propria. Further research is needed to determine how this impacts later stages of wound healing and final outcomes. Copyright © 2012 The American Laryngological, Rhinological, and Otological Society, Inc.
NASA Astrophysics Data System (ADS)
Nott, Julian
This paper will describe practical work flying prototype balloons in the "The Titan Sky Simulator TM " in conditions approximating those found in Titan's atmosphere. Saturn's moon, Titan, is attracting intense scientific interest. This has led to wide interest in exploring it with Aerobots, balloons or airships. Their function would be similar to the Rovers exploring Mars, but instead of moving laboriously across the rough terrain on wheels, they would float freely from location to location. To design any balloon or airship it is essential to know the temperature of the lifting gas as this influences the volume of the gas, which in turn influences the lift. To determine this temperature it is necessary to know how heat is transferred between the craft and its surroundings. Heat transfer for existing balloons is well understood. However, Titan conditions are utterly different from those in which balloons have ever been flown, so heat transfer rates cannot currently be calculated. In particular, thermal radiation accounts for most heat transfer for existing balloons but over Titan heat transfer will be dominated by convection. To be able to make these fundamental calculations, it is necessary to get fundamental experimental data. This is being obtained by flying balloons in a Simulator filled with nitrogen gas at very low temperature, about 95° K / minus 180° C, typical of Titan's temperatures. Because the gas in the Simulator is so cold, operating at atmospheric pressure the density is close to that of Titan's atmosphere. "The Titan Sky Simulator TM " has an open interior approximately 4.5 meter tall and 2.5 meters square. It has already been operated at 95° K/-180° C. By the time of the Conference it is fully expected to have data to present from actual balloons flying at this temperature. Perhaps the most important purpose of this testing is to validate numerical [computational fluid dynamics] models being developed by Tim Colonius of Caltech. These numerical models will be very valuable: once validated, a wide range of Titan aerobot designs can be analyzed rapidly. It is currently expected that Montgolfiere balloons ["hot air balloons"] will prove most suitable for Titan. However, the fundamental data obtained will be equally valuable for designing of any type of Titan Aerobot. This work is supported by the NASA Jet Propulsion Laboratory with Jeffrey Hall as program manager.
Davidson, Anders J; Russo, Rachel M; Ferencz, Sarah-Ashley E; Cannon, Jeremy W; Rasmussen, Todd E; Neff, Lucas P; Johnson, M Austin; Williams, Timothy K
2017-07-01
To avoid potential cardiovascular collapse after resuscitative endovascular balloon occlusion of the aorta (REBOA), current guidelines recommend methodically deflating the balloon for 5 minutes to gradually reperfuse distal tissue beds. However, anecdotal evidence suggests that this approach may still result in unpredictable aortic flow rates and hemodynamic instability. We sought to characterize aortic flow dynamics following REBOA as the balloon is deflated in accordance with current practice guidelines. Eight Yorkshire-cross swine were splenectomized, instrumented, and subjected to rapid 25% total blood volume hemorrhage. After 30 minutes of shock, animals received 60 minutes of Zone 1 REBOA with a low-profile REBOA catheter. During subsequent resuscitation with shed blood, the aortic occlusion balloon was gradually deflated in stepwise fashion at the rate of 0.5 mL every 30 seconds until completely deflated. Aortic flow rate and proximal mean arterial pressure (MAP) were measured continuously over the period of balloon deflation. Graded balloon deflation resulted in variable initial return of aortic flow (median, 78 seconds; interquartile range [IQR], 68-105 seconds). A rapid increase in aortic flow during a single-balloon deflation step was observed in all animals (median, 819 mL/min; IQR, 664-1241 mL/min) and corresponded with an immediate decrease in proximal MAP (median, 30 mm Hg; IQR, 14.5-37 mm Hg). Total balloon volume and time to return of flow demonstrated no correlation (r = 0.016). This study is the first to characterize aortic flow during balloon deflation following REBOA. A steep inflection point occurs during balloon deflation that results in an abrupt increase in aortic flow and a concomitant decrease in MAP. Furthermore, the onset of distal aortic flow was inconsistent across study animals and did not correlate with initial balloon volume or relative deflation volume. Future studies to define the factors that affect aortic flow during balloon deflation are needed to facilitate controlled reperfusion following REBOA.
Conformability of balloon-expandable stents to the carotid siphon: an in vitro study.
du Mesnil de Rochemont, R; Yan, B; Zanella, F E; Rüfenacht, D A; Berkefeld, J
2006-02-01
Endovascular placement of coronary balloon-expandable stents in patients with recurrent cerebral ischemia has emerged as a treatment option for intracranial arterial occlusive disease. We have developed an in vitro model matching the tortuous curve of the carotid siphon that allows the assessment of apposition of stents to a curved vessel wall. Six types of balloon-expandable coronary stents were implanted in a silicone model of the carotid siphon. Digital radiographs and 3D rotational angiograms were obtained. Stent morphology was evaluated and the degree of apposition between stent and wall of the model was measured on a digital workstation. All 6 stents showed lack of apposition between stent and the wall at the convexity of the anterior segment of the carotid siphon and the wall at the concavity at both extremities of the stent. In and around the curve, the modules of the stents did not expand completely to their nominal diameter and were distorted to an oval shape. The tested coronary balloon-expandable stents did not completely conform to the vessel wall of the model of the carotid siphon and further development is needed to approach the goal of an "ideal intracranial stent."
Gasper, Warren J; Jimenez, Cynthia A; Walker, Joy; Conte, Michael S; Seward, Kirk; Owens, Christopher D
2013-12-01
Endovascular interventions on peripheral arteries are limited by high rates of restenosis. Our hypothesis was that adventitial injection of rapamycin nanoparticles would be safe and reduce luminal stenosis in a porcine femoral artery balloon angioplasty model. Eighteen juvenile male crossbred swine were included. Single-injury (40%-60% femoral artery balloon overstretch injury; n=2) and double-injury models (endothelial denudation injury 2 weeks before a 20%-30% overstretch injury; n=2) were compared. The double-injury model produced significantly more luminal stenosis at 28 days, P=0.002, and no difference in medial fibrosis or inflammation. Four pigs were randomized to the double-injury model and adventitial injection of saline (n=2) or 500 μg of nanoparticle albumin-bound rapamycin (nab-rapamycin; n=2) with an endovascular microinfusion catheter. There was 100% procedural success and no difference in endothelial regeneration. At 28 days, nab-rapamycin led to significant reductions in luminal stenosis, 17% (interquartile range, 12%-35%) versus 10% (interquartile range, 8.3%-14%), P=0.001, medial cell proliferation, P<0.001, and fibrosis, P<0.001. There were significantly fewer adventitial leukocytes at 3 days, P<0.001, but no difference at 28 days. Pharmacokinetic analysis (single-injury model) found rapamycin concentrations 1500× higher in perivascular tissues than in blood at 1 hour. Perivascular rapamycin persisted ≥8 days and was not detectable at 28 days. Adventitial nab-rapamycin injection was safe and significantly reduced luminal stenosis in a porcine femoral artery balloon angioplasty model. Observed reductions in early adventitial leukocyte infiltration and late medial cell proliferation and fibrosis suggest an immunosuppressive and antiproliferative mechanism. An intraluminal microinfusion catheter for adventitial injection represents an alternative to stent- or balloon-based local drug delivery.
NASA Astrophysics Data System (ADS)
González-Llana, Arturo; González-Bárcena, David; Pérez-Grande, Isabel; Sanz-Andrés, Ángel
2018-07-01
The selection of the extreme thermal environmental conditions -albedo coefficient and Earth infrared radiation- for the thermal design of stratospheric balloon missions is usually based on the methodologies applied in space missions. However, the particularities of stratospheric balloon missions, such as the much higher residence time of the balloon payload over a determined area, make necessary an approach centered in the actual environment the balloon is going to find, in terms of geographic area and season of flight. In this sense, this work is focussed on stratospheric balloon missions circumnavigating the North Pole during the summer period. Pairs of albedo and Earth infrared radiation satellite data restricted to this area and season of interest have been treated statistically. Furthermore, the environmental conditions leading to the extreme temperatures of the payload depend in turn on the surface finish, and more particularly on the ratio between the solar absorptance and the infrared emissivity α/ε. A simple but representative thermal model of a balloon and its payload has been set up in order to identify the pairs of albedo coefficient and Earth infrared radiation leading to extreme temperatures for each value of α/ε.
Structural Analysis of NASA's ULDB using Photogrammetric Measurements
NASA Astrophysics Data System (ADS)
Young, Leyland; Garde, Gabriel; Cathey, Henry
The National Aeronautics and Space Administration (NASA) Balloon Program Office (BPO) has been developing a super-pressure Ultra Long Duration Balloon (ULDB) for constant altitude and longer flight times. The development of the ULDB has progressed in many areas that are significant to NASA's desired goals. However, there has been a re-occurring anomaly of the ULDB called a cleft, which prevents the balloon from properly deploying at float altitudes. Over the years, there has been an influx of hypotheses and speculations to the cause of the cleft formation. Significant changes were made to the design paradigm of the ULDB to address the clefting issue. It was hypothesized that the design philosophy of fore-shortening the tendons relative to the polyethylene film was causing the cleft formation, thus the fore-shortened scheme was removed in the design process. The latest design concept removed the fore-shortening and produced a one to one matching of the tendons and film. Consequently, in 2006, a six million cubic foot (MCF) balloon was designed with the new concept of zero fore-shortening and clefted as it reached its float altitude. This 6 MCF cleft proved that the clefting phenomenon was not properly understood and there was more to the problem than just fore-shortening. Most analytical analyses conducted on the ULDB towards the clefting issue focused on pressure stabilities. It was shown through several finite element analyses that the new design concept produces a stable balloon when pressurized; thus, pressurized stability was believed to be a sufficient measure to indicate if a balloon would cleft or not cleft. Eventually, the 6 MCF balloon that clefted in 2006 showed that the pressurized stability analysis is subjective and is not applicable in predicting a cleft formation. Moreover, the analytical pressurized stability is conducted on a fully deployed balloon, whereas, the clefting phenomena occurs as part of the deployment process, and is clearly seen during the final deployment stages. In time, there is no doubt that an analytical tool will be available to fully analyze the ULDB for all concerns; however, at the present time, the analytical efforts are ongoing but are delayed by the complexity of modeling a balloon from un-deployed to deployed configuration. Thus, in the absence of an analytical tool, the development of the ULDB was steered towards more experimental work in understanding the clefting phenomena. This paper highlights the experimental analyses conducted on several scaled model ULDB's using photogrammetry measurements. The experimental work began with two 48-gore 4-meter diameter scaled ULDB's having the characteristics of a 180-degree bulge angle and 7.5-degree bulge angle respectively. The 180-degree balloon inflation experiments showed that similes of clefts appeared in the balloon at the onset of full deployment; whereas, these cleft-like formations were absent in the subsequent experiments with the 7.5-degree bulge angle balloon. This confirmed the thought that "excess material" designed in the gore width to create a 180-degree bulge angle is likely contributing to the clefting phenomena. Thus, the ULDB project decided to build three 200-gore 27-meter balloons: a 90-degree bulge angle, a 55- degree bulge angle, and a 1.8-degree bulge angle balloon to verify the hypothesis of excess material contribution to the clefting phenomena and to explore the limits of the deployment trade space. The experimental analysis with photogrammetry of these three 27-meter diameter balloons provided valuable data of stresses and strains and of the deployment mechanics of an ULDB that proves excess material is a contributor to the clefting phenomena. Significantly, the photogrammetry data showed that there are significant benefits for the lower value lobe angle designs; moreover, the lower value lobe angle balloon deployed better and had stresses and strains comparable to the other two designs. Another test was conducted on an 8-meter 48-gore scaled model ULDB to test the strain limits of the film. After
Gamma Ray Large Area Space Telescope (GLAST) Balloon Flight Engineering Model: Overview
NASA Technical Reports Server (NTRS)
Thompson, D. J.; Godfrey, G.; Williams, S. M.; Grove, J. E.; Mizuno, T.; Sadrozinski, H. F.-W.; Kamae, T.; Ampe, J.; Briber, Stuart; Dann, James;
2001-01-01
The Gamma Ray Large Area Space Telescope (GLAST) Large Area Telescope (LAT) is a pair-production high-energy (greater than 20 MeV) gamma-ray telescope being built by an international partnership of astrophysicists and particle physicists for a satellite launch in 2006, designed to study a wide variety of high-energy astrophysical phenomena. As part of the development effort, the collaboration has built a Balloon Flight Engineering Model (BFEM) for flight on a high-altitude scientific balloon. The BFEM is approximately the size of one of the 16 GLAST-LAT towers and contains all the components of the full instrument: plastic scintillator anticoincidence system (ACD), high-Z foil/Si strip pair-conversion tracker (TKR), CsI hodoscopic calorimeter (CAL), triggering and data acquisition electronics (DAQ), commanding system, power distribution, telemetry, real-time data display, and ground data processing system. The principal goal of the balloon flight was to demonstrate the performance of this instrument configuration under conditions similar to those expected in orbit. Results from a balloon flight from Palestine, Texas, on August 4, 2001, show that the BFEM successfully obtained gamma-ray data in this high-background environment.
NASA Technical Reports Server (NTRS)
Lubin, Philip M.; Tomizuka, Masayoshi; Chingcuanco, Alfredo O.; Meinhold, Peter R.
1991-01-01
A balloon-born stabilized platform has been developed for the remotely operated altitude-azimuth pointing of a millimeter wave telescope system. This paper presents a development and implementation of model reference adaptive control (MRAC) for the azimuth-pointing system of the stabilized platform. The primary goal of the controller is to achieve pointing rms better than 0.1 deg. Simulation results indicate that MRAC can achieve pointing rms better than 0.1 deg. Ground test results show pointing rms better than 0.03 deg. Data from the first flight at the National Scientific Balloon Facility (NSBF) Palestine, Texas show pointing rms better than 0.02 deg.
NASA Astrophysics Data System (ADS)
Li, Qiong; Geng, Fangzhi
2018-03-01
Based on the characteristics of complex terrain and different seasons’ weather in Qinghai Tibet Plateau, through statistic the daily rainfall that from 2002 to 2012, nearly 11 years, by Bomi meteorological station, Bomi area rainfall forecast model is established, and which can provide the basis forecasting for dangerous weather warning system on the balloon borne radar in the next step, to protect the balloon borne radar equipment’s safety work and combat effectiveness.
2017-06-15
all animals , and continued for six hours. Half of the animals were randomly assigned to Zone-3 REBOA for an additional 45 minutes following Zone-1...concentration or resuscitation requirements.Conclusion: In an animal model of hemorrhagic shock and Zone-1 REBOA, subsequent Zone-3 aortic occlusion did not add
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whiteman, C.D.; Anderson, G.A.; Alzheimer, J.M.
1995-04-01
Vertical profiles of solar and terrestrial radiative fluxes are key research needs for global climate change research. These fluxes are expected to change as radiatively active trace gases are emitted to the earth`s atmosphere as a consequence of energy production and industrial and other human activities. Models suggest that changes in the concentration of such gases will lead to radiative flux divergences that will produce global warming of the earth`s atmosphere. Direct measurements of the vertical variation of solar and terrestrial radiative fluxes that lead to these flux divergences have been largely unavailable because of the expense of making suchmore » measurements from airplanes. These measurements are needed to improve existing atmospheric radiative transfer models, especially under the cloudy conditions where the models have not been adequately tested. A tethered-balloon-borne Radiometric Sounding System has been developed at Pacific Northwest Laboratory to provide an inexpensive means of making routine vertical soundings of radiative fluxes in the earth`s atmospheric boundary layer to altitudes up to 1500 m above ground level. Such vertical soundings would supplement measurements being made from aircraft and towers. The key technical challenge in the design of the Radiometric Sounding System is to develop a means of keeping the radiometers horizontal while the balloon ascends and descends in a turbulent atmospheric environment. This problem has been addressed by stabilizing a triangular radiometer-carrying platform that is carried on the tetherline of a balloon sounding system. The platform, carried 30 m or more below the balloon to reduce the balloon`s effect on the radiometric measurements, is leveled by two automatic control loops that activate motors, gears and pulleys when the platform is off-level. The sensitivity of the automatic control loops to oscillatory motions of various frequencies and amplitudes can be adjusted using filters.« less
Turk, Marvee; Gupta, Vishal; Fischell, Tim A
2010-03-01
There have been reports of serious complications related to difficulty removing the deflated Taxus stent delivery balloon after stent deployment. The purpose of this study was to determine whether the Taxus SIBS polymer was "sticky" and associated with an increase in the force required to remove the stent delivery balloon after stent deployment, using a quantitative, ex-vivo model. Balloon-polymer-stent interactions during balloon withdrawal were measured with the Taxus Liberté, Liberté bare-metal stent (BMS; no polymer = control), the Cordis Cypher drug-eluting stent (DES; PEVA/PBMA polymer) and the BX Velocity (no polymer). We quantitatively measured the force required to remove the deflated stent delivery balloon from each of these stents in simulated vessels at 37 degrees C in a water bath. Balloon withdrawal forces were measured in straight (0 degree curve), mildly curved (20 degree curve) and moderately curved (40 degree curve) simulated vessel segments. The average peak force required to remove the deflated balloon catheter from the Taxus Liberté DES, the Liberté BMS, the Cypher DES, and the Bx Velocity BMS were similar in straight segments, but were much greater for the Taxus Liberté in the moderately curved segments (1.4 lbs vs. 0.11 lbs, 0.11 lbs and 0.12 lbs, respectively; p < 0.0001). The SIBS polymer of the Taxus Liberté DES appears to be "sticky" and is associated with high forces required to withdraw the deflated balloon from the deployed stent in curved segments. This withdrawal issue may help to explain the clinical complications that have been reported with this device.
Fresiello, Libera; Khir, Ashraf W; Di Molfetta, Arianna; Kozarski, Maciej; Ferrari, Gianfranco
2013-11-01
The aim of this study was to investigate the effects of the intra aortic balloon pump (IABP) and of aortic compliance on left ventricular performance, including the effects of baroreflex control. The study was conducted using a hybrid cardiovascular simulator, including a computational cardiovascular sub-model, a hydraulic sub-model of the descending aorta, and a baroreflex computational sub-model. A 40 cc balloon was inserted into a rubber tube component of the hydraulic sub-model. A comparative analysis was conducted for two aortic compliances (C1 = 2.4 and C2 = 1.43 cm3/mmHg, corresponding to an aortic pulse pressure of 23 mmHg and 35 mmHg, respectively), driving the balloon for different trigger timings. Under C1 conditions, the IABP induced higher effects on baroreflex activity (decrement of sympathetic efferent activity: 10% for C1 and 14.7% for C2) and ventricular performance (increment of cardiac output (CO): 3.7% for C1 and 5.2% for C2, increment of endocardial viability ratio (EVR): 24.8% for C1 and 55% for C2). The best balloon timing was different for C1 and C2: inflation trigger timing (from the dicrotic notch) -0.09 s for C1 and -0.04 s for C2, inflation duration 0.25 s for C1 and 0.2 s for C2. Early inflation ensures better EVR, CO, and an increment of the afferent nerve activity, hence causing peripheral resistance and heart rate to decrease. The best balloon timing depends on aortic compliance, thus suggesting the need for a therapy tailored to the specific conditions of individual patients.
Lai, Chao-Lun; Fan, Chieh-Min; Liao, Pen-Chih; Tsai, Kuang-Chau; Yang, Chi-Yu; Chu, Shu-Hsun; Chien, Kuo-Liong
2009-04-01
This before-after study investigated the association between an audit program and door-to-balloon times in patients with acute ST-elevation myocardial infarction (STEMI) and explored other factors associated with the door-to-balloon time. An audit program that collected time data for essential time intervals in acute STEMI was developed with data feedback to both the Department of Emergency Medicine and the Department of Cardiology. The door-to-balloon times for 76 consecutive acute STEMI patients were collected from February 16, 2007, through October 31, 2007, after the implementation of the audit program, as the intervention group. The control group was defined by 104 consecutive acute STEMI patients presenting from April 1, 2006, through February 15, 2007, before the audit was applied. A multivariate linear regression model was used for analysis of factors associated with the door-to-balloon time. The geometric mean 95% CI of the door-to-balloon time decreased from 164.9 (150.3, 180.9) minutes to 141.9 (127.4, 158.2) minutes (p = 0.039) in the intervention phase. The median door-to-balloon time was 147.5 minutes in the control group and 136.0 minutes in the intervention group (p = 0.09). In the multivariate regression model, the audit program was associated with a shortening of the door-to-balloon time by 35.5 minutes (160.4 minutes vs. 195.9 minutes, p = 0.004); female gender was associated with a mean delay of 58.4 minutes (208.9 minutes vs. 150.5 minutes; p = 0.001); posterolateral wall infarction was associated with a mean delay of 70.5 minutes compared to anterior wall infarction (215.4 minutes vs. 144.9 minutes; p = 0.037) and a mean delay of 69.5 minutes compared to inferior wall infarction (215.4 minutes vs. 145.9 minutes; p = 0.044). The use of a glycoprotein IIb/IIIa inhibitor was associated with a 46.1 minutes mean shortening of door-to-balloon time (155.7 minutes vs. 201.8 minutes; p < 0.001). The implementation of an audit program was associated with a significant reduction in door-to-balloon times among patients with acute STEMI. In addition, female patients, posterolateral wall infarction territory, and nonuse of glycoprotein IIb/IIIa inhibitor were associated with longer door-to-balloon times.
NASA Astrophysics Data System (ADS)
Roberts, T. J.; Dütsch, M.; Hole, L. R.; Voss, P. B.
2015-10-01
Observations from CMET (Controlled Meteorological) balloons are analyzed in combination with mesoscale model simulations to provide insights into tropospheric meteorological conditions (temperature, humidity, wind-speed) around Svalbard, European High Arctic. Five Controlled Meteorological (CMET) balloons were launched from Ny-Ålesund in Svalbard over 5-12 May 2011, and measured vertical atmospheric profiles above Spitsbergen Island and over coastal areas to both the east and west. One notable CMET flight achieved a suite of 18 continuous soundings that probed the Arctic marine boundary layer over a period of more than 10 h. The CMET profiles are compared to simulations using the Weather Research and Forecasting (WRF) model using nested grids and three different boundary layer schemes. Variability between the three model schemes was typically smaller than the discrepancies between the model runs and the observations. Over Spitsbergen, the CMET flights identified temperature inversions and low-level jets (LLJ) that were not captured by the model. Nevertheless, the model largely reproduced time-series obtained from the Ny-Ålesund meteorological station, with exception of surface winds during the LLJ. Over sea-ice east of Svalbard the model underestimated potential temperature and overestimated wind-speed compared to the CMET observations. This is most likely due to the full sea-ice coverage assumed by the model, and consequent underestimation of ocean-atmosphere exchange in the presence of leads or fractional coverage. The suite of continuous CMET soundings over a sea-ice free region to the northwest of Svalbard are analysed spatially and temporally, and compared to the model. The observed along-flight daytime increase in relative humidity is interpreted in terms of the diurnal cycle, and in the context of marine and terrestrial air-mass influences. Analysis of the balloon trajectory during the CMET soundings identifies strong wind-shear, with a low-level channeled flow. The study highlights the challenges of modelling the Arctic atmosphere, especially in coastal zones with varying topography, sea-ice and surface conditions. In this context, CMET balloons provide a valuable technology for profiling the free atmosphere and boundary layer in remote regions where few other observations are available for model validation.
Hydropneumothorax verses Simple Pneumothorax
2010-08-01
been created to replicate a hydropneumothorax (Fig 6).3 In this model, a red balloon is used to simulate a lung, the wine glass represents the...the Week where CME credits can be obtained. http://rad.usuhs.mil/amsus.html Fig. 9. Comparison of inflated balloon in wine glass (left
Venus cloud bobber mission: A long term survey of the Venusian surface
NASA Technical Reports Server (NTRS)
Wai, James; Derengowski, Cheryl; Lautzenhiser, Russ; Emerson, Matt; Choi, Yongho
1994-01-01
We have examined the Venus Balloon concept in order to further develop the ideas and concepts behind it, and to creatively apply them to the design of the major Venus Balloon components. This report presents our models of the vertical path taken by the Venus Balloon and the entry into Venusian atmosphere. It also details our designs of the balloon, gondola, heat exchanger, power generator, and entry module. A vehicle is designed for a ballistic entry into the Venusian atmosphere, and an atmospheric model is created. The model is then used to set conditions. The shape and material of the vehicle are optimized, and the dimensions of the vehicle are then determined. Equipment is chosen and detailed that will be needed to collect and transmit information and control the mission. A gondola is designed that will enable this sensitive electronic equipment to survive in an atmosphere of very high temperature and pressure. This shape and the material of the shell are optimized, and the size is minimized. Insulation and supporting structures are designed to protect the payload equipment and to minimize mass. A method of cooling the gondola at upper altitudes was established. Power needs of the gondola equipment are determined. Power generation options are discussed and two separate thermoelectric generation models are outlined.
Granada, Juan F; Tellez, Armando; Baumbach, William R; Bingham, Brendan; Keng, Yen-Fang; Wessler, Jeffrey; Conditt, Gerard; McGregor, Jennifer; Stone, Gregg; Kaluza, Greg L; Leon, Martin B
2016-08-20
Among antirestenotic compounds, sirolimus displays a superior safety profile compared to paclitaxel, but its pharmacokinetic properties make it a challenging therapeutic candidate for single-time delivery. Herein we evaluate the feasibility of delivery, long-term retention and vascular effects of sirolimus nanoparticles delivered through a novel porous angioplasty balloon in normal porcine arteries and in a swine model of in-stent restenosis (ISR). Sirolimus nanoparticle formulation was delivered via porous balloon angioplasty to 753 coronary artery segments for pharmacokinetic studies and 26 segments for biological effect of sirolimus delivery in different clinical scenarios (de novo [n=8], ISR [n=6] and following stent implantation [n=12]). Sirolimus coronary artery concentrations were above the target therapeutic level of 1 ng/mg after 26 days, and were >100-fold higher in coronary artery treatment sites than in distal myocardium and remote tissues at all time points. At 28 days, reduction in percent stenosis in formulation-treated sites compared to balloon angioplasty treatment was noted in all three clinical scenarios, with the largest effect seen in the de novo study. Local coronary delivery of sirolimus nanoparticles in the porcine model using a novel porous balloon delivery system achieved therapeutic long-term intra-arterial drug levels without significant systemic residual exposure.
Keller, Benjamin A; Salcedo, Edgardo S; Williams, Timothy K; Neff, Lucas P; Carden, Anthony J; Li, Yiran; Gotlib, Oren; Tran, Nam K; Galante, Joseph M
2016-09-01
Resuscitative endovascular balloon occlusion of the aorta (REBOA) is an adjunct technique for salvaging patients with noncompressible torso hemorrhage. Current REBOA training paradigms require large animals, virtual reality simulators, or human cadavers for acquisition of skills. These training strategies are expensive and resource intensive, which may prevent widespread dissemination of REBOA. We have developed a low-cost, near-physiologic, pulsatile REBOA simulator by connecting an anatomic vascular circuit constructed out of latex and polyvinyl chloride tubing to a commercially available pump. This pulsatile simulator is capable of generating cardiac outputs ranging from 1.7 to 6.8 L/min with corresponding arterial blood pressures of 54 to 226/14 to 121 mmHg. The simulator accommodates a 12 French introducer sheath and a CODA balloon catheter. Upon balloon inflation, the arterial waveform distal to the occlusion flattens, distal pulsation within the simulator is lost, and systolic blood pressures proximal to the balloon catheter increase by up to 62 mmHg. Further development and validation of this simulator will allow for refinement, reduction, and replacement of large animal models, costly virtual reality simulators, and perfused cadavers for training purposes. This will ultimately facilitate the low-cost, high-fidelity REBOA simulation needed for the widespread dissemination of this life-saving technique.
Determination of balloon gas mass and revised estimates of drag and virtual mass coefficients
NASA Technical Reports Server (NTRS)
Robbins, E.; Martone, M.
1993-01-01
In support of the NASA Balloon Program, small-scale balloons were flown with varying lifting gas and total system mass. Instrument packages were developed to measure and record acceleration and temperature data during these tests. Top fitting and instrument payload accelerations were measured from launch to steady state ascent and through ballast drop transients. The development of the small lightweight self-powered Stowaway Special instrument packages is discussed along with mathematical models developed to determine gas mass, drag and virtual mass coefficients.
An analysis of the deployment of a pumpkin balloon on mars
NASA Astrophysics Data System (ADS)
Rand, J.; Phillips, M.
The design of large superpressure balloons has received significant attention in recent years due to the successful demonstration of various enabling technologies and materials. Of particular note is the "pumpkin" shaped balloon concept, which allows the stress in the envelope to be limited by the surface geometry. Unlike a sphere, which produces stress resultants determined by the volume of the system, the pumpkin utilizes a system of meridional tendons to react the loading in one direction, and form a number of lobes, which limit the stress in the circumferential direction. The application of this technology to very large systems is currently being demonstrated by NASA's Ultra Long Duration Balloon (ULDB) Program. However, this type of balloon has certain features that may be exploited to produce a system far more robust than a comparable sphere during deployment, inflation, and operation for long periods of time. When this concept is applied to a system designed to carry two kilograms in the atmosphere of Mars, the resulting balloon is small enough to alter the construction techniques and produce an envelope which is free of tucks and folds which may cause uncontrolled stress concentrations. A technique has been demonstrated where high strength tendons may be pretensioned prior to installation along the centerline of each gore. Since this position is the shortest distance between the apex and nadir of the balloon, the tendons will automatically resist the forces caused by deployment and inflation and thereby protect the thin film gas barrier from damage. A suitable balloon has been designed for this type of mission using five-micron Mylar Type C film for the gas barrier and P O braided cables for the meridionalB load carrying members. The deployment of this balloon is assumed to occur while falling on a decelerator suitably designed for the Mars atmosphere. The inflation is accomplished by a ten-kilogram system suspended at the nadir of the balloon. As the system falls toward the surface of the planet, helium gas is transferred to the balloon, forming a partially inflated system very similar to an ascending zero pressure balloon. This analysis incorporates the flow of the planetary gas around the inflating balloon, altering the pressure distribution and shape. As a result, stresses are seen to increase beyond the design margin of safety, requiring the balloon to be redesigned. In addition, several scale models of this balloon were dynamically deployed in the laboratory to demonstrate that the deployment forces are indeed carried by the tendons
Code of Federal Regulations, 2014 CFR
2014-01-01
... AND GENERAL OPERATING RULES MOORED BALLOONS, KITES, AMATEUR ROCKETS AND UNMANNED FREE BALLOONS Amateur Rockets § 101.22 Definitions. The following definitions apply to this subpart: (a) Class 1—Model Rocket means an amateur rocket that: (1) Uses no more than 125 grams (4.4 ounces) of propellant; (2) Uses a...
Code of Federal Regulations, 2011 CFR
2011-01-01
... AND GENERAL OPERATING RULES MOORED BALLOONS, KITES, AMATEUR ROCKETS AND UNMANNED FREE BALLOONS Amateur Rockets § 101.22 Definitions. The following definitions apply to this subpart: (a) Class 1—Model Rocket means an amateur rocket that: (1) Uses no more than 125 grams (4.4 ounces) of propellant; (2) Uses a...
Code of Federal Regulations, 2012 CFR
2012-01-01
... AND GENERAL OPERATING RULES MOORED BALLOONS, KITES, AMATEUR ROCKETS AND UNMANNED FREE BALLOONS Amateur Rockets § 101.22 Definitions. The following definitions apply to this subpart: (a) Class 1—Model Rocket means an amateur rocket that: (1) Uses no more than 125 grams (4.4 ounces) of propellant; (2) Uses a...
Code of Federal Regulations, 2010 CFR
2010-01-01
... AND GENERAL OPERATING RULES MOORED BALLOONS, KITES, AMATEUR ROCKETS AND UNMANNED FREE BALLOONS Amateur Rockets § 101.22 Definitions. The following definitions apply to this subpart: (a) Class 1—Model Rocket means an amateur rocket that: (1) Uses no more than 125 grams (4.4 ounces) of propellant; (2) Uses a...
Code of Federal Regulations, 2013 CFR
2013-01-01
... AND GENERAL OPERATING RULES MOORED BALLOONS, KITES, AMATEUR ROCKETS AND UNMANNED FREE BALLOONS Amateur Rockets § 101.22 Definitions. The following definitions apply to this subpart: (a) Class 1—Model Rocket means an amateur rocket that: (1) Uses no more than 125 grams (4.4 ounces) of propellant; (2) Uses a...
Feasibility of observer system for determining orientation of balloon borne observational platforms
NASA Technical Reports Server (NTRS)
Nigro, N. J.; Gagliardi, J. C.
1982-01-01
The instantaneous orientation (i.e., the attitude) of the LACATE instrumentation platform with respect to a local vertical is discussed. An observer model for predicting the orientation of balloon-borne research platforms is described. Determination of the platform orientation as a function of time is addressed.
A hybrid skull-stripping algorithm based on adaptive balloon snake models
NASA Astrophysics Data System (ADS)
Liu, Hung-Ting; Sheu, Tony W. H.; Chang, Herng-Hua
2013-02-01
Skull-stripping is one of the most important preprocessing steps in neuroimage analysis. We proposed a hybrid algorithm based on an adaptive balloon snake model to handle this challenging task. The proposed framework consists of two stages: first, the fuzzy possibilistic c-means (FPCM) is used for voxel clustering, which provides a labeled image for the snake contour initialization. In the second stage, the contour is initialized outside the brain surface based on the FPCM result and evolves under the guidance of the balloon snake model, which drives the contour with an adaptive inward normal force to capture the boundary of the brain. The similarity indices indicate that our method outperformed the BSE and BET methods in skull-stripping the MR image volumes in the IBSR data set. Experimental results show the effectiveness of this new scheme and potential applications in a wide variety of skull-stripping applications.
Prospects for infrasound bolide detections from balloon-borne platforms
NASA Astrophysics Data System (ADS)
Young, Eliot; Bowman, Daniel; Arrowsmith, Stephen; Boslough, Marc; Klein, Viliam; Ballard, Courtney; Lees, Jonathan
2017-04-01
We report on an experiment to assess whether balloon-borne instruments can improve sensitivities to bolides exploding in the Earth's atmosphere (essentially using the atmosphere as a witness plate to characterize the small end of the NEO (Near Earth Object) population). The CTBTO's infrasound network regularly detects infrasound disturbances caused by bolides, including the 15-FEB-2013 Chelybinsk impact. Balloon-borne infrasound sensors should have two important advantages over ground-based infrasound stations: there should be virtually no wind noise on a free-floating platform, and a sensor in the stratosphere should benefit from its location within the stratospheric duct. Balloon-borne sensors also have the disadvantage that the amplitude of infrasound waves will decrease as they ascend with altitude. To test the performance of balloon-borne sensors, we conducted an experiment on a NASA high altitude (35 km) balloon launched from Ft Sumner, NM on 28-SEP-2016. We were able to put two independent infrasound payloads on this flight. We arranged for three 3000-lb ANFO explosions to be detonated from Socorro, NM at 12:00, 14:00 and 16:29:59 MST. The first two explosions were detected from the NASA balloon, with the first explosion showing three separate waveforms arriving within a 25-s span. The peak-to-peak amplitude of the waveforms was about 0.06 Pa, and the cleanest microphone channel detected this waveform with an SNR greater than 20. A second balloon at 15 km altitude also detected the second explosion. We have signals from a dozen ground stations at various positions from Socorro to Ft Sumner. We will report on wave propagation models and how they compare with observations from the two balloons and the various ground-stations.
The two-dimensional kinetic ballooning theory for ion temperature gradient mode in tokamak
NASA Astrophysics Data System (ADS)
Xie, T.; Zhang, Y. Z.; Mahajan, S. M.; Hu, S. L.; He, Hongda; Liu, Z. Y.
2017-10-01
The two-dimensional (2D) kinetic ballooning theory is developed for the ion temperature gradient mode in an up-down symmetric equilibrium (illustrated via concentric circular magnetic surfaces). The ballooning transform converts the basic 2D linear gyro-kinetic equation into two equations: (1) the lowest order equation (ballooning equation) is an integral equation essentially the same as that reported by Dong et al., [Phys. Fluids B 4, 1867 (1992)] but has an undetermined Floquet phase variable, (2) the higher order equation for the rapid phase envelope is an ordinary differential equation in the same form as the 2D ballooning theory in a fluid model [Xie et al., Phys. Plasmas 23, 042514 (2016)]. The system is numerically solved by an iterative approach to obtain the (phase independent) eigen-value. The new results are compared to the two earlier theories. We find a strongly modified up-down asymmetric mode structure, and non-trivial modifications to the eigen-value.
Fresiello, Libera; Khir, Ashraf William; Di Molfetta, Arianna; Kozarski, Maciej; Ferrari, Gianfranco
2013-03-01
Despite 50 years of research to assess the intra-aortic balloon pump (IABP) effects on patients' hemodynamics, some issues related to the effects of this therapy are still not fully understood. One of these issues is the effect of IABP, its inflation timing and duration on peripheral circulation autonomic controls. This work provides a systematic analysis of IABP effects on baroreflex using a cardiovascular hybrid model, which consists of computational and hydraulic submodels. The work also included a baroreflex computational model that was connected to a hydraulic model with a 40-cm(3) balloon. The IABP was operated at different inflation trigger timings (-0.14 to 0.31 s) and inflation durations (0.05-0.45 s), with time of the dicrotic notch being taken as t = 0. Baroreflex-dependent parameters-afferent and efferent pathway activity, heart rate, peripheral resistance, and venous tone-were evaluated at each of the inflation trigger times and durations considered. Balloon early inflation (0.09 s before the dicrotic notch) with inflation duration of 0.25 s generated a maximum net increment of afferent pathway activity of 10%, thus leading to a decrement of efferent sympathetic activity by 15.3% compared with baseline values. These times also resulted in a reduction in peripheral resistance and heart rate by 4 and 4.3% compared with baseline value. We conclude that optimum IABP triggering time results in positive effects on peripheral circulation autonomic controls. Conversely, if the balloon is not properly timed, peripheral resistance and heart rate may even increase, which could lead to detrimental outcomes. © 2012, Copyright the Authors. Artificial Organs © 2012, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Voss, P. B.; Nott, J.; Cutts, J. A.; Hall, J. L.; Beauchamp, P. M.; Limaye, S. S.; Baines, K. H.; Hole, L. R.
2013-12-01
In situ exploration of the upper atmosphere of Venus, approximately 65-77 km altitude, could answer many important questions (Limaye 2013, Crisp 2013). This region contains a time-variable UV absorber of unknown composition that controls many aspects of the heat balance on Venus. Understanding the composition and dynamics of this unknown absorber is an important science goal; in situ optical and chemical measurements are needed. However, conventional approaches do not provide access to this altitude range, repeated traverses, and a mission lifetime of several months needed to effectively carry out the science. This paper examines concepts for altitude-controlled balloons not previously flown on planetary missions that could potentially provide the desired measurements. The concepts take advantage of the fact that at 60 km altitude, for example, the atmospheric density on Venus is about 40% of the sea-level density on earth and the temperature is a moderate 230 K. The solar flux is approximately double that on earth, creating some thermal challenges, but making photovoltaic power highly effective. Using a steady-state thermodynamic model and flight data from Earth, we evaluate the suitability of two types of altitude-controlled balloons for a potential mission on Venus. Such balloons could repeatedly measure profiles, avoid diurnal temperature extremes, and navigate using wind shear. The first balloon design uses air ballast (AB) whereby ambient air can be compressed into or released from a constant-volume balloon, causing it to descend or ascend accordingly. The second design uses lift-gas compression (LGC) to change the volume of a zero-pressure balloon, thereby changing its effective density and altitude. For an altitude range of 60-75 km on Venus, we find that the superpressure volume for a LGC balloon is about 5% of that needed for an AB balloon while the maximum pressurization is the same for both systems. The compressor work per km descent of the LGC balloon is about 10% of the AB balloon, largely due to the much lower flow rate. The LGC balloon must compress some lift gas at sunrise, but this can be managed by one of several strategies. We conclude that while the weight constraints are likely to be significant, LGC altitude-controlled balloons may be feasible for accessing the 60 to 75 km altitude range on Venus. The underlying concept of balloons on Venus was proven by the Soviet Union's successful deployment of their two superpressure VEGA balloons in 1981 operating at a fixed altitude near 55 km. Superpressure balloon concepts for similar altitudes and larger payloads have since been proposed for NASA's Discovery program and ESA's Cosmic Visions program. The LGC balloon would add a zero-pressure envelope and a compressor to the established superpressure design, allowing it to ascend above the deployment altitude and realize lossless altitude control over a range of several scale heights. The thermodynamic equations, flight data, and conceptual analysis presented are intended to foster further discussion about the feasibility and potential benefits of a balloon mission to Venus.
NASA Astrophysics Data System (ADS)
Yamamoto, Masa-yuki; Kakinami, Yoshihiro; Kono, Hiroki
In Japan, the high altitude balloon for scientific observation has been continuously launched by JAXA. The balloon has a possibility to reach 50 km altitude without tight environmental condition for onboard equipments, operating with a cost lower than sounding rockets, however, development of the large-scale scientific observation balloons by university laboratories is still difficult. Being coupled with recent improvement of semiconductor sensors, laboratory-basis balloon experiments using small weather balloons has been becoming easily in these years. Owing to an advantage of wide land fields in continental regions, the launch of such small balloons has become to be carried out many times especially in continental countries (e.g. Near Space Ventures, Inc., 2013). Although the balloon is very small as its diameter of 6 feet, excluding its extra buoyancy and the weight of the balloon itself, it is expected that about 2 kg loading capacity is remained for payloads to send it up to about 35 km altitude. However, operation of such balloons in Japan is not in general because precise prediction of a landing area of the payload is difficult, thus high-risk situation for balloon releases is remained. In this study, we aim to achieve practical engineering experiments of weather balloons in Japan to be used for scientific observation within university laboratory level as an educational context. Here we report an approach of developing many devices for a small tethered balloon currently in progress. We evaluated an accuracy of altitude measurement by using a laboratory developed altitude data logger system that consists of a GPS-module and a barometric altimeter. Diameter of the balloon was about 1.4 m. Being fulfilled with about 1440 L helium, it produced buoyancy of about 15.7 N. Taking into account of total weight including the mooring equipments, available payload mass becomes to be about 1100 g. Applying an advantage of a 3D printer of FDM (Fused Deposition Modeling) method with a 3DCAD design software, we designed and manufactured a camera-platform type antenna rotator that automatically track the balloon direction based on the received GPS data as a balloon operation system on ground with automatic controlling software for the tracking system. In order to develop a future telemetry system onboard a small weather balloon, we have performed an onboard data logger system. In this presentation, system configuration of the automatic tracking system will be introduced more in detail. The telemetry system onboard the small balloon is currently under development. We have a plan to send the measured GPS coordinates, temperature, pressure, and humidity data detected by the onboard sensors to ground. A monitoring camera, a 3-axes accelerometer, geomagnetic azimuth measurement, and power monitoring were added to the developed data logger system. The acquired data will be stored in an SD card aboard as well as transmitted to the ground. Using a vacuum chamber with a pressure sensors and a constant-temperature reservoir in laboratory, environmental tests were operated. In this presentation, introducing the data obtained through the development of a prototype balloon system, our recent results and problems will be discussed.
Teaching Earth Science Using Hot Air Balloons
ERIC Educational Resources Information Center
Kuhl, James; Shaffer, Karen
2008-01-01
Constructing model hot air balloons is an activity that captures the imaginations of students, enabling teachers to present required content to minds that are open to receive it. Additionally, there are few activities that lend themselves to integrating so much content across subject areas. In this article, the authors describe how they have…
14 CFR 101.27 - ATC notification for all launches.
Code of Federal Regulations, 2013 CFR
2013-01-01
... (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES MOORED BALLOONS, KITES, AMATEUR ROCKETS AND UNMANNED FREE BALLOONS Amateur Rockets § 101.27 ATC notification for all launches. No person may operate an unmanned rocket other than a Class 1—Model Rocket unless that person gives the following information to the FAA...
14 CFR 101.27 - ATC notification for all launches.
Code of Federal Regulations, 2010 CFR
2010-01-01
... (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES MOORED BALLOONS, KITES, AMATEUR ROCKETS AND UNMANNED FREE BALLOONS Amateur Rockets § 101.27 ATC notification for all launches. No person may operate an unmanned rocket other than a Class 1—Model Rocket unless that person gives the following information to the FAA...
14 CFR 101.27 - ATC notification for all launches.
Code of Federal Regulations, 2014 CFR
2014-01-01
... (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES MOORED BALLOONS, KITES, AMATEUR ROCKETS AND UNMANNED FREE BALLOONS Amateur Rockets § 101.27 ATC notification for all launches. No person may operate an unmanned rocket other than a Class 1—Model Rocket unless that person gives the following information to the FAA...
14 CFR 101.27 - ATC notification for all launches.
Code of Federal Regulations, 2012 CFR
2012-01-01
... (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES MOORED BALLOONS, KITES, AMATEUR ROCKETS AND UNMANNED FREE BALLOONS Amateur Rockets § 101.27 ATC notification for all launches. No person may operate an unmanned rocket other than a Class 1—Model Rocket unless that person gives the following information to the FAA...
14 CFR 101.27 - ATC notification for all launches.
Code of Federal Regulations, 2011 CFR
2011-01-01
... (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES MOORED BALLOONS, KITES, AMATEUR ROCKETS AND UNMANNED FREE BALLOONS Amateur Rockets § 101.27 ATC notification for all launches. No person may operate an unmanned rocket other than a Class 1—Model Rocket unless that person gives the following information to the FAA...
Controlled meteorological (CMET) balloon profiling of the Arctic atmospheric boundary layer
NASA Astrophysics Data System (ADS)
Roberts, Tjarda; Hole, Lars; Voss, Paul
2017-04-01
We demonstrate profiling of the atmospheric boundary layer over Arctic ice-free and sea-ice covered regions by free-floating controllable CMET balloons. The CMET observations (temperature, humidity, wind-speed, pressure) provide in-situ meteorological datasets in very remote regions for comparison to atmospheric models. Controlled Meteorological (CMET) balloons are small airborne platforms that use reversible lift-gas compression to regulate altitude. These balloons have approximately the same payload mass as standard weather balloons but can float for many days, change altitude on command, and transmit meteorological and system data in near-real time via satellite. Five Controlled Meteorological (CMET) balloons were launched from Ny-Ålesund in Svalbard (Spitsbergen) over 5-12 May 2011 and measured vertical atmospheric profiles (temperature, humidity, wind) over coastal and remote areas to both the east and west. One notable CMET flight achieved a suite of 18 continuous soundings that probed the Arctic atmospheric boundary layer (ABL) over a period of more than 10 h. Profiles from two CMET flights are compared to model output from ECMWF Era-Interim reanalysis (ERA-I) and to a high-resolution (15 km) Arctic System Reanalysis (ASR) product. To the east of Svalbard over sea-ice, the CMET observed a stable ABL profile with a temperature inversion that was reproduced by ASR but not captured by ERA-I. In a coastal ice-free region to the west of Svalbard, the CMET observed a stable ABL with strong wind-shear. The CMET profiles document increases in ABL temperature and humidity that are broadly reproduced by both ASR and ERA-I. The ASR finds a more stably stratified ABL than observed but captured the wind shear in contrast to ERA-I. Detailed analysis of the coastal CMET-automated soundings identifies small-scale temperature and humidity variations with a low-level flow and provides an estimate of local wind fields. We show that CMET balloons are a valuable approach for profiling the free atmosphere and atmospheric boundary layer in remote regions such as the Arctic, where few other in-situ observations are available to trace processes and for model evaluation. References: Roberts, T. J., Dütsch, M., Hole, L. R., and Voss, P. B.: Controlled meteorological (CMET) free balloon profiling of the Arctic atmospheric boundary layer around Spitsbergen compared to ERA-Interim and Arctic System Reanalyses. Atmos. Chem. Phys., 16, 12383-12396, doi:10.5194/acp-16-12383-2016, 2016. Hole L. R., Bello A. P., Roberts T. J., Voss P. B., Vihma T.: Measurements by controlled meteorological balloons in coastal areas of Antarctica. Antarctic Science, 1-8, doi:10.1017/S0954102016000213, 2016. Voss P. B., Hole L. R., Helbling E. F., Roberts T. J.: Continuous in-situ soundings in the arctic boundary layer: a new atmospheric measurement technique using controlled meteorological balloons. Journal of Intelligent Robot Systems, 70, 609-617, doi 10.1007/s10846-012-9758-6, 2013.
NASA Technical Reports Server (NTRS)
1992-01-01
The objectives, status, and accomplishments of the research tasks supported under the NASA Upper Atmosphere Research Program (UARP) are presented. The topics covered include the following: balloon-borne in situ measurements; balloon-borne remote measurements; ground-based measurements; aircraft-borne measurements; rocket-borne measurements; instrument development; reaction kinetics and photochemistry; spectroscopy; stratospheric dynamics and related analysis; stratospheric chemistry, analysis, and related modeling; and global chemical modeling.
1983-03-09
10 20 30 40 STRAIN M%) The machine and traverse direction strenth ia1~t bo0th voJ ’, [ P"A F7o arc, shown in) Figure A3: the machjinek...thlt lam ination muocess controls and dJue to normal fluctuations in the laminat ion ’I fvlo o. ihe influence of a _ihes lye is: additionally...that the model’ s ,gorelength was less. than 10 ft C5. Niccum, R. J. (1972) Comparison of polyester film -yarn composite balloon materials subjected
2017-12-08
Matthew Mullin and Bobby Meazell, Orbital ATK/Columbia Scientific Balloon Facility technicians, conduct compatibility testing on NASA Langley Research Center’s Radiation Dosimetry Experiment payload Wednesday, Sept. 9, at Fort Sumner, N.M. The successful compatibility test was a key milestone in ensuring the flight readiness of RaD-X, which is scheduled to launch on an 11-million-cubic-foot NASA scientific balloon no earlier than Friday, Sept. 11, from the agency’s balloon launching facility in Fort Sumner. RaD-X will measure cosmic ray energy at two separate altitude regions in the stratosphere—above 110,000 feet and between 69,000 to 88,500 feet. The data is key to confirming Langley’s Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) model, which is a physics-based model that determines solar radiation and galactic cosmic ray exposure globally in real-time. The NAIRAS modeling tool will be used to help enhance aircraft safety as well as safety procedures for the International Space Station. In addition to the primary payload, 100 small student experiments will fly on the RaD-X mission as part of the Cubes in Space program. The program provides 11- to 18-year-old middle and high school students a no-cost opportunity to design and compete to launch an experiment into space or into the near-space environment. The cubes measure just 4 centimeters by 4 centimeters. NASA’s scientific balloons offer low-cost, near-space access for scientific payloads weighing up to 8,000 pounds for conducting scientific investigations in fields such as astrophysics, heliophysics and atmospheric research. NASA’s Wallops Flight Facility in Virginia manages the agency’s scientific balloon program with 10 to 15 flights each year from launch sites worldwide. Orbital ATK provides program management, mission planning, engineering services and field operations for NASA’s scientific balloon program. The program is executed from the Columbia Scientific Balloon Facility in Palestine, Texas. The Columbia team has launched more than 1,700 scientific balloons in over 35 years of operation. Anyone may track the progress of the Fort Sumner flights, which includes a map showing the balloon’s real-time location, at: towerfts.csbf.nasa.gov/ For more information on the balloon program, see: www.nasa.gov/scientificballoons NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Wind-Driven Montgolfiere Balloons for Mars
NASA Technical Reports Server (NTRS)
Jones, Jack A.; Fairbrother, Debora; Lemieux, Aimee; Lachenmeier, Tim; Zubrin, Robert
2005-01-01
Solar Montgolfiere balloons, or solar-heated hot air balloons have been evaluated by use on Mars for about 5 years. In the past, JPL has developed thermal models that have been confirmed, as well as developed altitude control systems to allow the balloons to float over the landscape or carry ground sampling instrumentation. Pioneer Astronautics has developed and tested a landing system for Montgolfieres. JPL, together with GSSL. have successfully deployed small Montgolfieres (<15-m diameter) in the earth's stratosphere, where conditions are similar to a Mars deployment. Two larger Montgolfieres failed, however, and a series of larger scale Montgolfieres is now planned using stronger, more uniform polyethylene bilaminate, combined with stress-reducing ripstitch and reduced parachute deceleration velocities. This program, which is presently under way, is a joint effort between JPL, WFF, and GSSL, and is planned for completion in three years.
Balloon and surface UV radiation measurements with the NILU-CUBE instrument
NASA Astrophysics Data System (ADS)
Kylling, A.; Danielsen, T.; Webb, A.; Blumthaler, M.; Schreder, J.
2003-04-01
The NILU-CUBE instrument measures the irradiance on the six faces of a cube. On each face the radiation is measured at 312~nm and 340~nm with a bandwidth of approximately 10~nm at full width half maximum. The instrument is designed to be flown as part of balloon payloads. It may also readily be operated on the ground. The instrument and its characteristics are presented and the calibration procedure outlined. Photodissociation rates derived from measurements made during a twilight stratospheric balloon flight from Gap-Tallard, France, are presented. From two hot-air balloon flights over East-Anglia, England, measurements by the instrument were used to derive the surface albedo. Finally, surface measurements are used to describe the incoming irradiance on vertical and horizontal surfaces. All measurements are compared with model simulations.
Rathore, Saif S.; Curtis, Jeptha P.; Nallamothu, Brahmajee K.; Wang, Yongfei; Foody, JoAnne Micale; Kosiborod, Mikhail; Masoudi, Frederick A.; Havranek, Edward P; Krumholz, Harlan M.
2009-01-01
Current guidelines recommend ST-elevation myocardial infarction (STEMI) patients receive primary percutaneous coronary intervention (PCI) within 90 minutes of admission, although there is conflicting data regarding the relationship between time to treatment and mortality in these patients. We used logistic regression analyses employing fractional polynomial model to evaluate the association between door-to-balloon time and one-year mortality in STEMI patients age ≥65 years undergoing primary PCI in 1994–96 (n=1,932). Median door-to-balloon time was 128 minutes (interquartile range 92–178, 24.2% treated within 90 minutes). Overall one-year mortality was 21.1%. Longer door-to-balloon times were associated with higher one-year mortality in a continuous, nonlinear fashion (30 minutes 10.9%, 60 minutes 13.6%, 90 minutes 16.5%, 120 minutes 19.5%, 150 minutes 22.5%, 180 minutes 25.3%, 210 minutes 27.9%). The nature of the association between door-to-balloon time and one-year mortality was best modeled by a second-degree fractional polynomial (P<0.001). Findings were similar after multivariable adjustment as any increase in door-to-balloon time was associated with successive increases in patients’ one-year mortality (30 minutes 8.8%, 60 minutes 12.9%, 90 minutes 16.6%, 120 minutes 19.9%, 150 minutes 22.9%, 180 minutes 25.5%, 210 minutes 27.7%). In conclusion, any delay in primary PCI is associated with increased one-year mortality, suggesting efforts should focus on reducing time to treatment as much as possible, even among those centers currently providing primary PCI within 90 minutes. PMID:19840562
1975-03-01
Veazey , "An Integrated Error Description of Active and Passive Balloon Tracking Systems," ECOM-5500, June 1973. 18. Doll, Barry, "The Potential Use...Effect of Viewing Angle on the Ground Resolution of Satellite-Borne Sensors," ECOM-5502, July 1973. 20. Miller, Walter B., and Donald R. Veazey ...60. Miller, Walter B., and Donald R. Veazey , "On Increasing Vertical Efficiency of a Passive Balloon Tracking Device by Optimal Choice of
Controlled dilatation of the uterine cervix--an experimental visceral pain model.
Bajaj, Priti; Drewes, Asbjørn M; Gregersen, Hans; Petersen, Poul; Madsen, Hans; Arendt-Nielsen, Lars
2002-10-01
Pain originating from the female reproductive organs is a substantial clinical problem to treat. Experimental models may be a tool for the study of visceral pain mechanisms and hence provide information to aid in formulating new treatment strategies. The aim was to develop and evaluate the performance and safety of a model for nociceptive stimulation of the uterine cervix by balloon dilatation using impedance planimetry. Three consecutive (repeated) dilatations at 1 ml/min, an isovolumetric and a fast dilatation at 2 ml/min were performed. Pilot studies were conducted in vitro on hysterectomy specimens, followed by application of the model in 14 healthy females. Subjects indicated the quality of perception and pain during dilatations by verbal reports and the McGill Pain Questionnaire (MPQ), and the intensity by a continuous electronic visual analog scale. The pain location was marked on an anatomical map. The balloon cross-sectional area (CSA) was measured simultaneously. The experimental procedure was atraumatic. Pain was evoked in all subjects, with referral to the hypogastric and low back regions. The word descriptors on the MPQ and the areas of referred sensations were similar to that seen clinically in abortion, labor and menstrual pain. The pain intensity correlated with balloon CSA (r=0.9, P<0.001). No significant differences were found for the balloon volumes (4.2, 3.8 and 3.9 ml) or CSA (163, 122 and 123 mm(2)) to pain threshold (PT) for repeated dilatations, suggesting the reliability of the model. There was significant correlation between the balloon volume and CSA to reach the PT for single and repeated cervical dilatations. During isovolumetric distension, greater overall pain intensity was demonstrated for the prolonged as compared to the shorter duration cervical stimulation. In conclusion, this is the first human experimental pain model for dilatation of the uterine cervix, providing a safe, controlled, quantifiable stimulus that evoked reliable pain scores. The model thus provides a new possibility to study gynecological pain and may lead to better characterization and treatment of female visceral pain syndromes.
DC dynamic pull-in instability of a dielectric elastomer balloon: an energy-based approach
NASA Astrophysics Data System (ADS)
Sharma, Atul Kumar; Arora, Nitesh; Joglekar, M. M.
2018-03-01
This paper reports an energy-based method for the dynamic pull-in instability analysis of a spherical dielectric elastomer (DE) balloon subjected to a quasi-statically applied inflation pressure and a Heaviside step voltage across the balloon wall. The proposed technique relies on establishing the energy balance at the point of maximum stretch in an oscillation cycle, followed by the imposition of an instability condition for extracting the threshold parameters. The material models of the Ogden family are employed for describing the hyperelasticity of the balloon. The accuracy of the critical dynamic pull-in parameters is established by examining the saddle-node bifurcation in the transient response of the balloon obtained by integrating numerically the equation of motion, derived using the Euler-Lagrange equation. The parametric study brings out the effect of inflation pressure on the onset of the pull-in instability in the DE balloon. A quantitative comparison between the static and dynamic pull-in parameters at four different levels of the inflation pressure is presented. The results indicate that the dynamic pull-in instability gets triggered at electric fields that are lower than those corresponding to the static instability. The results of the present investigation can find potential use in the design and development of the balloon actuators subjected to transient loading. The method developed is versatile and can be used in the dynamic instability analysis of other conservative systems of interest.
DC dynamic pull-in instability of a dielectric elastomer balloon: an energy-based approach.
Sharma, Atul Kumar; Arora, Nitesh; Joglekar, M M
2018-03-01
This paper reports an energy-based method for the dynamic pull-in instability analysis of a spherical dielectric elastomer (DE) balloon subjected to a quasi-statically applied inflation pressure and a Heaviside step voltage across the balloon wall. The proposed technique relies on establishing the energy balance at the point of maximum stretch in an oscillation cycle, followed by the imposition of an instability condition for extracting the threshold parameters. The material models of the Ogden family are employed for describing the hyperelasticity of the balloon. The accuracy of the critical dynamic pull-in parameters is established by examining the saddle-node bifurcation in the transient response of the balloon obtained by integrating numerically the equation of motion, derived using the Euler-Lagrange equation. The parametric study brings out the effect of inflation pressure on the onset of the pull-in instability in the DE balloon. A quantitative comparison between the static and dynamic pull-in parameters at four different levels of the inflation pressure is presented. The results indicate that the dynamic pull-in instability gets triggered at electric fields that are lower than those corresponding to the static instability. The results of the present investigation can find potential use in the design and development of the balloon actuators subjected to transient loading. The method developed is versatile and can be used in the dynamic instability analysis of other conservative systems of interest.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, J. Z. G., E-mail: zma@mymail.ciis.edu; Hirose, A.
By adopting Lembége & Pellat’s 2D plasma-sheet model, we investigate the flankward flapping motion and Sunward ballooning propagation driven by an external source (e.g., magnetic reconnection) produced initially at the sheet center. Within the ideal MHD framework, we adopt the WKB approximation to obtain the Taylor–Goldstein equation of magnetic perturbations. Fourier spectral method and Runge–Kutta method are employed in numerical simulations, respectively, under the flapping and ballooning conditions. Studies expose that the magnetic shears in the sheet are responsible for the flapping waves, while the magnetic curvature and the plasma gradient are responsible for the ballooning waves. In addition, themore » flapping motion has three phases in its temporal development: fast damping phase, slow recovery phase, and quasi-stabilized phase; it is also characterized by two patterns in space: propagating wave pattern and standing wave pattern. Moreover, the ballooning modes are gradually damped toward the Earth, with a wavelength in a scale size of magnetic curvature or plasma inhomogeneity, only 1–7% of the flapping one; the envelops of the ballooning waves are similar to that of the observed bursty bulk flows moving toward the Earth.« less
Wind-Based Navigation of a Hot-air Balloon on Titan: A Feasibility Study
NASA Technical Reports Server (NTRS)
Furfaro, Roberto; Lunine, Jonathan I.; Elfes, Alberto; Reh, Kim
2008-01-01
Current analysis of data streamed back to Earth by the Cassini spacecraft features Titan as one of the most exciting places in the solar system. NASA centers and universities around the US, as well as the European Space Agency, are studying the possibility of sending, as part of the next mission to this giant moon of Saturn, a hot-air balloon (Montgolfier-type) for further and more in-depth exploration. The basic idea would be to design a reliable, semi-autonomous, and yet cheap Montgolfier capable of using continuous flow of waste heat from a power source to lift the balloon and sustain its altitude in the Titan environment. In this paper we study the problem of locally navigating a hot-air balloon in the nitrogen-based Titan atmosphere. The basic idea is to define a strategy (i.e. design of a suitable guidance system) that allows autonomous and semi-autonomous navigation of the balloon using the available (and partial) knowledge of the wind structure blowing on the saturnian satellite surface. Starting from first principles we determined the appropriate thermal and dynamical models describing (a) the vertical dynamics of the balloon and (b) the dynamics of the balloon moving on a vertical plane (2-D motion). Next, various non-linear fuzzy-based control strategies have been evaluated, analyzed and implemented in MATLAB to numerically simulate the capability of the system to simultaneously maintain altitude, as well as a scientifically desirable trajectory. We also looked at the ability of the balloon to perform station keeping. The results of the simulation are encouraging and show the effectiveness of such a system to cheaply and effectively perform semiautonomous exploration of Titan.
