Science.gov

Sample records for modeling hydrogen water

  1. Water's hydrogen bonds in the hydrophobic effect: a simple model.

    PubMed

    Xu, Huafeng; Dill, Ken A

    2005-12-15

    We propose a simple analytical model to account for water's hydrogen bonds in the hydrophobic effect. It is based on computing a mean-field partition function for a water molecule in the first solvation shell around a solute molecule. The model treats the orientational restrictions from hydrogen bonding, and utilizes quantities that can be obtained from bulk water simulations. We illustrate the principles in a 2-dimensional Mercedes-Benz-like model. Our model gives good predictions for the heat capacity of hydrophobic solvation, reproduces the solvation energies and entropies at different temperatures with only one fitting parameter, and accounts for the solute size dependence of the hydrophobic effect. Our model supports the view that water's hydrogen bonding propensity determines the temperature dependence of the hydrophobic effect. It explains the puzzling experimental observation that dissolving a nonpolar solute in hot water has positive entropy.

  2. Water's hydrogen bonds in the hydrophobic effect: a simple model.

    PubMed

    Xu, Huafeng; Dill, Ken A

    2005-12-15

    We propose a simple analytical model to account for water's hydrogen bonds in the hydrophobic effect. It is based on computing a mean-field partition function for a water molecule in the first solvation shell around a solute molecule. The model treats the orientational restrictions from hydrogen bonding, and utilizes quantities that can be obtained from bulk water simulations. We illustrate the principles in a 2-dimensional Mercedes-Benz-like model. Our model gives good predictions for the heat capacity of hydrophobic solvation, reproduces the solvation energies and entropies at different temperatures with only one fitting parameter, and accounts for the solute size dependence of the hydrophobic effect. Our model supports the view that water's hydrogen bonding propensity determines the temperature dependence of the hydrophobic effect. It explains the puzzling experimental observation that dissolving a nonpolar solute in hot water has positive entropy. PMID:16375338

  3. Hydrogen-Bond Cooperativity in Formamide2 -Water: A Model for Water-Mediated Interactions.

    PubMed

    Blanco, Susana; Pinacho, Pablo; López, Juan Carlos

    2016-08-01

    The rotational spectrum of formamide2 -H2 O formed in a supersonic jet has been characterized by Fourier-transform microwave spectroscopy. This adduct provides a simple model of water-mediated interaction involving the amide linkages, as occur in protein folding or amide-association processes, showing the interplay between self-association and solvation. Mono-substituted (13) C, (15) N, (18) O, and (2) H isotopologues have been observed and their data used to investigate the structure. The adduct forms an almost planar three-body sequential cycle. The two formamide molecules link on one side through an N-H⋅⋅⋅O hydrogen bond and on the other side through a water-mediated interaction with the formation of C=O⋅⋅⋅H-O and O⋅⋅⋅H-N hydrogen bonds. The analysis of the quadrupole coupling effects of two (14) N-nuclei reveals the subtle inductive forces associated to cooperative hydrogen bonding. These forces are involved in the changes in the C=O and C-N bond lengths with respect to pure formamide.

  4. Hydrogen-Bond Cooperativity in Formamide2 -Water: A Model for Water-Mediated Interactions.

    PubMed

    Blanco, Susana; Pinacho, Pablo; López, Juan Carlos

    2016-08-01

    The rotational spectrum of formamide2 -H2 O formed in a supersonic jet has been characterized by Fourier-transform microwave spectroscopy. This adduct provides a simple model of water-mediated interaction involving the amide linkages, as occur in protein folding or amide-association processes, showing the interplay between self-association and solvation. Mono-substituted (13) C, (15) N, (18) O, and (2) H isotopologues have been observed and their data used to investigate the structure. The adduct forms an almost planar three-body sequential cycle. The two formamide molecules link on one side through an N-H⋅⋅⋅O hydrogen bond and on the other side through a water-mediated interaction with the formation of C=O⋅⋅⋅H-O and O⋅⋅⋅H-N hydrogen bonds. The analysis of the quadrupole coupling effects of two (14) N-nuclei reveals the subtle inductive forces associated to cooperative hydrogen bonding. These forces are involved in the changes in the C=O and C-N bond lengths with respect to pure formamide. PMID:27351296

  5. Modelling of hydrogen assisted cracking of nickel-base Alloy X-750 in water

    SciTech Connect

    Oka, T.; Ballinger, R.G.; Hwang, I.S.

    1992-12-31

    A closed-form, semi-empirical, electrochemical model has been developed to rationalize the intergranular corrosion fatigue behavior of alloy X-750 in aqueous electrolytes. The model is based on the assumption that, in the electrolytes investigated and for the microstructures studied, that hydrogen assisted crack growth is the dominant mechanism. Further, it is assumed that the rate of hydrogen reduction is a controlling factor in the magnitude of the environmental component of crack growth. Electrolyte conductivity, dissolution and passivation kinetics of precipitates, grain boundary coverage of precipitates are identified as important environmental and microstructural variables governing the hydrogen reduction rate at the crack tip. The model is compared with experimental data for fatigue crack growth where hydrogen is supplied by external charging and with data where galvanically-generated local hydrogen is responsible for enhanced crack growth. It is shown that predicted results characterize the observed effects of frequency, microstructure, electrolyte conductivity, and stress intensity factor. The agreement between the hydrogen reduction model and measured crack growth rate is believed to support the proposed galvanic corrosion mechanism for the intergranular cracking of alloy X-750 in low temperature water.

  6. Modeling of biomass to hydrogen via the supercritical water pyrolysis process

    SciTech Connect

    Divilio, R.J.

    1998-08-01

    A heat transfer model has been developed to predict the temperature profile inside the University of Hawaii`s Supercritical Water Reactor. A series of heat transfer tests were conducted on the University of Hawaii`s apparatus to calibrate the model. Results of the model simulations are shown for several of the heat transfer tests. Tests with corn starch and wood pastes indicated that there are substantial differences between the thermal properties of the paste compared to pure water, particularly near the pseudo critical temperature. The assumption of constant thermal diffusivity in the temperature range of 250 to 450 C gave a reasonable prediction of the reactor temperatures when paste is being fed. A literature review is presented for pyrolysis of biomass in water at elevated temperatures up to the supercritical range. Based on this review, a global reaction mechanism is proposed. Equilibrium calculations were performed on the test results from the University of Hawaii`s Supercritical Water Reactor when corn starch and corn starch and wood pastes were being fed. The calculations indicate that the data from the reactor falls both below and above the equilibrium hydrogen concentrations depending on test conditions. The data also indicates that faster heating rates may be beneficial to the hydrogen yield. Equilibrium calculations were also performed to examine the impact of wood concentration on the gas mixtures produced. This calculation showed that increasing wood concentrations favors the formation of methane at the expense of hydrogen.

  7. Simulation of the effect of hydrogen bonds on water activity of glucose and dextran using the Veytsman model.

    PubMed

    De Vito, Francesca; Veytsman, Boris; Painter, Paul; Kokini, Jozef L

    2015-03-01

    Carbohydrates exhibit either van der Waals and ionic interactions or strong hydrogen bonding interactions. The prominence and large number of hydrogen bonds results in major contributions to phase behavior. A thermodynamic framework that accounts for hydrogen bonding interactions is therefore necessary. We have developed an extension of the thermodynamic model based on the Veytsman association theory to predict the contribution of hydrogen bonds to the behavior of glucose-water and dextran-water systems and we have calculated the free energy of mixing and its derivative leading to chemical potential and water activity. We compared our calculations with experimental data of water activity for glucose and dextran and found excellent agreement far superior to the Flory-Huggins theory. The validation of our calculations using experimental data demonstrated the validity of the Veytsman model in properly accounting for the hydrogen bonding interactions and successfully predicting water activity of glucose and dextran. Our calculations of the concentration of hydrogen bonds using the Veytsman model were instrumental in our ability to explain the difference between glucose and dextran and the role that hydrogen bonds play in contributing to these differences. The miscibility predictions showed that the Veytsman model is also able to correctly describe the phase behavior of glucose and dextran.

  8. Hydrogen and water reactor safety: proceedings

    SciTech Connect

    Not Available

    1982-01-01

    Separate abstracts were prepared for papers presented in the following areas of interest: 1) hydrogen research programs; 2) hydrogen behavior during light water reactor accidents; 3) combustible gas generation; 4) hydrogen transport and mixing; 5) combustion modeling and experiments; 6) accelerated flames and detonations; 7) combustion mitigation and control; and 8) equipment survivability.

  9. Process for exchanging hydrogen isotopes between gaseous hydrogen and water

    DOEpatents

    Hindin, Saul G.; Roberts, George W.

    1980-08-12

    A process for exchanging isotopes of hydrogen, particularly tritium, between gaseous hydrogen and water is provided whereby gaseous hydrogen depeleted in tritium and liquid or gaseous water containing tritium are reacted in the presence of a metallic catalyst.

  10. Hydrogen and Oxygen Isotope Ratios in Body Water and Hair: Modeling Isotope Dynamics in Nonhuman Primates

    PubMed Central

    O’Grady, Shannon P.; Valenzuela, Luciano O.; Remien, Christopher H.; Enright, Lindsey E.; Jorgensen, Matthew J.; Kaplan, Jay R.; Wagner, Janice D.; Cerling, Thure E.; Ehleringer, James R.

    2012-01-01

    The stable isotopic composition of drinking water, diet, and atmospheric oxygen influence the isotopic composition of body water (2H/1H, 18O/16O expressed as δ2H and δ18O). In turn, body water influences the isotopic composition of organic matter in tissues, such as hair and teeth, which are often used to reconstruct historical dietary and movement patterns of animals and humans. Here, we used a nonhuman primate system (Macaca fascicularis) to test the robustness of two different mechanistic stable isotope models: a model to predict the δ2H and δ18O values of body water and a second model to predict the δ2H and δ18O values of hair. In contrast to previous human-based studies, use of nonhuman primates fed controlled diets allowed us to further constrain model parameter values and evaluate model predictions. Both models reliably predicted the δ2H and δ18O values of body water and of hair. Moreover, the isotope data allowed us to better quantify values for two critical variables in the models: the δ2H and δ18O values of gut water and the 18O isotope fractionation associated with a carbonyl oxygen-water interaction in the gut (αow). Our modeling efforts indicated that better predictions for body water and hair isotope values were achieved by making the isotopic composition of gut water approached that of body water. Additionally, the value of αow was 1.0164, in close agreement with the only other previously measured observation (microbial spore cell walls), suggesting robustness of this fractionation factor across different biological systems. PMID:22553163

  11. Hydrogen-rich Water Exerting a Protective Effect on Ovarian Reserve Function in a Mouse Model of Immune Premature Ovarian Failure Induced by Zona Pellucida 3

    PubMed Central

    He, Xin; Wang, Shu-Yu; Yin, Cheng-Hong; Wang, Tong; Jia, Chan-Wei; Ma, Yan-Min

    2016-01-01

    Background: Premature ovarian failure (POF) is a disease that affects female fertility but has few effective treatments. Ovarian reserve function plays an important role in female fertility. Recent studies have reported that hydrogen can protect male fertility. Therefore, we explored the potential protective effect of hydrogen-rich water on ovarian reserve function through a mouse immune POF model. Methods: To set up immune POF model, fifty female BALB/c mice were randomly divided into four groups: Control (mice consumed normal water, n = 10), hydrogen (mice consumed hydrogen-rich water, n = 10), model (mice were immunized with zona pellucida glycoprotein 3 [ZP3] and consumed normal water, n = 15), and model-hydrogen (mice were immunized with ZP3 and consumed hydrogen-rich water, n = 15) groups. After 5 weeks, mice were sacrificed. Serum anti-Müllerian hormone (AMH) levels, granulosa cell (GC) apoptotic index (AI), B-cell leukemia/lymphoma 2 (Bcl-2), and BCL2-associated X protein (Bax) expression were examined. Analyses were performed using SPSS 17.0 (SPSS Inc., Chicago, IL, USA) software. Results: Immune POF model, model group exhibited markedly reduced serum AMH levels compared with those of the control group (5.41 ± 0.91 ng/ml vs. 16.23 ± 1.97 ng/ml, P = 0.033) and the hydrogen group (19.65 ± 7.82 ng/ml, P = 0.006). The model-hydrogen group displayed significantly higher AMH concentrations compared with that of the model group (15.03 ± 2.75 ng/ml vs. 5.41 ± 0.91 ng/ml, P = 0.021). The GC AI was significantly higher in the model group (21.30 ± 1.74%) than those in the control (7.06 ± 0.27%), hydrogen (5.17 ± 0.41%), and model-hydrogen groups (11.24 ± 0.58%) (all P < 0.001). The GC AI was significantly higher in the model-hydrogen group compared with that of the hydrogen group (11.24 ± 0.58% vs. 5.17 ± 0.41%, P = 0.021). Compared with those of the model group, ovarian tissue Bcl-2 levels increased (2.18 ± 0.30 vs. 3.01 ± 0.33, P = 0.045) and the Bax

  12. Dependence of the number of hydrogen bonds per water molecule on its distance to a hydrophobic surface and a thereupon-based model for hydrophobic attraction.

    PubMed

    Djikaev, Y S; Ruckenstein, Eli

    2010-11-21

    A water molecule in the vicinity of a hydrophobic surface forms fewer hydrogen bonds than a bulk molecule because the surface restricts the space available for other water molecules necessary for its hydrogen-bonding. In this vicinity, the number of hydrogen bonds per water molecule depends on its distance to the surface. Considering the number of hydrogen bonds per bulk water molecule (available experimentally) as the only reference quantity, we propose an improved probabilistic approach to water hydrogen-bonding that allows one to obtain an analytic expression for this dependence. (The original version of this approach [Y. S. Djikaev and E. Ruckenstein, J. Chem. Phys. 130, 124713 (2009)] provides the number of hydrogen bonds per water molecule in the vicinity of a hydrophobic surface as an average over all possible locations and orientations of the molecule.) This function (the number of hydrogen bonds per water molecule versus its distance to a hydrophobic surface) can be used to develop analytic models for the effect of hydrogen-bonding on the hydration of hydrophobic particles and their solvent-mediated interaction. Presenting a model for the latter, we also examine the temperature effect on the solvent-mediated interaction of two parallel hydrophobic plates.

  13. Tuning the Liquid-Liquid Transition by Modulating the Hydrogen-Bond Angular Flexibility in a Model for Water

    NASA Astrophysics Data System (ADS)

    Smallenburg, Frank; Sciortino, Francesco

    2015-07-01

    We propose a simple extension of the well known ST2 model for water [F. H. Stillinger and A. Rahman, J. Chem. Phys. 60, 1545 (1974)] that allows for a continuous modification of the hydrogen-bond angular flexibility. We show that the bond flexibility affects the relative thermodynamic stability of the liquid and of the hexagonal (or cubic) ice. On increasing the flexibility, the liquid-liquid critical point, which in the original ST2 model is located in the no-man's land (i.e., the region where ice is the thermodynamically stable phase) progressively moves to a temperature where the liquid is more stable than ice. Our study definitively proves that the liquid-liquid transition in the ST2 model is a genuine phenomenon, of high relevance in all tetrahedral network-forming liquids, including water.

  14. Tuning the Liquid-Liquid Transition by Modulating the Hydrogen-Bond Angular Flexibility in a Model for Water.

    PubMed

    Smallenburg, Frank; Sciortino, Francesco

    2015-07-01

    We propose a simple extension of the well known ST2 model for water [F. H. Stillinger and A. Rahman, J. Chem. Phys. 60, 1545 (1974)] that allows for a continuous modification of the hydrogen-bond angular flexibility. We show that the bond flexibility affects the relative thermodynamic stability of the liquid and of the hexagonal (or cubic) ice. On increasing the flexibility, the liquid-liquid critical point, which in the original ST2 model is located in the no-man's land (i.e., the region where ice is the thermodynamically stable phase) progressively moves to a temperature where the liquid is more stable than ice. Our study definitively proves that the liquid-liquid transition in the ST2 model is a genuine phenomenon, of high relevance in all tetrahedral network-forming liquids, including water.

  15. Water balance model for mean annual hydrogen and oxygen isotope distributions in surface waters of the contiguous US

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The stable H and O isotope composition of river and stream water records information on runoff sources and land/atmosphere water fluxes within the catchment, and is a potentially powerful tool for network-based monitoring of large ecohydrological systems. Process-based hydrological models, however,...

  16. Hydrogen by electrolysis of water

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Hydrogen production by electrolytic decomposition of water is explained. Power efficiency, efficient energy utilization, and costs were emphasized. Four systems were considered: two were based on current electrolyzer technology using present efficiency values for electrical generation by fossil fired and nuclear thermal stations, and two using projected electrolyzer technology with advanced fossil and nuclear plants.

  17. Water reactive hydrogen fuel cell power system

    SciTech Connect

    Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

    2014-11-25

    A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into the fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

  18. Water reactive hydrogen fuel cell power system

    SciTech Connect

    Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

    2014-01-21

    A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into a fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

  19. Water and hydrogen are immiscible in Earth's mantle.

    PubMed

    Bali, Enikő; Audétat, Andreas; Keppler, Hans

    2013-03-14

    In the deep, chemically reducing parts of Earth's mantle, hydrous fluids contain significant amounts of molecular hydrogen (H2). Thermodynamic models of fluids in Earth's mantle so far have always assumed that molecular hydrogen and water are completely miscible. Here we show experimental evidence that water and hydrogen can coexist as two separate, immiscible phases. Immiscibility between water and hydrogen may be the cause of the formation of enigmatic, ultra-reducing domains in the mantle that contain moissanite (SiC) and other phases indicative of extremely reducing conditions. Moreover, the immiscibility between water and hydrogen may provide a mechanism for the rapid oxidation of Earth's upper mantle immediately following core formation.

  20. Water gas shift reaction kinetics and reactor modeling for fuel cell grade hydrogen

    NASA Astrophysics Data System (ADS)

    Choi, Yongtaek; Stenger, Harvey G.

    The kinetics of the water gas shift reaction was studied to evaluate existing reaction mechanisms, test various rate expressions and simulate the performance in a methanol fuel processor for fuel cell applications. The reaction was carried out in a micro reactor testing unit using a commercial Sud-Chemie Cu/ZnO/Al 2O 3 catalyst between 120 and 250 °C with a range of feed rates and compositions. Using non-linear least squares optimization, the parameters in five rate expressions were fit to the experimental data. Based on a review of published work on the WGS reaction mechanism, our study found that a rate expression derived from a regenerative mechanism and another rate expression derived from adsorptive mechanism fit the experimental data equally well. Numerical integration of a one-dimensional PFR model was used for this parameter fitting. An empirical rate expression, rCO= kPCOPH 2O (1- β) with activation energy of 47.4 kJ/mol was also obtained from the experimental data. Reactor performance was simulated to determine catalyst loadings required to achieve specific CO conversions as a function of temperature and water feed rate. These results are useful in studying the design trade offs available to reformer systems.

  1. Coverage-dependent thermodynamic analysis of the formation of water and hydrogen peroxide on a platinum model catalyst.

    PubMed

    de Morais, Rodrigo Ferreira; Franco, Alejandro A; Sautet, Philippe; Loffreda, David

    2015-05-01

    Understanding the selectivity of the oxygen reduction reaction, especially the formation of water versus hydrogen peroxide in fuel cells, is an ongoing challenge in electrochemistry, surface science and catalysis. In this study, we propose a comprehensive thermodynamic analysis of the reaction intermediates for the formation of water on Pt(111). Density functional theory calculations of all the elementary steps linking hydroxyl and hydroperoxyl surface species with water and hydrogen peroxide have been performed at low (1/12 ML, ML = monolayer) and high (1/4 ML) coverages. The reaction energy variation for the two competing elementary events (molecular oxygen dissociation and hydroperoxyl formation) is strongly coverage-dependent. For the direct dissociation, an increase is observed at low coverage with respect to the usual high coverage picture. The stability of the reaction intermediates is investigated from thermodynamic diagrams. At 353 K and a total pressure of 1 atm, water and hydroxyl surface species are expected to compete for adsorption on Pt(111).

  2. DFT study of N-H···O hydrogen bond between model dehydropeptides and water molecule

    NASA Astrophysics Data System (ADS)

    Buczek, Aneta; Broda, Małgorzata A.

    2014-03-01

    The strength of the hydrogen bond formed between a water molecule and two α,β-dehydroalanine derivatives including Ac-ΔAla-NMe2 (1) and Ac-ΔAla-NHMe (2) in comparison with standard amino acid Ac-Ala-NMe2 (3) is studied by density functional theory (with M06-2X and B3LYP functionals). Calculations were conducted for two different conformations of the peptides: extended (C5) and bent (β) with polyproline II backbone dihedral angles. The obtained results show that both dehydro and standard peptides in bent conformation form stronger hydrogen bonds with water than in the extended ones. Moreover, due to higher polarity of the N-H group of α,β-dehydroalanine residues, the H-bond in their complexes with water are stronger than for standard alanine.

  3. Insights into the ultraviolet spectrum of liquid water from model calculations: the different roles of donor and acceptor hydrogen bonds in water pentamers.

    PubMed

    Cabral do Couto, Paulo; Chipman, Daniel M

    2012-11-14

    With a view toward a better understanding of changes in the peak position and shape of the first absorption band of water with condensation or temperature, results from electronic structure calculations using high level wavefunction based and time-dependent density functional methods are reported for water pentamers. Excitation energies, oscillator strengths, and redistributions of electron density are determined for the quasitetrahedral water pentamer in its C(2v) equilibrium geometry and for many pentamer configurations sampled from molecular simulation of liquid water. Excitations associated with surface molecules are removed in order to focus on those states associated with the central molecule, which are the most representative of the liquid environment. The effect of hydrogen bonding on the lowest excited state associated with the central molecule is studied by adding acceptor or donor hydrogen bonds to tetramer and trimer substructures of the C(2v) pentamer, and by sampling liquid-like configurations having increasing number of acceptor or donor hydrogen bonds of the central molecule. Our results provide clear evidence that the blueshift of excitation energies upon condensation is essentially determined by acceptor hydrogen bonds, and the magnitudes of these shifts are determined by the number of such, whereas donor hydrogen bonds do not induce significant shifts in excitation energies. This qualitatively different role of donor and acceptor hydrogen bonds is understood in terms of the different roles of the 1b(1) monomer molecular orbitals, which establishes an intimate connection between the valence hole and excitation energy shifts. Since the valence hole of the lowest excitation associated with the central molecule is found to be well localized in all liquid-like hydrogen bonding environments, with an average radius of gyration of ~1.6 Å that is much lower than the nearest neighbor O-O distance, a clear and unambiguous connection between hydrogen

  4. Hydrogen Production by Water Biophotolysis

    SciTech Connect

    Ghirardi, Maria L.; King, Paul W.; Mulder, David W.; Eckert, Carrie; Dubini, Alexandra; Maness, Pin-Ching; Yu, Jianping

    2014-01-22

    The use of microalgae for production of hydrogen gas from water photolysis has been studied for many years, but its commercialization is still limited by multiple challenges. Most of the barriers to commercialization are attributed to the existence of biological regulatory mechanisms that, under anaerobic conditions, quench the absorbed light energy, down-regulate linear electron transfer, inactivate the H2-producing enzyme, and compete for electrons with the hydrogenase. Consequently, the conversion efficiency of absorbed photons into H2 is significantly lower than its estimated potential of 12–13 %. However, extensive research continues towards addressing these barriers by either trying to understand and circumvent intracellular regulatory mechanisms at the enzyme and metabolic level or by developing biological systems that achieve prolonged H2 production albeit under lower than 12–13 % solar conversion efficiency. This chapter describes the metabolic pathways involved in biological H2 photoproduction from water photolysis, the attributes of the two hydrogenases, [FeFe] and [NiFe], that catalyze biological H2 production, and highlights research related to addressing the barriers described above. These highlights include: (a) recent advances in improving our understanding of the O2 inactivation mechanism in different classes of hydrogenases; (b) progress made in preventing competitive pathways from diverting electrons from H2 photoproduction; and (c) new developments in bypassing the non-dissipated proton gradient from down-regulating photosynthetic electron transfer. As an example of a major success story, we mention the generation of truncated-antenna mutants in Chlamydomonas and Synechocystis that address the inherent low-light saturation of photosynthesis. In addition, we highlight the rationale and progress towards coupling biological hydrogenases to non-biological, photochemical charge-separation as a means to bypass the barriers of photobiological

  5. Modeling hydrogen transport by dislocations

    NASA Astrophysics Data System (ADS)

    Dadfarnia, Mohsen; Martin, May L.; Nagao, Akihide; Sofronis, Petros; Robertson, Ian M.

    2015-05-01

    Recent experimental studies of the microstructure beneath fracture surfaces of specimens fractured in the presence of high concentrations of hydrogen suggest that the dislocation structure and hydrogen transported by mobile dislocations play important roles in establishing the local conditions that promote failure. The experiments demonstrate that hydrogen is responsible for the copious plasticity in large volumes of material before the onset of fracture and further afield from a crack tip. A revised model for hydrogen transport that accounts for hydrogen carried by dislocations along with stress driven diffusion and trapping at other microstructural defects is proposed. With the use of this new model, numerical simulation results for transient hydrogen profiles in the neighborhood of a crack tip are presented. Based on hydrogen-enhanced dislocation mobility and density, the results indicate that dislocation transport can contribute to the elevation of the local hydrogen concentrations ahead of the crack to levels above those predicted by the classical diffusion model and to distributions that extend farther afield.

  6. Mathematical model of water transport in Bacon and alkaline matrix-type hydrogen-oxygen fuel cells

    NASA Technical Reports Server (NTRS)

    Prokopius, P. R.; Easter, R. W.

    1972-01-01

    Based on general mass continuity and diffusive transport equations, a mathematical model was developed that simulates the transport of water in Bacon and alkaline-matrix fuel cells. The derived model was validated by using it to analytically reproduce various Bacon and matrix-cell experimental water transport transients.

  7. Chemical Kinetic Modeling of Hydrogen Combustion Limits

    SciTech Connect

    Pitz, W J; Westbrook, C K

    2008-04-02

    A detailed chemical kinetic model is used to explore the flammability and detonability of hydrogen mixtures. In the case of flammability, a detailed chemical kinetic mechanism for hydrogen is coupled to the CHEMKIN Premix code to compute premixed, laminar flame speeds. The detailed chemical kinetic model reproduces flame speeds in the literature over a range of equivalence ratios, pressures and reactant temperatures. A series of calculation were performed to assess the key parameters determining the flammability of hydrogen mixtures. Increased reactant temperature was found to greatly increase the flame speed and the flammability of the mixture. The effect of added diluents was assessed. Addition of water and carbon dioxide were found to reduce the flame speed and thus the flammability of a hydrogen mixture approximately equally well and much more than the addition of nitrogen. The detailed chemical kinetic model was used to explore the detonability of hydrogen mixtures. A Zeldovich-von Neumann-Doring (ZND) detonation model coupled with detailed chemical kinetics was used to model the detonation. The effectiveness on different diluents was assessed in reducing the detonability of a hydrogen mixture. Carbon dioxide was found to be most effective in reducing the detonability followed by water and nitrogen. The chemical action of chemical inhibitors on reducing the flammability of hydrogen mixtures is discussed. Bromine and organophosphorus inhibitors act through catalytic cycles that recombine H and OH radicals in the flame. The reduction in H and OH radicals reduces chain branching in the flame through the H + O{sub 2} = OH + O chain branching reaction. The reduction in chain branching and radical production reduces the flame speed and thus the flammability of the hydrogen mixture.

  8. Effect of water on hydrogen permeability

    NASA Technical Reports Server (NTRS)

    Hulligan, David; Tomazic, William A.

    1987-01-01

    Doping of hydrogen with CO and CO2 was developed to reduce hydrogen permeation in Stirling engines by forming a low permeability oxide coating on the inner surface of the heater head tubes. Although doping worked well, under certain circumstances the protective oxide could be chemically reduced by the hydrogen in the engine. Some oxygen is required in the hydrogen to prevent reduction. Eventually, all the oxygen in the hydrogen gas - whatever its source - shows up as water. This is the result of hydrogen reducing the CO, CO2, or the protective inner surface oxides. This water can condense in the engine system under the right conditions. If the concentration of water vapor is reduced to a low enough level, the hydrogen can chemically reduce the oxide coating, resulting in an increase in permeability. This work was done to define the minimum water content required to avoid this reduction in the oxide coating. The results of this testing show that a minimum of approximately 750 ppm water is required to prevent an increase in permeability of CG-27, a high temperature metal alloy selected for Stirling engine heater tubes.

  9. Thermochemical Production of Hydrogen from Water.

    ERIC Educational Resources Information Center

    Bamberger, C. E.; And Others

    1978-01-01

    Discusses the possible advantages of decomposing water by means of thermochemical cycles. Explains that, if energy consumption can be minimized, this method is capable of producing hydrogen more efficiently than electrolysis. (GA)

  10. Modeling the Hydrogen Bond within Molecular Dynamics

    ERIC Educational Resources Information Center

    Lykos, Peter

    2004-01-01

    The structure of a hydrogen bond is elucidated within the framework of molecular dynamics based on the model of Rahman and Stillinger (R-S) liquid water treatment. Thus, undergraduates are exposed to the powerful but simple use of classical mechanics to solid objects from a molecular viewpoint.

  11. First Self-Consistent, Two-Layer Model of Near-Surface Water-Equivalent-Hydrogen on Mars

    NASA Astrophysics Data System (ADS)

    Feldman, W. C.; Pathare, A.; Prettyman, T. H.; Maurice, S.

    2015-12-01

    This study uses 9.5 years of Mars Odyssey Neutron Spectrometer (MONS) data [1]. We have used the epithermal and fast neutron count rates to determine the water-equivalent-hydrogen (WEH) content of an upper layer, Wup, having thickness D. The "crossover" technique we utilized is an improvement over previous work [2,3]. We then used Monte Carlo simulated grids of epithermal and thermal count rates spanning Wup = 1% to 15% [4] to determine the WEH content, Wdn, of a semi-infinite lower layer buried at depth, D. We also advance upon previous work by using improved deconvolution methods to reduce spatial blurring in fast and epithermal maps [5]. The resultant count-rates were digitized into a 2°x2°cylindrical grid for all WEH computations. Two sets of WEH maps will be shown. The first uses the one-layer model developed initially by Feldman et al. [6]. Comparison of the undeconvolved and deconvolved versions clearly illustrates the improvement obtained by deconvolution. We will also present the full two layer maps of Wup, Wdn, and D for the deconvolved data sets, which show: 1) contrary to our previous preliminary mapping [3], the fresh icy mid-latitude craters identified by [7] are NOT exclusively found in regions with average Wdn values that exceed the pore-filling threshold for regolith ice; 2) a maximum Wdn of about 80% by weight at the Phoenix site; 3) an isolated Wdn maximum just east of Gale crater that is centered on Aeolis Mensae; 4) a resolved Wdn maximum that overlays the Orsen Wells crater on Xanthe Terra; 5) Wdn local maxima that hug the western flanks of Olympus Mons and Elysium Mons, and 6) several Wdn maxima that cover Arabia Terra. We will present and interpret regional maps of all of these features. Refs: [1] Maurice et al. JGR, 2011; [2] Feldman et al. JGR, 2011; [3] Pathare et al. 8th Mars Conf., 2014; [4] Prettyman et al. JGR, 2004 [5] Prettyman et al. JGR, 2009; [6] Feldman et al. JGR, 2004; [7] Dundas et al. JGR, 2014.

  12. HYDROGEN ELECTROLYZER FLOW DISTRIBUTOR MODEL

    SciTech Connect

    Shadday, M

    2006-09-28

    The hybrid sulfur process (HyS) hydrogen electrolyzer consists of a proton exchange membrane (PEM) sandwiched between two porous graphite layers. An aqueous solution of sulfuric acid with dissolved SO{sub 2} gas flows parallel to the PEM through the porous graphite layer on the anode side of the electrolyzer. A flow distributor, consisting of a number of parallel channels acting as headers, promotes uniform flow of the anolyte fluid through the porous graphite layer. A numerical model of the hydraulic behavior of the flow distributor is herein described. This model was developed to be a tool to aid the design of flow distributors. The primary design objective is to minimize spatial variations in the flow through the porous graphite layer. The hydraulic data from electrolyzer tests consists of overall flowrate and pressure drop. Internal pressure and flow distributions are not measured, but these details are provided by the model. The model has been benchmarked against data from tests of the current electrolyzer. The model reasonably predicts the viscosity effect of changing the fluid from water to an aqueous solution of 30 % sulfuric acid. The permeability of the graphite layer was the independent variable used to fit the model to the test data, and the required permeability for a good fit is within the range literature values for carbon paper. The model predicts that reducing the number of parallel channels by 50 % will substantially improve the uniformity of the flow in the porous graphite layer, while maintaining an acceptable pressure drop across the electrolyzer. When the size of the electrolyzer is doubled from 2.75 inches square to 5.5 inches square, the same number of channels as in the current design will be adequate, but it is advisable to increase the channel cross-sectional flow area. This is due to the increased length of the channels.

  13. Hydrogen production from water: Recent advances in photosynthesis research

    SciTech Connect

    Greenbaum, E.; Lee, J.W.

    1997-12-31

    The great potential of hydrogen production by microalgal water splitting is predicated on quantitative measurement of the algae`s hydrogen-producing capability, which is based on the following: (1) the photosynthetic unit size of hydrogen production; (2) the turnover time of photosynthetic hydrogen production; (3) thermodynamic efficiencies of conversion of light energy into the Gibbs free energy of molecular hydrogen; (4) photosynthetic hydrogen production from sea water using marine algae; (5) the potential for research advances using modern methods of molecular biology and genetic engineering to maximize hydrogen production. ORNL has shown that sustained simultaneous photoevolution of molecular hydrogen and oxygen can be performed with mutants of the green alga Chlamydomonas reinhardtii that lack a detectable level of the Photosystem I light reaction. This result is surprising in view of the standard two-light reaction model of photosynthesis and has interesting scientific and technological implications. This ORNL discovery also has potentially important implications for maximum thermodynamic conversion efficiency of light energy into chemical energy by green plant photosynthesis. Hydrogen production performed by a single light reaction, as opposed to two, implies a doubling of the theoretically maximum thermodynamic conversion efficiency from {approx}10% to {approx}20%.

  14. Hydrogen peroxide evolution during V-UV photolysis of water.

    PubMed

    Azrague, Kamal; Bonnefille, Eric; Pradines, Vincent; Pimienta, Véronique; Oliveros, Esther; Maurette, Marie-Thérèse; Benoit-Marquié, Florence

    2005-05-01

    Hydrogen peroxide evolution during the vacuum-ultraviolet (V-UV, 172 nm) photolysis of water is considerably affected by the presence of oxalic acid (employed as a model water pollutant) and striking differences are observed in the absence and in the presence of dioxygen.

  15. Reorientation dynamics of nanoconfined water: power-law decay, hydrogen-bond jumps, and test of a two-state model.

    PubMed

    Laage, Damien; Thompson, Ward H

    2012-01-28

    The reorientation dynamics of water confined within nanoscale, hydrophilic silica pores are investigated using molecular dynamics simulations. The effect of surface hydrogen-bonding and electrostatic interactions are examined by comparing with both a silica pore with no charges (representing hydrophobic confinement) and bulk water. The OH reorientation in water is found to slow significantly in hydrophilic confinement compared to bulk water, and is well-described by a power-law decay extending beyond one nanosecond. In contrast, the dynamics of water in the hydrophobic pore are more modestly affected. A two-state model, commonly used to interpret confined liquid properties, is tested by analysis of the position-dependence of the water dynamics. While the two-state model provides a good fit of the orientational decay, our molecular-level analysis evidences that it relies on an over-simplified picture of water dynamics. In contrast with the two-state model assumptions, the interface dynamics is markedly heterogeneous, especially in the hydrophilic pore and there is no single interfacial state with a common dynamics.

  16. Hydrogen and Water: An Engineering, Economic and Environmental Analysis

    SciTech Connect

    Simon, A J; Daily, W; White, R G

    2010-01-06

    The multi-year program plan for the Department of Energy's Hydrogen and Fuel Cells Technology Program (USDOE, 2007a) calls for the development of system models to determine economic, environmental and cross-cutting impacts of the transition to a hydrogen economy. One component of the hydrogen production and delivery chain is water; water's use and disposal can incur costs and environmental consequences for almost any industrial product. It has become increasingly clear that due to factors such as competing water demands and climate change, the potential for a water-constrained world is real. Thus, any future hydrogen economy will need to be constructed so that any associated water impacts are minimized. This, in turn, requires the analysis and comparison of specific hydrogen production schemes in terms of their water use. Broadly speaking, two types of water are used in hydrogen production: process water and cooling water. In the production plant, process water is used as a direct input for the conversion processes (e.g. steam for Steam Methane Reforming {l_brace}SMR{r_brace}, water for electrolysis). Cooling water, by distinction, is used indirectly to cool related fluids or equipment, and is an important factor in making plant processes efficient and reliable. Hydrogen production further relies on water used indirectly to generate other feedstocks required by a hydrogen plant. This second order indirect water is referred to here as 'embedded' water. For example, electricity production uses significant quantities of water; this 'thermoelectric cooling' contributes significantly to the total water footprint of the hydrogen production chain. A comprehensive systems analysis of the hydrogen economy includes the aggregate of the water intensities from every step in the production chain including direct, indirect, and embedded water. Process and cooling waters have distinct technical quality requirements. Process water, which is typically high purity (limited dissolved

  17. Hydrogen isotope separation from water

    DOEpatents

    Jensen, R.J.

    1975-09-01

    A process for separating tritium from tritium-containing water or deuterium enrichment from water is described. The process involves selective, laser-induced two-photon excitation and photodissociation of those water molecules containing deuterium or tritium followed by immediate reaction of the photodissociation products with a scavenger gas which does not substantially absorb the laser light. The reaction products are then separated from the undissociated water. (auth)

  18. Hydrogen bonding and induced dipole moments in water: predictions from the Gaussian charge polarizable model and Car-Parrinello molecular dynamics.

    PubMed

    Dyer, Peter J; Cummings, Peter T

    2006-10-14

    We compare a new classical water model, which features Gaussian charges and polarizability (GCPM) with ab initio Car-Parrinello molecular dynamics (CPMD) simulations. We compare the total dipole moment, the total dipole moment distribution, and degree of hydrogen bonding at ambient to supercritical conditions. We also compared the total dipole moment calculated from both the electron density (partitioning the electron density among molecules based on a zero electron flux condition), and from the center of localized Wannier function centers (WFCs). Compared to CPMD, we found that GCPM overpredicts the dipole moment derived by partitioning the electron density and underpredicts that obtained from the WFCs, but exhibits similar trends and distribution of values. We also found that GCPM predicted similar degrees of hydrogen bonding compared to CPMD and has a similar structure.

  19. Modeling efficiency and water balance in PEM fuel cell systems with liquid fuel processing and hydrogen membranes

    NASA Astrophysics Data System (ADS)

    Pearlman, Joshua B.; Bhargav, Atul; Shields, Eric B.; Jackson, Gregory S.; Hearn, Patrick L.

    Integrating PEM fuel cells effectively with liquid hydrocarbon reforming requires careful system analysis to assess trade-offs associated with H 2 production, purification, and overall water balance. To this end, a model of a PEM fuel cell system integrated with an autothermal reformer for liquid hydrocarbon fuels (modeled as C 12H 23) and with H 2 purification in a water-gas-shift/membrane reactor is developed to do iterative calculations for mass, species, and energy balances at a component and system level. The model evaluates system efficiency with parasitic loads (from compressors, pumps, and cooling fans), system water balance, and component operating temperatures/pressures. Model results for a 5-kW fuel cell generator show that with state-of-the-art PEM fuel cell polarization curves, thermal efficiencies >30% can be achieved when power densities are low enough for operating voltages >0.72 V per cell. Efficiency can be increased by operating the reformer at steam-to-carbon ratios as high as constraints related to stable reactor temperatures allow. Decreasing ambient temperature improves system water balance and increases efficiency through parasitic load reduction. The baseline configuration studied herein sustained water balance for ambient temperatures ≤35 °C at full power and ≤44 °C at half power with efficiencies approaching ∼27 and ∼30%, respectively.

  20. Effect Of Water On Permeation By Hydrogen

    NASA Technical Reports Server (NTRS)

    Tomazic, William A.; Hulligan, David

    1988-01-01

    Water vapor in working fluid equilibrates with permeability-reducing oxides in metal parts. Report describes study of effects of water on permeation of heater-head tubes by hydrogen in Stirling engine. Experiments performed to determine minimum concentration of oxygen and/or oxygen-bearing gas maintaining oxide coverage adequate for low permeability. Tests showed 750 ppm or more of water effective in maintaining stable, low permeability.

  1. Hydrogen bonds in methane-water clusters.

    PubMed

    Salazar-Cano, Juan-Ramón; Guevara-García, Alfredo; Vargas, Rubicelia; Restrepo, Albeiro; Garza, Jorge

    2016-08-24

    Characterization of hydrogen bonds in CH4-(H2O)12 clusters was carried out by using several quantum chemistry tools. An initial stochastic search provided around 2 500 000 candidate structures, then, using a convex-hull polygon criterion followed by gradient based optimization under the Kohn-Sham scheme, a total of 54 well defined local minima were located in the Potential Energy Surface. These structures were further analyzed through second-order many-body perturbation theory with an extended basis set at the MP2/6-311++G(d,p) level. Our analysis of Gibbs energies at several temperatures clearly suggests a structural preference toward compact water clusters interacting with the external methane molecule, instead of the more commonly known clathrate-like structures. This study shows that CH4-(H2O)12 clusters may be detected at temperatures up to 179 K, this finding provides strong support to a recently postulated hypothesis that suggests that methane-water clusters could be present in Mars at these conditions. Interestingly, we found that water to water hydrogen bonding is strengthened in the mixed clusters when compared to the isolated water dimer, which in turn leads to a weakening of the methane to water hydrogen bonding when compared to the CH4-(H2O) dimer. Finally, our evidence places a stern warning about the abilities of popular geometrical criteria to determine the existence of hydrogen bonds.

  2. Hydrogen bonds in methane-water clusters.

    PubMed

    Salazar-Cano, Juan-Ramón; Guevara-García, Alfredo; Vargas, Rubicelia; Restrepo, Albeiro; Garza, Jorge

    2016-08-24

    Characterization of hydrogen bonds in CH4-(H2O)12 clusters was carried out by using several quantum chemistry tools. An initial stochastic search provided around 2 500 000 candidate structures, then, using a convex-hull polygon criterion followed by gradient based optimization under the Kohn-Sham scheme, a total of 54 well defined local minima were located in the Potential Energy Surface. These structures were further analyzed through second-order many-body perturbation theory with an extended basis set at the MP2/6-311++G(d,p) level. Our analysis of Gibbs energies at several temperatures clearly suggests a structural preference toward compact water clusters interacting with the external methane molecule, instead of the more commonly known clathrate-like structures. This study shows that CH4-(H2O)12 clusters may be detected at temperatures up to 179 K, this finding provides strong support to a recently postulated hypothesis that suggests that methane-water clusters could be present in Mars at these conditions. Interestingly, we found that water to water hydrogen bonding is strengthened in the mixed clusters when compared to the isolated water dimer, which in turn leads to a weakening of the methane to water hydrogen bonding when compared to the CH4-(H2O) dimer. Finally, our evidence places a stern warning about the abilities of popular geometrical criteria to determine the existence of hydrogen bonds. PMID:27492605

  3. Hydrogen bonding in phenol, water, and phenol-water clusters.

    PubMed

    Parthasarathi, R; Subramanian, V; Sathyamurthy, N

    2005-02-10

    Structure, stability, and hydrogen-bonding interaction in phenol, water, and phenol-water clusters have been investigated using ab initio and density functional theoretical (DFT) methods and using various topological features of electron density. Calculated interaction energies at MP2/6-31G level for clusters with similar hydrogen-bonding pattern reveal that intermolecular interaction in phenol clusters is slightly stronger than in water clusters. However, fusion of phenol and water clusters leads to stability that is akin to that of H(2)O clusters. The presence of hydrogen bond critical points (HBCP) and the values of rho(r(c)) and nabla(2)rho(r(c)) at the HBCPs provide an insight into the nature of closed shell interaction in hydrogen-bonded clusters. It is shown that the calculated values of total rho(r(c)) and nabla(2)rho(r(c)) of all the clusters vary linearly with the interaction energy.

  4. Hydrogen-Rich Water Intake Accelerates Oral Palatal Wound Healing via Activation of the Nrf2/Antioxidant Defense Pathways in a Rat Model.

    PubMed

    Tamaki, Naofumi; Orihuela-Campos, Rita Cristina; Fukui, Makoto; Ito, Hiro-O

    2016-01-01

    The wound healing process attempts to restore the integrity and function of the injured tissue. Additionally, proinflammatory cytokines, growth factors, and oxidative stress play important roles in wound healing. The aim of this study was to determine whether hydrogen-rich water intake induces the activation of the Nrf2/antioxidant defense pathway in rat palatal tissue, thereby reducing systemic oxidative stress and proinflammatory cytokine levels and promoting healing-associated genes. A circular excisional wound was created in the oral palatal region, and the wound healing process was observed. The rats were divided into two experimental groups in which either hydrogen-rich water or distilled water was consumed. In the drinking hydrogen-rich water, the palatal wound healing process was accelerated compared to that in the control group. As molecular hydrogen upregulated the Nrf2 pathway, systemic oxidative stresses were decreased by the activation of antioxidant activity. Furthermore, hydrogen-rich water intake reduced proinflammatory cytokine levels and promoted the expression of healing-associated factors in rat palatal tissue. In conclusion, hydrogen-rich water intake exhibited multiple beneficial effects through activation of the Nrf2/antioxidant defense pathway. The results of this study support the hypothesis that oral administration of hydrogen-rich water benefits the wound healing process by decreasing oxidative stress and inflammatory responses.

  5. Hydrogen-Rich Water Intake Accelerates Oral Palatal Wound Healing via Activation of the Nrf2/Antioxidant Defense Pathways in a Rat Model

    PubMed Central

    Orihuela-Campos, Rita Cristina; Fukui, Makoto; Ito, Hiro-O

    2016-01-01

    The wound healing process attempts to restore the integrity and function of the injured tissue. Additionally, proinflammatory cytokines, growth factors, and oxidative stress play important roles in wound healing. The aim of this study was to determine whether hydrogen-rich water intake induces the activation of the Nrf2/antioxidant defense pathway in rat palatal tissue, thereby reducing systemic oxidative stress and proinflammatory cytokine levels and promoting healing-associated genes. A circular excisional wound was created in the oral palatal region, and the wound healing process was observed. The rats were divided into two experimental groups in which either hydrogen-rich water or distilled water was consumed. In the drinking hydrogen-rich water, the palatal wound healing process was accelerated compared to that in the control group. As molecular hydrogen upregulated the Nrf2 pathway, systemic oxidative stresses were decreased by the activation of antioxidant activity. Furthermore, hydrogen-rich water intake reduced proinflammatory cytokine levels and promoted the expression of healing-associated factors in rat palatal tissue. In conclusion, hydrogen-rich water intake exhibited multiple beneficial effects through activation of the Nrf2/antioxidant defense pathway. The results of this study support the hypothesis that oral administration of hydrogen-rich water benefits the wound healing process by decreasing oxidative stress and inflammatory responses. PMID:26798423

  6. Water lubricates hydrogen-bonded molecular machines

    NASA Astrophysics Data System (ADS)

    Panman, Matthijs R.; Bakker, Bert H.; den Uyl, David; Kay, Euan R.; Leigh, David A.; Buma, Wybren Jan; Brouwer, Albert M.; Geenevasen, Jan A. J.; Woutersen, Sander

    2013-11-01

    The mechanical behaviour of molecular machines differs greatly from that of their macroscopic counterparts. This applies particularly when considering concepts such as friction and lubrication, which are key to optimizing the operation of macroscopic machinery. Here, using time-resolved vibrational spectroscopy and NMR-lineshape analysis, we show that for molecular machinery consisting of hydrogen-bonded components the relative motion of the components is accelerated strongly by adding small amounts of water. The translation of a macrocycle along a thread and the rotation of a molecular wheel around an axle both accelerate significantly on the addition of water, whereas other protic liquids have much weaker or opposite effects. We tentatively assign the superior accelerating effect of water to its ability to form a three-dimensional hydrogen-bond network between the moving parts of the molecular machine. These results may indicate a more general phenomenon that helps explain the function of water as the ‘lubricant of life’.

  7. Water lubricates hydrogen-bonded molecular machines.

    PubMed

    Panman, Matthijs R; Bakker, Bert H; den Uyl, David; Kay, Euan R; Leigh, David A; Buma, Wybren Jan; Brouwer, Albert M; Geenevasen, Jan A J; Woutersen, Sander

    2013-11-01

    The mechanical behaviour of molecular machines differs greatly from that of their macroscopic counterparts. This applies particularly when considering concepts such as friction and lubrication, which are key to optimizing the operation of macroscopic machinery. Here, using time-resolved vibrational spectroscopy and NMR-lineshape analysis, we show that for molecular machinery consisting of hydrogen-bonded components the relative motion of the components is accelerated strongly by adding small amounts of water. The translation of a macrocycle along a thread and the rotation of a molecular wheel around an axle both accelerate significantly on the addition of water, whereas other protic liquids have much weaker or opposite effects. We tentatively assign the superior accelerating effect of water to its ability to form a three-dimensional hydrogen-bond network between the moving parts of the molecular machine. These results may indicate a more general phenomenon that helps explain the function of water as the 'lubricant of life'.

  8. Renewable hydrogen production by photosynthetic water splitting

    SciTech Connect

    Greenbaum, E.; Lee, J.W.

    1998-06-01

    This mission-oriented research project is focused on the production of renewable hydrogen. The authors have demonstrated that certain unicellular green algae are capable of sustained simultaneous photoproduction of hydrogen and oxygen by light-activated photosynthetic water splitting. It is the goal of this project to develop a practical chemical engineering system for the development of an economic process that can be used to produce renewable hydrogen. There are several fundamental problems that need to be solved before the application of this scientific knowledge can be applied to the development a practical process: (I) maximizing net thermodynamic conversion efficiency of light energy into hydrogen energy, (2) development of oxygen-sensitive hydrogenase-containing mutants, and (3) development of bioreactors that can be used in a real-world chemical engineering process. The authors are addressing each of these problems here at ORNL and in collaboration with their research colleagues at the National Renewable Energy Laboratory, the University of California, Berkeley, and the University of Hawaii. This year the authors have focused on item 1 above. In particular, they have focused on the question of how many light reactions are required to split water to molecular hydrogen and oxygen.