Wind-based navigation of a hot-air balloon on Titan: a feasibility study
NASA Astrophysics Data System (ADS)
Furfaro, Roberto; Lunine, Jonathan I.; Elfes, Alberto; Reh, Kim
2008-04-01
Current analysis of data streamed back to Earth by the Cassini spacecraft features Titan as one of the most exciting places in the solar system. NASA centers and universities around the US, as well as the European Space Agency, are studying the possibility of sending, as part of the next mission to this giant moon of Saturn, a hot-air balloon (Montgolfier-type) for further and more in-depth exploration. The basic idea would be to design a reliable, semi-autonomous, and yet cheap Montgolfier capable of using continuous flow of waste heat from a power source to lift the balloon and sustain its altitude in the Titan environment. In this paper we study the problem of locally navigating a hot-air balloon in the nitrogen-based Titan atmosphere. The basic idea is to define a strategy (i.e. design of a suitable guidance system) that allows autonomous and semi-autonomous navigation of the balloon using the available (and partial) knowledge of the wind structure blowing on the saturnian satellite surface. Starting from first principles we determined the appropriate thermal and dynamical models describing (a) the vertical dynamics of the balloon and (b) the dynamics of the balloon moving on a vertical plane (2-D motion). Next, various non-linear fuzzy-based control strategies have been evaluated, analyzed and implemented in MATLAB to numerically simulate the capability of the system to simultaneously maintain altitude, as well as a scientifically desirable trajectory. We also looked at the ability of the balloon to perform station keeping. The results of the simulation are encouraging and show the effectiveness of such a system to cheaply and effectively perform semi-autonomous exploration of Titan.
Fürst, Rafael Vilhena de Carvalho; Polimanti, Afonso César; Galego, Sidnei José; Bicudo, Maria Claudia; Montagna, Erik; Corrêa, João Antônio
2017-03-01
To present a simple and affordable model able to properly simulate an ultrasound-guided venous access. The simulation was made using a latex balloon tube filled with water and dye solution implanted in a thawed chicken breast with bones. The presented model allows the simulation of all implant stages of a central catheter. The obtained echogenicity is similar to that observed in human tissue, and the ultrasound identification of the tissues, balloon, needle, wire guide and catheter is feasible and reproducible. The proposed model is simple, economical, easy to manufacture and capable of realistically and effectively simulating an ultrasound-guided venous access.
Steady state model for the thermal regimes of shells of airships and hot air balloons
NASA Astrophysics Data System (ADS)
Luchev, Oleg A.
1992-10-01
A steady state model of the temperature regime of airships and hot air balloons shells is developed. The model includes three governing equations: the equation of the temperature field of airships or balloons shell, the integral equation for the radiative fluxes on the internal surface of the shell, and the integral equation for the natural convective heat exchange between the shell and the internal gas. In the model the following radiative fluxes on the shell external surface are considered: the direct and the earth reflected solar radiation, the diffuse solar radiation, the infrared radiation of the earth surface and that of the atmosphere. For the calculations of the infrared external radiation the model of the plane layer of the atmosphere is used. The convective heat transfer on the external surface of the shell is considered for the cases of the forced and the natural convection. To solve the mentioned set of the equations the numerical iterative procedure is developed. The model and the numerical procedure are used for the simulation study of the temperature fields of an airship shell under the forced and the natural convective heat transfer.
Avritscher, Rony; Abdelsalam, Mohamed E; Javadi, Sanaz; Ensor, Joe; Wallace, Michael J; Alt, Eckhard; Madoff, David C; Vykoukal, Jody V
2013-12-01
To investigate the safety and effectiveness of a novel endovascular approach for therapeutic cell delivery using a balloon occlusion catheter in a large animal model of liver fibrosis. Transcatheter arterial embolization with ethiodized oil (Ethiodol) and ethanol was used to induce liver damage in 11 pigs. Mesenchymal stem cells (MSCs) were harvested from adipose tissue and engineered to express green fluorescent protein (GFP). A balloon occlusion catheter was positioned in the bilateral first-order portal vein branches 2 weeks after embolization to allow intraportal application of MSCs in six experimental animals. MSCs were allowed to dwell for 10 minutes using prolonged balloon inflation. Five control animals received a sham injection of normal saline in a similar fashion. Hepatic venous pressure gradient (HVPG) was measured immediately before necropsy. Specimens from all accessible lobes were obtained with ultrasound-guided percutaneous 18-gauge biopsy 2 hours after cell application. All animals were euthanized within 4 weeks. Fluorescent microscopy was used to assess the presence and distribution of cells. Liver injury and fibrosis were successfully induced in all animals. MSCs (6-10 × 10(7)) were successfully delivered into the portal vein in the six experimental animals. Cell application was not associated with vascular complications. HVPG showed no instances of portal hypertension. GFP-expressing MSCs were visualized in biopsy specimens and were distributed primarily within the sinusoidal spaces; however, 4 weeks after implantation, MSCs could not be identified in histologic specimens. A percutaneous endovascular approach for cell delivery using a balloon occlusion catheter proved safe for intraportal MSC application in a large animal model of liver fibrosis. © 2013 SIR Published by SIR All rights reserved.
NASA Astrophysics Data System (ADS)
Bénech, Bruno; Ezcurra, Agustin; Lothon, Marie; Saïd, Frédérique; Campistron, Bernard; Lohou, Fabienne; Durand, Pierre
ESCOMPTE programme aims at studying the emissions of primary pollutants in industrial and urban areas, their transport, diffusion and transformation in the atmosphere. This experiment, carried out in southeast France, can be used to validate and to improve meteorological and chemical mesoscale models. One major goal of this experiment was to follow the pollutant plumes, and to investigate its thermodynamic and physico-chemical time evolution. This was realized by means of constant volume balloons, located by global position satellite (GPS) and equipped with thermodynamic and ozone sensors, flying at constant density levels. During the two ESCOMPTE campaigns that took place in June and July 2000 and 2001, 40 balloons were launched, 17 of them equipped with ozone sensors during the day from 0800 to 1800 UTC. Balloons' altitudes flight levels ranged between 400 and 1200 m altitude with Mistral (northerly synoptic flow) and Sea Breeze (southerly breeze) conditions. The atmospheric boundary layer (ABL) topography of the experimental domain is complex and varies strongly from day to day. Its depth presents a large gradient from the sea coast to the north part of the ESCOMPTE domain, and also more complex variability within the domain. The balloons' trajectories describe the evolution of the pollutant plume emitted from the industrial area of Fos-Berre or from the Marseille urban area. Constant volume balloons give a good description of the trajectories of these two plumes. The balloons, which fly at an isopicnic level, cross different atmospheric layers chiefly depending on the ABL height in relation with the constant volume balloons flight level. Thus, each balloon flight is decomposed into different segments that correspond to the same atmospheric layer. In each segment, the ozone content variation is analyzed in relation to other thermodynamical parameters measured by the balloon and mainly to the vapor mixing ratio content. During ESCOMPTE campaign, the mean linear rate of chemical net ozone production at the top of the atmospheric boundary layer was found to be around 6 ppb h -1.
Lin, Jing; Parikh, Niraj; Udgiri, Naval; Wang, Shaoxia; Miller, Daniel F; Li, Chaojing; Panneton, Jean; Nutley, Mark; Zhang, Ze; Huang, Yunfan; Lu, Jun; Zhang, Jingyi; Wang, Lu; Guidoin, Robert
2018-06-01
To examine the effects of in situ laser fenestration and subsequent balloon dilation (noncompliant vs cutting) on the graft fabric of 4 aortic stent-graft models. In an in vitro setup, the Zenith TX2, Talent, Endurant, and Anaconda aortic stent-grafts (all made of polyester graft material) were subjected to laser fenestration with a 2.3-mm-diameter probe at low and high energy in a physiologic saline solution followed by balloon dilation of the hole. For the first series of tests, 6-mm-diameter noncompliant balloons were used and replaced for the second series by 6-mm-diameter cutting balloons. Each procedure was performed 5 times (5 fenestrations per balloon type). The fenestrations were examined visually and with light and scanning electron microscopy. Each fenestration demonstrated various degrees of fraying and/or tearing regardless of the device. The monofilament twill weave of the Talent endograft tore in the warp direction up to 7.09±0.46 mm at high energy compared with 2.41±0.26 mm for the Endurant multifilament device. The fenestrations of the 3 endografts with multifilament weave (Zenith, Anaconda, and Endurant) showed more fraying; fenestration areas in the multifilament Endurant were >10 mm 2 at low and high energy. The fenestrations were free of melted fibers, but minor blackening of the filaments was observed in all devices. Overall, the cutting balloons resulted in worse tearing and damage. Of note, the edges of the dilated laser-formed fenestrations of the Talent and the Endurant grafts demonstrated evidence of additional shredded yarns. In situ fenestration does not cause any melting of the polyester; however, the observed structural damage to the fabric construction must be carefully considered. Cutting balloons caused various levels of tearing compared to the noncompliant balloons and cannot be recommended for use in this application. Rather, noncompliant balloons should be employed, but only with endografts constructed from multifilament yarns. The use of in situ fenestration must be restricted to urgent and emergent cases until long-term durability can be determined.
Caruso, Maria Vittoria; Gramigna, Vera; Renzulli, Attilio; Fragomeni, Gionata
2016-01-01
The extracorporeal membrane oxygenation (ECMO) is a temporary, but prolonged circulatory support for cardiopulmonary failure. Clinical evidence suggests that pulsed flow is healthier than non pulsatile perfusion. The aim of this study was to computationally evaluate the effects of total and partial ECMO assistance and pulsed flow on hemodynamics in a patient-specific aorta model. The pulsatility was obtained by means of the intra-aortic balloon pump (IABP), and two different cases were investigated, considering a cardiac output (CO) of 5 L/min: Case A - total assistance - the whole flow delivered through the ECMO arterial cannula; Case B - partial assistance - flow delivered half through the cannula and half through the aorta. Computational fluid dynamic (CFD) analysis was carried out using the multiscale approach to couple the 3D aorta model with the lumped parameter model (resistance boundary condition). In case A pulsatility followed the balloon radius change, while in case B it was mostly influenced by the cardiac one. Furthermore, during total assistance, a blood stagnation occurred in the ascending aorta; in the case of partial assistance, the flow was orderly when the IABP was on and was chaotic when the balloon was off. Moreover, the mean arterial pressure (MAP) was higher in case B. The wall shear stress was worse in ascending aorta in case A. Partial support is hemodynamically advisable.
NASA Technical Reports Server (NTRS)
Richards, Paul L.
1998-01-01
Precise measurements of the angular power spectrum of the Cosmic Microwave Background (CMB) anisotropy will revolutionize cosmology. These measurements will discriminate between competing cosmological models and, if the standard inflationary scenario is correct, will determine each of the fundamental cosmological parameters with high precision. The astrophysics community has recognized this potential: the orbital experiments MAP and PLANCK, have been approved to measure CMB anisotropy. Balloon-borne experiments can realize much of this potential before these missions are launched. Additionally, properly designed balloon-borne experiments can complement MAP in frequency and angular resolution and can give the first realistic test of the instrumentation proposed for the high frequency instrument on PLANCK. The MAXIMA experiment is part of the MAXIMA/BOOMERANG collaboration which is doing balloon observations of the angular power spectrum of the Cosmic Microwave Background from l = 10 to l = 800. These experiments are designed to use the benefits of both North American and Antarctic long-duration ballooning to full advantage. We have developed several new technologies that together allow the power spectrum to be measured with unprecedented combination of angular resolution, beam throw, sensitivity, sky coverage and control of systematic effects. These technologies are the basis for the high frequency instrument for the PLANCK mission. Our measurements will strongly discriminate between models of the origin and evolution of structure in the universe and, for many models, will determine the value of the basic cosmological parameters to high precision.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ham, C. J., E-mail: christopher.ham@ccfe.ac.uk; Chapman, I. T.; Kirk, A.
2014-10-15
It is known that magnetic perturbations can mitigate edge localized modes (ELMs) in experiments, for example, MAST [Kirk et al., Nucl. Fusion 53, 043007 (2013)]. One hypothesis is that the magnetic perturbations cause a three dimensional corrugation of the plasma and this corrugated plasma has different stability properties to peeling-ballooning modes compared to an axisymmetric plasma. It has been shown in an up-down symmetric plasma that magnetic perturbations in tokamaks will break the usual axisymmetry of the plasma causing three dimensional displacements [Chapman et al., Plasma Phys. Controlled Fusion 54, 105013 (2012)]. We produce a free boundary three-dimensional equilibrium ofmore » a lower single null MAST relevant plasma using VMEC [S. P. Hirshman and J. C. Whitson, Phys. Fluids 26, 3553 (1983)]. The safety factor and pressure profiles used for the modelling are similar to those deduced from axisymmetric analysis of experimental data with ELMs. We focus on the effect of applying n = 3 and n = 6 magnetic perturbations using the resonant magnetic perturbation (RMP) coils. A midplane displacement of over ±1 cm is seen when the full current is applied. The current in the coils is scanned and a linear relationship between coil current and midplane displacement is found. The pressure gradient in real space in different toroidal locations is shown to change when RMPs are applied. This effect should be taken into account when diagnosing plasmas with RMPs applied. The helical Pfirsch-Schlüter currents which arise as a result of the assumption of nested flux surfaces are estimated for this equilibrium. The effect of this non-axisymmetric equilibrium on infinite n ballooning stability is investigated using COBRA [Sanchez et al., J. Comput. Phys. 161, 576–588 (2000)]. The infinite n ballooning stability is analysed for two reasons; it may give an indication of the effect of non-axisymmetry on finite n peeling-ballooning modes, responsible for ELMs; and infinite n ballooning modes are correlated to kinetic ballooning modes which are thought to limit the pressure gradient of the pedestal [Snyder et al., Phys. Plasmas 16, 056118 (2009)]. The ballooning mode growth rate gains a variation in toroidal angle. The equilibria with midplane displacements due to RMP coils have a higher ballooning mode growth rate than the axisymmetric case and the possible implications are discussed.« less
NASA Astrophysics Data System (ADS)
Javier Romualdez, Luis
Scientific balloon-borne instrumentation offers an attractive, competitive, and effective alternative to space-borne missions when considering the overall scope, cost, and development timescale required to design and launch scientific instruments. In particular, the balloon-borne environment provides a near-space regime that is suitable for a number of modern astronomical and cosmological experiments, where the atmospheric interference suffered by ground-based instrumentation is negligible at stratospheric altitudes. This work is centered around the analytical strategies and implementation considerations for the attitude determination and control of SuperBIT, a scientific balloon-borne payload capable of meeting the strict sub-arcsecond pointing and image stability requirements demanded by modern cosmological experiments. Broadly speaking, the designed stability specifications of SuperBIT coupled with its observational efficiency, image quality, and accessibility rivals state-of-the-art astronomical observatories such as the Hubble Space Telescope. To this end, this work presents an end-to-end design methodology for precision pointing balloon-borne payloads such as SuperBIT within an analytical yet implementationally grounded context. Simulation models of SuperBIT are analytically derived to aid in pre-assembly trade-off and case studies that are pertinent to the dynamic balloon-borne environment. From these results, state estimation techniques and control methodologies are extensively developed, leveraging the analytical framework of simulation models and design studies. This pre-assembly design phase is physically validated during assembly, integration, and testing through implementation in real-time hardware and software, which bridges the gap between analytical results and practical application. SuperBIT attitude determination and control is demonstrated throughout two engineering test flights that verify pointing and image stability requirements in flight, where the post-flight results close the overall design loop by suggesting practical improvements to pre-design methodologies. Overall, the analytical and practical results presented in this work, though centered around the SuperBIT project, provide generically useful and implementationally viable methodologies for high precision balloon-borne instrumentation, all of which are validated, justified, and improved both theoretically and practically. As such, the continuing development of SuperBIT, built from the work presented in this thesis, strives to further the potential for scientific balloon-borne astronomy in the near future.
NASA Astrophysics Data System (ADS)
Joyce, C. J.; Schwadron, N. A.; Townsend, L. W.; deWet, W. C.; Wilson, J. K.; Spence, H. E.; Tobiska, W. K.; Shelton-Mur, K.; Yarborough, A.; Harvey, J.; Herbst, A.; Koske-Phillips, A.; Molina, F.; Omondi, S.; Reid, C.; Reid, D.; Shultz, J.; Stephenson, B.; McDevitt, M.; Phillips, T.
2016-09-01
We provide an analysis of the galactic cosmic ray radiation environment of Earth's atmosphere using measurements from the Cosmic Ray Telescope for the Effects of Radiation (CRaTER) aboard the Lunar Reconnaissance Orbiter (LRO) together with the Badhwar-O'Neil model and dose lookup tables generated by the Earth-Moon-Mars Radiation Environment Module (EMMREM). This study demonstrates an updated atmospheric radiation model that uses new dose tables to improve the accuracy of the modeled dose rates. Additionally, a method for computing geomagnetic cutoffs is incorporated into the model in order to account for location-dependent effects of the magnetosphere. Newly available measurements of atmospheric dose rates from instruments aboard commercial aircraft and high-altitude balloons enable us to evaluate the accuracy of the model in computing atmospheric dose rates. When compared to the available observations, the model seems to be reasonably accurate in modeling atmospheric radiation levels, overestimating airline dose rates by an average of 20%, which falls within the uncertainty limit recommended by the International Commission on Radiation Units and Measurements (ICRU). Additionally, measurements made aboard high-altitude balloons during simultaneous launches from New Hampshire and California provide an additional comparison to the model. We also find that the newly incorporated geomagnetic cutoff method enables the model to represent radiation variability as a function of location with sufficient accuracy.
Onyx Embolization for Isolated Type Dural Arteriovenous Fistula Using a Dual-Lumen Balloon Catheter.
Kim, Jin Woo; Kim, Byung Moon; Park, Keun Young; Kim, Dong Joon; Kim, Dong Ik
2016-05-01
Utilization of a dual-lumen balloon may improve Onyx penetration into isolated dural arteriovenous fistulas (i-DAVFs). To compare the results of Onyx embolization using a dual-lumen balloon with those using a non-balloon catheter for i-DAVFs. Twenty-nine patients underwent Onyx embolization for i-DAVFs using a non-balloon (n = 14) or a dual-lumen balloon catheter (n = 15). Since its introduction, a dual-lumen balloon catheter has been preferred. We compared the dual-lumen balloon group with the non-balloon catheter group regarding angiographic outcome, treatment-related complications, total procedural time, Onyx injection time, and the number of feeders requiring embolization. The dual-lumen balloon group showed complete occlusion of i-DAVFs in 13 and near-complete in 2 patients, while the non-balloon group showed complete occlusion in 5, near-complete in 5, and incomplete in 4 patients (P < .05). Treatment-related complications occurred in 2 patients: 1 in the non-balloon group and 1 in the dual-lumen balloon group. The mean total procedural time was 62 ± 32 minutes in the dual-lumen balloon and 171 ± 88 minutes in the non-balloon group (P < .05). The mean Onyx injection time was 10 ± 6 minutes in the dual-lumen balloon and 49 ± 32 minutes in the non-balloon group (P < .05). The median number of feeders requiring embolization was 1 (range, 1-3) in the dual-lumen balloon and 2 (range, 1-4) in the non-balloon group (P < .05). Utilization of a dual-lumen balloon catheter for Onyx embolization of i-DAVF seemed to significantly increase the immediate complete occlusion rate and decrease total procedural time, Onyx injection time, and number of feeders requiring embolization.
Atmospheric Balloon Swarms for Persistent In-Situ Measurements in Hurricanes
NASA Astrophysics Data System (ADS)
Meneghello, G.; Bewley, T.
2015-12-01
Real-time measurements within hurricanes are essential to improve forecasts, protect property and save lives. Current methods for obtaining in-situ data, including radar and satellite imagery as well as drop-sondes deployed from repeated aircraft flights above or even within the hurricane itself, are costly, dangerous and limited in duration or resolution. We demonstrate how a swarm of inexpensive, buoyancy-controlled, sensor-laden balloons can be deployed from altitude or from sea-level within a hurricane flow field, and coordinated autonomously in an energetically-efficient fashion to persistently and continuously monitor relevant properties (pressure, humidity, temperature, windspeed) of a hurricane for days at a time. Rather than fighting the gale-force winds in the storm, the strong, predictable stratification of these winds is leveraged to disperse the balloons into a favorable, time-evolving distribution and to follow the hurricane track as it moves. Certain target orbits of interest in the hurricane can be continuously sampled by some balloons, while other balloons make continuous sweeps between the eye and the spiral rain bands. We expect the acquired data to complement current measurement methods and to be instrumental in improving the numerical models' forecast skills.
Two hundred years of flight in America: A bicentennial survey
NASA Technical Reports Server (NTRS)
Emme, E. M.
1977-01-01
The first recorded balloon ascension in America took place on June 19, 1784, when an unmanned balloon was raised in a public demonstration at Bladensburg, Maryland. On June 24, 1784, a thirteen-year-old boy ascended in the same balloon. The history of actual flight during the nineteenth century was entirely concerned with balloons except for several gliders and models leading to the coming of the airship and the aircraft. The history of practical flight in America begins in the twentieth century. The described developments related to aerostatics are concerned with balloons, rigid airships, and blimps. In a review of the evolution of aeronautics, attention is given to general aviation and its search for a market, trends in military aeronautics, and commercial aviation. It is pointed out that American air transport had its birth on New Year's Day, 1914, at Tampa Bay, Florida. The evolution of astronautics during the period from 1957 to 1976 is also examined, taking into account scientific satellites, the Apollo project, the exploration of the planets with the aid of unmanned spacecraft, strategic reconnaissance satellites, missile alarm satellites, instrumental satellites for detecting nuclear and thermonuclear explosions, weather satellites, communications satellites, and earth resource survey and geodetic satellites.
High Altitude Ozone Research Balloon
NASA Technical Reports Server (NTRS)
Cauthen, Timothy A.; Daniel, Leslie A.; Herrick, Sally C.; Rock, Stacey G.; Varias, Michael A.
1990-01-01
In order to create a mission model of the high altitude ozone research balloon (HAORB) several options for flight preparation, altitude control, flight termination, and payload recovery were considered. After the optimal launch date and location for two separate HAORB flights were calculated, a method for reducing the heat transfer from solar and infrared radiation was designed and analytically tested. This provided the most important advantage of the HAORB over conventional balloons, i.e., its improved flight duration. Comparisons of different parachute configurations were made, and a design best suited for the HAORB's needs was determined to provide for payload recovery after flight termination. In an effort to avoid possible payload damage, a landing system was also developed.
Goff, Ryan P; Spencer, Julianne H; Iaizzo, Paul A
2016-04-01
The primary goal of this computational modeling study was to better quantify the relative distance of the phrenic nerves to areas where cryoballoon ablations may be applied within the left atria. Phrenic nerve injury can be a significant complication of applied ablative therapies for treatment of drug refractory atrial fibrillation. To date, published reports suggest that such injuries may occur more frequently in cryoballoon ablations than in radiofrequency therapies. Ten human heart-lung blocs were prepared in an end-diastolic state, scanned with MRI, and analyzed using Mimics software as a means to make anatomical measurements. Next, generated computer models of ArticFront cryoballoons (23, 28 mm) were mated with reconstructed pulmonary vein ostias to determine relative distances between the phrenic nerves and projected balloon placements, simulating pulmonary vein isolation. The effects of deep seating balloons were also investigated. Interestingly, the relative anatomical differences in placement of 23 and 28 mm cryoballoons were quite small, e.g., the determined difference between mid spline distance to the phrenic nerves between the two cryoballoon sizes was only 1.7 ± 1.2 mm. Furthermore, the right phrenic nerves were commonly closer to the pulmonary veins than the left, and surprisingly tips of balloons were further from the nerves, yet balloon size choice did not significantly alter calculated distance to the nerves. Such computational modeling is considered as a useful tool for both clinicians and device designers to better understand these associated anatomies that, in turn, may lead to optimization of therapeutic treatments.
NASA Astrophysics Data System (ADS)
Berthet, Gwenael; Renard, Jean-Baptiste; Catoire, Valery; Huret, Nathalie; Lefevre, Franck; Hauchecorne, Alain; Chartier, Michel; Robert, Claude
Remote-sensing balloon observations have recurrently revealed high concentrations of polar stratospheric NO2 in particular in the lower stratosphere as can be seen in various published vertical profiles. A balloon campaign dedicated to the investigation of this problem through comparisons between remote-sensing (SALOMON) and in situ (SPIRALE) measurements of NO2 inside the polar vortex was conducted in January 2006. The published results show unexpected strong enhancements in the slant column densities of NO2 with respect to the elevation angle and displacement of the balloon. These fluctuations result from NO2 spatial inhomogeneities located above the balloon float altitude resulting from mid-latitude air intrusion as revealed by Potential Vorticity (PV) maps. The retrieval of the NO2 vertical profile is subsequently biased in the form of artificial excesses of NO2 concentrations. A direct implication is that the differences previously observed between measurements of NO2 and OClO and model results are probably mostly due to the improper inversion of NO2 in presence of either perturbed dynamical conditions or when mesospheric production events occur as recently highlighted from ENVISAT data. Through the occurrence of such events, we propose to re-examine formerly published high-latitude profiles from the remote-sensing instruments AMON and SALOMON using in parallel PV maps from the MIMOSA advection contour model and the REPROBUS CTM outputs. Mid-latitude profiles of NO2 will also be investigated since they are likely to be biased if presence of air from other latitudes was present at the time of the observations.
Lee, Kevin M; Hinojosa, Kevin T; Wochner, Mark S; Argo, Theodore F; Wilson, Preston S; Mercier, Richard S
2011-11-01
The efficacy of large tethered encapsulated gas bubbles for the mitigation of low frequency underwater noise was investigated with an acoustic resonator technique. Tethered latex balloons were used as the bubbles, which had radii of approximately 5 cm. Phase speeds were inferred from the resonances of a water and balloon-filled waveguide approximately 1.8 m in length. The Commander and Prosperetti effective-medium model [J. Acoust. Soc. Am. 85, 732-746 (1989)] quantitatively described the observed dispersion from well below to just below the individual bubble resonance frequency, and it qualitatively predicted the frequency range of high attenuation for void fractions between 2% and 5% for collections of stationary balloons within the waveguide. A finite-element model was used to investigate the sensitivity of the waveguide resonance frequencies, and hence the inferred phase speeds, to changes in individual bubble size and position. The results indicate that large tethered encapsulated bubbles could be used mitigate low frequency underwater noise and that the Commander and Prosperetti model would be useful in the design of such a system.
Effects of intra-aortic counterpulsation on aortic wall energetics and damping: in vivo experiments.
Fischer, Edmundo I Cabrera; Bia, Daniel; Camus, Juan M; Zócalo, Yanina; de Forteza, Eduardo; Armentano, Ricardo L
2008-01-01
Intra-aortic balloon pumping (IABP) could modify the arterial biomechanics; however, its effects on arterial wall properties have not been fully explored. This dynamical study was designed to characterize the pressure-dependent and smooth muscle-dependent effects of IABP on aortic wall energetics in an in vivo animal model. Intra-aortic balloon pumping (1:2) was performed in six anesthetized sheep in which aortic pressure and diameter signals were measured in basal, augmented (during balloon inflation), and assisted (postaugmented) beats. Energy dissipation values in augmented and assisted beats were significantly higher than those observed in basal state (p < 0.05). Assisted beats showed a significant increase of wall damping with respect to basal and augmented beats (p < 0.05). Intra-aortic balloon pumping resulted in a significant increase of pulse wave velocity (p < 0.05) in augmented beats with respect to basal state (6.3 +/- 0.8 vs. 5.2 +/- 0.5 m x s(-1)); whereas values observed in assisted beats were significantly (p < 0.05) lower than those observed in augmented beats (4.9 +/- 0.5 vs. 6.3 +/- 0.8 m x s(-1)). Our findings show that IABP determined the pressure and smooth muscle-dependent changes in arterial wall energetics and damping properties in this animal model.
Geng, Yijie; Feng, Bradley
2016-07-01
The emerging models of human embryonic stem cell (hESC) self-organizing organoids provide a valuable in vitro platform for studying self-organizing processes that presumably mimic in vivo human developmental events. Here we report that through a chemical screen, we identified two novel and structurally similar small molecules BIR1 and BIR2 which robustly induced the self-organization of a balloon-shaped three-dimensional structure when applied to two-dimensional adherent hESC cultures in the absence of growth factors. Gene expression analyses and functional assays demonstrated an endothelial identity of this balloon-like structure, while cell surface marker analyses revealed a VE-cadherin(+)CD31(+)CD34(+)KDR(+)CD43(-) putative endothelial progenitor population. Furthermore, molecular marker labeling and morphological examinations characterized several other distinct DiI-Ac-LDL(+) multi-cellular modules and a VEGFR3(+) sprouting structure in the balloon cultures that likely represented intermediate structures of balloon-formation.
Modeling intracavitary heating of the uterus by means of a balloon catheter
NASA Astrophysics Data System (ADS)
Olsrud, Johan; Friberg, Britt; Rioseco, Juan; Ahlgren, Mats; Persson, Bertil R. R.
1999-01-01
Balloon thermal endometrial destruction (TED) is a recently developed method to treat heavy menstrual bleeding (menorrhagia). Numerical simulations of this treatment by use of the finite element method were performed. The mechanical deformation and the resulting stress distribution when a balloon catheter is expanded within the uterine cavity was estimated from structural analysis. Thermal analysis was then performed to estimate the depth of tissue coagulation (temperature > 55 degree(s)C) in the uterus during TED. The estimated depth of coagulation, after 30 min heating with an intracavity temperature of 75 degree(s)C, was approximately 9 mm when blood flow was disregarded. With uniform normal blood flow, the depth of coagulation decreased to 3 - 4 mm. Simulations with varying intracavity temperatures and blood flow rates showed that both parameters should be of major importance to the depth of coagulation. The influence of blood flow was less when the pressure due to the balloon was also considered (5 - 6 mm coagulation depth with normal blood flow).
NASA Astrophysics Data System (ADS)
Huret, N.; Krysztofiak, G.; Thiéblemont, R.; Catoire, V.; Payan, S.; Té, Y. V.; Jegou, F.; Drouin, M.; Robert, C.
2011-12-01
The SPIRALE (french acronym for infrared absorption spectroscopy by tunable laser diodes) and SWIR-balloon (shortwave infrared Fourier transform spectrometer in nadir-looking) balloon-borne instruments have been launched in the Arctic polar region (Kiruna, Sweden, 67.9°N - 21.1°E) during summer on 7 and 24 August 2009 and on 14 August 2009, respectively. SPIRALE instrument performed in situ measurements of several trace gases including CO and O3 between 10 and 34 km height, with very high vertical resolution (~5 m) and SWIR-balloon instrument measured total column of several species including CO. The balloon CO measurements for the 3 dates are compared with the satellite data from IASI instrument and show a good agreement. However, the stratospheric profile from SPIRALE on 7 August 2009 presents specific structures associated with a tropical intrusion in the low levels (320-380K potential temperature corresponding to 10-14 km altitude) with respect to the 24 august measurements, which is confirmed by the 15-20% increase of the total column of IASI. Their interpretation is made with the help of results from several modelling tools (MIMOSA, FLEXTRA, REPROBUS and GIRAFE) and from satellite data (MODIS on board TERRA/AQUA, IASI instrument on board MetOp-A and GEOS). The results suggest the impact of East Asia urban pollution on the chemistry of polar stratosphere in summer. The SPIRALE O3 vertical profile was also used in correlation with CO to calculate the proportion of recent air in polar stratosphere. SPIRALE and SWIR-balloon flights were part of the balloon campaign conducted by CNES within the frame of the StraPolÉté project funded by French agencies ANR, CNES and IPEV, contributing to the International Polar Year.
Second-generation endometrial ablation technologies: the hot liquid balloons.
Vilos, George A; Edris, Fawaz
2007-12-01
Hysteroscopic endometrial ablation (HEA) was introduced in the 1980s to treat menorrhagia. Its use required additional training, surgical expertise and specialized equipment to minimize emergent complications such as uterine perforations, thermal injuries and excessive fluid absorption. To overcome these difficulties and concerns, thermal balloon endometrial ablation (TBEA) was introduced in the 1990s. Four hot liquid balloons have been introduced into clinical practice. All systems consist of a catheter (4-10mm diameter), a silicone balloon and a control unit. Liquids used to inflate the balloons include internally heated dextrose in water (ThermaChoice, 87 degrees C), and externally heated glycine (Cavaterm, 78 degrees C), saline (Menotreat, 85 degrees ) and glycerine (Thermablate, 173 degrees C). All balloons require pressurization from 160 to 240 mmHg for treatment cycles of 2 to 10 minutes. Prior to TBEA, preoperative endometrial thinning, including suction curettage, is optional. Several RCTs and cohort studies indicate that the advantages of TBEA include portability, ease of use and short learning curve. In addition, small diameter catheters requiring minimal cervical dilatation (5-7 mm) and short duration of treatment cycles (2-8 min) allow treatment under minimal analgesia/anesthesia requirements in a clinic setting. Following TBEA serious adverse events, including thermal injuries to viscera have been experienced. To minimize such injuries some surgeons advocate the use of routine post-dilatation hysteroscopy and/or ultrasonography to confirm correct intrauterine placement of the balloon prior to initiating the treatment cycle. After 10 years of clinical practice, TBEA is thought to be the preferred first-line surgical treatment of menorrhagia in appropriately selected candidates. Economic modeling also suggested that TBEA may be more cost-effective than HEA.
Telescope Systems for Balloon-Borne Research
NASA Technical Reports Server (NTRS)
Swift, C. (Editor); Witteborn, F. C. (Editor); Shipley, A. (Editor)
1974-01-01
The proceedings of a conference on the use of balloons for scientific research are presented. The subjects discussed include the following: (1) astronomical observations with balloon-borne telescopes, (2) orientable, stabilized balloon-borne gondola for around-the-world flights, (3) ultraviolet stellar spectrophotometry from a balloon platform, (4) infrared telescope for balloon-borne infrared astronomy, and (5) stabilization, pointing, and command control of balloon-borne telescopes.
High Altitude Infrasound Measurements using Balloon-Borne Arrays
NASA Astrophysics Data System (ADS)
Bowman, D. C.; Johnson, C. S.; Gupta, R. A.; Anderson, J.; Lees, J. M.; Drob, D. P.; Phillips, D.
2015-12-01
For the last fifty years, almost all infrasound sensors have been located on the Earth's surface. A few experiments consisting of microphones on poles and tethered aerostats comprise the remainder. Such surface and near-surface arrays likely do not capture the full diversity of acoustic signals in the atmosphere. Here, we describe results from a balloon mounted infrasound array that reached altitudes of up to 38 km (the middle stratosphere). The balloon drifted at the ambient wind speed, resulting in a near total reduction in wind noise. Signals consistent with tropospheric turbulence were detected. A spectral peak in the ocean microbarom range (0.12 - 0.35 Hz) was present on balloon-mounted sensors but not on static infrasound stations near the flight path. A strong 18 Hz signal, possibly related to building ventilation systems, was observed in the stratosphere. A wide variety of other narrow band acoustic signals of uncertain provenance were present throughout the flight, but were absent in simultaneous recordings from nearby ground stations. Similar phenomena were present in spectrograms from the last balloon infrasound campaign in the 1960s. Our results suggest that the infrasonic wave field in the stratosphere is very different from that which is readily detectable on surface stations. This has implications for modeling acoustic energy transfer between the lower and upper atmosphere as well as the detection of novel acoustic signals that never reach the ground. Our work provides valuable constraints on a proposed mission to detect earthquakes on Venus using balloon-borne infrasound sensors.
Time-dependent strains and stresses in a pumpkin balloon
NASA Technical Reports Server (NTRS)
Gerngross, T.; Xu, Y.; Pellegrino, S.
2006-01-01
This paper presents a study of pumpkin-shaped superpressure balloons, consisting of gores made from a thin polymeric film attached to high stiffness, meridional tendons. This type of design is being used for the NASA ULDB balloons. The gore film shows considerable time-dependent stress relaxation, whereas the behaviour of the tendons is essentially time-independent. Upon inflation and pressurization, the "instantaneous", i.e. linear-elastic strain and stress distribution in the film show significantly higher values in the meridional direction. However, over time, and due to the biaxial visco-elastic stress relaxation of the the material, the hoop strains increase and the meridional stresses decrease, whereas the remaining strain and stress components remain substantially unchanged. These results are important for a correct assessment of the structural integrity of a pumpkin balloon in a long-duration mission, both in terms of the material performance and the overall stability of the shape of the balloon. An experimental investigation of the time dependence of the biaxial strain distribution in the film of a 4 m diameter, 48 gore pumpkin balloon is presented. The inflated shape of selected gores has been measured using photogrammetry and the time variation in strain components at some particular points of these gores has been measured under constant pressure and temperature. The results show good correlation with a numerical study, using the ABAQUS finite-element package, that includes a widely used model of the visco-elastic response of the gore material:
NASA Technical Reports Server (NTRS)
Duda, David P.; Stephens, Graeme L.; Cox, Stephen K.
1990-01-01
Measurements of longwave and shortwave radiation were made using an instrument package on the NASA tethered balloon during the FIRE Marine Stratocumulus experiment. Radiation data from two pairs of pyranometers were used to obtain vertical profiles of the near-infrared and total solar fluxes through the boundary layer, while a pair of pyrgeometers supplied measurements of the longwave fluxes in the cloud layer. The radiation observations were analyzed to determine heating rates and to measure the radiative energy budget inside the stratocumulus clouds during several tethered balloon flights. The radiation fields in the cloud layer were also simulated by a two-stream radiative transfer model, which used cloud optical properties derived from microphysical measurements and Mie scattering theory.
ERIC Educational Resources Information Center
Balloon Council, Washington, DC.
This document provides background information on balloons including: (1) the history of balloons; (2) balloon manufacturing; (3) biodegradability; (4) the fate of latex balloons; and (5) the effect of balloons on the rainforest and sea mammals. Also included as part of this instructional kit are four fun experiments that allow students to…
NASA Astrophysics Data System (ADS)
Saito, Yoshitaka; Nakashino, Kyoichi; Akita, Daisuke; Matsushima, Kiyoho; Shimadu, Shigeyuki; Goto, Ken; Hashimoto, Hiroyuki; Matsuo, Takuma
2016-07-01
A light super-pressure balloon has been developed using a method to cover a balloon with a diamond-shaped net of high-tensile fibers. The goal is to fly a payload of 900 kg to the altitude of 37 km with a 300,000 m^{3} balloon. Beginning from a demonstration test of the net-balloon with a 10 m^{3} balloon in 2010, we have been polished the net-balloon through ground inflation tests and flight tests, including a flight test of a 3,000 m ^{3} balloon in the tandem balloon configuration with a 15,000 m^{3} zero-pressure balloon in 2012, and a flight test of a 10 m^{3} balloon in the tandem balloon configuration with a 2 kg rubber balloon in 2013, as reported in the last COSPAR. In 2014, we developed a 5,000 m^{3} balloon and performed a ground inflation test to find that the balloon burst from a lip panel for termination with a differential pressure of 425 Pa. It was due to a stress concentration at the edge of a thick tape attached along the termination mechanism. In 2015, we modified the balloon by adding tapes on the lip panel to avoid the stress concentration, and also shorten the net length to leave some margin of the film and performed a ground inflation test again to find the balloon showed asymmetrical deployment and burst from the edge of the net with a differential pressure of 348 Pa. We consider it is due to the margin of the film along the circumferential direction, and proposed a gore shape which circumference length is kept as determined by the pumpkin shape of the balloon but setting meridian length longer than that. We developed a 10 m^{3} balloon with the gore design to find that the balloon deployed symmetrically and showed the burst pressure of 10,000 Pa. In 2016, we are going to develop a 2,000 m^{3} balloon with the gore design and perform its ground inflation test. In this paper, we are going to report its result with the sequence of the development.
NASA Astrophysics Data System (ADS)
Hoffmann, Lars; Hertzog, Albert; Rößler, Thomas; Stein, Olaf; Wu, Xue
2017-07-01
In this study we compared temperatures and horizontal winds of meteorological analyses in the Antarctic lower stratosphere, a region of the atmosphere that is of major interest regarding chemistry and dynamics of the polar vortex. The study covers the European Centre for Medium-Range Weather Forecasts (ECMWF) operational analysis, the ERA-Interim reanalysis, the Modern-Era Retrospective analysis for Research and Applications version 1 and 2 (MERRA and MERRA-2), and the National Centers for Environmental Prediction and National Center for Atmospheric Research (NCEP/NCAR) reanalysis. The comparison was performed with respect to long-duration observations from 19 superpressure balloon flights during the Concordiasi field campaign in September 2010 to January 2011. Most of the balloon measurements were conducted at altitudes of 17-18.5 km and latitudes of 60-85° S. We found that large-scale state temperatures of the analyses have a mean precision of 0.5-1.4 K and a warm bias of 0.4-2.1 K with respect to the balloon data. Zonal and meridional winds have a mean precision of 0.9-2.3 m s-1 and a bias below ±0.5 m s-1. Standard deviations related to small-scale fluctuations due to gravity waves are reproduced at levels of 15-60 % for temperature and 30-60 % for the horizontal winds. Considering the fact that the balloon observations have been assimilated into all analyses, except for NCEP/NCAR, notable differences found here indicate that other observations, the forecast models, and the data assimilation procedures have a significant impact on the analyses as well. We also used the balloon observations to evaluate trajectory calculations with our new Lagrangian transport model Massive-Parallel Trajectory Calculations (MPTRAC), where vertical motions of simulated trajectories were nudged to pressure measurements of the balloons. We found relative horizontal transport deviations of 4-12 % and error growth rates of 60-170 km day-1 for 15-day trajectories. Dispersion simulations revealed some difficulties with the representation of subgrid-scale wind fluctuations in MPTRAC, as the spread of air parcels simulated with different analyses was not consistent. However, although case studies suggest that the accuracy of trajectory calculations is influenced by meteorological complexity, diffusion generally does not contribute significantly to transport deviations in our analysis. Overall, evaluation results are satisfactory and compare well to earlier studies using superpressure balloon observations.
Properties of nylon 12 balloons after thermal and liquid carbon dioxide treatments.
Ro, Andrew J; Davé, Vipul
2013-03-01
Critical design attributes of angioplasty balloons include the following: tear resistance, high burst pressures, controlled compliance, and high fatigue. Balloons must have tear resistance and high burst pressures because a calcified stenosis can be hard and nominal pressures of up to 16 atm can be used to expand the balloon. The inflated balloon diameter must be a function of the inflation pressure, thus compliance is predictable and controlled. Reliable compliance is necessary to prevent damage to vessel walls, which may be caused by over-inflation. Balloons are often inflated multiple times in a clinical setting and they must be highly resistant to fatigue. These design attributes are dependent on the mechanical properties and polymer morphology of the balloon. The effects of residual stresses on shrinkage, crystallite orientation, balloon compliance, and mechanical properties were studied for angioplasty nylon 12 balloons. Residual stresses of these balloons were relieved by oven heat treatment and liquid CO2 exposure. Residual stresses were measured by quantifying shrinkage at 80 °C of excised balloon samples using a dynamic mechanical analyzer. Shrinkage was lower after oven heat treatment and liquid CO2 exposure compared to the as-received balloons, in the axial and radial directions. As-received, oven heat treated, and liquid CO2-exposed balloon samples exhibited similar thermal properties (T(g), T(m), X(t)). Crystallite orientation was not observed in the balloon cylindrical body using X-ray scattering and polarized light microscopy, which may be due to balloon fabrication conditions. Significant differences were not observed between the stress-strain curves, balloon compliance, and average burst pressures of the as-received, oven heat treated, and liquid CO2-exposed balloons. Copyright © 2012 Elsevier B.V. All rights reserved.
A simple analogue of lung mechanics.
Sherman, T F
1993-12-01
A model of the chest and lungs can be easily constructed from a bottle of water, a balloon, a syringe, a rubber stopper, glass and rubber tubing, and clamps. The model is a more exact analogue of the body than the classic apparatus of Hering in two respects: 1) the pleurae and intrapleural fluid are represented by water rather than air, and 2) the subatmospheric "intrapleural" pressure is created by the elasticity of the "lung" (balloon) rather than by a vacuum pump. With this model, students can readily see how the lung is inflated and deflated by movements of the "diaphragm and chest" (syringe plunger) and how intrapleural pressures change as this is accomplished.
Stratospheric free chlorine measured by balloon-borne in situ resonance fluorescence
NASA Technical Reports Server (NTRS)
Anderson, J. G.; Grassl, H. J.; Shetter, R. E.; Margitan, J. J.
1980-01-01
Eight balloon-borne in situ measurements of ClO in the stratosphere are analyzed and are compared with recent model calculations. While the use of in situ stratospheric studies of free radicals to test models by comparing observed and predicted concentration profiles is essential for a prognosis of changes in stratospheric ozone, resulting from future changes in stratospheric ozone, such studies provide only limited insight into the nature of stratospheric photochemistry, because natural variability and the large number of fast reactions which compete in the coupling among the key radicals frustrate a detailed comparison between a mean distribution provided by the models and an instantaneous distribution provided by a single observation.
NASA Technical Reports Server (NTRS)
Nigro, N. J.; Elkouh, A. F.
1975-01-01
The attitude of the balloon system is determined as a function of time if: (a) a method for simulating the motion of the system is available, and (b) the initial state is known. The initial state is obtained by fitting the system motion (as measured by sensors) to the corresponding output predicted by the mathematical model. In the case of the LACATE experiment the sensors consisted of three orthogonally oriented rate gyros and a magnetometer all mounted on the research platform. The initial state was obtained by fitting the angular velocity components measured with the gyros to the corresponding values obtained from the solution of the math model. A block diagram illustrating the attitude determination process employed for the LACATE experiment is shown. The process consists of three essential parts; a process for simulating the balloon system, an instrumentation system for measuring the output, and a parameter estimation process for systematically and efficiently solving the initial state. Results are presented and discussed.
Telescope performance and image simulations of the balloon-borne coded-mask protoMIRAX experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Penacchioni, A. V., E-mail: ana.penacchioni@inpe.br; Braga, J., E-mail: joao.braga@inpe.br; Castro, M. A., E-mail: manuel.castro@inpe.br
2015-12-17
In this work we present the results of imaging simulations performed with the help of the GEANT4 package for the protoMIRAX hard X-ray balloon experiment. The instrumental background was simulated taking into account the various radiation components and their angular dependence, as well as a detailed mass model of the experiment. We modelled the meridian transits of the Crab Nebula and the Galactic Centre (CG) region during balloon flights in Brazil (∼ −23° of latitude and an altitude of ∼40 km) and introduced the correspondent spectra as inputs to the imaging simulations. We present images of the Crab and ofmore » three sources in the GC: 1E 1740.7-2942, GRS 1758-258 and GX 1+4. The results show that the protoMIRAX experiment is capable of making spectral and timing observations of bright hard X-ray sources as well as important imaging demonstrations that will contribute to the design of the MIRAX satellite mission.« less
Soyama, Hiroaki; Miyamoto, Morikazu; Sasa, Hidenori; Ishibashi, Hiroki; Yoshida, Masashi; Nakatsuka, Masaya; Takano, Masashi; Furuya, Kenichi
2017-09-01
To evaluate the effectiveness of routine rapid insertion of a Bakri balloon during cesarean section for placenta previa based on a retrospective control study. Women with singleton pregnancies who underwent cesarean section for placenta previa at our institution between 2003 and 2016 were enrolled. Between 2015 and 2016, women who routinely underwent balloon tamponade during cesarean section were defined as the balloon group. Between 2003 and 2014, women who underwent no hemostatic procedures except balloon tamponade were defined as the non-balloon group. The clinical outcomes of the two groups were retrospectively analyzed. Of the 266 women with placenta previa, 50 were in the balloon group and 216 were in the non-balloon group. The bleeding amounts were significantly smaller in the balloon group than in the non-balloon group: intraoperative bleeding (991 vs. 1250 g, p < 0.01), postoperative bleeding (62 vs. 150 g, p < 0.01), and total bleeding (1066 vs. 1451 g, p < 0.01). Furthermore, the mean surgical duration was shorter in the balloon group than the non-balloon group (30 vs. 50 min, p < 0.01). In the balloon group, five patients suffered from increasing hemorrhage due to prolapse of the balloon from the uterus after the operation, but the hemorrhage was controlled by balloon re-insertion without additional hemostatic procedures. This study demonstrated that the routine rapid insertion of Bakri balloon tamponade during cesarean section significantly decreased intra- and postoperative hemorrhage and shortened the surgical duration in women with placenta previa.
21 CFR 870.1350 - Catheter balloon repair kit.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Catheter balloon repair kit. 870.1350 Section 870... repair kit. (a) Identification. A catheter balloon repair kit is a device used to repair or replace the balloon of a balloon catheter. The kit contains the materials, such as glue and balloons, necessary to...
21 CFR 870.1350 - Catheter balloon repair kit.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Catheter balloon repair kit. 870.1350 Section 870... repair kit. (a) Identification. A catheter balloon repair kit is a device used to repair or replace the balloon of a balloon catheter. The kit contains the materials, such as glue and balloons, necessary to...
21 CFR 870.1350 - Catheter balloon repair kit.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Catheter balloon repair kit. 870.1350 Section 870... repair kit. (a) Identification. A catheter balloon repair kit is a device used to repair or replace the balloon of a balloon catheter. The kit contains the materials, such as glue and balloons, necessary to...
Status of the NASA Balloon Program
NASA Astrophysics Data System (ADS)
Needleman, H. C.; Nock, R. S.; Bawcom, D. W.
1993-02-01
In the early 1980's the U.S. National Aeronautics and Space Administration (NASA) Balloon Program was faced with a problem of catastrophic balloon failures. In 1986 a balloon recovery program was initiated. This program included qualification of new balloon films, and investigations into materials, processing, structures and performance of balloons. This recovery program has been very successful. To date, more than 100 balloons manufactured of newly developed films have been flown with unprecedented success. There has been much progress made across the spectrum of balloon related disciplines. A new design philosophy has been developed and is being used for all NASA balloons. An updated balloon reliability and quality assurance program is in effect. The long duration balloon development project has been initiated with the first flight test having been conducted in December 1989 from Antarctica. A comprehensive research and development (R&D) effort has been initiated and is progressing well. The progress, status and future plans for these and other aspects of the NASA program, along with a description of the comprehensive balloon R&D activity, will be presented.
Cosmic radiation dose measurements from the RaD-X flight campaign
NASA Astrophysics Data System (ADS)
Mertens, Christopher J.; Gronoff, Guillaume P.; Norman, Ryan B.; Hayes, Bryan M.; Lusby, Terry C.; Straume, Tore; Tobiska, W. Kent; Hands, Alex; Ryden, Keith; Benton, Eric; Wiley, Scott; Gersey, Brad; Wilkins, Richard; Xu, Xiaojing
2016-10-01
The NASA Radiation Dosimetry Experiment (RaD-X) stratospheric balloon flight mission obtained measurements for improving the understanding of cosmic radiation transport in the atmosphere and human exposure to this ionizing radiation field in the aircraft environment. The value of dosimetric measurements from the balloon platform is that they can be used to characterize cosmic ray primaries, the ultimate source of aviation radiation exposure. In addition, radiation detectors were flown to assess their potential application to long-term, continuous monitoring of the aircraft radiation environment. The RaD-X balloon was successfully launched from Fort Sumner, New Mexico (34.5°N, 104.2°W) on 25 September 2015. Over 18 h of flight data were obtained from each of the four different science instruments at altitudes above 20 km. The RaD-X balloon flight was supplemented by contemporaneous aircraft measurements. Flight-averaged dosimetric quantities are reported at seven altitudes to provide benchmark measurements for improving aviation radiation models. The altitude range of the flight data extends from commercial aircraft altitudes to above the Pfotzer maximum where the dosimetric quantities are influenced by cosmic ray primaries. The RaD-X balloon flight observed an absence of the Pfotzer maximum in the measurements of dose equivalent rate.
Coen, S J
2011-06-01
Functional neuroimaging has been used extensively in conjunction with gastric balloon distension in an attempt to unravel the relationship between the brain, regulation of hunger, satiety, and food intake tolerance. A number of researchers have also adopted a more physiological approach using intra-gastric administration of a liquid meal which has revealed different brain responses to gastric balloon distension. These differences are important as they question the utility and relevance of non-physiological models such as gastric balloon distension, especially when investigating mechanisms of feeding behavior such as satiety. However, an assessment of the relevance of physiological versus non-physiological gastric distension has been problematic due to differences in distension volumes between studies. In this issue of Neurogastroenterology and Motility, Geeraerts et al. compare brain activity during volume matched nutrient gastric distension and balloon distension in healthy volunteers. Gastric balloon distension activated the 'visceral pain neuromatrix'. This network of brain regions was deactivated during nutrient infusion, supporting the notion that brain activity during physiological versus non-physiological distension is indeed different. The authors suggest deactivation of the pain neuromatrix during nutrient infusion serves as a prerequisite for tolerance of normal meal volumes in health. © 2011 Blackwell Publishing Ltd.
Cosmic Radiation Dose Measurements from the RaD-X Flight Campaign
NASA Technical Reports Server (NTRS)
Mertens, Christopher J.; Gronoff, Guillaume P.; Norman, Ryan B.; Hayes, Bryan M.; Lusby, Terry C.; Straume, Tore; Tobiska, W. Kent; Hands, Alex; Ryden, Keith; Benton, Eric;
2016-01-01
The NASA Radiation Dosimetry Experiment (RaD-X) stratospheric balloon flight mission obtained measurements for improving the understanding of cosmic radiation transport in the atmosphere and human exposure to this ionizing radiation field in the aircraft environment. The value of dosimetric measurements from the balloon platform is that they can be used to characterize cosmic ray primaries, the ultimate source of aviation radiation exposure. In addition, radiation detectors were flown to assess their potential application to long-term, continuous monitoring of the aircraft radiation environment. The RaD-X balloon was successfully launched from Fort Sumner, New Mexico (34.5 degrees North, 104.2 degrees West) on 25 September 2015. Over 18 hours of flight data were obtained from each of the four different science instruments at altitudes above 20 kilometers. The RaD-X balloon flight was supplemented by contemporaneous aircraft measurements. Flight-averaged dosimetric quantities are reported at seven altitudes to provide benchmark measurements for improving aviation radiation models. The altitude range of the flight data extends from commercial aircraft altitudes to above the Pfotzer maximum where the dosimetric quantities are influenced by cosmic ray primaries. The RaD-X balloon flight observed an absence of the Pfotzer maximum in the measurements of dose equivalent rate.
Controlled weather balloon ascents and descents for atmospheric research and climate monitoring
Kräuchi, Andreas; Philipona, Rolf; Romanens, Gonzague; Hurst, Dale F.; Hall, Emrys G.; Jordan, Allen F.
2017-01-01
In situ upper-air measurements are often made with instruments attached to weather balloons launched at the surface and lifted into the stratosphere. Present-day balloon-borne sensors allow near-continuous measurements from the Earth’s surface to about 35 km (3–5 hPa), where the balloons burst and their instrument payloads descend with parachutes. It has been demonstrated that ascending weather balloons can perturb the air measured by very sensitive humidity and temperature sensors trailing behind them, particularly in the upper troposphere and lower stratosphere (UTLS). The use of controlled balloon descent for such measurements has therefore been investigated and is described here. We distinguish between the single balloon technique that uses a simple automatic valve system to release helium from the balloon at a preset ambient pressure, and the double balloon technique that uses a carrier balloon to lift the payload and a parachute balloon to control the descent of instruments after the carrier balloon is released at preset altitude. The automatic valve technique has been used for several decades for water vapor soundings with frost point hygrometers, whereas the double balloon technique has recently been re-established and deployed to measure radiation and temperature profiles through the atmosphere. Double balloon soundings also strongly reduce pendulum motion of the payload, stabilizing radiation instruments during ascent. We present the flight characteristics of these two ballooning techniques and compare the quality of temperature and humidity measurements made during ascent and descent. PMID:29263765
Controlled weather balloon ascents and descents for atmospheric research and climate monitoring.
Kräuchi, Andreas; Philipona, Rolf; Romanens, Gonzague; Hurst, Dale F; Hall, Emrys G; Jordan, Allen F
2016-01-01
In situ upper-air measurements are often made with instruments attached to weather balloons launched at the surface and lifted into the stratosphere. Present-day balloon-borne sensors allow near-continuous measurements from the Earth's surface to about 35 km (3-5 hPa), where the balloons burst and their instrument payloads descend with parachutes. It has been demonstrated that ascending weather balloons can perturb the air measured by very sensitive humidity and temperature sensors trailing behind them, particularly in the upper troposphere and lower stratosphere (UTLS). The use of controlled balloon descent for such measurements has therefore been investigated and is described here. We distinguish between the single balloon technique that uses a simple automatic valve system to release helium from the balloon at a preset ambient pressure, and the double balloon technique that uses a carrier balloon to lift the payload and a parachute balloon to control the descent of instruments after the carrier balloon is released at preset altitude. The automatic valve technique has been used for several decades for water vapor soundings with frost point hygrometers, whereas the double balloon technique has recently been re-established and deployed to measure radiation and temperature profiles through the atmosphere. Double balloon soundings also strongly reduce pendulum motion of the payload, stabilizing radiation instruments during ascent. We present the flight characteristics of these two ballooning techniques and compare the quality of temperature and humidity measurements made during ascent and descent.
Evolution of scientific ballooning and its impact on astrophysics research
NASA Astrophysics Data System (ADS)
Jones, William Vernon
2014-05-01
As we celebrate the centennial year of the discovery of cosmic rays on a manned balloon, it seems appropriate to reflect on the evolution of ballooning and its scientific impact. Balloons have been used for scientific research since they were invented in France more than 200 years ago. Ballooning was revolutionized in 1950 with the introduction of the so-called natural shape balloon with integral load tapes. This basic design has been used with more or less continuously improved materials for scientific balloon flights for more than a half century, including long-duration balloon (LDB) flights around Antarctica for the past two decades. The U.S. National Aeronautics and Space Administration (NASA) is currently developing the next generation super-pressure balloon that would enable extended duration missions above 99.5% of the Earth's atmosphere at any latitude. The Astro2010 Decadal Survey report supports super-pressure balloon development and the giant step forward it offers with ultra-long-duration balloon (ULDB) flights at constant altitudes for about 100 days.
Investigation of hot air balloon fatalities.
McConnell, T S; Smialek, J E; Capron, R G
1985-04-01
The rising popularity of the sport of hot air ballooning has been accompanied by several recent incidents, both in this country and other parts of the world, where mechanical defects and the improper operation of balloons have resulted in several fatalities. A study was conducted to identify the location and frequency of hot air ballooning accidents. Furthermore, the study attempted to identify those accidents that were the result of improper handling on the part of the balloon operators and those that were related to specific defects in the construction of the balloon. This paper presents a background of the sport of hot air ballooning, together with an analysis of the construction of a typical hot air balloon, pointing out the specific areas where defects may occur that could result in a potential fatal balloon crash. Specific attention is given to the two recent balloon crashes that occurred in Albuquerque, N.M., hot air balloon capital of the world, and that resulted in multiple fatalities.
NASA Astrophysics Data System (ADS)
Buduru, Suneel Kumar
2016-07-01
The Balloon Facility of Tata Institute of Fundamental Research (TIFR-BF) is a unique center of expertise working throughout the year to design, fabricate and launch scientific balloons mainly for space astronomy, atmospheric science and engineering experiments. Recently TIFR-BF extended its support to new user scientists for conducting balloon launches for biological and middle atmospheric sciences. For the first time two balloon launches conducted for sending live lab rats to upper stratosphere and provided launch support for different balloon campaigns such as Tropical Tropopause Dynamics (TTD) to study water vapour content in upper tropospheric and lower stratospheric regions over Hyderabad and the other balloon campaign to study the Asian Tropopause Aerosol Layer (BATAL) during the Indian summer monsoon season. BATAL is the first campaign to conduct balloon launches during active (South-West) monsoon season using zero pressure balloons of different volumes. TIFR-BF also provided zero pressure and sounding balloon support to various research institutes and organizations in India and for several international space projects. In this paper, we present details on our increased capability of balloon fabrication for carrying heavier payloads, development of high strength balloon load tapes and recent developments of flight control and safety systems. A summary of the various flights conducted in two years will be presented along with the future ballooning plans.
NASA Astrophysics Data System (ADS)
Snyder, P. B.; Burrell, K. H.; Wilson, H. R.; Chu, M. S.; Fenstermacher, M. E.; Leonard, A. W.; Moyer, R. A.; Osborne, T. H.; Umansky, M.; West, W. P.; Xu, X. Q.
2007-08-01
Understanding the physics of the edge pedestal and edge localized modes (ELMs) is of great importance for ITER and the optimization of the tokamak concept. The peeling-ballooning model has quantitatively explained many observations, including ELM onset and pedestal constraints, in the standard H-mode regime. The ELITE code has been developed to efficiently evaluate peeling-ballooning stability for comparison with observation and predictions for future devices. We briefly review recent progress in the peeling-ballooning model, including experimental validation of ELM onset and pedestal height predictions, and nonlinear 3D simulations of ELM dynamics, which together lead to an emerging understanding of the physics of the onset and dynamics of ELMs in the standard intermediate to high collisionality regime. We also discuss new studies of the apparent power dependence of the pedestal, and studies of the impact of sheared toroidal flow. Recently, highly promising low collisionality regimes without ELMs have been discovered, including the quiescent H-mode (QH) and resonant magnetic perturbation (RMP) regimes. We present recent observations from the DIII-D tokamak of the density, shape and rotation dependence of QH discharges, and studies of the peeling-ballooning stability in this regime. We propose a model of the QH-mode in which the observed edge harmonic oscillation (EHO) is a saturated kink/peeling mode which is destabilized by current and rotation, and drives significant transport, allowing a near steady-state edge plasma. The model quantitatively predicts the observed density dependence and qualitatively predicts observed mode structure, rotation dependence and outer gap dependence. Low density RMP discharges are found to operate in a similar regime, but with the EHO replaced by an applied magnetic perturbation.
Clinical experience with the Monorail balloon catheter for coronary angioplasty.
Finci, L; Meier, B; Roy, P; Steffenino, G; Rutishauser, W
1988-01-01
The Monorail balloon catheter is distinctly different from other current balloon catheters: the guidewire passes through the balloon itself, exits the catheter proximal to the balloon, and runs alongside its small shaft (3 French) through the guiding catheter. Monorail coronary angioplasty was attempted in 61 patients on 73 lesions with balloons from 2.0 to 3.7 mm. Angiographic success was obtained in 66 lesions (90%). For 15 lesions, balloon exchanges were needed. In three lesions, the Monorail balloon failed to cross the lesion, while a standard balloon succeeded; two lesions could not be crossed with any balloon. Vessel occlusion occurred in four patients: two had emergency surgery without infarct (one died suddenly 4 days later and one had a stroke 1 day later), one was recanalized with a standard balloon, and one had a myocardial infarct. Continuous infusion of urokinase was used until patient 3 in whom problems with the delivery system led to cardiocerebral air embolization (with complete recovery). No thrombotic complications were observed in the subsequent 58 patients with only a bolus of 10,000 U of heparin. The Monorail balloon facilitates contrast injections and balloon exchanges but appears more difficult to pass through tight lesions. Omission of the previously recommended infusion with a thrombolytic agent proved safe.
Li, Yi-Qi; Wang, Jun-Yi; Qian, Zhi-Qiang; Li, Ye-Li; Li, Wen-Na; Gao, Yang; Yang, Dan-Li
2017-09-15
Osthole (7-methoxy-8-isopentenoxy-coumarin), a compound extracted from Cnidiummonnieri (L.) Cusson seeds, has been found to exhibit potent therapeutic effects in cancer due to its ability to inhibit inflammation and cell proliferation. However, its effects on arterial wall hypertrophy-related diseases remain unclear. Therefore, in this study, we aimed to investigate the effects of Osthole on intimal hyperplasia in a rat model of carotid artery balloon injury. We established the balloon-induced carotid artery injury rat model in male Sprague-Dawley rats, after which we administered Osthole (20mg/kg/day or 40mg/kg/day) or volume-matched normal saline orally by gavage for 14 consecutive days. Intimal hyperplasia and the degree of vascular smooth muscle cell proliferation were then evaluated by histopathological examination of the changes in the carotid artery, as well as by examination of proliferating cell nuclear antigen (PCNA) expression. Tumour necrosis factor-ɑ (TNF-α), interleukin-1β (IL-1β), transforming growth factor-beta (TGF-β1) and PCNA mRNA expression levels were examined by real-time RT-PCR, while nuclear factor-κB (NF-κB (p65)), IκB-α, TGF-β1 and phospho-Smad2 (p-Smad2) protein expression levels were analysed by immunohistochemistry or western blot analysis. We found that Osthole significantly attenuated neointimal thickness and decreased the elevations in PCNA protein expression induced by balloon injury. Moreover, Osthole down-regulated the pro-inflammatory factors TNF-α and IL-1β and NF-κB (p65), whose expression had been upregulated after balloon injury. Moreover, IκB-α protein expression levels increased following Osthole treatment. In addition, the elevations in TGF-β1 and p-Smad2 protein expression induced by balloon injury were both significantly attenuated by Osthole administration. We concluded that Osthole significantly inhibited neointimal hyperplasia in balloon-induced rat carotid artery injury and that the mechanism by which this occurs may involve NF-κB, IL-1β and TNF-ɑ down-regulation, which alleviates the inflammatory response, and TGF-β1/Smad2 signalling pathway inhibition. Copyright © 2017 Elsevier B.V. All rights reserved.
Use of monorail PTCA balloon catheter for local drug delivery.
Trehan, Vijay; Nair, Girish M; Gupta, Mohit D
2007-01-01
We report the use of monorail coronary balloon as an infusion catheter to give bailout abciximab selectively into the site of stent thrombosis as an adjunct to plain old balloon angioplasty (POBA) in a patient of subacute stent thrombosis of the left anterior descending coronary artery. The balloon component (polyamide material) of the monorail balloon catheter was shaved off the catheter so that abciximab injected through the balloon port of the catheter exited out the shaft of the balloon catheter at the site from where the balloon material was shaved off. We believe that selective infusion with abciximab along with POBA established antegrade flow and relieved the patient's ischemia. In the absence of essential hardware to give intracoronary drugs in an emergency situation, one may employ our technique of infusion through a monorail balloon catheter after shaving the balloon component from the catheter.
Hot-Air Ballooning in Physics Teaching.
ERIC Educational Resources Information Center
Haugland, Ole Anton
1991-01-01
Describes the modern hot-air balloon and the physics of ballooning. Proposes that students construct their own hot-air balloon and presents an experiment calculating the time needed for a balloon to rise to the ceiling of a gymnasium. (MDH)
Air Force Cambridge Research Laboratories balloon operations
NASA Technical Reports Server (NTRS)
Danaher, T. J.
1974-01-01
The establishment and functions of the AFCRL balloon operations facility are discussed. The types of research work conducted by the facility are defined. The facilities which support the balloon programs are described. The free balloon and tethered balloon capabilities are analyzed.
Histological and morphometric analyses for rat carotid balloon injury model.
Tulis, David A
2007-01-01
Experiments aimed at analyzing the response of blood vessels to mechanical injury and ensuing remodeling responses often employ the highly characterized carotid artery balloon injury model in laboratory rats. This approach utilizes luminal insertion of a balloon embolectomy catheter into the common carotid artery with inflation and withdrawal resulting in an injury characterized by vascular endothelial cell (EC) denudation and medial wall distension. The adaptive response to this injury is typified by robust vascular smooth muscle cell (SMC) replication and migration, SMC apoptosis and necrosis, enhanced synthesis and deposition of extracellular matrix (ECM) components, partial vascular EC regeneration from the border zones, luminal narrowing, and establishment of a neointima in time-dependent fashion. Evaluation of these adaptive responses to blood vessel injury can include acute and longer term qualitative and quantitative measures including expression analyses, activity assays, immunostaining for a plethora of factors and signals, and morphometry of neointima formation and gross mural remodeling. This chapter presents a logical continuation of Chapter 1 that offers details for performing the rat carotid artery balloon injury model in a standard laboratory setting by providing commonly used protocols for performing histological and morphometric analyses in such studies. Moreover, procedures, caveats, and considerations included in this chapter are highly relevant for alternative animal vascular physiology/pathophysiology studies and in particular those related to mechanisms of vascular injury and repair. Included in this chapter are specifics for in situ perfusion-fixation, tissue harvesting and processing for both snap-frozen and paraffin-embedded protocols, specimen embedding and sectioning, slide preparation, several standard histological staining steps, and routine morphological assessment.
Modeling plaque fissuring and dissection during balloon angioplasty intervention.
Gasser, T Christian; Holzapfel, Gerhard A
2007-05-01
Balloon angioplasty intervention is traumatic to arterial tissue. Fracture mechanisms such as plaque fissuring and/or dissection occur and constitute major contributions to the lumen enlargement. However, these types of mechanically-based traumatization of arterial tissue are also contributing factors to both acute procedural complications and chronic restenosis of the treatment site. We propose physical and finite element models, which are generally useable to trace fissuring and/or dissection in atherosclerotic plaques during balloon angioplasty interventions. The arterial wall is described as an anisotropic, heterogeneous, highly deformable, nearly incompressible body, whereas tissue failure is captured by a strong discontinuity kinematics and a novel cohesive zone model. The numerical implementation is based on the partition of unity finite element method and the interface element method. The later is used to link together meshes of the different tissue components. The balloon angioplasty-based failure mechanisms are numerically studied in 3D by means of an atherosclerotic-prone human external iliac artery, with a type V lesion. Image-based 3D geometry is generated and tissue-specific material properties are considered. Numerical results show that in a primary phase the plaque fissures at both shoulders of the fibrous cap and stops at the lamina elastica interna. In a secondary phase, local dissections between the intima and the media develop at the fibrous cap location with the smallest thickness. The predicted results indicate that plaque fissuring and dissection cause localized mechanical trauma, but prevent the main portion of the stenosis from high stress, and hence from continuous tissue damage.
Generalised ballooning theory of two-dimensional tokamak modes
NASA Astrophysics Data System (ADS)
Abdoul, P. A.; Dickinson, D.; Roach, C. M.; Wilson, H. R.
2018-02-01
In this work, using solutions from a local gyrokinetic flux-tube code combined with higher order ballooning theory, a new analytical approach is developed to reconstruct the global linear mode structure with associated global mode frequency. In addition to the isolated mode (IM), which usually peaks on the outboard mid-plane, the higher order ballooning theory has also captured other types of less unstable global modes: (a) the weakly asymmetric ballooning theory (WABT) predicts a mixed mode (MM) that undergoes a small poloidal shift away from the outboard mid-plane, (b) a relatively more stable general mode (GM) balloons on the top (or bottom) of the tokamak plasma. In this paper, an analytic approach is developed to combine these disconnected analytical limits into a single generalised ballooning theory. This is used to investigate how an IM behaves under the effect of sheared toroidal flow. For small values of flow an IM initially converts into a MM where the results of WABT are recaptured, and eventually, as the flow increases, the mode asymptotically becomes a GM on the top (or bottom) of the plasma. This may be an ingredient in models for understanding why in some experimental scenarios, instead of large edge localised modes (ELMs), small ELMs are observed. Finally, our theory can have other important consequences, especially for calculations involving Reynolds stress driven intrinsic rotation through the radial asymmetry in the global mode structures. Understanding the intrinsic rotation is significant because external torque in a plasma the size of ITER is expected to be relatively low.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmehl, Joerg, E-mail: joerg.schmehl@med.uni-tuebingen.de; Ruhr, Juergen von der; Dobratz, Markus
Purpose. The efficacy of drug-eluting balloons has been demonstrated in clinical trials. The drug predominantly used is paclitaxel because of its lipophilic properties and the rapid onset of action. The aim of the investigation was to evaluate the feasibility and efficacy of an alternative balloon coating with rapamycin that can be applied on site.MethodsThe balloon coating (3.0/18 and 3.0/12 mm, Cathy No. 4, Translumina GmbH) with rapamycin was conducted with a coating machine (Translumina GmbH). Concentrations were 2, 2 Multiplication-Sign 2, 3, and 4 %. Measurements regarding the amount of substance released to the vessel wall were carried out onmore » explanted porcine coronaries by means of ultraviolet and visible-light spectroscopy. Inflation time varied between 30 and 120 s. The biological effect of the coating was evaluated in a porcine peripheral overstretch and stent implantation model. Results. The amount of rapamycin on the balloon surface ranged from 558 {+-} 108 {mu}g for the 2 % solution to 1,441 {+-} 228 {mu}g in the 4 % solution. An amount of 95 {+-} 63-193 {+-} 113 {mu}g was released into the vessel wall. The quantitative measurements of the angiographic examinations 4 weeks after treatment revealed a reduction of diameter stenosis from 20.6 {+-} 17.4 % in the control group to 11.6 {+-} 5.5 % in the drug-eluting balloon group. Conclusion. A balloon coating with rapamycin omitting an excipient is possible with a dose-adjustable coating machine. However, the biological effects are moderate, which make further optimization of the coating process and evaluation of appropriate excipients necessary.« less
Development of a Super-Pressure Balloon with an Improved Design
NASA Astrophysics Data System (ADS)
Izutsu, Naoki; Akita, Daisuke; Fuke, Hideyuki; Iijima, Issei; Kato, Yoichi; Kawada, Jiro; Matsushima, Kiyoho; Matsuzaka, Yukihiko; Mizuta, Eiichi; Nakada, Takashi; Nonaka, Naoki; Saito, Yoshitaka; Takada, Atsushi; Tamura, Keisuke; Yamada, Kazuhiko; Yoshida, Tetsuya
A zero-pressure balloon used for scientific observation in the stratosphere has an unmanageable limitation that its floating altitude decreases during a nighttime because of temperature drop of the lifting gas. Since a super-pressure balloon may not change its volume, the lifetime can extend very long. We had introduced so called the ‘lobed-pumpkin’ type of super-pressure balloon that can realize a full-scale long-duration balloon and it will be in practical use in the very near future. As for larger super-pressure balloons, however, we still have some potential difficulties to be resolved. We here propose a new design suitable for a larger super-pressure balloon, which is roughly ‘lobed pumpkin with lobed cylinder’ and can adapt a single design for balloons of a wide range of volumes. Indoor inflation tests were successfully carried out with balloons designed and made by the method. It has been shown that the limit of the resisting pressure differential for a new designed balloon is same as that of a normal lobed-pumpkin balloon.
A revised approach to the ULDB design
NASA Astrophysics Data System (ADS)
Smith, M.; Cathey, H.
The National Aeronautics and Space Administration Balloon Program has experienced problems in the scaling up of the proposed Ultra Long Duration Balloon. Full deployment of the balloon envelope has been the issue for the larger balloons. There are a number of factors that contribute to this phenomenon. Analytical treatments of the deployment issue are currently underway. It has also been acknowledged that the current fabrication approach using foreshortening is costly, labor intensive, and requires significant handling during production thereby increasing the chances of inducing damage to the envelope. Raven Industries has proposed a new design and fabrication approach that should increase the probability of balloon deployment, does not require foreshortening, will reduce the handling, production labor, and reduce the final balloon cost. This paper will present a description of the logic and approach used to develop this innovation. This development consists of a serial set of steps with decision points that build upon the results of the previous steps. The first steps include limited material development and testing. This will be followed by load testing of bi-axial reinforced cylinders to determine the effect of eliminating the foreshortening. This series of tests have the goal of measuring the strain in the material as it is bi-axially loaded in a condition that closely replicated the application in the full-scale balloon. Constant lobe radius pumpkin shaped test structures will be designed and analyzed. This matrix of model tests, in conjunction with the deployment analyses, will help develop a curve that should clearly present the deployment relationship for this kind of design. This will allow the ``design space'' for this type of balloon to be initially determined. The materials used, analyses, and ground testing results of both cylinders and small pumpkin structures will be presented. Following ground testing, a series of test flights, staged in increments of increasing suspended load and balloon volume, will be conducted. The first small scale test flight has been proposed for early Spring 2004. Results of this test flight of this new design and approach will presented. Two additional domestic test flights from Ft. Sumner, New Mexico, and Palestine, Texas, and one circumglobal test flight from Australia are planned as part of this development. Future plans for both ground testing and test flights will also be presented.
A Revised Approach to the ULDB Design
NASA Technical Reports Server (NTRS)
Smith, Michael; Cathey, H. M., Jr.
2004-01-01
The National Aeronautics and Space Administration Balloon Program has experienced problems in the scaling up of the proposed Ultra Long Duration Balloon. Full deployment of the balloon envelope has been the issue for the larger balloons. There are a number of factors that contribute to this phenomenon. Analytical treatments of the deployment issue are currently underway. It has also been acknowledged that the current fabrication approach using foreshortening is costly, labor intensive, and requires significant handling during production thereby increasing the chances of inducing damage to the envelope. Raven Industries has proposed a new design and fabrication approach that should increase the probability of balloon deployment, does not require foreshortening, will reduce the handling, production labor, and reduce the final balloon cost. This paper will present a description of the logic and approach used to develop this innovation. This development consists of a serial set of steps with decision points that build upon the results of the previous steps. The first steps include limited material development and testing. This will be followed by load testing of bi-axial reinforced cylinders to determine the effect of eliminating the foreshortening. This series of tests have the goal of measuring the strain in the material as it is bi-axially loaded in a condition that closely replicated the application in the full-scale balloon. Constant lobe radius pumpkin shaped test structures will be designed and analyzed. This matrix of model tests, in conjunction with the deployment analyses, will help develop a curve that should clearly present the deployment relationship for this kind of design. This will allow the "design space" for this type of balloon to be initially determined. The materials used, analyses, and ground testing results of both cylinders and small pumpkin structures will be presented. Following ground testing, a series of test flights, staged in increments of increasing suspended load and balloon volume, will be conducted. The first small scale test flight has been proposed for early Spring 2004. Results of this test flight of this new design and approach will presented. Two additional domestic test flights from Ft. Sumner, New Mexico, and Palestine, Texas, and one circumglobal test flight from Australia are planned as part of this development. Future plans for both ground testing and test flights will also be presented.
Thermal, Structural, and Optical Analysis of a Balloon-Based Imaging System
NASA Astrophysics Data System (ADS)
Borden, Michael; Lewis, Derek; Ochoa, Hared; Jones-Wilson, Laura; Susca, Sara; Porter, Michael; Massey, Richard; Clark, Paul; Netterfield, Barth
2017-03-01
The Subarcsecond Telescope And BaLloon Experiment, STABLE, is the fine stage of a guidance system for a high-altitude ballooning platform designed to demonstrate subarcsecond pointing stability over one minute using relatively dim guide stars in the visible spectrum. The STABLE system uses an attitude rate sensor and the motion of the guide star on a detector to control a Fast Steering Mirror to stabilize the image. The characteristics of the thermal-optical-mechanical elements in the system directly affect the quality of the point-spread function of the guide star on the detector, so a series of thermal, structural, and optical models were built to simulate system performance and ultimately inform the final pointing stability predictions. This paper describes the modeling techniques employed in each of these subsystems. The results from those models are discussed in detail, highlighting the development of the worst-case cold and hot cases, the optical metrics generated from the finite element model, and the expected STABLE residual wavefront error and decenter. Finally, the paper concludes with the predicted sensitivities in the STABLE system, which show that thermal deadbanding, structural pre-loading, and self-deflection under different loading conditions, and the speed of individual optical elements were particularly important to the resulting STABLE optical performance.
NASA Astrophysics Data System (ADS)
Waltz, R. E.; Kerbel, G. D.; Milovich, J.
1994-07-01
The method of Hammett and Perkins [Phys. Rev. Lett. 64, 3019 (1990)] to model Landau damping has been recently applied to the moments of the gyrokinetic equation with curvature drift by Waltz, Dominguez, and Hammett [Phys. Fluids B 4, 3138 (1992)]. The higher moments are truncated in terms of the lower moments (density, parallel velocity, and parallel and perpendicular pressure) by modeling the deviation from a perturbed Maxwellian to fit the kinetic response function at all values of the kinetic parameters: k∥vth/ω, b=(k⊥ρ)2/2, and ωD/ω. Here the resulting gyro-Landau fluid equations are applied to the simulation of ion temperature gradient (ITG) mode turbulence in toroidal geometry using a novel three-dimensional (3-D) nonlinear ballooning mode representation. The representation is a Fourier transform of a field line following basis (ky',kx',z') with periodicity in toroidal and poloidal angles. Particular emphasis is given to the role of nonlinearly generated n=0 (ky' = 0, kx' ≠ 0) ``radial modes'' in stabilizing the transport from the finite-n ITG ballooning modes. Detailing the parametric dependence of toroidal ITG turbulence is a key result.
NASA Astrophysics Data System (ADS)
Waltz, R. E.; Kerbel, G. D.
1994-05-01
The method of Hammett and Perkins [Phys. Rev. Lett. 64, 3019 (1990)] to model Landau damping has been recently applied to the moments of the gyro-kinetic equation with curvature drift by Waltz, Dominguez, and Hammett [Phys. Fluids B 4, 3138 (1992)]. The higher moments are truncated in terms of the lower moments (density, parallel velocity, and parallel and perpendicular pressure) by modeling the deviation from a perturbed Maxwellian to fit the kinetic response function at all values of the kinetic parameters: k∥vth/ω, b=(k⊥ρ)2/2, and ωD/ω. Here the resulting gyro-Landau fluid equations are applied to the simulation of ion temperature gradient (ITG) mode turbulence in toroidal geometry using a novel 3D nonlinear ballooning mode representation. The representation is a Fourier transform of the Cowley et al. [Phys. Fluids B 3, 2767 (1991)] field line following twisted eddy basis (kx',ky',z') with periodicity in toroidal and poloidal angles. Particular emphasis is given to the role of nonlinearly generated n=0 (ky'=0, kx'≠0) ``radial modes'' in stabilizing the transport from the finite-n ITG ballooning modes.
Flight Qualification of the NASA's Super Pressure Balloon
NASA Astrophysics Data System (ADS)
Cathey, Henry; Said, Magdi; Fairbrother, Debora
Designs of new balloons to support space science require a number of actual flights under various flight conditions to qualify them to as standard balloon flight offerings to the science community. Development of the new Super Pressure Balloon for the National Aeronautics and Space Administration’s Balloon Program Office has entailed employing new design, analysis, and production techniques to advance the state of the art. Some of these advances have been evolutionary steps and some have been revolutionary steps requiring a maturing understanding of the materials, designs, and manufacturing approaches. The NASA Super Pressure Balloon development end goal is to produce a flight vehicle that is qualified to carry a ton of science instrumentation, at an altitude greater than 33 km while maintaining a near constant pressure altitude for extended periods of up to 100 days, and at any latitude on the globe. The NASA’s Balloon Program Office has pursued this development in a carefully executed incremental approach by gradually increasing payload carrying capability and increasing balloon volume to reach these end goal. A very successful test flight of a ~200,700 m3 balloon was launch in late 2008 from Antarctica. This balloon flew for over 54 days at a constant altitude and circled the Antarctic continent almost three times. A larger balloon was flown from Antarctica in early 2011. This ~422,400 m3 flew at a constant altitude for 22 days making one circuit around Antarctica. Although the performance was nominal, the flight was terminated via command to recover high valued assets from the payload. The balloon designed to reach the program goals is a ~532,200 m3 pumpkin shaped Super Pressure Balloon. A test flight of this balloon was launched from the Swedish Space Corporation’s Esrange Balloon Launch Facilities near Kiruna, Sweden on 14 August, 2012. This flight was another success for this development program. Valuable information was gained from this short test flight by successfully demonstrated balloon vehicle performance, obtained a large amount of videos, measured balloon differential pressure, obtained temperature and altitude data, assessed structure strength through pressurization, and demonstrated the balloon vehicles altitude stability. This flight was the first of several to qualify this design for the science community. Results of the most recent flights will be presented. Some of the related material characterization testing which is vital to the balloon design development for the balloon will also be presented. Additionally, this paper will provide a current overview of the development and qualification approach pursued for the NASA’s Super Pressure Balloon. Future plans and goals of future test flights will also be presented. This will include the projected balloon volumes, payload capabilities, test flight locations, and proposed flight schedule.
NASA Technical Reports Server (NTRS)
Rand, J. L.
1981-01-01
Previous attempts to develop an appropriate sensor for measuring the stress or strain of high altitude balloons during flight are reviewed as well as the various conditions that must be met by such a device. The design, development and calibration of a transducer which promises to satisfy the necessary design constraints are described. The thin film strain transducer has a low effective modulus so as not to interfere with the strain that would naturally occur in the balloon. In addition, the transducer has a high sensitivity to longitudinal strain (7.216 mV/V/unit strain) which is constant for all temperature from room temperature to -80 C and all strains from 5 percent compression to 10 percent tensile strain. At the same time, the sensor is relatively insensitive (0.27 percent) to transverse forces. The device has a standard 350 ohm impedance which is compatible with available bridge balance, amplification and telemetry instrumentation now available for balloon flight. Recommendations are included for improved coatings to provide passive thermal control as well as model, tethered and full scale flight testing.
Status of the NASA Balloon Program
NASA Technical Reports Server (NTRS)
Needleman, H. C.; Nock, R. S.; Bawcom, D. W.
1993-01-01
The NASA Balloon Program (BP) is examined in an overview of design philosophy, R&D activities, flight testing, and the development of a long-duration balloon for Antarctic use. The Balloon Recovery Program was developed to qualify the use of existing films and to design improved materials and seals. Balloon flights are described for studying the supernova SN1987a, and systems were developed to enhance balloon campaigns including mobile launch vehicles and tracking/data-acquisition systems. The technical approach to long-duration ballooning is reviewed which allows the use of payloads of up to 1350 kg for two to three weeks. The BP is responsible for the development of several candidate polyethylene balloon films as well as design/performance standards for candidate balloons. Specific progress is noted in reliability and in R&D with respect to optimization of structural design, resin blending, and extrusion.
GHOST balloons around Antarctica
NASA Technical Reports Server (NTRS)
Stearns, Charles R.
1988-01-01
The GHOST balloon position as a function of time data shows that the atmospheric circulation around the Antarctic Continent at the 100 mb and 200 mb levels is complex. The GHOST balloons supposedly follow the horizontal trajectory of the air at the balloon level. The position of GHOST balloon 98Q for a three month period in 1968 is shown. The balloon moved to within 2 deg of the South Pole on 1 October 1968 and then by 9 December 1968 was 35 deg from the South Pole and close to its position on 1 September 1968. The balloon generally moved from west to east but on two occasions moved in the opposite direction for a few days. The latitude of GHOST balloons 98Q and 149Z which was at 200 mb is given. Both balloons tended to get closer to the South Pole in September and October. Other GHOST balloons at the same pressure and time period may not indicate similar behavior.
Pedestal evolution physics in low triangularity JET tokamak discharges with ITER-like wall
NASA Astrophysics Data System (ADS)
Bowman, C.; Dickinson, D.; Horvath, L.; Lunniss, A. E.; Wilson, H. R.; Cziegler, I.; Frassinetti, L.; Gibson, K.; Kirk, A.; Lipschultz, B.; Maggi, C. F.; Roach, C. M.; Saarelma, S.; Snyder, P. B.; Thornton, A.; Wynn, A.; Contributors, JET
2018-01-01
The pressure gradient of the high confinement pedestal region at the edge of tokamak plasmas rapidly collapses during plasma eruptions called edge localised modes (ELMs), and then re-builds over a longer time scale before the next ELM. The physics that controls the evolution of the JET pedestal between ELMs is analysed for 1.4 MA, 1.7 T, low triangularity, δ = 0.2, discharges with the ITER-like wall, finding that the pressure gradient typically tracks the ideal magneto-hydrodynamic ballooning limit, consistent with a role for the kinetic ballooning mode. Furthermore, the pedestal width is often influenced by the region of plasma that has second stability access to the ballooning mode, which can explain its sometimes complex evolution between ELMs. A local gyrokinetic analysis of a second stable flux surface reveals stability to kinetic ballooning modes; global effects are expected to provide a destabilising mechanism and need to be retained in such second stable situations. As well as an electron-scale electron temperature gradient mode, ion scale instabilities associated with this flux surface include an electro-magnetic trapped electron branch and two electrostatic branches propagating in the ion direction, one with high radial wavenumber. In these second stability situations, the ELM is triggered by a peeling-ballooning mode; otherwise the pedestal is somewhat below the peeling-ballooning mode marginal stability boundary at ELM onset. In this latter situation, there is evidence that higher frequency ELMs are paced by an oscillation in the plasma, causing a crash in the pedestal before the peeling-ballooning boundary is reached. A model is proposed in which the oscillation is associated with hot plasma filaments that are pushed out towards the plasma edge by a ballooning mode, draining their free energy into the cooler plasma there, and then relaxing back to repeat the process. The results suggest that avoiding the oscillation and maximising the region of plasma that has second stability access will lead to the highest pedestal heights and, therefore, best confinement—a key result for optimising the fusion performance of JET and future tokamaks, such as ITER.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, H; Lee, Y; Pokhrel, D
2015-06-15
Purpose: As an alternative to cylindrical applicators, air inflated balloon applicators have been introduced into HDR vaginal cuff brachytherapy treatment to achieve sufficient dose to vagina mucosa as well as to spare rectum and bladder. In general, TG43 formulae based treatment planning systems do not take into account tissue inhomogeneity, and air in the balloon applicator can cause higher delivered dose to mucosa than treatment plan reported. We investigated dosimetric effect of air in balloon applicator using the Monte Carlo method. Methods: The thirteen-catheter Capri applicator with a Nucletron Ir-192 seed was modeled for various balloon diameters (2cm to 3.5cm)more » using the MCNP Monte Carlo code. Ir-192 seed was placed in both central and peripheral catheters to replicate real patient situations. Existence of charged particle equilibrium (CPE) with air balloon was evaluated by comparing kerma and dose at various distances (1mm to 70mm) from surface of air-filled applicator. Also mucosa dose by an air-filled applicator was compared with by a water-filled applicator to evaluate dosimetry accuracy of planning system without tissue inhomogeneity correction. Results: Beyond 1mm from air/tissue interface, the difference between kerma and dose was within 2%. CPE (or transient CPE) condition was deemed existent, and in this region no electron transport was necessary in Monte Carlo simulations. At 1mm or less, the deviation of dose from kerma became more apparent. Increase of dose to mucosa depended on diameter of air balloon. The increment of dose to mucosa was 2.5% and 4.3% on average for 2cm and 3.5cm applicators, respectively. Conclusion: After introduction of air balloon applicator, CPE fails only at the proximity of air/tissue interface. Although dose to mucosa is increased, there is no significant dosimetric difference (<5%) between air and water filled applicators. Tissue inhomogeneity correction is not necessary for air-filled applicators.« less
Concepts for autonomous flight control for a balloon on Mars
NASA Technical Reports Server (NTRS)
Heinsheimer, Thomas F.; Friend, Robyn C.; Siegel, Neil G.
1988-01-01
Balloons operating as airborne rovers have been suggested as ideal candidates for early exploration of the Martian surface. An international study team composed of scientists from the U.S.S.R., France, and the U.S.A. is planning the launching in 1994 of a balloon system to fly on Mars. The current likely design is a dual thermal/gas balloon that consists of a gas balloon suspended above a solar-heated thermal balloon. At night, the thermal balloon provides no lift, and the balloon system drifts just above the Martian surface; the lift of the gas balloon is just sufficient to prevent the science payload from hitting the ground. During the day, the balloon system flies at an altitude of 4 to 5 kilometers, rising due to the added lift provided by the thermal balloon. Over the course of a single Martian day, there may be winds in several directions, and in fact it can be expected that there will be winds simultaneously in different directions at different altitudes. Therefore, a balloon system capable of controlling its own altitude, via an autonomous flight control system, can take advantage of these different winds to control its direction, thereby greatly increasing both its mission utility and its longevity.
Under Pressure: Intraluminal Filling Pressures of Postpartum Hemorrhage Tamponade Balloons
Antony, Kathleen M.; Racusin, Diana A.; Belfort, Michael A.; Dildy, Gary A.
2017-01-01
Objective Uterine tamponade by fluid-filled balloons is now an accepted method of controlling postpartum hemorrhage. Available tamponade balloons vary in design and material, which affects the filling attributes and volume at which they rupture. We aimed to characterize the filling capacity and pressure-volume relationship of various tamponade balloons. Study Design Balloons were filled with water ex vivo. Intraluminal pressure was measured incrementally (every 10 mL for the Foley balloons and every 50 mL for all other balloons). Balloons were filled until they ruptured or until 5,000 mL was reached. Results The Foley balloons had higher intraluminal pressures than the larger-volume balloons. The intraluminal pressure of the Sengstaken-Blakemore tube (gastric balloon) was initially high, but it decreased until shortly before rupture occurred. The Bakri intraluminal pressure steadily increased until rupture occurred at 2,850 mL. The condom catheter, BT-Cath, and ebb all had low intraluminal pressures. Both the BT-Cath and the ebb remained unruptured at 5,000 mL. Conclusion In the setting of acute hemorrhage, expeditious management is critical. Balloons that have a low intraluminal pressure-volume ratio may fill more rapidly, more easily, and to greater volumes. We found that the BT-Cath, the ebb, and the condom catheter all had low intraluminal pressures throughout filling. PMID:28497006
Nácul, Miguel Prestes; Cavazzola, Leandro Totti; Loureiro, Marcelo de Paula; Bonin, Eduardo Aimoré; Ferreira, Paulo Roberto Walter
2015-09-01
To evaluate a new, low-cost, reusable balloon trocar device for dissection of the preperitoneal space during endoscopic surgery. Twenty swine (weight: 15-37 kg) were randomized to two groups, according to whether the preperitoneal space was created with a new balloon device manufactured by Bhio-Supply (group B) or with the commercially available OMSPDB 1000® balloon device manufactured by Covidien (group C). Quality and size of the created preperitoneal space, identification of anatomic structures, balloon dissection time, total procedure time, balloon resistance and internal pressure after insufflation with 300 mL of ambient air, balloon-related complications, and procedure cost were assessed. No significant differences in dissection time, total procedure time, or size of the created preperitoneal space were found between the groups. Balloons in group B had a significantly higher internal pressure compared to balloons in group C. None of the balloons ruptured during the experiment. Three animals in group C had balloon-related peritoneal lacerations. Despite a higher individual device cost, group B had a lower procedure cost over the entire experiment. The new balloon device is not inferior to the commercially available device in terms of the safety and effectiveness for creating a preperitoneal space in swine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saini, Amarjit S.; Zhang, Geoffrey G., E-mail: geoffrey.zhang@moffitt.org; Finkelstein, Steven E.
2011-07-15
Purpose: Vaginal balloon packing is a means to displace organs at risk during high dose rate brachytherapy of the uterine cervix. We tested the hypothesis that contrast-filled vaginal balloon packing reduces radiation dose to organs at risk, such as the bladder and rectum, in comparison to water- or air-filled balloons. Methods and Materials: In a phantom study, semispherical vaginal packing balloons were filled with air, saline solution, and contrast agents. A high dose rate iridium-192 source was placed on the anterior surface of the balloon, and the diode detector was placed on the posterior surface. Dose ratios were taken withmore » each material in the balloon. Monte Carlo (MC) simulations, by use of the MC computer program DOSXYZnrc, were performed to study dose reduction vs. balloon size and contrast material, including commercially available iodine- and gadolinium-based contrast agents. Results: Measured dose ratios on the phantom with the balloon radius of 3.4 cm were 0.922 {+-} 0.002 for contrast/saline solution and 0.808 {+-} 0.001 for contrast/air. The corresponding ratios by MC simulations were 0.895 {+-} 0.010 and 0.781 {+-} 0.010. The iodine concentration in the contrast was 23.3% by weight. The dose reduction of contrast-filled balloon ranges from 6% to 15% compared with water-filled balloon and 11% to 26% compared with air-filled balloon, with a balloon size range between 1.4 and 3.8 cm, and iodine concentration in contrast of 24.9%. The dose reduction was proportional to the contrast agent concentration. The gadolinium-based contrast agents showed less dose reduction because of much lower concentrations in their solutions. Conclusions: The dose to the posterior wall of the bladder and the anterior wall of the rectum can be reduced if the vaginal balloon is filled with contrast agent in comparison to vaginal balloons filled with saline solution or air.« less
14 CFR 101.7 - Hazardous operations.
Code of Federal Regulations, 2011 CFR
2011-01-01
... AND GENERAL OPERATING RULES MOORED BALLOONS, KITES, AMATEUR ROCKETS AND UNMANNED FREE BALLOONS General § 101.7 Hazardous operations. (a) No person may operate any moored balloon, kite, amateur rocket, or... operating any moored balloon, kite, amateur rocket, or unmanned free balloon may allow an object to be...
14 CFR 101.7 - Hazardous operations.
Code of Federal Regulations, 2013 CFR
2013-01-01
... AND GENERAL OPERATING RULES MOORED BALLOONS, KITES, AMATEUR ROCKETS AND UNMANNED FREE BALLOONS General § 101.7 Hazardous operations. (a) No person may operate any moored balloon, kite, amateur rocket, or... operating any moored balloon, kite, amateur rocket, or unmanned free balloon may allow an object to be...
14 CFR 101.7 - Hazardous operations.
Code of Federal Regulations, 2014 CFR
2014-01-01
... AND GENERAL OPERATING RULES MOORED BALLOONS, KITES, AMATEUR ROCKETS AND UNMANNED FREE BALLOONS General § 101.7 Hazardous operations. (a) No person may operate any moored balloon, kite, amateur rocket, or... operating any moored balloon, kite, amateur rocket, or unmanned free balloon may allow an object to be...
14 CFR 101.7 - Hazardous operations.
Code of Federal Regulations, 2010 CFR
2010-01-01
... AND GENERAL OPERATING RULES MOORED BALLOONS, KITES, AMATEUR ROCKETS AND UNMANNED FREE BALLOONS General § 101.7 Hazardous operations. (a) No person may operate any moored balloon, kite, amateur rocket, or... operating any moored balloon, kite, amateur rocket, or unmanned free balloon may allow an object to be...
14 CFR 101.7 - Hazardous operations.
Code of Federal Regulations, 2012 CFR
2012-01-01
... AND GENERAL OPERATING RULES MOORED BALLOONS, KITES, AMATEUR ROCKETS AND UNMANNED FREE BALLOONS General § 101.7 Hazardous operations. (a) No person may operate any moored balloon, kite, amateur rocket, or... operating any moored balloon, kite, amateur rocket, or unmanned free balloon may allow an object to be...
Implications of Wind-Assisted Aerial Navigation for Titan Mission Planning and Science Exploration
NASA Technical Reports Server (NTRS)
Elfes, A.; Reh, K.; Beauchamp, P.; Fathpour, N.; Blackmore, L.; Newman, C.; Kuwata, Y.; Wolf, M.; Assad, C.
2010-01-01
The recent Titan Saturn System Mission (TSSM) proposal incorporates a montgolfiere (hot air balloon) as part of its architecture. Standard montgolfiere balloons generate lift through heating of the atmospheric gases inside the envelope, and use a vent valve for altitude control. A Titan aerobot (robotic aerial vehicle) would have to use radioisotope thermoelectric generators (RTGs) for electric power, and the excess heat generated can be used to provide thermal lift for a montgolfiere. A hybrid montgolfiere design could have propellers mounted on the gondola to generate horizontal thrust; in spite of the unfavorable aerodynamic drag caused by the shape of the balloon, a limited amount of lateral controllability could be achieved. In planning an aerial mission at Titan, it is extremely important to assess how the moon-wide wind field can be used to extend the navigation capabilities of an aerobot and thereby enhance the scientific return of the mission. In this paper we explore what guidance, navigation and control capabilities can be achieved by a vehicle that uses the Titan wind field. The control planning approach is based on passive wind field riding. The aerobot would use vertical control to select wind layers that would lead it towards a predefined science target, adding horizontal propulsion if available. The work presented in this paper is based on aerodynamic models that characterize balloon performance at Titan, and on TitanWRF (Weather Research and Forecasting), a model that incorporates heat convection, circulation, radiation, Titan haze properties, Saturn's tidal forcing, and other planetary phenomena. Our results show that a simple unpropelled montgolfiere without horizontal actuation will be able to reach a broad array of science targets within the constraints of the wind field. The study also indicates that even a small amount of horizontal thrust allows the balloon to reach any area of interest on Titan, and to do so in a fraction of the time needed by the unpropelled balloon. The results show that using the Titan wind field allows an aerobot to significantly extend its scientific reach, and that a montgolfiere (unpropelled or propelled) is a highly desirable architecture that can very significantly enhance the scientific return of a future Titan mission.
Code of Federal Regulations, 2013 CFR
2013-01-01
... applicable requirements of this part. (c) For purposes of this part— (1) A captive gas balloon is a balloon that derives its lift from a captive lighter-than-air gas; (2) A hot air balloon is a balloon that... STANDARDS: MANNED FREE BALLOONS General § 31.1 Applicability. (a) This part prescribes airworthiness...
Code of Federal Regulations, 2012 CFR
2012-01-01
... applicable requirements of this part. (c) For purposes of this part— (1) A captive gas balloon is a balloon that derives its lift from a captive lighter-than-air gas; (2) A hot air balloon is a balloon that... STANDARDS: MANNED FREE BALLOONS General § 31.1 Applicability. (a) This part prescribes airworthiness...
Code of Federal Regulations, 2014 CFR
2014-01-01
... applicable requirements of this part. (c) For purposes of this part— (1) A captive gas balloon is a balloon that derives its lift from a captive lighter-than-air gas; (2) A hot air balloon is a balloon that... STANDARDS: MANNED FREE BALLOONS General § 31.1 Applicability. (a) This part prescribes airworthiness...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grena, Roberto
2010-04-15
Solar balloons are hot air balloons in which the air is heated directly by the sun, by means of a black absorber. The lift force of a tethered solar balloon can be used to produce energy by activating a generator during the ascending motion of the balloon. The hot air is then discharged when the balloon reaches a predefined maximum height. A preliminary study is presented, along with an efficiency estimation and some considerations on possible realistic configurations. (author)
NASA balloon design and flight - Philosophy and criteria
NASA Technical Reports Server (NTRS)
Smith, I. S., Jr.
1993-01-01
The NASA philosophy and criteria for the design and flight of scientific balloons are set forth and discussed. The thickness of balloon films is standardized at 20.3 microns to isolate potential film problems, and design equations are given for specific balloon parameters. Expressions are given for: flight-stress index, total required thickness, cap length, load-tape rating, and venting-duct area. The balloon design criteria were used in the design of scientific balloons under NASA auspices since 1986, and the resulting designs are shown to be 95 percent effective. These results represent a significant increase in the effectiveness of the balloons and therefore indicate that the design criteria are valuable. The criteria are applicable to four balloon volume classes in combination with seven payload ranges.
Sahin, Tayfun; Karauzum, Kurtulus; Ural, Ertan; Pedersen, Wesley R.
2018-01-01
Percutaneous balloon pulmonary valvuloplasty is the preferred therapy for pulmonary valve stenosis. However, the designs of the cylindrical balloons historically used for valvuloplasty have limitations, especially in patients who have large pulmonary annular diameters. The hourglass-shaped V8 Aortic Valvuloplasty Balloon may prove to be an effective alternative. The balloon has 2 large bulbous segments that are separated by a narrowed waist. The geometric shape is maintained throughout inflation, improving fixation and enabling broader leaflet opening. We present our first experience with the V8 balloon in 3 adults who had severe, symptomatic pulmonary valve stenosis. In addition to describing their cases, we detail our sizing technique for pulmonary valvuloplasty with the V8 balloon. Our successful results suggest that the V8 balloon is efficient and safe for balloon pulmonary valvuloplasty in adults with severe pulmonary valve stenosis. PMID:29844739
Sinha, Santosh Kumar; Mishra, Vikas; Razi, Mahmadula; Jha, Mukesh Jitendra
2017-10-04
Transcatheter therapy of valvular pulmonary stenosis is one of first catheter interventions facilitating its application in field of structural heart disease and now treatment of choice for significant pulmonary stenosis. Myriads of balloon catheter have been used for this purpose starting from Diamond (Boston Scientific,Natick, MA USA), Marshal (Medi-Tech,Watertown MAUSA), Innoue balloon, Tyshak I and currently Tyshak II. Diameter and length of balloon depend on size of annulus and age group, respectively. Problem with shorter balloon is difficulty in keeping it across the annulus while inflation as it tends to slip distally whereas with longer balloon, potential of tricuspid leak or conduction block as it may impinge on adjacent structures. Potential advantage of Accura balloon over Tyshak balloon lies in its peculiar shape while inflation and variable diameter, making stepwise dilatation possible. Here, we report a case of successful balloon pulmonary valvuloplasty using Accura balloon (Vascular Concept, UK) with little modification of conventional technique. © BMJ Publishing Group Ltd (unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Scientific Ballooning in India - Recent Developments
NASA Astrophysics Data System (ADS)
Manchanda, R. K.; Srinivasan, S.; Subbarao, J. V.
Established in 1972, the National Balloon Facility operated by TIFR in Hyderabad, India is is a unique facility in the country, which provides a complete solution in scientific ballooning. It is also one of its kind in the world since it combines both, the in-house balloon production and a complete flight support for scientific ballooning. With a large team working through out the year to design, fabricate and launch scientific balloons, the Hyderabad Facility is a unique centre of expertise where the balloon design, Research and Development, the production and launch facilities are located under one roof. Our balloons are manufactured from 100% indigenous components. The mission specific balloon design, high reliability control and support instrumentation, in-house competence in tracking, telemetry, telecommand, data processing, system design and mechanics is a hallmark of the Hyderabad balloon facility. In the past few years we have executed a major programme of upgradation of different components of balloon production, telemetry and telecommand hardware and various support facilities. This paper focuses on our increased capability of balloon production of large sizes up to size of 780,000 M^3 using Antrix film, development of high strength balloon load tapes with the breaking strength of 182 kg, and the recent introduction of S-band telemetry and a commandable timer cut-off unit in the flight hardware. A summary of the various flights conducted in recent years will be presented along with the plans for new facilities.
NASA Astrophysics Data System (ADS)
Bewley, Thomas; Meneghello, Gianluca
2016-10-01
Accurate long-term forecasts of the path and intensity of severe hurricanes are imperative to protect property and save lives. Extensive real-time measurements within hurricanes, especially near their core, are essential for supplementing the limited relevant information accessible by satellites in order to improve such forecasts. Current operational methods for obtaining in situ information, such as dropsondes and repeated manned and unmanned aircraft flights over and within hurricanes, are both expensive and limited in duration. In the present work it is demonstrated by numerical experiments how a swarm of robust, inexpensive, buoyancy-controlled, sensor-laden balloons might be deployed and controlled in an energetically efficient, coordinated fashion, for days at a time, to continuously monitor relevant properties (pressure, humidity, temperature, and wind speed) of a hurricane as it develops. Rather than fighting its gale-force winds, the strong and predictable stratification of these winds is leveraged to efficiently disperse the balloons into a favorable time-evolving distribution. An iterative bootstrap approach is envisioned in which (a) sensor balloons are used to help improve the available computational estimate of the uncertain and underresolved flow field of the hurricane and (b) this (imprecise) estimate of the hurricane flow field is leveraged to improve the distribution of the sensor balloons, which then better facilitates (a), etc. The control approach envisioned in this ambitious effort is a combination of (centrally computed) model predictive control for coordination at the largest scales, which is the focus of the present paper, coupled with a feedback control strategy (decentrally computed, on the balloons themselves), for smaller-scale corrections. Our work indicates that, following such an approach, certain target orbits of interest within the hurricane can be continuously sampled by some balloons, while others make repeated sweeps between the eye and the spiral rain bands.
NASA Astrophysics Data System (ADS)
Urban, M. A.; Kroeger, T.
2014-12-01
Training in-service and pre-service K-12 science teachers to understand and structure appropriate instructional opportunities for addressing cross-cutting concepts and engineering design with students in their classrooms is critical given the emphases in the Next Generation Science Standards (NGSS). One mechanism for doing so involves utilizing high altitude ballooning as a tool for providing authentic investigation opportunities in the geosciences. As individual states review and make decisions about what role the NGSS will play in their standards, it is important for college and university science teacher preparation programs to prepare current and future teachers to become more comfortable with designing research investigations, controlling variables, anticipating cross-disciplinary connections, refining and analyzing data, and communicating the findings of real and contrived scientific investigation. Many undergraduate and professional development research possibilities exist through high altitude ballooning, including: microbiological experimentation at high altitudes, microcontroller use for context-specific data collection, near-space system development and design, balloon flight-track modeling, and more. Example projects and findings will be shared. Equally important to creating appropriate learning activities to address NGSS expectations is understanding the context-specific needs and available resources existing in K-12 science classrooms. Findings from semi-structured interviews with a focus group of pre-service and practicing teachers will be presented -- from both participants and non-participants in high altitude ballooning activities -- related to how high altitude ballooning could be (or already is) being used to meet NGSS and state science standards. The two primary outcomes of the presentation are to: 1) inform science teacher preparation programs for purposes of structuring useful and appropriate science methods activities; 2) frame the K-12 science classroom environment for consideration of the practicality of high altitude ballooning activities for meeting state and national science standards.
Pointing System Simulation Toolbox with Application to a Balloon Mission Simulator
NASA Technical Reports Server (NTRS)
Maringolo Baldraco, Rosana M.; Aretskin-Hariton, Eliot D.; Swank, Aaron J.
2017-01-01
The development of attitude estimation and pointing-control algorithms is necessary in order to achieve high-fidelity modeling for a Balloon Mission Simulator (BMS). A pointing system simulation toolbox was developed to enable this. The toolbox consists of a star-tracker (ST) and Inertial Measurement Unit (IMU) signal generator, a UDP (User Datagram Protocol) communication le (bridge), and an indirect-multiplicative extended Kalman filter (imEKF). This document describes the Python toolbox developed and the results of its implementation in the imEKF.
Imaging spectrometer using a liquid crystal tunable filter
NASA Astrophysics Data System (ADS)
Chrien, Thomas G.; Chovit, Christopher; Miller, Peter J.
1993-09-01
A demonstration imaging spectrometer using a liquid crystal tunable filter (LCTF) was built and tested on a hot air balloon platform. The LCTF is a tunable polarization interference or Lyot filter. The LCTF enables a small, light weight, low power, band sequential imaging spectrometer design. An overview of the prototype system is given along with a description of balloon experiment results. System model performance predictions are given for a future LCTF based imaging spectrometer design. System design considerations of LCTF imaging spectrometers are discussed.
2017-11-06
60th Medical Group (AMC), Travis AFB, CA INSTITUTIONAL ANIMAL CARE AND USE COMMITTEE (IACUC) FINAL REPORT SUMMARY (Please type all information. Use...Pressure with Aortic Blood Flow during Partial Resuscitative Endovascular Balloon Aortic Occlusion (P-REBOA) in a Swine (Sus scrofa) Controlled Hemorrhage...to Date Sus scrofa 8 8 2. PROTOCOL TYPE /CHARACTERISTICS: (Check all applicable terms in EACH column) _ Training: Live Animal Medical Readiness
Scientific study in solar and plasma physics relative to rocket and balloon projects
NASA Technical Reports Server (NTRS)
Wu, S. T.
1993-01-01
The goals of this research are to provide scientific and technical capabilities in the areas of solar and plasma physics contained in research programs and instrumentation development relative to current rocket and balloon projects; to develop flight instrumentation design, flight hardware, and flight program objectives and participate in peer reviews as appropriate; and to participate in solar-terrestrial physics modeling studies and analysis of flight data and provide theoretical investigations as required by these studies.
NASA Astrophysics Data System (ADS)
Young, Eliot
THAI-SPICE is the Testbed for High-Acuity Imaging - Stable Photometry and ImageMotion Compensation Experiment - It is a lead proposal, accompanied by a coInstitutional proposal from MIT LL. The overarching goal of THAI-SPICE is to advance balloonborne telescopes to the point where they can surpass HST in terms of spatial resolution in visible wavelengths and surpass the Kepler mission in terms of observing exoplanet transits. Balloon-borne telescopes are becoming an important part of NASA's observing programs - each 100-day super-pressure balloon flight will provide 1000 hours of dark time observing, equivalent to about 1/3 of the total on-target time allocated in an HST cycle across its entire portfolio of science programs. However, balloon-borne telescopes face unique challenges from the stratospheric thermal environment and the pointing stability of a suspended platform. This proposal will study and test three areas of development that will enable high-acuity image quality and stable photometry from balloon-borne telescopes. - Passive thermal control and stabilization of balloon-borne OTAs (Optical Tube Assemblies). Recent modeling suggests that an appropriate arrangement of sunshields, earth-shields and telescope insulation can reduce diurnal temperature excursions from more than 40°C to less than 2°C. Furthermore, modeling also suggests that the steadystate temperature of an OTA can be reduced to temperatures near 180 K, an advantage for infrared observing programs. However, most modeling packages (e.g., Thermal Desktop) do not accurately account for convection in the 3 torr or 8 torr environment of zeropressure or super-pressure balloons. In fact, it is hard to tell whether radiation or convection is a more significant cooling mechanism at super-pressure balloon altitudes. We propose to verify or update Thermal Desktop results with a series of experiments using an instrumented OTA and sun- and earth-shields. The payoff from this experiment will be balloon-borne telescopes that exhibit extremely stable temperatures through daynight cycles and, in turn, avoid optical misalignment due to temperature excursions. - Orthogonal Transfer CCDs as solid-state motion compensation devices. In order to stay within a wavefront error budget that is comparable to WFIRST or HST, a balloon-borne imaging system cannot afford a single mediocre optical element. Fine steering mirrors are especially problematic, since they are often thin, lightweight and mounted to a fastmoving mechanism. We will test the performance of OTCCDs on actual balloon platforms to assess how they can compensate for focal plane motion in flight. In addition, we will measure the photometric stability afforded by OTCCDs, and whether purposely moving a point source in a pattern can improve photometry by PSF-shaping and spreading the signal over many array elements. - In-flight wavefront error measurements. During a 100-day mission, it will be useful to monitor the focus and optical alignment of the telescope and the attached instruments. A Shack-Hartmann array located at an exit pupil will provide a detailed breakdown of the optical system: compact commercial units often provide over 15 Zernike polynomials. We want to test another method, the Curvature Wavefront Sensing method (aka, the Roddier method). The CWS method only requires images on either side of focus. It does not require extra hardware nor access to an exit pupil. We want to demonstrate the CWS method in flight and compare its results to a conventional Shack-Hartmann array. All of these projects leverage prior work, some supported by previous APRA projects, some part of NASA's ongoing GHAPS project (Gondola for High Altitude Planetary Science). We propose two domestic flights with a 24-in instrumented telescope and a gondola capable of coarse pointing. This project will involve students from the University of Virginia and the University of Colorado.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lopera, Jorge E., E-mail: Lopera@uthscsa.ed; Alvarez, Alex; Trimmer, Clayton
2009-01-15
The purpose of this study was to determine the performance of two balloon-retention-type gastrostomy tubes when the balloons are inflated with two types of contrast materials at different concentrations. Two commonly used balloon-retention-type tubes (MIC and Tri-Funnel) were inflated to the manufacturer's recommended volumes (4 and 20 cm{sup 3}, respectively) with normal saline or normal saline plus different concentrations of contrast material. Five tubes of each brand were inflated with normal saline and 0%, 25%, 50%, 75%, and 100% contrast material dilutions, using either nonionic hyperosmolar contrast, or nonionic iso-osmolar contrast. The tubes were submerged in a glass basin containingmore » a solution with a pH of 4. Every week the tubes were visually inspected to determine the integrity of the balloons, and the diameter of the balloons was measured with a caliper. The tests were repeated every week for a total of 12 weeks. The MIC balloons deflated slightly faster over time than the Tri-Funnel balloons. The Tri-Funnel balloons remained relatively stable over the study period for the different concentrations of contrast materials. The deflation rates of the MIC balloons were proportionally related to the concentration of saline and inversely related to the concentration of the contrast material. At high contrast material concentrations, solidification of the balloons was observed. In conclusion, this in vitro study confirms that the use of diluted amounts of nonionic contrast materials is safe for inflating the balloons of two types of balloon-retention feeding tubes. High concentrations of contrast could result in solidification of the balloons and should be avoided.« less
Retained intraaortic balloon. Case report and review of the literature.
Grande, A M; Martinelli, L; Graffigna, A; Viganò, M
1995-01-01
We report a case of intraaortic balloon entrapment in a 70-year-old man who underwent emergency triple coronary bypass. Intraaortic balloon rupture caused the formation of a clot inside the balloon that eventually was responsible for the balloon's entrapment at the aortic bifurcation. The patient had severe atherosclerosis of the aorta and iliac arteries. Balloon removal required aorto-iliac exposure and aorto-bifemoral bypass. After 16 months, he is symptom free and at home.
Scientific ballooning in India Recent developments
NASA Astrophysics Data System (ADS)
Manchanda, R. K.
Established in 1971, the National Balloon Facility operated by TIFR in Hyderabad, India, is a unique facility in the country, which provides a complete solution in scientific ballooning. It is also one of its kind in the world since it combines both, the in-house balloon production and a complete flight support for scientific ballooning. With a large team working through out the year to design, fabricate and launch scientific balloons, the Hyderabad Facility is a unique centre of expertise where the balloon design, research and development, the production and launch facilities are located under one roof. Our balloons are manufactured from 100% indigenous components. The mission specific balloon design, high reliability control and support instrumentation, in-house competence in tracking, telemetry, telecommand, data processing, system design and mechanics is its hallmark. In the past few years, we have executed a major programme of upgradation of different components of balloon production, telemetry and telecommand hardware and various support facilities. This paper focuses on our increased capability of balloon production of large sizes up to 780,000 m 3 using Antrix film, development of high strength balloon load tapes with the breaking strength of 182 kg, and the recent introduction of S-band telemetry and a commandable timer cut-off unit in the flight hardware. A summary of the various flights conducted in recent years will be presented along with the plans for new facilities.
Secco, Gioel Gabrio; Ghione, Matteo; Mattesini, Alessio; Dall'Ara, Gianni; Ghilencea, Liviu; Kilickesmez, Kadriye; De Luca, Giuseppe; Fattori, Rossella; Parisi, Rosario; Marino, Paolo Nicola; Lupi, Alessandro; Foin, Nicolas; Di Mario, Carlo
2016-06-20
Calcific coronary lesions impose a rigid obstacle to optimal balloon and stent expansion and the 20 to 30 atm limit that non-compliant (NC) balloons reach can be insufficient. The aim of our study was to evaluate the safety and efficacy of a new dedicated super high-pressure NC balloon (OPN NC®; SIS Medical AG, Winterthur, Switzerland). We retrospectively evaluated a consecutive series of 91 lesions in which conventional NC balloons at maximal pressure failed to achieve an adequate post-dilatation luminal gain and were therefore treated with an OPN NC balloon up to 40 atm. Angiographic success was defined as residual angiographic diameter stenosis <30%. MLD and %DS were measured at baseline, after NC balloon, OPN NC balloon and stent implantation. Angiographic success was achieved in 84 lesions (92.3%). All of the remaining lesions received rotational atherectomy with the exception of two cases in which rotational atherectomy was not attempted because of small vessel size and excessive tortuosity. MLD and acute gain were significantly greater and %DS was significantly lower post OPN NC balloon compared with conventional NC balloon inflation (p<0.001). No coronary perforations occurred. No acute or 30-day follow-up MACE was reported. When conventional NC balloons fail, the new OPN NC dedicated high-pressure balloon provides an effective and safe alternative strategy for the dilatation of resistant coronary lesions.
Stability analysis and trend study of a balloon tethered in a wind, with experimental comparisons
NASA Technical Reports Server (NTRS)
Redd, L. T.; Bland, S. R.; Bennett, R. M.
1973-01-01
A stability analysis and trend study for a balloon tethered in a steady wind are presented. The linearized, stability-derivative type analysis includes balloon aerodynamics, buoyancy, mass (including apparent mass), and static forces resulting from the tether cable. The analysis has been applied to a balloon 7.64 m in length, and the results are compared with those from tow tests of this balloon. This comparison shows that the analysis gives reasonable predictions for the damping, frequencies, modes of motion, and stability boundaries exhibited by the balloon. A trend study for the 7.64-m balloon was made to illustrate how the stability boundaries are affected by changes in individual stability parameters. The trends indicated in this study may also be applicable to many other tethered-balloon systems.
A comparative study of internally and externally capped balloons using small scale test balloons
NASA Technical Reports Server (NTRS)
Bell, Douglas P.
1994-01-01
Caps have been used to structurally reinforce scientific research balloons since the late 1950's. The scientific research balloons used by the National Aeronautics and Space Administration (NASA) use internal caps. A NASA cap placement specification does not exist since no empirical information exisits concerning cap placement. To develop a cap placement specification, NASA has completed two in-hangar inflation tests comparing the structural contributions of internal caps and external caps. The tests used small scale test balloons designed to develop the highest possible stresses within the constraints of the hangar and balloon materials. An externally capped test balloon and an internally capped test balloon were designed, built, inflated and simulated to determine the structural contributions and benefits of each. The results of the tests and simulations are presented.
Scientific Balloons for Venus Exploration
NASA Astrophysics Data System (ADS)
Cutts, James; Yavrouian, Andre; Nott, Julian; Baines, Kevin; Limaye, Sanjay; Wilson, Colin; Kerzhanovich, Viktor; Voss, Paul; Hall, Jeffery
Almost 30 years ago, two balloons were successfully deployed into the atmosphere of Venus as an element of the VeGa - Venus Halley mission conducted by the Soviet Union. As interest in further Venus exploration grows among the established planetary exploration agencies - in Europe, Japan, Russia and the United States, use of balloons is emerging as an essential part of that investigative program. Venus balloons have been proposed in NASA’s Discovery program and ESA’s cosmic vision program and are a key element in NASA’s strategic plan for Venus exploration. At JPL, the focus for the last decade has been on the development of a 7m diameter superpressure pressure(twice that of VeGa) capable of carrying a 100 kg payload (14 times that of VeGA balloons), operating for more than 30 days (15 times the 2 day flight duration of the VeGa balloons) and transmitting up to 20 Mbit of data (300 times that of VeGa balloons). This new generation of balloons must tolerate day night transitions on Venus as well as extended exposure to the sulfuric acid environment. These constant altitude balloons operating at an altitude of about 55 km on Venus where temperatures are benign can also deploy sondes to sound the atmosphere beneath the probe and deliver deep sondes equipped to survive and operate down to the surface. The technology for these balloons is now maturing rapidly and we are now looking forward to the prospects for altitude control balloons that can cycle repeatedly through the Venus cloud region. One concept, which has been used for tropospheric profiling in Antarctica, is the pumped-helium balloon, with heritage to the anchor balloon, and would be best adapted for flight above the 55 km level. Phase change balloons, which use the atmosphere as a heat engine, can be used to investigate the lower cloud region down to 30 km. Progress in components for high temperature operation may also enable investigation of the deep atmosphere of Venus with metal-based balloons.
Sonic Thermometer for High-Altitude Balloons
NASA Technical Reports Server (NTRS)
Bognar, John
2012-01-01
The sonic thermometer is a specialized application of well-known sonic anemometer technology. Adaptations have been made to the circuit, including the addition of supporting sensors, which enable its use in the high-altitude environment and in non-air gas mixtures. There is a need to measure gas temperatures inside and outside of superpressure balloons that are flown at high altitudes. These measurements will allow the performance of the balloon to be modeled more accurately, leading to better flight performance. Small thermistors (solid-state temperature sensors) have been used for this general purpose, and for temperature measurements on radiosondes. A disadvantage to thermistors and other physical (as distinct from sonic) temperature sensors is that they are subject to solar heating errors when they are exposed to the Sun, and this leads to issues with their use in a very high-altitude environment
Ballooning Then...and Ballooning Now.