  9. Effect of Water Hydrogen Bonding on the Solvent-Mediated "Oscillatory" Repulsion of C60 Fullerenes in Water.

    PubMed

    Djikaev, Yuri S; Ruckenstein, Eli

    2015-05-01

    The solvent-mediated interaction of C60 fullerenes in liquid water is examined by using the combination of the probabilistic hydrogen bond model with the density functional theory. This combination allows one to take into account the effect of hydrogen bonding between water molecules on their interaction with fullerenes and to construct an approximation for the distribution of water molecules in the system, which provides an efficient foundation for studying hydrophobic phenomena. Our numerical evaluations predict the solvent-induced interaction of two C60 fullerenes in water at 293 K to have an oscillatory-repulsive character (previously observed in molecular dynamics simulations) only when the vicinal water-water hydrogen bonds are slightly weaker than bulk ones. Besides indicating the direction of the energetic alteration of water-water hydrogen bonds near C60 fullerenes, our model also suggests that the hydrogen bonding ability of water plays a defining role in the solvent-mediated C60-C60 repulsion.

  10. Hydrogen production by the decomposition of water

    DOEpatents

    Hollabaugh, Charles M.; Bowman, Melvin G.

    1981-01-01

    How to produce hydrogen from water was a problem addressed by this invention. The solution employs a combined electrolytical-thermochemical sulfuric acid process. Additionally, high purity sulfuric acid can be produced in the process. Water and SO.sub.2 react in electrolyzer (12) so that hydrogen is produced at the cathode and sulfuric acid is produced at the anode. Then the sulfuric acid is reacted with a particular compound M.sub.r X.sub.s so as to form at least one water insoluble sulfate and at least one water insoluble oxide of molybdenum, tungsten, or boron. Water is removed by filtration; and the sulfate is decomposed in the presence of the oxide in sulfate decomposition zone (21), thus forming SO.sub.3 and reforming M.sub.r X.sub.s. The M.sub.r X.sub.s is recycled to sulfate formation zone (16). If desired, the SO.sub.3 can be decomposed to SO.sub.2 and O.sub.2 ; and the SO.sub.2 can be recycled to electrolyzer (12) to provide a cycle for producing hydrogen.

  11. Enzymatic Hydrogen Production from Starch and Water

    SciTech Connect

    Zhang, Y.-H. Percival; Evans, Barbara R; Mielenz, Jonathan R; Hopkins, Robert C.; Adams, Michael W. W.

    2007-01-01

    A novel enzymatic reaction was conducted for producing hydrogen from starch and water at 30oC. The overall reaction comprised of 13 enzymes, 1 cofactor (NADP+), and phosphate was driven by energy stored in carbohydrate starch according to the overall stoichiometry stoichiometric reaction of C6H10O5 (l) + 7 H2O (l) --> 12 H2 (g) + 6 CO2 (g). It is spontaneous and unidirectional because of negative Gibbs free energy and the removal of gaseous products from the aqueous reaction solution. With technology improvement and integration with fuel cells, this technology would be suitable for mobile applications and also solve the challenges associated with hydrogen storage, distribution, and infrastructure in a hydrogen economy.

  12. Hydrogen productivity by photosynthetic water splitting

    SciTech Connect

    Greenbaum, E.

    1990-01-01

    This paper reviews recent progress in the field of hydrogen production by photosynthetic water splitting for both in vitro and in vivo systems. Absolute thermodynamic efficiencies of conversion of light energy into energy of molecular hydrogen by intact microalgae have been measured with an original physical measuring technique using a tin-oxide semiconducting gas sensor. Thin films of microalgae comprising 5-20 cellular monolayers have been entrapped on filter paper, thereby constraining them in a well-defined circular geometry. Based on absolute light absorption of visible polychromatic illumination in the low-intensity region of the light saturation curve, conversion efficiencies of 6 to 24% have been obtained. These values are the highest ever measured for hydrogen evolution by green algae. 34 refs., 7 figs., 1 tab.

  13. Photocatalytic generation of hydrogen from water

    NASA Technical Reports Server (NTRS)

    Bottoms, W. R.; Miles, R. B.

    1976-01-01

    A concept designed to overcome the problems encountered when using photodissociation for the generation of hydrogen is discussed. The problems limiting the efficiency of photodissociation of water are the separation of the photolysis products and the high energy photons necessary for the reaction. It is shown that the dissociation energy of a large number of molecules is catalytically reduced when these molecules are in intimate contact with the surface of certain metals. It is proposed to develop a surface which will take advantage of this catalytic shift in dissociation energies to reduce the photon energy required to produce hydrogen. This same catalytic surface can be used to separate the reaction products if it is made so that one of the dissociations products is soluble in the metal and others are not. This condition is met by many metal systems such as platinum group metals which have been used commercially to separate hydrogen from other gases and liquids.

  14. Using permeable membranes to produce hydrogen and oxygen from water

    NASA Technical Reports Server (NTRS)

    Sanders, A. P.; Williams, R. J.; Downs, W. R.; Mcbryar, H.

    1975-01-01

    Concept may make it profitable to obtain hydrogen fuel from water. Laboratory tests have demonstrated that method enables decomposition of water several orders of magnitude beyond equilibrium state where only small amounts of free hydrogen are present.

  15. Water formation by surface O3 hydrogenation.

    PubMed

    Romanzin, C; Ioppolo, S; Cuppen, H M; van Dishoeck, E F; Linnartz, H

    2011-02-28

    Three solid state formation routes have been proposed in the past to explain the observed abundance of water in space: the hydrogenation reaction channels of atomic oxygen (O + H), molecular oxygen (O(2) + H), and ozone (O(3) + H). New data are presented here for the third scheme with a focus on the reactions O(3) + H, OH + H and OH + H(2), which were difficult to quantify in previous studies. A comprehensive set of H/D-atom addition experiments is presented for astronomically relevant temperatures. Starting from the hydrogenation/deuteration of solid O(3) ice, we find experimental evidence for H(2)O/D(2)O (and H(2)O(2)/D(2)O(2)) ice formation using reflection absorption infrared spectroscopy. The temperature and H/D-atom flux dependence are studied and this provides information on the mobility of ozone within the ice and possible isotope effects in the reaction scheme. The experiments show that the O(3) + H channel takes place through stages that interact with the O and O(2) hydrogenation reaction schemes. It is also found that the reaction OH + H(2) (OH + H), as an intermediate step, plays a prominent (less efficient) role. The main conclusion is that solid O(3) hydrogenation offers a potential reaction channel for the formation of water in space. Moreover, the nondetection of solid ozone in dense molecular clouds is consistent with the astrophysical picture in which O(3) + H is an efficient process under interstellar conditions.

  16. Photosynthetic water splitting for hydrogen fuel synthesis

    NASA Astrophysics Data System (ADS)

    Greenbaum, E.

    Three key advances in photosynthesis research are reported. A significant advance in microalgal water splitting has been made. In the linear, low-intensity region of the light saturation curves, equivalent solar conversion efficiencies of 10% have been measured. A technological advance in the ability to genetically screen individual algal colonies has been made. Successive subcultures of anaerobiosis-stressed Chlamydomonas reinhardtii exhibited enhanced capacity for photoproduction of hydrogen and oxygen.

  17. A ``Hydrogen partitioning'' model for hydrogen assisted crack growth

    NASA Astrophysics Data System (ADS)

    Gao, M.; Wei, R. P.

    1985-11-01

    A “hydrogen partitioning” model has been developed to account for the pressure and temperature dependence for hydrogen-assisted crack growth. The model gives explicit recognition to the role of hydr en-microstructure interactions in determining the distribution (or partitioning) of hydrogen among the various microstructural elements (principally between the prior-austenite grain boundaries and the matrix) and the rate of crack growth along the elements. It also takes into account the role of various rate controlling processes in determining the rate that hydrogen is being supplied to the fracture process (or embrittlement) zone. Quantitative assessment of the model indicates very good agreements between the model predictions and the observed crack growth responses for AISI 4340 and 4130 steels tested in hydrogen and for AISI 4340 steel tested in hydrogen sulfide. This model accurately characterizes the reduction in crack growth rate and the concomitant change in fracture mode at “high” temperatures. Through its integration with the earlier models, based on rate controlling processes, the model predicts the pressure and temperature dependence for K-independent crack growth over the entire range of environmental conditions.

  18. Modeling leaks from liquid hydrogen storage systems.

    SciTech Connect

    Winters, William Stanley, Jr.

    2009-01-01

    This report documents a series of models for describing intended and unintended discharges from liquid hydrogen storage systems. Typically these systems store hydrogen in the saturated state at approximately five to ten atmospheres. Some of models discussed here are equilibrium-based models that make use of the NIST thermodynamic models to specify the states of multiphase hydrogen and air-hydrogen mixtures. Two types of discharges are considered: slow leaks where hydrogen enters the ambient at atmospheric pressure and fast leaks where the hydrogen flow is usually choked and expands into the ambient through an underexpanded jet. In order to avoid the complexities of supersonic flow, a single Mach disk model is proposed for fast leaks that are choked. The velocity and state of hydrogen downstream of the Mach disk leads to a more tractable subsonic boundary condition. However, the hydrogen temperature exiting all leaks (fast or slow, from saturated liquid or saturated vapor) is approximately 20.4 K. At these temperatures, any entrained air would likely condense or even freeze leading to an air-hydrogen mixture that cannot be characterized by the REFPROP subroutines. For this reason a plug flow entrainment model is proposed to treat a short zone of initial entrainment and heating. The model predicts the quantity of entrained air required to bring the air-hydrogen mixture to a temperature of approximately 65 K at one atmosphere. At this temperature the mixture can be treated as a mixture of ideal gases and is much more amenable to modeling with Gaussian entrainment models and CFD codes. A Gaussian entrainment model is formulated to predict the trajectory and properties of a cold hydrogen jet leaking into ambient air. The model shows that similarity between two jets depends on the densimetric Froude number, density ratio and initial hydrogen concentration.

  19. A millennial hydrogen isotope chronology from tree-ring cellulose contradicts the mechanistic model describing the incorporation of stable water isotopes into cellulose

    NASA Astrophysics Data System (ADS)

    Hangartner, Sarah; Kress, Anne; Saurer, Matthias; Leuenberger, Markus

    2010-05-01

    In the present study we investigated deuterium (δD) isotopes on a millennial larch (Larix decidua) tree-ring chronology from alpine sites in Valais, Switzerland. Cellulose in annual tree rings is formed from atmospheric CO2 and soil water which is eventually derived from meteoric water. Due to fractionation processes in the atmosphere, meteoric water contains a temperature signal. Climate induced signals such as the isotopic composition of cellulose is stored in annual increments of trees: source water is assimilated by the roots without any isotopic fractionation and further on transported to the leafs where isotopic ratios of the leaf water are changed by evapotranspirative enrichment and further biochemical fractionations. Finally, cellulose is synthesized from photosynthates and medium water. δD and stable oxygen isotopes (δ18O) in tree-ring cellulose are therefore expected to reflect ancient humidity and temperature in annual resolution. We applied a conventional isotope ratio mass spectrometry technique to analyse δD in α-cellulose (Filot, 2006). The investigated δD series cover the period 1000-2004 AD in three cohorts (each consisting of five trees) with a 50-year gap around 1200 AD. This required the development of methods to merge these tree-ring isotope series to assess the common signal within the different cohorts. A comparison of the δD series with the corresponding δ18O chronology revealed a common variance of around 20% in the different cohorts, which is lower than expected from the mechanistic model (Roden, 2000) - the model assumes similar pathways and fractionation processes of δD and δ18O from source water uptake to cellulose synthesis. Assessing the sensitivity of δD to changing climate variables leads to conflicting results: while temperature, sunshine duration and precipitation signals in δ18O are clearly visible, climate signals in δD are hardly detectable. Note that isotopic signals in tree-ring cellulose are not controlled by

  20. Hydrogen from the solar photolysis of water

    NASA Technical Reports Server (NTRS)

    Ryason, P. R.

    1978-01-01

    Developments related to the study of photosynthesis are examined and aspects of photosensitization by solids are considered. It is pointed out that solids photosensitization for solar photochemical fuel formation is now an extremely active research area as a consequence of the promising results obtained with semiconductor photoelectrodes. The investigation of water decomposition schemes involving heterogeneous reactions is likely to be a productive area. As is the case for photosynthesis, the known examples of water decomposition by solids photosensitization involve charge separation processes immediately following light absorption. Homogeneous photoredox reactions are also discussed, taking into account thermochemical and photochemical cycles leading to the formation of a photooxidized ion, hydrogen quantum yields in the photo-oxidation aqueous ions, and thermochemical and photochemical cycles leading to the formation of a photoreduced ion.

  1. Potential ghrelin-mediated benefits and risks of hydrogen water.

    PubMed

    McCarty, Mark F

    2015-04-01

    Molecular hydrogen (H2) can scavenge hydroxyl radical and diminish the toxicity of peroxynitrite; hence, it has interesting potential for antioxidant protection. Recently, a number of studies have explored the utility of inhaled hydrogen gas, or of hydrogen-saturated water, administered parenterally or orally, in rodent models of pathology and in clinical trials, oftentimes with very positive outcomes. The efficacy of orally ingested hydrogen-rich water (HW) has been particularly surprising, given that only transient and rather small increments in plasma hydrogen can be achieved by this method. A recent study in mice has discovered that orally administered HW provokes increased gastric production of the orexic hormone ghrelin, and that this ghrelin mediates the favorable impact of HW on a mouse model of Parkinson's disease. The possibility that most of the benefits observed with HW in experimental studies are mediated by ghrelin merits consideration. Ghrelin is well known to function as an appetite stimulant and secretagogue for growth hormone, but it influences physiological function throughout the body via interaction with the widely express GHS-R1a receptor. Rodent and, to a more limited extent, clinical studies establish that ghrelin has versatile neuroprotective and cognitive enhancing activity, favorably impacts vascular health, exerts anti-inflammatory activity useful in autoimmune disorders, and is markedly hepatoprotective. The stimulatory impact of ghrelin on GH-IGF-I activity, while potentially beneficial in sarcopenia or cachectic disorders, does raise concerns regarding the long-term impact of ghrelin up-regulation on cancer risk. The impact of ingesting HW water on ghrelin production in humans needs to be evaluated; if HW does up-regulate ghrelin in humans, it may have versatile potential for prevention and control of a number of health disorders.

  2. Potential ghrelin-mediated benefits and risks of hydrogen water.

    PubMed

    McCarty, Mark F

    2015-04-01

    Molecular hydrogen (H2) can scavenge hydroxyl radical and diminish the toxicity of peroxynitrite; hence, it has interesting potential for antioxidant protection. Recently, a number of studies have explored the utility of inhaled hydrogen gas, or of hydrogen-saturated water, administered parenterally or orally, in rodent models of pathology and in clinical trials, oftentimes with very positive outcomes. The efficacy of orally ingested hydrogen-rich water (HW) has been particularly surprising, given that only transient and rather small increments in plasma hydrogen can be achieved by this method. A recent study in mice has discovered that orally administered HW provokes increased gastric production of the orexic hormone ghrelin, and that this ghrelin mediates the favorable impact of HW on a mouse model of Parkinson's disease. The possibility that most of the benefits observed with HW in experimental studies are mediated by ghrelin merits consideration. Ghrelin is well known to function as an appetite stimulant and secretagogue for growth hormone, but it influences physiological function throughout the body via interaction with the widely express GHS-R1a receptor. Rodent and, to a more limited extent, clinical studies establish that ghrelin has versatile neuroprotective and cognitive enhancing activity, favorably impacts vascular health, exerts anti-inflammatory activity useful in autoimmune disorders, and is markedly hepatoprotective. The stimulatory impact of ghrelin on GH-IGF-I activity, while potentially beneficial in sarcopenia or cachectic disorders, does raise concerns regarding the long-term impact of ghrelin up-regulation on cancer risk. The impact of ingesting HW water on ghrelin production in humans needs to be evaluated; if HW does up-regulate ghrelin in humans, it may have versatile potential for prevention and control of a number of health disorders. PMID:25649854

  3. Process for the production of hydrogen from water

    DOEpatents

    Miller, William E.; Maroni, Victor A.; Willit, James L.

    2010-05-25

    A method and device for the production of hydrogen from water and electricity using an active metal alloy. The active metal alloy reacts with water producing hydrogen and a metal hydroxide. The metal hydroxide is consumed, restoring the active metal alloy, by applying a voltage between the active metal alloy and the metal hydroxide. As the process is sustainable, only water and electricity is required to sustain the reaction generating hydrogen.

  4. Polarizability calculations on water, hydrogen, oxygen, and carbon dioxide

    NASA Technical Reports Server (NTRS)

    Nir, S.; Adams, S.; Rein, R.

    1973-01-01

    A semiclassical model of damped oscillators is used as a basis for the calculation of the dispersion of the refractive index, polarizability, and dielectric permeability in water, hydrogen, and oxygen in liquid and gaseous states, and in gaseous carbon dioxide. The absorption coefficient and the imaginary part of the refractive index are also calculated at corresponding wavelengths. A good agreement is obtained between the observed and calculated values of refractive indices, and between those of absorption coefficients in the region of absorption bands. The calculated values of oscillator strengths and damping factors are also discussed. The value of the polarizability of liquid water was about 2.8 times that of previous calculations.

  5. Dose-dependent inhibition of gastric injury by hydrogen in alkaline electrolyzed drinking water

    PubMed Central

    2014-01-01

    Background Hydrogen has been reported to relieve damage in many disease models, and is a potential additive in drinking water to provide protective effects for patients as several clinical studies revealed. However, the absence of a dose–response relationship in the application of hydrogen is puzzling. We attempted to identify the dose–response relationship of hydrogen in alkaline electrolyzed drinking water through the aspirin induced gastric injury model. Methods In this study, hydrogen-rich alkaline water was obtained by adding H2 to electrolyzed water at one atmosphere pressure. After 2 weeks of drinking, we detected the gastric mucosal damage together with MPO, MDA and 8-OHdG in rat aspirin induced gastric injury model. Results Hydrogen-dose dependent inhibition was observed in stomach mucosal. Under pH 8.5, 0.07, 0.22 and 0.84 ppm hydrogen exhibited a high correlation with inhibitory effects showed by erosion area, MPO activity and MDA content in the stomach. Gastric histology also demonstrated the inhibition of damage by hydrogen-rich alkaline water. However, 8-OHdG level in serum did not have significant hydrogen-dose dependent effect. pH 9.5 showed higher but not significant inhibitory response compared with pH 8.5. Conclusions Hydrogen is effective in relieving the gastric injury induced by aspirin-HCl, and the inhibitory effect is dose-dependent. The reason behind this may be that hydrogen-rich water directly interacted with the target tissue, while the hydrogen concentration in blood was buffered by liver glycogen, evoking a suppressed dose–response effect. Drinking hydrogen-rich water may protect healthy individuals from gastric damage caused by oxidative stress. PMID:24589018

  6. Molecular hydrogen solvated in water – A computational study

    SciTech Connect

    Śmiechowski, Maciej

    2015-12-28

    The aqueous hydrogen molecule is studied with molecular dynamics simulations at ambient temperature and pressure conditions, using a newly developed flexible and polarizable H{sub 2} molecule model. The design and implementation of this model, compatible with an existing flexible and polarizable force field for water, is presented in detail. The structure of the hydration layer suggests that first-shell water molecules accommodate the H{sub 2} molecule without major structural distortions and two-dimensional, radial-angular distribution functions indicate that as opposed to strictly tangential, the orientation of these water molecules is such that the solute is solvated with one of the free electron pairs of H{sub 2}O. The calculated self-diffusion coefficient of H{sub 2}(aq) agrees very well with experimental results and the time dependence of mean square displacement suggests the presence of caging on a time scale corresponding to hydrogen bond network vibrations in liquid water. Orientational correlation function of H{sub 2} experiences an extremely short-scale decay, making the H{sub 2}–H{sub 2}O interaction potential essentially isotropic by virtue of rotational averaging. The inclusion of explicit polarizability in the model allows for the calculation of Raman spectra that agree very well with available experimental data on H{sub 2}(aq) under differing pressure conditions, including accurate reproduction of the experimentally noted trends with solute pressure or concentration.

  7. Hydrogen production by the decomposition of water

    DOEpatents

    Hollabaugh, C.M.; Bowman, M.G.

    A process is described for the production of hydrogen from water by a sulfuric acid process employing electrolysis and thermo-chemical decomposition. The water containing SO/sub 2/ is electrolyzed to produce H/sub 2/ at the cathode and to oxidize the SO/sub 2/ to form H/sub 2/SO/sub 4/ at the anode. After the H/sub 2/ has been separated, a compound of the type M/sub r/X/sub s/ is added to produce a water insoluble sulfate of M and a water insoluble oxide of the metal in the radical X. In the compound M/sub r/X/sub s/, M is at least one metal selected from the group consisting of Ba/sup 2 +/, Ca/sup 2 +/, Sr/sup 2 +/, La/sup 2 +/, and Pb/sup 2 +/; X is at least one radical selected from the group consisting of molybdate (MoO/sub 4//sup 2 -/), tungstate (WO/sub 4//sup 2 -/), and metaborate (BO/sub 2//sup 1 -/); and r and s are either 1, 2, or 3 depending upon the valence of M and X. The precipitated mixture is filtered and heated to a temperature sufficiently high to form SO/sub 3/ gas and to reform M/sub r/X/sub s/. The SO/sub 3/ is dissolved in a small amount of H/sub 2/O to produce concentrated H/sub 2/SO/sub 4/, and the M/sub r/X/sub s/ is recycled to the process. Alternatively, the SO/sub 3/ gas can be recycled to the beginning of the process to provide a continuous process for the production of H/sub 2/ in which only water need be added in a substantial amount. (BLM)

  8. The Hydrogen Atom: The Rutherford Model

    NASA Astrophysics Data System (ADS)

    Tilton, Homer Benjamin

    1996-06-01

    Early this century Ernest Rutherford established the nuclear model of the hydrogen atom, presently taught as representing the best visual model after modification by Niels Bohr and Arnold Sommerfeld. It replaced the so-called "plum pudding" model of J. J. Thomson which held sway previously. While the Rutherford model represented a large step forward in our understanding of the hydrogen atom, questions remained, and still do.

  9. Oral hydrogen water prevents chronic allograft nephropathy in rats.

    PubMed

    Cardinal, Jon S; Zhan, Jianghua; Wang, Yinna; Sugimoto, Ryujiro; Tsung, Allan; McCurry, Kenneth R; Billiar, Timothy R; Nakao, Atsunori

    2010-01-01

    Reactive oxygen species (ROS) contribute to the development of interstitial fibrosis and tubular atrophy seen in chronic allograft nephropathy (CAN). As molecular hydrogen gas can act as a scavenger of ROS, we tested the effect of treatment with hydrogen water (HW) in a model of kidney transplantation, in which allografts from Lewis rats were orthotopically transplanted into Brown Norway recipients that had undergone bilateral nephrectomy. Molecular hydrogen was dissolved in water and recipients were given HW from day 0 until day 150. Rats that were treated with regular water (RW) gradually developed proteinuria and their creatinine clearance declined, ultimately leading to graft failure secondary to CAN. In contrast, treatment with HW improved allograft function, slowed the progression of CAN, reduced oxidant injury and inflammatory mediator production, and improved overall survival. Inflammatory signaling pathways, such as mitogen-activated protein kinases, were less activated in renal allografts from HW-treated rats as compared with RW-treated rats. Hence, oral HW is an effective antioxidant and antiinflammatory agent that prevented CAN, improved survival of rat renal allografts, and may be of therapeutic value in the setting of transplantation. PMID:19907413

  10. Hydrogen bonding of water-ethanol in alcoholic beverages.

    PubMed

    Nose, Akira; Hojo, Masashi

    2006-10-01

    An alcoholic beverage is a type of water-ethanol solution with flavor and taste. The properties of the hydrogen bonding of water-ethanol in alcoholic beverages have not been clarified sufficiently. We investigated factors that could affect the hydrogen-bonding structure of water-ethanol on the basis of proton nuclear magnetic resonance (1H NMR) chemical shifts of the OH of water-ethanol and Raman OH stretching spectra. Not only acids (H+ and HA: undissociated acids) but also bases (OH- and A-: conjugate-base anions from weak acids) strengthened the hydrogen-bonding structure of water-ethanol. It was also demonstrated that the hydrogen bonding is strengthened by chemical components in alcoholic beverages (whiskey, Japanese sake, shochu). It can be suggested that hydrogen-bonding donors as well as acceptors in alcohol beverages, which exist as the initial components or are gained later on, should cause the tight association between water and ethanol molecules. PMID:17116572

  11. Economics of liquid hydrogen from water electrolysis

    NASA Technical Reports Server (NTRS)

    Lin, F. N.; Moore, W. I.; Walker, S. W.

    1985-01-01

    An economical model for preliminary analysis of LH2 cost from water electrolysis is presented. The model is based on data from vendors and open literature, and is suitable for computer analysis of different scenarios for 'directional' purposes. Cost data associated with a production rate of 10,886 kg/day are presented. With minimum modification, the model can also be used to predict LH2 cost from any electrolyzer once the electrolyzer's cost data are available.

  12. Thermochemical water decomposition. [hydrogen separation for energy applications

    NASA Technical Reports Server (NTRS)

    Funk, J. E.

    1977-01-01

    At present, nearly all of the hydrogen consumed in the world is produced by reacting hydrocarbons with water. As the supply of hydrocarbons diminishes, the problem of producing hydrogen from water alone will become increasingly important. Furthermore, producing hydrogen from water is a means of energy conversion by which thermal energy from a primary source, such as solar or nuclear fusion of fission, can be changed into an easily transportable and ecologically acceptable fuel. The attraction of thermochemical processes is that they offer the potential for converting thermal energy to hydrogen more efficiently than by water electrolysis. A thermochemical hydrogen-production process is one which requires only water as material input and mainly thermal energy, or heat, as an energy input. Attention is given to a definition of process thermal efficiency, the thermodynamics of the overall process, the single-stage process, the two-stage process, multistage processes, the work of separation and a process evaluation.

  13. Photoelectrochemical hydrogen production from biomass derivatives and water.

    PubMed

    Lu, Xihong; Xie, Shilei; Yang, Hao; Tong, Yexiang; Ji, Hongbing

    2014-11-21

    Hydrogen, a clean energy carrier with high energy capacity, is a very promising candidate as a primary energy source for the future. Photoelectrochemical (PEC) hydrogen production from renewable biomass derivatives and water is one of the most promising approaches to producing green chemical fuel. Compared to water splitting, hydrogen production from renewable biomass derivatives and water through a PEC process is more efficient from the viewpoint of thermodynamics. Additionally, the carbon dioxide formed can be re-transformed into carbohydrates via photosynthesis in plants. In this review, we focus on the development of photoanodes and systems for PEC hydrogen production from water and renewable biomass derivatives, such as methanol, ethanol, glycerol and sugars. We also discuss the future challenges and opportunities for the design of the state-of-the-art photoanodes and PEC systems for hydrogen production from biomass derivatives and water.

  14. Fuel from water: the photochemical generation of hydrogen from water.

    PubMed

    Han, Zhiji; Eisenberg, Richard

    2014-08-19

    Hydrogen has been labeled the fuel of the future since it contains no carbon, has the highest specific enthalpy of combustion of any chemical fuel, yields only water upon complete oxidation, and is not limited by Carnot considerations in the amount of work obtained when used in a fuel cell. To be used on the scale needed for sustainable growth on a global scale, hydrogen must be produced by the light-driven splitting of water into its elements, as opposed to reforming of methane, as is currently done. The photochemical generation of H2, which is the reductive side of the water splitting reaction, is the focus of this Account, particularly with regard to work done in the senior author's laboratory over the last 5 years. Despite seminal work done more than 30 years ago and the extensive research conducted since then on all aspects of the process, no viable system has been developed for the efficient and robust photogeneration of H2 from water using only earth abundant elements. For the photogeneration of H2 from water, a system must contain a light absorber, a catalyst, and a source of electrons. In this Account, the discovery and study of new Co and Ni catalysts are described that suggest H2 forms via a heterocoupling mechanism from a metal-hydride and a ligand-bound proton. Several complexes with redox active dithiolene ligands are newly recognized to be effective in promoting the reaction. A major new development in the work described is the use of water-soluble CdSe quantum dots (QDs) as light absorbers for H2 generation in water. Both activity and robustness of the most successful systems are impressive with turnover numbers (TONs) approaching 10(6), activity maintained over 15 days, and a quantum yield for H2 of 36% with 520 nm light. The water solubilizing capping agent for the first system examined was dihydrolipoic acid (DHLA) anion, and the catalyst was determined to be a DHLA complex of Ni(II) formed in situ. Dissociation of DHLA from the QD surface proved

  15. Hadronic chemistry applied to hydrogen and water molecules

    NASA Astrophysics Data System (ADS)

    Tangde, Vijay M.

    2012-09-01

    The decades of research of R M Santilli resulted into the formulation of iso-, geno- and hyper- mathematics [1, 2] that helped in understanding numerous diversified problems and removing inadequacies in most of the established and celebrated theories of 20th century physics and chemistry, for example, the theories of relativity, quantum mechanics (chemistry), astrophysics, particle physics, and so on. This involves the isotopic, genotopic, etc. lifting of Lie algebra that generated Lie admissible mathematics to properly describe irreversible processes. The studies on Hadronic m Mechanics based on Santilli's mathematics for the first time has removed the very fundamental limitations of quantum chemistry [3, 4] [2, 3, 4]. Herein, we review a Santilli-Shillady model[3, 4, 5] of hydrogen and water molecules characterized by a bond at short distances of the two valance electrons into a singlet quasi-particle state called isoelectronium for hydrogen molecule and two isoelctronia (one per H-O dimer) in case of water molecule. We especially emphasis on: the numerically exact representation of binding energies from unadulterated first axiomatic principle, the reduction of the hydrogen molecule to a restricted three body problem that admits exact analytic solutions and the reduction of computer time by at least a factor of 1000 folds due to a much faster convergent series.

  16. Molecular orbital analysis of the hydrogen bonded water dimer.

    PubMed

    Wang, Bo; Jiang, Wanrun; Dai, Xin; Gao, Yang; Wang, Zhigang; Zhang, Rui-Qin

    2016-02-24

    As an essential interaction in nature, hydrogen bonding plays a crucial role in many material formations and biological processes, requiring deeper understanding. Here, using density functional theory and post-Hartree-Fock methods, we reveal two hydrogen bonding molecular orbitals crossing the hydrogen-bond's O and H atoms in the water dimer. Energy decomposition analysis also shows a non-negligible contribution of the induction term. Our finding sheds light on the essential understanding of hydrogen bonding in ice, liquid water, functional materials and biological systems.

  17. Molecular orbital analysis of the hydrogen bonded water dimer

    PubMed Central

    Wang, Bo; Jiang, Wanrun; Dai, Xin; Gao, Yang; Wang, Zhigang; Zhang, Rui-Qin

    2016-01-01

    As an essential interaction in nature, hydrogen bonding plays a crucial role in many material formations and biological processes, requiring deeper understanding. Here, using density functional theory and post-Hartree-Fock methods, we reveal two hydrogen bonding molecular orbitals crossing the hydrogen-bond’s O and H atoms in the water dimer. Energy decomposition analysis also shows a non-negligible contribution of the induction term. Our finding sheds light on the essential understanding of hydrogen bonding in ice, liquid water, functional materials and biological systems. PMID:26905305

  18. Inhalation of water electrolysis-derived hydrogen ameliorates cerebral ischemia-reperfusion injury in rats - A possible new hydrogen resource for clinical use.

    PubMed

    Cui, Jin; Chen, Xiao; Zhai, Xiao; Shi, Dongchen; Zhang, Rongjia; Zhi, Xin; Li, Xiaoqun; Gu, Zhengrong; Cao, Liehu; Weng, Weizong; Zhang, Jun; Wang, Liping; Sun, Xuejun; Ji, Fang; Hou, Jiong; Su, Jiacan

    2016-10-29

    Hydrogen is a kind of noble gas with the character to selectively neutralize reactive oxygen species. Former researches proved that low-concentration of hydrogen can be used to ameliorating cerebral ischemia/reperfusion injury. Hydrogen electrolyzed from water has a hydrogen concentration of 66.7%, which is much higher than that used in previous studies. And water electrolysis is a potential new hydrogen resource for regular clinical use. This study was designed and carried out for the determination of safety and neuroprotective effects of water electrolysis-derived hydrogen. Sprague-Dawley rats were used as experimental animals, and middle cerebral artery occlusion was used to make cerebral ischemia/reperfusion model. Pathologically, tissues from rats in hydrogen inhalation group showed no significant difference compared with the control group in HE staining pictures. The blood biochemical findings matched the HE staining result. TTC, Nissl, and TUNEL staining showed the significant improvement of infarction volume, neuron morphology, and neuron apoptosis in rat with hydrogen treatment. Biochemically, hydrogen inhalation decreased brain caspase-3, 3-nitrotyrosine and 8-hydroxy-2-deoxyguanosine-positive cells and inflammation factors concentration. Water electrolysis-derived hydrogen inhalation had neuroprotective effects on cerebral ischemia/reperfusion injury in rats with the effect of suppressing oxidative stress and inflammation, and it is a possible new hydrogen resource to electrolyze water at the bedside clinically. PMID:27555551

  19. Inhalation of water electrolysis-derived hydrogen ameliorates cerebral ischemia-reperfusion injury in rats - A possible new hydrogen resource for clinical use.

    PubMed

    Cui, Jin; Chen, Xiao; Zhai, Xiao; Shi, Dongchen; Zhang, Rongjia; Zhi, Xin; Li, Xiaoqun; Gu, Zhengrong; Cao, Liehu; Weng, Weizong; Zhang, Jun; Wang, Liping; Sun, Xuejun; Ji, Fang; Hou, Jiong; Su, Jiacan

    2016-10-29

    Hydrogen is a kind of noble gas with the character to selectively neutralize reactive oxygen species. Former researches proved that low-concentration of hydrogen can be used to ameliorating cerebral ischemia/reperfusion injury. Hydrogen electrolyzed from water has a hydrogen concentration of 66.7%, which is much higher than that used in previous studies. And water electrolysis is a potential new hydrogen resource for regular clinical use. This study was designed and carried out for the determination of safety and neuroprotective effects of water electrolysis-derived hydrogen. Sprague-Dawley rats were used as experimental animals, and middle cerebral artery occlusion was used to make cerebral ischemia/reperfusion model. Pathologically, tissues from rats in hydrogen inhalation group showed no significant difference compared with the control group in HE staining pictures. The blood biochemical findings matched the HE staining result. TTC, Nissl, and TUNEL staining showed the significant improvement of infarction volume, neuron morphology, and neuron apoptosis in rat with hydrogen treatment. Biochemically, hydrogen inhalation decreased brain caspase-3, 3-nitrotyrosine and 8-hydroxy-2-deoxyguanosine-positive cells and inflammation factors concentration. Water electrolysis-derived hydrogen inhalation had neuroprotective effects on cerebral ischemia/reperfusion injury in rats with the effect of suppressing oxidative stress and inflammation, and it is a possible new hydrogen resource to electrolyze water at the bedside clinically.

  20. Spectroscopic and thermodynamic properties of molecular hydrogen dissolved in water at pressures up to 200 MPa

    SciTech Connect

    Borysow, Jacek Rosso, Leonardo del; Celli, Milva; Ulivi, Lorenzo; Moraldi, Massimo

    2014-04-28

    We have measured the Raman Q-branch of hydrogen in a solution with water at a temperature of about 280 K and at pressures from 20 to 200 MPa. From a least-mean-square fitting analysis of the broad Raman Q-branch, we isolated the contributions from the four lowest individual roto-vibrational lines. The vibrational lines were narrower than the pure rotational Raman lines of hydrogen dissolved in water measured previously, but significantly larger than in the gas. The separations between these lines were found to be significantly smaller than in gaseous hydrogen and their widths were slightly increasing with pressure. The lines were narrowing with increasing rotational quantum number. The Raman frequencies of all roto-vibrational lines were approaching the values of gas phase hydrogen with increasing pressure. Additionally, from the comparison of the integrated intensity signal of Q-branch of hydrogen to the integrated Raman signal of the water bending mode, we have obtained the concentration of hydrogen in a solution with water along the 280 K isotherm. Hydrogen solubility increases slowly with pressure, and no deviation from a smooth behaviour was observed, even reaching thermodynamic conditions very close to the transition to the stable hydrogen hydrate. The analysis of the relative hydrogen concentration in solution on the basis of a simple thermodynamic model has allowed us to obtain the molar volume for the hydrogen gas/water solution. Interestingly, the volume relative to one hydrogen molecule in solution does not decrease with pressure and, at high pressure, is larger than the volume pertinent to one molecule of water. This is in favour of the theory of hydrophobic solvation, for which a larger and more stable structure of the water molecules is expected around a solute molecule.

  1. Comparison of Modeled and Observed Environmental Influences on the Stable Oxygen and Hydrogen Isotope Composition of Leaf Water in Phaseolus vulgaris L.

    PubMed

    Flanagan, L B; Comstock, J P; Ehleringer, J R

    1991-06-01

    In this paper we describe how a model of stable isotope fractionation processes, originally developed by H. Craig and L. I. Gordon ([1965] in E Tongiorgi, ed, Proceedings of a Conference on Stable Isotopes in Oceanographic Studies and Paleotemperature, Spoleto, Italy, pp 9-130) for evaporation of water from the ocean, can be applied to leaf transpiration. The original model was modified to account for turbulent conditions in the leaf boundary layer. Experiments were conducted to test the factors influencing the stable isotopic composition of leaf water under controlled environment conditions. At steady state, the observed leaf water isotopic composition was enriched above that of stem water with the extent of the enrichment dependent on the leaf-air vapor pressure difference (VPD) and the isotopic composition of atmospheric water vapor (AWV). The higher the VPD, the larger was the observed heavy isotope content of leaf water. At a constant VPD, leaf water was relatively depleted in heavy isotopes when exposed to AWV with a low heavy isotope composition, and leaf water was relatively enriched in heavy isotopes when exposed to AWV with a large heavy isotope composition. However, the observed heavy isotope composition of leaf water was always less than that predicted by the model. The extent of the discrepancy between the modeled and observed leaf water isotopic composition was a strong linear function of the leaf transpiration rate. PMID:16668226

  2. Reaction of Aluminum with Water to Produce Hydrogen - 2010 Update

    SciTech Connect

    Petrovic, John; Thomas, George

    2011-06-01

    A Study of Issues Related to the Use of Aluminum for On-Board Vehicular Hydrogen Storage The purpose of this White Paper is to describe and evaluate the potential of aluminum-water reactions for the production of hydrogen for on-board hydrogen-powered vehicle applications. Although the concept of reacting aluminum metal with water to produce hydrogen is not new, there have been a number of recent claims that such aluminum-water reactions might be employed to power fuel cell devices for portable applications such as emergency generators and laptop computers, and might even be considered for possible use as the hydrogen source for fuel cell-powered vehicles.

  3. Selective electrochemical generation of hydrogen peroxide from water oxidation

    DOE PAGES

    Viswanathan, Venkatasubramanian; Hansen, Heine A.; Norskov, Jens K.

    2015-10-08

    Water is a life-giving source, fundamental to human existence, yet over a billion people lack access to clean drinking water. The present techniques for water treatment such as piped, treated water rely on time and resource intensive centralized solutions. In this work, we propose a decentralized device concept that can utilize sunlight to split water into hydrogen and hydrogen peroxide. The hydrogen peroxide can oxidize organics while the hydrogen bubbles out. In enabling this device, we require an electrocatalyst that can oxidize water while suppressing the thermodynamically favored oxygen evolution and form hydrogen peroxide. Using density functional theory calculations, wemore » show that the free energy of adsorbed OH* can be used to determine selectivity trends between the 2e– water oxidation to H2O2 and the 4e– oxidation to O2. We show that materials which bind oxygen intermediates sufficiently weakly, such as SnO2, can activate hydrogen peroxide evolution. Furthermore, we present a rational design principle for the selectivity in electrochemical water oxidation and identify new material candidates that could perform H2O2 evolution selectively.« less

  4. Selective electrochemical generation of hydrogen peroxide from water oxidation

    SciTech Connect

    Viswanathan, Venkatasubramanian; Hansen, Heine A.; Norskov, Jens K.

    2015-10-08

    Water is a life-giving source, fundamental to human existence, yet over a billion people lack access to clean drinking water. The present techniques for water treatment such as piped, treated water rely on time and resource intensive centralized solutions. In this work, we propose a decentralized device concept that can utilize sunlight to split water into hydrogen and hydrogen peroxide. The hydrogen peroxide can oxidize organics while the hydrogen bubbles out. In enabling this device, we require an electrocatalyst that can oxidize water while suppressing the thermodynamically favored oxygen evolution and form hydrogen peroxide. Using density functional theory calculations, we show that the free energy of adsorbed OH* can be used to determine selectivity trends between the 2e– water oxidation to H2O2 and the 4e– oxidation to O2. We show that materials which bind oxygen intermediates sufficiently weakly, such as SnO2, can activate hydrogen peroxide evolution. Furthermore, we present a rational design principle for the selectivity in electrochemical water oxidation and identify new material candidates that could perform H2O2 evolution selectively.

  5. Selective Electrochemical Generation of Hydrogen Peroxide from Water Oxidation.

    PubMed

    Viswanathan, Venkatasubramanian; Hansen, Heine A; Nørskov, Jens K

    2015-11-01

    Water is a life-giving source, fundamental to human existence, yet over a billion people lack access to clean drinking water. The present techniques for water treatment such as piped, treated water rely on time and resource intensive centralized solutions. In this work, we propose a decentralized device concept that can utilize sunlight to split water into hydrogen and hydrogen peroxide. The hydrogen peroxide can oxidize organics while the hydrogen bubbles out. In enabling this device, we require an electrocatalyst that can oxidize water while suppressing the thermodynamically favored oxygen evolution and form hydrogen peroxide. Using density functional theory calculations, we show that the free energy of adsorbed OH* can be used to determine selectivity trends between the 2e(-) water oxidation to H2O2 and the 4e(-) oxidation to O2. We show that materials which bind oxygen intermediates sufficiently weakly, such as SnO2, can activate hydrogen peroxide evolution. We present a rational design principle for the selectivity in electrochemical water oxidation and identify new material candidates that could perform H2O2 evolution selectively.

  6. Comparison of modeled and observed environmental influences on the stable oxygen and hydrogen isotope composition of leaf water in Phaseolus vulgaris L

    SciTech Connect

    Flanagan, L.B.; Comstock, J.P.; Ehleringer, J.R. )

    1991-06-01

    In this paper the authors describe how a model of stable isotope fractionation processes, originally developed by H. Craig and L.I. Gordon for evaporation of water from the ocean, can be applied to leaf transpiration. The original model was modified to account for turbulent conditions in the leaf boundary layer. Experiments were conducted to test the factors influencing the stable isotopic composition of leaf water under controlled environment conditions. At steady state, the observed leaf water isotopic composition was enriched above that of stem water with the extent of the enrichment dependent on the leaf-air vapor pressure difference (VPD) and the isotopic composition of atmospheric water vapor (AMV). The higher the VPD, the larger was the observed heavy isotope content of leaf water. At a constant VPD, leaf water was relatively enriched in heavy isotopes when exposed to AWV with a large heavy isotope composition. However, the observed heavy isotope composition of leaf water was always less than that predicted by the model. The extent of the discrepancy between the modeled and observed leaf water isotopic composition was a strong linear function of the leaf transpiration rate.

  7. Effect of Water Hydrogen Bonding on the Solvent-Mediated "Oscillatory" Repulsion of C60 Fullerenes in Water.

    PubMed

    Djikaev, Yuri S; Ruckenstein, Eli

    2015-05-01

    The solvent-mediated interaction of C60 fullerenes in liquid water is examined by using the combination of the probabilistic hydrogen bond model with the density functional theory. This combination allows one to take into account the effect of hydrogen bonding between water molecules on their interaction with fullerenes and to construct an approximation for the distribution of water molecules in the system, which provides an efficient foundation for studying hydrophobic phenomena. Our numerical evaluations predict the solvent-induced interaction of two C60 fullerenes in water at 293 K to have an oscillatory-repulsive character (previously observed in molecular dynamics simulations) only when the vicinal water-water hydrogen bonds are slightly weaker than bulk ones. Besides indicating the direction of the energetic alteration of water-water hydrogen bonds near C60 fullerenes, our model also suggests that the hydrogen bonding ability of water plays a defining role in the solvent-mediated C60-C60 repulsion. PMID:26263346

  8. Process for hydrogen isotope concentration between liquid water and hydrogen gas

    DOEpatents

    Stevens, William H.

    1976-09-21

    A process for hydrogen isotope exchange and concentration between liquid water and hydrogen gas, wherein liquid water and hydrogen gas are contacted, in an exchange section, with one another and with at least one catalyst body comprising at least one metal selected from Group VIII of the Periodic Table and preferably a support therefor, the catalyst body has a liquid-water-repellent, gas permeable polymer or organic resin coating, preferably a fluorinated olefin polymer or silicone coating, so that the isotope concentration takes place by two simultaneously occurring steps, namely, ##EQU1## WHILE THE HYDROGEN GAS FED TO THE EXCHANGE SECTION IS DERIVED IN A REACTOR VESSEL FROM LIQUID WATER THAT HAS PASSED THROUGH THE EXCHANGE SECTION.

  9. Correlation of structural order, anomalous density, and hydrogen bonding network of liquid water.

    PubMed

    Bandyopadhyay, Dibyendu; Mohan, S; Ghosh, S K; Choudhury, Niharendu

    2013-07-25

    We use extensive molecular dynamics simulations employing different state-of-the-art force fields to find a common framework for comparing structural orders and density anomalies as obtained from different water models. It is found that the average number of hydrogen bonds correlates well with various order parameters as well as the temperature of maximum densities across the different models, unifying apparently disparate results from different models and emphasizing the importance of hydrogen bonding in determining anomalous properties and the structure of water. A deeper insight into the hydrogen bond network of water reveals that the solvation shell of a water molecule can be defined by considering only those neighbors that are hydrogen-bonded to it. On the basis of this view, the origin of the appearance of a non-tetrahedral peak at a higher temperature in the distribution of tetrahedral order parameters has been explained. It is found that a neighbor that is hydrogen-bonded to the central molecule is tetrahedrally coordinated even at higher temperatures. The non-tetrahedral peak at a higher temperature arises due to the strained orientation of the neighbors that are non-hydrogen-bonded to the central molecule. With the new definition of the solvation shell, liquid water can be viewed as an instantaneously changing random hydrogen-bonded network consisting of differently coordinated hydrogen-bonded molecules with their distinct solvation shells. The variation of the composition of these hydrogen-bonded molecules against temperature accounts for the density anomaly without introducing the concept of large-scale structural polyamorphism in water.

  10. Noble metal-free hydrogen evolution catalysts for water splitting.

    PubMed

    Zou, Xiaoxin; Zhang, Yu

    2015-08-01

    Sustainable hydrogen production is an essential prerequisite of a future hydrogen economy. Water electrolysis driven by renewable resource-derived electricity and direct solar-to-hydrogen conversion based on photochemical and photoelectrochemical water splitting are promising pathways for sustainable hydrogen production. All these techniques require, among many things, highly active noble metal-free hydrogen evolution catalysts to make the water splitting process more energy-efficient and economical. In this review, we highlight the recent research efforts toward the synthesis of noble metal-free electrocatalysts, especially at the nanoscale, and their catalytic properties for the hydrogen evolution reaction (HER). We review several important kinds of heterogeneous non-precious metal electrocatalysts, including metal sulfides, metal selenides, metal carbides, metal nitrides, metal phosphides, and heteroatom-doped nanocarbons. In the discussion, emphasis is given to the synthetic methods of these HER electrocatalysts, the strategies of performance improvement, and the structure/composition-catalytic activity relationship. We also summarize some important examples showing that non-Pt HER electrocatalysts could serve as efficient cocatalysts for promoting direct solar-to-hydrogen conversion in both photochemical and photoelectrochemical water splitting systems, when combined with suitable semiconductor photocatalysts.

  11. On the interpretation of the Q-branch of hydrogen in water

    NASA Astrophysics Data System (ADS)

    Borysow, Jacek; Moraldi, Massimo

    2016-06-01

    The Raman Q branch of hydrogen dissolved in water is interpreted by means of a theory based on perturbative methods. Consistent with experimental results on pure rotational S(j) lines, in the theory we assume that the shifts of the lines composing the Q branch do not depend on the rotational states. It is found that an important mechanism determining the structure of the Q branch is the motional narrowing effect, particularly for the transitions involving ortho-hydrogen. A simple model of the Q branch allows the estimation of the rotational and vibrational relaxation properties of hydrogen in solution with water.

  12. Loss of water from Venus. I - Hydrodynamic escape of hydrogen

    NASA Technical Reports Server (NTRS)

    Kasting, J. F.; Pollack, J. B.

    1983-01-01

    A one-dimensional photochemical-dynamic model is used to study hydrodynamic loss of hydrogen from a primitive, water-rich atmosphere on Venus. The escape flux is calculated as a function of the H2O mixing ratio at the atmospheric cold trap. The cold trap mixing ratio is then related in an approximate fashion to the H2O concentration in the lower atmosphere. Hydrodynamic escape should have been the dominant loss process for hydroogen when the H2O mass mixing ratio in the lower atmosphere exceeded approximately 0.1. The escape rate would have depended upon the magnitude of the solar ultraviolet flux and the atmospheric EUV heating efficiency and, to a lesser extent, on the O2 content of the atmosphere. The time required for Venus to have lost the bulk of a terrestrial ocean of water is on the order of a billion years. Deuterium would have been swept away along with hydrogen if the escape rate was high enough, but some D/H enrichment should have occurred as the escape rate slowed down.