ERIC Educational Resources Information Center
Journal of Aerospace Education, 1978
1978-01-01
Describes the history of hot-air balloon travel, starting with its French origins and continuing through to the 1978 national championship. An address for Balloon Federation of America membership is included. (MA)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Molenkamp, C.R.; Grossman, A.
1999-12-20
A network of small balloon-borne transponders which gather very high resolution wind and temperature data for use by modern numerical weather predication models has been proposed to improve the reliability of long-range weather forecasts. The global distribution of an array of such transponders is simulated using LLNL's atmospheric parcel transport model (GRANTOUR) with winds supplied by two different general circulation models. An initial study used winds from CCM3 with a horizontal resolution of about 3 degrees in latitude and longitude, and a second study used winds from NOGAPS with a 0.75 degree horizontal resolution. Results from both simulations show thatmore » reasonable global coverage can be attained by releasing balloons from an appropriate set of launch sites.« less
Retained intraaortic balloon. Case report and review of the literature.
Grande, A M; Martinelli, L; Graffigna, A; Viganò, M
1995-01-01
We report a case of intraaortic balloon entrapment in a 70-year-old man who underwent emergency triple coronary bypass. Intraaortic balloon rupture caused the formation of a clot inside the balloon that eventually was responsible for the balloon's entrapment at the aortic bifurcation. The patient had severe atherosclerosis of the aorta and iliac arteries. Balloon removal required aorto-iliac exposure and aorto-bifemoral bypass. After 16 months, he is symptom free and at home. Images PMID:8605436
The French balloon and sounding rocket space program
NASA Astrophysics Data System (ADS)
Coutin/Faye, S.; Sadourny, I.
1987-08-01
Stratospheric and long duration flight balloon programs are outlined. Open stratospheric balloons up to 1 million cu m volume are used to carry astronomy, solar system, aeronomy, stratosphere, biology, space physics, and geophysics experiments. The long duration balloons can carry 50 kg payloads at 20 to 30 km altitude for 10 days to several weeks. Pressurized stratospheric balloons, and infrared hot air balloons are used. They are used to study the dynamics of stratospheric waves and atmospheric water vapor. Laboratories participating in sounding rocket programs are listed.
Poe, Dennis S; Hanna, Bassem Matta Nashed
2011-01-01
Balloon catheter dilation of diseased sinus ostia has recently demonstrated efficacy and safety in the treatment of chronic sinus disease with 2 years of follow-up. Similar to sinus surgery, initial studies of partial resection of inflamed mucosa from within the cartilaginous eustachian tube (ET) have demonstrated efficacy and safety in the treatment of medically refractory otitis media with effusion. Therefore, balloon dilation of the cartilaginous ET was investigated as a possible treatment modality for otitis media. A protocol for sinus balloon catheter dilation was evaluated in each of the cartilaginous ETs in 8 fresh human cadaver heads. Computed tomographic scans and detailed endoscopic inspections with video or photographic documentation were performed pre- and posttreatment, and gross anatomical dissections were done to analyze the effects of treatment and to look for evidence of undesired injury. Catheters successfully dilated all cartilaginous ETs without any significant injuries. There were no bony or cartilaginous fractures, and 3 specimens showed minor mucosal tears in the anterolateral or inferior walls. Volumetric measurements of the cartilaginous ET lumens showed a change from an average of 0.16 to 0.49 cm(3) (SD, 0.12), representing an average increase of 357% (range, 20-965%). Balloon catheter dilation of the nasopharyngeal orifice of the ET was shown to be feasible and without evidence of untoward injury. A significant increase in volume of the cartilaginous ET was achieved. A clinical study is now indicated to determine whether balloon dilation will demonstrate lasting benefits and safety in the treatment of otitis media. Copyright © 2011 Elsevier Inc. All rights reserved.
A comparison of Loon balloon observations and stratospheric reanalysis products
NASA Astrophysics Data System (ADS)
Friedrich, Leon S.; McDonald, Adrian J.; Bodeker, Gregory E.; Cooper, Kathy E.; Lewis, Jared; Paterson, Alexander J.
2017-01-01
Location information from long-duration super-pressure balloons flying in the Southern Hemisphere lower stratosphere during 2014 as part of X Project Loon are used to assess the quality of a number of different reanalyses including National Centers for Environmental Prediction Climate Forecast System version 2 (NCEP-CFSv2), European Centre for Medium-Range Weather Forecasts (ERA-Interim), NASA Modern Era Retrospective-Analysis for Research and Applications (MERRA), and the recently released MERRA version 2. Balloon GPS location information is used to derive wind speeds which are then compared with values from the reanalyses interpolated to the balloon times and locations. All reanalysis data sets accurately describe the winds, with biases in zonal winds of less than 0.37 m s-1 and meridional biases of less than 0.08 m s-1. The standard deviation on the differences between Loon and reanalyses zonal winds is latitude-dependent, ranging between 2.5 and 3.5 m s-1, increasing equatorward. Comparisons between Loon trajectories and those calculated by applying a trajectory model to reanalysis wind fields show that MERRA-2 wind fields result in the most accurate simulated trajectories with a mean 5-day balloon-reanalysis trajectory separation of 621 km and median separation of 324 km showing significant improvements over MERRA version 1 and slightly outperforming ERA-Interim. The latitudinal structure of the trajectory statistics for all reanalyses displays marginally lower mean separations between 15 and 35° S than between 35 and 55° S, despite standard deviations in the wind differences increasing toward the equator. This is shown to be related to the distance travelled by the balloon playing a role in the separation statistics.
Wave energy patterns of counterpulsation: a novel approach with wave intensity analysis.
Lu, Pong-Jeu; Yang, Chi-Fu Jeffrey; Wu, Meng-Yu; Hung, Chun-Hao; Chan, Ming-Yao; Hsu, Tzu-Cheng
2011-11-01
In counterpulsation, diastolic augmentation increases coronary blood flow and systolic unloading reduces left ventricular afterload. We present a new approach with wave intensity analysis to revisit and explain counterpulsation principles. In an acute porcine model, a standard intra-aortic balloon pump was placed in descending aorta in 4 pigs. We measured pressure and velocity with probes in left anterior descending artery and aorta during and without intra-aortic balloon pump assistance. Wave intensities of aortic and left coronary waves were derived from pressure and flow measurements with synchronization correction. We identified predominating waves in counterpulsation. In the aorta, during diastolic augmentation, intra-aortic balloon inflation generated a backward compression wave, with a "pushing" effect toward the aortic root that translated to a forward compression wave into coronary circulation. During systolic unloading, intra-aortic balloon pump deflation generated a backward expansion wave that "sucked" blood from left coronary bed into the aorta. While this backward expansion wave translated to reduced left ventricular afterload, the "sucking" effect resulted in left coronary blood steal, as demonstrated by a forward expansion wave in left anterior descending coronary flow. The waves were sensitive to inflation and deflation timing, with just 25 ms delay from standard deflation timing leading to weaker forward expansion wave and less coronary regurgitation. Intra-aortic balloon pumps generate backward-traveling waves that predominantly drive aortic and coronary blood flow during counterpulsation. Wave intensity analysis of arterial circulations may provide a mechanism to explain diastolic augmentation and systolic unloading of intra-aortic balloon pump counterpulsation. Copyright © 2011 The American Association for Thoracic Surgery. Published by Mosby, Inc. All rights reserved.
Calculating Payload for a Tethered Balloon System
Charles D. Tangren
1980-01-01
A graph method to calculate payload for a tethered balloon system, with the supporting helium lift and payload equations. is described. The balloon system is designed to collect emissions data during the convective-lift and no-convective-lift phases of a forest fire. A description of the balloon system and a list of factors affecting balloon selection are included....
NASA Astrophysics Data System (ADS)
Riedler, W.; Torkar, K.
1996-05-01
This issue is grouped into sections on materials, design, performance and analysis of balloons, reviews of major national and international balloon programmes, novel instrumentation and systems for scientific ballooning, and selected recent scientific observations.
Accurate Determination of the Volume of an Irregular Helium Balloon
ERIC Educational Resources Information Center
Blumenthal, Jack; Bradvica, Rafaela; Karl, Katherine
2013-01-01
In a recent paper, Zable described an experiment with a near-spherical balloon filled with impure helium. Measuring the temperature and the pressure inside and outside the balloon, the lift of the balloon, and the mass of the balloon materials, he described how to use the ideal gas laws and Archimedes' principal to compute the average molecular…
Stratospheric Balloon Platforms for Near Space Access
NASA Astrophysics Data System (ADS)
Dewey, R. G.
2012-12-01
For over five decades, high altitude aerospace balloon platforms have provided a unique vantage point for space and geophysical research by exposing scientific instrument packages and experiments to space-like conditions above 99% of Earth's atmosphere. Reaching altitudes in excess of 30 km for durations ranging from hours to weeks, high altitude balloons offer longer flight durations than both traditional sounding rockets and emerging suborbital reusable launch vehicles. For instruments and experiments requiring access to high altitudes, engineered balloon systems provide a timely, responsive, flexible, and cost-effective vehicle for reaching near space conditions. Moreover, high altitude balloon platforms serve as an early means of testing and validating hardware bound for suborbital or orbital space without imposing space vehicle qualifications and certification requirements on hardware in development. From float altitudes above 30 km visible obscuration of the sky is greatly reduced and telescopes and other sensors function in an orbit-like environment, but in 1g. Down-facing sensors can take long-exposure atmospheric measurements and images of Earth's surface from oblique and nadir perspectives. Payload support subsystems such as telemetry equipment and command, control, and communication (C3) interfaces can also be tested and operationally verified in this space-analog environment. For scientific payloads requiring over-flight of specific areas of interests, such as an active volcano or forest region, advanced mission planning software allows flight trajectories to be accurately modeled. Using both line-of-sight and satellite-based communication systems, payloads can be tracked and controlled throughout the entire mission duration. Under NASA's Flight Opportunities Program, NSC can provide a range of high altitude flight options to support space and geophysical research: High Altitude Shuttle System (HASS) - A balloon-borne semi-autonomous glider carries payloads to high altitude and returns them safely to pre-selected landing sites, supporting quick recovery, refurbishment, and re-flight. Small Balloon System (SBS) - Controls payload interfaces via a standardized avionics system. Using a parachute for recovery, the SBS is well suited for small satellite and spacecraft subsystem developers wanting to raise their Technology Readiness Level (TRL) in an operationally relevant environment. Provides flexibility for scientific payloads requiring externally mounted equipment, such as telescopes and antennas. Nano Balloon System (NBS) - For smaller payloads (~CubeSats) with minimal C3 requirements, the Nano Balloon System (NBS) operates under less restrictive flight regulations with increased operational flexibility. The NBS is well suited for payload providers seeking a quick, simple, and cost effective solution for operating small ~passive payloads in near space. High altitude balloon systems offer the payload provider and experimenter a unique and flexible platform for geophysical and space research. Though new launch vehicles continue to expand access to suborbital and orbital space, recent improvements in high altitude balloon technology and operations provide a cost effective alternative to access space-like conditions.
An overview of the HIBISCUS campaign
NASA Astrophysics Data System (ADS)
Pommereau, J.-P.; Garnier, A.; Held, G.; Gomes, A. M.; Goutail, F.; Durry, G.; Borchi, F.; Hauchecorne, A.; Montoux, N.; Cocquerez, P.; Letrenne, G.; Vial, F.; Hertzog, A.; Legras, B.; Pisso, I.; Pyle, J. A.; Harris, N. R. P.; Jones, R. L.; Robinson, A. D.; Hansford, G.; Eden, L.; Gardiner, T.; Swann, N.; Knudsen, B.; Larsen, N.; Nielsen, J. K.; Christensen, T.; Cairo, F.; Fierli, F.; Pirre, M.; Marécal, V.; Huret, N.; Rivière, E. D.; Coe, H.; Grosvenor, D.; Edvarsen, K.; di Donfrancesco, G.; Ricaud, P.; Berthelier, J.-J.; Godefroy, M.; Seran, E.; Longo, K.; Freitas, S.
2011-03-01
The EU HIBISCUS project consisted of a series of field campaigns during the intense convective summers in 2001, 2003 and 2004 in the State of São Paulo in Brazil. Its objective was to investigate the impact of deep convection on the Tropical Tropopause Layer (TTL) and the lower stratosphere by providing a new set of observational data on meteorology, tracers of horizontal and vertical transport, water vapour, clouds, and chemistry in the tropical Upper Troposphere/Lower Stratosphere (UT/LS). This was achieved using short duration research balloons to study local phenomena associated with convection over land, and long-duration balloons circumnavigating the globe to study the contrast between land and oceans. Analyses of observations of short-lived tracers, ozone and ice particles show strong episodic local updraughts of cold air across the lapse rate tropopause up to 18 or 19 km (420-440 K) in the lower stratosphere by overshooting towers. The long duration balloon and satellite measurements reveal a contrast between the composition of the lower stratosphere over land and oceanic areas, suggesting significant global impact of such events. The overshoots are shown to be well captured by non-hydrostatic meso-scale Cloud Resolving Models indicating vertical velocities of 50-60 m s-1 at the top of the Neutral Buoyancy Level (NBL) at around 14 km, but, in contrast, are poorly represented by global Chemistry-Transport Models (CTM) forced by Numerical Weather Forecast Models (NWP) underestimating the overshooting process. Finally, the data collected by the HIBISCUS balloons have allowed a thorough evaluation of temperature NWP analyses and reanalyses, as well as satellite ozone, nitrogen oxide, water vapour and bromine oxide measurements in the tropics.
Parissis, Haralabos; Soo, Alan; Leotsinidis, Michalis; Dougenis, Dimitrios
2011-08-09
Ideally the length of the Intraaortic balloon membrane (22-27.5 cm) should match to the distance from the left subclavian artery (LSA) to the celiac axis (CA), (LSA - CA). By being able to estimate this distance, better guidance regarding IABP sizing could be recommended. Internal aortic lengths and demographic values were collected from a series of 40 cadavers during autopsy. External somatometric measurements were also obtained.There were 23 males and 17 females. The mean age was 73.1+/-13.11 years, weight 56.75+/-12.51 kg and the height 166+/-9.81 cm. Multiple regression analysis revealed the following predictor variables (R2 > 0.70) for estimating the length from LSA to CA: height (standardized coefficient (SRC) = 0.37, p = 0.004), age (SRC = 0.35, p < 0.001), sex (SRC = 0.21, p = 0.088) and the distance from the jugular notch to trans-pyloric plane (SRC = 0.61, p < 0.001). If LSA-CA < 21.9 cm use 34 cc IABP & if LSA-CA > 26.3 cm use 50 cc IABP. However if LSA-CA = 21.9- 26.3 cm use 40 cc, but be aware that it could be "aortic length-balloon membrane length" mismatching. Routinely, IABP size selection is being dictated by the patient's height. Inevitably, this leads to pitfalls. We reported a mathematical model of accurate intraaortic balloon sizing, which is easy to be applied and has a high predictive value.
Cheng, Yanping; Shibuya, Masahiko; McGregor, Jenn; Conditt, Gerard B; Yi, Geng-Hua; Kaluza, Greg L; Gray, William; Doshi, Manish; Sojitra, Prakash; Granada, Juan F
2016-10-20
The aim of this study was to evaluate the biological efficacy of a novel lower-dose (2.5 µg/mm2) encapsulated paclitaxel nanocrystal-coated balloon (Nano-PCB) in the familial hypercholesterolaemic swine (FHS) model of iliofemoral in-stent restenosis. Nano-PCB pharmacokinetics were assessed in 20 femoral arteries (domestic swine). Biological efficacy was evaluated in ten FHS: 14 days following bare metal stent implantation each stent segment was randomised to a clinically available PCB (IN.PACT, n=14), the Nano-PCB (n=14) or an uncoated balloon (n=12). Angiographic, optical coherence tomography and histological evaluation was performed at 28 days after treatment. Arterial paclitaxel concentration was 120.7 ng/mg at one hour and 7.65 ng/mg of tissue at 28 days with the Nano-PCB. Compared to the control uncoated group, both PCBs significantly reduced percent area stenosis (Nano-PCB: 36.0±14.2%, IN.PACT: 29.3±9.2% vs control: 67.9±15.1%, p<0.001). Neointimal distribution in the entire stent length was more homogenous in the Nano-PCB. Histological evaluation showed comparable degrees of neointimal proliferation in both PCBs; however, the Nano-PCB showed slightly higher levels of neointimal maturity and endothelialisation. Lower-dose encapsulated paclitaxel nanocrystals delivered via a coated balloon displayed comparable biological efficacy with superior healing features compared to a clinically validated PCB technology.
Petersen, Svea; Kaule, Sebastian; Stein, Florian; Minrath, Ingo; Schmitz, Klaus-Peter; Kragl, Udo; Sternberg, Katrin
2013-10-01
Drug-coated balloons (DCB), which have emerged as therapeutic alternative to drug-eluting stents in percutaneous cardiovascular intervention, are well described with regard to clinical efficiency and safety within a number of clinical studies. In vitro studies elucidating the correlation of coating method and composition with DCB performance are however rare but considered important for the understanding of DCB requirements and the improvement of established DCB. In this context, we evaluated the applicability of a pipetting, dip-coating, and spray-coating process for the establishment of DCB based on paclitaxel (PTX) and the ionic liquid cetylpyridinium salicylate (Cetpyrsal) as novel innovative additive in three different compositions. Among tested methods and compositions, the pipetting process with 50 wt.% PTX resulted in most promising coatings as drug load was less controllable by the other processes and higher PTX contents led to considerable drug crystallization, as visualized by electron microscopy, accelerating PTX loss during short-term elution. Applying these conditions, homogeneous coatings could be applied on balloon catheter, whose simulated use in an in vitro vessel model revealed percental drug losses of 36 and 28% during transit and percental drug transfers of 12 and 40% under expansion for coatings applied in expanded and folded balloon condition, respectively. In comparison to literature values, these results support the high potential of Cetpyrsal as novel DCB matrix regarding low drug loss and efficient drug transfer. © 2013.
The National Scientific Balloon Facility. [balloon launching capabilities of ground facility
NASA Technical Reports Server (NTRS)
Kubara, R. S.
1974-01-01
The establishment and operation of the National Scientific Balloon Facility are discussed. The balloon launching capabilities are described. The ground support systems, communication facilities, and meteorological services are analyzed.
Esrange Space Center, a Gate to Space
NASA Astrophysics Data System (ADS)
Widell, Ola
Swedish Space Corporation (SSC) is operating the Esrange Space Center in northern Sweden. Space operations have been performed for more than 40 years. We have a unique combination of maintaining balloon and rocket launch operations, and building payloads, providing space vehicles and service systems. Sub-orbital rocket flights with land recovery and short to long duration balloon flights up to weeks are offered. The geographical location, land recovery area and the long term experience makes Swedish Space Corporation and Esrange to an ideal gate for space activities. Stratospheric balloons are primarily used in supporting atmospheric research, validation of satellites and testing of space systems. Balloon operations have been carried out at Esrange since 1974. A large number of balloon flights are yearly launched in cooperation with CNES, France. Since 2005 NASA/CSBF and Esrange provide long duration balloon flights to North America. Flight durations up to 5 days with giant balloons (1.2 Million cubic metres) carrying heavy payload (up to 2500kg) with astronomical instruments has been performed. Balloons are also used as a crane for lifting space vehicles or parachute systems to be dropped and tested from high altitude. Many scientific groups both in US, Europe and Japan have indicated a great need of long duration balloon flights. Esrange will perform a technical polar circum balloon flight during the summer 2008 testing balloon systems and flight technique. We are also working on a permission giving us the opportunity on a circular stratospheric balloon flight around the North Pole.
Toward a unified model of substorms
NASA Astrophysics Data System (ADS)
Machida, S.; Fukui, K.; Miyashita, Y.; Ieda, A.
2017-12-01
Numerous models of substorms have been proposed so far, and they are roughly divided into two categories, i.e., the outside-in category that is represented by the near-Earth neutral line (NENL) model and the inside-out category represented by the current disruption model or the ballooning instability model. Controversies have been raised for many years over the validity of those models. However, in recent years we have obtained important clues to solve this long-standing issue by analyzing THEMIS probe data for substorms and pseudo-substorms separately. [Fukui et al., 2017] The key is the plasma pressure in the equatorial region, and it was about 1.3 times higher in substorms, than the pseudo-substorm in the region between X -7 and -8 Re. However, no difference was found beyond X -10 Re. Therefore, the spatial gradient of the plasma pressure in the region of X -7.5 Re must be a necessary condition for the occurrence of substorm. Abrupt earthward flows originated from the catapult current sheet relaxation and subsequent magnetic reconnection at the NENL just prior to the onset is a common signature for both substorm and pseudo-substorm, which seems to be essentially a result of the tearing instability in the magnetotail. [Uchino and Machida, 2015] The subsequent earthward flows must initiate some instability, quite likely the ballooning instability around the flow braking region. Substorms do not occur only with the magnetic reconnection. If there is enough plasma pressure gradient, the system can develop into a substorm. Otherwise, it will end up with a pseudo-substorm. We emphasize that both NENL model and the ballooning instability model are partially correct but incomplete, and the true model of substorm can be constructed by synthesizing multiple models of substorm including at least these two models.
Defining degree of aortic occlusion for partial-REBOA: A computed tomography study on large animals.
Reva, Viktor A; Matsumura, Yosuke; Samokhvalov, Igor M; Pochtarnik, Alexander A; Zheleznyak, Igor S; Mikhailovskaya, Ekaterina M; Morrison, Jonathan J
2018-04-20
Partial resuscitative endovascular balloon occlusion of the aorta (P-REBOA) is a modified REBOA technique designed to help ameliorate ischemia-reperfusion injury. The balloon is partially deflated, allowing a proportion of aortic flow distal to the balloon. The aim of this study is to use an ovine model of haemorrhagic shock to correlate the degree of occlusion to several hemodynamic indices. Six sheep weighing 35-46 kg underwent a controlled venous haemorrhage inside a CT scanner until the systolic arterial pressure (AP) dropped to <90 mmHg. A balloon positioned in an aortic zone I was incrementally filled with 1 mL of saline, with serial measurement of the proximal (carotid artery) and distal (femoral artery) mean APs (MAP) and intra-balloon pressure (IBP), along with CT imaging, following each inflation, until full occlusion was achieved. A diameter of the aorta at zone I was 16.0 (15.7-17.2) mm, with a cross-sectional area of 212 (194-233) mm 2 . Median volume of saline injected into the balloon until total occlusion was 7.0 (6.3-8.5) mL. During gradual balloon inflation, proximal MAP increased and distal MAP decreased proportionate to the degree of occlusion, in a linear fashion (proximal: r 2 = 0.85, p < 0.001; distal: r 2 = 0.95, p < 0.001). The femoral/carotid (F/C) pressure gradient also demonstrated a linear trend (r 2 = 0.90, p < 0.001). The relationship between percentage occlusion and IBP was sigmoid. MAP values became significantly different at 40-49% occlusion and more (p < 0.01). Furthermore, a drop in the distal pulse pressure from 7.0 (5.5-16.5) to 2.0 (1.5-5.0) mmHg was observed at 80% occlusion. All animals had femoral pulse pressure <5 mmHg at 80% of occlusion and more, which also coincided with the observed loss of pulsatility of the femoral wave-form. Serial CT angiography at an ovine model of haemorrhagic shock demonstrates a correlation between the femoral MAP, F/C pressure gradient and degree of zone I P-REBOA during the staged partial aortic occlusion. These parameters should be considered potential parameters to define the degree of P-REBOA during animal research and clinical practice. Copyright © 2018 Elsevier Ltd. All rights reserved.
Investigating Diffusion and Entropy with Carbon Dioxide-Filled Balloons
ERIC Educational Resources Information Center
Jadrich, James; Bruxvoort, Crystal
2010-01-01
Fill an ordinary latex balloon with helium gas and you know what to expect. Over the next day or two the volume will decrease noticeably as helium escapes from the balloon. So what happens when a latex balloon is filled with carbon dioxide gas? Surprisingly, carbon dioxide balloons deflate at rates as much as an order of magnitude faster than…
Current trends of balloon laryngoplasty in Thailand.
Moungthong, Greetha; Bunbanjerdsuk, Sacarin; Wright, Nida; Sathavornmanee, Thanakrit; Setabutr, Dhave
2017-06-01
To describe the current trend in balloon laryngoplasty usage and experience by practicing otolaryngologists in Thailand. Anonymous 11 question online and paper survey of otolaryngologists on their current balloon laryngoplasty practices. Current practices and experience in balloon laryngoplasty were queried with multiple choice and open-ended questions. Laser use is the most commonly utilized instrument to treat airway stenosis in Thailand. 86% of respondents do not have experience with balloon dilatation; yet, almost half (47.6%) report they perform a minimum of five airway surgeries per year. Most respondents had been in practice for less than 6 years (41%) and reported that they did not have exposure to balloon use during residency training. The largest barrier reported for the use of balloon instrumentation in the airway is inexperience (44.4%) followed by cost (38.3%), yet most feel that treatment in airway stenosis could benefit by usage of balloons (95.5%). Most otolaryngologists in Thailand do not have experience with the use of balloon dilatation and lack of exposure remains the largest barrier to its use. Otolaryngologists in Thailand feel that increased usage of balloons in the airway could improve airway stenosis treatment in the country.
NASA Astrophysics Data System (ADS)
Yoshida, Tetsuya; Fuke, Hideyuki; Shoji, Yasuhiro; Iijima, Issei; Izutsu, Naoki; Kato, Yoichi; Matsuzaka, Yukihiko; Mizuta, Eiichi; Sato, Takatoshi; Tamura, Keisuke; Saito, Yoshitaka; Kakehashi, Yuya
2012-07-01
Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency conducts domestic balloon campaigns at Taiki Aerospace Research Field (TARF) in Hokkaido since 2008. The ballooning at TARF becomes stable after four year operation. Because the field faces to the Pacific Ocean, heavy balloons and payloads can be launched safely using a very unique sliding launcher. Recoveries at the inshore along the Tokachi coast can be done very quickly and smoothly. Unfortunately, flight opportunities are recently limited due to unfriendly weather condition. Unstable Jet stream also prevents us to have so-called `boomerang flight' to achieve long flight duration more than several hours. Six balloon-borne experiments were carried out in 2010 and 2011. Three of them were demonstrations of challenges of space engineering, two were in-situ atmospheric observation, and one was the technical flight of new high-resolution γ-ray telescope. In addition to these flights, we carried out two launches for next generation balloons: one for Tawara-shaped superpressure balloon and the other for ultra-thin high-altitude balloon. In this paper, recent activities of the Japanese scientific balloon program will be introduced. On-going development of the balloon system will also be presented.
Development of a super-pressure balloon with a diamond-shaped net
NASA Astrophysics Data System (ADS)
Saito, Y.; Iijima, I.; Matsuzaka, Y.; Matsushima, K.; Tanaka, S.; Kajiwara, K.; Shimadu, S.
2014-10-01
The essential reason of the lobed-pumpkin shaped super-pressure balloon to withstand against the high pressure is that the local curvature of the balloon film is kept small. Recently, it has been found that the small local curvature can also be obtained if the balloon is covered by a diamond-shaped net with a vertically elongated shape. The development of the super-pressure balloon using this method was started from a 3-m balloon with a polyethylene film covered by a net using Kevlar ropes. The ground inflation test showed the expected high burst pressure. Then, a 6-m and a 12-m balloon using a polyethylene film and a net using the Vectran were developed and stable deployment was checked through the ground inflation tests. The flight test of a 3000 m3 balloon was performed in 2013 and shown to resist a pressure of at least 400 Pa. In the future, after testing a new design to relax a possible stress concentration around the polar area, test flights of scaled balloons will be performed gradually enlarging their size. The goal is to launch a 300,000 m3 super-pressure balloon.
Hu, Hong-Tao; Shin, Ji Hoon; Kim, Jin-Hyoung; Jang, Jong Keon; Park, Jung-Hoon; Kim, Tae-Hyung; Nam, Deok Ho; Song, Ho-Young
2015-07-01
We aimed to evaluate the safety and clinical effectiveness of fluoroscopically guided large balloon dilatation for treating congenital esophageal stenosis in children. Our study included seven children (mean age 4.0 years) who underwent a total of ten balloon dilatation sessions. The initial balloon diameters were 10-15 mm. The technical success, clinical success (improved food intake and reduced dysphagia within 1 month following the first balloon dilatation), dysphagia recurrence, and complications were retrospectively evaluated. Technical and clinical success rates were 100 %. During the mean 38-month follow-up period after the first balloon dilatation, 3 (43 %) patients underwent only one additional balloon dilatation 4-5 months after the first balloon dilatation for dysphagia recurrence. Two of them showed improvement without further recurrence, while the remaining one underwent partial esophagectomy. Well-contained transmural esophageal rupture (type 2) occurred in two (29 %, 2/7) patients and during two (20 %, 2/10) balloon dilatation sessions. All ruptures were successfully treated conservatively. Our study showed that fluoroscopically guided large balloon dilatation seems to be a simple and effective primary treatment technique for congenital esophageal stenosis in children. Esophageal ruptures were not uncommon although they were not fatal.
Wang, Dongyu; Xu, Shuqia; Qiu, Xiwen; Zhu, Caixia; Li, Zhuyu; Wang, Zilian; Hou, Hongying; Gao, Yu; Wang, Xiaoyi; He, Ping; Qin, Yiwei; Liu, Lihua
2017-12-18
To evaluate the success rate and protocol of the Bakri balloon for postpartum hemorrhage (PPH) in the course of a prospective observational multicenter cohort study in South China. At 20 hospitals in South China, women with postpartum bleeding who failed to respond to the first-line conservative management and received the Bakri balloon were recruited for the study. Maternal characteristics, PPH characteristics, PPH management and outcomes in regard to the Bakri balloon use were recorded. A total of 472 women had a Bakri balloon tamponade and 407 (86.23%) women were enrolled (67 after vaginal delivery and 340 either during or after cesarean delivery). The success rate of the Bakri balloon in this study was 91.65% (373/407 women). During vaginal deliveries, the group with a hemorrhage >2000 mL before balloon insertion had significantly more blood loss (551.67±635.17 mL vs. 242.06±313.69 mL, P=0.039) and lower maternal hemoglobin (73±21.77 g/L vs. 92.06±19.60 g/L, P=0.029) after using Bakri balloon than the group with a hemorrhage <1000 mL. Similar data were found during cesarean deliveries. The blood loss before and after balloon insertion were significantly higher in the Bakri balloon failure group (1700±1429.88 mL before and 1209.58±1139.72 mL after using the balloon) than those in the success group [918±493.92 mL before (P=0.002) and 266.57±361.60 mL after using the balloon (P=0.001)]. Rapid diagnosis or prognosis of PPH, in combination with early usage of the Bakri postpartum balloon is more effective for the management of PPH.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoshimatsu, Rika; Yamagami, Takuji, E-mail: yamagami@kochi-u.ac.jp; Ishikawa, Masaki
2016-06-15
PurposeTo evaluate changes in imaging findings on CT during hepatic arteriography (CTHA) and CT during arterial portography (CTAP) by balloon occlusion of the treated artery and their relationship with iodized oil accumulation in the tumor during balloon-occluded transcatheter arterial chemoembolization (B-TACE).MethodsBoth B-TACE and angiography-assisted CT were performed for 27 hepatocellular carcinomas. Tumor enhancement on selective CTHA with/without balloon occlusion and iodized oil accumulation after B-TACE were evaluated. Tumorous portal perfusion defect size on CTAP was compared with/without balloon occlusion. Factors influencing discrepancies between selective CTHA with/without balloon occlusion and the degree of iodized oil accumulation were investigated.ResultsAmong 27 tumors, tumormore » enhancement on selective CTHA changed after balloon occlusion in 14 (decreased, 11; increased, 3). In 18 tumors, there was a discrepancy between tumor enhancement on selective CTHA with balloon occlusion and the degree of accumulated iodized oil, which was higher than the tumor enhancement grade in all 18. The tumorous portal perfusion defect on CTAP significantly decreased after balloon occlusion in 18 of 20 tumors (mean decrease from 21.9 to 19.1 mm in diameter; p = 0.0001). No significant factors influenced discrepancies between selective CTHA with/without balloon occlusion. Central area tumor location, poor tumor enhancement on selective CTHA with balloon occlusion, and no decrease in the tumorous portal perfusion defect area on CTAP after balloon occlusion significantly influenced poor iodized oil accumulation in the tumor.ConclusionsTumor enhancement on selective CTHA frequently changed after balloon occlusion, which did not correspond to accumulated iodized oil in most cases.« less
Testing of the Anorectal and Pelvic Floor Area
... minutes and is well tolerated by most people. Balloon capacity and compliance A balloon capacity and compliance ... while measurements of volume and pressure are recorded. Balloon evacuation study A balloon evacuation study tests pelvic ...
On the response of superpressure balloons to displacements from equilibrium density level
NASA Technical Reports Server (NTRS)
Levanon, N.; Kushnir, Y.
1976-01-01
The response of a superpressure balloon to an initial displacement from its constant-density floating level is examined. An approximate solution is obtained to the governing vertical equation of motion for constant-density superpressure balloons. This solution is used to filter out neutrally buoyant oscillations in balloon records despite the nonlinear behavior of the balloon. The graph depicting the pressure data after deconvolution between the raw pressure data and the normalized balloon wavelet shows clearly the strong filtering-out of the neutral buoyancy oscillations.
Lindner, Uri; Klotz, Laurence
2011-01-01
Purpose Understanding of prostate anatomy has evolved as techniques have been refined and improved for radical prostatectomy (RP), particularly regarding the importance of the neurovascular bundles for erectile function. The objectives of this study were to develop inexpensive and simple but anatomically accurate prostate models not involving human or animal elements to teach the terminology and practical aspects of nerve-sparing RP and simple prostatectomy (SP). Materials and Methods The RP model used a Foley catheter with ballistics gelatin in the balloon and mesh fabric (neurovascular bundles) and balloons (prostatic fascial layers) on either side for the practice of inter- and intrafascial techniques. The SP model required only a ripe clementine, for which the skin represented compressed normal prostate, the pulp represented benign tissue, and the pith mimicked fibrous adhesions. A modification with a balloon through the fruit center acted as a "urethra." Results Both models were easily created and successfully represented the principles of anatomical nerve-sparing RP and SP. Both models were tested in workshops by urologists and residents of differing levels with positive feedback. Conclusions Low-fidelity models for prostate anatomy demonstration and surgical practice are feasible. They are inexpensive and simple to construct. Importantly, these models can be used for education on the practical aspects of nerve-sparing RP and SP. The models will require further validation as educational and competency tools, but as we move to an era in which human donors and animal experiments become less ethical and more difficult to complete, so too will low-fidelity models become more attractive. PMID:21379431
Recent Developments in Balloon Support Instrumentation at TIFR Balloon Facility, Hyderabad.
NASA Astrophysics Data System (ADS)
Vasudevan, Rajagopalan
2012-07-01
The Balloon Facility of Tata Institute of Fundamental Research has been conducting stratospheric balloon flights regularly for various experiments in Space Astronomy and Atmospheric Sciences. A continuous improvement in Balloon flight Support instrumentation by the Control Instrumentation Group to keep in space with the growing complexities of the scientific payloads have contributed to the total success of balloon flights conducted recently. Recent improvements in display of Balloon position during balloon flight by showing on real time the balloon GPS position against Google TM maps is of immense help in selecting the right spot for payload landing and safe recovery . For further speeding up the payload recovery process, a new GPS-GSM payload system has been developed which gives SMS of the payload position information to the recovery team on their cell phones. On parallel footing, a new GPS- VHF system has been developed using GPS and Radio Modems for Balloon Tracking and also for obtaining the payload impact point. On the Telecommand side, a single board Telecommand/ Timer weighing less than 2 Kg has been specially developed for use in the mesosphere balloon test flight. The interference on the existing Short Range Telemetry System has been eliminated by introducing a Band Pass Filter and LNA in the Receiving system of the modules, thereby enhancing its reliability. In this paper , we present the details of the above mentioned developments.
Embolization of direct carotid cavernous fistulas with the novel double-balloon technique
Niu, Yin; Li, Lin; Tang, Jun; Zhu, Gang
2015-01-01
Multiple endovascular management of direct carotid cavernous fistula (CCF) has been widely accepted as a treatment option. Embolization of the fistula with detachable balloons or thrombogenic coil-based occlusion has been the main choice to treat direct CCF, with good safety and efficacy. This study investigated the safety and efficacy of embolization of direct CCF with the novel double-balloon technique. A retrospective review of a prospective database on cerebral vascular disease was performed. We identified a total of five patients presenting with high-flow direct CCF. All patients were managed with transarterial embolization with the novel double-balloon technique. Three of the five patients were treated with two detachable balloons, and a completely occluded fistula with preservation of the internal carotid artery was achieved. Of the remaining two patients treated with more detachable balloons, one patient achieved a perfect outcome and the other one suffered from recurrent fistula due to balloon migration 3 weeks after embolization. During a follow-up period of 12–18 months, no symptoms reoccurred in any patient. Thus, the double-balloon treatment may be a promising method for CCF complete occlusion. This novel technique may bring more benefits in the following two cases: 1). A single inflated detachable balloon fails to completely occlude the CCF, which causing the next balloon can not pass into the fistula. 2). A giant CCF needs more balloons for fistula embolization. PMID:26586136
A buoyant tornado-probe concept incorporating an inverted lifting device. [and balloon combination
NASA Technical Reports Server (NTRS)
Grant, F. C.
1973-01-01
Addition of an inverted lifting device to a simple balloon probe is shown to make possible low-altitude entry to tornado cores with easier launch conditions than for the simple balloon probe. Balloon-lifter combinations are particularly suitable for penetration of tornadoes with average to strong circulation, but tornadoes of less than average circulation which are inaccessible to simple balloon probes become accessible. The increased launch radius which is needed for access to tornadoes over a wide range of circulation results in entry times of about 3 minutes. For a simple balloon probe the uninflated balloon must be first dropped on, or near, the track of the tornado from a safe distance. The increase in typical launch radius from about 0.75 kilometer to slightly over 1.0 kilometer with a balloon-lifter combination suggests that a direct air launch may be feasible.
NASA Technical Reports Server (NTRS)
Shibasaki, K.; Iwagami, N.; Ogawa, T.
1985-01-01
As a part of the Japanese activities of MAP in the Antarctica, balloon-borne measurements of the stratospheric NO2 profile were planned and carried out by the JARE 23rd and 24th wintering parties. Few results have been reported so far as the stratospheric NO2 profile at high latitude. There were no reported balloon measurements carried out in the Southern Hemisphere. Profiles are presented for the first balloon-borne measurement of the stratospheric NO2 in the Antarctica. Three balloons named JA21, JA25 and JA26 were launched from Syowa Station (69 deg S, 35.6 deg E) using 5000 cu. cm plastic balloons. JA21 balloon was launched on November 24, 1982, and JA25 and JA26 balloons on November 12 and 20, 1983, respectively.
NASA Astrophysics Data System (ADS)
Joyce, C. J.
2016-12-01
The current state of the Sun and solar wind, with uncommonly low densities and weak magnetic fields, has resulted in galactic cosmic ray fluxes that are elevated to levels higher than have ever before been observed in the space age. Given the continuing trend of declining solar activity, it is clear that accurate modeling of GCR radiation is becoming increasingly important in the field of space weather. Such modelling is essential not only in the planning of future manned space missions, but is also important for assessing the radiation risks to airline passengers, particularly given NASA's plans to develop supersonic aircraft that will fly at much higher altitudes than commercial aircraft and thus be more vulnerable to radiation from GCRs. We provide an analysis of the galactic cosmic ray radiation environment of Earth's atmosphere using measurements from the Cosmic Ray Telescope for the Effects of Radiation (CRaTER) aboard the Lunar Reconnaissance Orbiter (LRO) together with the Badhwar-O'Neil model and dose lookup tables generated by the Earth-Moon-Mars Radiation Environment Module (EMMREM). Newly available measurements of atmospheric dose rates from instruments aboard commercial and research aircraft enable evaluation of the accuracy of the model in computing atmospheric dose rates. Additionally, a newly available dataset of balloon-based measurements, including simultaneous balloon launches from California and New Hampshire, provide an additional means of comparison to the model. When compared to the available observations of atmospheric radiation levels, the computed dose rates seem to be sufficiently accurate, falling within recommended radiation uncertainty limits.
European Venus Explorer: An in-situ mission to Venus using a balloon platform
NASA Astrophysics Data System (ADS)
Chassefière, E.; Korablev, O.; Imamura, T.; Baines, K. H.; Wilson, C. F.; Titov, D. V.; Aplin, K. L.; Balint, T.; Blamont, J. E.; Cochrane, C. G.; Ferencz, Cs.; Ferri, F.; Gerasimov, M.; Leitner, J. J.; Lopez-Moreno, J.; Marty, B.; Martynov, M.; Pogrebenko, S. V.; Rodin, A.; Whiteway, J. A.; Zasova, L. V.; the EVE Team
2009-07-01
Planetary balloons have a long history already. A small super-pressure balloon was flown in the atmosphere of Venus in the eighties by the Russian-French VEGA mission. For this mission, CNES developed and fully tested a 9 m diameter super-pressure balloon, but finally replaced it by a smaller one due to mass constraints (when it was decided to send Vega to Halley's Comet). Furthermore, several kinds of balloons have been proposed for planetary exploration [Blamont, J., in: Maran, S.P. (Ed.), The Astronomy and Astrophysics Encyclopedia. Cambridge University Press, p. 494, 1991]. A Mars balloon has been studied for the Mars-94 Russian-French mission, which was finally cancelled. Mars and Venus balloons have also been studied and ground tested at JPL, and a low atmosphere Venus balloon is presently under development at JAXA (the Japanese Space Agency). Balloons have been identified as a key element in an ongoing Flagship class mission study at NASA, with an assumed launch date between 2020 and 2025. Recently, it was proposed by a group of scientists, under European leadership, to use a balloon to characterize - by in-situ measurements - the evolution, composition and dynamics of the Venus atmosphere. This balloon is part of a mission called EVE (European Venus Explorer), which has been proposed in response to the ESA AO for the first slice of the Cosmic Vision program by a wide international consortium including Europe, Russia, Japan and USA. The EVE architecture consists of one balloon platform floating at an altitude of 50-60 km, one short lived probe provided by Russia, and an orbiter with a polar orbit to relay data from the balloon and probe, and to perform remote sensing science observations. The balloon type preferred for scientific goals is one, which would oscillate in altitude through the cloud deck. To achieve this flight profile, the balloon envelope would contain a phase change fluid. While this proposal was not selected for the first slice of Cosmic Vision missions, it was ranked first among the remaining concepts within the field of solar system science.
Jagadeesan, Bharathi D; Grigoryan, Mikayel; Hassan, Ameer E; Grande, Andrew W; Tummala, Ramachandra P
2013-12-01
Ethylene vinyl alcohol copolymer (Onyx) is widely used for the embolization of arteriovenous malformations (AVMs) of the brain, head, and neck. Balloon-assisted Onyx embolization may provide additional unique advantages in the treatment of AVMs in comparison with traditional catheter-based techniques. To report our initial experience in performing balloon-assisted AVM embolization for brain and neck AVMs with the use of the new Scepter-C and Scepter-XC coaxial dual-lumen balloon microcatheters. Balloon-assisted transarterial embolization was performed in a series of 7 patients with AVMs (4 with brain AVMs, 1 with a dural arteriovenous fistula, and 2 with neck AVMs) by using Onyx delivered through the lumen of Scepter-C or Scepter XC coaxial balloon microcatheters. Following the initial balloon-catheter navigation into a feeding artery and the subsequent inflation of the balloon, the embolization was performed by using Onyx 18, Onyx 34, or both. A total of 12 embolization sessions were performed via 17 arterial feeders in these 7 patients. In 1 patient, there was an arterial perforation from the inflation of the balloon; in all others, the embolization goals were successfully achieved with no adverse events. The balloon microcatheters showed excellent navigability, and there were no problems with retrieval or with the repeated inflation and deflation of the balloons. A proximal Onyx plug, which is crucial in many AVM embolizations, was not necessary with this technique. Additionally, fluoroscopy and procedural times seemed lower with this technique compared with conventional embolization methods.
Solar energy collector including a weightless balloon with sun tracking means
Hall, Frederick F.
1978-01-01
A solar energy collector having a weightless balloon, the balloon including a transparent polyvinylfluoride hemisphere reinforced with a mesh of ropes secured to its outside surface, and a laminated reflector hemisphere, the inner layer being clear and aluminized on its outside surface and the outer layer being opaque, the balloon being inflated with lighter-than-air gas. A heat collection probe extends into the balloon along the focus of reflection of the reflective hemisphere for conducting coolant into and out of the balloon. The probe is mounted on apparatus for keeping the probe aligned with the sun's path, the apparatus being founded in the earth for withstanding wind pressure on the balloon. The balloon is lashed to the probe by ropes adhered to the outer surface of the balloon for withstanding wind pressures of 100 miles per hour. Preferably, the coolant is liquid sodium-potassium eutectic alloy which will not normally freeze at night in the temperate zones, and when heated to 4,000.degree. R exerts a pressure of only a few atmospheres.
NASA Astrophysics Data System (ADS)
Komachi, Yuichi; Sato, Hidetoshi; Tashiro, Hideo
2006-10-01
An intravascular catheter for Raman spectroscopic detection and analysis of coronary atherosclerotic disease has been developed. The catheter, having an outer diameter of 2 mm, consisted of a side-view-type micro-Raman probe, an imaging fiber bundle, a working channel (injection drain), and a balloon. By inflating the balloon, the probe was brought close to the inner wall of a modeled blood flow system and detected a phantom target buried in the wall. Results obtained demonstrate the possibility of using the spectroscopic catheter for molecular diagnosis of coronary lesions.
MAP-oriented research in the People's Republic of China
NASA Technical Reports Server (NTRS)
Lu, D.
1985-01-01
A brief accounting of MAP oriented research in the Republic of China is given. A stratosphere balloon launching facility and its capabilities are reviewed. Observations of the stratospheric aerosols with a balloon-borne aerosol computer were made. Long term monitoring of stratospheric aerosols induced by volcanic eruptions are made with a ruby lidar. The main parameters of an ST radar system are given. The ionospheric D region is investigated with the method of ionospheric absorption. And photochemical modeling and radiation parameterization of the middle atmosphere are made.
Collection of microparticles at high balloon altitudes in the stratosphere
NASA Technical Reports Server (NTRS)
Testa, John P., Jr.; Stephens, John R.; Berg, Walter W.; Cahill, Thomas A.; Onaka, Takashi
1990-01-01
Stratospheric particles were collected between 34 and 36 km, using a combination of cascade impactors and filters lofted by a large helium balloon, and the particle concentration, size distribution, and bulk elemental composition were determined using SEM and proton-induced X-ray emission (PEXE) instrument. In addition, datailed particle morphology, elemental analysis, and electron diffraction data were obtained on 23 particles using a TEM. The concentration of particles between 0.045 and 1.0 micron in radius was found to be orders of magnitude above the concentrations predicted by the model of Hunten et al. (1980), but was consistent with balloon and satellite observations. Elemental composition analysis showed the presence of Cl, S, Ti, Fe, Br, Ni, Zr, Zn, Sr, and Cu in decreasing order of concentration. The 23 particles analyzed by TEM ranged from Al-rich silicates to almost pure Fe to one containing almost exclusively Ba and S. None were definitely chondritic in composition.
NASA Astrophysics Data System (ADS)
Kim, Dae-Hyeong; Lu, Nanshu; Ghaffari, Roozbeh; Kim, Yun-Soung; Lee, Stephen P.; Xu, Lizhi; Wu, Jian; Kim, Rak-Hwan; Song, Jizhou; Liu, Zhuangjian; Viventi, Jonathan; de Graff, Bassel; Elolampi, Brian; Mansour, Moussa; Slepian, Marvin J.; Hwang, Sukwon; Moss, Joshua D.; Won, Sang-Min; Huang, Younggang; Litt, Brian; Rogers, John A.
2011-04-01
Developing advanced surgical tools for minimally invasive procedures represents an activity of central importance to improving human health. A key challenge is in establishing biocompatible interfaces between the classes of semiconductor device and sensor technologies that might be most useful in this context and the soft, curvilinear surfaces of the body. This paper describes a solution based on materials that integrate directly with the thin elastic membranes of otherwise conventional balloon catheters, to provide diverse, multimodal functionality suitable for clinical use. As examples, we present sensors for measuring temperature, flow, tactile, optical and electrophysiological data, together with radiofrequency electrodes for controlled, local ablation of tissue. Use of such ‘instrumented’ balloon catheters in live animal models illustrates their operation, as well as their specific utility in cardiac ablation therapy. The same concepts can be applied to other substrates of interest, such as surgical gloves.
A Daytime Aspect Camera for Balloon Altitudes
NASA Technical Reports Server (NTRS)
Dietz, Kurt L.; Ramsey, Brian D.; Alexander, Cheryl D.; Apple, Jeff A.; Ghosh, Kajal K.; Swift, Wesley R.; Six, N. Frank (Technical Monitor)
2001-01-01
We have designed, built, and flight-tested a new star camera for daytime guiding of pointed balloon-borne experiments at altitudes around 40km. The camera and lens are commercially available, off-the-shelf components, but require a custom-built baffle to reduce stray light, especially near the sunlit limb of the balloon. This new camera, which operates in the 600-1000 nm region of the spectrum, successfully provided daytime aspect information of approximately 10 arcsecond resolution for two distinct star fields near the galactic plane. The detected scattered-light backgrounds show good agreement with the Air Force MODTRAN models, but the daytime stellar magnitude limit was lower than expected due to dispersion of red light by the lens. Replacing the commercial lens with a custom-built lens should allow the system to track stars in any arbitrary area of the sky during the daytime.
Daytime Aspect Camera for Balloon Altitudes
NASA Technical Reports Server (NTRS)
Dietz, Kurt L.; Ramsey, Brian D.; Alexander, Cheryl D.; Apple, Jeff A.; Ghosh, Kajal K.; Swift, Wesley R.
2002-01-01
We have designed, built, and flight-tested a new star camera for daytime guiding of pointed balloon-borne experiments at altitudes around 40 km. The camera and lens are commercially available, off-the-shelf components, but require a custom-built baffle to reduce stray light, especially near the sunlit limb of the balloon. This new camera, which operates in the 600- to 1000-nm region of the spectrum, successfully provides daytime aspect information of approx. 10 arcsec resolution for two distinct star fields near the galactic plane. The detected scattered-light backgrounds show good agreement with the Air Force MODTRAN models used to design the camera, but the daytime stellar magnitude limit was lower than expected due to longitudinal chromatic aberration in the lens. Replacing the commercial lens with a custom-built lens should allow the system to track stars in any arbitrary area of the sky during the daytime.
Orbit control of a stratospheric satellite with parameter uncertainties
NASA Astrophysics Data System (ADS)
Xu, Ming; Huo, Wei
2016-12-01
When a stratospheric satellite travels by prevailing winds in the stratosphere, its cross-track displacement needs to be controlled to keep a constant latitude orbital flight. To design the orbit control system, a 6 degree-of-freedom (DOF) model of the satellite is established based on the second Lagrangian formulation, it is proven that the input/output feedback linearization theory cannot be directly implemented for the orbit control with this model, thus three subsystem models are deduced from the 6-DOF model to develop a sequential nonlinear control strategy. The control strategy includes an adaptive controller for the balloon-tether subsystem with uncertain balloon parameters, a PD controller based on feedback linearization for the tether-sail subsystem, and a sliding mode controller for the sail-rudder subsystem with uncertain sail parameters. Simulation studies demonstrate that the proposed control strategy is robust to uncertainties and satisfies high precision requirements for the orbit flight of the satellite.
Zhao, Xuefeng; Liu, Yi; Zhang, Wei; Wang, Cong; Kassab, Ghassan S.
2011-01-01
Recently, a novel linearized constitutive model with a new strain measure that absorbs the material nonlinearity was validated for arteries. In this study, the linearized arterial stress-strain relationship is implemented into a finite element method package ANSYS, via the user subroutine USERMAT. The reference configuration is chosen to be the closed cylindrical tube (no-load state) rather than the open sector (zero-stress state). The residual strain is taken into account by analytic calculation and the incompressibility condition is enforced with Lagrange penalty method. Axisymmetric finite element analyses are conducted to demonstrate potential applications of this approach in a complex boundary value problem where angioplasty balloon interacts with the vessel wall. The model predictions of transmural circumferential and compressive radial stress distributions were also validated against an exponential-type Fung model, and the mean error was found to be within 6%. PMID:21689665
Poder, Thomas G; Fisette, Jean-François
2016-07-01
To perform a cost-effectiveness analysis to help hospital decision-makers with regard to the use of drug-coated balloons compared with bare metal stents and uncoated balloons for femoropopliteal occlusive disease. Clinical outcomes were extracted from the results of meta-analyses already published, and cost units are those used in the Quebec healthcare network. The literature review was limited to the last four years to obtain the most recent data. The cost-effectiveness analysis was based on a 2-year perspective, and risk factors of reintervention were considered. The cost-effectiveness analysis indicated that drug-coated balloons were generally more efficient than bare metal stents, particularly for patients with higher risk of reintervention (up to CAD$1686 per patient TASC II C or D). Compared with uncoated balloons, results indicated that drug-coated balloons were more efficient if the reintervention rate associated with uncoated balloons is very high and for patients with higher risk of reintervention (up to CAD$3301 per patient). The higher a patient's risk of reintervention, the higher the savings associated with the use of a drug-coated balloon will be. For patients at lower risk, the uncoated balloon strategy is still recommended as a first choice for endovascular intervention.
Hot-air balloon tours: crash epidemiology in the United States, 2000-2011.
Ballard, Sarah-Blythe; Beaty, Leland P; Baker, Susan P
2013-11-01
Hot-air balloon tours are FAR Part 91-governed balloon rides conducted for compensation or hire. Part 91, General Aviation, in general involves the least strict federal regulations and accounts for the majority of aviation crashes and fatalities. National Transportation Safety Board reports of hot-air balloon tour crashes in the United States from 2000 through 2011 were read and analyzed. During the 12-yr period, 78 hot-air balloon tours crashed, involving 518 occupants. There were 91 serious injuries and 5 fatalities; 83% of crashes resulted in one or more serious or fatal outcomes. Of the serious injuries characterized, 56% were lower extremity fractures. Most crashes (81%) occurred during landing; 65% involved hard landings. Fixed object collisions contributed to 50% of serious injuries and all 5 fatalities. During landing sequences, gondola dragging, tipping, bouncing, and occupant ejection were associated with poor outcomes. Of the crashes resulting in serious or fatal outcomes, 20% of balloons were significantly damaged or destroyed. The incidence of morbidity and mortality is high among hot-air balloon tour crashes, and the proportion of balloon crashes attributed to paid rides appears to have increased over time. In addition to examining the role of restraint systems, personal protective equipment, and power line emergency procedures in ballooning, injury prevention efforts should target factors such hard landings, object strikes, gondola instability, and occupant ejections, which are associated with balloon injuries and deaths. Crash outcomes may also improve with vehicle engineering that enables balloons themselves to absorb impact forces.
... with a balloon catheter and expands when the balloon is inflated. The stent is then left there to help keep the artery open. ... with a balloon catheter and expands when the balloon is inflated. The stent is then left there to help keep the artery open.
Testing Galactic Cosmic Ray Models
NASA Technical Reports Server (NTRS)
Adams, James H., Jr.
2009-01-01
Models of the Galactic Cosmic Ray Environment are used for designing and planning space missions. The existing models will be reviewed. Spectral representations from these models will be compared with measurements of galactic cosmic ray spectra made on balloon flights and satellite flights over a period of more than 50 years.
Testing Galactic Cosmic Ray Models
NASA Technical Reports Server (NTRS)
Adams, James H., Jr.
2010-01-01
Models of the Galactic Cosmic Ray Environment are used for designing and planning space missions. The exising models will be reviewed. Spectral representations from these models will be compared with measurements of galactic cosmic ray spectra made on balloon flights and satellite flights over a period of more than 50 years.
Fasting and meal-induced CCK and PP secretion following intragastric balloon treatment for obesity.
Mathus-Vliegen, Elisabeth M H; de Groot, Gerrit H
2013-05-01
Satiety is centrally and peripherally mediated by gastrointestinal peptides and the vagal nerve. We aimed to investigate whether intragastric balloon treatment affects satiety through effects on fasting and meal-stimulated cholecystokinin (CCK) and pancreatic polypeptide (PP) secretion. Patients referred for obesity treatment were randomised to 13 weeks of sham treatment followed by 13 weeks of balloon treatment (group 1; sham/balloon) or to twice a 13-week period of balloon treatment (group 2; balloon/balloon). Blood samples were taken for fasting and meal-stimulated CCK and PP levels at the start (T0) and after 13 (T1) and 26 (T2) weeks. Patients filled out visual analogue scales (VAS) to assess satiety. Forty-two patients (35 females, body weight 125.1 kg, BMI 43.3 kg/m(2)) participated. In group 1, basal CCK levels decreased but meal-stimulated response remained unchanged after 13 weeks of sham treatment. In group 2, basal and meal-stimulated CCK levels decreased after 13 weeks of balloon treatment. At the end of the second 13-week period, when group 1 had their first balloon treatment, they duplicated the initial 13-week results of group 2, whereas group 2 continued their balloon treatment and reduced meal-stimulated CCK release. Both groups showed reduced meal-stimulated PP secretions at T1 and T2 compared to T0. Changes in diet composition and VAS scores were similar. Improvements in glucose homeostasis partly explained the PP results. The reduced CCK and PP secretion after balloon positioning was unexpected and may reflect delayed gastric emptying induced by the balloon. Improved glucose metabolism partly explained the reduced PP secretion. Satiety and weight loss were not adversely influenced by these hormonal changes.
Intra-aortic balloon shape change: effects on volume displacement during inflation and deflation.
Khir, Ashraf William; Bruti, Gianpaolo
2013-07-01
It has been observed that operating the intra-aortic balloon at an angle to the horizontal resulted in a reduction of the volume displaced toward the coronary arteries and compromised afterload reduction. Therefore, the aim of this work is to examine whether changing the current balloon shape, which has not been altered for 40 years, could compensate for the negative hemodynamic effects due to angulation. We tested two tapered balloons, increasing diameter (TID) and decreasing diameter (TDD), and compared the results with those obtained from a standard cylindrical balloon. The balloons were tested in vitro at 60 beats/min and a static pressure of 90 mm Hg. The balloons were operated at four angles (0°, 20°, 30°, 45°), and the pressure at three locations along the balloon (base, middle, and tip) was also measured. Flow rate upstream of the tip of the balloon was also measured to indicate the flow displaced toward the coronary circulation. The relative volume displaced toward (VUTVi) and suctioned away from (VUTVd) the simulated ascending aorta, during inflation and deflation, respectively, is reduced when a standard cylindrical balloon is operated at an angle to the horizontal. The TDD provided the greatest VUTVi and also produced the largest pulse pressure during deflation. Although the TID provided less VUTVi and VUTVd at smaller angles, it was not markedly affected by the change of angle. According to these results, different balloon shapes analyzed, with comparable volume to that of a cylindrical balloon, produced greater inflation and deflation benefits, at the horizontal and at a range of angles to the horizontal. Further investigations are required to optimize the shape of the tapered balloons to fit into the available physiological space. © 2013 Wiley Periodicals, Inc. and International Center for Artificial Organs and Transplantation.
Saad, Wael E; Nicholson, David B
2013-06-01
Since the conception of balloon-occluded retrograde transvenous obliteration (BRTO) of gastric varices 25 years ago, the placement of an indwelling balloon for hours has been central to the BRTO procedure. Numerous variables and variations of the BRTO procedure have been described, including methods to reduce sclerosant, combining percutaneous transhepatic obliteration, varying sclerosant, and using multiple sclerosants within the same procedure. However, the consistent feature of BRTO has always remained the indwelling balloon. Placing an indwelling balloon over hours for the BRTO procedure is a logistical burden that taxes the interventional radiology team and hospital resources. Substituting the balloon with hardware (coils or Amplatzer vascular plugs [AVPs] or both) is technically feasible and its risks most likely correlate with gastrorenal shunt (GRS) size. The current authors use packed 0.018- or 0.035-in coils or both for small gastric variceal systems (GRS size A and B) and AVPs for GRS sizes up to size E (from size A-E). The current authors recommend an indwelling balloon (no hardware substitute) for very large gastric variceal system (GRS size F). Substituting the indwelling balloon for hardware in size F and potentially size E GRS can also be risky. The current article describes the techniques of placing up to 16-mm AVPs through balloon occlusion guide catheters and then deflating the balloon once it has been substituted with the AVPs. In addition, 22-mm AVPs can be placed through sheaths once the balloon occlusion catheters are removed to further augment the 16-mm Amplatzer occlusion. To date, there are no studies describing, let alone evaluating, the clinical feasibility of performing BRTO without indwelling balloons. The described techniques have been successfully performed by the current authors. However, the long-term safety and effectiveness of these techniques is yet to be determined. Copyright © 2013 Elsevier Inc. All rights reserved.
Wang, J; Chung Ann Choo, D; Zhang, X; Yang, Q; Xian, T; Lu, D; Jiang, S
2000-07-01
Spontaneous echo contrast (SEC) is a phenomenon that is commonly seen in areas of blood stasis. It is a slowly moving, cloud-like swirling pattern of "smoke" or increased echogenicity recorded on echocardiography. SEC is commonly seen in the left atrium of patients with mitral stenosis or atrial fibrillation. The presence of SEC has been shown to be a marker of increased thromboembolic risk. By using transesophageal echocardiography during percutaneous balloon mitral valvotomy (PBMV), the study investigated the relationship between SEC and varying left atrial appendage (LAA) blood flow velocity in the human heart. Thirty-five patients with rheumatic mitral stenosis underwent percutaneous balloon mitral valvotomy with intraoperative transesophageal echocardiography monitoring. We alternatively measured LAA velocities and observed the left atrium for various grades of SEC (0 = none to 4 = severe) before and after each balloon inflation. Left atrial appendage maximal ejection velocity was reduced from 35 +/- 14 to 6 +/- 2 mm/s at peak balloon inflation and increased to 40 +/- 16 mm/s after balloon deflation. In comparison with the values before balloon inflation and after balloon deflation, LAA velocities were significantly lower (p < 0.001). New or increased SEC grade was observed during 54 of 61 (88%) inflations and unchanged in 7 (12%) inflations at peak balloon inflation. Spontaneous echo contrast became lower in grade after 55 balloon deflations (90%), completely disappeared after 18 deflations (30%), and remained unchanged after 6 deflations (10%). The mean time to achieve maximal SEC grade (2.5 +/- 1.2 s) coincided with the mean time to trough LAA velocities (2.3 +/- 1.1 s) after balloon inflation. Upon deflation, the mean time to lowest SEC grade (2.9 +/- 1.8 s) coincided with mean time to achieve maximal LAA velocities (2.7 +/- 1.6 s). During balloon inflation, the severity of SEC was enhanced with corresponding reduction in LAA flow velocity. Upon balloon deflation, SEC lightens or disappears with increase in LAA flow velocity.
Nakazaki, Masahito; Nonaka, Tadashi; Takahashi, Akira; Yonemasu, Yasuyuki; Nomura, Tatsufumi; Onda, Toshiyuki; Honda, Osamu; Hashimoto, Yuji; Ohnishi, Hirofumi; Sasaki, Masanori; Daibo, Masahiko; Honmou, Osamu
2016-07-01
The use of distal filter protection alone is associated with a high risk of ischemic complications when vulnerable carotid stenosis is treated by carotid artery stenting (CAS). Double balloon protection, a combination of distal balloon protection and proximal balloon occlusion, can be utilized. We assessed the outcome and complications of the double balloon protection method for vulnerable carotid stenosis. Among 130 patients who underwent CAS from 2009 to 2014, we enrolled the following patients: those whose target lesion was vulnerable as evaluated by MRI, i.e., a signal ratio of plaque to posterior cervical muscle on T1-weighted images before CAS of ≥1.5, and those who underwent diffusion-weighted imaging (DWI) studies within 48 h after the procedure. Ninety patients were enrolled. We investigated DWI findings of the double balloon protection group compared with those of the simple distal balloon protection and distal filter protection groups. Sixty-four patients (71 %) underwent double balloon protection, 15 patients (17 %) simple distal balloon protection, and 11 patients (12 %) distal filter protection. Symptomatic embolic complications and new lesions on DWI after CAS were significantly less common in patients undergoing double balloon protection compared to distal balloon protection or distal filter protection (0 % vs. 20 %, 9 %, P < 0.01, and 30 % vs. 67 %, 82 %, P < 0.01, respectively). Logistic regression analysis also identified the odds ratio of double balloon protection for new lesions on DWI after CAS of 0.23 (95 % confidence interval: 0.07-0.70, P < 0.01) compared to simple distal protections. In the patients who underwent CAS for vulnerable carotid stenosis, double balloon protection was an independent significant factor associated with a reduction in the risk of new lesions on DWI after the procedure compared to conventional distal protections.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ko, Gi-Young; Song, Ho-Young, E-mail: hysong@amc.seoul.kr; Hong, Heuk-Jin
2003-04-15
Purpose: To assess the efficacy of balloon dilation combined with chemotherapy and/or radiation therapy for palliation of dysphagia due to malignant esophagogastric junction strictures. Methods: Fluoroscopically guided balloon dilation was attempted in 20 patients. The causes of strictures were gastric adenocarcinoma (n = 10) and esophageal squamous cell carcinoma (n = 10). Scheduled chemotherapy and/or radiation therapy followed balloon dilation in all patients. Results: There were no technical failures or major complications. After balloon dilation, 15 (75%) patients showed improvement of dysphagia. No patient complained of reflux esophagitis during the follow-up period. Among the 15 patients, seven needed no furthermore » treatment for palliation of dysphagia until their deaths. The remaining eight patients underwent repeat balloon dilation(n = 4) or stent placement (n = 4)3-43 weeks (mean 15 weeks) after the initial balloon dilation because of recurrent dysphagia. Conclusion: Balloon dilation combined with chemotherapy and/or radiation therapy seems to be an easy and reasonably effective palliative treatment for malignant esophagogastric strictures.« less
Baniya, Ramkaji; Upadhaya, Sunil; Subedi, Subash Chandra; Khan, Jahangir; Sharma, Prabin; Mohammed, Tabrez Shaik; Bachuwa, Ghassan; Jamil, Laith H
2017-12-01
Two novel enteroscopic procedures, balloon enteroscopy and spiral enteroscopy, have revolutionized the diagnostic and therapeutic approach to small-bowel disorders. These disorders that historically required surgical interventions are now investigated and managed nonsurgically. Only a few weakly powered studies have compared the outcomes of spiral enteroscopy and balloon enteroscopy. We conducted a systematic review and meta-analysis to compare the efficacy and safety of these 2 procedures. PubMed, Cochrane Library, Scopus, and clinicaltrials.gov databases were searched for all studies published up to January 12, 2017 comparing the efficacy and safety of balloon enteroscopy (single or double) and spiral enteroscopy. Primary outcomes of interest were diagnostic and therapeutic success rates. Other outcomes included procedure length, depth of maximal insertion (DMI), rate of complete enteroscopy, and adverse events. We calculated Odds ratios (ORs) for categorical variables and mean difference (MD) for continuous variables. The Mantel-Haenszel method was used to analyze the data. Fixed and random effect models were used for <50% heterogeneity and >50% heterogeneity, respectively. Eight studies met the inclusion criteria for this meta-analysis. A total of 615 procedures were analyzed, which included 394 balloon enteroscopy and 221 spiral enteroscopy procedures. There were no significant differences in diagnostic and therapeutic success rates (OR, 1.27; 95% confidence interval [CI], .86-1.88; P = .22; and OR, 1.23; 95% CI, .82-1.84; P = .32, respectively) between the 2 procedures. Similarly, DMI was not significantly different between the 2 groups (MD, 26.29; 95% CI, 20.92-73.49; P = .28). However, the procedure time was significantly shorter for the spiral enteroscopy group compared with the balloon enteroscopy group (MD, 11.26; 95% CI, 2.72-19.79; P = .010). A subgroup analysis comparing double balloon enteroscopy with spiral enteroscopy yielded similar results. Both procedures achieved similar diagnostic and therapeutic outcomes and with similar depth of insertion. Spiral enteroscopy has the benefit of shorter procedural time. Copyright © 2017 American Society for Gastrointestinal Endoscopy. Published by Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Mertens, Christopher J.; Alston, Erica J.; Straume, Tore; Gersey, Brad; Lusby, Terry C.; Norman, Ryan B.; Gronoff, Guillaume P.; Tobiska, W. Kent; Wilkins, Rick
2015-01-01
The NASA Radiation Dosimetry Experiment (RaD-X) high-altitude balloon mission was successfully launched from Fort Sumner, New Mexico USA on 25 September, 2015. Over 15 hours of science data were obtained from four dosimeters at altitudes above about 25 km. One of the main goals of the RaD-X mission is to improve aviation radiation model characterization of cosmic ray primaries by taking dosimetric measurements above the Pfotzer maximum before the production of secondary particles occurs. The second goal of the RaD-X mission is to facilitate the pathway toward real-time, data assimilative predictions of atmospheric cosmic radiation exposure by identifying and characterizing low-cost radiation measurement solutions.
NASA Astrophysics Data System (ADS)
Voss, P. B.; Zaveri, R. A.; Flocke, F. M.; Mao, H.; Hartley, T. P.; Deamicis, P.; Deonandan, I.; Contreras-Jiménez, G.; Martínez-Antonio, O.; Figueroa Estrada, M.; Greenberg, D.; Campos, T. L.; Weinheimer, A. J.; Knapp, D. J.; Montzka, D. D.; Crounse, J. D.; Wennberg, P. O.; Apel, E.; Madronich, S.; de Foy, B.
2010-08-01
One of the major objectives of the Megacities Initiative: Local And Global Research Observations (MILAGRO-2006) campaign was to investigate the long-range transport of polluted Mexico City Metropolitan Area (MCMA) outflow and determine its downwind impacts on air quality and climate. Six research aircraft, including the National Center for Atmospheric Research (NCAR) C-130, made extensive chemical, aerosol, and radiation measurements above MCMA and more than 1000 km downwind in order to characterize the evolution of the outflow as it aged and dispersed over the Mesa Alta, Sierra Madre Oriental, Coastal Plain, and Gulf of Mexico. As part of this effort, free-floating Controlled-Meteorological (CMET) balloons, commanded to change altitude via satellite, made repeated profile measurements of winds and state variables within the advecting outflow. In this paper, we present an analysis of the data from two CMET balloons that were launched near Mexico City on the afternoon of 18 March 2006 and floated downwind with the MCMA pollution for nearly 30 h. The repeating profile measurements show the evolving structure of the outflow in considerable detail: its stability and stratification, interaction with other air masses, mixing episodes, and dispersion into the regional background. Air parcel trajectories, computed directly from the balloon wind profiles, show three transport pathways on 18-19 March: (a) high-altitude advection of the top of the MCMA mixed layer, (b) mid-level outflow over the Sierra Madre Oriental followed by decoupling and isolated transport over the Gulf of Mexico, and (c) low-level outflow with entrainment into a cleaner northwesterly jet above the Coastal Plain. The C-130 aircraft intercepted the balloon-based trajectories three times on 19 March, once along each of these pathways; in all three cases, peaks in urban tracer concentrations and LIDAR backscatter are consistent with MCMA pollution. In comparison with the transport models used in the campaign, the balloon-based trajectories appear to shear the outflow far more uniformly and decouple it from the surface, thus forming a thin but expansive polluted layer over the Gulf of Mexico that is well aligned with the aircraft observations. These results provide critical context for the extensive aircraft measurements made during the 18-19 March MCMA outflow event and may have broader implications for modelling and understanding long-range transport.
Mobile, high-wind, balloon-launching apparatus
NASA Technical Reports Server (NTRS)
Rust, W. David; Marshall, Thomas C.
1989-01-01
In order to place instruments for measuring meteorological and electrical parameters into thunderstorms, an inexpensive apparatus has been developed which makes it possible to inflate, transport, and launch balloons in high winds. The launching apparatus is a cylinder of bubble plastic that is made by joining the sides of the cylinder together with a velcro rip strip. A balloon is launched by pulling the rip strip rapidly. This allows the balloon to pop upward into the ambient low-level wind and carry its instrumentation aloft. Different-sized launch tubes are constructed to accommodate particular sizes of balloons. Balloons have been launched in winds of about 20 m/s.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Woong Hee; Kim, Jin Hyoung, E-mail: m1fenew@daum.net; Park, Jung-Hun
Purpose: Little was known about the safety and long-term efficacy of fluoroscopically guided balloon dilation for postintubation tracheal stenosis. The purpose of this study was to evaluate the safety and long-term efficacy of fluoroscopically guided balloon dilation in patients with postintubation tracheal stenosis. Methods: From February 2000 to November 2010, 14 patients underwent fluoroscopically guided balloon dilation for postintubation tracheal stenosis. Technical success, clinical success, and complications were evaluated. Patients were followed up for recurrent symptoms. Results: In all patients, fluoroscopically guided balloon dilation was technically and clinically successful with no major complications. Following the initial procedure, six patients (43more » %) remained asymptomatic during a follow-up period. Obstructive symptoms recurred in eight patients (57 %) within 6 months (mean, 1.7 months), who were treated with repeat balloon dilation (n = 4) and other therapies. Of the four patients who underwent repeat balloon dilation, three became asymptomatic. One patient became asymptomatic after a third balloon dilation. On long-term (mean, 74 months) follow-up, 71 % of patients experienced relief of symptoms following fluoroscopically guided balloon dilation. Conclusions: Fluoroscopically guided balloon dilation may be safe, is easy to perform, and resulted in effective treatment in patients with postintubation tracheal stenosis.« less
Technologies developed by CNES balloon team
NASA Astrophysics Data System (ADS)
Sosa-Sesma, Sergio; Charbonnier, Jean-Marc; Deramecourt, Arnaud
CNES balloon team develops and operates all the components of this kind of vehicle: it means envelope and gondola. This abstract will point out only developments done for envelope. Nowadays CNES offers to scientists four types of envelops that cover a large range of mission demands. These envelops are: 1. Zero pressure balloons: Size going from 3,000m3 to 600,000m3, this kind of envelop is ideal for short duration flights (a few hours) but if we use an intelligent management of ballast consumption and if we chose the best launch site, it is possible to perform medium duration flights (10/20 days depending on the ballast on board). Flight train mass starts at 50kg for small balloons and reach 1000kg for larger ones. Zero pressure balloons are inflated with helium gas. 2. Super pressure balloons: Diameter going from 2.5m to 12m, this kind of envelop is ideal for long duration flights (1 to 6 months). Flight train is inside the envelop for small balloons, it means 2.5 diameter meters which is usually called BPCL (Super pressure balloon for Earth boundary layer) and it is about 3kg of mass. Larger ones could lift external flight trains about 50kg of mass. Super pressure balloons are inflated with helium gas. 3. MIR balloons: Size going from 36,000m3 to 46,000m3. Ceiling is reach with helium gas but after three days helium is no longer present inside and lift force is produced by difference of temperature between air inside and air of atmosphere. Flight trains must not be over 50kg. 4. Aero Clipper balloons: A concept to correlate measurements done in oceans and in nearest layers of atmosphere simultaneously. Flight train is made by a "fish" that drags inside water and an atmospheric gondola few meters above "fish", both pushed by a balloon which profits of the wind force. Materials used for construction and assembling depend on balloon type; they are usually made of polyester or polyethylene. Thickness varies from 12 micrometers to 120 micrometers. Balloon assembling is made at ZODIAC site (near Toulouse) by Zodiac teams although all mechanical machines belong to CNES. These machines had been developed by CNES to cut, to weld and to thermo-joint the different parts of the balloon.
78 FR 9785 - Airworthiness Directives; Lindstrand Hot Air Balloons Ltd Appliances
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-12
... Airworthiness Directives; Lindstrand Hot Air Balloons Ltd Appliances AGENCY: Federal Aviation Administration... airworthiness directive (AD) for certain Lindstrand Hot Air Balloons Ltd female ACME threaded hose connectors...., Washington, DC 20590. For service information identified in this AD, contact Lindstrand Hot Air Balloons Ltd...
77 FR 64763 - Airworthiness Directives; Lindstrand Hot Air Balloons Ltd Appliances
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-23
... Airworthiness Directives; Lindstrand Hot Air Balloons Ltd Appliances AGENCY: Federal Aviation Administration... propose to adopt a new airworthiness directive (AD) for certain Lindstrand Hot Air Balloons Ltd female... identified in this proposed AD, contact Lindstrand Hot Air Balloons Ltd., Maesbury Road, Oswestry, Shropshire...
78 FR 18533 - Airworthiness Directives; Lindstrand Hot Air Balloons Ltd Appliances
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-27
... Airworthiness Directives; Lindstrand Hot Air Balloons Ltd Appliances AGENCY: Federal Aviation Administration... Hot Air Balloons Ltd female ACME threaded hose connectors, part numbers HS6139 and HS6144, installed... follows: * * * * * (c) Applicability This AD applies to Lindstrand Hot Air Balloons Ltd female ACME...
Sixt, Sebastian; Carpio Cancino, Oscar Gerardo; Treszl, András; Beschorner, Ulrich; Macharzina, Roland; Rastan, Aljoscha; Krankenberg, Hans; Neumann, Franz-Josef; Zeller, Thomas
2013-09-01
Restenosis remains an unresolved problem despite different treatment modalities and new stent technology in femoropopliteal arteries. No standard therapy has proven to provide acceptable outcome data for this entity. Directional atherectomy alone did not result in satisfactory long-term patency rates. The outcome might be improved in conjunction with drug-coated balloon angioplasty. In this retrospective study, restenotic lesions of the femoropopliteal arteries were treated with directed atherectomy in 89 lesions of consecutive patients (58% male; mean age, 69 ± 11 years). All patients received adjunctive treatment with conventional balloon percutaneous angioplasty (PTA; n = 60) or drug-coated balloon angioplasty (DCB; n = 29). Lesion location was in the stent (DCB [n = 27] vs PTA [n = 36]) and in native restenotic vessels (DCB [n = 2] vs PTA [n = 25]). The 1-year Kaplan-Meier freedom from restenosis estimates (95% confidence intervals) in the DCB and PTA groups were 84.7% (70.9%-98.5%) and 43.8% (30.5%-57.1%), respectively. In a multivariable Cox model for restenosis, DCB treatment had a hazard ratio (95% confidence interval) of 0.28 (0.12-0.66; P = .0036) compared with the PTA group. In the multivariable model for procedural success, the effect of treatment did not differ between PTA and DCB (P = .134). The combination of directed atherectomy with adjunctive DCB is associated with a better event-free survival at 12 months of follow-up compared with PTA after directed atherectomy. Copyright © 2013 Society for Vascular Surgery. Published by Mosby, Inc. All rights reserved.
False coronary dissection with the new Monorail angioplasty balloon catheter.
Esplugas, E; Cequier, A R; Sabaté, X; Jara, F
1990-01-01
During percutaneous transluminal coronary angioplasty, the appearance of persistent staining in the vessel by contrast media suggests coronary dissection. We report seven patients in whom a false image of severe coronary dissection was observed during angioplasty performed with the new Monorail balloon catheter. This image emerges at the moment of balloon inflation, is distally located to the balloon, and disappears with balloon catheter deflation. No complications were associated with the appearance of this image.
Status report on the activities of National Balloon Facility at Hyderabad
NASA Astrophysics Data System (ADS)
Shankarnarayan, Sreenivasan; S, Sreenivasan; Shankarnarayan, Sreenivasan; Manchanda, R. K.; Subba Rao Jonnalagadda, Venkata; Buduru, Suneelkumar
National balloon facility at Hyderabad has been mandated to provide launch support for Indian and International scientific balloon experiments and also perform the necessary research and development in the design and fabrication of plastic balloons. In the last 4 years, since our last report, NBF has launched many successful balloon flights for the astronomy payloads and a large number of high altitude GPS Sonde flights at different places in the country. We have also continued our efforts on qualification of raw materials for zero-failure performance of our balloons and major focus on upgrading of various facilities and load-line instrumentation for launching from remote sites. We foresee a surge of balloon based experimental activity for in-situ measurements in atmospheric sciences and concept validation payloads for future space based instruments. A new centre for research in Environmental Sciences and Payload Engineering (ESPE) has also been set up at the National Balloon Facility campus to develop and conduct research in various aspects of Environmental sciences in collaboration with other groups, with a specific goal to identify, development of advanced technologies leading to an improved understanding of the earth system. The Payload Engineering facility is geared to the Design and Fabrication of Micro and Nano Satellites and will act as Inter -University Centre for payload fabrication. In this paper we present an overview of the present and planned activities in scientific ballooning at National Balloon Facility Hyderabad.
Balloon-Inflated Catheters for Enteral Feeding: a Word of Caution.
Dash, Nihar Ranjan; Singh, Anand Narayan; Kilambi, Ragini
2018-02-01
Catheters with inflatable balloons such as a Foley catheter may be used for feeding gastrostomy/jejunostomy. The incorrect or improper use of these catheters can have serious consequences. We report 13 cases of feeding jejunostomy with balloon-inflated catheter's malfunction, some referred to our centre and others operated here over a period of 8 years. The most dramatic consequence of such improper use led to rupture of the small intestine due to inadvertent over-inflation (over 100 ml) of the balloon of the catheter during a contrast study. The patient required a laparotomy with resection and anastomosis of the bowel. Three other patients had similar over-inflation of the balloon leading to severe pain and discomfort. In all three patients, timely deflation of the balloon was sufficient to relieve the symptoms. One patient had intussusception with the inflated balloon acting as a lead point. The patient underwent resection of the small bowel with end jejunostomy and distal mucous fistula. All other patients presented with abdominal pain and distension and intestinal obstruction and were managed non-operatively with deflation of balloon either by aspiration, cutting the balloon port or ultrasound-guided puncture of balloon. Healthcare personnel dealing with patients with indwelling catheters must be educated to suspect, detect and manage such problems. The best measure for such unusual complications of otherwise safe devices would be prevention by training and generation of awareness.
Shafi, Nabil A; Singh, Gagan D; Smith, Thomas W; Rogers, Jason H
2018-05-01
To describe a novel balloon sizing technique used during adult transcatheter patent ductus arteriosus (PDA) closure. In addition, to determine the clinical and procedural outcomes in six patients who underwent PDA balloon sizing with subsequent deployment of a PDA occluder device. Transcatheter PDA closure in adults has excellent safety and procedural outcomes. However, PDA sizing in adults can be challenging due to variable defect size, high flow state, or anatomical complexity. We describe a series of six cases where the balloon- pull through technique was successfully performed for PDA sizing prior to transcatheter closure. Consecutive adult patients undergoing adult PDA closure at our institution were studied retrospectively. A partially inflated sizing balloon was pulled through the defect from the aorta into the pulmonary artery and the balloon waist diameter was measured. Procedural success and clinical outcomes were obtained. Six adult patients underwent successful balloon pull-through technique for PDA sizing during transcatheter PDA closure, since conventional angiography often gave suboptimal opacification of the defect. All PDAs were treated with closure devices based on balloon PDA sizing with complete closure and no complications. In three patients that underwent preprocedure computed tomography, the balloon size matched the CT derived measurements. The balloon pull-through technique for PDA sizing is a safe and accurate sizing modality in adults undergoing transcatheter PDA closure. © 2017 Wiley Periodicals, Inc.
Optimum designs for superpressure balloons
NASA Astrophysics Data System (ADS)
Smith, M. S.; Rainwater, E. L.
2004-01-01
The elastica shape is now well known to be the best basic shape for superpressure balloon design. This shape, also known as the pumpkin, or natural shape for balloons, has been well understood since the early 1900s when it was applied to the determination of the shape of descending parachutes. The elastica shape was also investigated in the 1950s when high strength films were used to produce superpressure cylinder balloons. The need for uniform stress distribution in shells of early superpressure balloons led to a long period of the development of spherical superpressure balloons. Not until the late 1970s was the elastica shape revisited for the purpose of the producing superpressure balloons. This paper will review various development efforts in the field of superpressure design and will elaborate on the current state-of-the-art with suggestions for future developments.
Werner, D; Behrend, D; Schmitz, K P; Urbaszek, W
1995-05-01
Seventy-six PTCA-balloons after coronary angioplasty were studied for superficial changes using scanning electron microscopy (SEM) after fixing in glutardialdehyde. Coronary plaque particles were identified on the balloon surface in 52 cases (68%). Twelve new and unused balloons were subjected to the same chemical treatment and SEM showed no imprints. The average length of the longest imprinted plaques was 128 +/- 201 microns and the average number of plaque particles per balloon was 4.9 +/- 2.7. The maximal dilatation pressure and the number of dilatations showed no influence on the impregnation of plaque particles. However, longer plaque imprints tended to occur under low dilatation pressure. Imprints of plaque particles were significantly higher in patients with low cholesterol (p = 0.0001) and low triglycerides (p = 0.0016). No correlation was seen between imprint length and lipid levels. Similarly, the different balloon materials (polyethylene, polyolefincopolymer) showed no significant differences with regard to plaque occurrence. The PTCA-balloons, plaque particles and six coronary plaques obtained after endatherectomy were subjected to energy dispersive x-ray analysis (EDX) under SEM as EDX reveals qualitative and quantitative information about the structural elements. Highly significant differences in calcium, sodium, phosphorus and silicon contents (p = 0.0000) between plaque particles and balloon surface were observed, owing to the absence of these in balloon material. Thus EDX offers additional advantages over SEM in that it clearly differentiates deformed balloon surface, plaque particle, and retained contrast medium. Plaque particles can be recovered from balloon surfaces after PTCA. Depending upon their size, they could lead to coronary spasm or microembolic phenomenon.
Spiotta, Alejandro M; Miranpuri, Amrendra S; Vargas, Jan; Magarick, Jordan; Turner, Raymond D; Turk, Aquilla S; Chaudry, M Imran
2014-09-01
Endovascular embolization for tumors and vascular malformations has emerged as an important preoperative adjunct prior to resection. We describe the advantages of utilizing a recently released dual lumen balloon catheter for ethylene vinyl alcohol copolymer, also known as Onyx (ev3, Irvine, California, USA), embolization for a variety of head and neck pathologies. A retrospective review of all cases utilizing the Scepter C balloon catheter (MicroVention Inc, Tustin, California, USA) for use in balloon augmented embolization was performed over a 4 month period from October 2012 to February 2013 at the Medical University of South Carolina, Charleston, South Carolina, USA. Charts and angiographic images were reviewed. Representative cases involving diverse pathologies are summarized and illustrate the observed advantages of balloon augmented Onyx embolization with a dual lumen balloon catheter. Balloon augmented Onyx embolization utilizing a novel dual lumen balloon catheter was employed to treat both ruptured and unruptured arteriovenous malformations, intracranial dural arteriovenous fistulae, intracranial neoplasms, carotid body tumors, a thyroid mass, and an extracranial arteriovenous fistula. The dual lumen balloon catheter has several advantages for use with Onyx embolization over older devices, including more efficient proximal plug formation and enhanced navigability for placement deep within the pedicles. The balloon augmented Onyx embolization technique represents a valuable tool to add to the armamentarium of the neurointerventionalist to address a variety of head and neck lesions. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
New concepts for interplanetary balloons and blimps, particularly for Titan
NASA Astrophysics Data System (ADS)
Nott, J.
This paper proposes novel approaches for balloons for planets Titan BALLUTE A balloon or blimp arriving at a planet or moon with an atmosphere might inflate falling under a parachute or after landing Neither is ideal In both cases the envelope must include qualities needed for inflation as well as those for flight A ballute BALLoon parachUTE could be used thus a ballute is like a hot air balloon with a large mouth Initially it fills by ram pressure descending through an atmosphere As proposed it would then be heated by solid propellant It would stop descending and float level with hot air lift It is now a perfect location for inflation without wind or movement through the atmosphere and away from the uncertainties of the surface A ballute could be used over several bodies in the solar system BALLOONS FOR LOW TEMPERATURES Flight in very low temperatures is also discussed Conditions are so different that it is useful to examine basic factors These apply for any planet with low temperature and weather calm enough for balloons or blimps First for terrestrial hot air balloons thermal radiation is usually the dominant way heat is lost But radiation rises with the 4th power of absolute temperature At Titan radiation will be one or two orders of magnitude smaller Also the dense atmosphere allows small balloons small temperature differences So convection is small It appears a hot air balloon can easily be heated by a radioactive source likely carried to make electricity Pinholes are not important in such a balloon
Hot-Air Balloon Tours: Crash Epidemiology in the United States, 2000-2011
Ballard, Sarah-Blythe; Beaty, Leland P.; Baker, Susan P.
2016-01-01
Introduction Hot-air balloon tours are FAR Part 91-governed balloon rides conducted for compensation or hire. Part 91, General Aviation, in general involves the least strict federal regulations and accounts for the majority of aviation crashes and fatalities. Methods National Transportation Safety Board reports of hot-air balloon tour crashes in the United States from 2000 through 2011 were read and analyzed. Results During the 12-yr period, 78 hot-air balloon tours crashed, involving 518 occupants. There were 91 serious injuries and 5 fatalities; 83% of crashes resulted in one or more serious or fatal outcomes. Of the serious injuries characterized, 56% were lower extremity fractures. Most crashes (81%) occurred during landing; 65% involved hard landings. Fixed object collisions contributed to 50% of serious injuries and all 5 fatalities. During landing sequences, gondola dragging, tipping, bouncing, and occupant ejection were associated with poor outcomes. Of the crashes resulting in serious or fatal outcomes, 20% of balloons were significantly damaged or destroyed. Discussion The incidence of morbidity and mortality is high among hot-air balloon tour crashes, and the proportion of balloon crashes attributed to paid rides appears to have increased over time. In addition to examining the role of restraint systems, personal protective equipment, and power line emergency procedures in ballooning, injury prevention efforts should target factors such hard landings, object strikes, gondola instability, and occupant ejections, which are associated with balloon injuries and deaths. Crash outcomes may also improve with vehicle engineering that enables balloons themselves to absorb impact forces. PMID:24279231
Reduction of prostate intrafraction motion using gas-release rectal balloons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Su Zhong; Zhao Tianyu; Li Zuofeng
2012-10-15
Purpose: To analyze prostate intrafraction motion using both non-gas-release (NGR) and gas-release (GR) rectal balloons and to evaluate the ability of GR rectal balloons to reduce prostate intrafraction motion. Methods: Twenty-nine patients with NGR rectal balloons and 29 patients with GR balloons were randomly selected from prostate patients treated with proton therapy at University of Florida Proton Therapy Institute (Jacksonville, FL). Their pretreatment and post-treatment orthogonal radiographs were analyzed, and both pretreatment setup residual error and intrafraction-motion data were obtained. Population histograms of intrafraction motion were plotted for both types of balloons. Population planning target-volume (PTV) margins were calculated withmore » the van Herk formula of 2.5{Sigma}+ 0.7{sigma} to account for setup residual errors and intrafraction motion errors. Results: Pretreatment and post-treatment radiographs indicated that the use of gas-release rectal balloons reduced prostate intrafraction motion along superior-inferior (SI) and anterior-posterior (AP) directions. Similar patient setup residual errors were exhibited for both types of balloons. Gas-release rectal balloons resulted in PTV margin reductions from 3.9 to 2.8 mm in the SI direction, 3.1 to 1.8 mm in the AP direction, and an increase from 1.9 to 2.1 mm in the left-right direction. Conclusions: Prostate intrafraction motion is an important uncertainty source in radiotherapy after image-guided patient setup with online corrections. Compared to non-gas-release rectal balloons, gas-release balloons can reduce prostate intrafraction motion in the SI and AP directions caused by gas buildup.« less
Indwelling esophageal balloon catheter for benign esophageal stenosis in infants and children.
van der Zee, David; Hulsker, Caroline
2014-04-01
Balloon dilatation of benign esophageal strictures is an established mode of therapy in adults and children. There remains a group of patients with refractory stenosis despite dilatation at regular intervals. An indwelling balloon catheter may offer an alternative. This is a retrospective study of 19 children who underwent esophagoscopy between 2004 and 2012 with placement of an indwelling balloon catheter for refractory esophageal stenosis. Total number of endoscopies, number of endoscopies with indwelling balloon catheter, as well as complications, reoperations, and mortality due to use of the balloon catheter were studied. Patient age ranged from 4 weeks to 15 years. The indwelling balloon catheter was used to treat refractory stenosis after corrective surgery of long gap esophageal atresia (n = 5), esophageal atresia with distal fistula (n = 2), refractory esophageal stenosis due to caustic esophageal burns (n = 7), reflux (n = 2), and stenosis of unknown cause (n = 3). With the indwelling balloon catheter in place, the mean number of endoscopies equalled four. Complications were restenosis after a symptom-free period for which a new indwelling balloon catheter was necessary (n = 3). Two others needed two to five additional dilations: balloon leakage requiring replacement (n = 7 in 5 patients), sputum retention (n = 1), and dislodgement (n = 5 in 4 patients). More importantly, there was no mortality or the need for any patient to undergo a surgical resection. The indwelling balloon catheter is safe to use and can be used by parents at home. More importantly it obviates the need for rethoracotomy/-scopy or esophageal replacement.
14 CFR 61.115 - Balloon rating: Limitations.
Code of Federal Regulations, 2010 CFR
2010-01-01
... takes a practical test in a balloon with an airborne heater: (1) The pilot certificate will contain a limitation restricting the exercise of the privileges of that certificate to a balloon with an airborne... removed when the person obtains the required aeronautical experience in a balloon with an airborne heater...
21 CFR 884.5050 - Metreurynter-balloon abortion system.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Metreurynter-balloon abortion system. 884.5050... Devices § 884.5050 Metreurynter-balloon abortion system. (a) Identification. A metreurynter-balloon abortion system is a device used to induce abortion. The device is inserted into the uterine cavity...
14 CFR 31.49 - Control systems.
Code of Federal Regulations, 2014 CFR
2014-01-01
.... (c) Each balloon using a captive gas as the lifting means must have an automatic valve or appendix... STANDARDS: MANNED FREE BALLOONS Design Construction § 31.49 Control systems. (a) Each control must operate... minute when the balloon is at its maximum operating pressure. (d) Each hot air balloon must have a means...
14 CFR 31.49 - Control systems.
Code of Federal Regulations, 2013 CFR
2013-01-01
.... (c) Each balloon using a captive gas as the lifting means must have an automatic valve or appendix... STANDARDS: MANNED FREE BALLOONS Design Construction § 31.49 Control systems. (a) Each control must operate... minute when the balloon is at its maximum operating pressure. (d) Each hot air balloon must have a means...
14 CFR 31.49 - Control systems.
Code of Federal Regulations, 2011 CFR
2011-01-01
.... (c) Each balloon using a captive gas as the lifting means must have an automatic valve or appendix... STANDARDS: MANNED FREE BALLOONS Design Construction § 31.49 Control systems. (a) Each control must operate... minute when the balloon is at its maximum operating pressure. (d) Each hot air balloon must have a means...
14 CFR 31.49 - Control systems.
Code of Federal Regulations, 2012 CFR
2012-01-01
.... (c) Each balloon using a captive gas as the lifting means must have an automatic valve or appendix... STANDARDS: MANNED FREE BALLOONS Design Construction § 31.49 Control systems. (a) Each control must operate... minute when the balloon is at its maximum operating pressure. (d) Each hot air balloon must have a means...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-31
... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-865] Certain Balloon Dissection Devices... the United States after importation of certain dissection balloons and products containing the same by... importation of certain dissection balloons and products containing the same that infringe one or more of...
21 CFR 884.5050 - Metreurynter-balloon abortion system.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Metreurynter-balloon abortion system. 884.5050... Devices § 884.5050 Metreurynter-balloon abortion system. (a) Identification. A metreurynter-balloon abortion system is a device used to induce abortion. The device is inserted into the uterine cavity...
21 CFR 884.5050 - Metreurynter-balloon abortion system.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Metreurynter-balloon abortion system. 884.5050... Devices § 884.5050 Metreurynter-balloon abortion system. (a) Identification. A metreurynter-balloon abortion system is a device used to induce abortion. The device is inserted into the uterine cavity...
21 CFR 884.5050 - Metreurynter-balloon abortion system.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Metreurynter-balloon abortion system. 884.5050... Devices § 884.5050 Metreurynter-balloon abortion system. (a) Identification. A metreurynter-balloon abortion system is a device used to induce abortion. The device is inserted into the uterine cavity...
21 CFR 884.5050 - Metreurynter-balloon abortion system.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Metreurynter-balloon abortion system. 884.5050... Devices § 884.5050 Metreurynter-balloon abortion system. (a) Identification. A metreurynter-balloon abortion system is a device used to induce abortion. The device is inserted into the uterine cavity...
14 CFR 61.3 - Requirement for certificates, ratings, and authorizations.
Code of Federal Regulations, 2012 CFR
2012-01-01
... with a glider category rating, a balloon class rating, or glider or balloon privileges; (ii) Is... than glider or balloon privileges and holds a U.S. driver's license; (iii) Is exercising the privileges... exercising the privileges of a sport pilot certificate with glider or balloon privileges; (v) Is exercising...
14 CFR 61.3 - Requirement for certificates, ratings, and authorizations.
Code of Federal Regulations, 2013 CFR
2013-01-01
... with a glider category rating, a balloon class rating, or glider or balloon privileges; (ii) Is... than glider or balloon privileges and holds a U.S. driver's license; (iii) Is exercising the privileges... exercising the privileges of a sport pilot certificate with glider or balloon privileges; (v) Is exercising...
14 CFR 61.3 - Requirement for certificates, ratings, and authorizations.
Code of Federal Regulations, 2011 CFR
2011-01-01
... with a glider category rating, a balloon class rating, or glider or balloon privileges; (ii) Is... than glider or balloon privileges and holds a U.S. driver's license; (iii) Is exercising the privileges... exercising the privileges of a sport pilot certificate with glider or balloon privileges; (v) Is exercising...
Severe Sunburn After a Hot Air Balloon Ride: A Case Report and Literature Review.
Ozturk, Sinan; Karagoz, Huseyin
2015-01-01
Hot air balloon tours are very popular among travelers worldwide. Preventable burn injuries associated with hot air balloon rides have been reported during crashes into power lines, in propane burner explosions, and following contact with the propane burner tanks. We present a case of severe repeated sunburn, which poses another risk of preventable injury during hot air balloon rides, and briefly discuss the injury epidemiology of hot air balloon rides. © 2015 International Society of Travel Medicine.
Small bowel biopsy; Push enteroscopy; Double-balloon enteroscopy; Capsule enteroscopy ... into the upper gastrointestinal tract. During a double-balloon enteroscopy, balloons attached to the endoscope can be ...
Balloon concepts for scientific investigation of Mars and Jupiter
NASA Technical Reports Server (NTRS)
Ash, R. L.
1979-01-01
Opportunities for scientific investigation of the atmospheric planets using buoyant balloons have been explored. Mars and Jupiter were considered in this study because design requirements at those planets bracket nominally the requirements at Venus, and plans are already underway for a joint Russian-French balloon system at Venus. Viking data has provided quantitative information for definition of specific balloon systems at Mars. Free flying balloons appear capable of providing valuable scientific support for more sophisticated Martian surface probes, but tethered and powered aerostats are not attractive. The Jovian environment is so extreme, hot atmosphere balloons may be the only scientific platforms capable of extended operations there. However, the estimated system mass and thermal energy required are very large.
Ozone profiles from tethered balloon measurements in an urban plume experiment
NASA Technical Reports Server (NTRS)
Youngbluth, O., Jr.; Storey, R. W.; Clendenin, C. G.; Jones, S.; Leighty, B.
1981-01-01
NASA Langley Research Center used two tethered balloon systems to measure ozone in the general area of Norfolk, Va. The large balloon system which has an altitude range of 1,500 meters was located at Wallops Island, Va., and the smaller balloon which has an altitude range of 900 meters was located at Chesapeake, Va. Each balloon system measured ozone, temperature, humidity, wind speed, and wind direction from ground to its maximum altitude. From these measurements and from the location of the balloon sites, areas of ozone generation and ozone transport may be inferred. The measurements which were taken during August 1979 are discussed as well as the measurement techniques.
Low-Altitude Exploration of the Venus Atmosphere by Balloon
NASA Technical Reports Server (NTRS)
Landis, Geoffrey A.
2010-01-01
The planet Venus represents an exciting target for future exploration by spacecraft. One target of scientific interest is the lower atmosphere, which represents an environment of high temperature and moderate to high atmospheric pressure. This represents a considerable challenge to the technical art of ballooning, but one which may be amenable to solution. Several possible designs for low-altitude balloons are discussed. Conceptual design for three mission examples are analyzed: a conventional balloon operating below the cloud level at an altitude of 25 kilometers, a large rigid-envelope balloon operating near the surface at an altitude of 5 kilometers, and a small, technology demonstrator rigid-envelope balloon operating at 5 kilometers.
2014-01-01
Background Green microalgae represent a renewable natural source of vitamin E. Its most bioactive form is the naturally occurring RRR-α-tocopherol which is biosynthesized in photosynthetic organisms as a single stereoisomer. It is noteworthy that the natural and synthetic α-tocopherols are different biomolecular entities. This article focuses on RRR-α-tocopherol production in Stichococcus bacillaris strain siva2011 biomass in a bioreactor culture with methyl jasmonate (MeJa) elicitor. Additionally, a nonlinear mathematical model was used to quantitatively scale-up and predict the biomass production in a 20 L balloon bioreactor with dual variables such as time and volume. Results Approximately 0.6 mg/g dry weight (DW) of RRR-α-tocopherol was enhanced in S. bacillaris strain siva2011 biomass with the MeJa 50 μL/L for 24 hrs elicitations when compared to the control. The R2 value from the nonlinear model was enhanced up to 95% when compared to the linear model which significantly improved the accuracy for estimating S. bacillaris strain siva2011 biomass production in a balloon bioreactor. Conclusions S. bacillaris strain siva2011 is a new green microalga which biosynthesizes significant amounts of RRR-α-tocopherol. Systematically validated dual variable empirical data should provide key insights to multivariable or fourth order modeling for algal biomass scale-up. This bioprocess engineering should provide valuable information for industrial production of RRR-α-tocopherol from green cells. PMID:24893720
Sivakumar, Ganapathy; Jeong, Kwangkook; Lay, Jackson O
2014-06-03
Green microalgae represent a renewable natural source of vitamin E. Its most bioactive form is the naturally occurring RRR-α-tocopherol which is biosynthesized in photosynthetic organisms as a single stereoisomer. It is noteworthy that the natural and synthetic α-tocopherols are different biomolecular entities. This article focuses on RRR-α-tocopherol production in Stichococcus bacillaris strain siva2011 biomass in a bioreactor culture with methyl jasmonate (MeJa) elicitor. Additionally, a nonlinear mathematical model was used to quantitatively scale-up and predict the biomass production in a 20 L balloon bioreactor with dual variables such as time and volume. Approximately 0.6 mg/g dry weight (DW) of RRR-α-tocopherol was enhanced in S. bacillaris strain siva2011 biomass with the MeJa 50 μL/L for 24 hrs elicitations when compared to the control. The R2 value from the nonlinear model was enhanced up to 95% when compared to the linear model which significantly improved the accuracy for estimating S. bacillaris strain siva2011 biomass production in a balloon bioreactor. S. bacillaris strain siva2011 is a new green microalga which biosynthesizes significant amounts of RRR-α-tocopherol. Systematically validated dual variable empirical data should provide key insights to multivariable or fourth order modeling for algal biomass scale-up. This bioprocess engineering should provide valuable information for industrial production of RRR-α-tocopherol from green cells.
[Pressure-volume recording of PTCA catheters with balloons of lower and higher compliance].
Werner, C; Bloss, P; Kiessling, D; Patzschke, H; Unverdorben, M; Vallbracht, C
1999-11-01
In this report, the results of complementary studies of pressure-volume (p-V) measurements on balloon catheters with balloons of low (LC) and high compliance (HC) used for percutaneous transluminal coronary angioplasty are discussed. The measurements were performed with balloons unconfined in air (free dilatation) and also confined in different shells. In the case of rigid shells, a surprisingly high self-expansion of the catheters was found. Although this self-expansion does not contribute to the radial dilatation, it cannot be neglected, but must be taken into account when the success of balloon dilatation is determined on the basis of measured p-V curves. The investigations performed using wrapped shells clearly show the different dilatation properties of LC and HC balloons. The results provide important information on the feasibility of controlled balloon dilatation on the basis of p-V measurements performed on-line during PTCA.
Wind-Tunnel Investigation of a Balloon as a Towed Decelerator at Mach Numbers from 1.47 to 2.50
NASA Technical Reports Server (NTRS)
McShera, John T.; Keyes, J. Wayne
1961-01-01
A wind-tunnel investigation has been conducted to study the characteristics of a towed spherical balloon as a drag device at Mach numbers from 1.47 to 2.50, Reynolds numbers from 0.36 x 10(exp 6) to 1.0 x 10(exp 6) , and angles of attack from -15 to 15 deg. Towed spherical balloons were found to be stable at supersonic speeds. The drag coefficient of the balloon is reduced by the presence of a tow cable and a further reduction occurs with the addition of a payload. The balloon inflation pressure required to maintain an almost spherical shape is about equal to the free-stream dynamic pressure. Measured pressure and temperature distribution around the balloon alone were in fair agreement with predicted values. There was a pronounced decrease in the pressure coefficients on the balloon when attached to a tow cable behind a payload.
Advances in endoscopic balloon therapy for weight loss and its limitations
Vyas, Dinesh; Deshpande, Kaivalya; Pandya, Yagnik
2017-01-01
The field of medical and surgical weight loss is undergoing an explosion of new techniques and devices. A lot of these are geared towards endoscopic approaches rather than the conventional and more invasive laparoscopic or open approach. One such recent advance is the introduction of intrgastric balloons. In this article, we discuss the recently Food and Drug Administration approved following balloons for weight loss: the Orbera™ Intragastric Balloon System (Apollo Endosurgery Inc, Austin, TX, United States), the ReShape® Integrated Dual Balloon System (ReShape Medical, Inc., San Clemente, CA, United States), and the Obalon (Obalon® Therapeutics, Inc.). The individual features of each of these balloons, the method of introduction and removal, and the expected weight loss and possible complications are discussed. This review of the various balloons highlights the innovation in the field of weight loss. PMID:29209122
Reed, Larrite; Edriss, Hawa; Nugent, Kenneth
2018-06-01
Obesity in the United States is a medical crisis with many people attempting to lose weight with caloric restriction. Some patients choose minimally invasive weight loss solutions, such as intragastric balloon systems. These balloon systems were approved by the Federal Drug Administration (FDA) in 2015-2016 and have been considered safe, with minimal side effects. We report a patient with a two-day history of melena, abdominal pain, hypotension, and syncope which developed five months after placement of an intragastric balloon. Esophagogastroduodenoscopy with balloon removal revealed a small 8-mm gastric ulcer in the incisura. This gastric ulcer probably developed secondary to mechanical compression of the stomach mucosa by the gastric balloon which contained 900 mL of saline. The FDA is now investigating five deaths since 2016 associated with these second-generation balloons. Clinicians should be aware of these complications when evaluating patients with gastrointestinal complications, such as bleeding.
14 CFR 31.49 - Control systems.
Code of Federal Regulations, 2010 CFR
2010-01-01
... minute when the balloon is at its maximum operating pressure. (d) Each hot air balloon must have a means to allow the controlled release of hot air during flight. (e) Each hot air balloon must have a means... STANDARDS: MANNED FREE BALLOONS Design Construction § 31.49 Control systems. (a) Each control must operate...
History and perspectives of scientific ballooning
NASA Astrophysics Data System (ADS)
Lefevre, Frank
2001-08-01
Prehistory: Robertson, Biot and Gay-Lussac; Glaisher and the first studies of the atmosphere; Flammarion. The rebirth of scientific ballooning: polyethylene and mylar vehicles at Minneapolis. Super-pressurized balloons. The CNES and the Nasa programs; meteorology, aeronomy and astronomy, The Eole program. The Venus and Mars balloons in the French-Soviet space program. The future.
21 CFR 870.3535 - Intra-aortic balloon and control system
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Intra-aortic balloon and control system 870.3535... (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3535 Intra-aortic balloon and control system (a) Identification. A intra-aortic balloon and control system is a device that...
21 CFR 870.3535 - Intra-aortic balloon and control system
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Intra-aortic balloon and control system 870.3535... (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3535 Intra-aortic balloon and control system (a) Identification. A intra-aortic balloon and control system is a device that...
Auditory Risk of Exploding Hydrogen-Oxygen Balloons
ERIC Educational Resources Information Center
Gee, Kent L.; Vernon, Julia A.; Macedone, Jeffrey H.
2010-01-01
Although hydrogen-oxygen balloon explosions are popular demonstrations, the acoustic impulse created poses a hearing damage risk if the peak level exceeds 140 dB at the listener's ear. The results of acoustical measurements of hydrogen-oxygen balloons of varying volume and oxygen content are described. It is shown that hydrogen balloons may be…
14 CFR 61.23 - Medical certificates: Requirement and duration.
Code of Federal Regulations, 2011 CFR
2011-01-01
... pilot certificate with glider or balloon privileges; or (ii) A pilot certificate with a glider category... privileges in a glider or balloon; (3) When exercising the privileges of a pilot certificate with a glider category rating or balloon class rating in a glider or a balloon, as appropriate; (4) When exercising the...
14 CFR 61.23 - Medical certificates: Requirement and duration.
Code of Federal Regulations, 2012 CFR
2012-01-01
... pilot certificate with glider or balloon privileges; or (ii) A pilot certificate with a glider category... privileges in a glider or balloon; (3) When exercising the privileges of a pilot certificate with a glider category rating or balloon class rating in a glider or a balloon, as appropriate; (4) When exercising the...
14 CFR 61.23 - Medical certificates: Requirement and duration.
Code of Federal Regulations, 2013 CFR
2013-01-01
... pilot certificate with glider or balloon privileges; or (ii) A pilot certificate with a glider category... privileges in a glider or balloon; (3) When exercising the privileges of a pilot certificate with a glider category rating or balloon class rating in a glider or a balloon, as appropriate; (4) When exercising the...
14 CFR 61.23 - Medical certificates: Requirement and duration.
Code of Federal Regulations, 2014 CFR
2014-01-01
... pilot certificate with glider or balloon privileges; or (ii) A pilot certificate with a glider category... privileges in a glider or balloon; (3) When exercising the privileges of a pilot certificate with a glider category rating or balloon class rating in a glider or a balloon, as appropriate; (4) When exercising the...
21 CFR 870.3535 - Intra-aortic balloon and control system.
Code of Federal Regulations, 2014 CFR
2014-04-01
... syndrome, cardiac and non-cardiac surgery, or complications of heart failure. The special controls for this... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Intra-aortic balloon and control system. 870.3535... balloon and control system. (a) Identification. An intra-aortic balloon and control system is a...
Biliary sphincteroplasty facilitates retrieval of proximally migrated plastic biliary stent.
Shah, Dharmesh K; Jain, Samit S; Somani, Piyush O; Rathi, Pravin M
2014-01-01
Proximal migration of biliary stents presents a technical challenge for the therapeutic endoscopist. It may require multiple, complicated corrective procedures resulting in significant morbidity to the patients. In this study we evaluated the utility of balloon biliary sphincteroplasty with CRE (Controlled Radial Expansion) Balloon Dilator on retrieval of proximally migrated biliary stents. We identified patients from our ERCP database who presented with proximal migration of biliary stent, between August 2011 and October 2013. Patients in whom the stent could not be retrieved with conventional methods, balloon sphincteroplasty was performed with a 12 mm CRETM Balloon Dilator (Boston Scientific). Stent removal was attempted with extraction balloon or basket thereafter. We identified 28 patients with proximal migration of biliary stents, placed for benign diseases of the common bile duct. Stent removal was successful in 18 patients (64.28%) with help of an extraction balloon or basket. Of the remaining 10 patients, balloon sphincteroplasty was successfully followed by stent removal in eight patients. Balloon biliary sphincteroplasty increases the success rate of retrieving proximally migrated biliary stents. The procedure is safe, technically easy and yields a good success rate in our experience.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andersen, Poul Erik; Kjeldsen, Anette D.
2008-05-15
Long-term follow-up results after embolization of 13 pulmonary arteriovenous malformations in 10 patients by use of 14 detachable silicone balloons are given. Patients were followed for a mean of 99 months (range, 63-123 months) with chest x-rays and for a mean of 62 months (range, 3-101 months) with pulmonary angiography. Fifty-four percent of the balloons were deflated at latest radiographic chest film follow-up, but at pulmonary angiographic follow-up all embolized malformations were without flow irrespective of whether or not the balloons were visible. Detachable silicone balloons are not available anymore, but use of these balloons for embolization of pulmonary arteriovenousmore » malformations has been shown to be a safe and precise method, with immediate occlusion of the feeding artery and with long-lasting occlusion, even though many balloons deflate with time, leaving a fibrotic scar replacing the pulmonary arteriovenous malformation. No case of recanalization has been discovered, and these results seem to justify a reduced number of controls of these balloon-embolized malformations.« less
A Survey of Titan Balloon Concepts and Technology Status
NASA Technical Reports Server (NTRS)
Hall, Jeffery L.
2011-01-01
This paper surveys the options for, and technology status of, balloon vehicles to explore Saturn's moon Titan. A significant amount of Titan balloon concept thinking and technology development has been performed in recent years, particularly following the spectacular results from the descent and landing of the Huygens probe and remote sensing observations by the Cassini spacecraft. There is widespread recognition that a balloon vehicle on the next Titan mission could provide an outstanding and unmatched capability for in situ exploration on a global scale. The rich variety of revealed science targets has combined with a highly favorable Titan flight environment to yield a wide diversity of proposed balloon concepts. The paper presents a conceptual framework for thinking about balloon vehicle design choices and uses it to analyze various Titan options. The result is a list of recommended Titan balloon vehicle concepts that could perform a variety of science missions, along with their projected performance metrics. Recent technology developments for these balloon concepts are discussed to provide context for an assessment of outstanding risk areas and technological maturity. The paper concludes with suggestions for technology investments needed to achieve flight readiness.
Development of a Compact Captive Balloon and Its Level Supporting
NASA Astrophysics Data System (ADS)
Nakao, Tatsuya; Fujiwara, Kazuhito; Furukawa, Motoyasu; Hiroe, Tetsuyuki
Many kinds of observation techniques have been developed to obtain the properties of atmospheric conditions. The advanced observation techniques of the flow in relatively large scale are remote sensing by satellite facilities, long range observations by radar or Doppler Sodar, etc., while data from conventional climometers set at fixed places are merely limited information about local scale flow. Captive balloons are also available and feasible for the observation of local flows if their standing mechanics are robust against the strong wind and the motion of balloon are stable for all wind direction and the change of wind direction. In this paper, a compact captive balloon (about 2m diam.) for flow measurement is proposed and the preservation of balloon height level and the stabilization of its motion are challenged by using a kite. The relation between force balances acted on the balloon and the balloon height or position was estimated and confirmed in experiments. Although the lift force of single kite worked successfully, it is found that the performance of plural kites is less in the traction of balloon since the interaction of their tensions. The compact balloon supported by the kite enabled the over 300m floating by virtue of the small size causing only low air resistance.
Graham, D Y; Smith, J L
1985-06-01
Balloon esophageal dilatation offers many theoretical advantages (safety, speed, and patient comfort) over dilatation with mercury-filled bougies or with the Eder-Puestow system. The authors used balloon dilators in 22 patients with dysphagia secondary to benign or malignant strictures. Dilatation was performed with fluoroscopic guidance, blindly, or by a combination of these techniques. For "blind" stricture dilatation, an Eder-Puestow spring-tipped guide wire is placed into the stomach using a fiberoptic endoscope. The distance from the incisor teeth to the stricture is measured, and the balloon shaft is marked to indicate when the middle of the balloon is within the stricture. Dilatation is then performed using the antegrade or, the preferred, retrograde technique. Finally, the dilated stricture is calibrated by pulling an inflated balloon through the previously strictured area without difficulty. An attempt was made to achieve an esophageal diameter of 15 mm at the initial dilatation episode, and patient discomfort was used as a guide as to the final diameter. The balloon dilatation technique was highly successful, and a stricture diameter of 15 mm (45-47 French) was achieved at the initial dilatation in most instances. Malignant strictures were easily dilated. Balloon dilatation is convenient, effective, quick, and potentially safer than the previous Eder-Puestow or mercury-filled bougie techniques.
Power supplies for long duration balloon flights
NASA Astrophysics Data System (ADS)
Lichfield, Ernest W.
Long duration balloon flights require more electrical power than can be carried in primary batteries. This paper provides design information for selecting rechargeable batteries and charging systems. Solar panels for recharging batteries are discussed, with particular emphasis on cells mounting suitable for balloon flights and panel orientation for maximum power collection. Since efficient utilization of power is so important, modern DC to DC power conversion techniques are presented. On short flights of 1 day or less, system designers have not been greatly concerned with battery weight. But, with the advent of long duration balloon flights using superpressure balloons, anchor balloon systems, and RACOON balloon techniques, power supplies and their weight become of prime importance. The criteria for evaluating power systems for long duration balloon flights is performance per unit weight. Instrumented balloon systems have flown 44 days. For these very long duration flights, batteries recharged from solar cells are the only solution. For intermediate flight duration, say less than 10 days, the system designer should seriously consider using primary cells. The National Center for Atmospheric Research is sponsored by the National Science Foundation. Any opinions, findings and conclusions or recommendations expressed in this publication are those of the authors and do not necessarily reflect the views of the National Science Foundation.
Aboodi, Michael S; Milewski, Krzysztof; Tellez, Armando; Cheng, Yanping; Yi, Geng-Hua; Kaluza, Greg L; Granada, Juan F
2014-02-15
Background: Self-expanding stents (SES) are reemerging as therapeutic alternatives to treat coronary artery disease. It has been proposed that SES can improve clinical outcomes by inducing less injury at implantation and achieving better vessel wall apposition.To date, little data exists comparing the vascular response to both methods of deployment in a controlled experimental setting. Objective: To quantify differences in vascular injury and healing between second-generation SES and balloon-expandable stents (BES) and the effects of balloon post-dilatation in a porcine coronary model. Methods: Seventy-five bare SES (AXXESS or vProtect) and 42 BES (Vision) were implanted in porcine coronaries. A subset of these received balloon post-dilatation(SES 1 D 5 22, BES 1 D 5 20). Follow-up was scheduled at 30 (BES 5 10, BES 1 D 56, SES 5 19, SES 1 D 5 8), 90 (BES 5 6, BES 1 D 5 8, SES 5 19, SES 1 D 5 8), and 180 days (BES 5 6, BES 1 D 5 6, SES 5 15, SES 1 D 5 6). Results: In vivo imaging and histological analysis showed that neointimal formation peaks early (30 days) in BES. Conversely, for SES, the peak occurred later (90 days). However, the neointimal formation achieved in either group equalized at 180 days. For SES, post-dilatation shortened the peak of neointimal formation to 30 days. Conversely, for BES, post-dilatation delayed the peak of neointimal formation to 90 days. At 30 days, histology showed that SES had significantly less injury. However, at 90 days, injury scores tended to be higher for SES. By 180 days, injury scores were comparable between both groups. Conclusions: The mechanism of stent expansion influences the degree of vascular injury and healing. The synergistic use of balloon post dilatation changes the dynamics of healing and may impact the potential beneficial effects inherent to SES technologies.
Durvasula, Venkata S P B; Shalin, Sara C; Tulunay-Ugur, Ozlem E; Suen, James Y; Richter, Gresham T
2018-06-01
Cricoid fracture is a serious concern for balloon dilatation in airway stenosis. Furthermore, there are no studies examining tracheal rupture in balloon dilatation of stenotic segments. The aim of this study was to evaluate the effect of supramaximal pressures of balloons on the cricoid and tracheal rings. Prospective cadaveric study. Seven cadaveric laryngotracheal complexes of normal adults with intact cricothyroid membranes were acquired. Noncompliant vascular angioplasty balloons (BARD-VIDA) were used for dilatation. The subglottis and trachea were subjected to supramaximal dilatation pressures graduated to nominal burst pressure (NBP) and, if necessary, rated burst pressure (RBP). Larger-diameter balloons, starting from 18 mm size to 24 mm, were used. Dilatations were maintained for 3 minutes. The cricoid ring was disrupted by larger-diameter balloons (22 mm and 24 mm) even at lower pressures (less than NBP) in six cases. Tracheal cartilages were very distensible, and external examination after supramaximal dilatation (24 mm close to RBP) revealed no obvious cartilage fractures or trachealis tears. Histopathological examination revealed sloughing of mucosa in the areas corresponding to balloon placement, but no microfractures or disruption of the perichondrium of tracheal ring cartilages. These results indicate that the cricoid is vulnerable to injury from larger balloons even at lower dilatation pressures. The tracheal cartilages and the membranous wall of the trachea remained resilient to supramaximal dilatation and larger balloons. NA. Laryngoscope, 128:1304-1309, 2018. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.
Usefulness of cutting balloon angioplasty for the treatment of congenital heart defects.
Kusa, Jacek; Mazurak, Magdalena; Skierska, Agnieszka; Szydlowski, Leslaw; Czesniewicz, Pawel; Manka, Lukasz
2018-01-01
Patients with complex congenital heart defects may have different hemodynamic prob-lems which require a variety of interventional procedures including angioplasty which involves using high-pressure balloons. After failure of conventional balloon angioplasty, cutting balloon angioplasty is the next treatment option available. The purpose of this study was to evaluate the safety and efficacy of cutting balloon angioplasty in children with different types of congenital heart defects. Cutting balloon angioplasty was performed in 28 children with different congenital heart defects. The indication for cutting balloon angioplasty was: pulmonary artery stenosis in 17 patients, creating or dilatation of interatrial communication in 10 patients, and stenosis of left subclavian artery in 1 patient. In the pulmonary arteries group there was a significant decrease in systolic blood pressure (SBP) in the proximal part of the artery from the average 74.33 ± 20.4 mm Hg to 55 ± 16.7 mm Hg (p < 0.001). Distal to the stenosis there was an increase in SBP from 19.8 ± 3.82 mm Hg to 30.3 ± ± 13.3 mm Hg (p = 0.04). This result remained constant in the follow-up. In atrial septal defect/fenestra-tion group, cutting balloon angioplasty was performed after an unsuccessful classic Rashkind procedure. After cutting balloon angioplasty there was a significant widening of the interatrial communication. Cutting balloon angioplasty is a feasible and effective treatment option in different con-genital heart defects.
Balloon-Borne Observations of BrO in the Tropical Upper Troposphere/Lower Stratosphere
NASA Astrophysics Data System (ADS)
Kritten, L.; Butz, A.; Dorf, M.; Kreycy, S.; Prados, C.; Pfeilsticker, K.
2009-04-01
Due to the ozone destroying capabilities of bromine bearing compounds, the stratospheric budget of inorganic bromine is of major interest for modelling ozone depletion and assessing the future evolution of the ozone layer. It has recently been shown that the contribution of very short-lived substances (VSLS) to the bromine budget enhances ozone depletion at mid-latitudes and polar regions. Here we report for the first time on observations of the diurnal variation in stratospheric BrO by means of balloon-borne limb scanning observations. When combined with photochemical modelling, new insight into the photochemistry of stratospheric bromine and its budget is obtained. In particular we report on observations made during three balloon soundings at tropical northeastern Brazil (5°S, 43°W) in June 2005 and June 2008 from deployments of the LPMA/DOAS (Limb Profile Monitor of the Atmosphere/Differential Optical Absorption Spectrometer), IASI (Infrared Atmospheric Sounding Interferometer) and MIPAS (Michelson Interferometer for Passive Atmospheric Sounding) payloads. Our measurements reveal that the diurnal cycle of BrO is primarily controlled by the reaction with NO2, and the photolysis of BrONO2 at daytime. Assimilation of our BrO measurements to photochemical modelling indicates that total stratospheric bromine is in agreement with the amount inferred by our direct sun observations, therefore providing further evidence for the importance of brominated very short-lived species (VSLS) for total stratospheric bromine.