  13. Hydrogen-rich water ameliorates bronchopulmonary dysplasia (BPD) in newborn rats.

    PubMed

    Muramatsu, Yukako; Ito, Mikako; Oshima, Takahiro; Kojima, Seiji; Ohno, Kinji

    2016-09-01

    Bronchopulmonary dysplasia (BPD) is characterized by developmental arrest of the alveolar tissue. Oxidative stress is causally associated with development of BPD. The effects of hydrogen have been reported in a wide range of disease models and human diseases especially caused by oxidative stress. We made a rat model of BPD by injecting lipopolysaccharide (LPS) into the amniotic fluid at E16.5. The mother started drinking hydrogen-rich water from E9.5 and also while feeding milk. Hydrogen normalized LPS-induced abnormal enlargement of alveoli at P7 and P14. LPS increased staining for nitrotyrosine and 8-OHdG of the lungs, and hydrogen attenuated the staining. At P1, LPS treatment decreased expressions of genes for FGFR4, VEGFR2, and HO-1 in the lungs, and hydrogen increased expressions of these genes. In contrast, LPS treatment and hydrogen treatment had no essential effect on the expression of SOD1. Inflammatory marker proteins of TNFα and IL-6 were increased by LPS treatment, and hydrogen suppressed them. Treatment of A549 human lung adenocarcinoma epithelial cells with 10% hydrogen gas for 24 hr decreased production of reactive oxygen species in both LPS-treated and untreated cells. Lack of any known adverse effects of hydrogen makes hydrogen a promising therapeutic modality for BPD. Pediatr Pulmonol. 2016; 51:928-935. © 2016 Wiley Periodicals, Inc. PMID:26845501

  14. Molecular cobalt pentapyridine catalysts for generating hydrogen from water

    DOEpatents

    Long, Jeffrey R; Chang, Christopher J; Sun, Yujie

    2013-11-05

    A composition of matter suitable for the generation of hydrogen from water is described, the positively charged cation of the composition including the moiety of the general formula. [(PY5Me.sub.2)CoL].sup.2+, where L can be H.sub.2O, OH.sup.-, a halide, alcohol, ether, amine, and the like. In embodiments of the invention, water, such as tap water or sea water can be subject to low electric potentials, with the result being, among other things, the generation of hydrogen.

  15. Quantum theory of atoms in molecules/charge-charge flux-dipole flux models for fundamental vibrational intensity changes on H-bond formation of water and hydrogen fluoride

    SciTech Connect

    Silva, Arnaldo F.; Richter, Wagner E.; Bruns, Roy E.; Terrabuio, Luiz A.; Haiduke, Roberto L. A.

    2014-02-28

    The Quantum Theory of Atoms In Molecules/Charge-Charge Flux-Dipole Flux (QTAIM/CCFDF) model has been used to investigate the electronic structure variations associated with intensity changes on dimerization for the vibrations of the water and hydrogen fluoride dimers as well as in the water-hydrogen fluoride complex. QCISD/cc-pVTZ wave functions applied in the QTAIM/CCFDF model accurately provide the fundamental band intensities of water and its dimer predicting symmetric and antisymmetric stretching intensity increases for the donor unit of 159 and 47 km mol{sup −1} on H-bond formation compared with the experimental values of 141 and 53 km mol{sup −1}. The symmetric stretching of the proton donor water in the dimer has intensity contributions parallel and perpendicular to its C{sub 2v} axis. The largest calculated increase of 107 km mol{sup −1} is perpendicular to this axis and owes to equilibrium atomic charge displacements on vibration. Charge flux decreases occurring parallel and perpendicular to this axis result in 42 and 40 km mol{sup −1} total intensity increases for the symmetric and antisymmetric stretches, respectively. These decreases in charge flux result in intensity enhancements because of the interaction contributions to the intensities between charge flux and the other quantities. Even though dipole flux contributions are much smaller than the charge and charge flux ones in both monomer and dimer water they are important for calculating the total intensity values for their stretching vibrations since the charge-charge flux interaction term cancels the charge and charge flux contributions. The QTAIM/CCFDF hydrogen-bonded stretching intensity strengthening of 321 km mol{sup −1} on HF dimerization and 592 km mol{sup −1} on HF:H{sub 2}O complexation can essentially be explained by charge, charge flux and their interaction cross term. Atomic contributions to the intensities are also calculated. The bridge hydrogen atomic contributions alone

  16. Zeolite Membrane Reactor for Water Gas Shift Reaction for Hydrogen Production

    SciTech Connect

    Lin, Jerry Y.S.

    2013-01-29

    Gasification of biomass or heavy feedstock to produce hydrogen fuel gas using current technology is costly and energy-intensive. The technology includes water gas shift reaction in two or more reactor stages with inter-cooling to maximize conversion for a given catalyst volume. This project is focused on developing a membrane reactor for efficient conversion of water gas shift reaction to produce a hydrogen stream as a fuel and a carbon dioxide stream suitable for sequestration. The project was focused on synthesizing stable, hydrogen perm-selective MFI zeolite membranes for high temperature hydrogen separation; fabricating tubular MFI zeolite membrane reactor and stable water gas shift catalyst for membrane reactor applications, and identifying experimental conditions for water gas shift reaction in the zeolite membrane reactor that will produce a high purity hydrogen stream. The project has improved understanding of zeolite membrane synthesis, high temperature gas diffusion and separation mechanisms for zeolite membranes, synthesis and properties of sulfur resistant catalysts, fabrication and structure optimization of membrane supports, and fundamentals of coupling reaction with separation in zeolite membrane reactor for water gas shift reaction. Through the fundamental study, the research teams have developed MFI zeolite membranes with good perm-selectivity for hydrogen over carbon dioxide, carbon monoxide and water vapor, and high stability for operation in syngas mixture containing 500 part per million hydrogen sulfide at high temperatures around 500°C. The research teams also developed a sulfur resistant catalyst for water gas shift reaction. Modeling and experimental studies on the zeolite membrane reactor for water gas shift reaction have demonstrated the effective use of the zeolite membrane reactor for production of high purity hydrogen stream.

  17. Thermochemical generation of hydrogen and oxygen from water

    DOEpatents

    Robinson, Paul R.; Bamberger, Carlos E.

    1981-01-01

    A thermochemical cyclic process for the production of hydrogen exploits the reaction between sodium manganate (NaMnO.sub.2) and titanium dioxide (TiO.sub.2) to form sodium titanate (Na.sub.2 TiO.sub.3), manganese (II) titanate (MnTiO.sub.3) and oxygen. The titanate mixture is treated with sodium hydroxide, in the presence of steam, to form sodium titanate, sodium manganate (III), water and hydrogen. The sodium titanate-manganate (III) mixture is treated with water to form sodium manganate (III), titanium dioxide and sodium hydroxide. Sodium manganate (III) and titanium dioxide are recycled following dissolution of sodium hydroxide in water.

  18. Thermochemical generation of hydrogen and oxygen from water

    DOEpatents

    Robinson, Paul R.; Bamberger, Carlos E.

    1982-01-01

    A thermochemical cyclic process for the production of hydrogen exploits the reaction between sodium manganate (NaMnO.sub.2) and titanium dioxide (TiO.sub.2) to form sodium titanate (Na.sub.2 TiO.sub.3), manganese (II) titanate (MnTiO.sub.3) and oxygen. The titanate mixture is treated with sodium hydroxide, in the presence of steam, to form sodium titanate, sodium manganate (III), water and hydrogen. The sodium titanate-manganate (III) mixture is treated with water to form sodium manganate (III), titanium dioxide and sodium hydroxide. Sodium manganate (III) and titanium dioxide are recycled following dissolution of sodium hydroxide in water.

  19. Development of technology of hydrogen peroxide water treatment with use of homogeneous or heterogeneous catalysts

    NASA Astrophysics Data System (ADS)

    Gutenyev, V. V.; Azhgirevich, A. I.; Kiryanova, L. F.; Gutenyeva, Ye. N.

    2003-04-01

    A flow chart of water disinfection by hydrogen peroxide with the use, as a catalyst, of manganese dioxide and titanium dioxide, as well as of natural catalysts, such as hopcolite, pyrolusite, rutil. The analysis of collected data shows that combination of hydrogen peroxide with hopcolite powder appears to be the most effective. Another positive aspect of the mentioned combination is enabling (by hopcolite) the water treated by hydrogen peroxide to continuously resist secondary bacteriological contamination. This flow chart enables us to increase the effectiveness of disinfection of hydrogen peroxide, which reduces human impact on environment. In order to improve bactericidal effects of hopcolite we loaded the hopcolite powder with metallic silver particles. In a series of experiments held both with environmental water and with model solutions we found the ability to neutralize artificially introduced infection (102 cells per liter) in 1.5-2 days.

  20. Nuclear driven water decomposition plant for hydrogen production

    NASA Technical Reports Server (NTRS)

    Parker, G. H.; Brecher, L. E.; Farbman, G. H.

    1976-01-01

    The conceptual design of a hydrogen production plant using a very-high-temperature nuclear reactor (VHTR) to energize a hybrid electrolytic-thermochemical system for water decomposition has been prepared. A graphite-moderated helium-cooled VHTR is used to produce 1850 F gas for electric power generation and 1600 F process heat for the water-decomposition process which uses sulfur compounds and promises performance superior to normal water electrolysis or other published thermochemical processes. The combined cycle operates at an overall thermal efficiency in excess of 45%, and the overall economics of hydrogen production by this plant have been evaluated predicated on a consistent set of economic ground rules. The conceptual design and evaluation efforts have indicated that development of this type of nuclear-driven water-decomposition plant will permit large-scale economic generation of hydrogen in the 1990s.

  1. Method and apparatus for hydrogen production from water

    NASA Technical Reports Server (NTRS)

    Muradov, Nazim Z. (Inventor)

    2012-01-01

    A method, apparatuses and chemical compositions are provided for producing high purity hydrogen from water. Metals or alloys capable of reacting with water and producing hydrogen in aqueous solutions at ambient conditions are reacted with one or more inorganic hydrides capable of releasing hydrogen in aqueous solutions at ambient conditions, one or more transition metal compounds are used to catalyze the reaction and, optionally, one or more alkali metal-based compounds. The metal or alloy is preferably aluminum. The inorganic hydride is from a family of complex inorganic hydrides; most preferably, NaBH.sub.4. The transition metal catalyst is from the groups VIII and IB; preferably, Cu and Fe. The alkali metal-based compounds are preferably NaOH, KOH, and the like. Hydrogen generated has a purity of at least 99.99 vol. % (dry basis), and is used without further purification in all types of fuel cells, including the polymer electrolyte membrane (PEM) fuel cell.

  2. Hydrogen evolution in nickel-water heat pipes.

    NASA Technical Reports Server (NTRS)

    Anderson, W. T.

    1973-01-01

    A study was made of the evolution of hydrogen gas in nickel-water heat pipes for the purpose of investigating methods of accelerated life testing. The data were analyzed in terms of a phenomenological corrosion model of heat pipe degradation which incorporates corrosion and oxidation theory and contains parameters which can be determined by experiment. The gas was evolved with a linear time dependence and an exponential temperature dependence with an activation energy of 1.03 x 10 to the minus 19th joules. A flow-rate dependence of the gas evolution was found in the form of a threshold. The results were used to predict usable lifetimes of heat pipes operated at normal operating conditions from results taken under accelerated operating conditions.

  3. Nature of the asymmetry in the hydrogen-bond networks of hexagonal ice and liquid water.

    PubMed

    Kühne, Thomas D; Khaliullin, Rustam Z

    2014-03-01

    The interpretation of the X-ray spectra of water as evidence for its asymmetric structure has challenged the traditional nearly tetrahedral model and initiated an intense debate about the order and symmetry of the hydrogen-bond network in water. Here, we present new insights into the nature of local interactions in ice and liquid water obtained using a first-principle energy decomposition method. A comparative analysis shows that the majority of molecules in liquid water in our simulation exhibit hydrogen-bonding energy patterns similar to those in ice and retain the four-fold coordination with only moderately distorted tetrahedral configurations. Although this result indicates that the traditional description of liquid water is fundamentally correct, our study also demonstrates that for a significant fraction of molecules the hydrogen-bonding environments are highly asymmetric with extremely weak and distorted bonds.

  4. DOE Annual Progress Report: Water Needs and Constraints for Hydrogen Pathways

    SciTech Connect

    Simon, A; Daily, W

    2009-07-02

    Water is a critical feedstock in the production of hydrogen. In fact, water and many of the energy transformations upon which society depends are inextricably linked. Approximately 39% of freshwater withdrawals are used for cooling of power plants, and another 8% are used in industry and mining (including oil and gas extraction and refining). Major changes in the energy infrastructure (as envisioned in a transformation to a hydrogen economy) will necessarily result in changes to the water infrastructure. Depending on the manner in which a hydrogen economy evolves, these changes could be large or small, detrimental or benign. Water is used as a chemical feedstock for hydrogen production and as a coolant for the production process. Process and cooling water must meet minimum quality specifications (limits on mineral and organic contaminants) at both the inlet to the process and at the point of discharge. If these specifications are not met, then the water must be treated, which involves extra expenditure on equipment and energy. There are multiple options for water treatment and cooling systems, each of which has a different profile of equipment cost and operational requirements. The engineering decisions that are made when building out the hydrogen infrastructure will play an important role in the cost of producing hydrogen, and those decisions will be influenced by the regional and national policies that help to manage water resources. In order to evaluate the impacts of water on hydrogen production and of a hydrogen economy on water resources, this project takes a narrowly-scoped lifecycle analysis approach. We begin with a process model of hydrogen production and calculate the process water, cooling, electricity and energy feedstock demands. We expand beyond the production process itself by analyzing the details of the cooling system and water treatment system. At a regional scale, we also consider the water use associated with the electricity and fuel that feed

  5. Understanding the role of hydrogen bonds in water dynamics and protein stability.

    PubMed

    Bianco, Valentino; Iskrov, Svilen; Franzese, Giancarlo

    2012-01-01

    The mechanisms of cold and pressure denaturation of proteins are a matter of debate, but it is commonly accepted that water plays a fundamental role in the process. It has been proposed that the denaturation process is related to an increase of hydrogen bonds among hydration water molecules. Other theories suggest that the causes of denaturation are the density fluctuations of surface water, or the destabilization of hydrophobic contacts as a consequence of water molecule inclusions inside the protein, especially at high pressures. We review some theories that have been proposed to give insight into this problem, and we describe a coarse-grained model of water that compares well with experiments for proteins' hydration water. We introduce its extension for a homopolymer in contact with the water monolayer and study it by Monte Carlo simulations in an attempt to understand how the interplay of water cooperativity and interfacial hydrogen bonds affects protein stability. PMID:23277668

  6. Hydrogen Evolution from Water under Aerobic Conditions Catalyzed by a Cobalt ATCUN Metallopeptide.

    PubMed

    Kandemir, Banu; Kubie, Lenore; Guo, Yixing; Sheldon, Brian; Bren, Kara L

    2016-02-15

    The cobalt complex of an amino-terminal copper and nickel (ATCUN) motif model tripeptide (CoGGH) is shown to act as an electrocatalyst for hydrogen evolution from water near neutral pH with high Faradaic efficiency. The catalyst performance is not significantly impacted by exposure to oxygen. CoGGH represents a new class of hydrogen evolution catalyst that is straightforward to prepare and to modify.

  7. Dynamical Crossover in Hot Dense Water: The Hydrogen Bond Role.

    PubMed

    Ranieri, Umbertoluca; Giura, Paola; Gorelli, Federico A; Santoro, Mario; Klotz, Stefan; Gillet, Philippe; Paolasini, Luigi; Koza, Michael Marek; Bove, Livia E

    2016-09-01

    We investigate the terahertz dynamics of liquid H2O as a function of pressure along the 450 K isotherm, by coupled quasielastic neutron scattering and inelastic X-ray scattering experiments. The pressure dependence of the single-molecule dynamics is anomalous in terms of both microscopic translation and rotation. In particular, the Stokes-Einstein-Debye equations are shown to be violated in hot water compressed to the GPa regime. The dynamics of the hydrogen bond network is only weakly affected by the pressure variation. The time scale of the structural relaxation driving the collective dynamics increases by a mere factor of 2 along the investigated isotherm, and the structural relaxation strength turns out to be almost pressure independent. Our results point at the persistence of the hydrogen bond network in hot dense water up to ice VII crystallization, thus questioning the long-standing perception that hydrogen bonds are broken in liquid water under the effect of compression. PMID:27479235

  8. Selective and mild hydrogen production using water and formaldehyde.

    PubMed

    Heim, Leo E; Schlörer, Nils E; Choi, Jong-Hoo; Prechtl, Martin H G

    2014-04-08

    With the increased efforts in finding new energy storage systems for mobile and stationary applications, an intensively studied fuel molecule is dihydrogen owing to its energy content, and the possibility to store it in the form of hydridic and protic hydrogen, for example, in liquid organic hydrogen carriers. Here we show that water in the presence of paraformaldehyde or formaldehyde is suitable for molecular hydrogen storage, as these molecules form stable methanediol, which can be easily and selectively dehydrogenated forming hydrogen and carbon dioxide. In this system, both molecules are hydrogen sources, yielding a theoretical weight efficiency of 8.4% assuming one equivalent of water and one equivalent of formaldehyde. Thus it is potentially higher than formic acid (4.4 wt%), as even when technical aqueous formaldehyde (37 wt%) is used, the diluted methanediol solution has an efficiency of 5.0 wt%. The hydrogen can be efficiently generated in the presence of air using a ruthenium catalyst at low temperature.

  9. Miscibility Calculations for Water and Hydrogen in Giant Planets

    NASA Astrophysics Data System (ADS)

    Soubiran, François; Militzer, Burkhard

    2015-06-01

    We present results from ab initio simulations of liquid water–hydrogen mixtures in the range from 2 to 70 GPa and from 1000 to 6000 K, covering conditions in the interiors of ice giant planets and parts of the outer envelope of gas giant planets. In addition to computing the pressure and the internal energy, we derive the Gibbs free energy by performing a thermodynamic integration. For all conditions under consideration, our simulations predict hydrogen and water to mix in all proportions. The thermodynamic behavior of the mixture can be well described with an ideal mixing approximation. We suggest that a substantial fraction of water and hydrogen in giant planets may occur in homogeneously mixed form rather than in separate layers. The extent of mixing depends on the planet’s interior dynamics and its conditions of formation, in particular on how much hydrogen was present when icy planetesimals were delivered. Based on our results, we do not predict water–hydrogen mixtures to phase separate during any stage of the evolution of giant planets. We also show that the hydrogen content of an exoplanet is much higher if the mixed interior is assumed.

  10. MISCIBILITY CALCULATIONS FOR WATER AND HYDROGEN IN GIANT PLANETS

    SciTech Connect

    Soubiran, François; Militzer, Burkhard

    2015-06-20

    We present results from ab initio simulations of liquid water–hydrogen mixtures in the range from 2 to 70 GPa and from 1000 to 6000 K, covering conditions in the interiors of ice giant planets and parts of the outer envelope of gas giant planets. In addition to computing the pressure and the internal energy, we derive the Gibbs free energy by performing a thermodynamic integration. For all conditions under consideration, our simulations predict hydrogen and water to mix in all proportions. The thermodynamic behavior of the mixture can be well described with an ideal mixing approximation. We suggest that a substantial fraction of water and hydrogen in giant planets may occur in homogeneously mixed form rather than in separate layers. The extent of mixing depends on the planet’s interior dynamics and its conditions of formation, in particular on how much hydrogen was present when icy planetesimals were delivered. Based on our results, we do not predict water–hydrogen mixtures to phase separate during any stage of the evolution of giant planets. We also show that the hydrogen content of an exoplanet is much higher if the mixed interior is assumed.

  11. Electrokinetic Hydrogen Generation from Liquid WaterMicrojets

    SciTech Connect

    Duffin, Andrew M.; Saykally, Richard J.

    2007-05-31

    We describe a method for generating molecular hydrogen directly from the charge separation effected via rapid flow of liquid water through a metal orifice, wherein the input energy is the hydrostatic pressure times the volume flow rate. Both electrokinetic currents and hydrogen production rates are shown to follow simple equations derived from the overlap of the fluid velocity gradient and the anisotropic charge distribution resulting from selective adsorption of hydroxide ions to the nozzle surface. Pressure-driven fluid flow shears away the charge balancing hydronium ions from the diffuse double layer and carries them out of the aperture. Downstream neutralization of the excess protons at a grounded target electrode produces gaseous hydrogen molecules. The hydrogen production efficiency is currently very low (ca. 10-6) for a single cylindrical jet, but can be improved with design changes.

  12. Innovative Strategy on Hydrogen Evolution Reaction Utilizing Activated Liquid Water

    PubMed Central

    Hwang, Bing-Joe; Chen, Hsiao-Chien; Mai, Fu-Der; Tsai, Hui-Yen; Yang, Chih-Ping; Rick, John; Liu, Yu-Chuan

    2015-01-01

    Splitting water for hydrogen production using light, or electrical energy, is the most developed ‘green technique’. For increasing efficiency in hydrogen production, currently, the most exciting and thriving strategies are focused on efficient and inexpensive catalysts. Here, we report an innovative idea for efficient hydrogen evolution reaction (HER) utilizing plasmon-activated liquid water with reduced hydrogen-bonded structure by hot electron transfer. This strategy is effective for all HERs in acidic, basic and neutral systems, photocatalytic system with a g-C3N4 (graphite carbon nitride) electrode, as well as in an inert system with an ITO (indium tin oxide) electrode. Compared to deionized water, the efficiency of HER increases by 48% based on activated water ex situ on a Pt electrode. Increase in energy efficiency from activated water is 18% at a specific current yield of −20 mA in situ on a nanoscale-granulated Au electrode. Moreover, the onset potential of −0.023 V vs RHE was very close to the thermodynamic potential of the HER (0 V). The measured current density at the corresponding overpotential for HER in an acidic system was higher than any data previously reported in the literature. This approach establishes a new vista in clean green energy production. PMID:26541371

  13. Innovative Strategy on Hydrogen Evolution Reaction Utilizing Activated Liquid Water

    NASA Astrophysics Data System (ADS)

    Hwang, Bing-Joe; Chen, Hsiao-Chien; Mai, Fu-Der; Tsai, Hui-Yen; Yang, Chih-Ping; Rick, John; Liu, Yu-Chuan

    2015-11-01

    Splitting water for hydrogen production using light, or electrical energy, is the most developed ‘green technique’. For increasing efficiency in hydrogen production, currently, the most exciting and thriving strategies are focused on efficient and inexpensive catalysts. Here, we report an innovative idea for efficient hydrogen evolution reaction (HER) utilizing plasmon-activated liquid water with reduced hydrogen-bonded structure by hot electron transfer. This strategy is effective for all HERs in acidic, basic and neutral systems, photocatalytic system with a g-C3N4 (graphite carbon nitride) electrode, as well as in an inert system with an ITO (indium tin oxide) electrode. Compared to deionized water, the efficiency of HER increases by 48% based on activated water ex situ on a Pt electrode. Increase in energy efficiency from activated water is 18% at a specific current yield of -20 mA in situ on a nanoscale-granulated Au electrode. Moreover, the onset potential of -0.023 V vs RHE was very close to the thermodynamic potential of the HER (0 V). The measured current density at the corresponding overpotential for HER in an acidic system was higher than any data previously reported in the literature. This approach establishes a new vista in clean green energy production.

  14. Innovative Strategy on Hydrogen Evolution Reaction Utilizing Activated Liquid Water.

    PubMed

    Hwang, Bing-Joe; Chen, Hsiao-Chien; Mai, Fu-Der; Tsai, Hui-Yen; Yang, Chih-Ping; Rick, John; Liu, Yu-Chuan

    2015-01-01

    Splitting water for hydrogen production using light, or electrical energy, is the most developed 'green technique'. For increasing efficiency in hydrogen production, currently, the most exciting and thriving strategies are focused on efficient and inexpensive catalysts. Here, we report an innovative idea for efficient hydrogen evolution reaction (HER) utilizing plasmon-activated liquid water with reduced hydrogen-bonded structure by hot electron transfer. This strategy is effective for all HERs in acidic, basic and neutral systems, photocatalytic system with a g-C3N4 (graphite carbon nitride) electrode, as well as in an inert system with an ITO (indium tin oxide) electrode. Compared to deionized water, the efficiency of HER increases by 48% based on activated water ex situ on a Pt electrode. Increase in energy efficiency from activated water is 18% at a specific current yield of -20 mA in situ on a nanoscale-granulated Au electrode. Moreover, the onset potential of -0.023 V vs RHE was very close to the thermodynamic potential of the HER (0 V). The measured current density at the corresponding overpotential for HER in an acidic system was higher than any data previously reported in the literature. This approach establishes a new vista in clean green energy production. PMID:26541371

  15. Innovative Strategy on Hydrogen Evolution Reaction Utilizing Activated Liquid Water.

    PubMed

    Hwang, Bing-Joe; Chen, Hsiao-Chien; Mai, Fu-Der; Tsai, Hui-Yen; Yang, Chih-Ping; Rick, John; Liu, Yu-Chuan

    2015-11-06

    Splitting water for hydrogen production using light, or electrical energy, is the most developed 'green technique'. For increasing efficiency in hydrogen production, currently, the most exciting and thriving strategies are focused on efficient and inexpensive catalysts. Here, we report an innovative idea for efficient hydrogen evolution reaction (HER) utilizing plasmon-activated liquid water with reduced hydrogen-bonded structure by hot electron transfer. This strategy is effective for all HERs in acidic, basic and neutral systems, photocatalytic system with a g-C3N4 (graphite carbon nitride) electrode, as well as in an inert system with an ITO (indium tin oxide) electrode. Compared to deionized water, the efficiency of HER increases by 48% based on activated water ex situ on a Pt electrode. Increase in energy efficiency from activated water is 18% at a specific current yield of -20 mA in situ on a nanoscale-granulated Au electrode. Moreover, the onset potential of -0.023 V vs RHE was very close to the thermodynamic potential of the HER (0 V). The measured current density at the corresponding overpotential for HER in an acidic system was higher than any data previously reported in the literature. This approach establishes a new vista in clean green energy production.

  16. Effect of water on hydrogen permeability. [Stirling engines

    NASA Technical Reports Server (NTRS)

    Hulligan, D. D.; Tomazic, W. A.

    1984-01-01

    Doping of hydrogen with CO or CO2 was developed to reduce hydrogen permeation in Stirling engines by forming low permeability oxide coatings in the heater tubes. An end product of this process is water - which can condense in the cold parts of the engine system. If the water vapor is reduced to a low enough level, the hydrogen can reduce the oxide coating resulting in increased permeability. The equilibrium level of water (oxygen bearing gas) required to avoid reduction of the oxide coating was investigated. Results at 720 C and 13.8 MPa have shown that: (1) pure hydrogen will reduce the coating; (2) 500 ppm CO (500 ppm water equivalent) does not prevent the reduction; and (3) 500 ppm CO2 (1000 ppm water) appears to be close to the equilibrium level. Further tests are planned to define the equilibrium level more precisely and to extend the data to 820 C and 3.4, 6.9, and 13.8 MPa.

  17. Hydrogen isotopes in individual amino acids reflect differentiated pools of hydrogen from food and water in Escherichia coli.

    PubMed

    Fogel, Marilyn L; Griffin, Patrick L; Newsome, Seth D

    2016-08-01

    Hydrogen isotope (δ(2)H) analysis is widely used in animal ecology to study continental-scale movement because δ(2)H can trace precipitation and climate. To understand the biochemical underpinnings of how hydrogen is incorporated into biomolecules, we measured the δ(2)H of individual amino acids (AAs) in Escherichia coli cultured in glucose-based or complex tryptone-based media in waters with δ(2)H values ranging from -55‰ to +1,070‰. The δ(2)H values of AAs in tryptone spanned a range of ∼250‰. In E. coli grown on glucose, the range of δ(2)H among AAs was nearly 200‰. The relative distributions of δ(2)H of AAs were upheld in cultures grown in enriched waters. In E. coli grown on tryptone, the δ(2)H of nonessential AAs varied linearly with the δ(2)H of media water, whereas δ(2)H of essential AAs was nearly identical to δ(2)H in diet. Model calculations determined that as much as 46% of hydrogen in some nonessential AAs originated from water, whereas no more than 12% of hydrogen in essential AAs originated from water. These findings demonstrate that δ(2)H can route directly at the molecular level. We conclude that the patterns and distributions in δ(2)H of AAs are determined through biosynthetic reactions, suggesting that δ(2)H could become a new biosignature for studying novel microbial pathways. Our results also show that δ(2)H of AAs in an organism's tissues provides a dual tracer for food and environmental (e.g., drinking) water. PMID:27444017

  18. Hydrogen isotopes in individual amino acids reflect differentiated pools of hydrogen from food and water in Escherichia coli.

    PubMed

    Fogel, Marilyn L; Griffin, Patrick L; Newsome, Seth D

    2016-08-01

    Hydrogen isotope (δ(2)H) analysis is widely used in animal ecology to study continental-scale movement because δ(2)H can trace precipitation and climate. To understand the biochemical underpinnings of how hydrogen is incorporated into biomolecules, we measured the δ(2)H of individual amino acids (AAs) in Escherichia coli cultured in glucose-based or complex tryptone-based media in waters with δ(2)H values ranging from -55‰ to +1,070‰. The δ(2)H values of AAs in tryptone spanned a range of ∼250‰. In E. coli grown on glucose, the range of δ(2)H among AAs was nearly 200‰. The relative distributions of δ(2)H of AAs were upheld in cultures grown in enriched waters. In E. coli grown on tryptone, the δ(2)H of nonessential AAs varied linearly with the δ(2)H of media water, whereas δ(2)H of essential AAs was nearly identical to δ(2)H in diet. Model calculations determined that as much as 46% of hydrogen in some nonessential AAs originated from water, whereas no more than 12% of hydrogen in essential AAs originated from water. These findings demonstrate that δ(2)H can route directly at the molecular level. We conclude that the patterns and distributions in δ(2)H of AAs are determined through biosynthetic reactions, suggesting that δ(2)H could become a new biosignature for studying novel microbial pathways. Our results also show that δ(2)H of AAs in an organism's tissues provides a dual tracer for food and environmental (e.g., drinking) water.

  19. Effect of water-water hydrogen bonding on the hydrophobic hydration of large-scale particles and its temperature dependence.

    PubMed

    Djikaev, Y S; Ruckenstein, E

    2012-03-01

    We present a theoretical model for the effect of water hydrogen bonding on the thermodynamics of hydrophobic hydration. The model is based on a combination of the classical density functional theory with the recently developed probabilistic approach to water hydrogen bonding near a hydrophobic surface. This combination allows one to determine the distribution of water molecules in the vicinity of a hydrophobic particle and calculate the thermodynamic quantities of hydrophobic hydration as well as their temperature dependence. The probabilistic approach allows one to implement the effect of the hydrogen bonding ability of water molecules on their interaction with the hydrophobic surface into the formalism of density functional theory. This effect arises because the number and energy of hydrogen bonds that a water molecule forms near a hydrophobic surface differ from their bulk values. Such alteration gives rise to a hydrogen bond contribution to the external potential field whereto a water molecule is subjected in that vicinity. This contribution is shown to play a dominant role in the interaction of a water molecule with the surface. Our approach predicts that in the temperature range from 293 to 333 K: (a) the free energy of hydration of a planar hydrophobic surface in a model liquid water increases with increasing temperature (although its ratio to the temperature decreases); (b) the hydration process is unfavorable both enthalpically and entropically; (c) the entropic contribution to the hydration free energy is much smaller than the enthalpic one and decreases with increasing temperature, potentially becoming negative. The latter is indirectly supported by the experimental observation that under some conditions the hydration of a molecular hydrophobe is entropically favorable as well as by the molecular dynamics simulations predicting positive hydration entropy for sufficiently large hydrophobes.

  20. Experimental study of hydrogen production by direct decomposition of water

    NASA Astrophysics Data System (ADS)

    Bilgen, E.; Galindo, J.; Baykara, S. Z.

    The hydrogen production by direct decomposition of water in a solar furnace is studied. The set-up is a horizontal axis system consisting of two 1.0 kW parabolic concentrators, both powered by a single heliostat. A temperature of 3000 K is possible. The water is fed to the reactor installed at the focal space of the concentrator, and the steam is decomposed at about 2500 K. The reactor consisted of a cylindrical cavity type refractory receiver covered with a silica cupola. The steam was introduced at a known rate into the cavity and the product gases were quenched. After the condensation of steam, hydrogen and oxygen were collected in a reservoir. Results indicate that with an optimized system, it is possible to produce hydrogen at about 70 percent rate of the theoretical value at the temperature level studied.

  1. Quantum effects of hydrogen atoms on the dynamical rearrangement of hydrogen-bond networks in liquid water.

    PubMed

    Hyeon-Deuk, Kim; Ando, Koji

    2010-04-28

    Quantum effects such as zero-point energy and delocalization of wave packets (WPs) representing water hydrogen atoms are essential to understand anomalous energetics and dynamics in water. Since quantum calculations of many-body dynamics are highly complicated, no one has yet directly viewed the quantum WP dynamics of hydrogen atoms in liquid water. Our semiquantum molecular dynamics simulation made it possible to observe the hydrogen WP dynamics in liquid water. We demonstrate that the microscopic WP dynamics are closely correlated with and actually play key roles in the dynamical rearrangement in the hydrogen-bond network (HBN) of bulk water. We found the quantum effects of hydrogen atoms on liquid water dynamics such as the rearrangement of HBN and the concomitant fluctuation and relaxation. Our results provide new physical insights on HBN dynamics in water whose significance is not limited to pure liquid dynamics but also a greater understanding of chemical and biological reactions in liquid water.

  2. Fluorescence Quenching of Benzaldehyde in Water by Hydrogen Atom Abstraction.

    PubMed

    Fletcher, Katharyn; Bunz, Uwe H F; Dreuw, Andreas

    2016-09-01

    We computed the mechanism of fluorescence quenching of benzaldehyde in water through relaxed potential energy surface scans. Time-dependent density functional theory calculations along the protonation coordinate from water to benzaldehyde reveal that photoexcitation to the bright ππ* (S3 ) state is immediately followed by ultrafast decay to the nπ* (S1 ) state. Evolving along this state, benzaldehyde (BA) abstracts a hydrogen atom, resulting in a BAH(.) and OH(.) radical pair. Benzaldehyde does not act as photobase in water, but abstracts a hydrogen atom from a nearby solvent molecule. The system finally decays back to the ground state by non-radiative decay and an electron transfers back to the OH(.) radical. Proton transfer from BAH(+) to OH(-) restores the initial situation, BA in water. PMID:27305520

  3. Does fluoromethane form a hydrogen bond with water?

    PubMed

    Rosenberg, Robert E

    2012-11-01

    Fluorinated organic compounds have become increasingly important in the pharmaceutical and agricultural industries. However, even the simplest aspects of these compounds are still not well understood. For instance, it is an open question as to whether fluoroorganics can form a hydrogen bond. To answer this question, this work compares the complex CH(3)F···HOH with 10 other complexes including the water dimer, the water-ammonia dimer, the methane-water dimer, and the methane dimer, among others. The features that are compared include binding energy and its electrostatic and dispersive components, geometry, vibrational frequencies, charge transfer, and topological analysis of the electron density. All of these are consistent with a hydrogen bond forming in CH(3)F···HOH. Moreover, all features of this dimer appear to be quite similar in kind, although slightly lesser in degree, than the corresponding features of the water dimer.

  4. Fluorescence Quenching of Benzaldehyde in Water by Hydrogen Atom Abstraction.

    PubMed

    Fletcher, Katharyn; Bunz, Uwe H F; Dreuw, Andreas

    2016-09-01

    We computed the mechanism of fluorescence quenching of benzaldehyde in water through relaxed potential energy surface scans. Time-dependent density functional theory calculations along the protonation coordinate from water to benzaldehyde reveal that photoexcitation to the bright ππ* (S3 ) state is immediately followed by ultrafast decay to the nπ* (S1 ) state. Evolving along this state, benzaldehyde (BA) abstracts a hydrogen atom, resulting in a BAH(.) and OH(.) radical pair. Benzaldehyde does not act as photobase in water, but abstracts a hydrogen atom from a nearby solvent molecule. The system finally decays back to the ground state by non-radiative decay and an electron transfers back to the OH(.) radical. Proton transfer from BAH(+) to OH(-) restores the initial situation, BA in water.

  5. Hydrogen generation through static-feed water electrolysis

    NASA Technical Reports Server (NTRS)

    Jensen, F. C.; Schubert, F. H.

    1975-01-01

    A static-feed water electrolysis system (SFWES), developed under NASA sponsorship, is presented for potential applicability to terrestrial hydrogen production. The SFWES concept uses (1) an alkaline electrolyte to minimize power requirements and materials-compatibility problems, (2) a method where the electrolyte is retained in a thin porous matrix eliminating bulk electrolyte, and (3) a static water-feed mechanism to prevent electrode and electrolyte contamination and to promote system simplicity.

  6. The role of molecular hydrogen and methane oxidation in the water vapour budget of the stratosphere

    NASA Technical Reports Server (NTRS)

    Le Texier, H.; Solomon, S.; Garcia, R. R.

    1988-01-01

    The detailed photochemistry of methane oxidation has been studied in a coupled chemical/dynamical model of the middle atmosphere. The photochemistry of formaldehyde plays an important role in determining the production of water vapor from methane oxidation. At high latitudes, the production and transport of molecular hydrogen is particularly important in determining the water vapor distribution. It is shown that the ratio of the methane vertical gradient to the water vapor vertical gradient at any particular latitude should not be expected to be precisely 2, due both to photochemical and dynamical effects. Modeled H2O profiles are compared with measurements from the Limb Infrared Monitor of the Stratosphere (LIMS) experiment at various latitudes. Molecular hydrogen is shown to be responsible for the formation of a secondary maximum displayed by the model water vapor profiles in high latitude summer, a feature also found in the LIMS data.

  7. Vibrational spectral diffusion and hydrogen bond dynamics in heavy water from first principles.

    PubMed

    Mallik, Bhabani S; Semparithi, A; Chandra, Amalendu

    2008-06-12

    We present a first-principles theoretical study of vibrational spectral diffusion and hydrogen bond dynamics in heavy water without using any empirical model potentials. The calculations are based on ab initio molecular dynamics simulations for trajectory generation and a time series analysis using the wavelet method for frequency calculations. It is found that, in deuterated water, although a one-to-one relation does not exist between the instantaneous frequency of an OD bond and the distance of its associated hydrogen bond, such a relation does hold on average. The dynamics of spectral diffusion is investigated by means of frequency-time correlation and spectral hole dynamics calculations. Both of these functions are found to have a short-time decay with a time scale of approximately 100 fs corresponding to dynamics of intact hydrogen bonds and a slower long-time decay with a time constant of approximately 2 ps corresponding to lifetimes of hydrogen bonds. The connection of the slower time scale to the dynamics of local structural relaxation is also discussed. The dynamics of hydrogen bond making is shown to have a rather fast time scale of approximately 100 fs; hence, it can also contribute to the short-time dynamics of spectral diffusion. A damped oscillation is also found at around 150-200 fs, which is shown to have come from underdamped intermolecular vibrations of a hydrogen-bonded water pair. Such assignments are confirmed by independent calculations of power spectra of intermolecular motion and hydrogen bond kinetics using the population correlation function formalism. The details of the time constants of frequency correlations and spectral shifts are found to depend on the frequencies of chosen OD bonds and are analyzed in terms of the dynamics of hydrogen bonds of varying strengths and also of free non-hydrogen-bonded OD groups.

  8. The sticking of atomic hydrogen on amorphous water ice

    SciTech Connect

    Veeraghattam, Vijay K.; Manrodt, Katie; Lewis, Steven P.; Stancil, P. C. E-mail: lewis@physast.uga.edu

    2014-07-20

    Using classical molecular dynamics, we have simulated the sticking and scattering process of a hydrogen atom on an amorphous ice film to predict the sticking probability of hydrogen on ice surfaces. A wide range of initial kinetic energies of the incident hydrogen atom (10 K-600 K) and two different ice temperatures (10 K and 70 K) were used to investigate this fundamental process in interstellar chemistry. We report here the sticking probability of atomic hydrogen as a function of incident kinetic energy, gas temperature, and substrate temperature, which can be used in astrophysical models. The current results are compared to previous theoretical and experimental studies that have reported a wide range in the sticking coefficient.

  9. Thermochemical hydrogen production via a cycle using barium and sulfur - Reaction between barium sulfide and water

    NASA Technical Reports Server (NTRS)

    Ota, K.; Conger, W. L.

    1977-01-01

    The reaction between barium sulfide and water, a reaction found in several sulfur based thermochemical cycles, was investigated kinetically at 653-866 C. Gaseous products were hydrogen and hydrogen sulfide. The rate determining step for hydrogen formation was a surface reaction between barium sulfide and water. An expression was derived for the rate of hydrogen formation.

  10. Determination of Hydrogen Bond Structure in Water versus Aprotic Environments To Test the Relationship Between Length and Stability

    SciTech Connect

    Sigala, Paul A.; Ruben, Eliza A.; Liu, Corey W.; Piccoli, Paula M. B.; Hohenstein, Edward G.; Martinez, Todd J.; Schultz, Arthur J.; Herschiag, Daniel

    2015-05-06

    Hydrogen bonds profoundly influence the architecture and activity of biological macromolecules. Deep appreciation of hydrogen bond contributions to biomolecular function thus requires a detailed understanding of hydrogen bond structure and energetics and the relationship between these properties. Hydrogen bond formation energies (Delta G(f)) are enormously more favorable in aprotic solvents than in water, and two classes of contributing factors have been proposed to explain this energetic difference, focusing respectively on the isolated and hydrogen-bonded species: (I) water stabilizes the dissociated donor and acceptor groups much better than aprotic solvents, thereby reducing the driving force for hydrogen bond formation; and (II) water lengthens hydrogen bonds compared to aprotic environments, thereby decreasing the potential energy within the hydrogen bond. Each model has been proposed to provide a dominant contribution to Delta G(f), but incisive tests that distinguish the importance of these contributions are lacking. Here we directly test the structural basis of model II. Neutron crystallography, NMR spectroscopy, and quantum mechanical calculations demonstrate that O-H center dot center dot center dot O hydrogen bonds in crystals, chloroform, acetone, and water have nearly identical lengths and very similar potential energy surfaces despite Delta G(f) differences >8 kcal/mol across these solvents. These results rule out a substantial contribution from solvent-dependent differences in hydrogen bond structure and potential energy after association (model II) and thus support the conclusion that differences in hydrogen bond Delta G(f) are predominantly determined by solvent interactions with the dissociated groups (model I). These findings advance our understanding of universal hydrogen-bonding interactions and have important implications for biology and engineering.

  11. Determination of Hydrogen Bond Structure in Water versus Aprotic Environments To Test the Relationship Between Length and Stability.

    PubMed

    Sigala, Paul A; Ruben, Eliza A; Liu, Corey W; Piccoli, Paula M B; Hohenstein, Edward G; Martínez, Todd J; Schultz, Arthur J; Herschlag, Daniel

    2015-05-01

    Hydrogen bonds profoundly influence the architecture and activity of biological macromolecules. Deep appreciation of hydrogen bond contributions to biomolecular function thus requires a detailed understanding of hydrogen bond structure and energetics and the relationship between these properties. Hydrogen bond formation energies (ΔGf) are enormously more favorable in aprotic solvents than in water, and two classes of contributing factors have been proposed to explain this energetic difference, focusing respectively on the isolated and hydrogen-bonded species: (I) water stabilizes the dissociated donor and acceptor groups much better than aprotic solvents, thereby reducing the driving force for hydrogen bond formation; and (II) water lengthens hydrogen bonds compared to aprotic environments, thereby decreasing the potential energy within the hydrogen bond. Each model has been proposed to provide a dominant contribution to ΔGf, but incisive tests that distinguish the importance of these contributions are lacking. Here we directly test the structural basis of model II. Neutron crystallography, NMR spectroscopy, and quantum mechanical calculations demonstrate that O-H···O hydrogen bonds in crystals, chloroform, acetone, and water have nearly identical lengths and very similar potential energy surfaces despite ΔGf differences >8 kcal/mol across these solvents. These results rule out a substantial contribution from solvent-dependent differences in hydrogen bond structure and potential energy after association (model II) and thus support the conclusion that differences in hydrogen bond ΔGf are predominantly determined by solvent interactions with the dissociated groups (model I). These findings advance our understanding of universal hydrogen-bonding interactions and have important implications for biology and engineering.

  12. Hydrogen production in a radio-frequency plasma source operating on water vapor

    NASA Astrophysics Data System (ADS)

    Nguyen, Son-Ca Viet Thi

    The global energy and climate challenges have motivated development of innovative techniques to satisfy energy demand while minimizing emissions. To this end, hydrogen as an alternative energy carrier in the transportation sector is an attractive option. In addition, there is already a great need for hydrogen gas in several industrial processes such as hydro-cracking of crude oil to produce gasoline and production of ammonia and methanol. The current dominant methods of hydrogen production from fossil fuels are well-developed and have reached relatively high energy efficiencies (up to 85%), but these methods rely on non-renewable natural resources and produce carbon dioxide emissions. This work investigates the feasibility of hydrogen production by dissociating water molecules in a radio-frequency (RF) plasma discharge. In addition to the widespread usage of hydrogen gas, applications of water plasma have permeated in many areas of research, and information on basic behaviors of a water plasma discharge will provide fruitful insights for other researchers. An RF plasma source equipped with a double-helix antenna (m = 1 mode) and an applied axial magnetic field is designed to operate on water vapor. It is shown that water molecules are being dissociated in the discharge. Experimental results show that the rate of hydrogen production increases linearly with RF power in the absence of the applied axial magnetic field. With the magnetic field, the rate of hydrogen production increases from 250 to 500 W, and begins to saturate with RF power. Despite this saturation, it is shown that hydrogen increases with magnetic field strength at a fixed RF power. Further, the rate of hydrogen production increases with water input flow rate up to 100 sccm for a fixed RF power level, and begins to decrease at 125 sccm. This dissertation characterizes the rate of hydrogen production and plasma properties as a function of RF power, applied B-field strength, and water input flow rate. A

  13. Confinement dependence of electro-catalysts for hydrogen evolution from water splitting

    PubMed Central

    Panas, Itai

    2014-01-01

    Summary Density functional theory is utilized to articulate a particular generic deconstruction of the electrode/electro-catalyst assembly for the cathode process during water splitting. A computational model was designed to determine how alloying elements control the fraction of H2 released during zirconium oxidation by water relative to the amount of hydrogen picked up by the corroding alloy. This model is utilized to determine the efficiencies of transition metals decorated with hydroxide interfaces in facilitating the electro-catalytic hydrogen evolution reaction. A computational strategy is developed to select an electro-catalyst for hydrogen evolution (HE), where the choice of a transition metal catalyst is guided by the confining environment. The latter may be recast into a nominal pressure experienced by the evolving H2 molecule. We arrived at a novel perspective on the uniqueness of oxide supported atomic Pt as a HE catalyst under ambient conditions. PMID:24605286

  14. Modeling Neutral Hydrogen in the Heliospheric Interface

    NASA Astrophysics Data System (ADS)

    Heerikhuisen, J.; Pogorelov, N.

    2009-05-01

    Observational data of neutral atoms provides us with a 1 AU picture of the neutral atom flux in the heliosphere. The large mean free paths of neutrals allow us to infer properties of their distant source, as well as the properties of the intermediary medium. Energetic neutral hydrogen, for example, travels on almost straight trajectories, so that the particles observed coming from a particular direction were created from energetic protons along that line of sight. Similarly, low energy interstellar atoms are attenuated and deflected as they enter the heliosphere, and this deflection tells us something about the structure of the heliospheric interface. Of course, to infer quantitative features of the global heliosphere from neutral atom observations at 1 AU, we need accurate models that capture the 3D structure of the heliosphere. We will present an advanced MHD-neutral model of the heliosphere which is 3D, employs kinetic neutral Hydrogen, and incorporates a suprathermal tail on the solar wind proton distribution to approximate pick-up ions. We will demonstrate that with the help of such a model, we can test various hypotheses regarding the heliospheric boundary via forward modeling and comparison with data.

  15. Hydrogen evolution from water through metal sulfide reactions

    NASA Astrophysics Data System (ADS)

    Saha, Arjun; Raghavachari, Krishnan

    2013-11-01

    Transition metal sulfides play an important catalytic role in many chemical reactions. In this work, we have conducted a careful computational study of the structures, electronic states, and reactivity of metal sulfide cluster anions M2SX- (M = Mo and W, X = 4-6) using density functional theory. Detailed structural analysis shows that these metal sulfide anions have ground state isomers with two bridging sulfide bonds, notably different in some cases from the corresponding oxides with the same stoichiometry. The chemical reactivity of these metal sulfide anions with water has also been carried out. After a thorough search on the reactive potential energy surface, we propose several competitive, energetically favorable, reaction pathways that lead to the evolution of hydrogen. Selectivity in the initial water addition and subsequent hydrogen migration are found to be the key steps in all the proposed reaction channels. Initial adsorption of water is most favored involving a terminal metal sulfur bond in Mo2S4- isomers whereas the most preferred orientation for water addition involves a bridging metal sulfur bond in the case of W2S4- and M2S5- isomers. In all the lowest energy H2 elimination steps, the interacting hydrogen atoms involve a metal hydride and a metal hydroxide (or thiol) group. We have also observed a higher energy reaction channel where the interacting hydrogen atoms in the H2 elimination step involve a thiol (-SH) and a hydroxyl (-OH) group. For all the reaction pathways, the Mo sulfide reactions involve a higher barrier than the corresponding W analogues. We observe for both metals that reactions of M2S4- and M2S5- clusters with water to liberate H2 are exothermic and involve modest free energy barriers. However, the reaction of water with M2S6- is highly endothermic with a considerable barrier due to saturation of the local bonding environment.