NASA Technical Reports Server (NTRS)
Fairlie, T. D.; Vernier, J.-P.; Liu, H.; Deshler, T.; Natarajan, M.; Bedka, K.; Wegner, T.; Baker, N.; Gadhavi, H.; Ratnam, M. V.;
2016-01-01
Satellite observations and numerical modeling studies have demonstrated that the Asian Summer Monsoon (ASM) provide a conduit for gas-phase pollutants in south Asia to reach the lower stratosphere. Now, observations from the CALIPSO satellite have revealed the Asian Tropopause Aerosol Layer (ATAL), a summertime accumulation of aerosols in the upper troposphere and lower stratosphere (UTLS), associated with the ASM anticyclone. The ATAL has potential implications for regional cloud properties, climate, and chemical processes in the UTLS. Here, we show in situ measurements from balloon-borne instruments, aircraft, and satellite observations, together with trajectory and chemical transport model (CTM) simulations to explore the origin, composition, physical, and optical properties of aerosols in the ATAL. In particular, we show balloon-data from our BATAL-2015 field campaign to India and Saudi Arabia in summer 2015, which includes in situ backscatter measurements from COBALD instruments, and the first observations of size and volatility of aerosols in the ATAL layer using optical particle counters (OPCs). Back trajectory calculations initialized from CALIPSO observations point to deep convection over North India as a principal source of ATAL aerosols. Available aircraft observations suggest significant sulfur and carbonaceous components to the ATAL, which is supported by simulations using the GEOS-Chem CTM. Source elimination studies conducted with the GEOS-Chem indicate that ATAL aerosols originate primary from south Asian sources, in contrast with some earlier studies.
NASA Technical Reports Server (NTRS)
Fairlie, T. D.; Vernier, J.-P.; Natarajan, M.; Deshler, Terry; Liu, H.; Wegner, T.; Baker, N.; Gadhavi, H.; Jayaraman, A.; Pandit, A.;
2016-01-01
Satellite observations and numerical modeling studies have demonstrated that the Asian Summer Monsoon (ASM) can provide a conduit for gas-phase pollutants in south Asia to reach the lower stratosphere. Now, observations from the CALIPSO satellite have revealed the Asian Tropopause Aerosol Layer (ATAL), a summertime accumulation of aerosols associated with ASM anticyclone, in the upper troposphere and lower stratosphere (UTLS). The ATAL has potential implications for regional cloud properties, climate, and chemical processes in the UTLS. Here, we show in situ measurements from balloon-borne instrumentation, aircraft and satellite observations, combined with trajectory and chemical transport model (CTM) simulations to explore the origin, composition, physical and optical properties of aerosols in the ATAL. In particular, we show balloon-based observations from our BATAL-2015 field campaign to India and Saudi Arabia in summer 2015, including in situ backscatter measurements from COBALD instruments, and some of the first observations of size and volatility of aerosols in the ATAL layer using optical particle counters (OPCs). Back trajectory calculations initialized from CALIPSO observations point to deep convection over North India as a principal source of ATAL aerosols. Available aircraft observations suggest significant sulfur and carbonaceous contributions to the ATAL, which is supported by simulations using the GEOS-Chem CTM. Source elimination studies conducted with the GEOS-Chem indicate that 80-90% of ATAL aerosols originate from south Asian sources, in contrast with some earlier studies.
Sabouri, Sepideh; Matene, Elhacene; Vinet, Alain; Richer, Louis-Philippe; Cardinal, René; Armour, J Andrew; Pagé, Pierre; Kus, Teresa; Jacquemet, Vincent
2014-01-01
Epicardial high-density electrical mapping is a well-established experimental instrument to monitor in vivo the activity of the atria in response to modulations of the autonomic nervous system in sinus rhythm. In regions that are not accessible by epicardial mapping, noncontact endocardial mapping performed through a balloon catheter may provide a more comprehensive description of atrial activity. We developed a computer model of the canine right atrium to compare epicardial and noncontact endocardial mapping. The model was derived from an experiment in which electroanatomical reconstruction, epicardial mapping (103 electrodes), noncontact endocardial mapping (2048 virtual electrodes computed from a 64-channel balloon catheter), and direct-contact endocardial catheter recordings were simultaneously performed in a dog. The recording system was simulated in the computer model. For simulations and experiments (after atrio-ventricular node suppression), activation maps were computed during sinus rhythm. Repolarization was assessed by measuring the area under the atrial T wave (ATa), a marker of repolarization gradients. Results showed an epicardial-endocardial correlation coefficients of 0.80 and 0.63 (two dog experiments) and 0.96 (simulation) between activation times, and a correlation coefficients of 0.57 and 0.46 (two dog experiments) and 0.92 (simulation) between ATa values. Despite distance (balloon-atrial wall) and dimension reduction (64 electrodes), some information about atrial repolarization remained present in noncontact signals.
Sabouri, Sepideh; Matene, Elhacene; Vinet, Alain; Richer, Louis-Philippe; Cardinal, René; Armour, J. Andrew; Pagé, Pierre; Kus, Teresa; Jacquemet, Vincent
2014-01-01
Epicardial high-density electrical mapping is a well-established experimental instrument to monitor in vivo the activity of the atria in response to modulations of the autonomic nervous system in sinus rhythm. In regions that are not accessible by epicardial mapping, noncontact endocardial mapping performed through a balloon catheter may provide a more comprehensive description of atrial activity. We developed a computer model of the canine right atrium to compare epicardial and noncontact endocardial mapping. The model was derived from an experiment in which electroanatomical reconstruction, epicardial mapping (103 electrodes), noncontact endocardial mapping (2048 virtual electrodes computed from a 64-channel balloon catheter), and direct-contact endocardial catheter recordings were simultaneously performed in a dog. The recording system was simulated in the computer model. For simulations and experiments (after atrio-ventricular node suppression), activation maps were computed during sinus rhythm. Repolarization was assessed by measuring the area under the atrial T wave (ATa), a marker of repolarization gradients. Results showed an epicardial-endocardial correlation coefficients of 0.80 and 0.63 (two dog experiments) and 0.96 (simulation) between activation times, and a correlation coefficients of 0.57 and 0.46 (two dog experiments) and 0.92 (simulation) between ATa values. Despite distance (balloon-atrial wall) and dimension reduction (64 electrodes), some information about atrial repolarization remained present in noncontact signals. PMID:24598778
Infrasound from ground to space
NASA Astrophysics Data System (ADS)
Bowman, Daniel Charles
Acoustic detector networks are usually located on the Earth's surface. However, these networks suffer from shortcomings such as poor detection range and pervasive wind noise. An alternative is to deploy acoustic sensors on high altitude balloons. In theory, such platforms can resolve signals arriving from great distances, acquire others that never reach the surface at all, and avoid wind noise entirely. This dissertation focuses on scientific advances, instrumentation, and analytical techniques resulting from the development of such sensor arrays. Results from infrasound microphones deployed on balloon flights in the middle stratosphere are described, and acoustic sources such as the ocean microbarom and building ventilation systems are discussed. Electromagnetic noise originating from the balloon, flight system, and other payloads is shown to be a pervasive issue. An experiment investigating acoustic sensor calibration at low pressures is presented, and implications for high altitude recording are considered. Outstanding challenges and opportunities in sound measurement using sensors embedded in the free atmosphere are outlined. Acoustic signals from field scale explosions designed to emulate volcanic eruptions are described, and their generation mechanisms modeled. Wave forms recorded on sensors suspended from tethered helium balloons are compared with those detected on ground stations during the experiment. Finally, the Hilbert-Huang transform, a high time resolution spectral analysis method for nonstationary and nonlinear time series, is presented.
A Prototype Balloon-borne GPS Occultation Profiling System for Polar Studies
NASA Astrophysics Data System (ADS)
Haase, J. S.; Maldonado Vargas, J.; Cocquerez, P.; Rabier, F.; Guidard, V.
2011-12-01
Global warming has focused attention on the polar regions and recent changes in the distribution of sea and land ice. This provides motivation for improving climate and weather models in order to understand the potential future evolution of the cryosphere. Accurate modeling of climate and weather relies heavily on remote sensing observations because of the inaccessibility to in-situ meteorological observations. However, validating satellite observations over the poles, and testing their reliable assimilation into numerical weather prediction models, is challenging because of the extreme environment, topography, and land surface characteristics. Any additional upper-air observations to help confirm and improve the results from satellite data assimilation are useful for this long-term objective. We have developed a stratospheric balloon-borne GPS radio occultation system, in order to provide refractivity and derived temperature profiles for this purpose. We present the prototype instrument that flew in the first research campaign of its type during October-November 2010, as part of the Antarctic CONCORDIASI campaign to demonstrate the feasibility of the concept. Preliminary comparisons of observed excess phase delay profiles agree with those simulated from nearby Météofrance ARPEGE model profiles. During the two balloon flights, which lasted a combined total of 107 days, more than 700 occultations were recorded, this number being limited by the data transmission rates. More than 35% of the profiles descended as low as 5km above sea level. The potential for contributing to the goal of improving atmospheric models in the Antarctic is discussed, and several suggestions are made for further improvements to the system.
Tokuda, Michifumi; Matsuo, Seiichiro; Kato, Mika; Sato, Hidenori; Oseto, Hirotsuna; Okajima, Eri; Ikewaki, Hidetsugu; Isogai, Ryota; Tokutake, Kenichi; Yokoyama, Kenichi; Narui, Ryohsuke; Tanigawa, Shin-Ichi; Yamashita, Seigo; Inada, Keiichi; Yoshimura, Michihiro; Yamane, Teiichi
2017-09-01
Asymptomatic cerebral embolism (ACE) is sometimes detected after cryoballoon ablation of atrial fibrillation. The removal of air bubbles from the cryoballoon before utilization may reduce the rate of ACE. This study aims to compare the incidence of ACE between a conventional and a novel balloon massaging method during cryoballoon ablation. Of 175 consecutive patients undergoing initial cryoballoon ablation of paroxysmal atrial fibrillation, 60 (34.3%) patients underwent novel balloon massaging with extracorporeal balloon inflation in saline water (group N) before the cryoballoon was inserted into the body. The remaining 115 (65.7%) patients underwent conventional balloon massaging in saline water while the balloon remained folded (group C). Of those, 86 propensity score-matched patients were included. The baseline characteristics were similar between the 2 groups. In group N, even after balloon massaging in saline water was carefully performed, multiple air bubbles remained on the balloon surface when the cryoballoon was inflated in all cases. Postprocedural cerebral magnetic resonance imaging detected ACE in 14.0% of all patients. The incidence of ACE was significantly lower in group N than in group C (4.7% vs 23.3%; P = .01). According to multivariable analysis, the novel method was the sole factor associated with the presence of ACE (odds ratio 0.161; 95% confidence interval 0.033-0.736; P = .02). Preliminary removal of air bubbles in heparinized saline water with extracorporeal balloon inflation reduced the incidence of ACE. Since conventional balloon massaging failed to remove air bubbles completely, this novel balloon massaging method should be recommended before cryoballoon utilization. Copyright © 2017 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.
Spiotta, Alejandro M; James, Robert F; Lowe, Stephen R; Vargas, Jan; Turk, Aquilla S; Chaudry, M Imran; Bhalla, Tarun; Janjua, Rashid M; Delaney, John J; Quintero-Wolfe, Stacey; Turner, Raymond D
2015-10-01
Conventional Onyx embolization of cerebral arteriovenous malformations (AVMs) requires lengthy procedure and fluoroscopy times to form an adequate 'proximal plug' which allows forward nidal penetration while preventing reflux and non-targeted embolization. We review our experience with balloon-augmented Onyx embolization of cerebral AVMs using a dual-lumen balloon catheter technique designed to minimize these challenges. Retrospectively acquired data for all balloon-augmented cerebral AVM embolizations performed between 2011 and 2014 were obtained from four tertiary care centers. For each procedure, at least one Scepter C balloon catheter was advanced into the AVM arterial pedicle of interest and Onyx embolization was performed through the inner lumen after balloon inflation via the outer lumen. Twenty patients underwent embolization with the balloon-augmented technique over 24 discreet treatment episodes. There were 37 total arterial pedicles embolized with the balloon-augmented technique, a mean of 1.9 per patient (range 1-5). The treated AVMs were heterogeneous in their location and size (mean 3.3±1.6 cm). Mean fluoroscopy time for each procedure was 48±26 min (28 min per embolized pedicle). Two Scepter C balloon catheter-related complications (8.3% of embolization sessions, 5.4% of pedicles embolized) were observed: an intraprocedural rupture of a feeding pedicle and fracture and retention of a catheter fragment. This multicenter experience represents the largest reported series of balloon-augmented Onyx embolization of cerebral AVMs. The technique appears safe and effective in the treatment of AVMs, allowing more efficient and controlled injection of Onyx with a decreased risk of reflux and decreased fluoroscopy times. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Charles Blouin, Mathieu; Bouhout, Ismail; Demers, Philippe; Carrier, Michel; Perrault, Louis; Lamarche, Yoan; El-Hamamsy, Ismail; Bouchard, Denis
2017-05-01
Sutureless aortic valve replacement (AVR) is an emerging alternative to standard AVR in elderly and high-risk patients. This procedure is associated with a high rate of postoperative permanent pacemaker implantation (PPI). The study aim was to assess the impact on the rate of PPI of implanting the Perceval prosthesis without using balloon inflation. A total of 159 patients who underwent sutureless AVR using the Perceval prosthesis was included. Balloon inflation was used in 132 patients (Balloon group) and not used in the remaining 27 (No-Balloon group). Clinical, echocardiographic and electrocardiographic outcomes were assessed. There was no significant difference in PPI rate between the two groups (26% for Balloon group versus 22% in No-Balloon group; p = 0.700). Balloon inflation had no significant impact on the incidence of paravalvular leaks (p = 0.839), or on the need to return to cardiopulmonary bypass (CPB) intraoperatively due to paravalvular leak or unsatisfactory deployment (p >0.999). Mean and peak transaortic pressure gradients were similar between the two groups (p = 0.417 and p = 0.522, respectively). Cross-clamp and CPB times were shorter in the No-Balloon group (49.6 ± 15.9 min versus 61.1 ± 25.6 min and 64.1 ± 26.3 min versus 79.6 ± 35.4 min, respectively; p = 0.027 and p = 0.012, respectively). The two groups had similar postoperative PPI rates. Implanting the Perceval prosthesis without balloon inflation is safe and had no impact on paravalvular leaks, intraoperative complications or hemodynamic results. Reductions in aortic cross-clamp time and CPB time were observed when the balloon was not used.
de Castro, Maria Luisa; Morales, Maria Jose; Martínez-Olmos, Miguel A; Pineda, Juan R; Cid, Lucia; Estévez, Pamela; del-Campo, Victor; Rodríguez-Prada, J Ignacio
2013-10-01
intragastric balloons provide early satiety and thereby induce short-term weight loss. The aim of this study was to evaluate safety and short and medium-term effectiveness of gastric balloons associated to hypocaloric diet in obesity. from May 2004 to June 2011 91 obese patients, body mass index (BMI) 45.2 +/- 7.2 kg/m2 were prospectively followed after endoscopic implantation of a gastric balloon associated to restricted diet. Successful therapy was defined as percent loss of total weight (%LTW) > or = 5 % at six months after balloon placement and 6 and 12 months after their withdrawal. All analyses followed intention-to treat principles considering significant p-values < 0.05. we placed 73 fluid-filled balloons (80.2 %) and 18 air-filled ones (19.8 %). Compared to baseline values, at 6-month 73.7 % subjects succeeded, showing significant reductions in weight (13.3 +/- 8.8 kg), BMI (5 +/- 3.4 kg/m2) (p < 0.0001), with % LTW 11 +/- 7 %. Six and twelve months after retrieval 45.1 % and 28.6 % patients reached % LTW > or = 5 %. Short-term and medium-term effectiveness was negatively associated to obesity in first-grade relatives (p = 0.003 and p = 0.04). Higher weight loss 6 months after balloon placement independently predicted medium-term effectiveness (p = 0.0001). Mortality was absent but there were two spontaneous deflations of air-filled balloons and severe withdrawal difficulties in 8 patients, leading to surgery in one case. Retrieval complications associated to air-filled balloons (p = 0.0005). in obesity, effectiveness of gastric balloons associated to hypocaloric diet decreases over time.Complications occurred mainly in the retrieval endoscopic procedure and related to air-filled balloons.
Bo, Liyan; Li, Congcong; Chen, Min; Mu, Deguang; Jin, Faguang
Electrocautery needle knives can largely reduce scar and granulation tissue hyperplasia and play an important role in treating patients with benign stricture. The aim of this retrospective study was to evaluate the efficacy and safety of electrocautery needle knife combined with balloon dilatation versus balloon dilatation alone in the treatment of tracheal stenosis caused by tracheal intubation or tracheotomy. We retrospectively analysed the clinical data of 43 patients with tracheal stenosis caused by tracheotomy or tracheal intubation in our department from January 2013 to January 2016. Among these 43 patients, 23 had simple web-like stenosis and 20 had complex steno sis. All patients were treated under general anaesthesia, and the treatment methods were (1) balloon dilatation alone, (2) needle knife excision of fibrotic tissue combined with balloon dilatation, and (3) needle knife radial incision of fibrotic tissue combined with balloon dilatation. After treatment the symptoms, such as shortness of breath, were markedly improved immediately in all cases. The stenosis degree of patients who were treated with the elec-trocautery needle knife combined with balloon dilatation had better improvement compared with that of those treated with balloon dilatation treatment alone after 3 months (0.45 ± 0.04 vs. 0.67 ± 0.05, p < 0.01), and the proportion of restenosis occurrence that required further treatment was decreased at 6 months (46.9 vs. 81.8%), especially for the web-like stenosis patients, as most of their stenoses dilated with no obvious restenosis and achieved clinical cure. Electrocautery needle knife combined with balloon dilatation is an effective and safe treatment for tracheal fibrotic stenosis compared with balloon dilatation alone. © 2017 S. Karger AG, Basel.
Efficacy of Intrauterine Bakri Balloon Tamponade in Cesarean Section for Placenta Previa Patients.
Cho, Hee Young; Park, Yong Won; Kim, Young Han; Jung, Inkyung; Kwon, Ja-Young
2015-01-01
The aims of this study were to analyze the predictive factors for the use of intrauterine balloon insertion and to evaluate the efficacy and factors affecting failure of uterine tamponade with a Bakri balloon during cesarean section for abnormal placentation. We reviewed the medical records of 137 patients who underwent elective cesarean section for placenta previa between July 2009 and March 2014. Cesarean section and Bakri balloon insertion were performed by a single qualified surgeon. The Bakri balloon was applied when blood loss during cesarean delivery exceeded 1,000 mL. Sixty-four patients (46.7%) required uterine balloon tamponade during cesarean section due to postpartum bleeding from the lower uterine segment, of whom 50 (78.1%) had placenta previa totalis. The overall success rate was 75% (48/64) for placenta previa patients. Previous cesarean section history, anterior placenta, peripartum platelet count, and disseminated intravascular coagulopathy all significantly differed according to balloon success or failure (all p<0.05). The drainage amount over 1 hour was 500 mL (20-1200 mL) in the balloon failure group and 60 mL (5-500 mL) in the balloon success group (p<0.01). Intrauterine tamponade with a Bakri balloon is an adequate adjunct management for postpartum hemorrhage following cesarean section for placenta previa to preserve the uterus. This method is simple to apply, non-invasive, and inexpensive. However, possible factors related to failure of Bakri balloon tamponade for placenta previa patients such as prior cesarean section history, anterior placentation, thrombocytopenia, presence of DIC at the time of catheter insertion, and catheter drainage volume more than 500 mL within 1 hour of catheter placement should be recognized, and the next-line management should be prepared in advance.
Efficacy of Intrauterine Bakri Balloon Tamponade in Cesarean Section for Placenta Previa Patients
Cho, Hee Young; Park, Yong Won; Kim, Young Han; Jung, Inkyung; Kwon, Ja-Young
2015-01-01
Purpose The aims of this study were to analyze the predictive factors for the use of intrauterine balloon insertion and to evaluate the efficacy and factors affecting failure of uterine tamponade with a Bakri balloon during cesarean section for abnormal placentation. Methods We reviewed the medical records of 137 patients who underwent elective cesarean section for placenta previa between July 2009 and March 2014. Cesarean section and Bakri balloon insertion were performed by a single qualified surgeon. The Bakri balloon was applied when blood loss during cesarean delivery exceeded 1,000 mL. Results Sixty-four patients (46.7%) required uterine balloon tamponade during cesarean section due to postpartum bleeding from the lower uterine segment, of whom 50 (78.1%) had placenta previa totalis. The overall success rate was 75% (48/64) for placenta previa patients. Previous cesarean section history, anterior placenta, peripartum platelet count, and disseminated intravascular coagulopathy all significantly differed according to balloon success or failure (all p<0.05). The drainage amount over 1 hour was 500 mL (20–1200 mL) in the balloon failure group and 60 mL (5–500 mL) in the balloon success group (p<0.01). Conclusion Intrauterine tamponade with a Bakri balloon is an adequate adjunct management for postpartum hemorrhage following cesarean section for placenta previa to preserve the uterus. This method is simple to apply, non-invasive, and inexpensive. However, possible factors related to failure of Bakri balloon tamponade for placenta previa patients such as prior cesarean section history, anterior placentation, thrombocytopenia, presence of DIC at the time of catheter insertion, and catheter drainage volume more than 500 mL within 1 hour of catheter placement should be recognized, and the next-line management should be prepared in advance. PMID:26263014
Lamichhane, Sujan; Anderson, Jordan; Remund, Tyler; Kelly, Patrick
2015-01-01
Abstract Drug‐coated balloons (DCBs) have now emerged as a promising approach to treat peripheral artery disease. However, a significant amount of drug from the balloon surface is lost during balloon tracking and results in delivering only a subtherapeutic dose of drug at the diseased site. Hence, in this study, the use of dextran sulfate (DS) polymer was investigated as a platform to control the drug release from balloons. An antiproliferative drug, paclitaxel (PAT), was incorporated into DS films (PAT‐DS). The characterizations using SEM, FT‐IR, and DSC showed that the films prepared were smooth and homogenous with PAT molecularly dispersed in the bulk of DS matrix in amorphous form. An investigation on the interaction of smooth muscle cells (SMCs) with control‐DS and PAT‐DS films showed that both films inhibited SMC growth, with a superior inhibitory effect observed for PAT‐DS films. PAT‐DS coatings were then produced on balloon catheters. The integrity of coatings was well‐maintained when the balloons were either deflated or inflated. In this study, up to 2.2 µg/mm2 of PAT was loaded on the balloons using the DS platform. Drug elution studies showed that only 10 to 20% of the total PAT loaded was released from the PAT‐DS coated balloons during the typical time period of balloon tracking (1 min) and then ∼80% of the total PAT loaded was released during the typical time period of balloon inflation and treatment (from 1 min to 4 min). Thus, this study demonstrated the use of DS as a platform to control drug delivery from balloons. © 2015 The Authors Journal of Biomedical Materials Research Part B: Applied Biomaterials Published by Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1416–1430, 2016. PMID:26227252
NASA Technical Reports Server (NTRS)
Rosen, James M.; Hofmann, D. J.; Carpenter, J. R.; Harder, J. W.; Oltsmans, S. J.
1988-01-01
Balloon-borne frost point measurements were performed over Antarctica during September-October 1987 as part of the NOZE II effort at McMurdo. The results show water mixing ratios on the order of 2 ppmv in the 20 km region, suggesting that models of the springtime Antarctic stratosphere should be based on approximately 2 ppmv water vapor. Evidence indicating that some PSCs form at temperatures higher than the frost point in the 15 to 20 km region is discussed. This supports the binary HNO3-H2O theory of PSC composition.
Lin, Yuan-xiang; Lin, Kun; Kang, De-zhi; Liu, Xin-xiu; Wang, Xing-fu; Zheng, Shu-fa; Yu, Liang-hong; Lin, Zhang-ya
2015-05-01
Dysmorphic neurons and balloon cells constitute the neuropathological hallmarks of type II focal cortical dysplasias (FCDs) with refractory epilepsy. The genesis of these cells may be critical to the histological findings in type II FCD. Recent work has shown enhanced activation of the mTOR cascade in both balloon cells and dysmorphic neurons, suggesting a common pathogenesis for these two neuropathological hallmarks. A direct comparative analysis of balloon cells and dysmorphic neurons might identify a molecular link between balloon cells and dysmorphic neurons. Here, we addressed whether PDK1-AKT-mTOR activation differentiates balloon cells from dysmorphic neurons. We used immunohistochemistry with antibodies against phosphorylated (p)-PDK1 (Ser241), p-AKT (Thr308), p-AKT (Ser473), p-mTOR (Ser2448), p-P70S6K (Thr229), and p-p70S6 kinase (Thr389) in balloon cells compared with dysmorphic neurons. Strong or moderate staining for components of the PDK1-AKT-mTOR signaling pathway was observed in both balloon cells and dysmorphic neurons. However, only a few pyramidal neurons displayed weak staining in control group (perilesional neocortex and histologically normal neocortex). Additionally, p-PDK1 (Ser241) and p-AKT (Thr308) staining in balloon cells were stronger than in dysmorphic neurons, whereas p-P70S6K (Thr229) and p-p70S6 kinase (Thr389) staining in balloon cells was weaker than in dysmorphic neurons. In balloon cells, p-AKT (Ser473) and p-mTOR (Ser2448) staining was comparable with the staining in dysmorphic neurons. Our data support the previously suggested pathogenic relationship between balloon cells and dysmorphic neurons concerning activation of the PDK1-AKT-mTOR, which may play important roles in the pathogenesis of type II FCD. Differential expression of some components of the PDK1-AKT-mTOR pathway between balloon cells and dysmorphic neurons may result from cell-specific gene expression. Copyright © 2015 Elsevier B.V. All rights reserved.
High altitude flights in equatorial regions
NASA Astrophysics Data System (ADS)
Redkar, R. T.
A thorough analysis of balloon flights made from Hyderabad, India (Latitude 17°28'N, Longitude 78°35'E), and other equatorial sites has been made. It has been shown that limited success is expected for flights made from equatorial latitudes with balloons made out of natural colour polyethylene film, since the best known balloon film in the world today viz. Winzen Stratofilm is tested for low temperature brittleness only at -80°C., whereas the tropopause temperatures over equatorial latitudes vary between -80°C and -90°C. The success becomes even more critical when flights are made with heavy payloads and larger balloons particularly at night when in the absence of solar radiation the balloon film becomes more susceptible to low temperature brittle failure. It is recommended that in case of capped balloons longer caps should be used to fully cover the inflated protion of the balloon at the higher level equatorial tropopause. It is also advised that the conditions such as wind shears in the tropopause should be critically studied before launching and a day with the tropopause temperature nearer to -80°C should be chosen. Special care also should be taken while handling the balloon on ground and during launching phase. Properties of Winzen Stratofilm have been critically studied and fresh mandates have been recommended on the basis of limiting values of film stresses which caused balloon failures in the equatorial tropopause. It is also emphasized that the data on such flights is still meagre especially for flights with heavy payloads and larger balloons. It has been also shown that it is safest to use balloons made out of grey coloured film which retains its flexibility with the absorption of solar radiation, the success obtained with such balloons so far being 100%. The drawback, however, is that these balloons cannot be used for night flights. Stratospheric wind regimes over Hyderabad are also discussed with a view to determine the period over which long duration flights can be made. The data available, however, is meagre and it is recommended that more frequent special wind ascents be made to collect adequate statistical data from which reliable conclusions could be drawn through critical analysis.
NASA Astrophysics Data System (ADS)
Khaykin, Sergey M.; Pommereau, Jean-Pierre; Riviere, Emmanuel D.; Held, Gerhard; Ploeger, Felix; Ghysels, Melanie; Amarouche, Nadir; Vernier, Jean-Paul; Wienhold, Frank G.; Ionov, Dmitry
2016-09-01
High-resolution in situ balloon measurements of water vapour, aerosol, methane and temperature in the upper tropical tropopause layer (TTL) and lower stratosphere are used to evaluate the processes affecting the stratospheric water budget: horizontal transport (in-mixing) and hydration by cross-tropopause overshooting updrafts. The obtained in situ evidence of these phenomena are analysed using satellite observations by Aura MLS (Microwave Limb Sounder) and CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) together with trajectory and transport modelling performed using CLaMS (Chemical Lagrangian Model of the Stratosphere) and HYSPLIT (Hybrid Single-Particle Lagrangian Integrated Trajectory) model. Balloon soundings were conducted during March 2012 in Bauru, Brazil (22.3° S) in the frame of the TRO-Pico campaign for studying the impact of convective overshooting on the stratospheric water budget. The balloon payloads included two stratospheric hygrometers: FLASH-B (Fluorescence Lyman-Alpha Stratospheric Hygrometer for Balloon) and Pico-SDLA instrument as well as COBALD (Compact Optical Backscatter Aerosol Detector) sondes, complemented by Vaisala RS92 radiosondes. Water vapour vertical profiles obtained independently by the two stratospheric hygrometers are in excellent agreement, ensuring credibility of the vertical structures observed. A signature of in-mixing is inferred from a series of vertical profiles, showing coincident enhancements in water vapour (of up to 0.5 ppmv) and aerosol at the 425 K (18.5 km) level. Trajectory analysis unambiguously links these features to intrusions from the Southern Hemisphere extratropical stratosphere, containing more water and aerosol, as demonstrated by MLS and CALIPSO global observations. The in-mixing is successfully reproduced by CLaMS simulations, showing a relatively moist filament extending to 20° S. A signature of local cross-tropopause transport of water is observed in a particular sounding, performed on a convective day and revealing water vapour enhancements of up to 0.6 ppmv as high as the 404 K (17.8 km) level. These are shown to originate from convective overshoots upwind detected by an S-band weather radar operating locally in Bauru. The accurate in situ observations uncover two independent moisture pathways into the tropical lower stratosphere, which are hardly detectable by space-borne sounders. We argue that the moistening by horizontal transport is limited by the weak meridional gradients of water, whereas the fast convective cross-tropopause transport, largely missed by global models, can have a substantial effect, at least at a regional scale.
NASA Technical Reports Server (NTRS)
Ball, Danny (Technical Monitor); Pagitz, M.; Pellegrino, Xu S.
2004-01-01
This paper presents a computational study of the stability of simple lobed balloon structures. Two approaches are presented, one based on a wrinkled material model and one based on a variable Poisson s ratio model that eliminates compressive stresses iteratively. The first approach is used to investigate the stability of both a single isotensoid and a stack of four isotensoids, for perturbations of in.nitesimally small amplitude. It is found that both structures are stable for global deformation modes, but unstable for local modes at su.ciently large pressure. Both structures are stable if an isotropic model is assumed. The second approach is used to investigate the stability of the isotensoid stack for large shape perturbations, taking into account contact between di.erent surfaces. For this structure a distorted, stable configuration is found. It is also found that the volume enclosed by this con.guration is smaller than that enclosed by the undistorted structure.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-14
... flying hot air balloons transiting across the Lower Mississippi River. Entry into this zone is prohibited... mariners from the safety hazards associated with a fireworks display and low flying hot air balloons... mariners from the safety hazards associated with a fireworks display and low flying hot air balloons...
Lightweight Valve Closes Duct Quickly
NASA Technical Reports Server (NTRS)
Fournier, Walter L.; Burgy, N. Frank
1991-01-01
Expanding balloon serves as lightweight emergency valve to close wide duct. Uninflated balloon stored in housing of duct. Pad resting on burst diaphragm protects balloon from hot gases in duct. Once control system triggers valve, balloon inflates rapidly to block duct. Weighs much less than does conventional butterfly, hot-gas, or poppet valve capable of closing duct of equal diameter.
Retrieval of impacted broken balloon by balloon inflation in guiding catheter.
Mehta, Vimal; Pandit, Bhagya Narayan; Yusuf, Jamal; Mukhopadhyay, Saibal; Trehan, Vijay; Tyagi, Sanjay
2014-07-01
Broken catheter fragment in a coronary artery during percutaneous coronary angioplasty is a rare complication. It can result in serious problems as a result of thrombus formation and embolization of broken fragment. We report an unusual complication of a broken balloon catheter during angioplasty, which was successfully retrieved by balloon inflation in guiding catheter technique.
JACEE long duration balloon flights. [Japanese-American Cooperative Emulsion Experiment
NASA Technical Reports Server (NTRS)
Burnett, T.; Iwai, J.; Dake, S.; Derrickson, J.; Fountain, W.; Fuki, M.; Gregory, J.; Hayashi, T.; Holynski, R.; Jones, W. V.
1989-01-01
JACEE balloon-borne emulsion chamber detectors are used to observe the spectra and interactions of cosmic ray protons and nuclei in the energy range 1 to 100A TeV. Experiments with long duration mid-latitude balloon flights and characteristics of the detector system that make it ideal for planned Antarctic balloon flights are discussed.
NASA Langley Research Center tethered balloon systems
NASA Technical Reports Server (NTRS)
Owens, Thomas L.; Storey, Richard W.; Youngbluth, Otto
1987-01-01
The NASA Langley Research Center tethered balloon system operations are covered in this report for the period of 1979 through 1983. Meteorological data, ozone concentrations, and other data were obtained from in situ measurements. The large tethered balloon had a lifting capability of 30 kilograms to 2500 meters. The report includes descriptions of the various components of the balloon systems such as the balloons, the sensors, the electronics, and the hardware. Several photographs of the system are included as well as a list of projects including the types of data gathered.
Kwan, E S; Heilman, C B; Shucart, W A; Klucznik, R P
1991-12-01
Two patients with distal basilar aneurysms were treated with intra-aneurysmal balloon occlusion. After apparently successful therapy, follow-up angiograms demonstrated aneurysm enlargement with balloon migration distally in the sac. Geometric mismatch between the base of the balloons and the aneurysm neck together with transmitted pulsation through the 2-hydroxyl-ethylmethacrylate (HEMA)-filled balloon directly contributed to aneurysm enlargement. In this report, the authors discuss the problems of progressive aneurysm enlargement due to a "water-hammer effect" and the possibility of hemorrhage following subtotal occlusion.
Early Cosmic Ray Research with Balloons
NASA Astrophysics Data System (ADS)
Walter, Michael
2013-06-01
The discovery of cosmic rays by Victor Hess during a balloon flight in 1912 at an altitude of 5350 m would not have been possible without the more than one hundred years development of scientific ballooning. The discovery of hot air and hydrogen balloons and their first flights in Europe is shortly described. Scientific ballooning was mainly connected with activities of meteorologists. It was also the geologist and meteorologist Franz Linke, who probably observed first indications of a penetrating radiation whose intensity seemed to increase with the altitude. Karl Bergwitz and Albert Gockel were the first physicists studying the penetrating radiation during balloon flights. The main part of the article deals with the discovery of the extraterrestrial radiation by V. Hess and the confirmation by Werner Kolhörster.
NASA Technical Reports Server (NTRS)
Rinsland, C. P.; Boughner, R. E.; Larsen, J. C.; Goldman, A.; Murcray, F. J.; Murcray, D. G.
1984-01-01
Simultaneous stratospheric vertical profiles of NO and NO2 at sunset were derived from an analysis of infrared solar absorption spectra recorded from a float altitude of 33 km with an interferometer system during a balloon flight. A nonlinear least squares procedure was used to analyze the spectral data in regions of absorption by NO and NO2 lines. Normalized factors, determined from calculations of time dependent altitude profiles with a detailed photochemical model, were included in the onion peeling analysis to correct for the rapid diurnal changes in NO and NO2 concentrations with time near sunset. The CO2 profile was also derived from the analysis and is reported.
Remote sensing from the desktop up, a students's personal stairway to space (Invited)
NASA Astrophysics Data System (ADS)
Church, W.
2013-12-01
Doing science with real-time quantitative experiments is becoming more and more affordable and accessible. Because lab equipment is more affordable and accessible, many universities are using lab class models wherein students conduct their experiments in informal settings such as the dorm, outside, or other places throughout the campus. Students are doing real-time measurements homework outside of class. By liberating experiments from facilities, the hope is to give students more experimental science opportunities. The challenge is support. In lab settings, instructors and peers can help students if they have trouble with the steps of assembling their experimental set-up, configuring the data acquisition software, conducting the real-time measurement and doing the analysis. Students working on their own in a dorm do not benefit from this support. Furthermore, when students are given the open ended experimental task of designing their own measurement system, they may need more guidance. In this poster presentation, I will articulate a triangle model to support students through the task of finding the necessary resources to design and build a mission to space. In the triangle model, students have access to base layer concept and skill resources to help them build their experiment. They then have access to middle layer mini-experiments to help them configure and test their experimental set-up. Finally, they have a motivating real-time experiment. As an example of this type of resource used in practice, I will have a balloon science remote sensing project as a stand-in for a balloon mission to 100,000 feet. I will use an Arduino based DAQ system and XBee modules for wireless data transmission to a LabVIEW front-panel. I will attach the DAQ to a tethered balloon to conduct a real-time microclimate experiment in the Moscone Center. Expanded microclimate studies can be the capstone project or can be a stepping-stone to space wherein students prepare a sensor package for a weather balloon launch to 100,000 feet.
NASA Astrophysics Data System (ADS)
Renard, Jean-Baptiste; Dulac, François; Vignelles, Damien; Jeannot, Matthieu; Verdier, Nicolas; Chazette, Patrick; Crenn, Vincent; Sciare, Jean; Totems, Julien; Durand, Pierre; Barret, Brice; Jambert, Corinne; Mallet, Marc; Menut, Laurent; Mailler, Sylvain; Basart, Sara; Baldasano, José Maria
2015-04-01
LOAC (Light Optical Aerosol Counter) is a new small optical particle counter/sizer of ~250 grams designed to fly under all kinds of balloons. The measurements are conducted at two scattering angles (12° and 60°), allowing the determination of the aerosol particle concentrations in 19 size classes within a diameter range of ~0.2-100 µm and some identification of the nature of particles dominating different size classes. Following laboratory calibration, the sensor particularly discriminates wet or liquid particles, mineral dust, soot carbon particles and salts. Comparisons with other in situ sensors at the surface and with remote sensing measurements on the vertical were performed to give confidence in measurements. The instrument has been operated at the surface, under all kinds of balloons up to more than 35 km in altitude, including tethered, sounding, open stratospheric and new boundary-layer pressurized drifting balloons (BLPB) from CNES, and was tested on board a small UAV. Operations encompass a variety of environments including the Arctic (Reykjavik, Island, and Kiruna, Sweden), Brazil (Sao Paolo), the western Mediterranean Basin, southwestern France, peri-urban (Ile de France) and urban areas (Paris and Vienna). Presented results are focused on the LOAC balloon-borne measurements performed in the western Mediterranean basin during MISTRALS/ChArMEx campaigns (Mediterranean Integrated Studies aT Regional And Local Scales/the Chemistry-Aerosol Mediterranean Experiment; http://www.mistrals-hjome.org; http://charmex.lsce.ipsl.fr), with a focus on African dust events. Two test flights with a first version of LOAC under sounding balloons were first successfully performed in late June 2012 near Marseille during an intense dust event. In 2013, 19 LOAC flights have been performed under meteorological balloons and 12 under low altitude drifting balloons, most of them from Minorca Island (Spain) in June and early July and others from Levant Island (south of France) in late July and early August . A number of the 2013 flights were coupled with ozone concentration measurements (see presentation of Gheusi et al. in the same session). LOAC balloons were especially, but not only, dedicated to study the various Saharan dust events that occurred during the campaign. In particular, a series of flights were conducted every 12 hours during the 15-19 June dust event. Forest fire smoke from North America was also sampled in late June over Minorca, as well as anthropogenic polluted layers in various occasions. LOAC data (available from ChArMEx database http://mistrals.sedoo.fr/ChArMEx) are interpreted with the help of coincident lidar, sun photometer remote sensing measurements available in Menorca, and satellite products and air mass trajectories. The sounding flights allow us to determine the vertical extent of the various aerosol layers, and to follow the particle size distribution and the concentration evolution along the vertical. The low altitude drifting balloons, which stayed roughly at constant altitude between 350 and 3330 m up to more than 25 h, allow us to study the time-evolution of the aerosol concentrations in the same air mass. Under both balloon types, LOAC has detected larges particles up to ~30 µm in diameter. The flights drifting within dust layers indicate that there is a relatively stable particle size distribution during transport over the sea, with no clear sedimentation loss of large particles. Aerosol simulations with the CHIMERE and NMMB/§BSC chemistry-transport models are compared to LOAC measurements. Acknowledgements: LOAC was developed with support of the French ANR. Balloon operations were performed by CNES and special acknowledgements are addressed to Gilles Dupouy, Françoise Douchin and collaborators for field operations. Alexis Doerenbacher from Météo-France and Claude Basdevant from Ecole Polytechnique are also acknowledged for their helpful contribution in providing balloon-related forecasts, quicklooks and data (http://www.lmd.polytechnique.fr/BAMED/index.html). The LOAC balloon campaigns were mainly funded by CNES, ADEME and CNRS/INSU, with support from CEA and Météo-France.
Agyei, Justice O; Alvarez, Cynthia; Iqbal, Azher; Fanous, Andrew A; Siddiqui, Adnan H
2018-06-01
A rare complication following tracheotomy is common carotid artery (CCA) pseudoaneurysm. Treatment modalities for CCA pseudoaneurysm include surgical repair and single-artery balloon-covered stent graft technique. We describe successful treatment of tracheotomy-related CCA pseudoaneurysm with the "kissing balloon" expandable stent graft technique. We successfully implemented the kissing balloon expandable stent graft technique for treatment of a large, narrow-necked, bilobed CCA pseudoaneurysm that arose owing to a tracheotomy complication. The pseudoaneurysm was detected while performing a diagnostic angiogram of the aortic arch and surrounding vessels. The stent was deployed while the 2 balloons were introduced in a kissing manner such that they faced one another to avoid occlusion of either branch of the innominate artery coming into contact; 1 balloon was inflated at the origin of the right subclavian artery, and the other was inflated at the right innominate artery simultaneously. The pseudoaneurysm was successfully contained; normal blood flow was restored in the CCA. The balloons were deflated and withdrawn. The patient remained neurologically intact after the procedure. The kissing balloon technique is a safe and effective alternative to surgical repair, as it prevents morbidities associated with the surgical procedure. Also, this technique decreases the risk of major side-branch occlusion associated with the single-artery balloon-covered stent graft technique. Copyright © 2018 Elsevier Inc. All rights reserved.
Despott, Edward J; Murino, Alberto; Bourikas, Leonidas; Nakamura, Masanao; Ramachandra, Vino; Fraser, Chris
2015-05-01
Spiral enteroscopy is a recently introduced technology alternative to balloon-assisted enteroscopy for examination of the small bowel. To compare small bowel insertion depths and procedure duration by spiral enteroscopy and double-balloon enteroscopy performed in the same cohort of patients, in immediate succession, using the same method of insertion depth estimation. A prospective, back-to-back comparative study was performed in 15 patients. Spiral enteroscopy procedures were performed first and a tattoo was placed to mark the most distal point. Double-balloon enteroscopy passed the tattoo placed at spiral enteroscopy in 14/15 cases (93%). Median insertion depths for double-balloon enteroscopy and spiral enteroscopy were 265cm and 175cm, respectively (P=0.004). Median time to achieve maximal depth of insertion was significantly shorter for spiral enteroscopy compared with double-balloon enteroscopy (24min vs. 45min, respectively; P=0.0005). However, in 14 patients no differences were found in median time to reach the same insertion depth (P=0.28). Double-balloon enteroscopy achieved significantly greater small bowel insertion depth than spiral enteroscopy. Although overall double-balloon enteroscopy procedure duration was longer, the time taken to reach the same small bowel insertion depth by both spiral enteroscopy and double-balloon enteroscopy was similar. Copyright © 2015 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.
Launching Garbage-Bag Balloons.
ERIC Educational Resources Information Center
Kim, Hy
1997-01-01
Presents a modification of a procedure for making and launching hot air balloons made out of garbage bags. Student instructions for balloon construction, launching instructions, and scale diagrams are included. (DDR)
Dutch Viking TROS Aktua Special
NASA Technical Reports Server (NTRS)
1986-01-01
Footage shows the night vertical takeoff of the Viking Hollan hot air balloon. The crew is shown participating in survival technique training, boarding the plane to depart to Canada, and preparing for the vertical takeoff in the hot air balloon across the Atlantic Ocean. Scenes also include the making of the capsule for the balloon, some flight activities, and the landing of the balloon.
Alsamhi, Saeed Hamood; Ansari, Mohd Samar; Ma, Ou; Almalki, Faris; Gupta, Sachin Kumar
2018-05-23
The actions taken at the initial times of a disaster are critical. Catastrophe occurs because of terrorist acts or natural hazards which have the potential to disrupt the infrastructure of wireless communication networks. Therefore, essential emergency functions such as search, rescue, and recovery operations during a catastrophic event will be disabled. We propose tethered balloon technology to provide efficient emergency communication services and reduce casualty mortality and morbidity for disaster recovery. The tethered balloon is an actively developed research area and a simple solution to support the performance, facilities, and services of emergency medical communication. The most critical requirement for rescue and relief teams is having a higher quality of communication services which enables them to save people's lives. Using our proposed technology, it has been reported that the performance of rescue and relief teams significantly improved. OPNET Modeler 14.5 is used for a network simulated with the help of ad hoc tools (Disaster Med Public Health Preparedness. 2018;page 1 of 8).
UV/visible albedos from airborne measurements
NASA Astrophysics Data System (ADS)
Webb, A.; Kylling, A.; Stromberg, I.
2003-04-01
During the INSPECTRO campaign effective surface albedo was measured at UV and visible wavelengths from two airborne platforms, a Cessna light aircraft and a hot air balloon. On board the Cessna was a scanning spectroradiometer measuring from 300 - 500nm at 10nm intervals. The NILU cube, with 6 faces and two UV channels at 312 and 340nm, was suspended beneath the hot air balloon. Flights took place over East Anglia during September, 2002. Balloon flights were made below cloud layers, while the Cessna flew both above and below cloud. The Cessna also flew over Barton Bendish, where surface albedos have been measured for ground truthing of satellite data, and measured the effective albedo at four visible wave- lengths in the centres of the satellite bandpass functions. Results of measurements from the different platforms are compared, and model simulations used to deduce the surface albedo from the effective albedo at altitude, giving, for example, an albedo of 0.02 ± 0.01 at 340nm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, T., E-mail: xietao@ustc.edu.cn; Key Laboratory of Geospace Environment, CAS, Hefei, Anhui 230026; Qin, H.
A unified ballooning theory, constructed on the basis of two special theories [Zhang et al., Phys. Fluids B 4, 2729 (1992); Y. Z. Zhang and T. Xie, Nucl. Fusion Plasma Phys. 33, 193 (2013)], shows that a weak up-down asymmetric mode structure is normally formed in an up-down symmetric equilibrium; the weak up-down asymmetry in mode structure is the manifestation of non-trivial higher order effects beyond the standard ballooning equation. It is shown that the asymmetric mode may have even higher growth rate than symmetric modes. The salient features of the theory are illustrated by investigating a fluid model formore » the ion temperature gradient (ITG) mode. The two dimensional (2D) analytical form of the ITG mode, solved in ballooning representation, is then converted into the radial-poloidal space to provide the natural boundary condition for solving the 2D mathematical local eigenmode problem. We find that the analytical expression of the mode structure is in a good agreement with finite difference solution. This sets a reliable framework for quasi-linear computation.« less
Mollace, Vincenzo; Ragusa, Salvatore; Sacco, Iolanda; Muscoli, Carolina; Sculco, Francesca; Visalli, Valeria; Palma, Ernesto; Muscoli, Saverio; Mondello, Luigi; Dugo, Paola; Rotiroti, Domenicantonio; Romeo, Francesco
2008-06-01
Lectin-like oxyLDL receptor-1 (LOX-1) has recently been suggested to be involved in smooth muscle cell (SMC) proliferation and neointima formation in injured blood vessels. This study evaluates the effect of the nonvolatile fraction (NVF), the antioxidant component of bergamot essential oil (BEO), on LOX-1 expression and free radical generation in a model of rat angioplasty. Common carotid arteries injured by balloon angioplasty were removed after 14 days for histopathological, biochemical, and immunohistochemical studies. Balloon injury led to a significant restenosis with SMC proliferation and neointima formation, accompanied by increased expression of LOX-1 receptor, malondialdehyde and superoxide formation, and nitrotyrosine staining. Pretreatment of rats with BEO-NVF reduced the neointima proliferation together with free radical formation and LOX-1 expression in a dose-dependent manner. These results suggest that natural antioxidants may be relevant in the treatment of vascular disorders in which proliferation of SMCs and oxyLDL-related endothelial cell dysfunction are involved.
Mechanical properties of ANTRIX balloon film and fabrication of single cap large volume balloons
NASA Astrophysics Data System (ADS)
Suneel Kumar, B.; Sreenivasan, S.; Subba Rao, J. V.; Manchanda, R. K.
2008-11-01
The zero pressure plastic balloons used for high altitude studies are generally made from polyethylene material. Tensile properties of the thin film polymer are the key parameters for material selection due to extremely low temperature of -90 °C encountered by the balloons in the tropopause region during the ascent at equatorial latitudes. The physical and structural properties of the material determine the uniformity of the stress distribution over the entire shell. Load stresses from the suspended load propagate via load tapes heat sealed along with the gore seals as per the balloon design. A balance between this heat seal strength and the film strength is a desirable property of the basic resin in terms of the bubble strength, gauge uniformity, and long-term storage properties. In addition, the design of the top shell of the balloon and its stress distribution play an important role since only a fraction of the balloon is deployed during the filling operation and the ascent. In this paper we describe the mechanical properties of the 'ANTRIX' film developed by us and the optimized design of single cap balloons, which have been successfully used in our experiments over the past 5 years.
Introduction (Special Issue on Scientific Balloon Capabilities and Instrumentation)
NASA Technical Reports Server (NTRS)
Gaskin, Jessica A.; Smith, I. S.; Jones, W. V.
2014-01-01
In 1783, the Montgolfier brothers ushered in a new era of transportation and exploration when they used hot air to drive an un-tethered balloon to an altitude of 2 km. Made of sackcloth and held together with cords, this balloon challenged the way we thought about human travel, and it has since evolved into a robust platform for performing novel science and testing new technologies. Today, high-altitude balloons regularly reach altitudes of 40 km, and they can support payloads that weigh more than 3,000 kg. Long-duration balloons can currently support mission durations lasting 55 days, and developing balloon technologies (i.e. Super-Pressure Balloons) are expected to extend that duration to 100 days or longer; competing with satellite payloads. This relatively inexpensive platform supports a broad range of science payloads, spanning multiple disciplines (astrophysics, heliophysics, planetary and earth science.) Applications extending beyond traditional science include testing new technologies for eventual space-based application and stratospheric airships for planetary applications.
Fracture, inflation and floatation embolisation of PTCA balloon.
O'Neill, Louisa; Sowbhaga, Vinay; Owens, Patrick
2015-01-09
This case outlines an unusual complication of coronary intervention, the likely mechanisms leading to this and possible retrieval options. It is the first case to the best of our knowledge reporting this complication. A 78-year-old Caucasian man underwent coronary stenting. During the procedure kinking and subsequent fracture of a non-compliant percutaneous transluminal coronary angioplasty (PTCA) balloon occurred. Injection of contrast down the guide to opacify the coronary arteries resulted in 'inflation' of the balloon with air, and embolisation of the inflated balloon into the proximal left anterior descending artery. The embolised balloon was retrieved by removal of the guide catheter and wire as a unit. The patient had a good angiographic outcome. This case highlights risks associated with usage of kinked balloons catheters, and describes for the first time to our knowledge, the inflation of a PTCA balloon with air from its shaft within the catheter, causing 'floatation' embolisation into the coronary artery. 2015 BMJ Publishing Group Ltd.
Fracture, inflation and floatation embolisation of PTCA balloon
O'Neill, Louisa; Sowbhaga, Vinay; Owens, Patrick
2015-01-01
This case outlines an unusual complication of coronary intervention, the likely mechanisms leading to this and possible retrieval options. It is the first case to the best of our knowledge reporting this complication. A 78-year-old Caucasian man underwent coronary stenting. During the procedure kinking and subsequent fracture of a non-compliant percutaneous transluminal coronary angioplasty (PTCA) balloon occurred. Injection of contrast down the guide to opacify the coronary arteries resulted in ‘inflation’ of the balloon with air, and embolisation of the inflated balloon into the proximal left anterior descending artery. The embolised balloon was retrieved by removal of the guide catheter and wire as a unit. The patient had a good angiographic outcome. This case highlights risks associated with usage of kinked balloons catheters, and describes for the first time to our knowledge, the inflation of a PTCA balloon with air from its shaft within the catheter, causing ‘floatation’ embolisation into the coronary artery. PMID:25576524
Nonlinear ELM simulations based on a nonideal peeling–ballooning model using the BOUT++ code
Xu, X. Q.; Dudson, B. D.; Snyder, P. B.; ...
2011-09-23
A minimum set of equations based on the peeling–ballooning (P–B) model with nonideal physics effects (diamagnetic drift, E × B drift, resistivity and anomalous electron viscosity) is found to simulate pedestal collapse when using the BOUT++ simulation code, developed in part from the original fluid edge code BOUT. Linear simulations of P–B modes find good agreement in growth rate and mode structure with ELITE calculations. The influence of the E × B drift, diamagnetic drift, resistivity, anomalous electron viscosity, ion viscosity and parallel thermal diffusivity on P–B modes is being studied; we find that (1) the diamagnetic drift and Emore » × B drift stabilize the P–B mode in a manner consistent with theoretical expectations; (2) resistivity destabilizes the P–B mode, leading to resistive P–B mode; (3) anomalous electron and parallel ion viscosities destabilize the P–B mode, leading to a viscous P–B mode; (4) perpendicular ion viscosity and parallel thermal diffusivity stabilize the P–B mode. With addition of the anomalous electron viscosity under the assumption that the anomalous kinematic electron viscosity is comparable to the anomalous electron perpendicular thermal diffusivity, or the Prandtl number is close to unity, it is found from nonlinear simulations using a realistic high Lundquist number that the pedestal collapse is limited to the edge region and the ELM size is about 5–10% of the pedestal stored energy. Furthermore, this is consistent with many observations of large ELMs. The estimated island size is consistent with the size of fast pedestal pressure collapse. In the stable α-zones of ideal P–B modes, nonlinear simulations of viscous ballooning modes or current-diffusive ballooning mode (CDBM) for ITER H-mode scenarios are presented.« less
Tight swimming trunks to prevent post scrotal surgery: an experimental justification.
Al-Abed, Yahya A; Carr, Thomas W
2013-01-01
To conduct a study to measure the pressure effects of the different scrotal supports applied on a simulated expanding scrotal hematoma. We created a model of an expanding hematoma with simultaneous pressure recording using a urodynamics system. Pressures were recorded independently first without application of any support. Then, three types of scrotal supports were tested, including Euron Net Knickers, scrotal suspensory bandage, and tight swimming trunks brand Speedo® brief and shorts. Subsequent pressures were recorded using the model created, which was applied inside the supports worn by two male volunteers A and B. Without any external compression, the pressure inside the simulated expanding hematoma "balloon" reached a maximum of 15 cmH2O. The pressures measured whilst wearing "Netelast knickers" in both subjects A and B reached a maximum of 15 cmH2O suggesting that this garment exerted no measurable compression. The suspensory scrotal support was then tested in both subjects. As the balloon started to fill with saline, the simulated hematoma pushed the scrotal support forward resulting in falling of the balloon outside the scrotal support. Subsequently, Speedo® briefs and shorts were tested. With Speedo® briefs, maximum filling pressures of 49 cmH2O and 40 cmH2O were reached in subjects A and B, respectively. When using Speedo® shorts, however, maximum pressures of 55 cmH2O in subject A and 54 cmH2O in subject B were reached at the end of the balloon filling to 300 mL of saline. The use of tight swimming trunks (Speedo®) has led to satisfactory results in the prevention of hematoma post scrotal surgery.
Toroidal Rotation and 3D Nonlinear Dynamics in the Peeling-Ballooning Model of ELMs
NASA Astrophysics Data System (ADS)
Snyder, P. B.
2004-11-01
Maximizing the height of the edge transport barrier (or ``pedestal'') while maintaining acceptably small edge localized modes (ELMs) is a critical issue for tokamak performance. The peeling-ballooning model proposes that intermediate wavelength MHD instabilities are responsible for ELMs and impose constraints on the pedestal. Recent studies of linear peeling-ballooning stability have found encouraging agreement with observations [e.g. 1]. To allow more detailed prediction of mode characteristics, including eventually predictions of the ELM energy loss and its deposition, we consider effects of sheared toroidal rotation, as well as 3D nonlinear dynamics. An eigenmode formulation for toroidal rotation shear is developed and incorporated into the framework of the ELITE stability code [2], resolving the low rotation discontinuity in previous high-n results. Rotation shear is found to impact the structure of peeling-ballooning modes, causing radial narrowing and mode shearing. The calculated mode frequency is found to agree with observed rotation in the edge region in the early stages of the ELM crash. Nonlinear studies with the 3D BOUT and NIMROD codes reveal detailed characteristics of the early evolution of these edge instabilities, including the impact of non-ideal effects. The expected linear growth phase is followed by a fast crash event in which poloidally narrow, filamentary structures propagate radially outward from the pedestal region, closely resembling observed ELM events. Comparisons with ELM observations will be discussed. \\vspace0.25em [1] P.B. Snyder et al., Nucl. Fusion 44, 320 (2004); P.B. Snyder et al., Phys. Plasmas 9, 2037 (2002). [2] H.R. Wilson et al., Phys. Plasmas 9, 1277 (2002).
NASA Astrophysics Data System (ADS)
Roberts, Tjarda J.; Dütsch, Marina; Hole, Lars R.; Voss, Paul B.
2016-09-01
Observations from CMET (Controlled Meteorological) balloons are analysed to provide insights into tropospheric meteorological conditions (temperature, humidity, wind) around Svalbard, European High Arctic. Five Controlled Meteorological (CMET) balloons were launched from Ny-Ålesund in Svalbard (Spitsbergen) over 5-12 May 2011 and measured vertical atmospheric profiles over coastal areas to both the east and west. One notable CMET flight achieved a suite of 18 continuous soundings that probed the Arctic marine boundary layer (ABL) over a period of more than 10 h. Profiles from two CMET flights are compared to model output from ECMWF Era-Interim reanalysis (ERA-I) and to a high-resolution (15 km) Arctic System Reanalysis (ASR) product. To the east of Svalbard over sea ice, the CMET observed a stable ABL profile with a temperature inversion that was reproduced by ASR but not captured by ERA-I. In a coastal ice-free region to the west of Svalbard, the CMET observed a stable ABL with strong wind shear. The CMET profiles document increases in ABL temperature and humidity that are broadly reproduced by both ASR and ERA-I. The ASR finds a more stably stratified ABL than observed but captured the wind shear in contrast to ERA-I. Detailed analysis of the coastal CMET-automated soundings identifies small-scale temperature and humidity variations with a low-level flow and provides an estimate of local wind fields. We demonstrate that CMET balloons are a valuable approach for profiling the free atmosphere and boundary layer in remote regions such as the Arctic, where few other in situ observations are available for model validation.
Experimental acute thrombotic stroke in baboons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Del Zoppo, G.J.; Copeland, B.R.; Harker, L.A.
1986-11-01
To study the effects of antithrombotic therapy in experimental stroke, we have characterized a baboon model of acute cerebrovascular thrombosis. In this model an inflatable silastic balloon cuff has been implanted by transorbital approach around the right middle cerebral artery (MCA), proximal to the take-off of the lenticulostriate arteries (LSA). Inflation of the balloon for 3 hours in six animals produced a stereotypic sustained stroke syndrome characterized by contralateral hemiparesis. An infarction volume of 3.2 +/- 1.5 cm3 in the ipsilateral corpus striatum was documented by computerized tomographic (CT) scanning at 10 days following stroke induction and 3.9 +/- 1.9more » cm3 (n = 4) at 14 days by morphometric neuropathologic determinations of brain specimens fixed in situ by pressure-perfusion with 10% buffered formalin. Immediate pressure-perfusion fixation following deflation of the balloon was performed in 16 additional animals given Evans blue dye intravenously prior to the 3 hour MCA balloon occlusion. Light microscopy and transmission electron microscopy consistently confirmed the presence of thrombotic material occluding microcirculatory branches of the right LSA in the region of Evans blue stain, but not those of the contralateral corpus striatum. When autologous 111In-platelets were infused intravenously in four animals from the above group prior to the transient 3 hour occlusion of the right MCA, gamma scintillation camera imaging of each perfused-fixed whole brain demonstrated the presence of a single residual focus of 111In-platelet activity involving only the Evans blue-stained right corpus striatum. Focal right hemispheric activity was equivalent to 0.55 +/- 0.49 ml of whole blood, and the occlusion score derived from histologic examination of the microcirculation of the Evans blue-stained corpus striatum averaged 34.8 +/- 2.8.« less
Wakamoto, Koki; Doi, Shigehiro; Nakashima, Ayumu; Kawai, Toru; Kyuden, Yasufumi; Naito, Takayuki; Asai, Mariko; Takahashi, Shunsuke; Murakami, Masaaki; Masaki, Takao
2018-03-01
This study was performed to investigate the effect of the balloon dilation pressure on the 12-month patency rate in patients with failed arteriovenous fistulas undergoing hemodialysis. In this multicenter, prospective, randomized trial, the 4-mm-diameter YOROI balloon was used for dilation of stenotic lesions. The balloons were inflated to a pressure of 8 atm (low-pressure group) or 30 atm to achieve complete expansion (high-pressure group). The 12-month patency rate after balloon angioplasty was analyzed by the Kaplan-Meier method and log-rank test and/or a Cox proportional hazard model. We also investigated the dilation pressure required to achieve complete expansion in the high-pressure group. In total, 71 patients were enrolled and allocated to either the low-pressure group (n = 34) or the high-pressure group (n = 37). The 12-month patency rates showed no significant difference between the low- and high-pressure groups (47% and 49%, respectively; p = 0.87). In the low-pressure group, the patency rate was not different between patients with complete dilation and residual stenosis (44% and 50%, respectively; p = 0.87). The Cox proportional hazard model revealed that the 12-month patency rate was associated with the stenosis diameter (hazard ratio 0.36; p = 0.001) and the presence of diabetes (hazard ratio 0.33; p = 0.018). Finally, the pressure required to achieve complete dilation was ≤20 atm in 76% of patients and ≤30 atm in 97% of patients. One patient required a dilation pressure of >30 atm. The patency rate does not differ between low-pressure dilation and high-pressure dilation.
Histological and Morphometric Analyses for Rat Carotid Artery Balloon Injury Studies
Tulis, David Anthony
2010-01-01
i. Summary Experiments aimed at analyzing the response of blood vessels to mechanical injury and ensuing remodeling responses often employ the highly characterized carotid artery balloon injury model in laboratory rats. This approach utilizes luminal insertion of a balloon embolectomy catheter into the common carotid artery with inflation and withdrawal resulting in an injury characterized by vascular endothelial cell (EC) denudation and medial wall distension. The adaptive response to this injury is typified by robust vascular smooth muscle cell (SMC) replication and migration, SMC apoptosis and necrosis, enhanced synthesis and deposition of extracellular matrix (ECM) components, partial vascular EC regeneration from the border zones, luminal narrowing and establishment of a neointima in time-dependent fashion. Evaluation of these adaptive responses to blood vessel injury can include acute and longer-term qualitative and quantitative measures including expression analyses, activity assays, immunostaining for a plethora of factors and signals, and morphometry of neointima formation and gross mural remodeling. This chapter presents a logical continuation of Chapter in this series that offers details for performing the rat carotid artery balloon injury model in a standard laboratory setting by providing commonly used protocols for performing histological and morphometric analyses in such studies. Moreover, procedures, caveats, and considerations included in this chapter are highly relevant for alternative animal vascular physiology/pathophysiology studies and in particular those related to mechanisms of vascular injury and repair. Included in this chapter are specifics for in situ perfusion-fixation, tissue harvesting and processing for both snap-frozen and paraffin-embedded protocols, specimen embedding and sectioning, slide preparation, several standard histological staining steps, and routine morphological assessment. Included in Notes are important caveats and considerations for practical use of these methods. PMID:18287663
PROGRESS IN THE PEELING-BALLOONING MODEL OF ELMS: TOROIDAL ROTATION AND 3D NONLINEAR DYNAMICS
DOE Office of Scientific and Technical Information (OSTI.GOV)
SNYDER,P.B; WILSON,H.R; XU,X.Q
2004-06-01
Understanding the physics of the H-Mode pedestal and edge localized modes (ELMs) is very important to next-step fusion devices for two primary reasons: (1) The pressure at the top of the edge barrier (''pedestal height'') strongly impacts global confinement and fusion performance, and (2) large ELMs lead to localized transient heat loads on material surfaces that may constrain component lifetimes. The development of the peeling-ballooning model has shed light on these issues by positing a mechanism for ELM onset and constraints on the pedestal height. The mechanism involves instability of ideal coupled ''peeling-ballooning'' modes driven by the sharp pressure gradientmore » and consequent large bootstrap current in the H-mode edge. It was first investigated in the local, high-n limit [1], and later quantified for non-local, finite-n modes in general toroidal geometry [2,3]. Important aspects are that a range of wavelengths may potentially be unstable, with intermediate n's (n {approx} 3-30) generally limiting in high performance regimes, and that stability bounds are strongly sensitive to shape [Fig l(a)], and to collisionality (i.e. temperature and density) [4] through the bootstrap current. The development of efficient MHD stability codes such as ELITE [3,2] and MISHKA [5] has allowed detailed quantification of peeling-ballooning stability bounds (e.g. [6]) and extensive and largely successful comparisons with observation (e.g. [2,6-9]). These previous calculations are ideal, static, and linear. Here we extend this work to incorporate the impact of sheared toroidal rotation, and the non-ideal, nonlinear dynamics which must be studied to quantify ELM size and heat deposition on material surfaces.« less
NASA Technical Reports Server (NTRS)
Horn, W. J.; Carlson, L. A.
1983-01-01
A FORTRAN computer program called THERMTRAJ is presented which can be used to compute the trajectory of high altitude scientific zero pressure balloons from launch through all subsequent phases of the balloon flight. In addition, balloon gas and film temperatures can be computed at every point of the flight. The program has the ability to account for ballasting, changes in cloud cover, variable atmospheric temperature profiles, and both unconditional valving and scheduled valving of the balloon gas. The program was verified for an extensive range of balloon sizes (from 0.5 to 41.47 million cubic feet). Instructions on program usage, listing of the program source deck, input data and printed and plotted output for a verification case are included.
Schober, Karsten E; Rhinehart, Jaylyn; Kohnken, Rebecca; Bonagura, John D
2017-12-01
Combined cutting balloon and high-pressure balloon dilation was performed in a dog with a double-chambered right ventricle and severe infundibular stenosis of the right ventricular outflow tract. The peak systolic pressure gradient across the stenosis decreased by 65% after dilation (from 187 mmHg before to 66 mmHg after) affirming the intervention as successful. However, early re-stenosis occurred within 3 months leading to exercise intolerance, exercise-induced syncope, and right-sided congestive heart failure. Cutting balloon followed by high-pressure balloon dilation provided temporary but not long-term relief of right ventricular obstruction in this dog. Copyright © 2017 Elsevier B.V. All rights reserved.
Lim, Ki Moo; Lee, Jeong Sang; Gyeong, Min-Soo; Choi, Jae-Sung; Choi, Seong Wook
2013-01-01
To quantify the reduction in workload during intra-aortic balloon pump (IABP) therapy, indirect parameters are used, such as the mean arterial pressure during diastole, product of heart rate and peak systolic pressure, and pressure-volume area. Therefore, we investigated the cardiac energy consumption during IABP therapy using a cardiac electromechanics model. We incorporated an IABP function into a previously developed electromechanical model of the ventricle with a lumped model of the circulatory system and investigated the cardiac energy consumption at different IABP inflation volumes. When the IABP was used at inflation level 5, the cardiac output and stroke volume increased 11%, the ejection fraction increased 21%, the stroke work decreased 1%, the mean arterial pressure increased 10%, and the ATP consumption decreased 12%. These results show that although the ATP consumption is decreased significantly, stroke work is decreased only slightly, which indicates that the IABP helps the failed ventricle to pump blood efficiently. PMID:23341718
Lim, Ki Moo; Lee, Jeong Sang; Gyeong, Min-Soo; Choi, Jae-Sung; Choi, Seong Wook; Shim, Eun Bo
2013-01-01
To quantify the reduction in workload during intra-aortic balloon pump (IABP) therapy, indirect parameters are used, such as the mean arterial pressure during diastole, product of heart rate and peak systolic pressure, and pressure-volume area. Therefore, we investigated the cardiac energy consumption during IABP therapy using a cardiac electromechanics model. We incorporated an IABP function into a previously developed electromechanical model of the ventricle with a lumped model of the circulatory system and investigated the cardiac energy consumption at different IABP inflation volumes. When the IABP was used at inflation level 5, the cardiac output and stroke volume increased 11%, the ejection fraction increased 21%, the stroke work decreased 1%, the mean arterial pressure increased 10%, and the ATP consumption decreased 12%. These results show that although the ATP consumption is decreased significantly, stroke work is decreased only slightly, which indicates that the IABP helps the failed ventricle to pump blood efficiently.
Morphological characterization of selected balloon films and its effects on balloon performances
NASA Technical Reports Server (NTRS)
Said, Magdi A.
1994-01-01
Morphological characterization of several polyethylene balloon films have been studied using various techniques. The objective is to determine, if any, differentiating structural or morphological features that can be related to the performance of these balloon film materials. The results of the study indicate that the films are composed of either linear low denstiy polyethylene (LLDPE) or low density polyethylene (LDPE). A selective examination of these data imply that films limited degree of branching and larger crystallites size (same % crystallinity) showed good mechanical properties that appear to correlate with their high level of success in balloon flights.
2002-12-05
KENNEDY SPACE CENTER, FLA. - Stephen Ezell, meteorological systems operator at Weather Station A, Cape Canaveral Air Force Station, gets ready to release a weather balloon. Such balloons are released twice a day. The package in Ezell's hand is a radio sonde that collects temperature and humidity data as the balloon rises. The data is released to agencies nationwide, including the 45th Space Wing, which uses the data for its daily weather reports. The weather station provides additional data to NASA for launches -- releasing 12 balloons in eight hours prior to liftoff - and landings - releasing 5 balloons in six and a half hours before expected touchdown.
2002-12-05
KENNEDY SPACE CENTER, FLA. -- Stephen Ezell, meteorological systems operator at Weather Station A, Cape Canaveral Air Force Station, releases a weather balloon. Such balloons are released twice a day. The package at the bottom is a radio sonde that collects temperature and humidity data as the balloon rises. The data is released to agencies nationwide, including the 45th Space Wing, which uses the data for its daily weather reports. The weather station provides additional data to NASA for launches -- releasing 12 balloons in eight hours prior to liftoff - and landings - releasing 5 balloons in six and a half hours before expected touchdown.
2002-12-05
KENNEDY SPACE CENTER, FLA. - Stephen Ezell, meteorological systems operator at Weather Station A, Cape Canaveral Air Force Station, gets ready to release a weather balloon. Such balloons are released twice a day. The package in Ezell's hand is a radio sonde that collects temperature and humidity data as the balloon rises. The data is released to agencies nationwide, including the 45th Space Wing, which uses the data for its daily weather reports. The weather station provides additional data to NASA for launches -- releasing 12 balloons in eight hours prior to liftoff - and landings - releasing 5 balloons in six and a half hours before expected touchdown.
Sounding rocket and balloon flight safety philosophy and methodologies
NASA Technical Reports Server (NTRS)
Beyma, R. J.
1986-01-01
NASA's sounding rocket and balloon goal is to successfully and safely perform scientific research. This is reflected in the design, planning, and conduct of sounding rocket and balloon operations. The purpose of this paper is to acquaint the sounding rocket and balloon scientific community with flight safety philosophy and methodologies, and how range safety affects their programs. This paper presents the flight safety philosophy for protecting the public against the risk created by the conduct of sounding rocket and balloon operations. The flight safety criteria used to implement this philosophy are defined and the methodologies used to calculate mission risk are described.
Yellow Balloon in a Briar Patch.
ERIC Educational Resources Information Center
Cooper, Frank; Fitzmaurice, Robert W.
1978-01-01
As part of a meteorology unit, sixth grade science students launched helium balloons with attached return postcards. This article describes Weather Service monitoring of the balloons and postcard return results. (MA)
21 CFR 874.4100 - Epistaxis balloon.
Code of Federal Regulations, 2010 CFR
2010-04-01
.... An epistaxis balloon is a device consisting of an inflatable balloon intended to control internal... (general controls). The device is exempt from the premarket notification procedures in subpart E of part...
Periodic and Aperiodic Close Packing: A Spontaneous Hard-Sphere Model.
ERIC Educational Resources Information Center
van de Waal, B. W.
1985-01-01
Shows how to make close-packed models from balloons and table tennis balls to illustrate structural features of clusters and organometallic cluster-compounds (which are of great interest in the study of chemical reactions). These models provide a very inexpensive and tactile illustration of the organization of matter for concrete operational…
Probabilistic Path Planning of Montgolfier Balloons in Strong, Uncertain Wind Fields
NASA Technical Reports Server (NTRS)
Wolf, Michael; Blackmore, James C.; Kuwata, Yoshiaki
2011-01-01
Lighter-than-air vehicles such as hot-air balloons have been proposed for exploring Saturn s moon Titan, as well as other bodies with significant atmospheres. For these vehicles to navigate effectively, it is critical to incorporate the effects of surrounding wind fields, especially as these winds will likely be strong relative to the control authority of the vehicle. Predictive models of these wind fields are available, and previous research has considered problems of planning paths subject to these predicted forces. However, such previous work has considered the wind fields as known a priori, whereas in practical applications, the actual wind vector field is not known exactly and may deviate significantly from the wind velocities estimated by the model. A probabilistic 3D path-planning algorithm was developed for balloons to use uncertain wind models to generate time-efficient paths. The nominal goal of the algorithm is to determine what altitude and what horizontal actuation, if any is available on the vehicle, to use to reach a particular goal location in the least expected time, utilizing advantageous winds. The solution also enables one to quickly evaluate the expected time-to-goal from any other location and to avoid regions of large uncertainty. This method is designed for balloons in wind fields but may be generalized for any buoyant vehicle operating in a vector field. To prepare the planning problem, the uncertainty in the wind field is modeled. Then, the problem of reaching a particular goal location is formulated as a Markov decision process (MDP) using a discretized space approach. Solving the MDP provides a policy of what actuation option (how much buoyancy change and, if applicable, horizontal actuation) should be selected at any given location to minimize the expected time-to-goal. The results provide expected time-to-goal values from any given location on the globe in addition to the action policy. This stochastic approach can also provide insights not accessible by deterministic methods; for example, one can evaluate variability and risk associated with different scenarios, rather than only viewing the expected outcome.
Atmospheric Electricity and Tethered Aerostats, Volume 2
1976-05-11
vs Altitude (Non- conducting or Conducting Tethers...Effect of Corona Charge Plume 15 3.1 Tether Current vs Balloon Altitude , BJ+3 - 25 Sep 73 20 3.2 Tether Current vs Balloon Altitude , Baldy - 17 Oct 73 21...3.3 Tether Current vs Balloon Altitude , Baldy - 31 Oct 73 22 3.4 Tether Current vs Balloon Altitude , Baldy - 2 Nov 73 23 3.5 Tether Current vs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsi, Wen C.; Fagundes, Marcio; Zeidan, Omar
Purpose: To present a practical image-guided method to position an endorectal balloon that improves in vivo thermoluminiscent dosimeter (TLD) measurements of rectal doses in proton therapy for prostate cancer. Methods: TLDs were combined with endorectal balloons to measure dose at the anterior rectal wall during daily proton treatment delivery. Radiopaque metallic markers were employed as surrogates for balloon position reproducibility in rotation and translation. The markers were utilized to guide the balloon orientation during daily treatment employing orthogonal x-ray image-guided patient positioning. TLDs were placed at the 12 o'clock position on the anterior balloon surface at the midprostatic plane. Markersmore » were placed at the 3 and 9 o'clock positions on the balloon to align it with respect to the planned orientation. The balloon rotation along its stem axis, referred to as roll, causes TLD displacement along the anterior-posterior direction. The magnitude of TLD displacement is revealed by the separation distance between markers at opposite sides of the balloon on sagittal x-ray images. Results: A total of 81 in vivo TLD measurements were performed on six patients. Eighty-three percent of all measurements (65 TLD readings) were within +5% and -10% of the planning dose with a mean of -2.1% and a standard deviation of 3.5%. Examination of marker positions with in-room x-ray images of measured doses between -10% and -20% of the planned dose revealed a strong correlation between balloon roll and TLD displacement posteriorly from the planned position. The magnitude of the roll was confirmed by separations of 10-20 mm between the markers which could be corrected by manually adjusting the balloon position and verified by a repeat x-ray image prior to proton delivery. This approach could properly correct the balloon roll, resulting in TLD positioning within 2 mm along the anterior-posterior direction. Conclusions: Our results show that image-guided TLD-based in vivo dosimetry for rectal dose verification can be perfomed reliably and reproducibly for proton therapy in prostate cancer.« less
Hsi, Wen C; Fagundes, Marcio; Zeidan, Omar; Hug, Eugen; Schreuder, Niek
2013-05-01
To present a practical image-guided method to position an endorectal balloon that improves in vivo thermoluminiscent dosimeter (TLD) measurements of rectal doses in proton therapy for prostate cancer. TLDs were combined with endorectal balloons to measure dose at the anterior rectal wall during daily proton treatment delivery. Radiopaque metallic markers were employed as surrogates for balloon position reproducibility in rotation and translation. The markers were utilized to guide the balloon orientation during daily treatment employing orthogonal x-ray image-guided patient positioning. TLDs were placed at the 12 o'clock position on the anterior balloon surface at the midprostatic plane. Markers were placed at the 3 and 9 o'clock positions on the balloon to align it with respect to the planned orientation. The balloon rotation along its stem axis, referred to as roll, causes TLD displacement along the anterior-posterior direction. The magnitude of TLD displacement is revealed by the separation distance between markers at opposite sides of the balloon on sagittal x-ray images. A total of 81 in vivo TLD measurements were performed on six patients. Eighty-three percent of all measurements (65 TLD readings) were within +5% and -10% of the planning dose with a mean of -2.1% and a standard deviation of 3.5%. Examination of marker positions with in-room x-ray images of measured doses between -10% and -20% of the planned dose revealed a strong correlation between balloon roll and TLD displacement posteriorly from the planned position. The magnitude of the roll was confirmed by separations of 10-20 mm between the markers which could be corrected by manually adjusting the balloon position and verified by a repeat x-ray image prior to proton delivery. This approach could properly correct the balloon roll, resulting in TLD positioning within 2 mm along the anterior-posterior direction. Our results show that image-guided TLD-based in vivo dosimetry for rectal dose verification can be perfomed reliably and reproducibly for proton therapy in prostate cancer.
NASA Astrophysics Data System (ADS)
Ertley, Camden
2014-01-01
The degree of linear polarization of hard X-rays (50-500 keV) can provide a better understanding of the particle acceleration mechanisms and the emission of radiation during solar flares. Difficulties in measuring the linear polarization has limited the ability of past experiments to place constraints on solar flare models. The Gamma RAy Polarimeter Experiment (GRAPE) is a balloon-borne Compton polarimeter designed to measure polarization in the 50 - 500 keV energy range. This energy range minimizes the thermal contamination that can potentially affect measurements at lower energies. This research focuses on the analysis of data acquired during the first high altitude balloon flight of the GRAPE payload in 2011. During this 26 hour balloon flight two M-class flares were observed. The analysis effort includes the development of a Monte Carlo simulation of the full instrument payload with the GEANT4 toolkit. The simulations were used in understanding the background environment, creating a response matrix for the deconvolution of the energy loss spectra, and determining the modulation factor for a 100% linearly polarized source. We report on the results from the polarization analysis of the solar flare data. The polarization and spectral data can be used to further our understanding of particle acceleration in the context of current solar flare models.
Assessment of the Influence of the RaD-X Balloon Payload on the Onboard Radiation Detectors
NASA Technical Reports Server (NTRS)
Gronoff, Guilluame; Mertens, Christopher J.; Norman, Ryan B.; Straume, Tore; Lusby, Terry C.
2016-01-01
The NASA Radiation Dosimetry Experiment (RaD-X) stratospheric balloon flight mission, launched on 25 September 2015, provided dosimetric measurements above the Pfotzer maximum. The goal of taking these measurements is to improve aviation radiation models by providing a characterization of cosmic ray primaries, which are the source of radiation exposure at aviation altitudes. The RaD-X science payload consists of four instruments. The main science instrument is a tissue-equivalent proportional counter (TEPC). The other instruments consisted of three solid state silicon dosimeters: Liulin, Teledyne total ionizing dose (TID) and RaySure detectors. The instruments were housed in an aluminum structure protected by a foam cover. The structure partially shielded the detectors from cosmic rays but also created secondary particles, modifying the ambient radiation environment observed by the instruments. Therefore, it is necessary to account for the influence of the payload structure on the measured doses. In this paper, we present the results of modeling the effect of the balloon payload on the radiation detector measurements using a Geant-4 (GEometry ANd Tracking) application. Payload structure correction factors derived for the TEPC, Liulin, and TID instruments are provided as a function of altitude. Overall, the payload corrections are no more than a 7% effect on the radiation environment measurements.
Shindo, Ryosuke; Yonemoto, Naohiro; Yamamoto, Yuriko; Kasai, Junko; Kasai, Michi; Miyagi, Etsuko
2017-01-01
Objective To compare the efficacy and safety of hygroscopic dilators and balloon catheters for ripening of the cervix in induction of labor. Study design This retrospective, observational study used data from the Successive Pregnancy Birth Registry System of the Japan Society of Obstetrics and Gynecology from 2012 to 2014. Nulliparous women in whom labor was induced by mechanical methods of cervical ripening at term were enrolled. The eligible women were divided into dilator, balloon <40 mL, balloon ≧40 mL, and overlapping groups. Results The groups included 4645, 4100, 6615, and 1992 women, respectively. In the overlapping group, which included the women in whom delivery was most difficult, the vaginal delivery rate was lower and the intrauterine infection and neonatal mortality rates were higher than those in the dilator group. No difference in the vaginal delivery rate was observed among the dilator, balloon <40 mL, and balloon ≧40 mL groups (74.6%, 72.3%, and 73.8%, respectively; p>0.05). The vaginal instrumental delivery rate was higher in the two-balloon groups than in the dilator group. The volume of intrapartum hemorrhage was lowest in the dilator group. No significant difference in the frequencies of uterine rupture and intrauterine infection were observed among the dilator and two-balloon groups. With regard to neonatal outcomes, the frequency of a low Apgar score was statistically significantly lower in the dilator group than in the two-balloon groups. Moreover, the frequency of neonatal death tended to be lower in the dilator group than in the two-balloon groups. Conclusion With regard to cervical ripening for labor induction in nulliparous women at term, the vaginal delivery rate on using a dilator and on using a balloon seems to be equivalent. Concerning maternal complications and neonatal outcomes, cervical ripening with hygroscopic dilators in labor induction might be safer. PMID:29272277
McElhinney, Doff B; Lacro, Ronald V; Gauvreau, Kimberlee; O'Brien, Cheryl M; Yaroglu Kazanci, Selcen; Vogel, Melanie; Emani, Sitaram; Brown, David W
2012-09-01
Dilation of the ascending aorta (AA) is common in patients with a bicuspid aortic valve. The natural history of the aortic root and AA and the risk factors for dilation have not been characterized in patients with congenital aortic stenosis (AS) treated with balloon valvuloplasty during childhood. The present study was performed to determine the prevalence of aortic dilation in patients with congenital AS before and up to 20 years after balloon valvuloplasty performed during childhood. In patients who underwent balloon valvuloplasty for AS at age ≤ 18 years from 1984 to 2005, the aortic diameter measurements before intervention and at 5-year intervals afterward were recorded and the Z scores calculated. Among 156 patients (median age 1.5 years at valvuloplasty), the AA Z scores were significantly larger than normal before intervention (median Z score 1.5) and at all follow-up points (all p <0.001). Using mixed modeling, with time as a categorical variable (before intervention, 5-year window, 10-year window, and so forth), the mean AA Z score was greater at all postvalvuloplasty points than before the intervention, with mean Z score increases of 1.20 at 5 years and 2.11 at 20 years (p <0.001). Moderate or greater aortic regurgitation early after valvuloplasty was associated with greater AA Z scores than mild or less aortic regurgitation, with a progressive difference over time. More significant residual AS after valvuloplasty was associated with lower AA Z scores over time. In conclusion, AA dilation is common in children with congenital AS and continues to progress over many years after balloon valvuloplasty. Copyright © 2012 Elsevier Inc. All rights reserved.
Kumar, Nitin; Bazerbachi, Fateh; Rustagi, Tarun; McCarty, Thomas R; Thompson, Christopher C; Galvao Neto, Manoel P; Zundel, Natan; Wilson, Erik B; Gostout, Christopher J; Abu Dayyeh, Barham K
2017-09-01
The Orbera intragastric balloon (IGB) has been approved by the US Food and Drug Administration for use in patients with a body mass index (BMI) between 30 and 40 kg/m 2 and is in wide use worldwide as a primary and bridge obesity management tool. The balloon filling volume (BFV) ranges between 400 and 700 mL of saline. Our objective was to determine whether there is an association between BFV and clinically relevant endpoints, namely weight loss outcomes, balloon tolerability, and adverse events. A systematic review of studies investigating the use of the Orbera IGB system for obesity treatment was performed. Data was examined using random effects modelling and meta-regression analyses. Forty-four studies (n = 5549 patients) reported BFV and % total body weight loss (TBWL) at 6 months. Pooled %TBWL at 6 months was 13.2% [95% CI 12.3-14.0]. A funnel plot demonstrated a low risk of publication bias. Meta-regression showed no statistically significant association between filling volume and %TBWL at 6 months (p = 0.268). Higher BFV was associated with lower rates of esophagitis (slope = -0.008, p < 0.001) and prosthesis migration (slope = -0.015, p < 0.001). There was no association between BFV and early removal (p = 0.1), gastroesophageal reflux symptom (p = 0.64), or ulcer rates (p = 0.09). No association was observed between Orbera IGB filling volume and weight loss outcomes. Higher volumes appear to be associated with lower migration and esophagitis rates; thus, a balloon filling volume of 600-650 mL is recommended.
Scintillating Balloon-Enabled Fiber-Optic System for Radionuclide Imaging of Atherosclerotic Plaques
Zaman, Raiyan T.; Kosuge, Hisanori; Carpenter, Colin; Sun, Conroy; McConnell, Michael V.; Xing, Lei
2015-01-01
Atherosclerosis underlies coronary artery disease, the leading cause of death in the United States and worldwide. Detection of coronary plaque inflammation remains challenging. In this study, we developed a scintillating balloon-enabled fiber-optic radio-nuclide imaging (SBRI) system to improve the sensitivity and resolution of plaque imaging using 18F-FDG, a marker of vascular inflammation, and tested it in a murine model. Methods The fiber-optic system uses a Complementary Metal-Oxide Silicon (CMOS) camera with a distal ferrule terminated with a wide-angle lens. The novelty of this system is a scintillating balloon in the front of the wide-angle lens to image light from the decay of 18F-FDG emission signal. To identify the optimal scintillating materials with respect to resolution, we calculated the modulation transfer function of yttrium–aluminum–garnet doped with cerium, anthracene, and calcium fluoride doped with europium (CaF2:Eu) phosphors using an edge pattern and a thin-line optical phantom. The scintillating balloon was then fabricated from 10 mL of silicone RTV catalyst mixed with 1 mL of base and 50 mg of CaF2:Eu per mL. The addition of a lutetium oxyorthosilicate scintillating crystal (500 μm thick) to the balloon was also investigated. The SBRI system was tested in a murine atherosclerosis model: carotid-ligated mice (n = 5) were injected with 18F-FDG, followed by ex vivo imaging of the macrophage-rich carotid plaques and nonligated controls. Confirmatory imaging of carotid plaques and controls was also performed by an external optical imaging system and autoradiography. Results Analyses of the different phosphors showed that CaF2:Eu enabled the best resolution of 1.2 μm. The SBRI system detected almost a 4-fold-higher radioluminescence signal from the ligated left carotid artery than the nonligated right carotid: 1.63 × 102 ± 4.01 × 101 vs. 4.21 × 101 ± 2.09 × 100 (photon counts), P = 0.006. We found no significant benefit to adding a scintillating crystal to the balloon: 1.65 × 102 ± 4.07 × 101 vs. 4.44 × 101 ± 2.17 × 100 (photon counts), P = 0.005. Both external optical imaging and autoradiography confirmed the high signal from the 18F-FDG in carotid plaques versus controls. Conclusion This SBRI system provides high-resolution and sensitive detection of 18F-FDG uptake by murine atherosclerotic plaques. PMID:25858046
NASA Astrophysics Data System (ADS)
Vial, F.; Hertzog, A.; Mechoso, C. R.; Basdevant, C.; Cocquerez, P.; Dubourg, V.; Nouel, F.
2001-10-01
In the late southern winter of 1998, Center National d'Études Spatiales (CNES), the French Space Agency, released six 10-m-diameter, superpressure balloons from a location near Quito, Ecuador. Three balloons collapsed soon after launching, but the remaining three drifted westward for a few weeks at altitudes between 19 and 20 km. Two of those balloons crossed the Pacific Ocean before falling above the ``maritime continent,'' while the other completed a revolution around the Earth and crossed the Pacific for a second time before its final fall. Despite the small number and the relatively short duration of the flights, the balloons provided a unique in situ data set for the lower equatorial stratosphere. This part 1 of a two-part paper describes this data set and analyzes outstanding features in the planetary scales. Part 2 focuses on gravity-wave scale. It is argued that balloon trajectories over the Pacific are primarily determined by the westward drift during the easterly phase of the equatorial quasi-biennial oscillation (QBO) and the meridional velocity field of a mixed Rossby-gravity (Yanai) wave with an apparent period of 4 days and zonal wave number 4. This wave appears to have two episodes of amplification during the balloon flights. It is also argued that the balloons show evidence of oscillations with periods between 2 and 4 days and of a Kelvin wave with an apparent period close to 10 days and zonal wave number 1. In this way, the balloon behavior provided a pictorial view of air parcel trajectory in the equatorial lower stratosphere. It is stated that larger balloon campaigns can provide excellent in situ data sets for studies on the dynamics and composition of the middle atmosphere.
Balloon dilation of the eustachian tube for dilatory dysfunction: A randomized controlled trial.
Poe, Dennis; Anand, Vijay; Dean, Marc; Roberts, William H; Stolovitzky, Jose Pablo; Hoffmann, Karen; Nachlas, Nathan E; Light, Joshua P; Widick, Mark H; Sugrue, John P; Elliott, C Layton; Rosenberg, Seth I; Guillory, Paul; Brown, Neil; Syms, Charles A; Hilton, Christopher W; McElveen, John T; Singh, Ameet; Weiss, Raymond L; Arriaga, Moises A; Leopold, John P
2018-05-01
To assess balloon dilation of the Eustachian tube with Eustachian tube balloon catheter in conjunction with medical management as treatment for Eustachian tube dilatory dysfunction. In this prospective, multicenter, randomized, controlled trial, we assigned, in a 2:1 ratio, patients age 22 years and older with Eustachian tube dilatory dysfunction refractory to medical therapy to undergo balloon dilation of the Eustachian tube with balloon catheter in conjunction with medical management or medical management alone. The primary endpoint was normalization of tympanogram at 6 weeks. Additional endpoints were normalization of Eustachian Tube Dysfunction Questionaire-7 symptom scores, positive Valsalva maneuver, mucosal inflammation, and safety. Primary efficacy results demonstrated superiority of balloon dilation of the Eustachian tube with balloon catheter + medical management compared to medical management alone. Tympanogram normalization at 6-week follow-up was observed in 51.8% (72/139) of investigational patients versus 13.9% (10/72) of controls (P < .0001). Tympanogram normalization in the treatment group was 62.2% after 24 weeks. Normalization of Eustachian Tube Dysfunction Questionaire-7 Symptom scores at 6-week follow-up was observed in 56.2% (77/137) of investigational patients versus 8.5% (6/71) controls (P < .001). The investigational group also demonstrated substantial improvement in both mucosal inflammation and Valsalva maneuver at 6-week follow-up compared to controls. No device- or procedure-related serious adverse events were reported for those who underwent balloon dilation of the Eustachian tube. This study demonstrated superiority of balloon dilation of the Eustachian tube with balloon catheter + medical management compared to medical management alone to treat Eustachian tube dilatory dysfunction in adults. 1b. Laryngoscope, 128:1200-1206, 2018. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.
Karanasos, Antonios; Van Mieghem, Nicolas; Bergmann, Martin W; Hartman, Eline; Ligthart, Jurgen; van der Heide, Elco; Heeger, Christian-H; Ouhlous, Mohamed; Zijlstra, Felix; Regar, Evelyn; Daemen, Joost
2015-07-01
Renal denervation is a new treatment considered for several possible indications. As new systems are introduced, the incidence of acute renal artery wall injury with relation to the denervation method is unknown. We investigated the acute repercussion of renal denervation on the renal arteries of patients treated with balloon-based and nonballoon-based denervation systems by quantitative angiography, intravascular ultrasound, and optical coherence tomography (OCT). Twenty-five patients (50 renal arteries) underwent bilateral renal denervation with 5 different systems, 3 of which balloon-based (Paradise [n=5], Oneshot [n=6], and Vessix V2 [n=5)]) and 2 nonballoon-based (Symplicity [n=6] and EnligHTN [n=3]). Analysis included quantitative angiography and morphometric intravascular ultrasound measurements pre and post procedure and assessment of vascular trauma (dissection, edema, or thrombus) by OCT after denervation. A significant reduction in lumen size by quantitative angiography and intravascular ultrasound was observed in nonballoon denervation but not in balloon denervation. By postdenervation OCT, dissection was seen in 14 arteries (32.6%). The percentage of frames with dissection was higher in balloon-based denervation catheters. Thrombus and edema were detected in 35 (81.4%) and 32 (74.4%) arteries, respectively. In arteries treated with balloon-based denervation that had dissection by OCT, the balloon/artery ratio was higher (1.24 [1.17-1.32] versus 1.10 [1.04-1.18]; P<0.01). A varying extent of vascular injury was observed after renal denervation in all systems; however, different patterns were identified in balloon-based and in nonballoon-based denervation systems. In balloon denervation, the presence of dissections by OCT was associated with a higher balloon/artery ratio. © 2015 American Heart Association, Inc.
Static and quasi-static analysis of lobed-pumpkin balloon
NASA Astrophysics Data System (ADS)
Nakashino, Kyoichi; Sasaki, Makoto; Hashimoto, Satoshi; Saito, Yoshitaka; Izutsu, Naoki
The present study is motivated by the need to improve design methodology for super pressure balloon with 3D gore design concept, currently being developed at the Scientific Balloon Center of ISAS/JAXA. The distinctive feature of the 3-D gore design is that the balloon film has excess materials not only in the circumferential direction but also in the meridional direction; the meridional excess is gained by attaching the film boundaries to the corresponding tendons of a shorter length with a controlled shortening rate. The resulting balloon shape is a pumpkin-like shape with large bulges formed between adjacent tendons. The balloon film, when fully inflated, develops wrinkles in the circumferential direction over its entire region, so that the stresses in the film are limited to a small amount of uniaxial tension in the circumferential direction while the high meridional loads are carried by re-enforced tendons. Naturally, the amount of wrinkling in the film is dominated by the shortening rate between the film boundaries and the tendon curve. In the 3-D gore design, as a consequence, the shortening rate becomes a fundamental design parameter along with the geometric parameters of the gore. In view of this, we have carried out a series of numerical study of the lobed-pumpkin balloon with varying gore geometry as well as with varying shortening rate. The numerical simula-tions were carried out with a nonlinear finite element code incorporating the wrinkling effect. Numerical results show that there is a threshold value for the shortening rate beyond which the stresses in the balloon film increases disproportionately. We have also carried out quasi-static simulations of the inflation process of the lobed-pumpkin balloon, and have obtained asymmetric deformations when the balloon films are in uniaxial tension state.
Polindara, César; Waffenschmidt, Tobias; Menzel, Andreas
2016-08-16
In this contribution we study the balloon angioplasty in a residually stressed artery by means of a non-local gradient-enhanced fibre damage model. The balloon angioplasty is a common surgical intervention used to extend or reopen narrowed blood vessels in order to restore the continuous blood flow in, for instance, atherosclerotic arteries. Inelastic, i.e. predominantly damage-related and elastoplastic processes are induced in the artery during its inflation resulting in an irreversible deformation. As a beneficial consequence, provided that the inelastic deformations do not exceed a specific limit, higher deformations can be obtained within the same pressure level and a continuous blood flow can be guaranteed. In order to study the mechanical response of the artery in this scenario, we make use of the non-local gradient-enhanced model proposed in Waffenschmidt et al. (2014). In this contribution, we extend this model to make use of an incompressible format in connection with a Q1Q1P0 finite element implementation. The residual stresses in the artery are also taken into account following the framework presented in Waffenschmidt (2015). From the results it becomes apparent that, when the artery is subjected to radial stresses beyond the physiological range, damage evolution is triggered in the collagen fibres. The impact of the residual stresses on the structural response and on the circumferential stress distribution along the thickness of the arterial wall is also studied. It is observed that the residual stresses have a beneficial effect on the mechanical response of the arterial wall. Copyright © 2016 Elsevier Ltd. All rights reserved.
Tube Feeding Troubleshooting Guide
... in place. (For example, does it have a balloon, a mushroom bumper, or other internal device, or ... Frequent vomiting. • See “Nausea and Vomiting” page 3. Balloon deflates or bursts. • Be sure the balloon under ...
14 CFR 101.5 - Operations in prohibited or restricted areas.
Code of Federal Regulations, 2012 CFR
2012-01-01
... TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES MOORED BALLOONS, KITES, AMATEUR ROCKETS AND... a moored balloon, kite, amateur rocket, or unmanned free balloon in a prohibited or restricted area...
14 CFR 101.5 - Operations in prohibited or restricted areas.
Code of Federal Regulations, 2011 CFR
2011-01-01
... TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES MOORED BALLOONS, KITES, AMATEUR ROCKETS AND... a moored balloon, kite, amateur rocket, or unmanned free balloon in a prohibited or restricted area...
14 CFR 101.5 - Operations in prohibited or restricted areas.
Code of Federal Regulations, 2010 CFR
2010-01-01
... TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES MOORED BALLOONS, KITES, AMATEUR ROCKETS AND... a moored balloon, kite, amateur rocket, or unmanned free balloon in a prohibited or restricted area...
14 CFR 101.5 - Operations in prohibited or restricted areas.
Code of Federal Regulations, 2014 CFR
2014-01-01
... TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES MOORED BALLOONS, KITES, AMATEUR ROCKETS AND... a moored balloon, kite, amateur rocket, or unmanned free balloon in a prohibited or restricted area...
14 CFR 101.5 - Operations in prohibited or restricted areas.
Code of Federal Regulations, 2013 CFR
2013-01-01
... TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES MOORED BALLOONS, KITES, AMATEUR ROCKETS AND... a moored balloon, kite, amateur rocket, or unmanned free balloon in a prohibited or restricted area...
Jagadeesan, Bharathi D; Mortazavi, Shabnam; Hunter, David W; Duran-Castro, Olga L; Snyder, Gregory B; Siedel, Glen F; Golzarian, Jafar
2014-04-01
Balloon-assisted embolization performed by delivering Onyx ethylene vinyl alcohol copolymer through a dual-lumen coaxial balloon microcatheter is a new technique for the management of peripheral vascular lesions. This technique does not require an initial reflux of Onyx to form around the tip of the microcatheter before antegrade flow of Onyx can commence. In a series of four patients who were treated with the use of this technique, the absence of significant reflux of Onyx was noted, as were excellent navigability and easy retrieval of the balloon microcatheter. However, in one patient, there was inadvertent adverse embolization of a digital artery, which was not caused by reflux of Onyx but could still be related to balloon inflation. © 2013 SIR Published by SIR All rights reserved.
Detection of Artificially Generated Seismic Signals Using Balloon-Borne Infrasound Sensors
NASA Astrophysics Data System (ADS)
Krishnamoorthy, Siddharth; Komjathy, Attila; Pauken, Michael T.; Cutts, James A.; Garcia, Raphael F.; Mimoun, David; Cadu, Alexandre; Sournac, Anthony; Jackson, Jennifer M.; Lai, Voon Hui; Bowman, Daniel C.
2018-04-01
We conducted an experiment in Pahrump, Nevada, in June 2017, where artificial seismic signals were created using a seismic hammer, and the possibility of detecting them from their acoustic signature was examined. In this work, we analyze the pressure signals recorded by highly sensitive barometers deployed on the ground and on tethers suspended from balloons. Our signal processing results show that wind noise experienced by a barometer on a free-flying balloon is lower compared to one on a moored balloon. This has never been experimentally demonstrated in the lower troposphere. While seismoacoustic signals were not recorded on the hot air balloon platform owing to operational challenges, we demonstrate the detection of seismoacoustic signals on our moored balloon platform. Our results have important implications for performing seismology in harsh surface environments such as Venus through atmospheric remote sensing.
Exhaled nitric oxide in mylar balloons: influence of storage time, humidity and temperature.
Bodini, Alessandro; Pijnenburg, Mariëlle W H; Boner, Atillio L; de Jongste, Johan C
2003-01-01
BACKGROUND: Mylar balloons are used to collect exhaled air for analysis of fractional nitric oxide concentration (FENO). AIM: We studied the effect of storage conditions on the stability of nitric oxide (NO) in mylar balloons. METHODS: Exhaled air samples and calibration gases were stored in mylar balloons at 4, 21 and 37 degrees C, with or without silica gel. NO was measured after 0, 6, 9, 24 and 48 h. Scheffe F-tests were used to compare NO values. RESULTS: NO remained stable in balloons for 9 h at all temperatures, without silica gel. NO increased between 9 and 48 h, but only with low initial FENO. Silica gel increased variability. CONCLUSIONS: FENO in mylar balloons is stable for at least 9 h. The storage temperature is not critical, but silica gel increases variability. PMID:12745548
A verified technique for calibrating space solar cells
NASA Technical Reports Server (NTRS)
Anspaugh, Bruce
1987-01-01
Solar cells have been flown on high-altitude balloons for over 24 years, to produce solar cell standards that can be used to set the intensity of solar simulators. The events of a typical balloon calibration flight are reported. These are: the preflight events, including the preflight cell measurements and the assembly of the flight cells onto the solar tracker; the activities at the National Scientific Balloon Facility in Palestine, Texas, including the preflight calibrations, the mating of the tracker and cells onto the balloon, preparations for launch, and the launch; the payload recovery, which includes tracking the balloon by aircraft, terminating the flight, and retrieving the payload. In 1985, the cells flow on the balloon were also flown on a shuttle flight and measured independently. The two measurement methods are compared and shown to agree within 1 percent.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoshiai, Sodai, E-mail: hoshiai@sb4.so-net.ne.jp; Mori, Kensaku; Ishiguro, Toshitaka
Although transcatheter arterial chemoembolization is one of the established treatments for hepatocellular carcinoma (HCC), it is difficult to treat HCCs with prominent arterioportal (AP) shunts because anticancer drugs and embolic materials migrate into the non-tumorous liver through the AP shunts and may cause liver infarction. We developed a novel method of balloon-assisted chemoembolization using a micro-balloon catheter alongside a microcatheter simultaneously inserted through a single 4.5-Fr guiding sheath, comprising proximal chemoembolization with distal arterial balloon occlusion. We applied this method to treat an HCC with a prominent distal AP shunt induced by previous proton beam therapy and achieved successful chemoembolizationmore » without non-tumorous liver infarction under temporal balloon occlusion of a distal AP shunt.« less
An Overview of the NASA Sounding Rocket and Balloon Programs
NASA Technical Reports Server (NTRS)
Eberspeaker, Philip J.; Smith, Ira S.
2003-01-01
The U.S. National Aeronautics and Space Administration (NASA) Sounding Rockets and Balloon Programs conduct a total of 50 to 60 missions per year in support of the NASA scientific community. These missions support investigations sponsored by NASA's Offices of Space Science, Life and Microgravity Sciences & Applications, and Earth Science. The Goddard Space Flight Center has management and implementation responsibility for these programs. The NASA Sounding Rockets Program provides the science community with payload development support, environmental testing, launch vehicles, and launch operations from fixed and mobile launch ranges. Sounding rockets continue to provide a cost-effective way to make in situ observations from 50 to 1500 km in the near-earth environment and to uniquely cover the altitude regime between 50 km and 130 km above the Earth's surface. New technology efforts include GPS payload event triggering, tailored trajectories, new vehicle configuration development to expand current capabilities, and the feasibility assessment of an ultra high altitude sounding rocket vehicle. The NASA Balloon Program continues to make advancements and developments in its capabilities for support of the scientific ballooning community. The Long Duration Balloon (LDB) is capable of providing flight durations in excess of two weeks and has had many successful flights since its development. The NASA Balloon Program is currently engaged in the development of the Ultra Long Duration Balloon (ULDB), which will be capable of providing flight times up to 100-days. Additional development efforts are focusing on ultra high altitude balloons, station keeping techniques and planetary balloon technologies.
Histopathology of balloon-dilation Eustachian tuboplasty.
Kivekäs, Ilkka; Chao, Wei-Chieh; Faquin, William; Hollowell, Monica; Silvola, Juha; Rasooly, Tali; Poe, Dennis
2015-02-01
Surgical intervention of the Eustachian tube (ET) has become increasingly common in the past decade, and balloon dilation has shown promising results in recent studies. It is unclear how balloon dilation enhances ET function. Our aim was to evaluate histological changes in the ET's mucosal lumen comparing before balloon dilation, immediately after, and postoperatively. Case series. Thirteen patients with bilateral ET dysfunction were enrolled. Biopsies of the ET mucosa were obtained just before balloon dilation; immediately after; and in three cases, 5 to 12 weeks postoperatively. Specimens were retrospectively examined under light microscopy by two pathologists blinded to the clinical information and whether specimens were pre- or postballoon dilation. Preoperative biopsies were characterized by inflammatory changes within the epithelium and submucosal layer. Immediate response to balloon dilation was thinning of the mucosa, shearing of epithelium and crush injury to the submucosa, especially to lymphocytic infiltrates. Postoperative biopsies demonstrated healthy pseudocolumnar epithelium and replacement of lymphocytic infiltrate with a thinner layer of fibrous tissue. Reduction of inflammatory epithelial changes and submucosal inflammatory infiltrate appeared to be the principal result of balloon dilation. The balloon may shear or crush portions of inflamed epithelium but usually spared the basal layer, allowing for rapid healing. Additionally, it appeared to effectively crush lymphocytes and lymphocytic follicles that may become replaced with thinner fibrous scar. Histopathology of the ET undergoing balloon dilation demonstrated effects that could reduce the overall inflammatory burden and may contribute to clinical improvement in ET function. 4. © 2014 The American Laryngological, Rhinological and Otological Society, Inc.
The glider balloon: a useful device for the treatment of bifurcation lesions.
Briguori, Carlo; Visconti, Gabriella; Donahue, Michael; Chiariello, Giovanni Alfonso; Focaccio, Amelia
2013-10-09
Final kissing balloon dilatation (FKBD) is a recommended final step in case of treatment of bifurcation lesions by two stents approaches. Furthermore, dilatation of the side branch (SB) may be necessary following main vessel (MV) stenting. Occasionally, recrossing the stent struts with a balloon is hampered because the tip hits a stent strut. The Glider (TriReme Medical, Pleasanton, CA) is a dedicated balloon designed for crossing through struts of deployed stents toward a SB. From October 2010 to January 2012, FKBD was attempted in 236 consecutive bifurcation lesions treated in our Institution. FKBD was successfully performed by conventional balloon catheters in 221 (93.5%) lesions (Conventional group). In the remaining 15 (6.5%) lesions, where a conventional balloon failed to cross the stent strut, the Glider balloon was attempted (Glider group). The angle beta (between the axis of the MV after the branch point and the SB axis at the point of divergence) was wider in the Glider group (83±17° versus 65±27°; p=0.032). A trend toward an higher rate of the true bifurcation lesions was observed in the Glider group (93% versus 70.5%; p=0.07). The Glider balloon successfully crossed through MV stent struts toward a SB in 12 patients (80%), whereas failed in the remaining 3 patients. The Glider balloon represents an unique bail-out device which offers an effective rescue strategy for recrossing stent struts during complex bifurcation stenting. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Layering in halocarbons, methane, nitrous oxide, ozone, and water vapour over mid-latitudes
NASA Technical Reports Server (NTRS)
Orsolini, Yvan J.; Karcher, Fernand; Manney, Gloria L.; Engel, Andreas; Ovarlez, Joelle; Claud, Chantal
1997-01-01
The purpose of the balloon flights performed in March 1993 from Aire-sur-Adour (France) was to measure trace gases in the polar vortex during a dynamically active period. These balloon flights revealed coincident layering in long-lived tropospheric source gases. A layer of mid-latitude air, enriched in trace gases, was detected at sampled levels near 15 mbar. High resolution advection models, fine scale distributions of ozone, nitrous oxide, methane, and halocarbons were constructed. The calculations showed how air enriched in trace gases is sampled near 15 mbar when a filament of such air is drawn into the outer portion of the vortex.
NASA Technical Reports Server (NTRS)
Ohari, T.
1982-01-01
A method was developed whereby a balloon was used to carry lumber out of a forest in order to continue lumber production without destroying the natural environment and view of the forest. Emphasis was on the best shape for a logging balloon, development of a balloon logging system suitable for cutting lumber and safety plans, tests on balloon construction and development of netting, and weather of mountainous areas, especially solutions to problems caused by winds.
Assessing the Potential of Societal Verification by Means of New Media
2014-01-01
the Defense Advanced Research Projects Agency (DARPA) “Red Balloon Challenge” in 2009 by finding 10 tethered weather balloons scattered across the...Institute of Technology (MIT) managed to locate 10 weather balloons tethered at undisclosed locations across the continental United States in less than...suited for complex problem solving, and the 2009 Defense Advanced Research Projects Agency’s (DARPA) “Red Balloon Challenge” has already demonstrated
NASA Technical Reports Server (NTRS)
Farley, Rodger
2007-01-01
PlanetaryBalloon Version 5.0 is a software package for the design of meridionally lobed planetary balloons. It operates in a Windows environment, and programming was done in Visual Basic 6. By including the effects of circular lobes with load tapes, skin mass, hoop and meridional stress, and elasticity in the structural elements, a more accurate balloon shape of practical construction can be determined as well as the room-temperature cut pattern for the gore shapes. The computer algorithm is formulated for sizing meridionally lobed balloons for any generalized atmosphere or planet. This also covers zero-pressure, over-pressure, and super-pressure balloons. Low circumferential loads with meridionally reinforced load tapes will produce shapes close to what are known as the "natural shape." The software allows for the design of constant angle, constant radius, or constant hoop stress balloons. It uses the desired payload capacity for given atmospheric conditions and determines the required volume, allowing users to design exactly to their requirements. The formulations are generalized to use any lift gas (or mixture of gases), any atmosphere, or any planet as described by the local acceleration of gravity. PlanetaryBalloon software has a comprehensive user manual that covers features ranging from, but not limited to, buoyancy and super-pressure, convenient design equations, shape formulation, and orthotropic stress/strain.
A balloon-borne experiment to investigate the Martian magnetic field
NASA Astrophysics Data System (ADS)
Schwingenschuh, K.; Feldhofer, H.; Koren, W.; Jernej, I.; Stachel, M.; Riedler, W.; Slamanig, H.; Auster, H.-U.; Rustenbach, J.; Fornacon, H. K.; Schenk, H. J.; Hillenmaier, O.; Haerendel, G.; Yeroshenko, Ye.; Styashkin, V.; Zaroutzky, A.; Best, A.; Scholz, G.; Russell, C. T.; Means, J.; Pierce, D.; Luhmann, J. G.
1996-03-01
The Space Research Institute of the Austrian Academy, of Sciences (Graz, Austria) in cooperation with MPE (Berlin, Germany), GFZ Potsdam (Obs. Niemegk, Germany) IZMIRAN/IOFAN (Moscow, Russian) and IGPP/UCLA (Los Angeles, USA) is designing the magnetic field experiment MAGIBAL (MAGnetic field experiment aboard a martian BALloon) to investigate the magnetic field on the surface of Mars. The dual sensor fluxgate magnetometer is part of the MARS-98/MARS-TOGETHER balloon payload. During a ten days period the balloon will float over a distance of about 2000 km at altitudes between 0 and 4 km. Due to the limited power and telemetry allocation the magnetometer can transmit only one vector per ten seconds and spectral information in the frequency range from 2 - 25 Hz. The dynamic range is +/- 2000 nT. The main scientific objectives of the experiment are: • Determination of the magnetism of the Martian rocks • Investigation of the leakage of the solar wind induced magnetosphere using the correlation between orbiter and balloon observations • Measurement of the magnetic field profile between the orbiter and the surface of Mars during the descent phase of the balloon. Terrestrial test flights with a hot air balloon were performed in order to test the original MAGIBAL equipment under balloon flight conditions.
Curie-Montgolfiere Planetary Explorers
NASA Astrophysics Data System (ADS)
Taylor, Chris Y.; Hansen, Jeremiah
2007-01-01
Hot-air balloons, also known as Montgolfiere balloons, powered by heat from radioisotope decay are a potentially useful tool for exploring planetary atmospheres and augmenting the capabilities of other exploration technologies. This paper describes the physical equations and identifies the key engineering parameters that drive radioisotope-powered balloon performance. These parameters include envelope strength-to-weight, envelope thermal conductivity, heater power-to-weight, heater temperature, and balloon shape. The design space for these parameters are shown for varying atmospheric compositions to illustrate the performance needed to build functioning ``Curie-Montgolfiere'' balloons for various planetary atmospheres. Methods to ease the process of Curie-Montgolfiere conceptual design and sizing of are also introduced.
Development of optical laser balloon and drainage from radiation vulcanized natural rubber latex
NASA Astrophysics Data System (ADS)
Shimamura, Yoshiyuki
Rubber film made of radiation vulcanized natural rubber latex (RVNRL) has better transparency and lower toxicity compared with sulfur-vulcanized latex film. Optical laser balloon (optical endoscopical balloon) and drainage were developed by using RVNRL. An endoscope was equipped with a saline-filled latex rubber balloon at its tip to displace contaminating blood, bile, or gastric contents during operative portoscopy, biliary endoscopy, or upper gastrointestinal endoscopy. The transmission of Nd-Yag laser through the balloon is 98%, higher than the sulfur-vulcanized latex rubber (75%). High transparency of the drainage bag facilitated easy observation of discharged fluids without detaching the bag from the tube.
On the feasibility of closed-loop control of intra-aortic balloon pumping
NASA Technical Reports Server (NTRS)
Clark, J. W., Jr.; Bourland, H. M.; Kane, G. R.
1973-01-01
A closed-loop control scheme for the control of intra-aortic balloon pumping has been developed and tested in dog experiments. A performance index reflecting the general objectives of balloon-assist pumping is developed and a modified steepest ascent control algorithm is utilized for the selection of a proper operating point for the balloon during its pumping cycle. This paper attempts to indicate the feasibility of closed-loop control of balloon pumping, and particularly its flexibility in achieving both diastolic augmentation of mean aortic pressure and control of the level of end-diastolic pressure (EDP) an important factor in reducing heart work.
Absorption spectrometer balloon flight and iodine investigations
NASA Technical Reports Server (NTRS)
1970-01-01
A high altitude balloon flight experiment to determine the technical feasibility of employing absorption spectroscopy to measure SO2 and NO2 gases in the earth's atmosphere from above the atmospheric ozone layer is discussed. In addition to the balloon experiment the contract includes a ground-based survey of natural I emissions from geological sources and studies of the feasibility of mapping I2 from spacecraft. This report is divided into three major sections as follows: (1) the planning engineering and execution of the balloon experiment, (2) data reduction and analysis of the balloon data, and (3) the results of the I2 phase of the contract.
2002-12-05
KENNEDY SPACE CENTER, FLA. - Stephen Ezell, meteorological systems operator at Weather Station A, Cape Canaveral Air Force Station, walks out with a weather balloon that he will release. Such balloons are released twice a day. The package in Ezell's hand is a radio sonde that collects temperature and humidity data as the balloon rises. The data is released to agencies nationwide, including the 45th Space Wing which uses the data for its daily weather reports. The weather station provides additional data to NASA for launches - releasing 12 balloons in eight hours prior to liftoff - and landings - releasing 5 balloons in six and a half hours before expected touchdown.
2002-12-05
KENNEDY SPACE CENTER, FLA. - At Weather Station A, Cape Canaveral Air Force Station, Judy Kelley, supervisor of Meteorology Operations, and Stephen Ezell, meteorological systems operator, get ready to release a weather balloon. Such balloons are released twice a day. The package at the bottom is a radio sonde that collects temperature and humidity data as the balloon rises. The data is released to agencies nationwide, including the 45th Space Wing, which uses the data for its daily weather reports. The weather station provides additional data to NASA for launches -- releasing 12 balloons in eight hours prior to liftoff - and landings - releasing 5 balloons in six and a half hours before expected touchdown.
Antigravity ESD - double-balloon-assisted underwater with traction hybrid technique.
Sharma, Sam K; Hiratsuka, Takahiro; Hara, Hisashi; Milsom, Jeffrey W
2018-06-01
Complex colorectal polyps or those positioned in difficult anatomic locations are an endoscopic therapeutic challenge. Underwater endoscopic submucosal dissection (UESD) is a potential technical solution to facilitate efficient polyp removal. In addition, endoscopic tissue retraction has been confined to limited methods of varying efficacy and complexity. The aim of this study was to evaluate the efficiency of a unique UESD technique for removing complex polyps using double-balloon-assisted retraction (R). Using fresh ex-vivo porcine rectum, 4-cm polyps were created using electrosurgery and positioned at "6 o'clock" within an established ESD model. Six resections were performed in each group. Underwater techniques were facilitated using a novel double-balloon platform (Dilumen, Lumendi, Westport, Connecticut, United States). UESD-R had a significantly shorter total procedural time than cap-assisted ESD and UESD alone (24 vs. 58 vs. 56 mins). UESD-R produced a dissection time on average of 5 minutes, attributed to the retraction provided. There was also a subjective significant reduction in electrosurgical smoke with the underwater techniques contributing to improved visualization. Here we report the first ex-vivo experience of a unique double-balloon endoscopic platform optimized for UESD with tissue traction capability. UESD-R removed complex lesions in significantly shorter time than conventional means. The combined benefits of UESD and retraction appeared to be additive when tackling complex polyps and should be studied further.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rolland, Pierre H.; Mekkaoui, Choukri; Palassi, Maria
2003-02-15
Purpose: To evaluate the therapeutic effects of local molsidomine delivery via a hydrogel-coated angioplasty balloon catheter during overstretch angioplasty in atheroscleroticswine iliac vessels. Molsidomine is retained in the arterial wall after local delivery for more than 72 hr and is slowly metabolized intolinsidomine, releasing nitric oxide (NO). Methods: A hydrogel-coated angioplasty balloon catheter was used to both deliver drug locally (150 mg molsidomine or placebo in the contralateral vessel) and dilate iliac vessels in nine Pietrin pigs that had been on an atherogenic diet for 5 months. Animals were killed at 3 hr(n = 2), 24 hr (n = 3)more » and 3 months(n = 3) after treatment. Iliac arteries were examined for wall pulsatility, histomorphometry, cell proliferation and platelet aggregation. Results: No significant therapeutic effects were detected 3 hr after treatment. At 24 hr, wall pulsatility,thrombo resistance and vascular cell homeostasis were significantly restored in the molsidomine-treated versus placebo group. At 3 months,molsidomine inhibited restenotic lesion development, except in scarred areas of histologically detectable adventitial/medial dissection. Conclusion: Local delivery of concentrated molsidomine from a hydrogel-coated angioplasty balloon catheter resulted in early NO-dependent vasodilation/stress normalization and antithrombotic and antiproliferative effects. In the medium term, molsidomine inhibited restenosis in the absence of vessel dissection.« less
Darling, Chad E; Solari, Patrick B; Smith, Craig S; Furman, Mark I; Przyklenk, Karin
2007-05-01
Growing evidence from experimental models suggests that relief of myocardial ischemia in a stuttering manner (i.e., 'postconditioning' [PostC] with brief cycles of reperfusion-reocclusion) limits infarct size. However, the potential clinical efficacy of PostC has, to date,been largely unexplored. Using a retrospective study design, our aim was to test the hypothesis that creatine kinase release (CK: clinical surrogate of infarct size) would be attenuated in ST-segment elevation myocardial infarction (STEMI) patients requiring multiple balloon inflations-deflations during primary angioplasty versus STEMI patients who received minimal balloon inflations and/or direct stenting. To investigate this concept, we reviewed the records of all STEMI patients with single vessel occlusion who presented to our institution from November 2004 - April 2006 for primary angioplasty. Exclusion criteria were: previous MI, cardiogenic shock, patients resuscitated from cardiac arrest, or pre-infarct angina. Patients were prospectively divided into two subsets: those receiving 1-3 balloon inflations (considered the minimum range to achieve patency and stent placement) versus those in whom 4 or more inflations were applied. Peak CK release was significantly lower in patients requiring > or =4 versus 1-3 inflations (1655 versus 2272 IU/L; p<0.05), an outcome consistent with the concept that relief of sustained ischemia in a stuttered manner (analogous to postconditioning) may evoke cardioprotection in the clinical setting.
NASA Astrophysics Data System (ADS)
Halford, A.; Millan, R. M.; Hudson, M. K.; McGregor, S. L.; Kress, B. T.
2014-12-01
The Balloon Array for Radiation belt Relativistic Electron Losses (BARREL) was designed to observe X-rays from precipitating electrons in the Earth's atmosphere. During the second campaign in January 2014 Solar Energetic Proton (SEP) events were detected in the BARREL payloads as they produced atmospheric x-rays, γ-rays, and directly injected protons observed by the scintillator on the BARREL payloads. A total of 6 payloads were up during the event beginning 7 January with an X-class flare at 1832 UT, spread across a wide range of L and MLT. Payload 2I was on open field lines for the entire event while 2T (2W) crossed from open (closed) to closed (open) field lines over the course of the three day event. Payloads 2K and 2L were moving from the inner magnetosphere (L ~ 4) to higher field lines (L>6) while 2X stayed within the inner magnetosphere (L<6) for the entire event. Throughout this time, there were multiple conjunctions with the Van Allen Probes and good agreement with when (UT) and where (L-values) the energetic protons were observed, both in situ and at the balloons. In this poster we consider the transport of the protons from the sun and through the magnetosphere and eventual precipitation observed by the BARREL balloons.
Pan, Chun-Hsu; Li, Pei-Chuan; Chien, Yi-Chung; Yeh, Wan-Ting; Liaw, Chih-Chuang; Sheu, Ming-Jyh; Wu, Chieh-Hsi
2018-02-01
Neointimal hyperplasia (or restenosis) is primarily attributed to excessive proliferation and migration of vascular smooth muscle cells (VSMCs). In this study, we investigated the inhibitory effects and mechanisms of ugonin J on VSMC proliferation and migration as well as neointimal formation. Cell viability and the cell-cycle distribution were, respectively, analyzed using an MTT assay and flow cytometry. Cell migration was examined using a wound-healing analysis and a transwell assay. Protein expressions and gelatinase activities were, respectively, measured using Western blot and gelatin zymography. Balloon angioplasty-induced neointimal formation was induced in a rat carotid artery model and then examined using immunohistochemical staining. Ugonin J induced cell-cycle arrest at the G 0 /G 1 phase and apoptosis to inhibit VSMC growth. Ugonin J also exhibited marked suppressive activity on VSMC migration. Ugonin J significantly reduced activations of focal adhesion kinase, phosphoinositide 3-kinase, v-akt murine thymoma viral oncogene homolog 1, and extracellular signal-regulated kinase 1/2 proteins. Moreover, ugonin J obviously reduced expressions and activity levels of matrix metalloproteinase-2 and matrix metalloproteinase-9. In vivo data indicated that ugonin J prevented balloon angioplasty-induced neointimal hyperplasia. Our study suggested that ugonin J has the potential for application in the prevention of balloon injury-induced neointimal formation. Copyright © 2017 John Wiley & Sons, Ltd.