  16. Hydrogen evolution from water through metal sulfide reactions.

    PubMed

    Saha, Arjun; Raghavachari, Krishnan

    2013-11-28

    Transition metal sulfides play an important catalytic role in many chemical reactions. In this work, we have conducted a careful computational study of the structures, electronic states, and reactivity of metal sulfide cluster anions M2S(X)(-) (M = Mo and W, X = 4-6) using density functional theory. Detailed structural analysis shows that these metal sulfide anions have ground state isomers with two bridging sulfide bonds, notably different in some cases from the corresponding oxides with the same stoichiometry. The chemical reactivity of these metal sulfide anions with water has also been carried out. After a thorough search on the reactive potential energy surface, we propose several competitive, energetically favorable, reaction pathways that lead to the evolution of hydrogen. Selectivity in the initial water addition and subsequent hydrogen migration are found to be the key steps in all the proposed reaction channels. Initial adsorption of water is most favored involving a terminal metal sulfur bond in Mo2S4(-) isomers whereas the most preferred orientation for water addition involves a bridging metal sulfur bond in the case of W2S4(-) and M2S5(-) isomers. In all the lowest energy H2 elimination steps, the interacting hydrogen atoms involve a metal hydride and a metal hydroxide (or thiol) group. We have also observed a higher energy reaction channel where the interacting hydrogen atoms in the H2 elimination step involve a thiol (-SH) and a hydroxyl (-OH) group. For all the reaction pathways, the Mo sulfide reactions involve a higher barrier than the corresponding W analogues. We observe for both metals that reactions of M2S4(-) and M2S5(-) clusters with water to liberate H2 are exothermic and involve modest free energy barriers. However, the reaction of water with M2S6(-) is highly endothermic with a considerable barrier due to saturation of the local bonding environment.

  17. A probabilistic approach to the effect of water hydrogen bonds on the kinetics of protein folding and protein denaturation.

    PubMed

    Djikaev, Y S; Ruckenstein, E

    2010-02-26

    Previously, we presented a review of our kinetic models for the nucleation mechanism of protein folding and for the protein thermal denaturation in a barrierless way. A protein was treated as a random heteropolymer consisting of hydrophobic, hydrophilic, and neutral beads. As a crucial idea of the model, an overall potential around the cluster of native residues wherein a residue performs a chaotic motion was considered as the combination of the average dihedral, effective pairwise, and confining potentials. The overall potential as a function of the distance from the cluster has a double well shape. This allowed one to develop kinetic models for the nucleation mechanism of protein folding (NMPF) and barrierless protein denaturation (BPD) by using the mean first passage time analysis. In the original models, however, hydrogen bonding effects were taken into account only indirectly which affected the accuracy of the models because hydrogen bonding does play a crucial role in the folding, stability, and denaturation of proteins. To improve the NMPF and BPD models and explicitly take into account the hydrogen bonding "water-water" and "water-protein residue", we have developed a probabilistic hydrogen bond (PHB) model for the effect of hydrogen bond networks of water molecules around two solute particles (immersed in water) on their interaction, and have then combined the PHB model with the NMPF and BPD models. In this paper, that can be regarded as sequel of our previous review, we analyze the modified NMPF and BPD models that explicitly take into account the effect of water-water hydrogen bonding on these processes. As expected, the application of the modified models to the folding/unfolding of two model proteins (one short, consisting of 124 residues and the other large, consisting of 2500 residues) demonstrate that the hydrogen bond networks play a very important role in the protein folding/unfolding phenomena.

  18. Clean hydrogen and power from impure water

    NASA Astrophysics Data System (ADS)

    Acar, Canan; Dincer, Ibrahim; Naterer, Greg F.

    2016-11-01

    This paper presents a new photoelectrochemical (PEC) H2 production system which is capable of providing clean energy and water, and multi-generation of H2, electricity, heat and industrial chemicals from a single clean, abundant and renewable source: sun. This novel system maximizes solar spectrum utilization and increases system efficiencies by generating more outputs from solar energy alone. The hybrid PEC-chloralkali system, coupled with PV/T (Photovoltaic Thermal), is capable of producing H2, Cl2, electricity, and heat simultaneously. Incoming solar light is split into high-energy photons (with wavelengths lower than 400 nm) and low-energy photons. The high-energy portion is used to generate photocurrent in the reactor, and the remaining part is sent to the PV/T. This PV/T supports the electricity needs of the system and also provides electricity output for the end user. Moreover, the heat recovered from PV/T is a system output. The findings suggest that this system is capable of producing H2 and Cl2 as well as heat and electricity with higher efficiencies than the reported PV electrolysis and PEC-based H2 production efficiencies in the literature.

  19. Communication: Hydrogen bonding interactions in water-alcohol mixtures from X-ray absorption spectroscopy.

    PubMed

    Lam, Royce K; Smith, Jacob W; Saykally, Richard J

    2016-05-21

    While methanol and ethanol are macroscopically miscible with water, their mixtures exhibit negative excess entropies of mixing. Despite considerable effort in both experiment and theory, there remains significant disagreement regarding the origin of this effect. Different models for the liquid mixture structure have been proposed to address this behavior, including the enhancement of the water hydrogen bonding network around the alcohol hydrophobic groups and microscopic immiscibility or clustering. We have investigated mixtures of methanol, ethanol, and isopropanol with water by liquid microjet X-ray absorption spectroscopy on the oxygen K-edge, an atom-specific probe providing details of both inter- and intra-molecular structure. The measured spectra evidence a significant enhancement of hydrogen bonding originating from the methanol and ethanol hydroxyl groups upon the addition of water. These additional hydrogen bonding interactions would strengthen the liquid-liquid interactions, resulting in additional ordering in the liquid structures and leading to a reduction in entropy and a negative enthalpy of mixing, consistent with existing thermodynamic data. In contrast, the spectra of the isopropanol-water mixtures exhibit an increase in the number of broken alcohol hydrogen bonds for mixtures containing up to 0.5 water mole fraction, an observation consistent with existing enthalpy of mixing data, suggesting that the measured negative excess entropy is a result of clustering or micro-immiscibility.

  20. Communication: Hydrogen bonding interactions in water-alcohol mixtures from X-ray absorption spectroscopy.

    PubMed

    Lam, Royce K; Smith, Jacob W; Saykally, Richard J

    2016-05-21

    While methanol and ethanol are macroscopically miscible with water, their mixtures exhibit negative excess entropies of mixing. Despite considerable effort in both experiment and theory, there remains significant disagreement regarding the origin of this effect. Different models for the liquid mixture structure have been proposed to address this behavior, including the enhancement of the water hydrogen bonding network around the alcohol hydrophobic groups and microscopic immiscibility or clustering. We have investigated mixtures of methanol, ethanol, and isopropanol with water by liquid microjet X-ray absorption spectroscopy on the oxygen K-edge, an atom-specific probe providing details of both inter- and intra-molecular structure. The measured spectra evidence a significant enhancement of hydrogen bonding originating from the methanol and ethanol hydroxyl groups upon the addition of water. These additional hydrogen bonding interactions would strengthen the liquid-liquid interactions, resulting in additional ordering in the liquid structures and leading to a reduction in entropy and a negative enthalpy of mixing, consistent with existing thermodynamic data. In contrast, the spectra of the isopropanol-water mixtures exhibit an increase in the number of broken alcohol hydrogen bonds for mixtures containing up to 0.5 water mole fraction, an observation consistent with existing enthalpy of mixing data, suggesting that the measured negative excess entropy is a result of clustering or micro-immiscibility. PMID:27208929

  1. Communication: Hydrogen bonding interactions in water-alcohol mixtures from X-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Lam, Royce K.; Smith, Jacob W.; Saykally, Richard J.

    2016-05-01

    While methanol and ethanol are macroscopically miscible with water, their mixtures exhibit negative excess entropies of mixing. Despite considerable effort in both experiment and theory, there remains significant disagreement regarding the origin of this effect. Different models for the liquid mixture structure have been proposed to address this behavior, including the enhancement of the water hydrogen bonding network around the alcohol hydrophobic groups and microscopic immiscibility or clustering. We have investigated mixtures of methanol, ethanol, and isopropanol with water by liquid microjet X-ray absorption spectroscopy on the oxygen K-edge, an atom-specific probe providing details of both inter- and intra-molecular structure. The measured spectra evidence a significant enhancement of hydrogen bonding originating from the methanol and ethanol hydroxyl groups upon the addition of water. These additional hydrogen bonding interactions would strengthen the liquid-liquid interactions, resulting in additional ordering in the liquid structures and leading to a reduction in entropy and a negative enthalpy of mixing, consistent with existing thermodynamic data. In contrast, the spectra of the isopropanol-water mixtures exhibit an increase in the number of broken alcohol hydrogen bonds for mixtures containing up to 0.5 water mole fraction, an observation consistent with existing enthalpy of mixing data, suggesting that the measured negative excess entropy is a result of clustering or micro-immiscibility.

  2. Molecular metal-Oxo catalysts for generating hydrogen from water

    SciTech Connect

    Long, Jeffrey R; Chang, Christopher J; Karunadasa, Hemamala I

    2015-02-24

    A composition of matter suitable for the generation of hydrogen from water is described, the positively charged cation of the composition having the general formula [(PY5W.sub.2)MO].sup.2+, wherein PY5W.sub.2 is (NC.sub.5XYZ)(NC.sub.5H.sub.4).sub.4C.sub.2W.sub.2, M is a transition metal, and W, X, Y, and Z can be H, R, a halide, CF.sub.3, or SiR.sub.3, where R can be an alkyl or aryl group. The two accompanying counter anions, in one embodiment, can be selected from the following Cl.sup.-, I.sup.-, PF.sub.6.sup.-, and CF.sub.3SO.sub.3.sup.-. In embodiments of the invention, water, such as tap water containing electrolyte or straight sea water can be subject to an electric potential of between 1.0 V and 1.4 V relative to the standard hydrogen electrode, which at pH 7 corresponds to an overpotential of 0.6 to 1.0 V, with the result being, among other things, the generation of hydrogen with an optimal turnover frequency of ca. 1.5 million mol H.sub.2/mol catalyst per h.

  3. Hydrogen production by photosynthetic water splitting

    SciTech Connect

    Greenbaum, E.; Lee, J.W.; Tevault, C.V.

    1996-10-01

    Contrary to the prediction of the {open_quotes}Z-scheme{close_quotes} model of photosynthesis, experiments demonstrated that mutants of Chlamydomonas containing Photosystem II (PSII) but lacking Photosystem I (PSI), can grow photoautotrophically with O{sub 2} evolution and using atmospheric CO{sub 2} as the sole carbon source. Autotrophic photosynthesis by PSI-deficient mutants was stable both under anaerobic conditions and in air (21% O{sub 2}) at an actinic intensity of 200 {mu}E/m{sup -2}{sup {sm_bullet}}s. This {open_quotes}PSII photosynthesis,{close_quotes} sufficient to support cell development and mobility, may also occur in wild-type green algae and higher plants. The mutants can survive under 2000 {mu}E{sup {sm_bullet}}m{sup -2}{sup {sm_bullet}}s{sup -1} with air, although they have less resistance to photoinhibition.

  4. Gamma radiation induces hydrogen absorption by copper in water.

    PubMed

    Lousada, Cláudio M; Soroka, Inna L; Yagodzinskyy, Yuriy; Tarakina, Nadezda V; Todoshchenko, Olga; Hänninen, Hannu; Korzhavyi, Pavel A; Jonsson, Mats

    2016-01-01

    One of the most intricate issues of nuclear power is the long-term safety of repositories for radioactive waste. These repositories can have an impact on future generations for a period of time orders of magnitude longer than any known civilization. Several countries have considered copper as an outer corrosion barrier for canisters containing spent nuclear fuel. Among the many processes that must be considered in the safety assessments, radiation induced processes constitute a key-component. Here we show that copper metal immersed in water uptakes considerable amounts of hydrogen when exposed to γ-radiation. Additionally we show that the amount of hydrogen absorbed by copper depends on the total dose of radiation. At a dose of 69 kGy the uptake of hydrogen by metallic copper is 7 orders of magnitude higher than when the absorption is driven by H2(g) at a pressure of 1 atm in a non-irradiated dry system. Moreover, irradiation of copper in water causes corrosion of the metal and the formation of a variety of surface cavities, nanoparticle deposits, and islands of needle-shaped crystals. Hence, radiation enhanced uptake of hydrogen by spent nuclear fuel encapsulating materials should be taken into account in the safety assessments of nuclear waste repositories. PMID:27086752

  5. Gamma radiation induces hydrogen absorption by copper in water

    PubMed Central

    Lousada, Cláudio M.; Soroka, Inna L.; Yagodzinskyy, Yuriy; Tarakina, Nadezda V.; Todoshchenko, Olga; Hänninen, Hannu; Korzhavyi, Pavel A.; Jonsson, Mats

    2016-01-01

    One of the most intricate issues of nuclear power is the long-term safety of repositories for radioactive waste. These repositories can have an impact on future generations for a period of time orders of magnitude longer than any known civilization. Several countries have considered copper as an outer corrosion barrier for canisters containing spent nuclear fuel. Among the many processes that must be considered in the safety assessments, radiation induced processes constitute a key-component. Here we show that copper metal immersed in water uptakes considerable amounts of hydrogen when exposed to γ-radiation. Additionally we show that the amount of hydrogen absorbed by copper depends on the total dose of radiation. At a dose of 69 kGy the uptake of hydrogen by metallic copper is 7 orders of magnitude higher than when the absorption is driven by H2(g) at a pressure of 1 atm in a non-irradiated dry system. Moreover, irradiation of copper in water causes corrosion of the metal and the formation of a variety of surface cavities, nanoparticle deposits, and islands of needle-shaped crystals. Hence, radiation enhanced uptake of hydrogen by spent nuclear fuel encapsulating materials should be taken into account in the safety assessments of nuclear waste repositories. PMID:27086752

  6. Gamma radiation induces hydrogen absorption by copper in water

    NASA Astrophysics Data System (ADS)

    Lousada, Cláudio M.; Soroka, Inna L.; Yagodzinskyy, Yuriy; Tarakina, Nadezda V.; Todoshchenko, Olga; Hänninen, Hannu; Korzhavyi, Pavel A.; Jonsson, Mats

    2016-04-01

    One of the most intricate issues of nuclear power is the long-term safety of repositories for radioactive waste. These repositories can have an impact on future generations for a period of time orders of magnitude longer than any known civilization. Several countries have considered copper as an outer corrosion barrier for canisters containing spent nuclear fuel. Among the many processes that must be considered in the safety assessments, radiation induced processes constitute a key-component. Here we show that copper metal immersed in water uptakes considerable amounts of hydrogen when exposed to γ-radiation. Additionally we show that the amount of hydrogen absorbed by copper depends on the total dose of radiation. At a dose of 69 kGy the uptake of hydrogen by metallic copper is 7 orders of magnitude higher than when the absorption is driven by H2(g) at a pressure of 1 atm in a non-irradiated dry system. Moreover, irradiation of copper in water causes corrosion of the metal and the formation of a variety of surface cavities, nanoparticle deposits, and islands of needle-shaped crystals. Hence, radiation enhanced uptake of hydrogen by spent nuclear fuel encapsulating materials should be taken into account in the safety assessments of nuclear waste repositories.

  7. Method of generating hydrogen by catalytic decomposition of water

    DOEpatents

    Balachandran, Uthamalingam; Dorris, Stephen E.; Bose, Arun C.; Stiegel, Gary J.; Lee, Tae-Hyun

    2002-01-01

    A method for producing hydrogen includes providing a feed stream comprising water; contacting at least one proton conducting membrane adapted to interact with the feed stream; splitting the water into hydrogen and oxygen at a predetermined temperature; and separating the hydrogen from the oxygen. Preferably the proton conducting membrane comprises a proton conductor and a second phase material. Preferable proton conductors suitable for use in a proton conducting membrane include a lanthanide element, a Group VIA element and a Group IA or Group IIA element such as barium, strontium, or combinations of these elements. More preferred proton conductors include yttrium. Preferable second phase materials include platinum, palladium, nickel, cobalt, chromium, manganese, vanadium, silver, gold, copper, rhodium, ruthenium, niobium, zirconium, tantalum, and combinations of these. More preferably second phase materials suitable for use in a proton conducting membrane include nickel, palladium, and combinations of these. The method for generating hydrogen is preferably preformed in the range between about 600.degree. C. and 1,700.degree. C.

  8. Generation of hydrogen from photocatalytic cleavage of water

    SciTech Connect

    Mallinson, R.G.; Resasco, D.E.; Lobban, L.L.; Nicholas, K.M.

    1998-08-01

    This paper describes the objectives, methods and early results on the US Department of Energy sponsored project to generate hydrogen from splitting of water using photocatalysts. The approach uses organometallic photosensitizers adsorbed onto platinated titania. Platinized titania is a photocatalyst for water splitting, but does not absorb sunlight in the visible range, where most of the sun`s energy is contained. Organometallic photosensitizers are synthesized, attached to platinized titania and characterized by UV-Vis spectroscopy, cyclic voltammetry, action spectra and hydrogen generation ability. Thus far, Copper, Iron and Ruthenium catalyst systems have been produced and characterized in this manner. Suitable sensitized systems that have the desirable properties have not yet been found.

  9. Control of microbially generated hydrogen sulfide in produced waters

    SciTech Connect

    Burger, E.D.; Vance, I.; Gammack, G.F.; Duncan, S.E.

    1995-12-31

    Production of hydrogen sulfide in produced waters due to the activity of sulfate-reducing bacteria (SRB) is a potentially serious problem. The hydrogen sulfide is not only a safety and environmental concern, it also contributes to corrosion, solids formation, a reduction in produced oil and gas values, and limitations on water discharge. Waters produced from seawater-flooded reservoirs typically contain all of the nutrients required to support SRB metabolism. Surface processing facilities provide a favorable environment in which SRB flourish, converting water-borne nutrients into biomass and H{sub 2}S. This paper will present results from a field trial in which a new technology for the biochemical control of SRB metabolism was successfully applied. A slip stream of water downstream of separators on a produced water handling facility was routed through a bioreactor in a side-steam device where microbial growth was allowed to develop fully. This slip stream was then treated with slug doses of two forms of a proprietary, nonbiocidal metabolic modifier. Results indicated that H{sub 2}S production was halted almost immediately and that the residual effect of the treatment lasted for well over one week.

  10. The generation of hydrogen by the thermal decomposition of water

    NASA Technical Reports Server (NTRS)

    Funk, J. E.

    1974-01-01

    Development of an approach to the evaluation of the thermal efficiency of the process of water splitting to produce hydrogen. A way of viewing thermochemical processes - both overall and step-by-step is suggested, and some recent work on a process evaluation technique is described which provides internal checks on the thermodynamic data and calculates, in addition to the efficiency, many important process parameters.

  11. Hydrogen isotope analysis of amino acids and whole cells reflects biosynthetic processing of nutrient- and water-derived hydrogen

    NASA Astrophysics Data System (ADS)

    Griffin, P.; Newsome, S.; Steele, A.; Fogel, M. L.

    2011-12-01

    Hydrogen (H) isotopes serve as sensitive tracers of biochemical processes that can be exploited to answer critical questions in biogeochemistry, ecology, and microbiology. Despite this apparent utility, relatively little is known about the specific mechanisms of H isotope fractionation involved in biosynthesis. In order to understand how organisms incorporate hydrogen from their chemical milieu into biomass, we have cultured the model bacterium E. coli MG1655 in a variety of media composed of deuterium-labeled nutrients and waters. Isotopic analysis of bulk cell mass reveals that the H fractionation between media water and cell material varies as a function of the nutrient source, with commonly used organic food sources (glucose and tryptone) leading to far smaller fractionation signals than non-standard ones (such as formamide, adenine, and urea). In addition, we have completed compound specific isotope analysis of amino acids using combined GC-IRMS. Amino acids harvested from E. coli cultured on glucose in water of varied D/H composition posses an extraordinary range of isotopic compositions (400-600 %). Furthermore, these amino acids follow a systematic distribution of D/H where proline is always heaviest and glycine is always lightest. However, when the short-chain peptide tryptone is used in place of glucose, only the non-essential amino acids reflect media water D/H values, suggesting the direct incorporation of some media-borne amino acids into cellular protein. These observations provide a foundation for understanding the cellular routing of hydrogen obtained from food and water sources and indicate that D/H analysis can serve as a powerful probe of biological function.

  12. Historical Doses from Tritiated Water and Tritiated Hydrogen Gas Released to the Atmosphere from Lawrence Livermore National Laboratory (LLNL) Part 1. Description of Tritium Dose Model (DCART) for Routine Releases from LLNL

    SciTech Connect

    Peterson, S R

    2006-09-27

    DCART (Doses from Chronic Atmospheric Releases of Tritium) is a spreadsheet model developed at Lawrence Livermore National Laboratory (LLNL) that calculates doses from inhalation of tritiated hydrogen gas (HT), inhalation and skin absorption of tritiated water (HTO), and ingestion of HTO and organically bound tritium (OBT) to adult, child (age 10), and infant (age 6 months to 1 year) from routine atmospheric releases of HT and HTO. DCART is a deterministic model that, when coupled to the risk assessment software Crystal Ball{reg_sign}, predicts doses with a 95% confidence interval. The equations used by DCART are described and all distributions on parameter values are presented. DCART has been tested against the results of other models and several sets of observations in the Tritium Working Groups of the International Atomic Energy Agency's programs, Biosphere Modeling and Assessment and Environmental Modeling for Radiation Safety. The version of DCART described here has been modified to include parameter values and distributions specific to conditions at LLNL. In future work, DCART will be used to reconstruct dose to the hypothetical maximally exposed individual from annual routine releases of HTO and HT from all LLNL facilities and from the Sandia National Laboratory's Tritium Research Laboratory over the last fifty years.

  13. Recovery of hydrogen and removal of nitrate from water by electrocoagulation process.

    PubMed

    Lakshmi, Jothinathan; Sozhan, Ganapathy; Vasudevan, Subramanyan

    2013-04-01

    The present study provides an optimization of electrocoagulation process for the recovery of hydrogen and removal of nitrate from water. In doing so, the thermodynamic, adsorption isotherm, and kinetic studies were also carried out. Aluminum alloy of size 2 dm(2) was used as anode and as cathode. To optimize the maximum removal efficiency, different parameters like effect of initial concentration, effect of temperature, pH, and effect of current density were studied. The results show that a significant amount of hydrogen can be generated by this process during the removal of nitrate from water. The energy yield calculated from the hydrogen generated is 3.3778 kWh/m(3). The results also showed that the maximum removal efficiency of 95.9% was achieved at a current density of 0.25 A/dm(2), at a pH of 7.0. The adsorption process followed second-order kinetics model. The adsorption of NO3(-) preferably fitting the Langmuir adsorption isotherm suggests monolayer coverage of adsorbed molecules. Thermodynamic studies showed that adsorption was exothermic and spontaneous in nature. The energy yield of generated hydrogen was ~54% of the electrical energy demand of the electrocoagulation process. With the reduction of the net energy demand, electrocoagulation may become a useful technology to treat water associated with power production. The aluminum hydroxide generated in the cell removes the nitrate present in the water and reduced it to a permissible level making the water drinkable.

  14. Leaf water and plant wax hydrogen isotopes in a European sample network

    NASA Astrophysics Data System (ADS)

    Nelson, D. B.; Kahmen, A.

    2014-12-01

    The hydrogen isotopic composition of plant waxes in sediments is now routinely used as a hydroclimate proxy. This application is based largely on empirical calibrations that have demonstrated continental-scale correlations between source water and lipid hydrogen isotope values. But at smaller spatial scales and for individual locations it is increasingly recognized that factors that modify apparent fractionation between source water and leaf lipid hydrogen isotope values must also be considered. Isotopic enrichment of leaf water during transpiration is key among these secondary factors, and is itself sensitive to changes in hydroclimate. Leaf water enrichment also occurs prior to photosynthetic water uptake, and is therefore independent from cellular-level biomarker synthesis. Recent advances in theory have permitted mechanistic models to be developed that can be used to predict the mean leaf water hydrogen and oxygen isotope composition from readily available meteorological variables. This permits global-scale isoscape maps of leaf water isotopic composition and enrichment above source water to be generated, but these models have not been widely validated at continental spatial scales. We have established a network of twenty-one sites across Europe where we are sampling for leaf-, xylem-, and soil-water isotopes (H and O) at approximately 5-week intervals over the summer growing season. We augment the sample set with weekly to monthly precipitation samples and early- and late-season plant wax lipid samples. Collaborators at each site are conducting the sampling, and most sites are members of the FLUXNET tower network that also record high-resolution meteorological data. We present information on the implementation of the network and preliminary results from the 2014 summer season. The complete dataset will be used to track the evolution of water isotopes from source to leaf water and from leaf water to lipid hydrogen across diverse environments. This will provide

  15. A model predicting hydrogen and oxygen isotopes of mammalian hair at the landscape scale

    NASA Astrophysics Data System (ADS)

    Ehleringer, J.; Podlesak, D.; Cerling, T.; Chesson, L.; Bowen, G.

    2006-12-01

    A model has been developed to predict hydrogen and oxygen isotope ratios of keratin in hair of mammalian herbivores and omnivores, incorporating the influences of drinking water and dietary input. The isotopic composition of carbohydrates in food sources and the water in blood and tissues are predicted as intermediate components linking drinking water and dietary sources (environment) with hair (environmental recorder). This model is scaled to landscape and regional levels using geographic information system map predictions of the hydrogen and oxygen isotope ratios of drinking waters and anticipated hydrogen and oxygen isotope ratios of carbohydrate food sources. The model was tested using isotope ratios of human hair (an omnivore) from across the USA. We discuss the application of this model as a tool for providing spatially integrated information about the quality of primary productivity relevant to mammalian herbivores over time, through the effects of varying primary productivity on protein nitrogen balance of the herbivore.

  16. Turnover of oxygen and hydrogen isotopes in the body water, CO 2, hair, and enamel of a small mammal

    NASA Astrophysics Data System (ADS)

    Podlesak, David W.; Torregrossa, Ann-Marie; Ehleringer, James R.; Dearing, M. Denise; Passey, Benjamin H.; Cerling, Thure E.

    2008-01-01

    Oxygen and hydrogen isotope signatures of animal tissues are strongly correlated with the isotope signature of local precipitation and as a result, isotope signatures of tissues are commonly used to study resource utilization and migration in animals and to reconstruct climate. To better understand the mechanisms behind these correlations, we manipulated the isotope composition of the drinking water and food supplied to captive woodrats to quantify the relationships between drinking water ( δdw), body water ( δbw), and tissue ( δt). Woodrats were fed an isotopically constant food but were supplied with isotopically depleted or enriched water. Some animals were switched between these waters, allowing simultaneous determination of body water turnover, isotope change recorded in teeth and hair, and fractional contributions of atmospheric O 2, drinking water, and food to the oxygen and hydrogen budgets of the animals. The half-life of the body water turnover was 3-6 days. A mass balance model estimated that drinking water, atmospheric O 2, and food were responsible for 56%, 30%, and 15% of the oxygen in the body water, respectively. Drinking water and food were responsible for 71% and 29% of the hydrogen in the body water, respectively. Published generalized models for lab rats and humans accurately estimated δbw, as did an updated version of a specific model for woodrats. The change in drinking water was clearly recorded in hair and tooth enamel, and multiple-pool and tooth enamel forward models closely predicted these changes in hair and enamel, respectively. Oxygen and hydrogen atoms in the drinking water strongly influence the composition of the body water and tissues such as hair and tooth enamel; however, food and atmospheric O 2 also contribute oxygen and/or hydrogen atoms to tissue. Controlled experiments allow researchers to validate models that estimate δt based on δdw and so will increase the reliability of estimates of resource utilization and climate

  17. Electrons and Hydrogen-Bond Connectivity in Liquid Water

    SciTech Connect

    Fernandez-Serra, M.V.; Artacho, Emilio

    2006-01-13

    The network connectivity in liquid water is revised in terms of electronic signatures of hydrogen bonds (HBs) instead of geometric criteria, in view of recent x-ray absorption studies. The analysis is based on ab initio molecular-dynamics simulations at ambient conditions. Even if instantaneous threadlike structures are observed in the electronic network, they continuously reshape in oscillations reminiscent of the r and t modes in ice ({tau}{approx}170 fs). However, two water molecules initially joined by a HB remain effectively bound over many periods regardless of its electronic signature.

  18. Hydrogen peroxide deposition and decomposition in rain and dew waters

    NASA Astrophysics Data System (ADS)

    Ortiz, Vicky; Angélica Rubio, M.; Lissi, Eduardo A.

    Peroxides and hydrogen peroxide were determined by a fluorometric method in dew and rain collected in the atmosphere of Santiago of Chile city. The measured peroxides comprise hydrogen peroxide (the main component) and peroxides not decomposed by catalase. The collected natural peroxides readily decompose in the natural matrix, rendering difficult an estimation of the values present in real-time. In order to establish the kinetics of the process and the factors that condition their decomposition, the kinetics of the decay at several pHs and/or the presence of metal chelators were followed. The kinetics of hydrogen peroxide decomposition in the water matrix was evaluated employing the natural peroxides or hydrogen peroxide externally added. First-order kinetics was followed, with half decay times ranging from 80 to 2300 min. The addition of Fe(II) in the micromolar range increases the decomposition rate, while lowering the pH (<3) notably reduces the rate of the process. The contribution of metals to the decomposition of the peroxides in the natural waters was confirmed by the reduction in decomposition rate elicited by its treatment with Chelex-100. Dew and rain waters were collected in pre-acidified collectors, rendering values considerably higher than those measured in non-treated collectors. This indicates that acidification can be proposed as an easy procedure to stabilize the samples, reducing its decomposition during collection time and the time elapsed between collection and analysis. The weighted average concentration for total peroxides measured in pre-treated collectors was 5.4 μM in rains and 2.2 μM in dews.

  19. Historical Doses from Tritiated Water and Tritiated Hydrogen Gas Relesed to the Atmosphere from Lawrence Livermore National Laboratory (LLNL) Part 1. Description of Tritium Dose Model (DCART) for Chronic Releases from LLNL

    SciTech Connect

    Peterson, S

    2004-06-30

    DCART (Doses from Chronic Atmospheric Releases of Tritium) is a spreadsheet model developed at Lawrence Livermore National Laboratory (LLNL) that calculates doses from inhalation of tritiated hydrogen gas (HT), inhalation and skin absorption of tritiated water (HTO), and ingestion of HTO and organically bound tritium (OBT) to adult, child (age 10), and infant (age 6 months to 1 year) from routine atmospheric releases of HT and HTO. DCART is a deterministic model that, when coupled to the risk assessment software Crystal Ball{reg_sign}, predicts doses with a 95th percentile confidence interval. The equations used by DCART are described and all distributions on parameter values are presented. DCART has been tested against the results of other models and several sets of observations in the Tritium Working Group of the International Atomic Energy Agency's Biosphere Modeling and Assessment Programme. The version of DCART described here has been modified to include parameter values and distributions specific to conditions at LLNL. In future work, DCART will be used to reconstruct dose to the hypothetical maximally exposed individual from annual routine releases of HTO and HT from all LLNL facilities and from the Sandia National Laboratory's Tritium Research Laboratory over the last fifty years.

  20. Water hydrogen bonding in proton exchange and neutral polymer membranes

    NASA Astrophysics Data System (ADS)

    Smedley, Sarah Black

    Understanding the dynamics of water sorbed into polymer films is critical to reveal structure-property relationships in membranes for energy and water treatment applications, where membranes must interact with water to facilitate or inhibit the transport of ions. The chemical structure of the polymer has drastic effects on the transport properties of the membrane due to the morphological structure of the polymer and how water is interacting with the functional groups on the polymer backbone. Therefore studying the dynamics of water adsorbed into a membrane will give insight into how water-polymer interactions influence transport properties of the film. With a better understanding of how to design materials to have specific properties, we can accelerate development of smarter materials for both energy and water treatment applications to increase efficiency and create high-flux materials and processes. The goal of this dissertation is to investigate the water-polymer interactions in proton exchange and uncharged membranes and make correlations to their charge densities and transport properties. A linear Fourier Transform Infrared (FTIR) spectroscopic method for measuring the hydrogen bonding distribution of water sorbed in proton exchange membranes is described in this thesis. The information on the distribution of the microenvironments of water in an ionic polymer is critical to understanding the effects of different acidic groups on the proton conductivity of proton exchange membranes at low relative humidity. The OD stretch of dilute HOD in H2O is a single, well-defined vibrational band. When HOD in dilute H2O is sorbed into a proton exchange membrane, the OD stretch peak shifts based on the microenvironment that water encounters within the nanophase separated structure of the material. This peak shift is a signature of different hydrogen bonding populations within the membrane, which can be deconvoluted rigorously for dilute HOD in H 2O compared to only

  1. A simple pore water hydrogen diffusion syringe sampler

    USGS Publications Warehouse

    Vroblesky, D.A.; Chapelle, F.H.; Bradley, P.M.

    2007-01-01

    Molecular hydrogen (H2) is an important intermediate product and electron donor in microbial metabolism. Concentrations of dissolved H 2 are often diagnostic of the predominant terminal electron-accepting processes in ground water systems or aquatic sediments. H2 concentrations are routinely measured in ground water monitoring wells but are rarely measured in saturated aquatic sediments due to a lack of simple and practical sampling methods. This report describes the design and development (including laboratory and field testing) of a simple, syringe-based H 2 sampler in (1) saturated, riparian sediments, (2) surface water bed sediments, and (3) packed intervals of a fractured bedrock borehole that are inaccessible by standard pumped methods. ?? 2007 National Ground Water Association.

  2. Raman Measurements of Pure Hydrogen Clathrate Formation from a Supercooled Hydrogen-Water Solution.

    PubMed

    del Rosso, Leonardo; Celli, Milva; Ulivi, Lorenzo

    2015-11-01

    The nucleation and growth of a solid clathrate hydrate from the liquid phase is a process that is even less understood and more difficult to study than the nucleation of a solid phase from a pure liquid. We have employed in situ Raman spectroscopy to study the hydrogen-water supercooled solution undergoing clathrate formation at a pressure of about 2 kbar and temperature of 263 K. Raman light scattering detects unambiguously the H2 molecules inside of clathrate crystallites, which change stoichiometry during growth. The spectral intensity of the hydrogen vibrational band shows the time evolution of the population of the large and small cages, demonstrating that, in the initial stages of clathrate formation, the occupation of the large cages is quite lower than its equilibrium value. From the measurement of the growth rate of the crystallites, we demonstrate that the growth of the clathrate in the liquid is a diffusion-limited process. PMID:26538046

  3. SOLUBILITY OF WATER ICE IN METALLIC HYDROGEN: CONSEQUENCES FOR CORE EROSION IN GAS GIANT PLANETS

    SciTech Connect

    Wilson, H. F.; Militzer, B.

    2012-01-20

    Using ab initio simulations we investigate whether water ice is stable in the cores of giant planets, or whether it dissolves into the layer of metallic hydrogen above. By Gibbs free energy calculations we find that for pressures between 10 and 40 Mbar the ice-hydrogen interface is thermodynamically unstable at temperatures above approximately 3000 K, far below the temperature of the core-mantle boundaries in Jupiter and Saturn. This implies that the dissolution of core material into the fluid layers of giant planets is thermodynamically favored, and that further modeling of the extent of core erosion is warranted.

  4. Revisions to the hydrogen gas generation computer model

    SciTech Connect

    Jerrell, J.W.

    1992-08-31

    Waste Management Technology has requested SRTC to maintain and extend a previously developed computer model, TRUGAS, which calculates hydrogen gas concentrations within the transuranic (TRU) waste drums. TRUGAS was written by Frank G. Smith using the BASIC language and is described in the report A Computer Model of gas Generation and Transport within TRU Waste Drums (DP- 1754). The computer model has been partially validated by yielding results similar to experimental data collected at SRL and LANL over a wide range of conditions. The model was created to provide the capability of predicting conditions that could potentially lead to the formation of flammable gas concentrations within drums, and to assess proposed drum venting methods. The model has served as a tool in determining how gas concentrations are affected by parameters such as filter vent sizes, waste composition, gas generation values, the number and types of enclosures, water instrusion into the drum, and curie loading. The success of the TRUGAS model has prompted an interest in the program`s maintenance and enhancement. Experimental data continues to be collected at various sites on such parameters as permeability values, packaging arrangements, filter designs, and waste contents. Information provided by this data is used to improve the accuracy of the model`s predictions. Also, several modifications to the model have been made to enlarge the scope of problems which can be analyzed. For instance, the model has been used to calculate hydrogen concentrations inside steel cabinets containing retired glove boxes (WSRC-RP-89-762). The revised TRUGAS computer model, H2GAS, is described in this report. This report summarizes all modifications made to the TRUGAS computer model and provides documentation useful for making future updates to H2GAS.

  5. Hirshfeld atom refinement for modelling strong hydrogen bonds.

    PubMed

    Woińska, Magdalena; Jayatilaka, Dylan; Spackman, Mark A; Edwards, Alison J; Dominiak, Paulina M; Woźniak, Krzysztof; Nishibori, Eiji; Sugimoto, Kunihisa; Grabowsky, Simon

    2014-09-01

    High-resolution low-temperature synchrotron X-ray diffraction data of the salt L-phenylalaninium hydrogen maleate are used to test the new automated iterative Hirshfeld atom refinement (HAR) procedure for the modelling of strong hydrogen bonds. The HAR models used present the first examples of Z' > 1 treatments in the framework of wavefunction-based refinement methods. L-Phenylalaninium hydrogen maleate exhibits several hydrogen bonds in its crystal structure, of which the shortest and the most challenging to model is the O-H...O intramolecular hydrogen bond present in the hydrogen maleate anion (O...O distance is about 2.41 Å). In particular, the reconstruction of the electron density in the hydrogen maleate moiety and the determination of hydrogen-atom properties [positions, bond distances and anisotropic displacement parameters (ADPs)] are the focus of the study. For comparison to the HAR results, different spherical (independent atom model, IAM) and aspherical (free multipole model, MM; transferable aspherical atom model, TAAM) X-ray refinement techniques as well as results from a low-temperature neutron-diffraction experiment are employed. Hydrogen-atom ADPs are furthermore compared to those derived from a TLS/rigid-body (SHADE) treatment of the X-ray structures. The reference neutron-diffraction experiment reveals a truly symmetric hydrogen bond in the hydrogen maleate anion. Only with HAR is it possible to freely refine hydrogen-atom positions and ADPs from the X-ray data, which leads to the best electron-density model and the closest agreement with the structural parameters derived from the neutron-diffraction experiment, e.g. the symmetric hydrogen position can be reproduced. The multipole-based refinement techniques (MM and TAAM) yield slightly asymmetric positions, whereas the IAM yields a significantly asymmetric position.

  6. Modeling of hydrogen sulfide oxidation in concrete corrosion products from sewer pipes.

    PubMed

    Jensen, Henriette Stokbro; Nielsen, Asbjørn Haaning; Hvitved-Jacobsen, Thorkild; Vollertsen, Jes

    2009-04-01

    Abiotic and biotic oxidation of hydrogen sulfide related to concrete corrosion was studied in corrosion products originating from a sewer manhole. The concrete corrosion products were suspended in an acidic solution, mimicking the conditions in the pore water of corroded concrete. The removal of hydrogen sulfide and dissolved oxygen was measured in parallel in the suspension, upon which the suspension was sterilized and the measurement repeated. The results revealed the biotic oxidation to be fast compared with the abiotic oxidation. The stoichiometry of the hydrogen sulfide oxidation was evaluated using the ratio between oxygen and hydrogen sulfide uptake. The ratio for the biotic oxidation pointed in the direction of elemental sulfur being formed as an intermediate in the oxidation of hydrogen sulfide to sulfuric acid. The experimental results were applied to suggest a hypothesis and a mathematical model describing the hydrogen sulfide oxidation pathway in a matrix of corroded concrete. PMID:19445325

  7. Modeling of hydrogen sulfide oxidation in concrete corrosion products from sewer pipes.

    PubMed

    Jensen, Henriette Stokbro; Nielsen, Asbjørn Haaning; Hvitved-Jacobsen, Thorkild; Vollertsen, Jes

    2009-04-01

    Abiotic and biotic oxidation of hydrogen sulfide related to concrete corrosion was studied in corrosion products originating from a sewer manhole. The concrete corrosion products were suspended in an acidic solution, mimicking the conditions in the pore water of corroded concrete. The removal of hydrogen sulfide and dissolved oxygen was measured in parallel in the suspension, upon which the suspension was sterilized and the measurement repeated. The results revealed the biotic oxidation to be fast compared with the abiotic oxidation. The stoichiometry of the hydrogen sulfide oxidation was evaluated using the ratio between oxygen and hydrogen sulfide uptake. The ratio for the biotic oxidation pointed in the direction of elemental sulfur being formed as an intermediate in the oxidation of hydrogen sulfide to sulfuric acid. The experimental results were applied to suggest a hypothesis and a mathematical model describing the hydrogen sulfide oxidation pathway in a matrix of corroded concrete.

  8. Glow discharge in hydrogen-water vapor mixture

    SciTech Connect

    Kharlov, A.V.; Grigor`ev, S.V.

    1995-12-31

    Glow discharge in hydrogen is widely used in various modifications of the ion sources for generation both H{sup +} and H{sup {minus}}. This paper is devoted to experimental investigations of plasma parameters of positive column in hydrogen and water vapor mixture. The discharge was fired between two parallel 15 mm diameter Mo electrodes with 80 mm separation in a 15 mm inner diameter quartz tube. The total gas pressure and discharge current were changed between 0.2--2 Torr and 10--30 mA respectively. The electron temperature (T{sub e}) was measured with a Langmuir probe. The excitation temperature (T{sub exc}) was estimated from the intensity ratio of the emission lines H{sub {lambda}} and H{sub {delta}}. It was measured that this temperature depends strongly on the amount of H{sub 2}O due to the vibrational collisions between electrons and H{sub 2}O molecules. When the water vapor concentration was optimal, the authors observed a significant decreasing of T{sub e} and T{sub exc} in comparison with pure hydrogen case (4--5 times).

  9. Hydrogen evolution from water through metal sulfide reactions

    SciTech Connect

    Saha, Arjun; Raghavachari, Krishnan

    2013-11-28

    Transition metal sulfides play an important catalytic role in many chemical reactions. In this work, we have conducted a careful computational study of the structures, electronic states, and reactivity of metal sulfide cluster anions M{sub 2}S{sub X}{sup −} (M = Mo and W, X = 4–6) using density functional theory. Detailed structural analysis shows that these metal sulfide anions have ground state isomers with two bridging sulfide bonds, notably different in some cases from the corresponding oxides with the same stoichiometry. The chemical reactivity of these metal sulfide anions with water has also been carried out. After a thorough search on the reactive potential energy surface, we propose several competitive, energetically favorable, reaction pathways that lead to the evolution of hydrogen. Selectivity in the initial water addition and subsequent hydrogen migration are found to be the key steps in all the proposed reaction channels. Initial adsorption of water is most favored involving a terminal metal sulfur bond in Mo{sub 2}S{sub 4}{sup −} isomers whereas the most preferred orientation for water addition involves a bridging metal sulfur bond in the case of W{sub 2}S{sub 4}{sup −} and M{sub 2}S{sub 5}{sup −} isomers. In all the lowest energy H{sub 2} elimination steps, the interacting hydrogen atoms involve a metal hydride and a metal hydroxide (or thiol) group. We have also observed a higher energy reaction channel where the interacting hydrogen atoms in the H{sub 2} elimination step involve a thiol (–SH) and a hydroxyl (–OH) group. For all the reaction pathways, the Mo sulfide reactions involve a higher barrier than the corresponding W analogues. We observe for both metals that reactions of M{sub 2}S{sub 4}{sup −} and M{sub 2}S{sub 5}{sup −} clusters with water to liberate H{sub 2} are exothermic and involve modest free energy barriers. However, the reaction of water with M{sub 2}S{sub 6}{sup −} is highly endothermic with a considerable

  10. Hydrogen production from high moisture content biomass in supercritical water

    SciTech Connect

    Antal, M.J. Jr.; Xu, X.

    1998-08-01

    By mixing wood sawdust with a corn starch gel, a viscous paste can be produced that is easily delivered to a supercritical flow reactor by means of a cement pump. Mixtures of about 10 wt% wood sawdust with 3.65 wt% starch are employed in this work, which the authors estimate to cost about $0.043 per lb. Significant reductions in feed cost can be achieved by increasing the wood sawdust loading, but such an increase may require a more complex pump. When this feed is rapidly heated in a tubular flow reactor at pressures above the critical pressure of water (22 MPa), the sawdust paste vaporizes without the formation of char. A packed bed of carbon catalyst in the reactor operating at about 650 C causes the tarry vapors to react with water, producing hydrogen, carbon dioxide, and some methane with a trace of carbon monoxide. The temperature and history of the reactor`s wall influence the hydrogen-methane product equilibrium by catalyzing the methane steam reforming reaction. The water effluent from the reactor is clean. Other biomass feedstocks, such as the waste product of biodiesel production, behave similarly. Unfortunately, sewage sludge does not evidence favorable gasification characteristics and is not a promising feedstock for supercritical water gasification.

  11. Hydrogen isotopes from source water to leaf lipid in a continental-scale sample network

    NASA Astrophysics Data System (ADS)

    Nelson, Daniel; Kahmen, Ansgar

    2015-04-01

    Sedimentary plant waxes are useful paleoclimate proxies because they are preserved in depositional settings on geologic timescales and the isotopic composition of the hydrogen in these molecules reflects that of the source water available during biosynthesis. This application is based largely on empirical calibrations that have demonstrated continental-scale correlations between source water and lipid hydrogen isotope values. However, the importance of variable net isotopic fractionation between source water and lipid for different species and environmental conditions is increasingly recognized. Isotopic enrichment of leaf water during transpiration is key among these secondary factors, and is itself sensitive to changes in hydroclimate. Leaf water enrichment also occurs prior to photosynthetic water uptake, and is therefore independent from cellular-level biomarker synthesis. Mechanistic models can predict the mean leaf water hydrogen isotope composition from readily available meteorological variables. This permits global-scale isoscape maps of leaf water isotopic composition and enrichment above source water to be generated, but these models have not been widely validated at continental spatial scales. We have established a network of twenty-one sites across Europe where we are sampling for leaf-, xylem-, and soil-water isotopes (H and O) at approximately 5-week intervals over the summer growing season. We augment the sample set with weekly to monthly precipitation samples and early- and late-season plant wax lipid samples. Collaborators at each site are conducting the sampling, and most sites are members of the FLUXNET tower network that also record high-resolution meteorological data. We present information on the implementation of the network and preliminary results from the 2014 summer season. The complete dataset will be used to track the evolution of water isotopes from source to leaf water and from leaf water to lipid hydrogen across diverse environments

  12. Revisions to the hydrogen gas generation computer model

    SciTech Connect

    Jerrell, J.W.

    1992-08-31

    Waste Management Technology has requested SRTC to maintain and extend a previously developed computer model, TRUGAS, which calculates hydrogen gas concentrations within the transuranic (TRU) waste drums. TRUGAS was written by Frank G. Smith using the BASIC language and is described in the report A Computer Model of gas Generation and Transport within TRU Waste Drums (DP- 1754). The computer model has been partially validated by yielding results similar to experimental data collected at SRL and LANL over a wide range of conditions. The model was created to provide the capability of predicting conditions that could potentially lead to the formation of flammable gas concentrations within drums, and to assess proposed drum venting methods. The model has served as a tool in determining how gas concentrations are affected by parameters such as filter vent sizes, waste composition, gas generation values, the number and types of enclosures, water instrusion into the drum, and curie loading. The success of the TRUGAS model has prompted an interest in the program's maintenance and enhancement. Experimental data continues to be collected at various sites on such parameters as permeability values, packaging arrangements, filter designs, and waste contents. Information provided by this data is used to improve the accuracy of the model's predictions. Also, several modifications to the model have been made to enlarge the scope of problems which can be analyzed. For instance, the model has been used to calculate hydrogen concentrations inside steel cabinets containing retired glove boxes (WSRC-RP-89-762). The revised TRUGAS computer model, H2GAS, is described in this report. This report summarizes all modifications made to the TRUGAS computer model and provides documentation useful for making future updates to H2GAS.

  13. A diffuse interface Lox/hydrogen transcritical flame model

    NASA Astrophysics Data System (ADS)

    Gaillard, Pierre; Giovangigli, Vincent; Matuszewski, Lionel

    2016-05-01

    We present a diffuse-interface all-pressure flame model that transitions smoothly between subcritical and supercritical conditions. The model involves a non-equilibrium liquid/gas diffuse interface of van der Waals/Korteweg type embedded into a non-ideal multicomponent reactive fluid. The multicomponent transport fluxes are evaluated in their thermodynamic form in order to avoid singularities at thermodynamic mechanical stability limits. The model also takes into account condensing liquid water in order to avoid thermodynamic chemical instabilities. The resulting equations are used to investigate the interface between cold dense and hot light oxygen as well as the structure of diffusion flames between cold dense oxygen and gaseous-like hydrogen at all pressures, either subcritical or supercritical.

  14. Hydrogen bond network topology in liquid water and methanol: a graph theory approach.

    PubMed

    Bakó, Imre; Bencsura, Akos; Hermannson, Kersti; Bálint, Szabolcs; Grósz, Tamás; Chihaia, Viorel; Oláh, Julianna

    2013-09-28

    Networks are increasingly recognized as important building blocks of various systems in nature and society. Water is known to possess an extended hydrogen bond network, in which the individual bonds are broken in the sub-picosecond range and still the network structure remains intact. We investigated and compared the topological properties of liquid water and methanol at various temperatures using concepts derived within the framework of graph and network theory (neighbour number and cycle size distribution, the distribution of local cyclic and local bonding coefficients, Laplacian spectra of the network, inverse participation ratio distribution of the eigenvalues and average localization distribution of a node) and compared them to small world and Erdős-Rényi random networks. Various characteristic properties (e.g. the local cyclic and bonding coefficients) of the network in liquid water could be reproduced by small world and/or Erdős-Rényi networks, but the ring size distribution of water is unique and none of the studied graph models could describe it. Using the inverse participation ratio of the Laplacian eigenvectors we characterized the network inhomogeneities found in water and showed that similar phenomena can be observed in Erdős-Rényi and small world graphs. We demonstrated that the topological properties of the hydrogen bond network found in liquid water systematically change with the temperature and that increasing temperature leads to a broader ring size distribution. We applied the studied topological indices to the network of water molecules with four hydrogen bonds, and showed that at low temperature (250 K) these molecules form a percolated or nearly-percolated network, while at ambient or high temperatures only small clusters of four-hydrogen bonded water molecules exist.

  15. Hydrogen-burn survival: preliminary thermal model and test results

    SciTech Connect

    McCulloch, W.H.; Ratzel, A.C.; Kempka, S.N.; Furgal, D.T.; Aragon, J.J.