Ioseliani, G D; Chilaia, S M
1983-02-01
A basically new design for the reversing balloon pump has been proposed for increasing the efficacy of intra-aortic balloon pumping (IABP). The device not only causes a significant increase in discharge, but also permits control of the central and peripheral circulation within the desired limits owing to back-and-forth movements (like a piston) of the balloon pump. Standard one- and two-chamber balloon pumps were compared. In addition to traditional hemodynamic and biochemical indexes, the efficacy of IABP was assessed based on electrode monitor control of PO2 and pH in the myocardium, peripheral tissues, and circulating blood. Based on 54 experiments on dogs, it was found that IABP with reversing balloon pumps in synchronous pulsation resulted in survival of 69% of the cases; PO2 and pH levels in the myocardium, tissues, and blood in the coronary sinus were close to normal, and coronary blood flow and peripheral circulation were increased. With standard one-chamber balloon pumps, the survival rate did not exceed 33.4%; PO2 and pH in the peripheral tissues reached critical levels.
Clarençon, Frédéric; Nouet, Aurelien; Redondo, Aimée; Di Maria, Federico; Iosif, Christina; Le Jean, Lise; Chiras, Jacques; Sourour, Nader
2013-05-31
A 29-year-old patient attended our institution for recurrent strokes related to a giant partially thrombosed M1 aneurysm. Superficial temporal artery-middle cerebral artery (STA-MCA) bypass and subsequent occlusion of both the aneurysm and the dysplastic M1 segment were planned. However, owing to the shortness of the non-dysplastic segment of M1 and the risk of occlusion of the lenticulostriate arteries, the use of a double-lumen balloon was considered for coiling and subsequent injection of Onyx. STA-MCA bypass was performed using a regular technique. Endovascular occlusion of both the aneurysm and the parent artery was subsequently performed by means of coils and Onyx-34 that was injected via the Ascent balloon under balloon inflation. No complications were recorded and no stroke was observed on control MRI. The injection of Onyx-34 through a double-lumen balloon under balloon inflation is a quick and safe technique for precise occlusion of a parent artery.
Clarençon, Frédéric; Nouet, Aurelien; Redondo, Aimée; Di Maria, Federico; Iosif, Christina; Le Jean, Lise; Chiras, Jacques; Sourour, Nader
2014-05-01
A 29-year-old patient attended our institution for recurrent strokes related to a giant partially thrombosed M1 aneurysm. Superficial temporal artery-middle cerebral artery (STA-MCA) bypass and subsequent occlusion of both the aneurysm and the dysplastic M1 segment were planned. However, owing to the shortness of the non-dysplastic segment of M1 and the risk of occlusion of the lenticulostriate arteries, the use of a double-lumen balloon was considered for coiling and subsequent injection of Onyx. STA-MCA bypass was performed using a regular technique. Endovascular occlusion of both the aneurysm and the parent artery was subsequently performed by means of coils and Onyx-34 that was injected via the Ascent balloon under balloon inflation. No complications were recorded and no stroke was observed on control MRI. The injection of Onyx-34 through a double-lumen balloon under balloon inflation is a quick and safe technique for precise occlusion of a parent artery.
Clarençon, Frédéric; Nouet, Aurelien; Redondo, Aimée; Di Maria, Federico; Iosif, Christina; Le Jean, Lise; Chiras, Jacques; Sourour, Nader
2013-01-01
A 29-year-old patient attended our institution for recurrent strokes related to a giant partially thrombosed M1 aneurysm. Superficial temporal artery-middle cerebral artery (STA-MCA) bypass and subsequent occlusion of both the aneurysm and the dysplastic M1 segment were planned. However, owing to the shortness of the non-dysplastic segment of M1 and the risk of occlusion of the lenticulostriate arteries, the use of a double-lumen balloon was considered for coiling and subsequent injection of Onyx. STA-MCA bypass was performed using a regular technique. Endovascular occlusion of both the aneurysm and the parent artery was subsequently performed by means of coils and Onyx-34 that was injected via the Ascent balloon under balloon inflation. No complications were recorded and no stroke was observed on control MRI. The injection of Onyx-34 through a double-lumen balloon under balloon inflation is a quick and safe technique for precise occlusion of a parent artery. PMID:23729720
Heidland, U E; Heintzen, M P; Schoppmann, D; Michel, C J; Strauer, B E
2000-02-25
Balloon angioplasty of a stenosed bypass graft has a much higher risk of recurrent stenosis than dilatation of a stenosed native coronary artery. Intracoronary stent implantation has established itself as the better treatment of native coronary artery stenosis than conventional balloon angioplasty. However, there is still uncertainty whether intracoronary stent implantation in stenosed bypass vessels gives better long-term results than conventional balloon angioplasty. Results were retrospectively analyzed of unrandomized 224 primarily successful interventions--122 balloon dilatations and 102 stent implantations--performed between January 1996 and June 1998 on stenosed coronary bypass grafts, re-examined by coronary angiography an average of 6 months later. All but 11 patients were on combined aspirin and ticlopidine antiplatelet aggregation treatment. There was a significantly lower 6-month restenosis rate (30.4%) after stent implantation than after balloon dilatation (51.6%). The re-intervention rate was also significantly lower after stent implantation. These data suggest that stent implantation of stenosed coronary bypass grafts under cover of platelet-aggregation inhibition with aspirin and ticlopidine provides a lower restenosis and thus higher revascularization rate than conventional balloon dilatation.
The effect of pressure anisotropy on ballooning modes in tokamak plasmas
NASA Astrophysics Data System (ADS)
Johnston, A.; Hole, M. J.; Qu, Z. S.; Hezaveh, H.
2018-06-01
Edge Localised Modes are thought to be caused by a spectrum of magnetohydrodynamic instabilities, including the ballooning mode. While ballooning modes have been studied extensively both theoretically and experimentally, the focus of the vast majority of this research has been on isotropic plasmas. The prevalence of pressure anisotropy in modern tokamaks thus motivates further study of these modes. This paper presents a numerical analysis of ballooning modes in anisotropic equilibria. The investigation was conducted using the newly-developed codes HELENA+ATF and MISHKA-A, which adds anisotropic physics to equilibria and stability analysis. We have examined the impact of anisotropy on the stability of an n = 30 ballooning mode, confirming results conform to previous calculations in the isotropic limit. Growth rates of ballooning modes in equilibria with different levels of anisotropy were then calculated using the stability code MISHKA-A. The key finding was that the level of anisotropy had a significant impact on ballooning mode growth rates. For {T}\\perp > {T}| | , typical of ICRH heating, the growth rate increases, while for {T}\\perp < {T}| | , typical of neutral beam heating, the growth rate decreases.
NASA Astrophysics Data System (ADS)
Paiva Fonseca, Gabriel; Landry, Guillaume; White, Shane; D'Amours, Michel; Yoriyaz, Hélio; Beaulieu, Luc; Reniers, Brigitte; Verhaegen, Frank
2014-10-01
Accounting for brachytherapy applicator attenuation is part of the recommendations from the recent report of AAPM Task Group 186. To do so, model based dose calculation algorithms require accurate modelling of the applicator geometry. This can be non-trivial in the case of irregularly shaped applicators such as the Fletcher Williamson gynaecological applicator or balloon applicators with possibly irregular shapes employed in accelerated partial breast irradiation (APBI) performed using electronic brachytherapy sources (EBS). While many of these applicators can be modelled using constructive solid geometry (CSG), the latter may be difficult and time-consuming. Alternatively, these complex geometries can be modelled using tessellated geometries such as tetrahedral meshes (mesh geometries (MG)). Recent versions of Monte Carlo (MC) codes Geant4 and MCNP6 allow for the use of MG. The goal of this work was to model a series of applicators relevant to brachytherapy using MG. Applicators designed for 192Ir sources and 50 kV EBS were studied; a shielded vaginal applicator, a shielded Fletcher Williamson applicator and an APBI balloon applicator. All applicators were modelled in Geant4 and MCNP6 using MG and CSG for dose calculations. CSG derived dose distributions were considered as reference and used to validate MG models by comparing dose distribution ratios. In general agreement within 1% for the dose calculations was observed for all applicators between MG and CSG and between codes when considering volumes inside the 25% isodose surface. When compared to CSG, MG required longer computation times by a factor of at least 2 for MC simulations using the same code. MCNP6 calculation times were more than ten times shorter than Geant4 in some cases. In conclusion we presented methods allowing for high fidelity modelling with results equivalent to CSG. To the best of our knowledge MG offers the most accurate representation of an irregular APBI balloon applicator.
16 CFR 1117.4 - Time for filing a report.
Code of Federal Regulations, 2010 CFR
2010-01-01
... REPORTING OF CHOKING INCIDENTS INVOLVING MARBLES, SMALL BALLS, LATEX BALLOONS AND OTHER SMALL PARTS § 1117.4... marble, small ball, or latex balloon or on a marble, small ball, latex balloon, or other small part...
NASA Astrophysics Data System (ADS)
Berthou, Ségolène; Verdier, Nicolas; Drobinski, Philippe; Basdevant, Claude; Doerenbecher, Alexis; Fesquet, Clement; Durand, Pierre; Cocquerez, Philippe
HyMeX is an international project that aims at improving our understanding of the water cycle and its variability over the Mediterranean Basin, with emphases on extreme events by means of monitoring and modelling the Mediterranean coupled system. In this frame, Boundary Layer Pressurized Balloons (BLPB) were part of the numerous instruments deployed during two special observation periods (SOPs) in autumn 2012 and winter 2013. Scientific instrumentation on board includes pressure, humidity, temperature sensors and a 3D GPS from which the balloon velocity can be deduced. Whether assimilated in models or directly used as observed data, balloons measurements allow to better understand the moisture transport contribution to Mediterranean heavy precipitation and the effect of air/sea interactions at mesoscale during Mistral/Tramontana events on ocean convection. Different stages were necessary for the deployment of the BLPB. First, the determination of the BLPB flight specifications (launch sites, flight altitude,...) was done using trajectory analysis based on ECMWF (I)FS and Météo-France (ARPEGE, AROME) Numerical Weather Forecast models for meteorological situations corresponding to the HyMeX ``target event'' (heavy precipitation in fall; Mistral/Tramontana in winter). BLPBs were calibrated to fly near or below the top of the boundary layer. An assimilation system was also developed to assimilate in real time the BLPB’s data into the Météo-France Numerical Weather Forecast prediction system. The BLPB were successfully deployed during the two HyMeX special observation periods (SOP) in fall 2012 (5 September - 6 November) and winter 2013 (1 February - 15 March): begin{enumerate} The BAMED SOP1 balloon campaign, dedicated to the study of heavy precipitation events (HPE), took place in Minorca (Baleares). The CNES team with the help and support of the scientists launched 19 BLPBs from San Luis airport. Trajectories sampled a large sector of the Mediterranean Sea, from Barcelona to the Gulf of Genoa. For safety reasons, BLPBs were automatically destroyed while approaching coasts, trajectories then last 12 hours on average, with a maximum of 25 hours. The BAMED SOP2 campaign allowed the study of dense water formation (sea convection) in the Gulf of Lions and the strong air-sea interaction. 15 BLPBs were launched from Candillargues airfield (France) during Tramontana and/or Mistral events: balloons were heading towards South East and flew 7.5 hours on average. BLPBs launched during SOP1 provide data useful for: begin{itemize} a quantification of the moisture supply of convective systems during SOP1 documented in synergy with other means of measurements (ground-based and airborne lidars and radars, flux measurements from aircrafts and boats, ...) in France, Spain and Italy. an assessment of the contribution of BLPBs for forecasting systems The exploitation of the data from BLPBs deployed in SOP2 focuses on: begin{itemize} the dynamics of the Mistral/Tramontana over the Mediterranean Sea. the surface flux relationship between heat, humidity and wind, in synergy with the measures of an aero-plane. the relationship between waves (sea state) and wind in synergy with a sea-state radar on board of an aero-plane. Both SOPs gave us valuable information about the data quality and accuracy and the ability of balloons to take large samples of data given the security requirements.
Sunada, Keijiro; Yamamoto, Hironori; Kita, Hiroto; Yano, Tomonori; Sato, Hiroyuki; Hayashi, Yoshikazu; Miyata, Tomohiko; Sekine, Yutaka; Kuno, Akiko; Iwamoto, Michiko; Ohnishi, Hirohide; Ido, Kenichi; Sugano, Kentaro
2005-01-01
AIM: To evaluate the clinical outcome of enteroscopy, using the double-balloon method, focusing on the involvement of neoplasms in strictures of the small intestine. METHODS: Enteroscopy, using the double-balloon method, was performed between December 1999 and December 2002 at Jichi Medical School Hospital, Japan and strictures of the small intestine were found in 17 out of 62 patients. These 17 consecutive patients were subjected to analysis. RESULTS: The double-balloon enteroscopy contributed to the diagnosis of small intestinal neoplasms found in 3 out of 17 patients by direct observation of the strictures as well as biopsy sampling. Surgical procedures were chosen for these three patients, while balloon dilation was chosen for the strictures in four patients diagnosed with inflammation without involvement of neoplasm. CONCLUSION: Double-balloon enteroscopy is a useful method for the diagnosis and treatment of strictures in the small bowel. PMID:15742422
NASA Astrophysics Data System (ADS)
Gaskin, J. A.; Smith, I. S.; Jones, W. V.
In 1783, the Montgolfier brothers ushered in a new era of transportation and exploration when they used hot air to drive an un-tethered balloon to an altitude of 2 km. Made of sackcloth and held together with cords, this balloon challenged the way we thought about human travel, and it has since evolved into a robust platform for performing novel science and testing new technologies. Today, high-altitude balloons regularly reach altitudes of 40 km, and they can support payloads that weigh more than 3000 kg. Long-duration balloons can currently support mission durations lasting 55 days, and developing balloon technologies (i.e. Super-Pressure Balloons) are expected to extend that duration to 100 days or longer; competing with satellite payloads. This relatively inexpensive platform supports a broad range of science payloads, spanning multiple disciplines (astrophysics, heliophysics, planetary and earth science). Applications extending beyond traditional science include testing new technologies for eventual space-based application and stratospheric airships for planetary applications.
[Effect of hot-air balloon crossings on animals in the open air].
Stephan, E
1997-02-01
Since the middle of the eighties owners of animals increasingly claimed compensation from balloon pilots. They asserted, that their animals got restless due to strange optical and acoustical stimuli caused by low altitude crossing of hot-air balloons and were damaged while trying to get out of the way or to escape. Very low altitude "Contour crossing" of hot-air balloons, mainly forming the basis of complaints, is only left possible in a limited degree in Germany since the air traffic regulations were changed to a higher minimum safety altitude (Air Traffic Act, LuftVO, version of March 21, 1995) and the violating balloon pilot may be disciplined. The paper is dealing with the principle of hot-air ballooning, with the feasibility of the pilot to avoid and restrict damages, with the possibilities to assign damages to a potential cause and with the legal basis.
NASA Astrophysics Data System (ADS)
Bowman, D. C.; Albert, S.; Dexheimer, D.; Murphy, S.; Mullen, M.
2017-12-01
Existing scientific ballooning solutions for multi hour flights in the upper troposphere/lower stratosphere are expensive and/or technically challenging. In contrast, solar hot air balloons are inexpensive and simple to construct. These balloons, which rely solely on sunlight striking a darkened envelope, can deliver payloads to 22 km altitude and maintain level flight until sunset. We describe an experimental campaign in which five solar hot air balloons launched in 45 minutes created a free flying infrasound (low frequency sound) microphone network that remained in the air for over 12 hours. We discuss the balloons' trajectory, maximum altitude, and stability as well as present results from the infrasound observations. We assess the performance and limitations of this design for lightweight atmospheric instrumentation deployments that require multi-hour flight times. Finally, we address the possibilities of multi day flights during the polar summer and on other planets.
Detection of Artificially Generated Seismic Signals Using Balloon-Borne Infrasound Sensors
Krishnamoorthy, Siddharth; Komjathy, Attila; Pauken, Michael T.; ...
2018-04-24
Here, we conducted an experiment in Pahrump, Nevada, in June 2017, where artificial seismic signals were created using a seismic hammer, and the possibility of detecting them from their acoustic signature was examined. In this work, we analyze the pressure signals recorded by highly sensitive barometers deployed on the ground and on tethers suspended from balloons. Our signal processing results show that wind noise experienced by a barometer on a free-flying balloon is lower compared to one on a moored balloon. This has never been experimentally demonstrated in the lower troposphere. While seismoacoustic signals were not recorded on the hotmore » air balloon platform owing to operational challenges, we demonstrate the detection of seismoacoustic signals on our moored balloon platform. Our results have important implications for performing seismology in harsh surface environments such as Venus through atmospheric remote sensing.« less
Initial experience with the Europass: a new ultra-low profile monorail balloon catheter.
Zimarino, M; Corcos, T; Favereau, X; Tamburino, C; Toussaint, M; Spaulding, C; Guérin, Y
1994-09-01
One of the causes for percutaneous transluminal coronary angioplasty (PTCA) failure is the inability to cross the lesion with the balloon catheter after guidewire positioning. The Europass coronary angioplasty catheter is a monorail Duralyn balloon catheter developed to enhance lesion crossability and to overcome this limitation. This system was evaluated in 50 patients in which target lesions were chronic total coronary occlusions (12 cases) or stenoses that could not be reached or crossed by other new monorail balloon catheters. Overall procedural success was obtained in 49/50 patients (98%), using a single Europass balloon catheter in 46/50 patients (92%), with no in-hospital complications. Its low profile, small distal shaft, and excellent trackability allowed successful angioplasty in cases where other catheters failed. This balloon catheter represents a significant advance in angioplasty technology and can be considered as a first-choice device for a safe and expeditious single-operator procedure.
A balloon-borne prototype for demonstrating the concept of JEM-EUSO
NASA Astrophysics Data System (ADS)
von Ballmoos, P.; Santangelo, A.; Adams, J. H.; Barrillon, P.; Bayer, J.; Bertaina, M.; Cafagna, F.; Casolino, M.; Dagoret, S.; Danto, P.; Distratis, G.; Dupieux, M.; Ebersoldt, A.; Ebisuzaki, T.; Evrard, J.; Gorodetzky, Ph.; Haungs, A.; Jung, A.; Kawasaki, Y.; Medina-Tanco, G.; Mot, B.; Osteria, G.; Parizot, E.; Park, I. H.; Picozza, P.; Prévôt, G.; Prieto, H.; Ricci, M.; Rodríguez Frías, M. D.; Roudil, G.; Scotti, V.; Szabelski, J.; Takizawa, Y.; Tusno, K.
2014-05-01
EUSO-BALLOON has been conceived as a pathfinder for JEM-EUSO, a mission concept for a space-borne wide-field telescope monitoring the Earth's nighttime atmosphere with the objective of recording the ultraviolet light from tracks initiated by ultra-high energy cosmic rays. Through a series of stratospheric balloon flights performed by the French Space Agency CNES, EUSO-BALLOON will serve as a test-bench for the key technologies of JEM-EUSO. EUSO-BALLOON shall perform an end-to-end test of all subsystems and components, and prove the global detection chain while improving our knowledge of the atmospheric and terrestrial ultraviolet background. The balloon-instrument also has the potential to detect for the first time UV-light generated by atmospheric air-shower from above, marking a milestone in the development of UHECR science, and paving the way for any future large scale, space-based ultra-high energy cosmic ray observatory.
Detection of Artificially Generated Seismic Signals Using Balloon-Borne Infrasound Sensors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krishnamoorthy, Siddharth; Komjathy, Attila; Pauken, Michael T.
Here, we conducted an experiment in Pahrump, Nevada, in June 2017, where artificial seismic signals were created using a seismic hammer, and the possibility of detecting them from their acoustic signature was examined. In this work, we analyze the pressure signals recorded by highly sensitive barometers deployed on the ground and on tethers suspended from balloons. Our signal processing results show that wind noise experienced by a barometer on a free-flying balloon is lower compared to one on a moored balloon. This has never been experimentally demonstrated in the lower troposphere. While seismoacoustic signals were not recorded on the hotmore » air balloon platform owing to operational challenges, we demonstrate the detection of seismoacoustic signals on our moored balloon platform. Our results have important implications for performing seismology in harsh surface environments such as Venus through atmospheric remote sensing.« less
The Latest Developments in NASA's Long Duration Balloon Systems
NASA Astrophysics Data System (ADS)
Stilwell, Bryan D.
The Latest Developments in NASA’s Long Duration Balloon Systems Bryan D. Stilwell, bryan.stilwell@csbf.nasa.gov Columbia Scientific Balloon Facility, Palestine, Texas, USA The Columbia Scientific Balloon Facility, located in Palestine, Texas offers the scientific community a high altitude balloon based communications platform. Scientific payload mass can exceed 2722 kg with balloon float altitudes on average of 40000 km and flight duration of up to 100 days. Many developments in electrical systems have occurred over the more than 25 years of long duration flights. This paper will discuss the latest developments in electronic systems related to long duration flights. Over the years, the long duration flights have increased in durations exceeding 56 days. In order to support these longer flights, the systems have had to increase in complexity and reliability. Several different systems that have been upgraded and/or enhanced will be discussed.
Anderson, Jordan A; Lamichhane, Sujan; Remund, Tyler; Kelly, Patrick; Mani, Gopinath
2016-01-01
Drug-coated balloons (DCBs) are used to treat various cardiovascular diseases. Currently available DCBs carry drug on the balloon surface either solely or using different carriers. Several studies have shown that a significant amount of drug is lost in the blood stream during balloon tracking to deliver only a sub-therapeutic level of drug at the treatment site. This research is focused on developing paclitaxel (PAT) loaded polyethylene oxide (PEO) films (PAT-PEO) as a controlled drug delivery carrier for DCBs. An array of PAT-PEO films were developed in this study to provide tailored release of >90% of drug only at specific time intervals, which is the time frame required for carrying out balloon-based therapy. The characterizations of PAT-PEO films using SEM, FTIR, and DSC showed that the films developed were homogenous and the PAT was molecularly dispersed in the PEO matrix. Mechanical tests showed that most PAT-PEO films developed were flexible and ductile, with yield and tensile strengths not affected after PAT incorporation. The viability, proliferation, morphology, and phenotype of smooth muscle cells (SMCs) interacted with control-PEO and PAT-PEO films were investigated. All control-PEO and PAT-PEO films showed a significant inhibitory effect on the growth of SMCs, with the degree of inhibition strongly dependent on the w/v% of the polymer used. The PAT-PEO coating was produced on the balloons. The integrity of PAT-PEO coating was well maintained without any mechanical defects occurring during balloon inflation or deflation. The drug release studies showed that only 15% of the total PAT loaded was released from the balloons within the initial 1min (typical balloon tracking time), whereas 80% of the PAT was released between 1min and 4min (typical balloon treatment time). Thus, this study demonstrated the use of PEO as an alternate drug delivery system for the balloons. Atherosclerosis is primarily responsible for cardiovascular diseases (CVDs) in millions of patients every year. Drug-coated balloons (DCBs) are commonly used to treat various CVDs. However, in several currently used DCBs, a significant amount of drug is lost in the blood stream during balloon tracking to deliver only a sub-therapeutic level of drug at the treatment site. In this study, paclitaxel containing polyethylene oxide (PEO) films were developed to provide unique advantages including drug release profiles specifically tailored for balloon-based therapy, homogeneous films with molecularly dispersed drug, flexible and ductile films, and exhibits significant inhibitory effect on smooth muscle cell growth. Thus, this study demonstrated the use of PEO as an alternate drug delivery platform for DCBs to improve its efficacy. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Models of visceral pain: colorectal distension (CRD).
Jones, R Carter W; Gebhart, G F
2004-09-01
The visceromotor response to balloon distension of the colon is a robust behavioral model of visceral nociception in rodents and is ideally suited for studying the visceral antinociceptive activity of drugs. This unit describes, in detail, quantification of this response with the use of electromyography in both rats and mice.
NASA Astrophysics Data System (ADS)
Dorf, M.; Butz, A.; Camy-Peyret, C.; Chipperfield, M.; Kreycy, S.; Kritten, L.; Prados-Roman, C.; Pfeilsticker, K.
2008-12-01
Due to the ozone destroying capabilities of bromine and iodine bearing compounds, the stratospheric budget of inorganic bromine and iodine is of major interest for modeling ozone depletion and assessing the future evolution of the ozone layer. In particular the contribution of very short lived substances (VSLS) to the bromine budget has recently been shown to enhance ozone depletion in mid-latitudes and polar regions. So far, iodine species have not been unambiguously detected in the stratosphere with upper limits for total inorganic iodine (Iy) of about 0.1 ppt. However, observations are sparse and mainly restricted to mid- and high-latitudes. Here, we assess the budget of iodine and bromine in the tropical Upper Troposphere/ Lower Stratosphere (UT/LS) where the halogen source gases enter the stratosphere and supply the stratosphere with halogen species. We report on two stratospheric balloon flights of the LPMA/DOAS (Limb Profile Monitor of the Atmosphere/Differential Optical Absorption Spectrometer) payload from a tropical station in northern Brazil (5°S, 43°W) in June 2005 and June 2008. There, the LPMA/DOAS payload conducted spectroscopic direct sun measurements in the UV/visible and infrared spectral range during balloon ascent and in solar occultation geometry. The LPMA/DOAS observations allow for the retrieval of IO and OIO from their absorption features in the visible spectral range. Neither species could be detected unambiguously with detection limits ranging between 0.01 and 0.2 ppt in the UT/LS. Constraining a stratospheric chemistry model by the inferred detection limits for IO and OIO, yields an upper limit for Iy of 0.1 to 0.3 ppt. Implications for stratospheric ozone are discussed on the basis of model studies. BrO is inferred from absorption bands in the UV spectral range yielding the first BrO vertical profile in the tropical UT/LS. For the balloon flight in June 2005, total inorganic bromine (Bry) is estimated to (21.5 ± 2.5) ppt in 4.5-year-old air using a stratospheric model constrained by measured BrO. We derive a total contribution of (5.2 ± 2.5) ppt from brominated VSLS and inorganic product gases to Bry. Tropospheric BrO was found to be < 1 ppt. Our results are compared to 3-D CTM SLIMCAT model runs.
NASA Scientific Balloon Team Hopes to Break Flight Duration Record with New Zealand Launch
2017-12-08
After years of tests and development, NASA’s Balloon Program team is on the cusp of expanding the envelope in high-altitude, heavy-lift ballooning with its super pressure balloon (SPB) technology. NASA’s scientific balloon experts are in Wanaka, New Zealand, prepping for the fourth flight of an 18.8 million-cubic-foot (532,000 cubic-meter) balloon, with the ambitious goal of achieving an ultra-long-duration flight of up to 100 days at mid-latitudes. Launch of the pumpkin-shaped, football stadium-size balloon is scheduled for sometime after April 1, 2016, from Wanaka Airport, pending final checkouts and flight readiness of the balloon and supporting systems. Once launched, the SPB, which is made from 22-acres of polyethylene film – similar to a sandwich bag, but stronger and more durable – will ascend to a nearly constant float altitude of 110,000 feet (33.5 km). The balloon will travel eastward carrying a 2,260-pound (1,025 kg) payload consisting of tracking, communications and scientific instruments. NASA expects the SPB to circumnavigate the globe once every one to three weeks, depending on wind speeds in the stratosphere. Read more: go.nasa.gov/1p56xKR NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Cho, Moonsung; Neubauer, Peter; Fahrenson, Christoph; Rechenberg, Ingo
2018-06-01
The physical mechanism of aerial dispersal of spiders, "ballooning behavior," is still unclear because of the lack of serious scientific observations and experiments. Therefore, as a first step in clarifying the phenomenon, we studied the ballooning behavior of relatively large spiders (heavier than 5 mg) in nature. Additional wind tunnel tests to identify ballooning silks were implemented in the laboratory. From our observation, it seems obvious that spiders actively evaluate the condition of the wind with their front leg (leg I) and wait for the preferable wind condition for their ballooning takeoff. In the wind tunnel tests, as-yet-unknown physical properties of ballooning fibers (length, thickness, and number of fibers) were identified. Large spiders, 16-20 mg Xysticus spp., spun 50-60 nanoscale fibers, with a diameter of 121-323 nm. The length of these threads was 3.22 ± 1.31 m (N = 22). These physical properties of ballooning fibers can explain the ballooning of large spiders with relatively light updrafts, 0.1-0.5 m s-1, which exist in a light breeze of 1.5-3.3 m s-1. Additionally, in line with previous research on turbulence in atmospheric boundary layers and from our wind measurements, it is hypothesized that spiders use the ascending air current for their aerial dispersal, the "ejection" regime, which is induced by hairpin vortices in the atmospheric boundary layer turbulence. This regime is highly correlated with lower wind speeds. This coincides well with the fact that spiders usually balloon when the wind speed is lower than 3 m s-1.
Saurer, Eric M.; Yamanouchi, Dai; Liu, Bo; Lynn, David M.
2010-01-01
We report an approach for the localized delivery of plasmid DNA to vascular tissue from the surfaces of inflatable embolectomy catheter balloons. Using a layer-by-layer approach, ultrathin multilayered polyelectrolyte films were fabricated on embolectomy catheter balloons by alternately adsorbing layers of a hydrolytically degradable poly(β-amino ester) and plasmid DNA. Fluorescence microscopy revealed that the films coated the surfaces of the balloons uniformly. Coated balloons that were incubated in phosphate-buffered saline at 37 °C released ~25 μg DNA/cm2 over 24 hours. Analysis of the DNA by gel electrophoresis showed that the DNA was released in open-circular (‘nicked’) and supercoiled conformations, and in vitro cell transfection assays confirmed that the released DNA was transcriptionally active. Arterial injury was induced in the internal carotid arteries of Sprague-Dawley rats using uncoated balloons, followed by treatment with film-coated balloons for 20 minutes. X-gal, immunohistochemical, and immunofluorescence staining of sectioned arteries indicated high levels of β-galactosidase or enhanced green fluorescent protein (EGFP) expression in arteries treated with film-coated balloons. β-galactosidase and EGFP expression were observed throughout the medial layers of arterial tissue, and around approximately two-thirds of the circumference of the treated arteries. The layer-by-layer approach reported here provides a general platform for the balloon-mediated delivery of DNA to vascular tissue. Our results suggest the potential of this approach to deliver therapeutically relevant DNA to prevent complications such as intimal hyperplasia that arise after vascular interventions. PMID:20933275
Ballooning for Biologists: Mission Essentials for Flying Experiments on Large NASA Balloons
NASA Technical Reports Server (NTRS)
Smith, David J.; Sowa, Marianne
2017-01-01
Despite centuries of scientific balloon flights, only a handful of experiments have produced biologically-relevant results. Yet unlike orbital spaceflight, it is much faster and cheaper to conduct biology research with balloons, sending specimens to the near space environment of Earths stratosphere. Samples can be loaded the morning of a launch and sometimes returned to the laboratory within one day after flying. The National Aeronautics and Space Administration (NASA) flies large, unmanned scientific balloons from all over the globe, with missions ranging from hours to weeks in duration. A payload in the middle portion of the stratosphere (approx. 35 km above sea level) will be exposed to an environment similar to the surface of Mars: temperatures generally around -36 C, atmospheric pressure at a thin 1 kPa, relative humidity levels <1%, and a harsh illumination of ultraviolet (UV) and cosmic radiation levels (about 100 W/sq m and 0.1 mGy/d, respectively) that can be obtained nowhere else on the surface of the Earth, including environmental chambers and particle accelerator facilities attempting to simulate space radiation effects. Considering the operational advantages of ballooning and the fidelity of space-like stressors in the stratosphere, researchers in aerobiology, astrobiology, and space biology can benefit from balloon flight experiments as an intermediary step on the extraterrestrial continuum (ground, low Earth orbit, and deep space studies). Our presentation targets biologists with no background or experience in scientific ballooning. We will provide an overview of large balloon operations, biology topics that can be uniquely addressed in the stratosphere, and a roadmap for developing payloads to fly with NASA.
High submuscular placement of urologic prosthetic balloons and reservoirs via transscrotal approach.
Morey, Allen F; Cefalu, Christopher A; Hudak, Steven J
2013-02-01
Traditional placement of inflatable penile prosthesis (IPP) reservoirs and/or artificial urinary sphincter (AUS) balloons into the space of Retzius may be challenging following major pelvic surgery. The aim of this study is to report our 1-year experience using a novel technique for high balloon/reservoir placement beneath the rectus abdominus muscle, thus completely obviating deep pelvic dissection during prosthetic urologic surgery. A retrospective review of all patients who underwent IPP and/or AUS placement between June 2011 and June 2012 was performed. All had AUS balloons and/or IPP reservoirs placed in a submuscular location by bluntly tunneling through the external inguinal ring into a potential space between the transversalis fascia and the rectus abdominus muscle using a long, angled, lung grasping clamp. Patient demographics, perioperative outcomes, and initial follow-up patient-reported outcomes were reviewed. During the study period, 120 submuscular balloons/reservoirs were inserted in 107 consecutive patients who underwent placement of an IPP (61 patients), AUS (33 patients), or both (13 patients). Among our 48 most recent patients, 41 (85%) reported they were totally unable to feel their balloon/reservoir, and all but two patients reported no bother from the submuscular balloon/reservoir placement. Of the 120 total submuscular balloons and reservoirs, surgical time and outcomes of the prosthetic procedures appeared similar to those placed using traditional methods; two reservoirs required revision surgery for repositioning. High submuscular placement of genitourinary prosthetic balloons and reservoirs via a transscrotal approach is both safely and effective, while avoiding deep retropubic dissection. © 2012 International Society for Sexual Medicine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Min Tae; Park, Jung-Hoon; Shin, Ji Hoon, E-mail: jhshin@amc.seoul.kr
PurposeTo determine the effect of contrast medium dilution during tracheal balloon dilation on balloon deflation time and visibility using a 3-dimensional (3D) printed airway phantom.Materials and MethodsA comparison study to investigate balloon deflation times and image quality was performed using two contrast agents with different viscosities, i.e., iohexol and ioxithalamate, and six contrast dilutions with a 3D printed airway phantom.ResultsCompared to 1:0 concentration, 3:1, 2:1, 1:1, 1:2, and 1:3, contrast/saline ratios resulted in a 46% (56.2 s), 59.8% (73.1 s), 74.9% (91.6 s), 81.7% (99.8 s), and 83.5% (102 s) reduction for iohexol, respectively, and a 51.8% (54.7 s), 63.8% (67.6 s), 74.7% (79.2 s), 80.5% (85.3 s), andmore » 82.4% (87.4 s) reduction for ioxithalamate, respectively, in the mean balloon deflation time, although at the expense of decreased balloon opacity (3.5, 6.9, 11.1, 12.4, and 13.9%, for iohexol, respectively, and 3.2, 6, 9.6, 10.8, and 12.4%, for ioxithalamate, respectively).ConclusionsUse of a lower viscosity contrast agent and higher contrast dilution is considered to be able to reduce balloon deflation times and then simultaneously decrease visualization of balloons. The rapid balloon deflation time is likely to improve the safe performance of interventional procedures.« less
Crash in Australian outback ends NASA ballooning season
NASA Astrophysics Data System (ADS)
Harris, Margaret
2010-06-01
NASA has temporarily suspended all its scientific balloon launches after the balloon-borne Nuclear Compton Tele scope (NCT) crashed during take-off, scattering a trail of debris across the remote launch site and overturning a nearby parked car.
The Great Balloon Controversy.
ERIC Educational Resources Information Center
Chase, Valerie
1989-01-01
Discusses the harmful effects of balloon launches and the dumping of plastic debris into oceans. Cites several examples of plastic materials being discovered inside the bodies of sick and/or dead marine animals. Offers alternative activities to releasing balloons into the atmosphere. (RT)
An Overview of the NASA Sounding Rockets and Balloon Programs
NASA Technical Reports Server (NTRS)
Flowers, Bobby J.; Needleman, Harvey C.
1999-01-01
The U.S. National Aeronautics and Space Administration (NASA) Sounding Rockets and Balloon Programs conduct a combined total of approximately fifty to sixty missions per year in support of the NASA scientific community. These missions are provided in support of investigations sponsored by NASA'S Offices of Space Science, Life and Microgravity Sciences & Applications, and Earth Science. The Goddard Space Flight Center has management and implementation responsibility for these programs. The NASA Sounding Rockets Program has continued to su,pport the science community by integrating their experiments into the sounding rocket payload and providing the rocket vehicle and launch operations necessary to provide the altitude/time required obtain the science objectives. The sounding rockets continue to provide a cost-effective way to make in situ observations from 50 to 1500 km in the near-earth environment and to uniquely cover the altitude regime between 50 km and 130 km above the Earth's surface, which is physically inaccessible to either balloons or satellites. A new architecture for providing this support has been introduced this year with the establishment of the NASA Sounding Rockets Contract. The Program has continued to introduce improvements into their operations and ground and flight systems. An overview of the NASA Sounding Rockets Program with special emphasis on the new support contract will be presented. The NASA Balloon Program continues to make advancements and developments in its capabilities for support of the scientific ballooning community. Long duration balloon (LDB) is a prominent aspect of the program with two campaigns scheduled for this calendar year. Two flights are scheduled in the Northern Hemisphere from Fairbanks, Alaska, in June and two flights are scheduled from McMurdo, Antarctica, in the Southern Hemisphere in December. The comprehensive balloon research and development (R&D) effort has continued with advances being made across the spectrum of balloon related disciplines. As a result of these technology advancements a new ultra long duration balloon project (ULDB) for the development of a 100- day duration balloon capability has been initiated. The ULDB will rely upon new balloon materials and designs to accomplish its goals. The Program has also continued to introduce new technology and improvements into flights systems, ground systems and operational techniques. An overview of the various aspects of the NASA Balloon Program will be presented.
Overview of the Scientific Balloon Activity in Sweden
NASA Astrophysics Data System (ADS)
Abrahamsson, Mattias; Kemi, Stig; Lockowandt, Christian; Andersson, Kent
SSC, formerly known as Swedish Space Corporation, is a Swedish state-owned company working in several different space related fields, including scientific stratospheric balloon launches. Esrange Space Centre (Esrange in short) located in the north of Sweden is the launch facility of SSC, where both sounding rocket launches and stratospheric balloon launches are conducted. At Esrange there are also facilities for satellite communication, including one of the largest civilian satellite data reception stations in the world. Stratospheric balloons have been launched from Esrange since 1974, when the first flights were performed together with the French space agency CNES. These balloon flights have normally flown eastward either only over Sweden or into Finland. Some flights have also had permission to fly into Russia, as far as the Ural Mountains. Normal flight times are from 4 to 12 hours. These eastward flights are conducted during the winter months (September to May). Long duration flights have been flown from ESC since 2005, when NASA flew the BLAST payload from Sweden to north Canada. The prevailing westerly wind pattern is very advantageous for trans-Atlantic flights during summer (late May to late July). The long flight times are very beneficial for astronomical payloads, such as telescopes that need long observation times. In 2013 two such payloads were flown, the first called SUNRISE was a German/US solar telescope, and the other called PoGOLite with a Swedish gamma-ray telescope. In 14 days PoGOLite, which had permission to fly over Russia, made an almost complete circumpolar flight. Typical scientific balloon payload fields include atmospheric research, including research on ozone depletion, astronomical and cosmological research, and research in technical fields such as aerodynamics. University students from all over Europe are involved in flights from Esrange under a Swedish/German programme called BEXUS. Two stratospheric balloons are flown with student payloads yearly, with the goal to introduce students in ballooning. Over the next couple of years the plan is to make a re-flight of the PoGOLite payload, fly two Japanese balloon payloads for planetary science missions, fly four student balloons, three balloons for technical studies of re-entry vehicles, and a balloon with a payload studying aerodynamic behaviour of a falling body.
Solar research with stratospheric balloons
NASA Astrophysics Data System (ADS)
Vázquez, Manuel; Wittmann, Axel D.
Balloons, driven by hot air or some gas lighter than air, were the first artificial machines able to lift payloads (including humans) from the ground. After some pioneering flights the study of the physical properties of the terrestrial atmosphere constituted the first scientific target. A bit later astronomers realized that the turbulence of the atmospheric layers above their ground-based telescopes deteriorated the image quality, and that balloons were an appropriate means to overcome, total or partially, this problem. Some of the most highly-resolved photographs and spectrograms of the sun during the 20th century were actually obtained by balloon-borne telescopes from the stratosphere. Some more recent projects of solar balloon astronomy will also be described.
Balloon Program Wraps up in Antarctica, Heading to New Zealand
2015-02-02
Caption: A NASA Super Pressure Balloon with the COSI payload is ready for launch from McMurdo, Antarctica. Credit: NASA More info: NASA’s globetrotting Balloon Program Office is wrapping up its 2014-2015 Antarctic campaign while prepping for an around-the-world flight launching out of Wanaka, New Zealand, in March. After 16 days, 12 hours, and 56 minutes of flight, operators successfully conducted a planned flight termination of the Suborbital Polarimeter for Inflation Dust and the Epoch of Reionization (SPIDER) mission Saturday, Jan. 18, the final mission of the campaign. Other flights in the 2014-2015 Antarctic campaign included the Antarctic Impulsive Transient Antenna (ANITA-III) mission as well as the Compton Spectrometer and Imager (COSI) payload flown on the developmental Super Pressure Balloon (SPB). ANITA-III successfully wrapped up Jan. 9 after 22 days, 9 hours, and 14 minutes of flight. Flight controllers terminated the COSI flight 43 hours into the mission after detecting a small gas leak in the balloon. Crews are now working to recover all three instruments from different locations across the continent. The 6,480-pound SPIDER payload is stationary at a position about 290 miles from the United Kingdom’s Sky Blu Logistics Facility in Antarctica. The 4,601 pound ANITA-III payload, located about 100 miles from Australia’s Davis Station, and the 2,866 pound COSI payload, located about 340 miles from the United States McMurdo Station both had numerous key components recovered in the past few days. Beginning in late January, the Balloon Program Office will deploy a team to Wanaka, New Zealand, to begin preparations for an SPB flight, scheduled to launch in March. The Program Office seeks to fly the SPB more than 100 days, which would shatter the current flight duration record of 55 days, 1 hour, and 34 minutes for a large scientific balloon. “We’re looking forward to the New Zealand campaign and hopefully a history-making flight with the Super Pressure Balloon,” said Debbie Fairbrother, NASA’s Balloon Program Office Chief. Most scientific balloons see altitude variances based on temperature changes in the atmosphere at night and during the day. The SPB is capable of missions on the order of 100 days or more at constant float altitudes due to the pressurization of the balloon. “Stable, long-duration flights at near-space altitudes above more than 99 percent of the atmosphere are highly desirable in the science community, and we’re ready to deliver,” said Fairbrother. In addition to the SPB flight in March, the Balloon Program Office has 10 more balloon missions planned through September 2015 to include scheduled test flights of the Low-Density Supersonic Decelerator, which is testing new technologies for landing larger, heavier payloads on Mars. NASA’s Wallops Flight Facility manages the agency’s Scientific Balloon Program with 10 to 15 flights each year from launch sites worldwide. The balloons are massive in volume; the average-sized balloon could hold the volume of nearly 200 blimps. Previous work on balloons have contributed to confirming the Big Bang Theory. For more information on NASA’s Scientific Balloon Program, see: sites.wff.nasa.gov/code820/index.html NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
NASA Technical Reports Server (NTRS)
Korn, A. O.
1975-01-01
In the late 1960's several governmental agencies sponsored efforts to develop unmanned, powered balloon systems for scientific experimentation and military operations. Some of the programs resulted in hardware and limited flight tests; others, to date, have not progressed beyond the paper study stage. Balloon system designs, materials, propulsion units and capabilities are briefly described, and critical problem areas are pointed out which require further study in order to achieve operational powered balloon systems capable of long duration flight at high altitudes.
Some special sub-systems for stratospheric balloon flights in India
NASA Astrophysics Data System (ADS)
Damle, S. V.; Gokhale, G. S.; Kundapurkar, R. U.
During last few years several new sub-systems for balloon were developed and are being regularly used in the balloon flights. Some of these sub-systems are i) positive monitor for magnetic ballast release using an opto-electronic device ii) one-way pressure switch to terminate flight for runaway balloon iii) in-flight payload reel down system for atmospheric science experiment. The design, usage and performance of these and other sub-systems will be presented.
Hot air balloons fill gap in atmospheric and sensing platforms
NASA Astrophysics Data System (ADS)
Watson, Steven M.; Price, Russ
Eric Edgerton was having a problem he could not solve: how to noninvasively collect in situ incinerator plume data. So he called in the Air Force and learned about its Atmospheric and Sensor Test Platform program; its platform is a manned hot air balloon. Many investigators are discovering the advantages of hot air balloons as stable, inexpensive platforms for performing in situ atmospheric measurements. Some are also using remote sensing capabilities on the balloon platforms.
Location and data collection for long stratospheric balloon flights
NASA Astrophysics Data System (ADS)
Malaterre, P.
Stratospheric balloons capable of taking a 30 kg scientific payload to an altitude of 22 to 30 km for 1 month or more were developed. In-flight experiments were used to qualify the designs of a pumpkin shaped superpressure balloon and an infrared hot air balloon. Tracking of the flights (location and transmission of the parameters measured on board) was achieved using a telemetry gondola including an ARGOS beacon adapted for operation in the low temperatures encountered.
2015-06-12
soldiers aloft in tethered hot air balloons to observe enemy positions on the battlefield. The Union Army even established a separate Balloon Corps from...December 20, 2014). 1 describe man-lifting kites in the Far East while eighteenth and nineteenth century manned balloons and piloted fixed wing aircraft...in the twentieth and twenty-first centuries provided this capability. One of the first recorded Western uses of manned balloons for ISR purposes
Balloon crash damage and injuries: an analysis of 86 accidents, 2000-2004.
de Voogt, Alexander J; van Doorn, Robert R A
2006-05-01
General aviation accounts for the majority of aviation crashes and casualties in the United States. The role of ballooning in these statistics is not regularly studied. Since 2001, the National Transportation and Safety Board has made its accident reports more readily available, which presents opportunities for further study. This study analyzes and compares a 5-yr period of accident reports and includes an analysis of injuries and balloon damage in hot-air and gas balloon accidents. Balloon crash 2-page briefs and 5-page accident reports published by the National Transportation and Safety Board for the 5-yr time period 2000-2004 were examined. Data collected in the investigation of these crashes were analyzed and compared with the epidemiological data collected in earlier research. In 86 crashes during a 5-yr period, there were 4 fatalities and 75 people were seriously injured. Only one accident was reported involving a student pilot. Broken ankles and legs have been the most commonly recorded serious injury, but could not be linked to the severity of damage to the balloon. The absence of student pilot accidents may be explained by possible stricter supervision. Balloon basket and envelopes appear of sufficient quality to withstand crashes, but improving the protection of passengers during hard landings should help to decrease the number of serious injuries in ballooning.
Goreczny, Sebastian; Qureshi, Shakeel A; Rosenthal, Eric; Krasemann, Thomas; Nassar, Mohamed S; Anderson, David R; Morgan, Gareth J
2017-07-01
We aimed to compare the procedural and mid-term performance of a specifically designed self-expanding stent with balloon-expandable stents in patients undergoing hybrid palliation for hypoplastic left heart syndrome and its variants. The lack of specifically designed stents has led to off-label use of coronary, biliary, or peripheral stents in the neonatal ductus arteriosus. Recently, a self-expanding stent, specifically designed for use in hypoplastic left heart syndrome, has become available. We carried out a retrospective cohort comparison of 69 neonates who underwent hybrid ductal stenting with balloon-expandable and self-expanding stents from December, 2005 to July, 2014. In total, 43 balloon-expandable stents were implanted in 41 neonates and more recently 47 self-expanding stents in 28 neonates. In the balloon-expandable stents group, stent-related complications occurred in nine patients (22%), compared with one patient in the self-expanding stent group (4%). During follow-up, percutaneous re-intervention related to the ductal stent was performed in five patients (17%) in the balloon-expandable stent group and seven patients (28%) in self-expanding stents group. Hybrid ductal stenting with self-expanding stents produced favourable results when compared with the results obtained with balloon-expandable stents. Immediate additional interventions and follow-up re-interventions were similar in both groups with complications more common in those with balloon-expandable stents.
The financial impact of flipping the coin.
Gonzalez, Katherine W; Reddy, Shiva R; Mundakkal, Angela A; St Peter, Shawn D
2017-01-01
Esophageal foreign body retrieval is typically performed by rigid or flexible esophagoscopy. Despite evidence supporting the efficacy and safety of balloon extraction, it is rarely performed. We sought to establish the financial benefits of this minimally invasive approach. A retrospective review of 241 children with esophageal coins between 2011 and 2013 was performed. Coins were removed via endoscopy or fluoroscopic-guided balloon retrieval. Timing, symptoms, facility cost, and patient charges were compared. Two hundred patients had attempted balloon retrieval with 80% success. Forty-one patients went directly for operative removal. Patients with respiratory difficulty (p=0.05), wheezing (p<0.01), or fever (p=0.03) were more often taken directly for endoscopic retrieval. The median cost and charges for attempted balloon extraction were $484 and $1647. The median cost and charges for primary endoscopy were $1834 and $6746. The median total cost and charges of attempted balloon extraction including ED, OR, transport, admission, and balloon retrieval were $1231 and $3539 versus $3615 and $12,204 in the primary endoscopy group (p<0.001, p<0.001). Seventeen percent of patients who underwent attempted balloon retrieval were admitted prior to removal compared to 76% who underwent primary endoscopy (p<0.001). Fluoroscopic guided balloon extraction of esophageal coins is a financially prudent choice which shortens hospital stay. III. Retrospective treatment and economic study. Copyright © 2017 Elsevier Inc. All rights reserved.
Wiarda, Bart M; Stolk, Mark; Heine, Dimitri G N; Mensink, Peter; Thieme, Mai E; Kuipers, Ernst J; Stoker, Jaap
2013-03-01
We aimed to prospectively determine patient burden and patient preference for magnetic resonance enteroclysis, capsule endoscopy and balloon-assisted enteroscopy in patients with suspected or known Crohn's disease (CD) or occult gastrointestinal bleeding (OGIB). Consecutive consenting patients with CD or OGIB underwent magnetic resonance enteroclysis, capsule endoscopy and balloon-assisted enteroscopy. Capsule endoscopy was only performed if magnetic resonance enteroclysis showed no high-grade small bowel stenosis. Patient preference and burden was evaluated by means of standardized questionnaires at five moments in time. From January 2007 until March 2009, 76 patients were included (M/F 31/45; mean age 46.9 years; range 20.0-78.4 years): 38 patients with OGIB and 38 with suspected or known CD. Seventeen patients did not undergo capsule endoscopy because of high-grade stenosis. Ninety-five percent (344/363) of the questionnaires were suitable for evaluation. Capsule endoscopy was significantly favored over magnetic resonance enteroclysis and balloon-assisted enteroscopy with respect to bowel preparation, swallowing of the capsule (compared to insertion of the tube/scope), burden of the entire examination, duration and accordance with the pre-study information. Capsule endoscopy and magnetic resonance enteroclysis were significantly preferred over balloon-assisted enteroscopy for clarity of explanation of the examination, and magnetic resonance enteroclysis was significantly preferred over balloon-assisted enteroscopy for bowel preparation, painfulness and burden of the entire examination. Balloon-assisted enteroscopy was significantly favored over magnetic resonance enteroclysis for insertion of the scope and procedure duration. Pre- and post-study the order of preference was capsule endoscopy, magnetic resonance enteroclysis and balloon-assisted enteroscopy. Capsule endoscopy was preferred to magnetic resonance enteroclysis and balloon-assisted enteroscopy; it also had the lowest burden. Magnetic resonance enteroclysis was preferred over balloon-assisted enteroscopy for clarity of explanation of the examination, bowel preparation, painfulness and burden of the entire examination, and balloon-assisted enteroscopy over magnetic resonance enteroclysis for scope insertion and study duration. © 2012 Journal of Gastroenterology and Hepatology Foundation and Wiley Publishing Asia Pty Ltd.
Development Overview of the Revised NASA Ultra Long Duration Balloon
NASA Technical Reports Server (NTRS)
Cathey, H. M.; Gregory, D; Young, L.; Pierce, D.
2006-01-01
The development of the National Aeronautics and Space Administration s (NASA) Ultra Long Duration Balloon (ULDB) has made significant strides in addressing the deployment issues experienced in the scaling up of the balloon structure. This paper concentrates on the super-pressure balloon developments that have been, and are currently being planned by the NASA Balloon Program Office at Goddard Space Flight Center s Wallops Flight Facility. The goal of the NASA ULDB development project is to attempt to extend the potential flight durations for large scientific balloon payloads. A summary of the February 2005 test flight from Ft. Sumner, New Mexico will be presented. This test flight spurred a number of investigations and advancements for this project. The development path has pursued some new approaches in the design, analysis, and testing of the balloons. New issues have been ideEti6ed throu& both analysis md testing. These have been addressed in the design stage before the next balloon construction was begun. This paper will give an overview of the recent history for this effort and the development approach pursued for ULDB. A description of the balloon design, including the modifications made as a result of the lessons learned, will be presented. Areas to be presented include the design approach, deployment issues that have been encountered and the proposed solutions, ground testing, photogrammetry, and an analysis overview. Test flight planning and considerations will be presented including test flight safety. An extended duration test flight of the National Aeronautics and Space Administration s Ultra Long Duration Balloon is planned for the May/June 2006 time frame. This flight is expected to fly from Sweden to either Canada or Alaska. Preliminary results of this flight will be presented as available. Future plans for both ground testing and additional test flights will also be presented. Goals of the future test flights, which are staged in increments of increasing suspended load and altitude, will be presented. This will include the projected balloon volumes, payload capabilities, test flight locations, and proposed flight schedule.
75 FR 77673 - National Environmental Policy Act: Scientific Balloon Program
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-13
... implementation of the Proposed Action are summarized below. Airspace and Balloon Operations: No adverse impacts to airspace management or balloon operations are anticipated under this proposal. CSBF would continue... minimal. Air emissions would not be perceptibly [[Page 77674
Gondola development for CNES stratospheric balloons
NASA Astrophysics Data System (ADS)
Vargas, A.; Audoubert, J.; Cau, M.; Evrard, J.; Verdier, N.
The CNES has been supporting scientific ballooning since its establishment in 1962. The two main parts of the balloon system or aerostat are the balloon itself and the flight train, comprising the house-keeping gondola, for the control of balloon flight (localization and operational telemetry & telecommand - TM/TC), and the scientific gondola with its dedicated telecommunication system. For zero pressure balloon, the development of new TM/TC system for the housekeeping and science data transmission are going on from 1999. The main concepts are : - for balloon house-keeping and low rate scientific telemetry, the ELITE system, which is based on single I2C bus standardizing communication between the different components of the system : trajectography, balloon control, power supply, scientific TM/TC, .... In this concept, Radio Frequency links are developed between the house keeping gondola and the components of the aerostat (balloon valve, ballast machine, balloon gas temperature measurements, ...). The main objectives are to simplify the flight train preparation in term of gondola testing before flight, and also by reducing the number of long electrical cables integrated in the balloon and the flight train; - for high rate scientific telemetry, the use of functional interconnection Internet Protocol (IP) in interface with the Radio Frequency link. The main idea is to use off-the-shelf IP hardware products (routers, industrial PC, ...) and IP software (Telnet, FTP, Web-HTTP, ...) to reduce the development costs; - for safety increase, the adding, in the flight train, of a totally independent house keeping gondola based on the satellite Inmarsat M and Iridium telecommunication systems, which permits to get real time communications between the on-board data mobile and the ground station, reduced to a PC computer with modem connected to the phone network. These GEO and LEO telecommunication systems give also the capability to operate balloon flights over longer distance (over the line of sight) than with dedicated RF system, which requires balloon visibility from the ground station. For long duration flights (3 months) of Infra Red Montgolfieres, a house keeping gondola has been developed, using the Inmarsat C standard to have communication all around the world (up to N or S 80 ° latitude) with an automatic switching between the 4 geostationnary Inmarsat satellites. After validation flights performed from Bauru / Brazil. (2000 & 2001) and Kiruna/Sweden (2002), the first operational flights took place from Bauru in February 2003 during ENVISAT validation campaign. The next flights will be realized in the framework of the Hibiscus campaign planned in February 2004 in Bauru.. The Balloon Division was involved in the Franco / Japanese HSFD II project which consists to drop a mock-up of the Japanese HOPE-X space shuttle from a stratospheric balloon to validate its flight from the altitude of 30 km. We developed a specific gondola as a service module for the HOPE-X shuttle, providing power and GPS radio-frequency signal during the balloon flight phase, telemetry end remote control radio frequency links and separation system with pyrotechnic cutters for the drop of the shuttle. A successful flight was performed at Kiruna in July 2003. Concerning gondola with pointing system, the study of a big g-ray telescope (8 m of focal length), started by the end of 2002. For this 1 ton gondola, the telescope stabilization system will be based on control moment gyro (CMG). The CMG system has been designed and will be manufactured and validated during 2004. The first flight of this g-ray gondola is planned for 2006. The progress, status and future plans concerning these gondola developments will be presented.
Use of mechanical devices for distal hemoperfusion during balloon catheter coronary angioplasty.
Heibig, J; Angelini, P; Leachman, D R; Beall, M M; Beall, A C
1988-01-01
Previous attempts to protect the dependent myocardium during balloon catheter coronary angioplasty in animals and humans have had generally unsatisfactory results. This paper summarizes the authors' experience in investigating commercially available mechanical pumps for distal coronary hemoperfusion during balloon angioplasty. Both roller and piston pumps can attain adequate distal perfusion without significant side effects in the majority of patients. Our goal was to suppress angina for at least 5 min to prolong balloon inflation in awake patients. Minor T-wave changes without concomitant angina pectoris can be expected when the distal coronary bed is perfused with hypothermic blood. Side branch occlusion by the inflated balloon prevents effective protection of the corresponding part of the dependent myocardium during distal hemoperfusion, which may result in persistent angina and ST-T changes uncorrected by increasing the hemoperfusion rate. Distal coronary diffuse spasm, rare and transient, was the only immediate complication of this procedure. It is suggested that intense local wall stimulation could occur with a higher flow rate (jet effect). Improved balloon catheter pressure/flow characteristics and on-line continuous mechanical pumps should soon make distal coronary hemoperfusion through balloon catheters an accepted clinical technique.
Endoscopic minor papilla balloon dilation for the treatment of symptomatic pancreas divisum.
Yamamoto, Natsuyo; Isayama, Hiroyuki; Sasahira, Naoki; Tsujino, Takeshi; Nakai, Yousuke; Miyabayashi, Koji; Mizuno, Suguru; Kogure, Hirofumi; Sasaki, Takashi; Hirano, Kenji; Tada, Minoru; Koike, Kazuhiko
2014-08-01
A subpopulation of patients with pancreas divisum experience symptomatic events such as recurrent acute pancreatitis and chronic pancreatitis. Minor papilla sphincterotomy has been reported as being an effective treatment. The aim of this study was to evaluate the safety and efficacy of endoscopic balloon dilation for the minor papilla. Between 2000 and 2012, 16 patients were retrospectively included in this study. After endoscopic balloon dilation for the minor papilla was received, a pancreatic stent or a nasal pancreatic drainage catheter was placed for 1 week. If a stricture or obstruction was evident, it was treated with balloon dilation followed by long-term stent placement (1 year). When an outflow of pancreatic juice was disturbed by a pancreatic stone, endoscopic stone extraction was performed. Balloon dilation and stent placement were achieved and were successful in all the cases (16/16; 100%). Clinical improvement was achieved in 7 (84.7%) of the 9 patients with recurrent acute pancreatitis and in 6 (85.7%) of the 7 patients with chronic pancreatitis. Early complications were observed in 1 (6.3%) patient. Pancreatitis or bleeding related to balloon dilation was not observed. Endoscopic balloon dilation for the minor papilla is feasible for the management of symptomatic pancreas divisum.
Clarençon, Frédéric; Pérot, Guillaume; Biondi, Alessandra; Di Maria, Federico; Szatmary, Zoltan; Chiras, Jacques; Sourour, Nader
2012-03-01
To present the feasibility of using the Ascent balloon, a new double-lumen remodeling balloon, for a new 2-in-1 technique allowing coiling through the lumen of the balloon without the use of an additional coiling microcatheter. Remodeling technique had enlarged the indications for endovascular treatment of intracranial aneurysm. Nevertheless, one of the limitations of this technique is that it requires using 2 devices in the same parent artery. A 55-year-old woman presented with a 7.7 × 4.5-mm incidental anterior communicating artery aneurysm. Only 1 A1 segment (left side) was patent on the cerebral angiogram. A 6F Fargo Max guiding catheter was positioned in the left petrous internal carotid artery. The Ascent balloon was placed in front of the neck of the aneurysm after navigation on a Traxcess 0.014-in guidewire. Coiling of the aneurysm sac was performed via 1 lumen of the device under iterative inflations of the balloon through the second lumen. This new 2-in-1 technique using a sole remodeling balloon without an additional coiling microcatheter is very promising, especially in cases of a small-caliber parent artery.
A Methane Balloon Inflation Chamber
ERIC Educational Resources Information Center
Czerwinski, Curtis J.; Cordes, Tanya J.; Franek, Joe
2005-01-01
The various equipments, procedure and hazards in constructing the device for inflating a methane balloon using a standard methane outlet in a laboratory are described. This device is fast, safe, inexpensive, and easy to use as compared to a hydrogen gas cylinder for inflating balloons.
14 CFR 101.39 - Balloon position reports.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Balloon position reports. 101.39 Section 101.39 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES MOORED BALLOONS, KITES, AMATEUR ROCKETS AND UNMANNED FREE...
14 CFR 101.39 - Balloon position reports.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Balloon position reports. 101.39 Section 101.39 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES MOORED BALLOONS, KITES, AMATEUR ROCKETS AND UNMANNED FREE...
14 CFR 101.39 - Balloon position reports.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Balloon position reports. 101.39 Section 101.39 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES MOORED BALLOONS, KITES, AMATEUR ROCKETS AND UNMANNED FREE...
14 CFR 101.39 - Balloon position reports.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Balloon position reports. 101.39 Section 101.39 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES MOORED BALLOONS, KITES, AMATEUR ROCKETS AND UNMANNED FREE...
14 CFR 101.39 - Balloon position reports.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Balloon position reports. 101.39 Section 101.39 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES MOORED BALLOONS, KITES, AMATEUR ROCKETS AND UNMANNED FREE...