    1982-08-01

    This report documents preliminary Hydrogen Burn Survival (HBS) Program experimental and analytical work conducted through February 1982. The effects of hydrogen deflagrations on safety-related equipment in nuclear power plant containment buildings are considered. Preliminary results from hydrogen deflagration experiments in the Sandia Variable Geometry Experimental System (VGES) are presented and analytical predictions for these tests are compared and discussed. Analytical estimates of component thermal responses to hydrogen deflagrations in the upper and lower compartments of an ice condenser, pressurized water reactor are also presented.

  16. Protein hydrogen exchange: Testing current models

    PubMed Central

    Skinner, John J; Lim, Woon K; Bédard, Sabrina; Black, Ben E; Englander, S Walter

    2012-01-01

    To investigate the determinants of protein hydrogen exchange (HX), HX rates of most of the backbone amide hydrogens of Staphylococcal nuclease were measured by NMR methods. A modified analysis was used to improve accuracy for the faster hydrogens. HX rates of both near surface and well buried hydrogens are spread over more than 7 orders of magnitude. These results were compared with previous hypotheses for HX rate determination. Contrary to a common assumption, proximity to the surface of the native protein does not usually produce fast exchange. The slow HX rates for unprotected surface hydrogens are not well explained by local electrostatic field. The ability of buried hydrogens to exchange is not explained by a solvent penetration mechanism. The exchange rates of structurally protected hydrogens are not well predicted by algorithms that depend only on local interactions or only on transient unfolding reactions. These observations identify some of the present difficulties of HX rate prediction and suggest the need for returning to a detailed hydrogen by hydrogen analysis to examine the bases of structure-rate relationships, as described in the companion paper (Skinner et al., Protein Sci 2012;21:996–1005). PMID:22544567

  17. Modeling Neutral Hydrogen in the Heliospheric Interface

    NASA Astrophysics Data System (ADS)

    Heerikhuisen, Jacob; Pogorelov, Nikolai; Brand, Pontus

    2010-03-01

    Observational data of neutral atoms provides us with a 1 AU picture of the neutral atom flux in the heliosphere. The large mean free paths of neutrals allow us to infer properties of their distant source, as well as the properties of the intermediary medium. Energetic neutral hydrogen, for example, travels on almost straight trajectories, so that the particles observed coming from a particular direction were created from energetic protons along that line of sight. Similarly, low energy interstellar atoms are attenuated and deflected as they enter the heliosphere, and this deflection tells us something about the structure of the heliospheric interface. Of course, to infer quantitative features of the global heliosphere from neutral atom observations at 1 AU, we need accurate models that capture the 3D structure of the heliosphere. In this paper we present our MHD-plasma/kinetic-neutral model of the heliospheric interface that uses a Lorentzian distribution function to approximate a suprathermal tail on the solar wind proton distribution due to pick-up ions. We investigate the effect the k parameter of the Lorentzian function has on the overall solution and the flux of energetic neutral atoms (ENAs). ENA fluxes are also compared to ``pre-IBEX'' spacecraft data.

  18. Hydration and hydrogen bond network of water around hydrophobic surface investigated by terahertz spectroscopy.

    PubMed

    Shiraga, K; Suzuki, T; Kondo, N; Ogawa, Y

    2014-12-21

    Water conformation around hydrophobic side chains of four amino acids (glycine, L-alanine, L-aminobutyric acid, and L-norvaline) was investigated via changes in complex dielectric constant in the terahertz (THz) region. Each of these amino acids has the same hydrophilic backbone, with successive additions of hydrophobic straight methylene groups (-CH2-) to the side chain. Changes in the degree of hydration (number of dynamically retarded water molecules relative to bulk water) and the structural conformation of the water hydrogen bond (HB) network related to the number of methylene groups were quantitatively measured. Since dielectric responses in the THz region represent water relaxations and water HB vibrations at a sub-picosecond and picosecond timescale, these measurements characterized the water relaxations and HB vibrations perturbed by the methylene apolar groups. We found each successive straight -CH2- group on the side chain restrained approximately two hydrophobic hydration water molecules. Additionally, the number of non-hydrogen-bonded (NHB) water molecules increased slightly around these hydrophobic side chains. The latter result seems to contradict the iceberg model proposed by Frank and Evans, where water molecules are said to be more ordered around apolar surfaces. Furthermore, we compared the water-hydrophilic interactions of the hydrophilic amino acid backbone with those with the water-hydrophobic interactions around the side chains. As the hydrophobicity of the side chain increased, the ordering of the surrounding water HB network was altered from that surrounding the hydrophilic amino acid backbone, thereby diminishing the fraction of NHB water and ordering the surrounding tetrahedral water HB network.

  19. Hydration and hydrogen bond network of water around hydrophobic surface investigated by terahertz spectroscopy

    NASA Astrophysics Data System (ADS)

    Shiraga, K.; Suzuki, T.; Kondo, N.; Ogawa, Y.

    2014-12-01

    Water conformation around hydrophobic side chains of four amino acids (glycine, L-alanine, L-aminobutyric acid, and L-norvaline) was investigated via changes in complex dielectric constant in the terahertz (THz) region. Each of these amino acids has the same hydrophilic backbone, with successive additions of hydrophobic straight methylene groups (-CH2-) to the side chain. Changes in the degree of hydration (number of dynamically retarded water molecules relative to bulk water) and the structural conformation of the water hydrogen bond (HB) network related to the number of methylene groups were quantitatively measured. Since dielectric responses in the THz region represent water relaxations and water HB vibrations at a sub-picosecond and picosecond timescale, these measurements characterized the water relaxations and HB vibrations perturbed by the methylene apolar groups. We found each successive straight -CH2- group on the side chain restrained approximately two hydrophobic hydration water molecules. Additionally, the number of non-hydrogen-bonded (NHB) water molecules increased slightly around these hydrophobic side chains. The latter result seems to contradict the iceberg model proposed by Frank and Evans, where water molecules are said to be more ordered around apolar surfaces. Furthermore, we compared the water-hydrophilic interactions of the hydrophilic amino acid backbone with those with the water-hydrophobic interactions around the side chains. As the hydrophobicity of the side chain increased, the ordering of the surrounding water HB network was altered from that surrounding the hydrophilic amino acid backbone, thereby diminishing the fraction of NHB water and ordering the surrounding tetrahedral water HB network.

  20. The hydrogen futures simulation model (H2Sim) user's guide.

    SciTech Connect

    Kamery, William; Baker, Arnold Barry; Drennen, Thomas E.; Rosthal, Jennifer Elizabeth

    2004-11-01

    The Hydrogen Futures Simulation Model (H{sub 2}Sim) is a high level, internally consistent, strategic tool for exploring the options of a hydrogen economy. Once the user understands how to use the basic functions, H{sub 2}Sim can be used to examine a wide variety of scenarios, such as testing different options for the hydrogen pathway, altering key assumptions regarding hydrogen production, storage, transportation, and end use costs, and determining the effectiveness of various options on carbon mitigation. This User's Guide explains how to run the model for the first time user.

  1. Water formation at low temperatures by surface O2 hydrogenation II: The reaction network.

    PubMed

    Cuppen, H M; Ioppolo, S; Romanzin, C; Linnartz, H

    2010-10-14

    Water is abundantly present in the Universe. It is the main component of interstellar ice mantles and a key ingredient for life. Water in space is mainly formed through surface reactions. Three formation routes have been proposed in the past: hydrogenation of surface O, O(2), and O(3). In a previous paper [Ioppolo et al., Astrophys. J., 2008, 686, 1474] we discussed an unexpected non-standard zeroth-order H(2)O(2) production behaviour in O(2) hydrogenation experiments, which suggests that the proposed reaction network is not complete, and that the reaction channels are probably more interconnected than previously thought. In this paper we aim to derive the full reaction scheme for O(2) surface hydrogenation and to constrain the rates of the individual reactions. This is achieved through simultaneous H-atom and O(2) deposition under ultra-high vacuum conditions for astronomically relevant temperatures. Different H/O(2) ratios are used to trace different stages in the hydrogenation network. The chemical changes in the forming ice are followed by means of reflection absorption infrared spectroscopy (RAIRS). New reaction paths are revealed as compared to previous experiments. Several reaction steps prove to be much more efficient (H + O(2)) or less efficient (H + OH and H(2) + OH) than originally thought. These are the main conclusions of this work and the extended network concluded here will have profound implications for models that describe the formation of water in space.

  2. Method for simultaneous recovery of hydrogen from water and from hydrocarbons

    DOEpatents

    Willms, R. Scott

    1996-01-01

    Method for simultaneous recovery of hydrogen and hydrogen isotopes from water and from hydrocarbons. A palladium membrane, when utilized in cooperation with a nickel catalyst in a reactor, has been found to drive reactions such as water gas shift, steam reforming and methane cracking to substantial completion by removing the product hydrogen from the reacting mixture. In addition, ultrapure hydrogen is produced, thereby eliminating the need for an additional processing step.

  3. The chemistry of subcritical water reactions of a hardwood derived lignin and lignin model compounds with nitrogen, hydrogen, carbon monoxide and carbon dioxide

    NASA Astrophysics Data System (ADS)

    Hill Bembenic, Meredith A.

    Biofuels, like cellulosic ethanol, may only be cost effective if the lignin byproduct is upgraded to value-added products. However, lignin's inherent aromatic structure and interunit crosslinkages hinder effective conversion. High temperature H2O is considered for lignin conversion, because H2O exhibits unusual properties at higher temperatures (particularly at its supercritical point of 374°C and 3205 psi) including a decreased ion product and a decreased static dielectric constant (similar to those of polar organic solvents at room temperature) such that there is a high solubility for organic compounds, like lignin. Much of the research concerning lignin and supercritical H2O has focused on further decomposition to gases (e.g., H2, CH4, and CO2) where nearly no char formation is expected in the presence of a catalyst. However, the conditions required for supercritical H2O are difficult to maintain, catalysts can be expensive, and gases are not favorable to the current liquid fuel infrastructure. Reactions using Organosolv lignin, subcritical H2O (365°C) and various industrial gases (N2, H2, CO, and CO2 at an initial pressure of 500 psi) for 30 min. were examined to determine both lignin's potential to generate value-added products (e.g., monomer compounds and methanol) and the role (if any) of the H2O and the gases during the reactions. The behavior of H2O at reaction temperature and pressure is expected to be similar to the behavior of supercritical H 2O without the need to maintain supercritical conditions. Different characterization techniques were used for the products collected including primarily GC/FID-TCD of the evolved gases, GC/MS analysis of the organic liquids, solid phase microextraction analysis of the water, and solid state 13C-NMR analysis of the residues. The reactor pressure at temperature was shown to influence the reactivity of the H2O and lignin, and the highest conversions (≈54--62%) were obtained when adding a gas. However, the

  4. Physiological water model development

    NASA Technical Reports Server (NTRS)

    Doty, Susan

    1993-01-01

    The water of the human body can be categorized as existing in two main compartments: intracellular water and extracellular water. The intracellular water consists of all the water within the cells and constitutes over half of the total body water. Since red blood cells are surrounded by plasma, and all other cells are surrounded by interstitial fluid, the intracellular compartment has been subdivided to represent these two cell types. The extracellular water, which includes all of the fluid outside of the cells, can be further subdivided into compartments which represent the interstitial fluid, circulating blood plasma, lymph, and transcellular water. The interstitial fluid surrounds cells outside of the vascular system whereas plasma is contained within the blood vessels. Avascular tissues such as dense connective tissue and cartilage contain interstitial water which slowly equilibrates with tracers used to determine extracellular fluid volume. For this reason, additional compartments are sometimes used to represent these avascular tissues. The average size of each compartment, in terms of percent body weight, has been determined for adult males and females. These compartments and the forces which cause flow between them are presented. The kidneys, a main compartment, receive about 25 percent of the cardiac output and filters out a fluid similar to plasma. The composition of this filtered fluid changes as it flows through the kidney tubules since compounds are continually being secreted and reabsorbed. Through this mechanism, the kidneys eliminate wastes while conserving body water, electrolytes, and metabolites. Since sodium accounts for over 90 percent of the cations in the extracellular fluid, and the number of cations is balanced by the number of anions, considering the renal handling sodium and water only should sufficiently describe the relationship between the plasma compartment and kidneys. A kidney function model is presented which has been adapted from a

  5. Supercomputer modeling of hydrogen combustion in rocket engines

    NASA Astrophysics Data System (ADS)

    Betelin, V. B.; Nikitin, V. F.; Altukhov, D. I.; Dushin, V. R.; Koo, Jaye

    2013-08-01

    Hydrogen being an ecological fuel is very attractive now for rocket engines designers. However, peculiarities of hydrogen combustion kinetics, the presence of zones of inverse dependence of reaction rate on pressure, etc. prevents from using hydrogen engines in all stages not being supported by other types of engines, which often brings the ecological gains back to zero from using hydrogen. Computer aided design of new effective and clean hydrogen engines needs mathematical tools for supercomputer modeling of hydrogen-oxygen components mixing and combustion in rocket engines. The paper presents the results of developing verification and validation of mathematical model making it possible to simulate unsteady processes of ignition and combustion in rocket engines.

  6. The chemistry of subcritical water reactions of a hardwood derived lignin and lignin model compounds with nitrogen, hydrogen, carbon monoxide and carbon dioxide

    NASA Astrophysics Data System (ADS)

    Hill Bembenic, Meredith A.

    Biofuels, like cellulosic ethanol, may only be cost effective if the lignin byproduct is upgraded to value-added products. However, lignin's inherent aromatic structure and interunit crosslinkages hinder effective conversion. High temperature H2O is considered for lignin conversion, because H2O exhibits unusual properties at higher temperatures (particularly at its supercritical point of 374°C and 3205 psi) including a decreased ion product and a decreased static dielectric constant (similar to those of polar organic solvents at room temperature) such that there is a high solubility for organic compounds, like lignin. Much of the research concerning lignin and supercritical H2O has focused on further decomposition to gases (e.g., H2, CH4, and CO2) where nearly no char formation is expected in the presence of a catalyst. However, the conditions required for supercritical H2O are difficult to maintain, catalysts can be expensive, and gases are not favorable to the current liquid fuel infrastructure. Reactions using Organosolv lignin, subcritical H2O (365°C) and various industrial gases (N2, H2, CO, and CO2 at an initial pressure of 500 psi) for 30 min. were examined to determine both lignin's potential to generate value-added products (e.g., monomer compounds and methanol) and the role (if any) of the H2O and the gases during the reactions. The behavior of H2O at reaction temperature and pressure is expected to be similar to the behavior of supercritical H 2O without the need to maintain supercritical conditions. Different characterization techniques were used for the products collected including primarily GC/FID-TCD of the evolved gases, GC/MS analysis of the organic liquids, solid phase microextraction analysis of the water, and solid state 13C-NMR analysis of the residues. The reactor pressure at temperature was shown to influence the reactivity of the H2O and lignin, and the highest conversions (≈54--62%) were obtained when adding a gas. However, the

  7. Water hydrogen bonding in proton exchange and neutral polymer membranes

    NASA Astrophysics Data System (ADS)

    Smedley, Sarah Black

    Understanding the dynamics of water sorbed into polymer films is critical to reveal structure-property relationships in membranes for energy and water treatment applications, where membranes must interact with water to facilitate or inhibit the transport of ions. The chemical structure of the polymer has drastic effects on the transport properties of the membrane due to the morphological structure of the polymer and how water is interacting with the functional groups on the polymer backbone. Therefore studying the dynamics of water adsorbed into a membrane will give insight into how water-polymer interactions influence transport properties of the film. With a better understanding of how to design materials to have specific properties, we can accelerate development of smarter materials for both energy and water treatment applications to increase efficiency and create high-flux materials and processes. The goal of this dissertation is to investigate the water-polymer interactions in proton exchange and uncharged membranes and make correlations to their charge densities and transport properties. A linear Fourier Transform Infrared (FTIR) spectroscopic method for measuring the hydrogen bonding distribution of water sorbed in proton exchange membranes is described in this thesis. The information on the distribution of the microenvironments of water in an ionic polymer is critical to understanding the effects of different acidic groups on the proton conductivity of proton exchange membranes at low relative humidity. The OD stretch of dilute HOD in H2O is a single, well-defined vibrational band. When HOD in dilute H2O is sorbed into a proton exchange membrane, the OD stretch peak shifts based on the microenvironment that water encounters within the nanophase separated structure of the material. This peak shift is a signature of different hydrogen bonding populations within the membrane, which can be deconvoluted rigorously for dilute HOD in H 2O compared to only

  8. WATER-GAS SHIFT WITH INTEGRATED HYDROGEN SEPARATION

    SciTech Connect

    Maria Flytzani-Stephanopoulos; Jerry Meldon; Xiaomei Qi

    2001-12-01

    Optimization of the water-gas shift (WGS) reaction system for hydrogen production for fuel cells is of particular interest to the energy industry. To this end, it is desirable to couple the WGS reaction to hydrogen separation using a semi-permeable membrane, with both processes carried out at high temperature to improve reaction kinetics. Reduced equilibrium conversion of the WGS reaction at high temperatures is overcome by product H{sub 2} removal via the membrane. This project involves fundamental research and development of novel cerium oxide-based catalysts for the water-gas-shift reaction and the integration of these catalysts with Pd-alloy H{sub 2}-separation membranes supplying high purity hydrogen for fuel cell use. Conditions matching the requirements of coal gasifier-exit gas streams will be examined in the project. In the first year of the project, we prepared a series of nanostructured Cu- and Fe-containing ceria catalysts by a special gelation/precipitation technique followed by air calcination at 650 C. Each sample was characterized by ICP for elemental composition analysis, BET-N2 desorption for surface area measurement, and by temperature-programmed reduction in H{sub 2} to evaluate catalyst reducibility. Screening WGS tests with catalyst powders were conducted in a flow microreactor at temperatures in the range of 200-550 C. On the basis of both activity and stability of catalysts in simulated coal gas, and in CO{sub 2}-rich gases, a Cu-CeO{sub 2} catalyst formulation was selected for further study in this project. Details from the catalyst development and testing work are given in this report. Also in this report, we present H{sub 2} permeation data collected with unsupported flat membranes of pure Pd and Pd-alloys over a wide temperature window.

  9. Hydrogen bonding in the ethanol-water dimer.

    PubMed

    Finneran, Ian A; Carroll, P Brandon; Allodi, Marco A; Blake, Geoffrey A

    2015-10-01

    We report the first rotational spectrum of the ground state of the isolated ethanol-water dimer using chirped-pulse Fourier transform microwave spectroscopy between 8-18 GHz. With the aid of isotopic substitutions, and ab initio calculations, we identify the measured conformer as a water-donor/ethanol-acceptor structure. Ethanol is found to be in the gauche conformation, while the monomer distances and orientations likely reflect a cooperation between the strong (O-HO) and weak (C-HO) hydrogen bonds that stabilizes the measured conformer. No other conformers were assigned in an argon expansion, confirming that this is the ground-state structure. This result is consistent with previous vibrationally-resolved Raman and infrared work, but sheds additional light on the structure, due to the specificity of rotational spectroscopy.

  10. Changes of Water Hydrogen Bond Network with Different Externalities

    PubMed Central

    Zhao, Lin; Ma, Kai; Yang, Zi

    2015-01-01

    It is crucial to uncover the mystery of water cluster and structural motif to have an insight into the abundant anomalies bound to water. In this context, the analysis of influence factors is an alternative way to shed light on the nature of water clusters. Water structure has been tentatively explained within different frameworks of structural models. Based on comprehensive analysis and summary of the studies on the response of water to four externalities (i.e., temperature, pressure, solutes and external fields), the changing trends of water structure and a deduced intrinsic structural motif are put forward in this work. The variations in physicochemical and biological effects of water induced by each externality are also discussed to emphasize the role of water in our daily life. On this basis, the underlying problems that need to be further studied are formulated by pointing out the limitations attached to current study techniques and to outline prominent studies that have come up recently. PMID:25884333

  11. Hydrogen Stark broadening by different kinds of model microfields

    NASA Astrophysics Data System (ADS)

    Seidel, J.

    1980-07-01

    A new model microfield is defined (the theta process) which in conjunction with the kangaroo process, is used to demonstrate the effects of different model microfields on hydrogen line profiles. The differences in the statistical features of the models give an estimate of the uncertainties associated with the method of model microfields. Stark broadening of hydrogen Lyman lines by either electrons or ions is investigated specifically.

  12. Technical support for the hydrogen control requirement for the EPRI advanced light water reactor requirements document

    SciTech Connect

    Plys, M.G.

    1988-01-01

    Hydrogen could be a significant contributor to severe-accident risk if hydrogen generation and combustion were to lead to containment failure and resulting release of fission products. To eliminate hydrogen as a significant risk contributor for advanced light water reactors (ALWRs), the Electric Power Research Institute (EPRI) ALWR requirements document has imposed a hydrogen control requirement. This requirement specifies an upper limit of 13 dry vol% for the allowable hydrogen concentration in containment. The requirement also considers hydrogen generation during severe accidents and states an upper bound on the hydrogen source equivalent to that generated by oxidizing 75% of the active cladding (commonly stated as 75% metal/water reaction (MWR)). The purpose of this paper is to technically support and substantiate the EPRI ALWR hydrogen requirement. The current understanding of hydrogen generation and combustion is evaluated as it applies to reactor systems, and it is concluded that both experimental results and analytical methods provide a sound technical basis for the requirement.

  13. Separation characteristics of multistage water/hydrogen exchange column for water detritiation in fusion reactors

    SciTech Connect

    Yamanishi, T.; Okuno, K.

    1995-10-01

    A simulation code of multistage chemical exchange columns has been developed. The sieve trays for liquid-vapor scrubbing and the catalyst beds for vapor-hydrogen exchange reactions are alternately piled within the column. The code deals with all the twelve molecular species of hydrogen gas and water; and is based on the Newton-Raphson method. The characteristics of the column were discussed from the calculated results by this code such as effects of temperature and pressure. Similar to the distillation columns, the phase flow rates within the column (hydrogen gas and water vapor) and product flow rates have large effects on the separation performance of the column. A control method of the column was also proposed from these calculated results. 9 refs., 5 figs., 4 tabs.

  14. Hydrogen production by water dissociation using ceramic membranes - annual report for FY 2010.

    SciTech Connect

    Balachandran, U.; Dorris, S. E.; Emerson, J. E.; Lee, T. H.; Lu, Y.; Park, C. Y.; Picciolo, J. J.

    2011-03-14

    The objective of this project is to develop dense ceramic membranes that can produce hydrogen via coal/coal gas-assisted water dissociation without using an external power supply or circuitry. This project grew from an effort to develop a dense ceramic membrane for separating hydrogen from gas mixtures such as those generated during coal gasification, methane partial oxidation, and water-gas shift reactions. That effort led to the development of various cermet (i.e., ceramic/metal composite) membranes that enable hydrogen production by two methods. In one method, a hydrogen transport membrane (HTM) selectively removes hydrogen from a gas mixture by transporting it through either a mixed protonic/electronic conductor or a hydrogen transport metal. In the other method, an oxygen transport membrane (OTM) generates hydrogen mixed with steam by removing oxygen that is generated through water splitting. This project focuses on the development of OTMs that efficiently produce hydrogen via the dissociation of water. Supercritical boilers offer very high-pressure steam that can be decomposed to provide pure hydrogen using OTMs. Oxygen resulting from the dissociation of steam can be used for coal gasification, enriched combustion, or synthesis gas production. Hydrogen and sequestration-ready CO{sub 2} can be produced from coal and steam by using the membrane being developed in this project. Although hydrogen can also be generated by high-temperature steam electrolysis, producing hydrogen by water splitting with a mixed-conducting membrane requires no electric power or electrical circuitry.

  15. Hydrogen production by water dissociation using ceramic membranes. Annual report for FY 2009.

    SciTech Connect

    Balachandran, U.; Dorris, S. E.; Emerson, J. E.; Lee, T. H.; Lu, Y.; Park, C. Y.; Picciolo, J. J.; Energy Systems

    2010-04-20

    The objective of this project is to develop dense ceramic membranes that can produce hydrogen via coal/coal gas-assisted water dissociation without using an external power supply or circuitry. This project grew from an effort to develop a dense ceramic membrane for separating hydrogen from gas mixtures such as those generated during coal gasification, methane partial oxidation, and water-gas shift reactions. That effort led to the development of various cermet (i.e., ceramic/metal composite) membranes that enable hydrogen production by two methods. In one method, a hydrogen transport membrane selectively removes hydrogen from a gas mixture by transporting it through either a mixed protonic/electronic conductor or a hydrogen transport metal. In the other method, an oxygen transport membrane (OTM) generates hydrogen mixed with steam by removing oxygen that is generated through water splitting. This project focuses on the development of OTMs that efficiently produce hydrogen via the dissociation of water. Supercritical boilers offer very high-pressure steam that can be decomposed to provide pure hydrogen by means of OTMs. Oxygen resulting from the dissociation of steam can be used for coal gasification, enriched combustion, or synthesis gas production. Hydrogen and sequestration-ready CO{sub 2} can be produced from coal and steam by using the membrane being developed in this project. Although hydrogen can also be generated by high-temperature steam electrolysis, producing hydrogen by water splitting with a mixed-conducting membrane requires no electric power or electrical circuitry.

  16. Hydrogen production by water dissociation using ceramic membranes - annual report for FY 2008.

    SciTech Connect

    Balachandran, U.; Dorris, S. E.; Emerson, J. E.; Lee, T. H.; Lu, Y.; Park, C. Y.; Picciolo, J. J.; Energy Systems

    2009-03-25

    The objective of this project is to develop dense ceramic membranes that, without using an external power supply or circuitry, can produce hydrogen via coal/coal gas-assisted water dissociation. This project grew from an effort to develop a dense ceramic membrane for separating hydrogen from gas mixtures such as those generated during coal gasification, methane partial oxidation, and water-gas shift reactions. That effort led to the development of various cermet (i.e., ceramic/metal composite) membranes that enable hydrogen production by two methods. In one method, a hydrogen transport membrane (HTM) selectively removes hydrogen from a gas mixture by transporting it through either a mixed protonic/electronic conductor or a hydrogen transport metal. In the other method, an oxygen transport membrane (OTM) generates hydrogen mixed with steam by removing oxygen that is generated through water splitting. This project focuses on the development of OTMs that efficiently produce hydrogen via the dissociation of water. Supercritical boilers offer very high-pressure steam that can be decomposed to provide pure hydrogen by means of OTMs. Oxygen resulting from the dissociation of steam can be used for coal gasification, enriched combustion, or synthesis gas production. Hydrogen and sequestration-ready CO{sub 2} can be produced from coal and steam by using the membrane being developed in this project. Although hydrogen can also be generated by high-temperature steam electrolysis, producing hydrogen by water splitting with a mixed-conducting membrane requires no electric power or electrical circuitry.

  17. Consumption of hydrogen water reduces paraquat-induced acute lung injury in rats.

    PubMed

    Liu, Shulin; Liu, Kan; Sun, Qiang; Liu, Wenwu; Xu, Weigang; Denoble, Petar; Tao, Hengyi; Sun, Xuejun

    2011-01-01

    Exposure to paraquat leads to acute lung injury and oxidative stress is widely accepted as a contributor to paraquat-induced acute lung injury. Recent studies have reported that consumption of water with dissolved molecular hydrogen to a saturated level (hydrogen water) prevents oxidative stress-induced diseases. Here, we investigated whether consumption of saturated hydrogen saline protects rats against paraquat-induced acute lung injury. Adult male Sprague-Dawley (SD) rats were randomly divided into four groups: Control group; hydrogen water-only group (HW group); paraquat-only group (PQ group); paraquat and hydrogen water group (PQ + HW group). The rats in control group and HW group drank pure water or hydrogen water; the rats in PQ group and PQ + HW group were intraperitonealy injected with paraquat (35 mg/kg) and then provided pure water or hydrogen water. Both biochemical and histological lung alterations were measured. The results showed that hydrogen water ameliorated these alterations, demonstrating that hydrogen water alleviated paraquat-induced acute lung injury possibly by inhibition of oxidative damage. PMID:21318114

  18. Oxygen and hydrogen isotope signatures of Northeast Atlantic water masses

    NASA Astrophysics Data System (ADS)

    Voelker, Antje H. L.; Colman, Albert; Olack, Gerard; Waniek, Joanna J.; Hodell, David

    2015-06-01

    Only a few studies have examined the variation of oxygen and hydrogen isotopes of seawater in NE Atlantic water masses, and data are especially sparse for intermediate and deep-water masses. The current study greatly expands this record with 527 δ18O values from 47 stations located throughout the mid- to low-latitude NE Atlantic. In addition, δD was analyzed in the 192 samples collected along the GEOTRACES North Atlantic Transect GA03 (GA03_e=KN199-4) and the 115 Iberia-Forams cruise samples from the western and southern Iberian margin. An intercomparison study between the two stable isotope measurement techniques (cavity ring-down laser spectroscopy and magnetic-sector isotope ratio mass spectrometry) used to analyze GA03_e samples reveals relatively good agreement for both hydrogen and oxygen isotope ratios. The surface (0-100 m) and central (100-500 m) water isotope data show the typical, evaporation related trend of increasing values equatorward with the exception for the zonal transect off Cape Blanc, NW Africa. Off Cape Blanc, surface water isotope signatures are modified by the upwelling of fresher Antarctic Intermediate Water (AAIW) that generally has isotopic values of 0.0 to 0.5‰ for δ18O and 0 to 2‰ for δD. Along the Iberian margin the Mediterranean Outflow Water (MOW) is clearly distinguished by its high δ18O (0.5-1.1‰) and δD (3-6‰) values that can be traced into the open Atlantic. Isotopic values in the NE Atlantic Deep Water (NEADW) are relatively low (δ18O: -0.1 to 0.5‰; δD: -1 to 4‰) and show a broader range than observed previously in the northern and southern convection areas. The NEADW is best observed at GA03_e Stations 5 and 7 in the central NE Atlantic basin. Antarctic Bottom Water isotope values are relatively high indicating modification of the original Antarctic source water along the flow path. The reconstructed δ18O-salinity relationship for the complete data set has a slope of 0.51, i.e., slightly steeper than the 0

  19. Hydrogen production from high-moisture content biomass in supercritical water

    SciTech Connect

    Antal, M.J. Jr.; Adschiri, T.; Ekbom, T.

    1996-10-01

    Most hydrogen is produced by steam reforming methane at elevated pressures. The goal of this research is to develop commercial processes for the catalytic steam reforming of biomass and other organic wastes at high pressures. This approach avoids the high cost of gas compression and takes advantage of the unique properties of water at high pressures. Prior to this year the authors reported the ability of carbon to catalyze the decomposition of biomass and related model compounds in supercritical water. The product gas consists of hydrogen, carbon dioxide, carbon monoxide, methane, and traces of higher hydrocarbons. During the past year the authors have: (a) developed a method to extend the catalyst life, (b) begun studies of the role of the shift reaction, (c) completed studies of carbon dioxide absorption from the product effluent by high pressure water, (d) measured the rate of carbon catalyst gasification in supercritical water, (e) discovered the pumpability of oil-biomass slurries, and (f) completed the design and begun fabrication of a flow reactor that will steam reform whole biomass feedstocks (i.e. sewage sludge) and produce a hydrogen rich synthesis gas at very high pressure (>22 MPa).

  20. Hepatic oxidoreduction-related genes are upregulated by administration of hydrogen-saturated drinking water.

    PubMed

    Nakai, Yuji; Sato, Bunpei; Ushiama, Shota; Okada, Shinji; Abe, Keiko; Arai, Soichi

    2011-01-01

    The effects of the administration of molecular hydrogen-saturated drinking water (hydrogen water) on hepatic gene expression were investigated in rats. Using DNA microarrays, 548 upregulated and 695 downregulated genes were detected in the liver after 4 weeks of administration of hydrogen water. Gene Ontology analysis revealed that genes for oxidoreduction-related proteins, including hydroxymethylglutaryl CoA reductase, were significantly enriched in the upregulated genes. PMID:21512236

  1. Development and Validation of a Model for Hydrogen Reduction of JSC-1A

    NASA Technical Reports Server (NTRS)

    Hegde, U.; Balasubramaniam, R.; Gokoglu, S.

    2009-01-01

    Hydrogen reduction of lunar regolith has been proposed as a viable technology for oxygen production on the moon. Hydrogen reduces FeO present in the lunar regolith to form metallic iron and water. The water may be electrolyzed to recycle the hydrogen and produce oxygen. Depending upon the regolith composition, FeO may be bound to TiO2 as ilmenite or it may be dispersed in glassy substrates. Some testing of hydrogen reduction has been conducted with Apollo-returned lunar regolith samples. However, due to the restricted amount of lunar material available for testing, detailed understanding and modeling of the reduction process in regolith have not yet been developed. As a step in this direction, hydrogen reduction studies have been carried out in more detail with lunar regolith simulants such as JSC-1A by NASA and other organizations. While JSC-1A has some similarities with lunar regolith, it does not duplicate the wide variety of regolith types on the moon, for example, it contains almost no ilmenite. Nonetheless, it is a good starting point for developing an understanding of the hydrogen reduction process with regolith-like material. In this paper, a model utilizing a shrinking core formulation coupled with the reactor flow is described and validated against experimental data on hydrogen reduction of JSC-1A.

  2. EXPERIMENTAL EVIDENCE FOR WATER FORMATION VIA OZONE HYDROGENATION ON DUST GRAINS AT 10 K

    SciTech Connect

    Mokrane, H.; Chaabouni, H.; Accolla, M.; Congiu, E.; Dulieu, F.; Chehrouri, M.; Lemaire, J. L.

    2009-11-10

    The formation of water molecules from the reaction between ozone (O{sub 3}) and D-atoms is studied experimentally for the first time. Ozone is deposited on non-porous amorphous solid water ice (H{sub 2}O), and D-atoms are then sent onto the sample held at 10 K. HDO molecules are detected during the desorption of the whole substrate where isotope mixing takes place, indicating that water synthesis has occurred. The efficiency of water formation via hydrogenation of ozone is of the same order of magnitude as that found for reactions involving O-atoms or O{sub 2} molecules and exhibits no apparent activation barrier. These experiments validate the assumption made by models using ozone as one of the precursors of water formation via solid-state chemistry on interstellar dust grains.

  3. Polymer formulation for removing hydrogen and liquid water from an enclosed space

    DOEpatents

    Shepodd, Timothy J.

    2006-02-21

    This invention describes a solution to the particular problem of liquid water formation in hydrogen getters exposed to quantities of oxygen. Water formation is usually desired because the recombination reaction removes hydrogen without affecting gettering capacity and the oxygen removal reduces the chances for a hydrogen explosion once free oxygen is essentially removed. The present invention describes a getter incorporating a polyacrylate compound that can absorb up to 500% of its own weight in liquid water without significantly affecting its hydrogen gettering/recombination properties, but that also is insensitive to water vapor.

  4. Surface Water Response Modeling

    EPA Science Inventory

    During response to spills, or for facility planning, the vulnerability of downstream water resources is a major concern. How long and at what concentration do spilled contaminants reach downstream receptors? Models have the potential to answer these questions, but only if they ...

  5. Nano-ferrites for Water Splitting: Unprecedented High Photocatalytic Hydrogen Production under Visible Light

    EPA Science Inventory

    In the present investigation, hydrogen production via water splitting by nano ferrites has been studied using ethanol as the sacrificial donor. The nano ferrite has shown great potential in hydrogen generation with hydrogen yield of 8275 9moles/h/ g of photocatalyst under visible...

  6. Solar hydrogen by thermochemical water splitting cycles: design, modeling, and demonstration of a novel receiver/reactor for the high temperature decomposition of zno using concentrated sunlight

    NASA Astrophysics Data System (ADS)

    Kaiser, Zachary David Epping

    Documenting the presence of rare bat species can be difficult. The current summer survey protocol for the federally endangered Indiana bat ( Myotis sodalis) requires passive acoustic sampling with directional microphones (e.g., Anabats), but there are still questions about best practices for choosing survey sites and appropriate detector models. Indiana bats are capable of foraging in an array of cover types, including structurally-complex, interior forests. Further, data acquisition among different commercially available bat detectors is likely highly variable, due to the use of proprietary microphones with different frequency responses, sensitivities, and directionality. We paired omnidirectional Wildlife Acoustic SM2BAT+ (SM2) and directional Titley Scientific Anabat SD2 (Anabat) detectors at 71 random points near Indianapolis, Indiana from May-August 2012-2013 to compare data acquisition by phonic group (low, mid, Myotis) and to determine what factors affect probability of detection and site occupancy for Indiana bats when sampling with acoustics near an active maternity colony (0.20--8.39 km away). Weatherproofing for Anabat microphones was 45° angle PVC tubes and for SM2 microphones was their foam shielding; microphones were paired at 2 m and 5 m heights. Habitat and landscape covariates were measured in the field or via ArcGIS. We adjusted file parameters to make SM2 and Anabat data comparable. Files were identified using Bat Call ID software, with visual inspection of Indiana bat calls. The effects of detector type, phonic group, height, and their interactions on mean files recorded per site were assessed using generalized estimating equations and LSD pairwise comparisons. We reduced probability of detection (p) and site occupancy (ψ) model covariates with Pearson's correlation and PCA. We used Presence 6.1 software and Akaike's Information Criteria to assess models for p and ψ. Anabats and SM2s did not perform equally. Anabats recorded more low and

  7. Hydrogen Tunneling in Enzymes and Biomimetic Models

    SciTech Connect

    Layfield, Joshua P.; Hammes-Schiffer, Sharon

    2013-12-20

    Hydrogen transfer reactions play an important role throughout chemistry and biology. In general, hydrogen transfer reactions encompass proton and hydride transfer, which are associated with the transfer of a positively or negatively charged species, respectively, and proton-coupled electron transfer (PCET), which corresponds to the net transfer of one electron and one proton in the simplest case. Such PCET reactions can occur by either a sequential mechanism, in which the proton or electron transfers first, or a concerted mechanism, in which the electron and proton transfer in a single kinetic step with no stable intermediate. Furthermore, concerted PCET reactions can be subdivided into hydrogen atom transfer (HAT), which corresponds to the transfer of an electron and proton between the same donor and acceptor (i.e., the transfer of a predominantly neutral species), and electron-proton transfer (EPT), which corresponds to the transfer of an electron and proton between different donors and acceptors, possibly even in different directions. In all of these types of hydrogen transfer reactions, hydrogen tunneling could potentially play a signficant role. The theoretical development portion of this Review was supported by the National Science Foundation under CHE-10-57875. The biological portion of this Review was funded by NIH Grant No. GM056207. The biomimetic portion was supported as part of the Center for Molecular Electro-catalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences.

  8. Hydrogen Tunneling in Enzymes and Biomimetic Models

    SciTech Connect

    Layfield, Joshua P.; Hammes-Schiffer, Sharon

    2014-04-09

    Hydrogen transfer reactions play an important role throughout chemistry and biology. In general, hydrogen transfer reactions encompass proton and hydride transfer, which are associated with the transfer of a positively or negatively charged species, respectively, and proton-coupled electron transfer (PCET), which corresponds to the net transfer of one electron and one proton in the simplest case. Such PCET reactions can occur by either a sequential mechanism, in which the proton or electron transfers first, or a concerted mechanism, in which the electron and proton transfer in a single kinetic step with no stable intermediate. Furthermore, concerted PCET reactions can be subdivided into hydrogen atom transfer (HAT), which corresponds to the transfer of an electron and proton between the same donor and acceptor (i.e., the transfer of a predominantly neutral species), and electron-proton transfer (EPT), which corresponds to the transfer of an electron and proton between different donors and acceptors, possibly even in different directions. In all of these types of hydrogen transfer reactions, hydrogen tunneling could potentially play a significant role. The biomimetic portion was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences.

  9. System level permeability modeling of porous hydrogen storage materials.

    SciTech Connect

    Kanouff, Michael P.; Dedrick, Daniel E.; Voskuilen, Tyler

    2010-01-01

    A permeability model for hydrogen transport in a porous material is successfully applied to both laboratory-scale and vehicle-scale sodium alanate hydrogen storage systems. The use of a Knudsen number dependent relationship for permeability of the material in conjunction with a constant area fraction channeling model is shown to accurately predict hydrogen flow through the reactors. Generally applicable model parameters were obtained by numerically fitting experimental measurements from reactors of different sizes and aspect ratios. The degree of channeling was experimentally determined from the measurements and found to be 2.08% of total cross-sectional area. Use of this constant area channeling model and the Knudsen dependent Young & Todd permeability model allows for accurate prediction of the hydrogen uptake performance of full-scale sodium alanate and similar metal hydride systems.

  10. Reactions of atomic hydrogen in water : solvent and isotope effects.

    SciTech Connect

    Bartels, D. M.

    1999-06-10

    It has been known for many years that hydrogen atoms can be easily created and studied in water using radiolytic techniques [1]. The use of CW EPR detection coupled with electron radiolysis proved extremely useful in estimating many reaction rates, and revealed the interesting phenomenon of chemically induced dynamic electron polarization (CIDEP) [2]. In recent years, we have made use of pulsed EPR detection to make precision reaction rate measurements which avoid the complications of CIDEP [3]. Activation energies and H/D isotope effects measured in these studies [4-14] will be described below. An interesting aspect of the hydrogen atom reactions is the effect of hydrophobic solvation. EPR evidence--an almost gas-phase hyperfine coupling and extremely narrow linewidth--is quite convincing to show that the H atom is just a minimally perturbed gas phase atom inside a small ''bubble''. In several systems we have found that the hydrophobic free energy of solvation dominates the solvent effect on reaction rates.

  11. Hydrogen water consumption prevents osteopenia in ovariectomized rats

    PubMed Central

    Guo, Ji-Dong; Li, Li; Shi, Ya-Min; Wang, Hua-Dong; Hou, Shu-Xun

    2013-01-01

    Background and Purpose Accumulating evidence indicates an important role of oxidative stress in the progression of osteoporosis. Recently, it was demonstrated that hydrogen gas, as a novel antioxidant, could selectively reduce hydroxyl radicals and peroxynitrite anion to exert potent therapeutic antioxidant activity. The aim of the present work was to investigate the effect of hydrogen water (HW) consumption on ovariectomy-induced osteoporosis. Experimental Approach Ovariectomized rats were fed with HW (1.3 ± 0.2 mg·L−1) for 3 months. Then, blood was collected and femur and vertebrae were removed for evaluation of the effect of HW on bone. Key Results HW consumption in ovariectomized rats had no significant effect on oestrogen production, but prevented the reduction of bone mass including bone mineral content and bone mineral density in femur and vertebrae, and preserved mechanical strength including ultimate load, stiffness, and energy, and bone structure including trabecular bone volume fraction, trabecular number, and trabecular thickness in femur, and preserved mechanical strength including ultimate load and stiffness, and bone structure including trabecular bone volume fraction and trabecular number in vertebrae. In addition, treatment with HW abated oxidative stress and suppressed IL-6 and TNF-α mRNA expressions in femur of ovariectomized rats; treatment with HW increased femur endothelial NOS activity and enhanced circulating NO level in ovariectomized rats. Conclusions and Implications HW consumption prevents osteopenia in ovariectomized rats possibly through the ablation of oxidative stress induced by oestrogen withdrawal. PMID:23121335

  12. Hydrogen production from salt water by Marine blue green algae and solar radiation

    NASA Technical Reports Server (NTRS)

    Mitsui, A.; Rosner, D.; Kumazawa, S.; Barciela, S.; Phlips, E.

    1985-01-01

    Two marine bluegreen algae, Oscillatoria sp. Miami BG 7 and Synechococcus sp Miami 041511 have been selected as the result of over 10 years continuous and intensive effort of isolation, growth examination, and the screening of hydrogen photoproduction capability in this laboratory. Both strains photoproduced hydrogen for several days at high rates and a quantity of hydrogen was accumulated in a closed vessel. Overall hydrogen donor substance of the hydrogen photoproduction was found to be salt water. Using strain Miami BG 7, a two step method of hydrogen photoproduction from salt water was successfully developed and this was recycled several times over a one month period using both free cells and immobilized cells in both indoor and outdoor under natural sunlight. According to these experiments, a prototype floating hydrogen production system was designed for further development of the biosolar hydrogen production system.

  13. Vibrational dephasing and frequency shifts of hydrogen-bonded pyridine-water complexes.

    PubMed

    Kalampounias, A G; Tsilomelekis, G; Boghosian, S

    2015-01-25

    In this paper we present the picosecond vibrational dynamics and Raman shifts of hydrogen-bonded pyridine-water complexes present in aqueous solutions in a wide concentration range from dense to extreme dilute solutions. We studied the vibrational dephasing and vibrational frequency modulation by calculating time correlation functions of vibrational relaxation by fits in the frequency domain. The concentration induced variations in bandwidths, band frequencies and characteristic dephasing times have been estimated and interpreted as effects due to solute-solvent interactions. The time-correlation functions of vibrational dephasing were obtained for the ring breathing mode of both "free" and hydrogen-bonded pyridine molecules and it was found that sufficiently deviate from the Kubo model. There is a general agreement in the whole concentration range with the modeling proposed by the Rothschild approach, which applies to complex liquids. The results have shown that the reorientation of pyridine aqueous solutions is very slow and hence in both scattering geometries only vibrational dephasing is probed. It is proposed that the spectral changes depend on the perturbations induced by the dynamics of the water molecules in the first hydration cell and water in bulk, while at extreme dilution conditions, the number of bulk water molecules increases and the interchange between molecules belonging to the first hydration cell may not be the predominant modulation mechanism. The evolution of several parameters, such as the characteristic times, the percentage of Gaussian character in the peak shape and the a parameter are indicative of drastic variations at extreme dilution revealing changes in the vibrational relaxation of the pyridine complexes in the aqueous environment. The higher dilution is correlated to diffusion of water molecules into the reference pyridine system in agreement with the jump diffusion model, while at extreme dilutions, almost all pyridine molecules are

  14. Vibrational dephasing and frequency shifts of hydrogen-bonded pyridine-water complexes

    NASA Astrophysics Data System (ADS)

    Kalampounias, A. G.; Tsilomelekis, G.; Boghosian, S.

    2015-01-01

    In this paper we present the picosecond vibrational dynamics and Raman shifts of hydrogen-bonded pyridine-water complexes present in aqueous solutions in a wide concentration range from dense to extreme dilute solutions. We studied the vibrational dephasing and vibrational frequency modulation by calculating time correlation functions of vibrational relaxation by fits in the frequency domain. The concentration induced variations in bandwidths, band frequencies and characteristic dephasing times have been estimated and interpreted as effects due to solute-solvent interactions. The time-correlation functions of vibrational dephasing were obtained for the ring breathing mode of both "free" and hydrogen-bonded pyridine molecules and it was found that sufficiently deviate from the Kubo model. There is a general agreement in the whole concentration range with the modeling proposed by the Rothschild approach, which applies to complex liquids. The results have shown that the reorientation of pyridine aqueous solutions is very slow and hence in both scattering geometries only vibrational dephasing is probed. It is proposed that the spectral changes depend on the perturbations induced by the dynamics of the water molecules in the first hydration cell and water in bulk, while at extreme dilution conditions, the number of bulk water molecules increases and the interchange between molecules belonging to the first hydration cell may not be the predominant modulation mechanism. The evolution of several parameters, such as the characteristic times, the percentage of Gaussian character in the peak shape and the a parameter are indicative of drastic variations at extreme dilution revealing changes in the vibrational relaxation of the pyridine complexes in the aqueous environment. The higher dilution is correlated to diffusion of water molecules into the reference pyridine system in agreement with the jump diffusion model, while at extreme dilutions, almost all pyridine molecules are

  15. Doubly labeled water method: in vivo oxygen and hydrogen isotope fractionation

    SciTech Connect

    Schoeller, D.A.; Leitch, C.A.; Brown, C.

    1986-12-01

    The accuracy and precision of the doubly labeled water method for measuring energy expenditure are influenced by isotope fractionation during evaporative water loss and CO/sub 2/ excretion. To characterize in vivo isotope fractionation, we collected and isotopically analyzed physiological fluids and gases. Breath and transcutaneous water vapor were isotopically fractionated. The degree of fractionation indicated that the former was fractionated under equilibrium control at 37/sup 0/C, and the latter was kinetically fractionated. Sweat and urine were unfractionated. By use of isotopic balance models, the fraction of water lost via fractionating routes was estimated from the isotopic abundances of body water, local drinking water, and dietary solids. Fractionated water loss averaged 23% (SD = 10%) of water turnover, which agreed with our previous estimates based on metabolic rate, but there was a systematic difference between the results based on O/sub 2/ and hydrogen. Corrections for isotopic fractionation of water lost in breath and (nonsweat) transcutaneous loss should be made when using labeled water to measure water turnover or CO/sub 2/ production.

  16. Model calculations for diffuse molecular clouds. [interstellar hydrogen cloud model

    NASA Technical Reports Server (NTRS)

    Glassgold, A. E.; Langer, W. D.

    1974-01-01

    A steady state isobaric cloud model is developed. The pressure, thermal, electrical, and chemical balance equations are solved simultaneously with a simple one dimensional approximation to the equation of radiative transfer appropriate to diffuse clouds. Cooling is mainly by CII fine structure transitions, and a variety of heating mechanisms are considered. Particular attention is given to the abundance variation of H2. Inhomogeneous density distributions are obtained because of the attenuation of the interstellar UV field and the conversion from atomic to molecular hyrodgen. The effects of changing the model parameters are described and the applicability of the model to OAO-3 observations is discussed. Good qualitative agreement with the fractional H2 abundance determinations has been obtained. The observed kinetic temperatures near 80 K can also be achieved by grain photoelectron heating. The problem of the electron density is solved taking special account of the various hydrogen ions as well as heavier ones.

  17. Photoelectrochemical water splitting: silicon photocathodes for hydrogen evolution

    NASA Astrophysics Data System (ADS)

    Warren, Emily L.; Boettcher, Shannon W.; McKone, James R.; Lewis, Nathan S.

    2010-08-01

    The development of low cost, scalable, renewable energy technologies is one of today's most pressing scientific challenges. We report on progress towards the development of a photoelectrochemical water-splitting system that will use sunlight and water as the inputs to produce renewable hydrogen with oxygen as a by-product. This system is based on the design principle of incorporating two separate, photosensitive inorganic semiconductor/liquid junctions to collectively generate the 1.7-1.9 V at open circuit needed to support both the oxidation of H2O (or OH-) and the reduction of H+ (or H2O). Si microwire arrays are a promising photocathode material because the high aspect-ratio electrode architecture allows for the use of low cost, earth-abundant materials without sacrificing energy-conversion efficiency, due to the orthogonalization of light absorption and charge-carrier collection. Additionally, the high surfacearea design of the rod-based semiconductor array inherently lowers the flux of charge carriers over the rod array surface relative to the projected geometric surface of the photoelectrode, thus lowering the photocurrent density at the solid/liquid junction and thereby relaxing the demands on the activity (and cost) of any electrocatalysts. Arrays of Si microwires grown using the Vapor Liquid Solid (VLS) mechanism have been shown to have desirable electronic light absorption properties. We have demonstrated that these arrays can be coated with earth-abundant metallic catalysts and used for photoelectrochemical production of hydrogen. This development is a step towards the demonstration of a complete artificial photosynthetic system, composed of only inexpensive, earth-abundant materials, that is simultaneously efficient, durable, and scalable.

  18. Genesis and evolution of water in a two-mica pluton: A hydrogen isotope study

    USGS Publications Warehouse

    Brigham, R.H.; O'Neil, J.R.

    1985-01-01

    Measurements were made of the hydrogen isotope composition of 74 samples of muscovite, biotite, vein quartz and whole rocks from the Papoose Flat pluton, eastern California, U.S.A., and adjacent metamorphic and sedimentary rocks in order to elucidate the genesis and evolution of water and hydrous minerals in a two-mica granodiorite. Electron microprobe analyses were made of all micas so that the Suzuoki-Epstein equation could be used in evaluating the data. Based on experimental, theoretical and textural evidence of mica paragenesis, a model of hydrogen isotope fractionation between an aqueous vapor and a magma during crystallization has been constructed. This model accounts for the observed hydrogen isotope relations and implies that primary hydrogen isotope compositions have been preserved in a large portion of the pluton. The ?? D-values of biotites vary widely over the range -103 to -66% with most values lying between -90 and -70??? Muscovites, on the other hand, are isotopically more uniform and have ?? D-values of -61 to -41??? with most values lying between -50 and -46??? These data are consistent with the interpretation that biotite formed over a long period of crystallization whereas muscovite formed in a narrow interval, presumably during the final stages of crystallization when alumina and water contents were at their highest. Only 8 of the 21 muscovite-biotite pairs analyzed are in hydrogen isotope equilibrium as calculated from the Suzuoki-Epstein equation. Biotites in the western half of the pluton have relatively low ?? D-values of around -85???, whereas those in the eastern half have higher values of up to -66??? This pattern is a consequence of a loss of permeability associated with the syn-intrusive deformation of the western margin of the pluton. This loss of permeability enhanced the preservation of primary hydrogen isotope relations there by diverting water evolved from the magma out through the eastern half of the pluton where some deuteric

  19. Molecular hydrogen in drinking water protects against neurodegenerative changes induced by traumatic brain injury.

    PubMed

    Dohi, Kenji; Kraemer, Brian C; Erickson, Michelle A; McMillan, Pamela J; Kovac, Andrej; Flachbartova, Zuzana; Hansen, Kim M; Shah, Gul N; Sheibani, Nader; Salameh, Therese; Banks, William A

    2014-01-01

    Traumatic brain injury (TBI) in its various forms has emerged as a major problem for modern society. Acute TBI can transform into a chronic condition and be a risk factor for neurodegenerative diseases such as Alzheimer's and Parkinson's diseases, probably through induction of oxidative stress and neuroinflammation. Here, we examined the ability of the antioxidant molecular hydrogen given in drinking water (molecular hydrogen water; mHW) to alter the acute changes induced by controlled cortical impact (CCI), a commonly used experimental model of TBI. We found that mHW reversed CCI-induced edema by about half, completely blocked pathological tau expression, accentuated an early increase seen in several cytokines but attenuated that increase by day 7, reversed changes seen in the protein levels of aquaporin-4, HIF-1, MMP-2, and MMP-9, but not for amyloid beta peptide 1-40 or 1-42. Treatment with mHW also reversed the increase seen 4 h after CCI in gene expression related to oxidation/carbohydrate metabolism, cytokine release, leukocyte or cell migration, cytokine transport, ATP and nucleotide binding. Finally, we found that mHW preserved or increased ATP levels and propose a new mechanism for mHW, that of ATP production through the Jagendorf reaction. These results show that molecular hydrogen given in drinking water reverses many of the sequelae of CCI and suggests that it could be an easily administered, highly effective treatment for TBI.

  20. Molecular hydrogen in drinking water protects against neurodegenerative changes induced by traumatic brain injury.

    PubMed

    Dohi, Kenji; Kraemer, Brian C; Erickson, Michelle A; McMillan, Pamela J; Kovac, Andrej; Flachbartova, Zuzana; Hansen, Kim M; Shah, Gul N; Sheibani, Nader; Salameh, Therese; Banks, William A

    2014-01-01

    Traumatic brain injury (TBI) in its various forms has emerged as a major problem for modern society. Acute TBI can transform into a chronic condition and be a risk factor for neurodegenerative diseases such as Alzheimer's and Parkinson's diseases, probably through induction of oxidative stress and neuroinflammation. Here, we examined the ability of the antioxidant molecular hydrogen given in drinking water (molecular hydrogen water; mHW) to alter the acute changes induced by controlled cortical impact (CCI), a commonly used experimental model of TBI. We found that mHW reversed CCI-induced edema by about half, completely blocked pathological tau expression, accentuated an early increase seen in several cytokines but attenuated that increase by day 7, reversed changes seen in the protein levels of aquaporin-4, HIF-1, MMP-2, and MMP-9, but not for amyloid beta peptide 1-40 or 1-42. Treatment with mHW also reversed the increase seen 4 h after CCI in gene expression related to oxidation/carbohydrate metabolism, cytokine release, leukocyte or cell migration, cytokine transport, ATP and nucleotide binding. Finally, we found that mHW preserved or increased ATP levels and propose a new mechanism for mHW, that of ATP production through the Jagendorf reaction. These results show that molecular hydrogen given in drinking water reverses many of the sequelae of CCI and suggests that it could be an easily administered, highly effective treatment for TBI. PMID:25251220

  1. Molecular Hydrogen in Drinking Water Protects against Neurodegenerative Changes Induced by Traumatic Brain Injury

    PubMed Central

    Dohi, Kenji; Kraemer, Brian C.; Erickson, Michelle A.; McMillan, Pamela J.; Kovac, Andrej; Flachbartova, Zuzana; Hansen, Kim M.; Shah, Gul N.; Sheibani, Nader; Salameh, Therese; Banks, William A.

    2014-01-01

    Traumatic brain injury (TBI) in its various forms has emerged as a major problem for modern society. Acute TBI can transform into a chronic condition and be a risk factor for neurodegenerative diseases such as Alzheimer’s and Parkinson’s diseases, probably through induction of oxidative stress and neuroinflammation. Here, we examined the ability of the antioxidant molecular hydrogen given in drinking water (molecular hydrogen water; mHW) to alter the acute changes induced by controlled cortical impact (CCI), a commonly used experimental model of TBI. We found that mHW reversed CCI-induced edema by about half, completely blocked pathological tau expression, accentuated an early increase seen in several cytokines but attenuated that increase by day 7, reversed changes seen in the protein levels of aquaporin-4, HIF-1, MMP-2, and MMP-9, but not for amyloid beta peptide 1–40 or 1–42. Treatment with mHW also reversed the increase seen 4 h after CCI in gene expression related to oxidation/carbohydrate metabolism, cytokine release, leukocyte or cell migration, cytokine transport, ATP and nucleotide binding. Finally, we found that mHW preserved or increased ATP levels and propose a new mechanism for mHW, that of ATP production through the Jagendorf reaction. These results show that molecular hydrogen given in drinking water reverses many of the sequelae of CCI and suggests that it could be an easily administered, highly effective treatment for TBI. PMID:25251220

  2. Hydrogen-water vapor mixtures: Control of hydrothermal atmospheres by hydrogen osmosis

    USGS Publications Warehouse

    Shaw, H.R.

    1963-01-01

    Experiments at 700??C and 800 bars total pressure demonstrate positive deviations from ideality for mixtures of hydrogen and H2O gases. The deviations are greater than predicted with Stockmayer's method. The composition of the mixture and the fugacity of hydrogen are controlled by diffusing hydrogen through metallic membranes. The results give the fugacities of both H 2O and oxygen.

  3. Hydrogen and water desorption on the moon - Approximate, on-line simulations

    NASA Technical Reports Server (NTRS)

    Blanford, G. E.; Borgesen, P.; Moeller, W.; Maurette, M.; Monart, B.

    1985-01-01

    The basic models that have been used over the last 15 years to describe the accumulation and release of solar wind-related species at lunar conditions at the lunar surface are reviewed. Recent results which show that these models are not totally valid are discussed. It is suggested that mature lunar surface soils may act as efficient converters for transforming the flux of energetic solar wind protons into a flux of low-energy hydrogen and water molecules continuously injected into the lunar atmosphere.

  4. Hydrogen Bonding and Related Properties in Liquid Water: A Car-Parrinello Molecular Dynamics Simulation Study.

    PubMed

    Guardia, Elvira; Skarmoutsos, Ioannis; Masia, Marco

    2015-07-23

    The local hydrogen-bonding structure and dynamics of liquid water have been investigated using the Car-Parrinello molecular dynamics simulation technique. The radial distribution functions and coordination numbers around water molecules have been found to be strongly dependent on the number of hydrogen bonds formed by each molecule, revealing also the existence of local structural heterogeneities in the structure of the liquid. The results obtained have also revealed the strong effect of the local hydrogen-bonding network on the local tetrahedral structure and entropy. The investigation of the dynamics of the local hydrogen-bonding network in liquid water has shown that this network is very labile, and the hydrogen bonds break and reform very rapidly. Nevertheless, it has been found that the hydrogen-bonding states associated with the formation of four hydrogen bonds by a water molecule exhibit the largest survival probability and corresponding lifetime. The reorientational motions of water molecules have also been found to be strongly dependent on their initial hydrogen-bonding state. Finally, the dependence of the librational and vibrational modes of water molecules on the local hydrogen-bonding network has been carefully examined, revealing a significant effect upon the libration and bond-stretching peak frequencies. The calculated low frequency peaks come in agreement with previously reported interpretations of the experimental low-frequency Raman spectrum of liquid water.

  5. A ketone/alcohol polymer for cycle of electrolytic hydrogen-fixing with water and releasing under mild conditions

    NASA Astrophysics Data System (ADS)

    Kato, Ryo; Yoshimasa, Keisuke; Egashira, Tatsuya; Oya, Takahiro; Oyaizu, Kenichi; Nishide, Hiroyuki

    2016-09-01

    Finding a safe and efficient carrier of hydrogen is a major challenge. Recently, hydrogenated organic compounds have been studied as hydrogen storage materials because of their ability to stably and reversibly store hydrogen by forming chemical bonds; however, these compounds often suffer from safety issues and are usually hydrogenated with hydrogen at high pressure and/or temperature. Here we present a ketone (fluorenone) polymer that can be moulded as a plastic sheet and fixes hydrogen via a simple electrolytic hydrogenation at -1.5 V (versus Ag/AgCl) in water at room temperature. The hydrogenated alcohol derivative (the fluorenol polymer) reversibly releases hydrogen by heating (80 °C) in the presence of an aqueous iridium catalyst. Both the use of a ketone polymer and the efficient hydrogen fixing with water as a proton source are completely different from other (de)hydrogenated compounds and hydrogenation processes. The easy handling and mouldable polymers could suggest a pocketable hydrogen carrier.

  6. Sims Analysis of Water Abundance and Hydrogen Isotope in Lunar Highland Plagioclase

    NASA Technical Reports Server (NTRS)

    Hui, Hejiu; Guan, Yunbin; Chen, Yang; Peslier, Anne H.; Zhang, Youxue; Liu, Yang; Rossman, George R.; Eiler, John M.; Neal, Clive R.

    2015-01-01

    The detection of indigenous water in mare basaltic glass beads has challenged the view established since the Apollo era of a "dry" Moon. Since this discovery, measurements of water in lunar apatite, olivine-hosted melt inclusions, agglutinates, and nominally anhydrous minerals have confirmed that lunar igneous materials contain water, implying that some parts of lunar mantle may have as much water as Earth's upper mantle. The interpretation of hydrogen (H) isotopes in lunar samples, however, is controversial. The large variation of H isotope ratios in lunar apatite (delta Deuterium = -202 to +1010 per mille) has been taken as evidence that water in the lunar interior comes from the lunar mantle, solar wind protons, and/or comets. The very low deuterium/H ratios in lunar agglutinates indicate that solar wind protons have contributed to their hydrogen content. Conversely, H isotopes in lunar volcanic glass beads and olivine-hosted melt inclusions being similar to those of common terrestrial igneous rocks, suggest a common origin for water in both Earth and Moon. Lunar water could be inherited from carbonaceous chondrites, consistent with the model of late accretion of chondrite-type materials to the Moon as proposed by. One complication about the sources of lunar water, is that geologic processes (e.g., late accretion and magmatic degassing) may have modified the H isotope signatures of lunar materials. Recent FTIR analyses have shown that plagioclases in lunar ferroan anorthosite contain approximately 6 ppm H2O. So far, ferroan anorthosite is the only available lithology that is believed to be a primary product of the lunar magma ocean (LMO). A possible consequence is that the LMO could have contained up to approximately 320 ppm H2O. Here we examine the possible sources of water in the LMO through measurements of water abundances and H isotopes in plagioclase of two ferroan anorthosites and one troctolite from lunar highlands.

  7. Electron-induced hydrogen loss in uracil in a water cluster environment.

    PubMed

    Smyth, M; Kohanoff, J; Fabrikant, I I

    2014-05-14

    Low-energy electron-impact hydrogen loss due to dissociative electron attachment (DEA) to the uracil and thymine molecules in a water cluster environment is investigated theoretically. Only the A(')-resonance contribution, describing the near-threshold behavior of DEA, is incorporated. Calculations are based on the nonlocal complex potential theory and the multiple scattering theory, and are performed for a model target with basic properties of uracil and thymine, surrounded by five water molecules. The DEA cross section is strongly enhanced when the attaching molecule is embedded in a water cluster. This growth is due to two effects: the increase of the resonance lifetime and the negative shift in the resonance position due to interaction of the intermediate negative ion with the surrounding water molecules. A similar effect was earlier found in DEA to chlorofluorocarbons. PMID:24832276

  8. Electron-induced hydrogen loss in uracil in a water cluster environment.

    PubMed

    Smyth, M; Kohanoff, J; Fabrikant, I I

    2014-05-14

    Low-energy electron-impact hydrogen loss due to dissociative electron attachment (DEA) to the uracil and thymine molecules in a water cluster environment is investigated theoretically. Only the A(')-resonance contribution, describing the near-threshold behavior of DEA, is incorporated. Calculations are based on the nonlocal complex potential theory and the multiple scattering theory, and are performed for a model target with basic properties of uracil and thymine, surrounded by five water molecules. The DEA cross section is strongly enhanced when the attaching molecule is embedded in a water cluster. This growth is due to two effects: the increase of the resonance lifetime and the negative shift in the resonance position due to interaction of the intermediate negative ion with the surrounding water molecules. A similar effect was earlier found in DEA to chlorofluorocarbons.

  9. Electron-induced hydrogen loss in uracil in a water cluster environment

    SciTech Connect

    Smyth, M.; Kohanoff, J.; Fabrikant, I. I.

    2014-05-14

    Low-energy electron-impact hydrogen loss due to dissociative electron attachment (DEA) to the uracil and thymine molecules in a water cluster environment is investigated theoretically. Only the A{sup ′}-resonance contribution, describing the near-threshold behavior of DEA, is incorporated. Calculations are based on the nonlocal complex potential theory and the multiple scattering theory, and are performed for a model target with basic properties of uracil and thymine, surrounded by five water molecules. The DEA cross section is strongly enhanced when the attaching molecule is embedded in a water cluster. This growth is due to two effects: the increase of the resonance lifetime and the negative shift in the resonance position due to interaction of the intermediate negative ion with the surrounding water molecules. A similar effect was earlier found in DEA to chlorofluorocarbons.

  10. Temperature and water vapor pressure effects on the friction coefficient of hydrogenated diamondlike carbon films.

    SciTech Connect

    Dickrell, P. L.; Sawyer, W. G.; Eryilmaz, O. L.; Erdemir, A.; Energy Technology; Univ. of Florida

    2009-07-01

    Microtribological measurements of a hydrogenated diamondlike carbon film in controlled gaseous environments show that water vapor plays a significant role in the friction coefficient. These experiments reveal an initial high friction transient behavior that does not reoccur even after extended periods of exposure to low partial pressures of H{sub 2}O and O{sub 2}. Experiments varying both water vapor pressure and sample temperature show trends of a decreasing friction coefficient as a function of both the decreasing water vapor pressure and the increasing substrate temperature. Theses trends are examined with regard to first order gas-surface interactions. Model fits give activation energies on the order of 40 kJ/mol, which is consistent with water vapor desorption.

  11. Spectroscopic modeling of water molecule

    NASA Astrophysics Data System (ADS)

    Danylo, R. I.; Okhrimenko, B. A.

    2013-12-01

    This research is devoted to the vibrational spectroscopy inverse problem solution that gives a possibility to design a molecule and make conclusions about its geometry. The valence angle finding based on the usage of inverse spectral vibrational spectroscopy problem is a well-known task. 3N-matrix method was chosen to solve the proposed task. The usage of this method permits to make no assumptions about the molecule force field, besides it can be applied to molecules of matter in liquid state. Anharmonicity constants assessment is an important part of the valence angle finding. The reduction to zero vibrations is necessary because used matrix analytical expression were found in the harmonic approach. In order to find the single-valued inverse spectral problem of vibrational spectroscopy solution a shape parameter characterizing "mixing" of ω1 and ω2 vibrations forms must be found. The minimum of such a function Υ called a divergence parameter was found. This function characterizes method's accuracy. The valence angle assessment was reduced to the divergence parameter minimization. The β value concerning divergence parameter minimum was interpreted as the desired valence angle. The proposed method was applied for water molecule in liquid state: β = (88,8 ±1,7)° . The found angle fits the water molecule nearest surrounding tetrahedral model including hydrogen bond curvature in the first approximation.

  12. Seasonal variations of hydrogen peroxide and water vapor on Mars: Further indications of heterogeneous chemistry

    NASA Astrophysics Data System (ADS)

    Encrenaz, T.; Greathouse, T. K.; Lefèvre, F.; Montmessin, F.; Forget, F.; Fouchet, T.; DeWitt, C.; Richter, M. J.; Lacy, J. H.; Bézard, B.; Atreya, S. K.

    2015-06-01

    We have completed our seasonal monitoring of hydrogen peroxide and water vapor on Mars using ground-based thermal imaging spectroscopy, by observing the planet in March 2014, when water vapor is maximum, and July 2014, when, according to photochemical models, hydrogen peroxide is expected to be maximum. Data have been obtained with the Texas Echelon Cross Echelle Spectrograph (TEXES) mounted at the 3 m-Infrared Telescope Facility (IRTF) at Maunakea Observatory. Maps of HDO and H2O2 have been obtained using line depth ratios of weak transitions of HDO and H2O2 divided by CO2. The retrieved maps of H2O2 are in good agreement with predictions including a chemical transport model, for both the March data (maximum water vapor) and the July data (maximum hydrogen peroxide). The retrieved maps of HDO are compared with simulations by Montmessin et al. (2005, J. Geophys. Res., 110, 03006) and H2O maps are inferred assuming a mean martian D/H ratio of 5 times the terrestrial value. For regions of maximum values of H2O and H2O2, we derive, for March 1 2014 (Ls = 96°), H2O2 = 20+/-7 ppbv, HDO = 450 +/-75 ppbv (45 +/-8 pr-nm), and for July 3, 2014 (Ls = 156°), H2O2 = 30+/-7 ppbv, HDO = 375+/-70 ppbv (22+/-3 pr-nm). In addition, the new observations are compared with LMD global climate model results and we favor simulations of H2O2 including heterogeneous reactions on water-ice clouds.

  13. Oxygen and hydrogen isotope ratios in tree rings: how well do models predict observed values?

    NASA Astrophysics Data System (ADS)

    Waterhouse, J. S.; Switsur, V. R.; Barker, A. C.; Carter, A. H. C.; Robertson, I.

    2002-07-01

    We have measured annual oxygen and hydrogen isotope ratios in the α-cellulose of the latewood of oak ( Quercus robur L.) growing on well-drained ground in Norfolk, UK. We compare the observed values of isotope ratios with those calculated using equations that allow for isotopic fractionation during the transfer of oxygen and hydrogen from source water taken by the tree to cellulose laid down in the cambium. The equations constitute a model in which isotopic fractionation occurs during evaporative enrichment within the leaf and during isotopic change between carbohydrates and water in the trunk during cellulose synthesis. From the relationship between isotope ratios in precipitation and α-cellulose, we deduce that the source water used by the tree comprises a constant mixture of groundwater and precipitation, chiefly from the months of May, June and July of the growth year. By selection of isotopic fractionation factors and the degree of isotope exchange within the trunk, we are able to model the observed annual values of oxygen isotope ratios of α-cellulose to a significant level ( r=0.77, P<0.01). When we apply the same model to hydrogen isotope ratios, however, we find that, although we can predict the average value over the time series, we can no longer predict the year-to-year variation. We suggest that this loss of environmental signal in the hydrogen isotopes is caused by differences in the kinetic isotope effects of the biochemical reactions involved in the fixation of hydrogen in different positions of the glucose molecule. Owing to these effects, the hydrogen isotope ratios of cellulose can vary in a way not anticipated in current models and hence may induce non-climatic 'noise' in the hydrogen isotope time series.

  14. Topological hydrogen-bond definition to characterize the structure and dynamics of liquid water.

    PubMed

    Henchman, Richard H; Irudayam, Sheeba Jem

    2010-12-23

    A definition that equates a hydrogen bond topologically with a local energy well in the potential energy surface is used to study the structure and dynamics of liquid water. We demonstrate the robustness of this hydrogen-bond definition versus the many other definitions which use fixed, arbitrary parameters, do not account for variable molecular environments, and cannot effectively resolve transition states. Our topology definition unambiguously shows that most water molecules are double acceptors but sizable proportions are single or triple acceptors. Almost all hydrogens are found to take part in hydrogen bonds. Broken hydrogen bonds only form when two molecules try to form two hydrogen bonds between them. The double acceptors have tetrahedral geometry, lower potential energy, entropy, and density, and slower dynamics. The single and triple acceptors have trigonal and trigonal bipyramidal geometry and when considered together have higher density, potential energy, and entropy, faster dynamics, and a tendency to cluster. These calculations use an extended theory for the entropy of liquid water that takes into account the variable number of hydrogen bonds. Hydrogen-bond switching is shown to depend explicitly on the variable number of hydrogen bonds accepted and the presence of interstitial water molecules. Transition state theory indicates that the switching of hydrogen bonds is a mildly activated process, requiring only a moderate distortion of hydrogen bonds. Three main types of switching events are observed depending on whether the donor and acceptor are already sharing a hydrogen bond. The switch may proceed with no intermediate or via a bifurcated-oxygen or cyclic dimer, both of which have a broken hydrogen bond and symmetric and asymmetric forms. Switching is found to be strongly coupled to whole-molecule vibration, particularly for the more mobile single and triple acceptors. Our analysis suggests that even though water is heterogeneous in terms of the

  15. Consumption of hydrogen water prevents atherosclerosis in apolipoprotein E knockout mice.

    PubMed

    Ohsawa, Ikuroh; Nishimaki, Kiyomi; Yamagata, Kumi; Ishikawa, Masahiro; Ohta, Shigeo

    2008-12-26

    Oxidative stress is implicated in atherogenesis; however most clinical trials with dietary antioxidants failed to show marked success in preventing atherosclerotic diseases. We have found that hydrogen (dihydrogen; H(2)) acts as an effective antioxidant to reduce oxidative stress [I. Ohsawa, M. Ishikawa, K. Takahashi, M. Watanabe, K. Nishimaki, K. Yamagata, K. Katsura, Y. Katayama, S, Asoh, S. Ohta, Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals, Nat. Med. 13 (2007) 688-694]. Here, we investigated whether drinking H(2)-dissolved water at a saturated level (H(2)-water) ad libitum prevents arteriosclerosis using an apolipoprotein E knockout mouse (apoE(-/-)), a model of the spontaneous development of atherosclerosis. ApoE(-/-) mice drank H(2)-water ad libitum from 2 to 6 month old throughout the whole period. Atherosclerotic lesions were significantly reduced by ad libitum drinking of H(2)-water (p=0.0069) as judged by Oil-Red-O staining series of sections of aorta. The oxidative stress level of aorta was decreased. Accumulation of macrophages in atherosclerotic lesions was confirmed. Thus, consumption of H(2)-dissolved water has the potential to prevent arteriosclerosis. PMID:18996093

  16. Identification of intrinsic catalytic activity for electrochemical reduction of water molecules to generate hydrogen.

    PubMed

    Shinagawa, Tatsuya; Takanabe, Kazuhiro

    2015-06-21

    Insufficient hydronium ion activities at near-neutral pH and under unbuffered conditions induce diffusion-limited currents for hydrogen evolution, followed by a reaction with water molecules to generate hydrogen at elevated potentials. The observed constant current behaviors at near neutral pH reflect the intrinsic electrocatalytic reactivity of the metal electrodes for water reduction.

  17. Cellular Metabolic Activity and the Oxygen and Hydrogen Stable Isotope Composition of Intracellular Water and Metabolites

    NASA Astrophysics Data System (ADS)

    Kreuzer-Martin, H. W.; Hegg, E. L.

    2008-12-01

    biomass of Bacillus subtilis, a Gram-positive bacterium, showed the same pattern. Rapidly-dividing cells derived fewer of their O and H atoms from environmental water than did more slowly-growing cells and spores. To test whether a eukaryotic cell, surrounded by only a membrane, would also maintain an isotopic gradient and a detectable percentage of metabolic water, we applied our approach to cultured rat fibroblasts. Preliminary results showed that approximately 50% of the O and H atoms in exponentially growing cells were derived from metabolic activity. In quiescent cells, metabolic activity generated approximately 25% of the O and H atoms in intracellular water. Thus far, the data we have obtained is consistent with the following model: (1) Intracellular water is composed of water that diffuses in from the extracellular environment and water that is created as a result of metabolic activity. (2) The relative amounts of environmental and metabolic water inside a cell are a function of the cell's metabolic activity. (3) The oxygen and hydrogen isotope ratios of cellular metabolites are a function of those of intracellular water, and therefore reflect the metabolic activity of the cell at the time of biosynthesis.

  18. Kinetic modeling of α-hydrogen abstractions from unsaturated and saturated oxygenate compounds by hydrogen atoms.

    PubMed

    Paraskevas, Paschalis D; Sabbe, Maarten K; Reyniers, Marie-Françoise; Papayannakos, Nikos G; Marin, Guy B

    2014-10-01

    Hydrogen-abstraction reactions play a significant role in thermal biomass conversion processes, as well as regular gasification, pyrolysis, or combustion. In this work, a group additivity model is constructed that allows prediction of reaction rates and Arrhenius parameters of hydrogen abstractions by hydrogen atoms from alcohols, ethers, esters, peroxides, ketones, aldehydes, acids, and diketones in a broad temperature range (300-2000 K). A training set of 60 reactions was developed with rate coefficients and Arrhenius parameters calculated by the CBS-QB3 method in the high-pressure limit with tunneling corrections using Eckart tunneling coefficients. From this set of reactions, 15 group additive values were derived for the forward and the reverse reaction, 4 referring to primary and 11 to secondary contributions. The accuracy of the model is validated upon an ab initio and an experimental validation set of 19 and 21 reaction rates, respectively, showing that reaction rates can be predicted with a mean factor of deviation of 2 for the ab initio and 3 for the experimental values. Hence, this work illustrates that the developed group additive model can be reliably applied for the accurate prediction of kinetics of α-hydrogen abstractions by hydrogen atoms from a broad range of oxygenates. PMID:25209711

  19. Molecular hydrogen is protective against 6-hydroxydopamine-induced nigrostriatal degeneration in a rat model of Parkinson's disease.

    PubMed

    Fu, Yuan; Ito, Mikako; Fujita, Yasunori; Ito, Masafumi; Ichihara, Masatoshi; Masuda, Akio; Suzuki, Yumi; Maesawa, Satoshi; Kajita, Yasukazu; Hirayama, Masaaki; Ohsawa, Ikuroh; Ohta, Shigeo; Ohno, Kinji

    2009-04-01

    Molecular hydrogen serves as an antioxidant that reduces hydroxyl radicals, but not the other reactive oxygen and nitrogen species. In the past year, molecular hydrogen has been reported to prevent or ameliorate eight diseases in rodents and one in human associated with oxidative stress. In Parkinson's disease, mitochondrial dysfunction and the associated oxidative stress are major causes of dopaminergic cell loss in the substantia nigra. We examined effects of approximately 50%-saturated molecular hydrogen in drinking water before or after the stereotactic surgery on 6-hydroxydopamine-induced nigrostrital degeneration in a rat model of Parkinson's disease. Methamphetamine-induced behavioral analysis showed that molecular hydrogen prevented both the development and progression of the nigrostrital degeneration. Tyrosine hydroxylase staining of the substantia nigra and striatum also demonstrated that pre- and post-treatment with hydrogen prevented the dopaminergic cell loss. Our studies suggest that hydrogen water is likely able to retard the development and progression of Parkinson's disease. PMID:19356598

  20. Atomic hydrogen distribution. [in Titan atmospheric model

    NASA Technical Reports Server (NTRS)

    Tabarie, N.

    1974-01-01

    Several possible H2 vertical distributions in Titan's atmosphere are considered with the constraint of 5 km-A a total quantity. Approximative calculations show that hydrogen distribution is quite sensitive to two other parameters of Titan's atmosphere: the temperature and the presence of other constituents. The escape fluxes of H and H2 are also estimated as well as the consequent distributions trapped in the Saturnian system.

  1. Electrostatic model for hydrogen bonds in alcohols

    SciTech Connect

    Giguere, P.A.; Pigeon-Gosselin, M.

    1988-11-01

    The authors have measured the Raman spectra of liquid methanol at temperatures between 50/sup 0/ and -77/sup 0/C. The weak O-H stretching bands appear, under amplification, more and more asymmetric as the temperature is lowered. They can be decomposed into three Gaussian components centered at about 3220, 3310, and 3400 cm/sup -1/. The former, predominant at low temperature, corresponds to single, linear hydrogen bonds (LHB) between two molecules. The other two are assigned to branched hydrogen bonds, respectively bifurcated (BHB), between three molecules, and trifurcated (THB), between four molecules. They conclude that the molecular structure of liquid alcohols is not chain-like, as presumed so far, but a three-dimensional network featuring a mixture of single (LBH), and multiple hydrogen bonds (BHB, and THB). They are mainly electrostatic in nature, their relative proportions and geometry governed by the packing conditions for minimum energy. They form distinct trimers and tetramers in dilute solutions of alcohols in inert solvents and frozen matrices, and the latter even in the vapor.

  2. MODELING OF SYNGAS REACTIONS AND HYDROGEN GENERATION OVER SULFIDES

    SciTech Connect

    Kamil Klier; Jeffery A. Spirko; Michael L. Neiman

    2004-10-01

    The objective of the research is to analyze pathways of reactions of hydrogen with oxides of carbon over sulfides, and to predict which characteristics of the sulfide catalyst (nature of metal, defect structure) give rise to the lowest barriers toward oxygenated hydrocarbon product. Reversal of these pathways entails the generation of hydrogen, which is also proposed for study. During this study, adsorption reactions of H atoms and H{sub 2} molecules with MoS{sub 2}, both in molecular and solid form, have been modeled using high-level density functional theory. The relative stabilities of pure MoS{sub 2} edges were calculated and small clusters exhibiting properties of the edges were modeled. The results were finalized and published in the journal ''Surface Science''. Hydrogen adsorption energies on both the edges and the clusters were calculated, and the thermodynamics of hydrogen adsorption on both systems were evaluated. The adsorption locations and vibrational frequencies were also determined. These additional results were published in a second paper in ''Surface Science''. Most recently, the bonding and effect of alkali and transition metal ions was investigated on the MoS{sub 2} clusters. Potassium atoms bind to the clusters and increase the binding of hydrogen to the clusters while reducing the activation barriers for hydrogen adsorption. Silver attaches to the Mo7S14 cluster and donates its odd electron to the nearby Mo atoms and should have a similar effect to hydrogen as potassium does.

  3. Numerical modeling of hydrogen-fueled internal combustion engines

    SciTech Connect

    Johnson, N.L.; Amsden, A.A.

    1996-12-31

    The planned use of hydrogen as the energy carrier of the future introduces new challenges and opportunities, especially to the engine design community. Hydrogen is a bio-friendly fuel that can be produced from renewable resources and has no carbon dioxide combustion products; and in a properly designed ICE, almost zero NO{sub x} and hydrocarbon emissions can be achieved. Because of the unique properties of hydrogen combustion - in particular the highly wrinkled nature of the laminar flame front due to the preferential diffusion instability - modeling approaches for hydrocarbon gaseous fuels are not generally applicable to hydrogen combustion. This paper reports on the current progress to develop a engine design capability based on KIVA family of codes for hydrogen-fueled, spark-ignited engines in support of the National Hydrogen Program. A turbulent combustion model, based on a modified eddy-turnover model in conjunction with an intake flow valve model, is found to describe well the efficiency and NO{sub x} emissions of this engine satisfy the Equivalent Zero Emission Vehicle (EZEV) standard established by the California Resource Board. 26 refs., 10 figs., 1 tab.

  4. On Modeling Hydrogen-Induced Crack Propagation Under Sustained Load

    NASA Astrophysics Data System (ADS)

    Dadfarnia, Mohsen; Somerday, Brian p.; Schembri, Philip E.; Sofronis, Petros; Foulk, James W.; Nibur, Kevin A.; Balch, Dorian K.

    2014-08-01

    The failure of hydrogen containment components is generally associated with subcritical cracking. Understanding subcritical crack growth behavior and its dependence on material and environmental variables can lead to methods for designing structural components in a hydrogen environment and will be beneficial in developing materials resistant to hydrogen embrittlement. In order to identify the issues underlying crack propagation and arrest, we present a model for hydrogen-induced stress-controlled crack propagation under sustained loading. The model is based on the assumptions that (I) hydrogen reduces the material fracture strength and (II) crack propagation takes place when the opening stress over the characteristic distance ahead of a crack tip is greater than the local fracture strength. The model is used in a finite-element simulation of crack propagation coupled with simultaneous hydrogen diffusion in a model material through nodal release. The numerical simulations show that the same physics, i.e., diffusion-controlled crack propagation, can explain the existence of both stages I and II in the velocity versus stress intensity factor ( V- K) curve.

  5. Water formation at low temperatures by surface O2 hydrogenation III: Monte Carlo simulation.

    PubMed

    Lamberts, Thanja; Cuppen, Herma M; Ioppolo, Sergio; Linnartz, Harold

    2013-06-01

    Water is the most abundant molecule found in interstellar icy mantles. In space it is thought to be efficiently formed on the surfaces of dust grains through successive hydrogenation of O, O2 and O3. The underlying physico-chemical mechanisms have been studied experimentally in the past decade and in this paper we extend this work theoretically, using Continuous-Time Random-Walk Monte Carlo simulations to disentangle the different processes at play during hydrogenation of molecular oxygen. CTRW-MC offers a kinetic approach to compare simulated surface abundances of different species to the experimental values. For this purpose, the results of four key experiments-sequential hydrogenation as well as co-deposition experiments at 15 and 25 K-are selected that serve as a reference throughout the modeling stage. The aim is to reproduce all four experiments with a single set of parameters. Input for the simulations consists of binding energies as well as reaction barriers (activation energies). In order to understand the influence of the parameters separately, we vary a single process rate at a time. Our main findings are: (i) The key reactions for the hydrogenation route starting from O2 are H + O2, H + HO2, OH + OH, H + H2O2, H + OH. (ii) The relatively high experimental abundance of H2O2 is due to its slow destruction. (iii) The large consumption of O2 at a temperature of 25 K is due to a high hydrogen diffusion rate. (iv) The diffusion of radicals plays an important role in the full reaction network. The resulting set of 'best fit' parameters is presented and discussed for use in future astrochemical modeling.

  6. Effect of hydrogen-bond strength on the vibrational relaxation of interfacial water.

    PubMed

    Eftekhari-Bafrooei, Ali; Borguet, Eric

    2010-03-24

    Time-resolved sum frequency generation (tr-SFG) reveals that the vibrational energy relaxation rate of O-H stretching of dilute HDO in D(2)O at the silica interface is markedly different from that of bulk water. As compared to the bulk liquid, the vibrational lifetime (T(1)) of HDO is shorter at the charged surface than in the bulk, but longer at the neutral surface. The vibrational decoupling of the O-H of the HDO species leads to the observation of a frequency-dependent T(1) of the O-H stretch, which is shorter at the red than the blue side of the hydrogen-bonded OH spectral region. This correlates with the red-shift of the SFG spectra with increasing surface charge and is consistent with a theoretical model that relates the vibrational lifetime to the strength of the hydrogen-bond network.

  7. WATER-GAS SHIFT WITH INTEGRATED HYDROGEN SEPARATION PROCESS

    SciTech Connect

    Maria Flytzani-Stephanopoulos; Xiaomei Qi; Scott Kronewitter

    2004-02-01

    This project involved fundamental research and development of novel cerium oxide-based catalysts for the water-gas-shift reaction and the integration of these catalysts with Pd-alloy H{sub 2} -separation membranes supplying high purity hydrogen for fuel cell use. Conditions matching the requirements of coal gasifier-exit gas streams were examined in the project. Cu-cerium oxide was identified as the most promising high-temperature water-gas shift catalyst for integration with H{sub 2}-selective membranes. Formulations containing iron oxide were found to deactivate in the presence of CO{sub 2}. Cu-containing ceria catalysts, on the other hand, showed high stability in CO{sub 2}-rich gases. This type gas will be present over much of the catalyst, as the membrane removes the hydrogen produced from the shift reaction. The high-temperature shift catalyst composition was optimized by proper selection of dopant type and amount in ceria. The formulation 10at%Cu-Ce(30at%La)O{sub x} showed the best performance, and was selected for further kinetic studies. WGS reaction rates were measured in a simulated coal-gas mixture. The apparent activation energy, measured over aged catalysts, was equal to 70.2 kJ/mol. Reaction orders in CO, H{sub 2}O, CO{sub 2} and H{sub 2} were found to be 0.8, 0.2, -0.3, and -0.3, respectively. This shows that H{sub 2}O has very little effect on the reaction rate, and that both CO{sub 2} and H{sub 2} weakly inhibit the reaction. Good stability of catalyst performance was found in 40-hr long tests. A flat (38 cm{sup 2}) Pd-Cu alloy membrane reactor was used with the catalyst washcoated on oxidized aluminum screens close coupled with the membrane. To achieve higher loadings, catalyst granules were layered on the membrane itself to test the combined HTS activity/ H{sub 2} -separation efficiency of the composite. Simulated coal gas mixtures were used and the effect of membrane on the conversion of CO over the catalyst was evidenced at high space

  8. Modelling of hydrogen infrastructure for vehicle refuelling in London

    NASA Astrophysics Data System (ADS)

    Joffe, D.; Hart, D.; Bauen, A.

    One of the principal barriers to the widespread use of hydrogen as a road transport fuel is the need for a refuelling infrastructure to be established. The lack of an adequate refuelling infrastructure would severely inhibit an uptake of hydrogen vehicles. On the other hand, without significant penetration of these vehicles, the demand for hydrogen would be insufficient to make a widespread conventional refuelling infrastructure economic. The infrastructure is likely to develop initially in cities, due to the high concentration of vehicles and the anticipated air quality benefits of a switch to hydrogen as a road transport fuel. While trial schemes such as the Clean Urban Transport for Europe (CUTE) bus project will establish initial hydrogen refuelling sites, it is not clear how a transition to a widespread refuelling infrastructure will occur. Indeed, the number of possible different ways and scales of producing and distributing hydrogen means that the possible configurations for such an infrastructure are almost endless. Imperial College London is examining transition strategies for a hydrogen infrastructure for vehicle refuelling in London under a project funded by the UK Engineering and Physical Sciences Research Council (EPSRC). Imperial has five project partners from industry and local government to assist in this study: the Greater London Authority (GLA), BP, BOC, BMW and Air Products. This paper presents initial results from technical modelling of hydrogen infrastructure technologies and how they could be deployed to provide an initial facility for the refuelling of hydrogen fuel-cell buses in London. The results suggest that the choice of H 2 production technology can have significant effects on when the infrastructure would be installed, and the timing of hydrogen production, and bus refuelling.

  9. Clusters of classical water models

    NASA Astrophysics Data System (ADS)

    Kiss, Péter T.; Baranyai, András

    2009-11-01

    The properties of clusters can be used as tests of models constructed for molecular simulation of water. We searched for configurations with minimal energies for a small number of molecules. We identified topologically different structures close to the absolute energy minimum of the system by calculating overlap integrals and enumerating hydrogen bonds. Starting from the dimer, we found increasing number of topologically different, low-energy arrangements for the trimer(3), the tetramer(6), the pentamer(6), and the hexamer(9). We studied simple models with polarizable point dipole. These were the BSV model [J. Brodholt et al., Mol. Phys. 86, 149 (1995)], the DC model [L. X. Dang and T. M. Chang, J. Chem. Phys. 106, 8149 (1997)], and the GCP model [P. Paricaud et al., J. Chem. Phys. 122, 244511 (2005)]. As an alternative the SWM4-DP and the SWM4-NDP charge-on-spring models [G. Lamoureux et al., Chem. Phys. Lett. 418, 245 (2006)] were also investigated. To study the impact of polarizability restricted to the plane of the molecule we carried out calculations for the SPC-FQ and TIP4P-FQ models, too [S. W. Rick et al., J. Chem. Phys. 101, 6141 (1994)]. In addition to them, justified by their widespread use even for near critical or surface behavior calculations, we identified clusters for five nonpolarizable models of ambient water, SPC/E [H. J. C. Berendsen et al., J. Phys. Chem. 91, 6269 (1987)], TIP4P [W. L. Jorgensen et al., J. Chem. Phys. 79, 926 (1983)], TIP4P-EW [H. W. Horn et al., J. Chem. Phys. 120, 9665 (2004)], and TIP4P/2005 [J. L. F. Abascal and C. Vega, J. Chem. Phys. 123, 234505 (2005)]. The fifth was a five-site model named TIP5P [M. W. Mahoney and W. L. Jorgensen, J. Chem. Phys. 112, 8910 (2000)]. To see the impact of the vibrations we studied the flexible SPC model. [K. Toukan and A. Rahman, Phys. Rev. B 31, 2643 (1985)]. We evaluated the results comparing them with experimental data and quantum chemical calculations. The position of the negative

  10. Selected bibliography on heavy water, tritiated water and hydrogen isotopes (1981-1992)

    NASA Astrophysics Data System (ADS)

    Gopalakrishnan, V. T.; Sutawane, U. B.; Rathi, B. N.

    A selected bibliography on heavy water, tritiated water and hydrogen isotopes is presented. This bibliography covers the period 1981-1992 and is in continuation to Division's earlier report BARC-1192 (1983). The sources of information for this compilation are Chemical Abstracts, INIS Atom Index and also some scattered search through journals and reports available in our library. No claim is made towards exhaustiveness of this bibliography even though sincere attempts have been made for a wide coverage. The bibliography is arranged under the headings: (1) production, purification, recovery, reprocessing and storage; (2) isotope exchange; (3) isotope analysis; (4) properties; and (5) miscellaneous. Total number of references in the bibliography are 1762.

  11. Hydrogen-Water Vapor Mixtures: Control of Hydrothermal Atmospheres by Hydrogen Osmosis.

    PubMed

    Shaw, H R

    1963-03-22

    Experiments at 700 degrees C and 800 bars total pressure demonstrate positive deviations from ideality for mixtures of hydrogen and H(2)O gases. The deviations are greater than predicted with Stockmayer's method. The composition of the mixture and the fugacity of hydrogen are controlled by diffusing hydrogen through metallic membranes. The results give the fugacities of both H(2)O and oxygen. PMID:17757916

  12. Isotope Dependence and Quantum Effects on Atomic Hydrogen Diffusion in Liquid Water.

    PubMed

    Walker, J A; Mezyk, S P; Roduner, E; Bartels, D M

    2016-03-01

    Relative diffusion coefficients were determined in water for the D, H, and Mu isotopes of atomic hydrogen by measuring their diffusion-limited spin-exchange rate constants with Ni(2+) as a function of temperature. H and D atoms were generated by pulse radiolysis of water and measured by time-resolved pulsed EPR. Mu atoms are detected by muonium spin resonance. To isolate the atomic mass effect from solvent isotope effect, we measured all three spin-exchange rates in 90% D2O. The diffusion depends on the atomic mass, demonstrating breakdown of Stokes-Einstein behavior. The diffusion can be understood using a combination of water "cavity diffusion" and "hopping" mechanisms, as has been proposed in the literature. The H/D isotope effect agrees with previous modeling using ring polymer molecular dynamics. The "quantum swelling" effect on muonium due to its larger de Broglie wavelength does not seem to slow its "hopping" diffusion as much as predicted in previous work. Quantum effects of both the atom mass and the water librations have been modeled using RPMD and a qTIP4P/f quantized flexible water model. These results suggest that the muonium diffusion is very sensitive to the Mu versus water potential used.

  13. Modeling of hydrogen-air diffusion flame

    NASA Technical Reports Server (NTRS)

    Isaac, K. M.

    1989-01-01

    An analytical and computational study of opposed jet diffusion flame for the purpose of understanding the effects of contaminants in the reactants and thermal diffusion of light species on extinction and reignition of diffusion flames is in progress. The methodologies that have been attempted so far are described. Results using a simple, one-step reaction for the hydrogen-air counterflow diffusion flame are presented. These results show the correct trends in the profiles of chemical species and temperature. The extinction limit can be clearly seen in the plot of temperature vs. Damkohler number.

  14. Phase transformation of oxide film in zirconium alloy in high temperature hydrogenated water

    SciTech Connect

    Kim, Taeho; Kim, Jongjin; Choi, Kyoung Joon; Yoo, Seung Chang; Kim, Seung Hyun; Kim, Ji Hyun

    2015-07-23

    The effect of the variation of the dissolved hydrogen concentration on the oxide phase transformation under high-temperature hydrogenated water conditions was investigated using in situ Raman spectroscopy. The Raman spectrum in 50 cm(3)/kg of dissolved hydrogen concentration indicated the formation of monoclinic and tetragonal zirconium oxide at the water-substrate interface. As the dissolved hydrogen concentration decreased to 30 cm(3)/kg, the Raman peaks corresponding to the zirconium oxide phase changed, indicating an oxide phase transformation. And, the results of SEM and TEM analyses were compared with those of in situ analyses obtained for the oxide structure formed on the zirconium alloy.

  15. Selective reduction of condensed N-heterocycles using water as a solvent and a hydrogen source.

    PubMed

    Cho, Hyejin; Török, Fanni; Török, Béla

    2013-02-21

    The reduction of unprotected indoles and quinolines is described using water as a hydrogen source. The method is based on the application of a RANEY® type Ni-Al alloy in an aqueous medium. During the reaction the Al content of the alloy, used as reductants, reacts with water in situ providing hydrogen and a RANEY® Ni catalyst, thus the alloy serves as a hydrogen generator as well as a hydrogenation catalyst. The simplicity and efficacy of the method are illustrated by the selective reduction of a variety of substituted indoles and quinolines to indolines and tetrahydroquinolines, respectively.

  16. Hydrogen Ingress in Steels During High-Temperature Oxidation in Water Vapor

    SciTech Connect

    Brady, Michael P; Fayek, Mostafa; Keiser, James R; Meyer III, Harry M; More, Karren Leslie; Anovitz, Lawrence {Larry} M; Wesolowski, David J; Cole, David R

    2011-01-01

    It is well established that hydrogen derived from water vapour can penetrate oxidizing alloys with detrimental effect. However, the complexities of tracking hydrogen in these materials have prevented the direct profiling of hydrogen ingress needed to understand these phenomena. Here we report hydrogen profiles in industrially-relevant alumina- and chromia- forming steels correlated with the local oxide-metal nano/microstructure by use of SIMS D2O tracer studies and experimental protocols to optimize D retention. The D profiles unexpectedly varied markedly among the alloys examined, which indicates mechanistic complexity but also the potential to mitigate detrimental water vapour effects by manipulation of alloy chemistry.

  17. Infrared spectroscopy of water clusters co-adsorbed with hydrogen molecules on a sodium chloride film

    NASA Astrophysics Data System (ADS)

    Yamakawa, Koichiro; Fukutani, Katsuyuki

    2016-06-01

    Hydrogen gas containing a trace of water vapor was dosed on a vacuum-evaporated sodium chloride film at 13 K, and water clusters formed on the substrate were investigated by infrared absorption spectroscopy. Absorption bands due to (H2O)n clusters with n = 3-6 and an induced absorption band due to hydrogen were clearly observed. With increasing gas dosage, the intensities of the cluster bands increased linearly while the intensity of the hydrogen band was constant. This suggests that the water clusters were formed in two-dimensional matrices of hydrogen. We found that the water clusters did exist on the surface upon heating even after the hydrogen molecules had desorbed. A further rise of the substrate temperature up to 27 K yielded the formation of larger clusters, (H2O)n with n > 6 . We also discuss the origins of the two bands of the trimer in terms of pseudorotation and a metastable isomer.

  18. A hydrogen gas-water equilibration method produces accurate and precise stable hydrogen isotope ratio measurements in nutrition studies.

    PubMed

    Wong, William W; Clarke, Lucinda L

    2012-11-01

    Stable hydrogen isotope methodology is used in nutrition studies to measure growth, breast milk intake, and energy requirement. Isotope ratio MS is the best instrumentation to measure the stable hydrogen isotope ratios in physiological fluids. Conventional methods to convert physiological fluids to hydrogen gas (H(2)) for mass spectrometric analysis are labor intensive, require special reagent, and involve memory effect and potential isotope fractionation. The objective of this study was to determine the accuracy and precision of a platinum catalyzed H(2)-water equilibration method for stable hydrogen isotope ratio measurements. Time to reach isotopic equilibrium, day-to-day and week-to-week reproducibility, accuracy, and precision of stable hydrogen isotope ratio measurements by the H(2)-water equilibration method were assessed using a Thermo DELTA V Advantage continuous-flow isotope ratio mass spectrometer. It took 3 h to reach isotopic equilibrium. The day-to-day and week-to-week measurements on water and urine samples with natural abundance and enriched levels of deuterium were highly reproducible. The method was accurate to within 2.8 (o)/oo and reproducible to within 4.0 (o)/oo based on analysis of international references. All the outcome variables, whether in urine samples collected in 10 doubly labeled water studies or plasma samples collected in 26 body water studies, did not differ from those obtained using the reference zinc reduction method. The method produced highly accurate estimation on ad libitum energy intakes, body composition, and water turnover rates. The method greatly reduces the analytical cost and could easily be adopted by laboratories equipped with a continuous-flow isotope ratio mass spectrometer.

  19. A Hydrogen Gas-Water Equilibration Method Produces Accurate and Precise Stable Hydrogen Isotope Ratio Measurements in Nutrition Studies12

    PubMed Central

    Wong, William W.; Clarke, Lucinda L.

    2012-01-01

    Stable hydrogen isotope methodology is used in nutrition studies to measure growth, breast milk intake, and energy requirement. Isotope ratio MS is the best instrumentation to measure the stable hydrogen isotope ratios in physiological fluids. Conventional methods to convert physiological fluids to hydrogen gas (H2) for mass spectrometric analysis are labor intensive, require special reagent, and involve memory effect and potential isotope fractionation. The objective of this study was to determine the accuracy and precision of a platinum catalyzed H2-water equilibration method for stable hydrogen isotope ratio measurements. Time to reach isotopic equilibrium, day-to-day and week-to-week reproducibility, accuracy, and precision of stable hydrogen isotope ratio measurements by the H2-water equilibration method were assessed using a Thermo DELTA V Advantage continuous-flow isotope ratio mass spectrometer. It took 3 h to reach isotopic equilibrium. The day-to-day and week-to-week measurements on water and urine samples with natural abundance and enriched levels of deuterium were highly reproducible. The method was accurate to within 2.8 o/oo and reproducible to within 4.0 o/oo based on analysis of international references. All the outcome variables, whether in urine samples collected in 10 doubly labeled water studies or plasma samples collected in 26 body water studies, did not differ from those obtained using the reference zinc reduction method. The method produced highly accurate estimation on ad libitum energy intakes, body composition, and water turnover rates. The method greatly reduces the analytical cost and could easily be adopted by laboratories equipped with a continuous-flow isotope ratio mass spectrometer. PMID:23014490

  20. Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water.

    PubMed

    Cortright, R D; Davda, R R; Dumesic, J A

    2002-08-29

    Concerns about the depletion of fossil fuel reserves and the pollution caused by continuously increasing energy demands make hydrogen an attractive alternative energy source. Hydrogen is currently derived from nonrenewable natural gas and petroleum, but could in principle be generated from renewable resources such as biomass or water. However, efficient hydrogen production from water remains difficult and technologies for generating hydrogen from biomass, such as enzymatic decomposition of sugars, steam-reforming of bio-oils and gasification, suffer from low hydrogen production rates and/or complex processing requirements. Here we demonstrate that hydrogen can be produced from sugars and alcohols at temperatures near 500 K in a single-reactor aqueous-phase reforming process using a platinum-based catalyst. We are able to convert glucose -- which makes up the major energy reserves in plants and animals -- to hydrogen and gaseous alkanes, with hydrogen constituting 50% of the products. We find that the selectivity for hydrogen production increases when we use molecules that are more reduced than sugars, with ethylene glycol and methanol being almost completely converted into hydrogen and carbon dioxide. These findings suggest that catalytic aqueous-phase reforming might prove useful for the generation of hydrogen-rich fuel gas from carbohydrates extracted from renewable biomass and biomass waste streams.

  1. High-Yield Hydrogen Production from Starch and Water by a Synthetic Enzymatic Pathway

    PubMed Central

    Zhang, Y.-H. Percival; Evans, Barbara R.; Mielenz, Jonathan R.; Hopkins, Robert C.; Adams, Michael W.W.

    2007-01-01

    Background The future hydrogen economy offers a compelling energy vision, but there are four main obstacles: hydrogen production, storage, and distribution, as well as fuel cells. Hydrogen production from inexpensive abundant renewable biomass can produce cheaper hydrogen, decrease reliance on fossil fuels, and achieve zero net greenhouse gas emissions, but current chemical and biological means suffer from low hydrogen yields and/or severe reaction conditions. Methodology/Principal Findings Here we demonstrate a synthetic enzymatic pathway consisting of 13 enzymes for producing hydrogen from starch and water. The stoichiometric reaction is C6H10O5 (l)+7 H2O (l)→12 H2 (g)+6 CO2 (g). The overall process is spontaneous and unidirectional because of a negative Gibbs free energy and separation of the gaseous products with the aqueous reactants. Conclusions Enzymatic hydrogen production from starch and water mediated by 13 enzymes occurred at 30°C as expected, and the hydrogen yields were much higher than the theoretical limit (4 H2/glucose) of anaerobic fermentations. Significance The unique features, such as mild reaction conditions (30°C and atmospheric pressure), high hydrogen yields, likely low production costs ($∼2/kg H2), and a high energy-density carrier starch (14.8 H2-based mass%), provide great potential for mobile applications. With technology improvements and integration with fuel cells, this technology also solves the challenges associated with hydrogen storage, distribution, and infrastructure in the hydrogen economy. PMID:17520015

  2. Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water

    NASA Astrophysics Data System (ADS)

    Cortright, R. D.; Davda, R. R.; Dumesic, J. A.

    2002-08-01

    Concerns about the depletion of fossil fuel reserves and the pollution caused by continuously increasing energy demands make hydrogen an attractive alternative energy source. Hydrogen is currently derived from nonrenewable natural gas and petroleum, but could in principle be generated from renewable resources such as biomass or water. However, efficient hydrogen production from water remains difficult and technologies for generating hydrogen from biomass, such as enzymatic decomposition of sugars, steam-reforming of bio-oils and gasification, suffer from low hydrogen production rates and/or complex processing requirements. Here we demonstrate that hydrogen can be produced from sugars and alcohols at temperatures near 500K in a single-reactor aqueous-phase reforming process using a platinum-based catalyst. We are able to convert glucose-which makes up the major energy reserves in plants and animals-to hydrogen and gaseous alkanes, with hydrogen constituting 50% of the products. We find that the selectivity for hydrogen production increases when we use molecules that are more reduced than sugars, with ethylene glycol and methanol being almost completely converted into hydrogen and carbon dioxide. These findings suggest that catalytic aqueous-phase reforming might prove useful for the generation of hydrogen-rich fuel gas from carbohydrates extracted from renewable biomass and biomass waste streams.

  3. Water in Earth's mantle: Hydrogen analysis of mantle olivine, pyroxenes and garnet using the SIMS

    NASA Technical Reports Server (NTRS)

    Kurosawa, Masanori; Yurimoto, Hisayoshi; Sueno, Shigeho

    1993-01-01

    Hydrogen (or water) in the Earth's interior plays a key role in the evolution and dynamics of the planet. However, the abundance and the existence form of the hydrogen have scarcely been clear in practice. Hydrogen in the mantle was incorporated in the interior during the formation of the Earth. The incorporated hydrogen was hardly possible to concentrate locally inside the Earth considering its high mobility and high reactivity. The hydrogen, preferably, could be distributed homogeneously over the mantle and the core by the subsequent physical and chemical processes. Therefore, hydrogen in the mantle could be present in the form of trace hydrogen in nominally anhydrous mantle minerals. The hydrogen and the other trace elements in mantle olivines, orthopyroxenes, clinopyroxenes, and garnets were determined using secondary ion mass spectrometry (SIMS) for elucidating (1) the exact hydrogen contents, (2) the correlation between the hydrogen and the other trace elements, (3) the dependence of the hydrogen contents on the depth, and (4) the dependence of the whole rock water contents on the depth.

  4. Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water.

    PubMed

    Cortright, R D; Davda, R R; Dumesic, J A

    2002-08-29

    Concerns about the depletion of fossil fuel reserves and the pollution caused by continuously increasing energy demands make hydrogen an attractive alternative energy source. Hydrogen is currently derived from nonrenewable natural gas and petroleum, but could in principle be generated from renewable resources such as biomass or water. However, efficient hydrogen production from water remains difficult and technologies for generating hydrogen from biomass, such as enzymatic decomposition of sugars, steam-reforming of bio-oils and gasification, suffer from low hydrogen production rates and/or complex processing requirements. Here we demonstrate that hydrogen can be produced from sugars and alcohols at temperatures near 500 K in a single-reactor aqueous-phase reforming process using a platinum-based catalyst. We are able to convert glucose -- which makes up the major energy reserves in plants and animals -- to hydrogen and gaseous alkanes, with hydrogen constituting 50% of the products. We find that the selectivity for hydrogen production increases when we use molecules that are more reduced than sugars, with ethylene glycol and methanol being almost completely converted into hydrogen and carbon dioxide. These findings suggest that catalytic aqueous-phase reforming might prove useful for the generation of hydrogen-rich fuel gas from carbohydrates extracted from renewable biomass and biomass waste streams. PMID:12198544

  5. Ultrafast conversions between hydrogen bonded structures in liquid water observed by femtosecond x-ray spectroscopy

    SciTech Connect

    Wen, Haidan; Huse, Nils; Schoenlein, Robert W.; Lindenberg, Aaron M.

    2010-05-01

    We present the first femtosecond soft x-ray spectroscopy in liquids, enabling the observation of changes in hydrogen bond structures in water via core-hole excitation. The oxygen K-edge of vibrationally excited water is probed with femtosecond soft x-ray pulses, exploiting the relation between different water structures and distinct x-ray spectral features. After excitation of the intramolecular OH stretching vibration, characteristic x-ray absorption changes monitor the conversion of strongly hydrogen-bonded water structures to more disordered structures with weaker hydrogen-bonding described by a single subpicosecond time constant. The latter describes the thermalization time of vibrational excitations and defines the characteristic maximum rate with which nonequilibrium populations of more strongly hydrogen-bonded water structures convert to less-bonded ones. On short time scales, the relaxation of vibrational excitations leads to a transient high-pressure state and a transient absorption spectrum different from that of statically heated water.

  6. Hydrogen Bonding in Liquid Water and in the Hydration Shell of Salts.

    PubMed

    Dagade, Dilip H; Barge, Seema S

    2016-03-16

    A near-IR spectral study on pure water and aqueous salt solutions is used to investigate stoichiometric concentrations of different types of hydrogen-bonded water species in liquid water and in water comprising the hydration shell of salts. Analysis of the thermodynamics of hydrogen-bond formation signifies that hydrogen-bond making and breaking processes are dominated by enthalpy with non-negligible heat capacity effects, as revealed by the temperature dependence of standard molar enthalpies of hydrogen-bond formation and from analysis of the linear enthalpy-entropy compensation effects. A generalized method is proposed for the simultaneous calculation of the spectrum of water in the hydration shell and hydration number of solutes. Resolved spectra of water in the hydration shell of different salts clearly differentiate hydrogen bonding of water in the hydration shell around cations and anions. A comparison of resolved liquid water spectra and resolved hydration-shell spectra of ions highlights that the ordering of absorption frequencies of different kinds of hydrogen-bonded water species is also preserved in the bound state with significant changes in band position, band width, and band intensity because of the polarization of water molecules in the vicinity of ions.

  7. Numerical modeling of hydrogen-fueled internal combustion engines

    SciTech Connect

    Johnson, N.L.; Amsden, A.A.; Butler, T.D.

    1996-07-01

    Major progress was achieved in the last year in advancing the modeling capabilities of hydrogen-fueled engines, both in support of the multi-laboratory project with SNL and LLNL to develop a high-efficiency, low emission powerplant and to provide the engine design tools to industry and research laboratories for hydrogen-fueled engines and stationary power generators. The culmination of efforts on many fronts was the excellent comparison of the experimental data from the Onan engine, operated by SNL.These efforts include the following. An extensive study of the intake flow culminated in a major understanding of the interdependence of the details of the intake port design and the engine operating condition on the emissions and efficiency. This study also resulted in design suggestions for future engines and general scaling laws for turbulence that enables the KIVA results to be applied to a wide variety of operating conditions. The research on the turbulent combustion of hydrogen brought into perspective the effect of the unique aspects of hydrogen combustion and their influence on possible models of turbulent combustion. The effort culminated in a proposed model for turbulent hydrogen combustion that is in agreement with available literature. Future work will continue the development in order to provide a generally predictive model for hydrogen combustion. The application of the combustion model to the Onan experiments elucidated the observed improvement of the efficiency of the engine with the addition of a shroud on the intake valve. This understanding will give guidance to future engine design for optimal efficiency. Finally, a brief summary is given of the extensions and refinements of the KIVA-3 code, in support of future designers of hydrogen-fueled engines.

  8. Hydrogen production by water dissociation using ceramic membranes. Annual report for FY 2007.

    SciTech Connect

    Balachandran, U.; Chen, L.; Dorris, S. E.; Emerson, J. E.; Lee, T. H.; Park, C. Y.; Picciolo, J. J.; Song, S. J.; Energy Systems

    2008-03-04

    The objective of this project is to develop dense ceramic membranes that, without using an external power supply or circuitry, can produce hydrogen via coal/coal gas-assisted water dissociation. This project grew out of an effort to develop a dense ceramic membrane for separating hydrogen from gas mixtures such as those generated during coal gasification, methane partial oxidation, and water-gas shift reactions [1]. That effort led to the development of various cermet (i.e., ceramic/metal composite) membranes that enable hydrogen to be produced by two methods. In one method, a hydrogen transport membrane (HTM) selectively removes hydrogen from a gas mixture by transporting it through either a mixed protonic/electronic conductor or a hydrogen transport metal. In the other method, an oxygen transport membrane (OTM) generates hydrogen mixed with steam by removing oxygen that is generated through water splitting [1, 2]. This project focuses on the development of OTMs that efficiently produce hydrogen via the dissociation of water. Supercritical boilers offer very high-pressure steam that can be decomposed to provide pure hydrogen by means of OTMs. Oxygen resulting from the dissociation of steam can be used for coal gasification, enriched combustion, or synthesis gas production. Hydrogen and sequestration-ready CO{sub 2} can be produced from coal and steam by using the membrane being developed in this project. Although hydrogen can also be generated by high-temperature steam electrolysis, producing hydrogen by water splitting with a mixed-conducting membrane requires no electric power or electrical circuitry.

  9. Estimation of hydrogen sulfide removal efficiency with granulated coal ash applied to eutrophic marine sediment using a simplified simulation model.

    PubMed

    Asaoka, Satoshi; Yamamoto, Tamiji; Yamamoto, Hironori; Okamura, Hideo; Hino, Kazutoshi; Nakamoto, Kenji; Saito, Tadashi

    2015-05-15

    Hydrogen sulfide generated in eutrophic marine sediment is harmful for living organisms. It is therefore necessary to remove hydrogen sulfide from the sediment to restore benthic ecosystems. Previous studies revealed that granulated coal ash, which is a by-product of coal thermal electric power stations, could remove and oxidize hydrogen sulfide. In this study, we propose a simplified simulation model to estimate the hydrogen sulfide removal efficiency of granulated coal ash. Hydrogen sulfide concentrations in eutrophic marine sediment pore water with and without the application of granulated coal ash were calculated by the proposed model, and the outputs were compared with semi-field or field observation data. The model outputs reproduced the observed data well. Using the proposed model outputs, we suggest an optimum application dosage of granulated coal ash for remediating eutrophic marine sediment.

  10. Separation of gaseous hydrogen from a water-hydrogen mixture in a fuel cell power system operating in a weightless environment

    NASA Technical Reports Server (NTRS)

    Romanowski, William E. (Inventor); Suljak, George T. (Inventor)

    1989-01-01

    A fuel cell power system for use in a weightless environment, such as in space, includes a device for removing water from a water-hydrogen mixture condensed from the exhaust from the fuel cell power section of the system. Water is removed from the mixture in a centrifugal separator, and is fed into a holding, pressure operated water discharge valve via a Pitot tube. Entrained nondissolved hydrogen is removed from the Pitot tube by a bleed orifice in the Pitot tube before the water reaches the water discharge valve. Water discharged from the valve thus has a substantially reduced hydrogen content.

  11. Characteristics of the interaction of azulene with water and hydrogen sulfide: A computational study.

    PubMed

    Cabaleiro-Lago, Enrique M; Rodríguez-Otero, Jesús; Peña-Gallego, Angeles

    2008-08-28

    A computational study was carried out for studying the characteristics of the interaction between azulene and water or hydrogen sulfide. In azulene...water complex the water molecule is located with both hydrogen atoms pointing toward the aromatic cloud but displaced to the five-membered ring. Hydrogen sulfide adopts a similar arrangement but located roughly over the central C-C bond of azulene. Calculations show that hydrogen sulfide interacts with azulene more strongly (-4.19 kcal/mol) than water (-3.76 kcal/mol), although this is only revealed at the highest levels of calculation. The nature of the interaction is electrostatic and dispersive in the same percentage for water cluster, whereas for hydrogen sulfide dispersion is the dominant contribution. Clusters containing two water molecules are controlled by the possibility of establishing an O-H...O hydrogen bond. As a consequence, the most stable structure corresponds to the interaction between a water dimer and azulene, with an interaction energy amounting to -11.77 kcal/mol. Hydrogen sulfide interaction is stronger with azulene than with itself, so structures with S-H...S contact and others, where H(2)S only interacts with azulene, present similar interaction energies (-8.02 kcal/mol for the most stable one).

  12. WATER DIVERSION MODEL

    SciTech Connect

    J.B. Case

    1999-12-21

    The distribution of seepage in the proposed repository will be highly variable due in part to variations in the spatial distribution of percolations. The performance of the drip shield and the backfill system may divert the water flux around the waste packages to the invert. Diversion will occur along the drift surface, within the backfill, at the drip shield, and at the Waste Package (WP) surface, even after the drip shield and WP have been breached by corrosion. The purpose and objective of this Analysis and Modeling Report (AMR) are to develop a conceptual model and constitutive properties for bounding the volume and rate of seepage water that flows around the drip shield (CRWMS M&O 1999c). This analysis model is to be compatible with the selected repository conceptual design (Wilkins and Heath, 1999) and will be used to evaluate the performance of the Engineered Barrier System (EBS), and to provide input to the EBS Water Distribution and Removal Model. This model supports the Engineered Barrier System (EBS) postclosure performance assessment for the Site Recommendation (SR). This document characterizes the hydrological constitutive properties of the backfill and invert materials (Section 6.2) and a third material that represents a mixture of the two. These include the Overton Sand which is selected as a backfill (Section 5.2), crushed tuff which is selected as the invert (Section 5.1), and a combined material (Sections 5.9 and 5.10) which has retention and hydraulic conductivity properties intermediate to the selected materials for the backfill and the invert. The properties include the grain size distribution, the dry bulk density and porosity, the moisture retention, the intrinsic permeability, the relative permeability, and the material thermal properties. The van Genuchten relationships with curve fit parameters are used to define the basic retention relationship of moisture potential to volumetric moisture content, and the basic relationship of unsaturated

  13. Effect of hydrogen sulfide on phosphorus lability in lake sediments amended with drinking water treatment residuals.

    PubMed

    Wang, Changhui; Liu, Juanfeng; Pei, Yuansheng

    2013-05-01

    The use of drinking water treatment residuals (WTRs) to immobilize P in sediments is a novel approach for lake restoration. However, the lability of P in WTRs-amended sediments may vary with many factors, e.g., hydrogen sulfide content. Earlier works in our laboratory have demonstrated that WTRs are effective sorbents for hydrogen sulfide in water. Thus, we hypothesized that the lability of P in WTRs-amended sediments would not be increased by hydrogen sulfide. The results of this work suggested that this hypothesis was tenable. Compared to the raw sediments, the amended sediments had significantly lower P desorption potential in the presence of hydrogen sulfide at different times, pH and concentrations. Moreover, the amended sediments were also better able to adsorb hydrogen sulfide. In the amended sediments, the P, which was easily desorbed due to the effect of hydrogen sulfide, was transformed into the Fe/Al bound P.

  14. An alternative near-neighbor definition of hydrogen bonding in water.

    PubMed

    Hammerich, A D; Buch, V

    2008-03-21

    A definition of hydrogen bonding in water is proposed in which an H...O pair forms a hydrogen bond if (a) an oxygen atom is the nearest nonchemically bonded neighbor of a hydrogen atom; and (b) the hydrogen is the first or the second intermolecular near-neighbor of the oxygen. Unlike the commonly employed hydrogen-bond definitions, this definition does not depend on the choice of geometric or energetic cutoffs applied to continuous distributions of properties. With the present definition, the distribution of O...H bond lengths decays smoothly to zero in a physically reasonable range. After correction for the presence of intermittent hydrogen bonds, this definition appears to provide a more stable description of hydrogen bonds and coordination shells than the more conventional cutoff-based definition. "Partial" H bonds satisfying only one of the two bonding requirements serve as transition states in the H-bond network evolution.

  15. Prediction of Production Power for High-pressure Hydrogen by High-pressure Water Electrolysis

    NASA Astrophysics Data System (ADS)

    Kyakuno, Takahiro; Hattori, Kikuo; Ito, Kohei; Onda, Kazuo

    Recently the high attention for fuel cell electric vehicle (FCEV) is pushing to construct the hydrogen supplying station for FCEV in the world. The hydrogen pressure supplied at the current test station is intended to be high for increasing the FCEV’s driving distance. The water electrolysis can produce cleanly the hydrogen by utilizing the electricity from renewable energy without emitting CO2 to atmosphere, when it is compared to be the popular reforming process of fossil fuel in the industry. The power required for the high-pressure water electrolysis, where water is pumped up to high-pressure, may be smaller than the power for the atmospheric water electrolysis, where the produced atmospheric hydrogen is pumped up by compressor, since the compression power for water is much smaller than that for hydrogen gas. In this study the ideal water electrolysis voltage up to 70MPa and 523K is estimated referring to both the results by LeRoy et al up to 10MPa and 523K, and to the latest steam table. By using this high-pressure water electrolysis voltage, the power required for high-pressure hydrogen produced by the high-pressure water electrolysis method is estimated to be about 5% smaller than that by the atmospheric water electrolysis method, by assuming the compressor and pump efficiency of 50%.

  16. Prediction of production power for high-pressure hydrogen by high-pressure water electrolysis

    NASA Astrophysics Data System (ADS)

    Onda, Kazuo; Kyakuno, Takahiro; Hattori, Kikuo; Ito, Kohei

    Recent attention focused on fuel cell electric vehicles (FCEVs) has created demand for the construction of hydrogen supply stations for FCEVs throughout the world. The hydrogen pressure supplied at the supply stations is intentionally high to increase the FCEVs driving mileage. Water electrolysis can produce clean hydrogen by utilizing electricity from renewable energy without CO 2 emission to the atmosphere when compared with the industrial fossil fuel reforming process. The power required for high-pressure water electrolysis, wherein water is pumped up to a high-pressure, may be less than the power required for atmospheric water electrolysis, wherein the produced atmospheric hydrogen is pumped by a compressor, since the compression power for water is much less than that for hydrogen-gas. In this study, the ideal water electrolysis voltage of up to 70 MPa and 250 °C is estimated by referring to both the results of LeRoy et al. up to 10 MPa and 250 °C, and the latest steam tables. Using this high-pressure water electrolysis voltage, the power required to produce high-pressure hydrogen by high-pressure water electrolysis is estimated to be about 5% less than that required for atmospheric water electrolysis, assuming compressor and pump efficiencies of 50%.

  17. Hydrogen program combustion research: Three dimensional computational modeling

    SciTech Connect

    Johnson, N.L.; Amsden, A.A.; Butler, T.D.

    1995-05-01

    We have significantly increased our computational modeling capability by the addition of a vertical valve model in KIVA-3, code used internationally for engine design. In this report the implementation and application of the valve model is described. The model is shown to reproduce the experimentally verified intake flow problem examined by Hessel. Furthermore, the sensitivity and performance of the model is examined for the geometry and conditions of the hydrogen-fueled Onan engine in development at Sandia National Laboratory. Overall the valve model is shown to have comparable accuracy as the general flow simulation capability in KIVA-3, which has been well validated by past comparisons to experiments. In the exploratory simulations of the Onan engine, the standard use of the single kinetic reaction for hydrogen oxidation was found to be inadequate for modeling the hydrogen combustion because of its inability to describe both the observed laminar flame speed and the absence of autoignition in the Onan engine. We propose a temporary solution that inhibits the autoignition without sacrificing the ability to model spark ignition. In the absence of experimental data on the Onan engine, a computational investigation was undertaken to evaluate the importance of modeling the intake flow on the combustion and NO{sub x} emissions. A simulation that began with the compression of a quiescent hydrogen-air mixture was compared to a simulation of the full induction process with resolved opening and closing of the intake valve. Although minor differences were observed in the cylinder-averaged pressure, temperature, bulk-flow kinetic energy and turbulent kinetic energy, large differences where observed in the hydrogen combustion rate and NO{sub x} emissions. The flow state at combustion is highly heterogeneous and sensitive to the details of the bulk and turbulent flow and that an accurate simulation of the Onan engine must include the modeling of the air-fuel induction.

  18. Energetics of hydrogen bonding in proteins: a model compound study.

    PubMed Central

    Habermann, S. M.; Murphy, K. P.

    1996-01-01

    Differences in the energetics of amide-amide and amide-hydroxyl hydrogen bonds in proteins have been explored from the effect of hydroxyl groups on the structure and dissolution energetics of a series of crystalline cyclic dipeptides. The calorimetrically determined energetics are interpreted in light of the crystal structures of the studied compounds. Our results indicate that the amide-amide and amide-hydroxyl hydrogen bonds both provide considerable enthalpic stability, but that the amide-amide hydrogen bond is about twice that of the amide-hydroxyl. Additionally, the interaction of the hydroxyl group with water is seen most readily in its contributions to entropy and heat capacity changes. Surprisingly, the hydroxyl group shows weakly hydrophobic behavior in terms of these contributions. These results can be used to understand the effects of mutations on the stability of globular proteins. PMID:8819156

  19. Distillation Kinetics of Solid Mixtures of Hydrogen Peroxide and Water and the Isolation of Pure Hydrogen Peroxide in Ultrahigh Vacuum

    NASA Technical Reports Server (NTRS)

    Teolis, B. D.; Baragiola, R. A.

    2006-01-01

    We present results of the growth of thin films of crystalline H2O2 and H2O2.2H2O (dihydrate) in ultrahigh vacuum by distilling an aqueous solution of hydrogen peroxide. We traced the process using infrared reflectance spectroscopy, mass loss on a quartz crystal microbalance, and in a few cases ultraviolet-visible reflectance. We find that the different crystalline phases-water, dihydrate, and hydrogen peroxide-have very different sublimation rates, making distillation efficient to isolate the less volatile component, crystalline H2O2.

  20. Hydrogen-water enhances 5-fluorouracil-induced inhibition of colon cancer.

    PubMed

    Runtuwene, Joshua; Amitani, Haruka; Amitani, Marie; Asakawa, Akihiro; Cheng, Kai-Chun; Inui, Akio

    2015-01-01

    Oxidative stress is involved in cancer development. Hydrogen (H2) is a potent antioxidant and exhibits anti-inflammatory and potentially anticancer-like activities. This study aimed to investigate the role of H2 incombination with 5-fluorouracil (5-FU) in cancer treatment both in vitro and in vivo using the colon 26 cell line. The survival rate was determined using the Kaplan-Meier survival test, and cell viability was assessed using cell viability imaging kit and the MTT assay, and activation of the cell apoptosis pathway (Phosphorylated adenosine monophosphate activated protein kinase (p-AMPK), Apoptosis-inducing factor (AIF) and Caspase 3) were characterized by western blots. Hydrogen water administration improved the survival of mice with colon 26-induced cancer. Furthermore, hydrogen water enhanced cell apoptosis in cancer cells, resulting in a marked increase in the expression of p-AMPK, AIF and Caspase 3 in colon 26 cells. Hydrogen water also increased the inhibitory effect of 5-FU on colon 26 cells with spect to cell survival rate and anticancer functions. Additionally, high-content hydrogen water exhibited stronger antioxidative and anticancer activity than did the natural hydrogen water. In conclusion, high-content hydrogen water can inhibit colon cancer, particularly in combination with 5-fluorouracil. PMID:25870767

  1. Hydrogen-rich water attenuates brain damage and inflammation after traumatic brain injury in rats.

    PubMed

    Tian, Runfa; Hou, Zonggang; Hao, Shuyu; Wu, Weichuan; Mao, Xiang; Tao, Xiaogang; Lu, Te; Liu, Baiyun

    2016-04-15

    Inflammation and oxidative stress are the two major causes of apoptosis after traumatic brain injury (TBI). Most previous studies of the neuroprotective effects of hydrogen-rich water on TBI primarily focused on antioxidant effects. The present study investigated whether hydrogen-rich water (HRW) could attenuate brain damage and inflammation after traumatic brain injury in rats. A TBI model was induced using a controlled cortical impact injury. HRW or distilled water was injected intraperitoneally daily following surgery. We measured survival rate, brain edema, blood-brain barrier (BBB) breakdown and neurological dysfunction in all animals. Changes in inflammatory cytokines, inflammatory cells and Cho/Cr metabolites in brain tissues were also detected. Our results demonstrated that TBI-challenged rats exhibited significant brain injuries that were characterized by decreased survival rate and increased BBB permeability, brain edema, and neurological dysfunction, while HRW treatment ameliorated the consequences of TBI. HRW treatment also decreased the levels of pro-inflammatory cytokines (TNF-α, IL-1β and HMGB1), inflammatory cell number (Iba1) and inflammatory metabolites (Cho) and increased the levels of an anti-inflammatory cytokine (IL-10) in the brain tissues of TBI-challenged rats. In conclusion, HRW could exert a neuroprotective effect against TBI and attenuate inflammation, which suggests HRW as an effective therapeutic strategy for TBI patients. PMID:26826009

  2. Probing chiral solute-water hydrogen bonding networks by chirality transfer effects: a vibrational circular dichroism study of glycidol in water.

    PubMed

    Yang, Guochun; Xu, Yunjie

    2009-04-28

    Vibrational absorption (VA) and vibrational circular dichroism (VCD) spectra of (S)-(-)-glycidol were measured in water with a concentration of 6.0M in the 1000-1750 cm(-1) region. Prominent and complex VCD spectral features were detected at the water bending vibrational region. Our experimental results show that water molecules can become optically active through hydrogen bonding interactions with glycidol molecules. To model the glycidol-water hydrogen bonding network in the solution, molecular dynamics simulations using the AMBER9 suite of programs were carried out. Altogether, 34 conformers of the small glycidol-(water)(N) clusters with N=1, 2, 3, and 4 were considered. Geometry optimizations, harmonic frequency calculations, and the VA and VCD intensity predictions of these small glycidol-water clusters were performed at the B3LYP/6-311++G(d,p) level of theory using the GAUSSIAN 03 program package. Strong cooperative hydrogen bonding effects were detected in the larger glycidol-(water)(N) clusters. The population weighted VA and VCD spectra of each N group of glycidol (water)(N=1,2,3,4) were used to produce the simulated VA and VCD spectra, which are in good agreement with the experimental VA and VCD spectra. The study shows that all these clusters make important contributions to the observed spectra and are the most important species in the aqueous solution with complicated equilibriums among them.

  3. Probing chiral solute-water hydrogen bonding networks by chirality transfer effects: A vibrational circular dichroism study of glycidol in water

    NASA Astrophysics Data System (ADS)

    Yang, Guochun; Xu, Yunjie

    2009-04-01

    Vibrational absorption (VA) and vibrational circular dichroism (VCD) spectra of (S)-(-)-glycidol were measured in water with a concentration of 6.0M in the 1000-1750 cm-1 region. Prominent and complex VCD spectral features were detected at the water bending vibrational region. Our experimental results show that water molecules can become optically active through hydrogen bonding interactions with glycidol molecules. To model the glycidol-water hydrogen bonding network in the solution, molecular dynamics simulations using the AMBER9 suite of programs were carried out. Altogether, 34 conformers of the small glycidol-(water)N clusters with N =1, 2, 3, and 4 were considered. Geometry optimizations, harmonic frequency calculations, and the VA and VCD intensity predictions of these small glycidol-water clusters were performed at the B3LYP/6-311++G(d,p) level of theory using the GAUSSIAN 03 program package. Strong cooperative hydrogen bonding effects were detected in the larger glycidol-(water)N clusters. The population weighted VA and VCD spectra of each N group of glycidol (water)N=1,2,3,4 were used to produce the simulated VA and VCD spectra, which are in good agreement with the experimental VA and VCD spectra. The study shows that all these clusters make important contributions to the observed spectra and are the most important species in the aqueous solution with complicated equilibriums among them.

  4. Multidimensional modelling to investigate interspecies hydrogen transfer in anaerobic biofilms.

    PubMed

    Batstone, D J; Picioreanu, C; van Loosdrecht, M C M

    2006-09-01

    Anaerobic digestion is a multistep process, mediated by a functionally and phylogenetically diverse microbial population. One of the crucial steps is oxidation of organic acids, with electron transfer via hydrogen or formate from acetogenic bacteria to methanogens. This syntrophic microbiological process is strongly restricted by a thermodynamic limitation on the allowable hydrogen or formate concentration. In order to study this process in more detail, we developed an individual-based biofilm model which enables to describe the processes at a microbial resolution. The biochemical model is the ADM1, implemented in a multidimensional domain. With this model, we evaluated three important issues for the syntrophic relationship: (i) Is there a fundamental difference in using hydrogen or formate as electron carrier? (ii) Does a thermodynamic-based inhibition function produced substantially different results from an empirical function? and; (iii) Does the physical co-location of acetogens and methanogens follow directly from a general model. Hydrogen or formate as electron carrier had no substantial impact on model results. Standard inhibition functions or thermodynamic inhibition function gave similar results at larger substrate field grid sizes (> 10 microm), but at smaller grid sizes, the thermodynamic-based function reduced the number of cells with long interspecies distances (> 2.5 microm). Therefore, a very fine grid resolution is needed to reflect differences between the thermodynamic function, and a more generic inhibition form. The co-location of syntrophic bacteria was well predicted without a need to assume a microbiological based mechanism (e.g., through chemotaxis) of biofilm formation.

  5. EMR modelling of a hydrogen-based electrical energy storage

    NASA Astrophysics Data System (ADS)

    Agbli, K. S.; Hissel, D.; Péra, M.-C.; Doumbia, I.

    2011-05-01

    This paper deals with multi-physics modelling of the stationary system. This modelling is the first step to reach the fuel cell system dimensioning aim pursued. Besides this modelling approach based on the stationary energetic system, the novelty in this paper is both the new approach of the photovoltaic EMR modelling and the EMR of the hydrogen storage process. The granular modelling approach is used to model each component of the system. Considering a stand alone PEM fuel cell system, hydrogen is expected to be produced and stored on the spot from renewable energy (photovoltaic) in order to satisfy the fuel availability. In fact, to develop a generic and modular model, energetic macroscopic representation (EMR) is used as graphical modelling tool. Allowing to be easily grasped by the experts even not necessarily gotten used to the modelling formalism, EMR is helpful to model the multi-domains energetic chain. The solar energy through solar module is converted in electrical energy; part of this energy is transformed in chemical energy (hydrogen) thanks to an electrolyser. Then the hydrogen is compressed into a tank across a storage system. The latter part of the solar module energy is stored as electrical energy within supercapacitor or lead-acid battery. Using the modularity feature of the EMR, the whole system is modelled entity by entity; afterwards by putting them together the overall system has been reconstructed. According to the scale effect of the system entities, some simulation and/or experimental results are given. Given to the different aims which are pursued in the sustainable energy framework like prediction, control and optimisation, EMR modelling approach is a reliable option for the energy management in real time of energetic system in macroscopic point of view.

  6. Origin of Terrestrial Water: Hydrogen/Deuterium Fractionation into Earth's Core

    NASA Astrophysics Data System (ADS)

    Wu, J.; Buseck, P. R.

    2014-12-01

    Hydrogen isotopic compositions are among the most important constraints on the origin of Earth's water. Earth's bulk water content, which is small but not negligible, is significantly greater than what the thermal gradient of the solar nebula disk would suggest for planetesimal materials condensed at one astronomical unit. The proto-solar nebula is a likely source of early Earth's water, with probable contributions from one or more of the following: water-rich planetesimals, ordinary and carbonaceous meteorites, comets, asteroids, and interplanetary dust particles. However, all of these sources have been questioned, and the proposed proto-solar nebular origin has been disputed in light of the large difference in hydrogen isotopic composition between it and terrestrial water. Current opposition to the solar nebular hypothesis is based on the critical assumption that no processes in the interior of the early Earth changed the isotopic composition of hydrogen. Nevertheless, a hypothesized hydrogenation reaction of liquid iron (2Fe + xH2 ↔ 2FeHx) during core formation likely provided a fractionation mechanism between hydrogen and deuterium (D). We propose that modern D/H ratios at Earth's surface resulted from this isotopic fractionation and that terrestrial water originated from oxidation of proto-solar hydrogen dissolved in the magma ocean in the early Earth by coexisting oxides (such as FeO). Thus, the isotopic composition of water on Earth can be mainly explained by internal terrestrial processes.

  7. Quantum Calculations on Hydrogen Bonds in Certain Water Clusters Show Cooperative Effects

    SciTech Connect

    Znamenskiy, Vasiliy S.; Green, Michael E.

    2007-01-09

    Water molecules in clefts and small clusters are in a significantly different environment than those in bulk water. We have carried out ab initio calculations that demonstrate this in a series of clusters, showing that cooperative effects must be taken into account in the treatment of hydrogen bonds and water clusters in such bounded systems. Hydrogen bonds between water molecules in simulations are treated most frequently by using point-charge water potentials, such as TIP3P or SPC, sometimes with a polarizable extension. These produce excellent results in bulk water, for which they are calibrated. Clefts are different from bulk; it is necessary to look at smaller systems and investigate the effect of limited numbers of neighbors. We start with a study of isolated clusters of water with varying numbers of neighbors of a hydrogen-bonded pair of water molecules. The cluster as a whole is in a vacuum. The clusters are defined so as to provide the possible arrangements of nearest neighbors of a central hydrogen-bonded pair of water molecules. We then scan the length and angles of the central hydrogen bond of the clusters, using density functional theory, for each possible arrangement of donor and acceptor hydrogen bonds on the central hydrogen-bonding pair; the potential of interaction of two water molecules varies with the number of donor and acceptor neighbors. This also involves changes in charge on the water molecules as a function of bond length and changes in energy and length as a function of the number of neighboring donor and acceptor molecules. The energy varies by approximately 6 kBT near room temperature from the highest to the lowest energy when bond length alone is varied, enough to seriously affect simulations.

  8. Quantum Calculations on Hydrogen Bonds in Certain Water Clusters Show Cooperative Effects.

    SciTech Connect

    Znamenskiy, Vasiliy S.; Green, Michael E.

    2006-12-08

    The research described in this product was performed in part in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. Water molecules in clefts and small clusters are in a significantly different environment than those in bulk water. We have carried out ab initio calculations that demonstrate this in a series of clusters, showing that cooperative effects must be taken into account in the treatment of hydrogen bonds and water clusters in such bounded systems. Hydrogen bonds between water molecules in simulations are treated most frequently by using point-charge water potentials, such as TIP3P or SPC, sometimes with a polarizable extension. These produce excellent results in bulk water, for which they are calibrated. Clefts are different from bulk; it is necessary to look at smaller systems and investigate the effect of limited numbers of neighbors. We start with a study of isolated clusters of water with varying numbers of neighbors of a hydrogen-bonded pair of water molecules. The cluster as a whole is in a vacuum. The clusters are defined so as to provide the possible arrangements of nearest neighbors of a central hydrogen-bonded pair of water molecules. We then scan the length and angles of the central hydrogen bond of the clusters, using density functional theory, for each possible arrangement of donor and acceptor hydrogen bonds on the central hydrogen-bonding pair; the potential of interaction of two water molecules varies with the number of donor and acceptor neighbors. This also involves changes in charge on the water molecules as a function of bond length and changes in energy and length as a function of the number of neighboring donor and acceptor molecules. The energy varies by approximately 6 kBT near room temperature from the highest to the lowest energy when bond length alone is

  9. Preliminary ECLSS waste water model

    NASA Technical Reports Server (NTRS)

    Carter, Donald L.; Holder, Donald W., Jr.; Alexander, Kevin; Shaw, R. G.; Hayase, John K.

    1991-01-01

    A preliminary waste water model for input to the Space Station Freedom (SSF) Environmental Control and Life Support System (ECLSS) Water Processor (WP) has been generated for design purposes. Data have been compiled from various ECLSS tests and flight sample analyses. A discussion of the characterization of the waste streams comprising the model is presented, along with a discussion of the waste water model and the rationale for the inclusion of contaminants in their respective concentrations. The major objective is to establish a methodology for the development of a waste water model and to present the current state of that model.

  10. A statistical mechanical theory for a two-dimensional model of water.

    PubMed

    Urbic, Tomaz; Dill, Ken A

    2010-06-14

    We develop a statistical mechanical model for the thermal and volumetric properties of waterlike fluids. Each water molecule is a two-dimensional disk with three hydrogen-bonding arms. Each water interacts with neighboring waters through a van der Waals interaction and an orientation-dependent hydrogen-bonding interaction. This model, which is largely analytical, is a variant of the Truskett and Dill (TD) treatment of the "Mercedes-Benz" (MB) model. The present model gives better predictions than TD for hydrogen-bond populations in liquid water by distinguishing strong cooperative hydrogen bonds from weaker ones. We explore properties versus temperature T and pressure p. We find that the volumetric and thermal properties follow the same trends with T as real water and are in good general agreement with Monte Carlo simulations of MB water, including the density anomaly, the minimum in the isothermal compressibility, and the decreased number of hydrogen bonds for increasing temperature. The model reproduces that pressure squeezes out water's heat capacity and leads to a negative thermal expansion coefficient at low temperatures. In terms of water structuring, the variance in hydrogen-bonding angles increases with both T and p, while the variance in water density increases with T but decreases with p. Hydrogen bonding is an energy storage mechanism that leads to water's large heat capacity (for its size) and to the fragility in its cagelike structures, which are easily melted by temperature and pressure to a more van der Waals-like liquid state.

  11. A statistical mechanical theory for a two-dimensional model of water

    NASA Astrophysics Data System (ADS)

    Urbic, Tomaz; Dill, Ken A.

    2010-06-01

    We develop a statistical mechanical model for the thermal and volumetric properties of waterlike fluids. Each water molecule is a two-dimensional disk with three hydrogen-bonding arms. Each water interacts with neighboring waters through a van der Waals interaction and an orientation-dependent hydrogen-bonding interaction. This model, which is largely analytical, is a variant of the Truskett and Dill (TD) treatment of the "Mercedes-Benz" (MB) model. The present model gives better predictions than TD for hydrogen-bond populations in liquid water by distinguishing strong cooperative hydrogen bonds from weaker ones. We explore properties versus temperature T and pressure p. We find that the volumetric and thermal properties follow the same trends with T as real water and are in good general agreement with Monte Carlo simulations of MB water, including the density anomaly, the minimum in the isothermal compressibility, and the decreased number of hydrogen bonds for increasing temperature. The model reproduces that pressure squeezes out water's heat capacity and leads to a negative thermal expansion coefficient at low temperatures. In terms of water structuring, the variance in hydrogen-bonding angles increases with both T and p, while the variance in water density increases with T but decreases with p. Hydrogen bonding is an energy storage mechanism that leads to water's large heat capacity (for its size) and to the fragility in its cagelike structures, which are easily melted by temperature and pressure to a more van der Waals-like liquid state.

  12. A statistical mechanical theory for a two-dimensional model of water.

    PubMed

    Urbic, Tomaz; Dill, Ken A

    2010-06-14

    We develop a statistical mechanical model for the thermal and volumetric properties of waterlike fluids. Each water molecule is a two-dimensional disk with three hydrogen-bonding arms. Each water interacts with neighboring waters through a van der Waals interaction and an orientation-dependent hydrogen-bonding interaction. This model, which is largely analytical, is a variant of the Truskett and Dill (TD) treatment of the "Mercedes-Benz" (MB) model. The present model gives better predictions than TD for hydrogen-bond populations in liquid water by distinguishing strong cooperative hydrogen bonds from weaker ones. We explore properties versus temperature T and pressure p. We find that the volumetric and thermal properties follow the same trends with T as real water and are in good general agreement with Monte Carlo simulations of MB water, including the density anomaly, the minimum in the isothermal compressibility, and the decreased number of hydrogen bonds for increasing temperature. The model reproduces that pressure squeezes out water's heat capacity and leads to a negative thermal expansion coefficient at low temperatures. In terms of water structuring, the variance in hydrogen-bonding angles increases with both T and p, while the variance in water density increases with T but decreases with p. Hydrogen bonding is an energy storage mechanism that leads to water's large heat capacity (for its size) and to the fragility in its cagelike structures, which are easily melted by temperature and pressure to a more van der Waals-like liquid state. PMID:20550408

  13. Modeling the reaction kinetics of a hydrogen generator onboard a fuel cell -- Electric hybrid motorcycle

    NASA Astrophysics Data System (ADS)

    Ganesh, Karthik

    Owing to the perceived decline of the fossil fuel reserves in the world and environmental issues like pollution, conventional fuels may be replaced by cleaner alternative fuels. The potential of hydrogen as a fuel in vehicular applications is being explored. Hydrogen as an energy carrier potentially finds applications in internal combustion engines and fuel cells because it is considered a clean fuel and has high specific energy. However, at 6 to 8 per kilogram, not only is hydrogen produced from conventional methods like steam reforming expensive, but also there are storage and handling issues, safety concerns and lack of hydrogen refilling stations across the country. The purpose of this research is to suggest a cheap and viable system that generates hydrogen on demand through a chemical reaction between an aluminum-water slurry and an aqueous sodium hydroxide solution to power a 2 kW fuel cell on a fuel cell hybrid motorcycle. This reaction is essentially an aluminum-water reaction where sodium hydroxide acts as a reaction promoter or catalyst. The Horizon 2000 fuel cell used for this purpose has a maximum hydrogen intake rate of 28 lpm. The study focuses on studying the exothermic reaction between the reactants and proposes a rate law that best describes the rate of generation of hydrogen in connection to the surface area of aluminum available for the certain reaction and the concentration of the sodium hydroxide solution. Further, the proposed rate law is used in the simulation model of the chemical reactor onboard the hybrid motorcycle to determine the hydrogen flow rate to the fuel cell with time. Based on the simulated rate of production of hydrogen from the chemical system, its feasibility of use on different drive cycles is analyzed. The rate of production of hydrogen with a higher concentration of sodium hydroxide and smaller aluminum powder size was found to enable the installation of the chemical reactor on urban cycles with frequent stops and starts

  14. Photochemical formation of hydrogen peroxide in surface and ground waters exposed to sunlight

    SciTech Connect

    Cooper, W.J.; Zika, R.G.

    1983-05-13

    A rapid increase in the concentration of hydrogen peroxide was observed when samples of natural surface and ground water from various locations in the United States were exposed to sunlight. The hydrogen peroxide is photochemically generated from organic constitutents present in the water; humic materials are believed to be the primary agent producing the peroxide. Studies with superoxide dismutase suggest that the superoxide anion is the precursor of the peroxide.

  15. Acetonitrile-water hydrogen-bonded interaction: Matrix-isolation infrared and ab initio computation

    NASA Astrophysics Data System (ADS)

    Gopi, R.; Ramanathan, N.; Sundararajan, K.

    2015-08-01

    The 1:1 hydrogen-bonded complex of acetonitrile (CH3CN) and water (H2O) was trapped in Ar and N2 matrices and studied using infrared technique. Ab initio computations showed two types of complexes formed between CH3CN and H2O, a linear complex A with a Ctbnd N⋯H interaction between nitrogen of CH3CN and hydrogen of H2O and a cyclic complex B, in which the interactions are between the hydrogen of CH3CN with oxygen of H2O and hydrogen of H2O with π cloud of sbnd Ctbnd N of CH3CN. Vibrational wavenumber calculations revealed that both the complexes A and B were minima on the potential energy surface. Interaction energies computed at B3LYP/6-311++G(d,p) showed that linear complex A is more stable than cyclic complex B. Computations identified a blue shift of ∼11.5 cm-1 and a red shift of ∼6.5 cm-1 in the CN stretching mode for the complexes A and B, respectively. Experimentally, we observed a blue shift of ∼15.0 and ∼8.3 cm-1 in N2 and Ar matrices, respectively, in the CN stretching mode of CH3CN, which supports the formation of complex A. The Onsager Self Consistent Reaction Field (SCRF) model was used to explain the influence of matrices on the complexes A and B. To understand the nature of the interactions, Atoms in Molecules (AIM) and Natural Bond Orbital (NBO) analyses were carried out for the complexes A and B.

  16. Spontaneous hydrogen generation from organic-capped Al nanoparticles and water.

    PubMed

    Bunker, Christopher E; Smith, Marcus J; Fernando, K A Shiral; Harruff, Barbara A; Lewis, William K; Gord, Joseph R; Guliants, Elena A; Phelps, Donald K

    2010-01-01

    The development of technologies that would lead toward the adoption of a hydrogen economy requires readily available, safe, and environmentally friendly access to hydrogen. This can be achieved using the aluminum-water reaction; however, the protective nature and stability of aluminum oxide is a clear detriment to its application. Here, we demonstrate the spontaneous generation of hydrogen gas from ordinary room-temperature tap water when combined with aluminum-oleic acid core-shell nanoparticles obtained via sonochemistry. The reaction is found to be near-complete (>95% yield hydrogen) with a tunable rate from 6.4x10(-4) to 0.01 g of H2/s/g of Al and to yield an environmentally benign byproduct. The potential of these nanoparticles as a source of hydrogen gas for power generation is demonstrated using a simple fuel cell with an applied load.

  17. Mechanism for forming hydrogen chloride and sodium sulfate from sulfur trioxide, water, and sodium chloride

    NASA Technical Reports Server (NTRS)

    Anderson, A. B.

    1984-01-01

    A molecular orbital study of sodium sulfate and hydrogen chloride formation from sulfur trioxide, water, and sodium chloride shows no activation barrier, in agreement with recent experimental work of Kohl, Fielder, and Stearns. Two overall steps are found for the process. First, gas-phase water reacts with sulfur trioxide along a pathway involving a linear O-H-O transition state yielding closely associated hydroxyl and bisulfite which rearrange to become a hydrogen sulfate molecule. Then the hydrogen sulfate molecule transfers a hydrogen atom to a surface chloride in solid sodium chloride while an electron and a sodium cation simultaneously transfer to yield sodium bisulfate and gas-phase hydrogen chloride. This process repeats. Both of these steps represent well-known reactions for which mechanisms have not been previously determined.

  18. Drinking hydrogen water ameliorated cognitive impairment in senescence-accelerated mice.

    PubMed

    Gu, Yeunhwa; Huang, Chien-Sheng; Inoue, Tota; Yamashita, Takenori; Ishida, Torao; Kang, Ki-Mun; Nakao, Atsunori

    2010-05-01

    Hydrogen has been reported to have neuron protective effects due to its antioxidant properties, but the effects of hydrogen on cognitive impairment due to senescence-related brain alterations and the underlying mechanisms have not been characterized. In this study, we investigated the efficacies of drinking hydrogen water for prevention of spatial memory decline and age-related brain alterations using senescence-accelerated prone mouse 8 (SAMP8), which exhibits early aging syndromes including declining learning ability and memory. However, treatment with hydrogen water for 30 days prevented age-related declines in cognitive ability seen in SAMP8 as assessed by a water maze test and was associated with increased brain serotonin levels and elevated serum antioxidant activity. In addition, drinking hydrogen water for 18 weeks inhibited neurodegeneration in hippocampus, while marked loss of neurons was noted in control, aged brains of mice receiving regular water. On the basis of our results, hydrogen water merits further investigation for possible therapeutic/preventative use for age-related cognitive disorders.

  19. Drinking hydrogen water ameliorated cognitive impairment in senescence-accelerated mice.

    PubMed

    Gu, Yeunhwa; Huang, Chien-Sheng; Inoue, Tota; Yamashita, Takenori; Ishida, Torao; Kang, Ki-Mun; Nakao, Atsunori

    2010-05-01

    Hydrogen has been reported to have neuron protective effects due to its antioxidant properties, but the effects of hydrogen on cognitive impairment due to senescence-related brain alterations and the underlying mechanisms have not been characterized. In this study, we investigated the efficacies of drinking hydrogen water for prevention of spatial memory decline and age-related brain alterations using senescence-accelerated prone mouse 8 (SAMP8), which exhibits early aging syndromes including declining learning ability and memory. However, treatment with hydrogen water for 30 days prevented age-related declines in cognitive ability seen in SAMP8 as assessed by a water maze test and was associated with increased brain serotonin levels and elevated serum antioxidant activity. In addition, drinking hydrogen water for 18 weeks inhibited neurodegeneration in hippocampus, while marked loss of neurons was noted in control, aged brains of mice receiving regular water. On the basis of our results, hydrogen water merits further investigation for possible therapeutic/preventative use for age-related cognitive disorders. PMID:20490324

  20. Effect of species, life stage, and water temperature on the toxicity of hydrogen peroxide to fish

    USGS Publications Warehouse

    Rach, J.J.; Schreier, T.M.; Howe, G.E.; Redman, S.D.

    1997-01-01

    Hydrogen peroxide is a drug of low regulatory priority status that is effective in treating fish and fish eggs infected by fungi. However, only limited information is available to guide fish culturists in administering hydrogen peroxide to diseased fish. Laboratory tests were conducted to determine (1) the sensitivity of brown trout Salmo trutta, lake trout Salvelinus namaycush, fathead minnow Pimephales promelas, walleye Stizostedion vitreum, channel catfish Ictalurus punctatus, and bluegill Lepomis, machrochirus to hydrogen peroxide treatments; (2) the sensitivity of various life stages of rainbow trout Oncorhynchus mykiss to hydrogen peroxide treatments; and (3) the effect of water temperature on the acute toxicity of hydrogen peroxide to three fish species. Fish were exposed to hydrogen peroxide concentrations ranging from 100 to 5,000 mu L/L (ppm) for 15-min or 45-min treatments every other day for four consecutive treatments to determine the sensitivity of various species and life stages of fish. Except for walleye, most species of fish tested (less than or equal to 2 g) tolerated hydrogen peroxide of 1,000 mu L/L or greater. Walleyes were sensitive to hydrogen peroxide concentrations as low as 100 mu L/L. A correlation was found between the toxicity of hydrogen peroxide and the life stages of rainbow trout; larger fish were more sensitive. Generally, the toxicity of hydrogen peroxide increased for all species as water temperature increased. The results of these experiments demonstrate that it is important to consider the effects of species, life stage, and water temperature when conducting hydrogen peroxide treatments.

  1. Installations for separation of hydrogen isotopes by the method of chemical isotopic exchange in the `water-hydrogen` system

    SciTech Connect

    Andreev, B.M.; Sakharovsky, Y.A.; Rozenkevich, M.B.; Magomedbekov, E.P.; Park, Y.S.; Uborskiy, V.V.; Trenin, V.D.; Alekseev, I.A.; Fedorchenko, O.A.; Karpov, S.P.; Konoplev, K.A.

    1995-10-01

    The paper presents the results of more than a year of running a pilot setup for separation of hydrogen isotopes using catalytic isotopic exchange between hydrogen and liquid water. The setup is 5 m high, has the inner diameter of 28 mm, and is equipped with upper and lower reflux devices. The experimental values of HETP vary from 15 cm at T=333 K to 38 cm at T=293 K. The setup is capable of upgrading diluted heavy water with 85-90% deuterium content up to [D{sub 2}O] > 99.95 at.%, yielding daily 4 kg of the product. We also report on the progress in constructing a similar setup for eliminating tritium and an industrial setup, for which the one reported is a prototype. 10 refs., 1 fig., 3 tabs.

  2. Hydrogen from Water in a Novel Recombinant Cyanobacterial System

    SciTech Connect

    Weyman, Philip D; Smith, Hamillton O.

    2014-12-03

    Photobiological processes are attractive routes to renewable H2 production. With the input of solar energy, photosynthetic microbes such as cyanobacteria and green algae carry out oxygenic photosynthesis, using sunlight energy to extract protons and high energy electrons from water. These protons and high energy electrons can be fed to a hydrogenase system yielding H2. However, most hydrogen-evolving hydrogenases are inhibited by O2, which is an inherent byproduct of oxygenic photosynthesis. The rate of H2 production is thus limited. Certain photosynthetic bacteria are reported to have an O2-tolerant evolving hydrogenase, yet these microbes do not split water, and require other more expensive feedstocks. To overcome these difficulties, the goal of this work has been to construct novel microbial hybrids by genetically transferring O2-tolerant hydrogenases from other bacteria into a class of photosynthetic bacteria called cyanobacteria. These hybrid organisms will use the photosynthetic machinery of the cyanobacterial hosts to perform the water-oxidation reaction with the input of solar energy, and couple the resulting protons and high energy electrons to the O2-tolerant bacterial hydrogenase, all within the same microbe (Fig. 1). The ultimate goal of this work has been to overcome the sensitivity of the hydrogenase enzyme to O2 and address one of the key technological hurdles to cost-effective photobiological H2 production which currently limits the production of hydrogen in algal systems. In pursuit of this goal, work on this project has successfully completed many subtasks leading to a greatly increased understanding of the complicated [NiFe]-hydrogenase enzymes. At the beginning of this project, [NiFe] hydrogenases had never been successfully moved across wide species barriers and had never been heterologously expressed in cyanobacteria. Furthermore, the idea that whole, functional genes could be extracted from complicated, mixed-sequence meta-genomes was not

  3. Modeling hydrogen-cyanide absorption in fires

    NASA Technical Reports Server (NTRS)

    Cagliostro, D. E.; Islas, A.

    1981-01-01

    A mathematical model is developed for predicting blood concentrations of cyanide as functions of exposure time to constant levels of cyanide in the atmosphere. A toxic gas (which may form as a result of decomposition of combustion materials used in transportation vehicles) is breathed into the alveolar space and transferred from the alveolar space to the blood by a first-order process, dependent on the concentration of the toxicant in the alveolar space. The model predicts that blood cyanide levels are more sensitive to the breathing cycle than to blood circulation. A model estimate of the relative effects of CO and HCN atmospheres, generated in an experimental chamber with an epoxy polymer, shows that toxic effects of cyanide occur long before those of carbon monoxide.

  4. Probabilistic approach to the length-scale dependence of the effect of water hydrogen bonding on hydrophobic hydration.

    PubMed

    Djikaev, Y S; Ruckenstein, E

    2013-06-13

    We present a probabilistic approach to water-water hydrogen bonding that allows one to obtain an analytic expression for the number of bonds per water molecule as a function of both its distance to a hydrophobic particle and hydrophobe radius. This approach can be used in density functional theory (DFT) and computer simulations to examine particle size effects on the hydration of particles and on their solvent-mediated interaction. For example, it allows one to explicitly identify a water hydrogen bond contribution to the external potential, whereto a water molecule is subjected near a hydrophobe. The DFT implementation of the model predicts the hydration free energy per unit area of a spherical hydrophobe to be sharply sensitive to the hydrophobe radius for small radii and weakly sensitive thereto for large ones; this corroborates the vision of the hydration of small and large length-scale particles as occurring via different mechanisms. On the other hand, the model predicts that the hydration of even apolar particles of small enough radii may become thermodynamically favorable owing to the interplay of the energies of pairwise (dispersion) water-water and water-hydrophobe interactions. This sheds light on previous counterintuitive observations (both theoretical and simulational) that two inert gas molecules would prefer to form a solvent-separated pair rather than a contact one.

  5. Energetic Efficiency of Hydrogen Photoevolution by Algal Water Splitting

    PubMed Central

    Greenbaum, Elias

    1988-01-01

    Absolute thermodynamic efficiencies of conversion of light energy into chemical-free energy of molecular hydrogen by intact microalgae have been measured with an original physical measuring technique using a tin-oxide semiconducting gas sensor. Thin films of microalgae comprising of 5 to 20 cellular monolayers have been entrapped on filter paper, thereby constraining them in a well-defined circular geometry. Based on absolute light absorption of visible polychromatic illumination in the low-intensity region of the light saturation curve, conversion efficiencies of 6 to 24% have been obtained. These values are the highest ever measured for hydrogen evolution by green algae. PMID:19431729

  6. Determining the Spatial Influence of Imported and Local Water Sources to Municipal Tap Water Systems in the Southwestern United States Using Stable Isotopes of Oxygen and Hydrogen

    NASA Astrophysics Data System (ADS)

    Stalker, J. C.; Kennedy, C. D.; Bowen, G. J.

    2010-12-01

    In arid and semi-arid parts of the southwestern USA, imported waters derived from large canal systems like the Colorado River Aqueduct, Los Angeles Aqueduct, and the California Aqueduct service a significant component of the regional water needs. These waters are sourced primarily from high altitude snowmelt runoff and have relatively low annually averaged stable isotope ratios of hydrogen and oxygen (δD, δ18O) (-99 to -127‰, -10 to -13‰,) when compared to water derived from local rainfall and surface river sources (-35 to -42 ‰, -5 to -7‰) in southern California, western Arizona, and southern Nevada. The distinct isotope signatures of these two waters can be used to differentiate the two sources in tap water from municipal systems. In this study, samples of tap water, aqueduct water, and surface water were collected throughout the Southwest to produce a series of maps of the spatial influence of imported water in municipal tap water. This data was then be used to develop mixing models to determine the relative importance of imported water regionally, and track the prominence of the movement of these imported waters after initial use and addition to a system. The use of isotopes to trace this anthropogenically introduced water is of interest to water management, resolving water rights issues and disputes, as well as environmental applications in ecological studies. Additionally these tracing methods may be applied worldwide in areas where the movement and dynamics of hydrologic systems are either unclear or unknown.

  7. Three-dimensional "Mercedes-Benz" model for water.

    PubMed

    Dias, Cristiano L; Ala-Nissila, Tapio; Grant, Martin; Karttunen, Mikko

    2009-08-01

    In this paper we introduce a three-dimensional version of the Mercedes-Benz model to describe water molecules. In this model van der Waals interactions and hydrogen bonds are given explicitly through a Lennard-Jones potential and a Gaussian orientation-dependent terms, respectively. At low temperature the model freezes forming Ice-I and it reproduces the main peaks of the experimental radial distribution function of water. In addition to these structural properties, the model also captures the thermodynamical anomalies of water: The anomalous density profile, the negative thermal expansivity, the large heat capacity, and the minimum in the isothermal compressibility.

  8. Three-dimensional ``Mercedes-Benz'' model for water

    NASA Astrophysics Data System (ADS)

    Dias, Cristiano L.; Ala-Nissila, Tapio; Grant, Martin; Karttunen, Mikko

    2009-08-01

    In this paper we introduce a three-dimensional version of the Mercedes-Benz model to describe water molecules. In this model van der Waals interactions and hydrogen bonds are given explicitly through a Lennard-Jones potential and a Gaussian orientation-dependent terms, respectively. At low temperature the model freezes forming Ice-I and it reproduces the main peaks of the experimental radial distribution function of water. In addition to these structural properties, the model also captures the thermodynamical anomalies of water: The anomalous density profile, the negative thermal expansivity, the large heat capacity, and the minimum in the isothermal compressibility.

  9. Three-dimensional "Mercedes-Benz" model for water.

    PubMed

    Dias, Cristiano L; Ala-Nissila, Tapio; Grant, Martin; Karttunen, Mikko

    2009-08-01

    In this paper we introduce a three-dimensional version of the Mercedes-Benz model to describe water molecules. In this model van der Waals interactions and hydrogen bonds are given explicitly through a Lennard-Jones potential and a Gaussian orientation-dependent terms, respectively. At low temperature the model freezes forming Ice-I and it reproduces the main peaks of the experimental radial distribution function of water. In addition to these structural properties, the model also captures the thermodynamical anomalies of water: The anomalous density profile, the negative thermal expansivity, the large heat capacity, and the minimum in the isothermal compressibility. PMID:19673572

  10. Water dynamics: relation between hydrogen bond bifurcations, molecular jumps, local density & hydrophobicity.

    PubMed

    Titantah, John Tatini; Karttunen, Mikko

    2013-10-21

    Structure and dynamics of water remain a challenge. Resolving the properties of hydrogen bonding lies at the heart of this puzzle. We employ ab initio Molecular Dynamics (AIMD) simulations over a wide temperature range. The total simulation time was ≈ 2 ns. Both bulk water and water in the presence of a small hydrophobic molecule were simulated. We show that large-angle jumps and bond bifurcations are fundamental properties of water dynamics and that they are intimately coupled to both local density and hydrogen bond strength oscillations in scales from about 60 to a few hundred femtoseconds: Local density differences are the driving force for bond bifurcations and the consequent large-angle jumps. The jumps are intimately connected to the recently predicted hydrogen bond energy asymmetry. Our analysis also appears to confirm the existence of the so-called negativity track provided by the lone pairs of electrons on the oxygen atom to enable water rotation.

  11. Effects of hydrogen-rich water on aging periodontal tissues in rats

    PubMed Central

    Tomofuji, Takaaki; Kawabata, Yuya; Kasuyama, Kenta; Endo, Yasumasa; Yoneda, Toshiki; Yamane, Mayu; Azuma, Tetsuji; Ekuni, Daisuke; Morita, Manabu

    2014-01-01

    Oxidative damage is involved in age-related inflammatory reactions. The anti-oxidative effects of hydrogen-rich water suppress oxidative damage, which may aid in inhibiting age-related inflammatory reactions. We investigated the effects of drinking hydrogen-rich water on aging periodontal tissues in healthy rats. Four-month-old male Fischer 344 rats (n = 12) were divided into two groups: the experimental group (hydrogen-rich water treatment) and the control group (distilled water treatment). The rats consumed hydrogen-rich water or distilled water until 16 months of age. The experimental group exhibited lower periodontal oxidative damage at 16 months of age than the control group. Although protein expression of interleukin-1β did not differ, gene expression of Nod-like receptor protein 3 inflammasomes was activated in periodontal tissues from the experimental group as compared with the control group. Drinking hydrogen-rich water is proposed to have anti-aging effects on periodontal oxidative damage, but not on inflammatory reactions in healthy rats. PMID:24985521

  12. The Hydrogen Futures Simulation Model (H[2]Sim) technical description.

    SciTech Connect

    Jones, Scott A.; Kamery, William; Baker, Arnold Barry; Drennen, Thomas E.; Lutz, Andrew E.; Rosthal, Jennifer Elizabeth

    2004-10-01

    Hydrogen has the potential to become an integral part of our energy transportation and heat and power sectors in the coming decades and offers a possible solution to many of the problems associated with a heavy reliance on oil and other fossil fuels. The Hydrogen Futures Simulation Model (H2Sim) was developed to provide a high level, internally consistent, strategic tool for evaluating the economic and environmental trade offs of alternative hydrogen production, storage, transport and end use options in the year 2020. Based on the model's default assumptions, estimated hydrogen production costs range from 0.68 $/kg for coal gasification to as high as 5.64 $/kg for centralized electrolysis using solar PV. Coal gasification remains the least cost option if carbon capture and sequestration costs ($0.16/kg) are added. This result is fairly robust; for example, assumed coal prices would have to more than triple or the assumed capital cost would have to increase by more than 2.5 times for natural gas reformation to become the cheaper option. Alternatively, assumed natural gas prices would have to fall below $2/MBtu to compete with coal gasification. The electrolysis results are highly sensitive to electricity costs, but electrolysis only becomes cost competitive with other options when electricity drops below 1 cent/kWhr. Delivered 2020 hydrogen costs are likely to be double the estimated production costs due to the inherent difficulties associated with storing, transporting, and dispensing hydrogen due to its low volumetric density. H2Sim estimates distribution costs ranging from 1.37 $/kg (low distance, low production) to 3.23 $/kg (long distance, high production volumes, carbon sequestration). Distributed hydrogen production options, such as on site natural gas, would avoid some of these costs. H2Sim compares the expected 2020 per mile driving costs (fuel, capital, maintenance, license, and registration) of current technology internal combustion engine (ICE) vehicles

  13. Calorimetric Investigation of Hydrogen Bonding of Formamide and Its Methyl Derivatives in Organic Solvents and Water

    NASA Astrophysics Data System (ADS)

    Varfolomeev, Mikhail A.; Rakipov, Ilnaz T.; Solomonov, Boris N.

    2013-04-01

    Formamide and its derivatives have a large number of practical applications; also they are structural fragments of many biomolecules. Hydrogen bonds strongly affect their physicochemical properties. In the present work a calorimetric study of formamide and its methyl derivatives was carried out. Enthalpies of solution at infinite dilution of formamide, N-methylformamide, and N, N-dimethylformamide in organic solvents at 298.15 K were measured. The relationships between the obtained enthalpies of solvation and the structure of the studied compounds were observed. Hydrogen-bond enthalpies of amides with chlorinated alkanes, ethers, ketones, esters, nitriles, amines, alcohols, and water were determined. The strength of hydrogen bonds of formamide, N-methylformamide, and N, N-dimethylformamide with proton donor solvents is practically equal. Enthalpies of hydrogen bonds of formamide with the proton acceptor solvents are two times larger in magnitude than the enthalpies of N-methylformamide. The process of hydrogen bonding of amides in aliphatic alcohols and water is complicated. The obtained enthalpies of hydrogen bonding in aliphatic alcohols vary considerably from the amide structure due to the competition between solute-solvent and solvent-solvent hydrogen bonds. Fourier transform infrared spectroscopic measurements were carried out to explain the calorimetric data. Hydration enthalpies of methyl derivatives of formamides contain a contribution of the hydrophobic effect. New thermochemical data on the hydrogen bonding of formamides may be useful for predicting the properties of biomacromolecules.

  14. Antioxidant activities of nano-bubble hydrogen-dissolved water assessed by ESR and 2,2'-bipyridyl methods.

    PubMed

    Kato, Shinya; Matsuoka, Daigo; Miwa, Nobuhiko

    2015-08-01

    We prepared nano-bubble hydrogen-dissolved water (nano-H water) which contained hydrogen nano-bubbles of <717-nm diameter for 54% of total bubbles. In the DMPO-spin trap electron spin resonance (ESR) method, the DMPO-OH:MnO ratio, being attributed to amounts of hydroxyl radicals (OH), was 2.78 for pure water (dissolved hydrogen [DH]≤0.01 ppm, oxidation-reduction potential [ORP]=+324 mV), 2.73 for tap water (0.01 ppm, +286 mV), 2.93 for commercially available hydrogen water (0.075 ppm, +49 mV), and 2.66 for manufactured hydrogen water (0.788 ppm, -614 mV), whereas the nano-H water (0.678 ppm, -644 mV) exhibited 2.05, showing the superiority of nano-H water to other types of hydrogen water in terms of OH-scavenging activity. Then, the reduction activity of nano-H water was assessed spectrophotometrically by the 2,2'-bipyridyl method. Differential absorbance at 530 nm was in the order: 0.018 for pure water, 0.055 for tap water, 0.079 for nano-H water, 0.085 for commercially available hydrogen water, and 0.090 for manufactured hydrogen water, indicating a prominent reduction activity of hydrogen water and nano-H water against oxidation in ascorbate-coupled ferric ion-bipyridyl reaction. Thus, nano-H water has an improved antioxidant activity as compared to hydrogen water of similar DH-level, indicating the more marked importance of nano-bubbles rather than the concentration of hydrogen in terms of OH-scavenging.

  15. Antioxidant activities of nano-bubble hydrogen-dissolved water assessed by ESR and 2,2'-bipyridyl methods.

    PubMed

    Kato, Shinya; Matsuoka, Daigo; Miwa, Nobuhiko

    2015-08-01

    We prepared nano-bubble hydrogen-dissolved water (nano-H water) which contained hydrogen nano-bubbles of <717-nm diameter for 54% of total bubbles. In the DMPO-spin trap electron spin resonance (ESR) method, the DMPO-OH:MnO ratio, being attributed to amounts of hydroxyl radicals (OH), was 2.78 for pure water (dissolved hydrogen [DH]≤0.01 ppm, oxidation-reduction potential [ORP]=+324 mV), 2.73 for tap water (0.01 ppm, +286 mV), 2.93 for commercially available hydrogen water (0.075 ppm, +49 mV), and 2.66 for manufactured hydrogen water (0.788 ppm, -614 mV), whereas the nano-H water (0.678 ppm, -644 mV) exhibited 2.05, showing the superiority of nano-H water to other types of hydrogen water in terms of OH-scavenging activity. Then, the reduction activity of nano-H water was assessed spectrophotometrically by the 2,2'-bipyridyl method. Differential absorbance at 530 nm was in the order: 0.018 for pure water, 0.055 for tap water, 0.079 for nano-H water, 0.085 for commercially available hydrogen water, and 0.090 for manufactured hydrogen water, indicating a prominent reduction activity of hydrogen water and nano-H water against oxidation in ascorbate-coupled ferric ion-bipyridyl reaction. Thus, nano-H water has an improved antioxidant activity as compared to hydrogen water of similar DH-level, indicating the more marked importance of nano-bubbles rather than the concentration of hydrogen in terms of OH-scavenging. PMID:26042683

  16. Separating hydrogen and oxygen evolution in alkaline water electrolysis using nickel hydroxide

    PubMed Central

    Chen, Long; Dong, Xiaoli; Wang, Yonggang; Xia, Yongyao

    2016-01-01

    Low-cost alkaline water electrolysis has been considered a sustainable approach to producing hydrogen using renewable energy inputs, but preventing hydrogen/oxygen mixing and efficiently using the instable renewable energy are challenging. Here, using nickel hydroxide as a redox mediator, we decouple the hydrogen and oxygen production in alkaline water electrolysis, which overcomes the gas-mixing issue and may increase the use of renewable energy. In this architecture, the hydrogen production occurs at the cathode by water reduction, and the anodic Ni(OH)2 is simultaneously oxidized into NiOOH. The subsequent oxygen production involves a cathodic NiOOH reduction (NiOOH→Ni(OH)2) and an anodic OH− oxidization. Alternatively, the NiOOH formed during hydrogen production can be coupled with a zinc anode to form a NiOOH-Zn battery, and its discharge product (that is, Ni(OH)2) can be used to produce hydrogen again. This architecture brings a potential solution to facilitate renewables-to-hydrogen conversion. PMID:27199009

  17. Separating hydrogen and oxygen evolution in alkaline water electrolysis using nickel hydroxide.

    PubMed

    Chen, Long; Dong, Xiaoli; Wang, Yonggang; Xia, Yongyao

    2016-05-20

    Low-cost alkaline water electrolysis has been considered a sustainable approach to producing hydrogen using renewable energy inputs, but preventing hydrogen/oxygen mixing and efficiently using the instable renewable energy are challenging. Here, using nickel hydroxide as a redox mediator, we decouple the hydrogen and oxygen production in alkaline water electrolysis, which overcomes the gas-mixing issue and may increase the use of renewable energy. In this architecture, the hydrogen production occurs at the cathode by water reduction, and the anodic Ni(OH)2 is simultaneously oxidized into NiOOH. The subsequent oxygen production involves a cathodic NiOOH reduction (NiOOH→Ni(OH)2) and an anodic OH(-) oxidization. Alternatively, the NiOOH formed during hydrogen production can be coupled with a zinc anode to form a NiOOH-Zn battery, and its discharge product (that is, Ni(OH)2) can be used to produce hydrogen again. This architecture brings a potential solution to facilitate renewables-to-hydrogen conversion.

  18. Separating hydrogen and oxygen evolution in alkaline water electrolysis using nickel hydroxide

    NASA Astrophysics Data System (ADS)

    Chen, Long; Dong, Xiaoli; Wang, Yonggang; Xia, Yongyao

    2016-05-01

    Low-cost alkaline water electrolysis has been considered a sustainable approach to producing hydrogen using renewable energy inputs, but preventing hydrogen/oxygen mixing and efficiently using the instable renewable energy are challenging. Here, using nickel hydroxide as a redox mediator, we decouple the hydrogen and oxygen production in alkaline water electrolysis, which overcomes the gas-mixing issue and may increase the use of renewable energy. In this architecture, the hydrogen production occurs at the cathode by water reduction, and the anodic Ni(OH)2 is simultaneously oxidized into NiOOH. The subsequent oxygen production involves a cathodic NiOOH reduction (NiOOH-->Ni(OH)2) and an anodic OH- oxidization. Alternatively, the NiOOH formed during hydrogen production can be coupled with a zinc anode to form a NiOOH-Zn battery, and its discharge product (that is, Ni(OH)2) can be used to produce hydrogen again. This architecture brings a potential solution to facilitate renewables-to-hydrogen conversion.

  19. Chiral ammonium-capped rhodium(0) nanocatalysts: synthesis, characterization, and advances in asymmetric hydrogenation in neat water.

    PubMed

    Bilé, Elodie Guyonnet; Cortelazzo-Polisini, Elodie; Denicourt-Nowicki, Audrey; Sassine, Rita; Launay, Franck; Roucoux, Alain

    2012-01-01

    Optically active amphiphilic compounds derived from N-methylephedrine, N-methylprolinol, or cinchona derivatives possessing bromide or chiral lactate counterions were efficiently used as protective agents for rhodium(0) nanoparticles. The full characterization of these surfactants and the obtained nanocatalysts was performed by means of different techniques. These spherical nanoparticles, with sizes between 0.8-2.5 nm depending on the stabilizer, were evaluated in the hydrogenation of model substrates in neat water as a green solvent. The rhodium catalysts showed relevant kinetic properties, but modest enantiomeric excess values of up to 13 % in the hydrogenation of ethyl pyruvate. They were also investigated in the hydrogenation of disubstituted arenes, such as m-methylanisole, providing interesting catalytic activities and a preferential cis selectivity of around 80 %; however, no asymmetric induction was observed.

  20. Mechanism of Action of Sulforaphane as a Superoxide Radical Anion and Hydrogen Peroxide Scavenger by Double Hydrogen Transfer: A Model for Iron Superoxide Dismutase.

    PubMed

    Prasad, Ajit Kumar; Mishra, P C

    2015-06-25

    The mechanism of action of sulforaphane as a scavenger of superoxide radical anion (O2(•-)) and hydrogen peroxide (H2O2) was investigated using density functional theory (DFT) in both gas phase and aqueous media. Iron superoxide dismutase (Fe-SOD) involved in scavenging superoxide radical anion from biological media was modeled by a complex consisting of the ferric ion (Fe(3+)) attached to three histidine rings. Reactions related to scavenging of superoxide radical anion by sulforaphane were studied using DFT in the presence and absence of Fe-SOD represented by this model in both gas phase and aqueous media. The scavenging action of sulforaphane toward both superoxide radical anion and hydrogen peroxide was found to involve the unusual mechanism of double hydrogen transfer. It was found that sulforaphane alone, without Fe-SOD, cannot scavenge superoxide radical anion in gas phase or aqueous media efficiently as the corresponding reaction barriers are very high. However, in the presence of Fe-SOD represented by the above-mentioned model, the scavenging reactions become barrierless, and so sulforaphane scavenges superoxide radical anion by converting it to hydrogen peroxide efficiently. Further, sulforaphane was found to scavenge hydrogen peroxide also very efficiently by converting it into water. Thus, the mechanism of action of sulforaphane as an excellent antioxidant has been unravelled. PMID:26020652

  1. Mechanism of Action of Sulforaphane as a Superoxide Radical Anion and Hydrogen Peroxide Scavenger by Double Hydrogen Transfer: A Model for Iron Superoxide Dismutase.

    PubMed

    Prasad, Ajit Kumar; Mishra, P C

    2015-06-25

    The mechanism of action of sulforaphane as a scavenger of superoxide radical anion (O2(•-)) and hydrogen peroxide (H2O2) was investigated using density functional theory (DFT) in both gas phase and aqueous media. Iron superoxide dismutase (Fe-SOD) involved in scavenging superoxide radical anion from biological media was modeled by a complex consisting of the ferric ion (Fe(3+)) attached to three histidine rings. Reactions related to scavenging of superoxide radical anion by sulforaphane were studied using DFT in the presence and absence of Fe-SOD represented by this model in both gas phase and aqueous media. The scavenging action of sulforaphane toward both superoxide radical anion and hydrogen peroxide was found to involve the unusual mechanism of double hydrogen transfer. It was found that sulforaphane alone, without Fe-SOD, cannot scavenge superoxide radical anion in gas phase or aqueous media efficiently as the corresponding reaction barriers are very high. However, in the presence of Fe-SOD represented by the above-mentioned model, the scavenging reactions become barrierless, and so sulforaphane scavenges superoxide radical anion by converting it to hydrogen peroxide efficiently. Further, sulforaphane was found to scavenge hydrogen peroxide also very efficiently by converting it into water. Thus, the mechanism of action of sulforaphane as an excellent antioxidant has been unravelled.

  2. The effect of hydrogen bonds on diffusion mechanism of water inside single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Chen, Qu; Wang, Qi; Liu, Ying-Chun; Wu, Tao

    2014-06-01

    Nanopores can serve as a molecule channel for transport of fluid, where water diffusion differs remarkably from that of simple particles. Hydrogen bonds play an essential role in the diffusion anomaly. Detailed investigations are carried out on the systems of rigid (6, 6), (7, 7), (8, 8), (9, 9), and (10, 10) armchair carbon nanotubes, solvated with Lennard-Jones water fluids. The role of hydrogen bonds is examined by diffusivity statistics and animation snapshots. It is found that in small (6,6) CNT, hydrogen bonds tend to aggregate water into a wire and lead to rapid collective drift. Confinement can stabilize the hydrogen bond of water molecules and enhance its lifetime. In relatively smaller CNTs, the diffusion mechanism could be altered by the temperature. Moreover, in larger nanotubes hydrogen bonding network allows the water to form regional concentrated clusters. This allows water fluid in extremely low density exhibit rather slow self-diffusion motion. This fundamental study attempts to provide insights in understanding nanoscale delivery system in aqueous solution.

  3. Hydrogen bond cooperativity in water hexamers: atomic energy perspective of local stabilities.

    PubMed

    Albrecht, Laura; Chowdhury, Saptarshi; Boyd, Russell J

    2013-10-17

    Atomic energies are used to describe local stability in eight low-lying water hexamers: prism, cage, boat 1, boat 2, bag, chair, book 1, and book 2. The energies are evaluated using the quantum theory of atoms in molecules (QTAIM) at MP2/aug-cc-pVTZ geometries. It is found that the simple, stabilizing cooperativity observed in linear hydrogen-bonded water systems is diminished as clusters move from nearly planar to three-dimensional structures. The prism, cage, and bag clusters can have local water stabilities differing up to 5 kcal mol(-1) as a result of mixed cooperative and anticooperative interactions. At the atomic level, in many cases a water may have a largely stabilized oxygen atom but the net water stability will be diminished due to strong destabilization of the water's hydrogen atoms. Analysis of bond critical point (BCP) electron densities shows that the reduced cooperativity results in a decrease in hydrogen bond strength and an increase in covalent bond strength, most evident in the prism. The chair, with the greatest cooperativity, has the largest average electron density at the BCP per hydrogen bond, whereas the cage has the largest total value for BCP density at all hydrogen bonds. The cage also has the second largest value (after the prism) for covalent bond critical point densities and an oxygen-oxygen BCP which may factor into the experimentally observed stability of the structure.

  4. Computational study of the interaction of indole-like molecules with water and hydrogen sulfide.

    PubMed

    Cabaleiro-Lago, Enrique M; Rodríguez-Otero, Jesús; Peña-Gallego, Ángeles

    2011-10-01

    The characteristics of the interaction between water and hydrogen sulfide with indole and a series of analogs obtained by substituting the NH group of indole by different heteroatoms have been studied by means of ab initio calculations. In all cases, minima were found corresponding to structures where water and hydrogen sulfide interact by means of X-H···π contacts. The interaction energies for all these π complexes are quite similar, spanning from -13.5 to -18.8 kJ/mol, and exhibiting the stability sequence NH > CH(2) ≈ PH > Se ≈ S > O, for both water and hydrogen sulfide. Though interaction energies are similar, hydrogen sulfide complexes are slightly favored over their water counterparts when interacting with the π cloud. σ-Type complexes were also considered for the systems studied, but only in the case of water complexes this kind of complexes is relevant. Only for complexes formed by water and indole, a significantly more stable σ-type complex was found with an interaction energy amounting to -23.6 kJ/mol. Oxygen and phosphorous derivatives also form σ-type complexes of similar stability as that observed for π ones. Despite the similar interaction energies exhibited by complexes with water and hydrogen sulfide, the nature of the interaction is very different. For π complexes with water the main contributions to the interaction energy are electrostatic and dispersive contributing with similar amounts, though slightly more from electrostatics. On the contrary, in hydrogen sulfide complexes dispersion is by far the main stabilizing contribution. For the σ-type complexes, the interaction is clearly dominated by the electrostatic contribution, especially in the indole-water complex.

  5. A reaction-diffusion model of cytosolic hydrogen peroxide.

    PubMed

    Lim, Joseph B; Langford, Troy F; Huang, Beijing K; Deen, William M; Sikes, Hadley D

    2016-01-01

    As a signaling molecule in mammalian cells, hydrogen peroxide (H2O2) determines the thiol/disulfide oxidation state of several key proteins in the cytosol. Localization is a key concept in redox signaling; the concentrations of signaling molecules within the cell are expected to vary in time and in space in manner that is essential for function. However, as a simplification, all theoretical studies of intracellular hydrogen peroxide and many experimental studies to date have treated the cytosol as a well-mixed compartment. In this work, we incorporate our previously reported reduced kinetic model of the network of reactions that metabolize hydrogen peroxide in the cytosol into a model that explicitly treats diffusion along with reaction. We modeled a bolus addition experiment, solved the model analytically, and used the resulting equations to quantify the spatiotemporal variations in intracellular H2O2 that result from this kind of perturbation to the extracellular H2O2 concentration. We predict that micromolar bolus additions of H2O2 to suspensions of HeLa cells (0.8 × 10(9)cells/l) result in increases in the intracellular concentration that are localized near the membrane. These findings challenge the assumption that intracellular concentrations of H2O2 are increased uniformly throughout the cell during bolus addition experiments and provide a theoretical basis for differing phenotypic responses of cells to intracellular versus extracellular perturbations to H2O2 levels.

  6. Materials behavior in alternate (hydrogen) water chemistry in the Ringhals-1 boiling water reactor

    SciTech Connect

    Ljungberg, L.G.; Cubicciotti, D.; Trolle, M.

    1986-05-01

    In-plant studies on the intergranular stress corrosion cracking (IGSCC) of sensitized austenitic stainless steel (SS) have been performed at the Swedish Ringhals-1 boiling water reactor (BWR). The studies have covered the present (full-temperature (normal)) water chemistry (PWC) and the alternate (primary) water chemistry (AWC) with hydrogen addition. The test techniques applied were constant extension rate testing (CERT) and electrochemical potential (ECP) measurements. The program was covered by extensive environment monitoring. The results verify earlier laboratory studies which show that sensitized austenitic SS is susceptible to IGSCC in PWC, but not in AWC. Other pressure-bearing BWR construction materials are not adversely affected by AWC. The boundary conditions in Ringhals-1 have been established for an AWC, which is defined as an environment that does not produce IGSCC in sensitized SS. The results are compared with a similar program at Dresden-2, and the points of agreement and discordance in the results are discussed. The relevance of ECP measurements for the control of AWC is discussed.

  7. [Hydrogen and oxygen isotopes of lake water and geothermal spring water in arid area of south Tibet].

    PubMed

    Xiao, Ke; Shen, Li-Cheng; Wang, Peng

    2014-08-01

    The condition of water cycles in Tibet Plateau is a complex process, and the hydrogen and oxygen isotopes contain important information of this process. Based on the analysis of isotopic composition of freshwater lake, saltwater lake and geothermal water in the southern Tibetan Plateau, this study investigated water cycling, composition and variation of hydrogen and oxygen isotopes and the influencing factors in the study area. The study found that the mean values of delta18O and deltaD in Daggyaima lake water (-17.0 per thousand for delta18O and -138. 6 per thousand for deltaD), Langcuo lake water (-6.4 per thousand for delta18O and -87.4 per thousand for deltaD) and Dagejia geothermal water (-19.2 per thousand for delta18 and -158.2 per thousand for deltaD) all showed negative delta18O and deltaD values in Tibetan Plateau by the influence of altitude effects. Lake water and geothermal water were influenced by evaporation effects in inland arid area, and the slope of evaporation line was less than 8. Deuterium excess parameters of lake water and geothermal water were all negative. The temperature of geothermal reservoirs in Dagejia geothermal field was high,and oxygen shift existed in the relationship of hydrogen and oxygen isotopes.

  8. Vibrational absorption and vibrational circular dichroism spectra of leucine in water under different pH conditions: Hydrogen-bonding interactions with water

    NASA Astrophysics Data System (ADS)

    Poopari, Mohammad Reza; Zhu, Peiyan; Dezhahang, Zahra; Xu, Yunjie

    2012-11-01

    Vibrational absorption (VA) and vibrational circular dichroism (VCD) spectroscopy have been used to study leucine, a flexible branched-chain amino acid, in aqueous solution. The VA spectra in the range of 1800-1250 cm-1 of leucine in D2O under three representative pHs from strongly acidic (pH = 1), near neutral (pH = 6), to strongly basic (pH = 13), have been measured. The related VCD spectrum has been obtained under near neutral condition. Searches have been carried out to identify the most stable conformers of the Zwitterionic, protonated, and deprotonated forms of leucine in water. The geometry optimization, harmonic frequency calculations, and VA and VCD intensities have been computed at the B3LYP/6-311++G(d,p) level with the implicit polarizable continuum solvation model. While the observed VA spectra under three pHs can be well interpreted with the inclusion of the implicit solvation model, both implicit and explicit solvation models have been found to be crucial for the adequate interpretation of the complex VCD features observed. Molecular dynamics simulations and radial distribution functions have been used to aid the modeling of the leucine-(water)N clusters. It has been recognized that the insertion of a water molecule between the COO- and NH3+ functional groups in the explicit solvated clusters is critical to reproduce the VCD signatures observed. Furthermore, the inclusion of the implicit bulk water environment has been found to be essential to lock water molecules, which are directly hydrogen bonded to leucine, into the positions expected in solution. The application of the explicit and implicit solvation models simultaneously allows new insights into the hydrogen bonding network surrounding leucine in aqueous solution and the role of the surrounding bulk water in stabilizing such hydrogen-bonding network.

  9. Ammonium recovery from reject water combined with hydrogen production in a bioelectrochemical reactor.

    PubMed

    Wu, Xue; Modin, Oskar

    2013-10-01

    In this study, a bioelectrochemical reactor was investigated for simultaneous hydrogen production and ammonium recovery from reject water, which is an ammonium-rich side-stream produced from sludge treatment processes at wastewater treatment plants. In the anode chamber of the reactor, microorganisms converted organic material into electrical current. The electrical current was used to generate hydrogen gas at the cathode with 96±6% efficiency. Real or synthetic reject water was fed to the cathode chamber where proton reduction into hydrogen gas resulted in a pH increase which led to ammonium being converted into volatile ammonia. The ammonia could be stripped from the solution and recovered in acid. Overall, ammonium recovery efficiencies reached 94% with synthetic reject water and 79% with real reject water. This process could potentially be used to make wastewater treatment plants more resource-efficient and further research is warranted.

  10. Semirelativistic model for ionization of atomic hydrogen by electron impact

    SciTech Connect

    Attaourti, Y.; Taj, S.; Manaut, B.

    2005-06-15

    We present a semirelativistic model for the description of the ionization process of atomic hydrogen by electron impact in the first Born approximation by using the Darwin wave function to describe the bound state of atomic hydrogen and the Sommerfeld-Maue wave function to describe the ejected electron. This model, accurate to first order in Z/c in the relativistic correction, shows that, even at low kinetic energies of the incident electron, spin effects are small but not negligible. These effects become noticeable with increasing incident electron energies. All analytical calculations are exact and our semirelativistic results are compared with the results obtained in the nonrelativistic Coulomb Born approximation both for the coplanar asymmetric and the binary coplanar geometries.

  11. Modeling hydrogen isotope behavior in fusion plasma-facing components

    NASA Astrophysics Data System (ADS)

    Hu, Alice; Hassanein, Ahmed

    2014-03-01

    In this work, we focus on understanding hydrogen isotope retention in plasma-facing materials in fusion devices. Three common simulation methods are usually used to study this problem that includes Monte Carlo, molecular dynamics, and numerical/analytical methods. A system of partial differential equations describing deuterium behavior in tungsten under various conditions is solved numerically to explain recent data compared to other methods. The developed model of hydrogen retention in metals includes classic, intercrystalline and trapped-induced Gorsky effects. The bombardment and depth profile of 200 eV deuterium in single crystal tungsten are simulated and compared with recent work. The total deuterium retention at various temperatures and fluences are also calculated and compared with available data. The results are in reasonable agreement with data and therefore, this model can be used to estimate deuterium inventory and recovery in future fusion devices.

  12. Effect of Hydrogen Plasma on Model Corrosion Layers of Bronze

    NASA Astrophysics Data System (ADS)

    Fojtíková, P.; Sázavská, V.; Mika, F.; Krčma, F.

    2016-05-01

    Our work is about plasmachemical reduction of model corrosion layers. The model corrosion layers were produced on bronze samples with size of 10 × 10 × 5 mm3, containing Cu and Sn. Concentrated hydrochloric acid was used as a corrosive environment. The application of reduction process in low-pressure low-temperature hydrogen plasma followed. A quartz cylindrical reactor with two outer copper electrodes was used. Plasma discharge was generated in pure hydrogen by a RF generator. Each corroded sample was treated in different conditions (supplied power and a continual or pulsed regime with a variable duty cycle mode). Process monitoring was ensured by optical emission spectroscopy. After treatment, samples were analyzed by SEM and EDX.

  13. Multisample conversion of water to hydrogen by zinc for stable isotope determination

    USGS Publications Warehouse

    Kendall, C.; Coplen, T.B.

    1985-01-01

    Two techniques for the conversion of water to hydrogen for stable isotope ratio determination have been developed that are especially suited for automated multisample analysis. Both procedures involve reaction of zinc shot with a water sample at 450 ??C. in one method designed for water samples in bottles, the water is put in capillaries and is reduced by zinc in reaction vessels; overall savings in sample preparation labor of 75% have been realized over the standard uranium reduction technique. The second technique is for waters evolved under vacuum and is a sealed-tube method employing 9 mm o.d. quartz tubing. Problems inherent with zinc reduction include surface inhomogeneity of the zinc and exchange of hydrogen both with the zinc and with the glass walls of the vessels. For best results, water/zinc and water/glass surface area ratios of vessels should be kept as large as possible.

  14. High Efficiency Generation of Hydrogen Fuels Using Solar Thermochemical Splitting of Water

    SciTech Connect

    Heske, Clemens; Moujaes, Samir; Weimer, Alan; Wong, Bunsen; Siegal, Nathan; McFarland, Eric; Miller, Eric; Lewis, Michele; Bingham, Carl; Roth, Kurth; Sabacky, Bruce; Steinfeld, Aldo

    2011-09-29

    The objective of this work is to identify economically feasible concepts for the production of hydrogen from water using solar energy. The ultimate project objective was to select one or more competitive concepts for pilot-scale demonstration using concentrated solar energy. Results of pilot scale plant performance would be used as foundation for seeking public and private resources for full-scale plant development and testing. Economical success in this venture would afford the public with a renewable and limitless source of energy carrier for use in electric power load-leveling and as a carbon-free transportation fuel. The Solar Hydrogen Generation Research (SHGR) project embraces technologies relevant to hydrogen research under the Office of Hydrogen Fuel Cells and Infrastructure Technology (HFCIT) as well as concentrated solar power under the Office of Solar Energy Technologies (SET). Although the photoelectrochemical work is aligned with HFCIT, some of the technologies in this effort are also consistent with the skills and technologies found in concentrated solar power and photovoltaic technology under the Office of Solar Energy Technologies (SET). Hydrogen production by thermo-chemical water-splitting is a chemical process that accomplishes the decomposition of water into hydrogen and oxygen using only heat or a combination of heat and electrolysis instead of pure electrolysis and meets the goals for hydrogen production using only water and renewable solar energy as feed-stocks. Photoelectrochemical hydrogen production also meets these goals by implementing photo-electrolysis at the surface of a semiconductor in contact with an electrolyte with bias provided by a photovoltaic source. Here, water splitting is a photo-electrolytic process in which hydrogen is produced using only solar photons and water as feed-stocks. The thermochemical hydrogen task engendered formal collaborations among two universities, three national laboratories and two private sector

  15. Spectroscopic and thermodynamic properties of hydrogen bonded water molecules in binary liquid mixtures

    NASA Astrophysics Data System (ADS)

    Bricknell, B. C.; Ford, T. A.; Letcher, T. M.

    1997-03-01

    Some relationships have been found between the infrared spectroscopic properties of water molecules hydrogen bonded to a number of bases in binary liquid mixtures, and the partial eolar excess enthalpies at infinite dilution of water of the solutions. The results suggest a new approach to the use of the well-known Badger-Bauer relationship.

  16. Direct solar-thermal hydrogen production from water using nozzle/skimmer and glow discharge

    SciTech Connect

    Pyle, W.R.; Hayes, M.H.; Spivak, A.L.

    1996-12-31

    An investigation of direct solar-thermal hydrogen and oxygen production from water is described. Nozzle jets and skimmers have been used for separation of the products and suppression of recombination. The dissociation of water vapor and the separation of its products was conducted in plasma-enhanced, non-equilibrium glow discharges.

  17. Photogeneration of active formate decomposition catalysts to produce hydrogen from formate and water

    DOEpatents

    King, Jr., Allen D.; King, Robert B.; Sailers, III, Earl L.

    1983-02-08

    A process for producing hydrogen from formate and water by photogenerating an active formate decomposition catalyst from transition metal carbonyl precursor catalysts at relatively low temperatures and otherwise mild conditions is disclosed. Additionally, this process may be expanded to include the generation of formate from carbon monoxide and hydroxide such that the result is the water gas shift reaction.

  18. Hydrogen bonding in alcoholic beverages (distilled spirits) and water-ethanol mixtures.

    PubMed

    Nose, Akira; Hamasaki, Tensei; Hojo, Masashi; Kato, Ryosuke; Uehara, Kenta; Ueda, Tadaharu

    2005-09-01

    The hydrogen-bonding properties of water-ethanol of alcoholic beverages and water-ethanol mixtures of the corresponding ethanol contents were examined on the basis of OH proton NMR chemical shifts and the Raman OH stretching spectra of water and ethanol. Japanese shochu, an unaged distilled spirit of 25% (v/v) alcoholic content made from various grains, was provided for the samples; it is a high-purity spirit as it contains only small amounts of dissolved components, like typical vodka, gin, and white rum. The hydrogen-bonding structure in shochu containing some acids was found to be different from that of the water-ethanol mixture with corresponding ethanol content. It was concluded that, by the presence of small amounts of organic acids, the water-ethanol hydrogen-bonding structure was strengthened, at the same time, the proton exchange between water and ethanol molecules was promoted in shochu, compared with the water-ethanol mixture. The NMR chemical shifts of fruit cocktail drinks suggested that the hydrogen bonding of water-ethanol in the solution was developed by organic acids and (poly)phenols from fruit juices. PMID:16131113

  19. Modeling uncertainty: quicksand for water temperature modeling

    USGS Publications Warehouse

    Bartholow, John M.

    2003-01-01

    Uncertainty has been a hot topic relative to science generally, and modeling specifically. Modeling uncertainty comes in various forms: measured data, limited model domain, model parameter estimation, model structure, sensitivity to inputs, modelers themselves, and users of the results. This paper will address important components of uncertainty in modeling water temperatures, and discuss several areas that need attention as the modeling community grapples with how to incorporate uncertainty into modeling without getting stuck in the quicksand that prevents constructive contributions to policy making. The material, and in particular the reference, are meant to supplement the presentation given at this conference.

  20. Modeling hydrogen diffusion for solar cell passivation and process optimization

    NASA Astrophysics Data System (ADS)

    Zhang, Yi

    A diffusion model for hydrogen (H) in crystalline silicon was established which takes into account the charged state conversion, junction field, mobile traps, and complex formation and dissociation at dopant and trap sites. Carrier exchange among the various charged species is a "fast" process compared to the diffusion process. A numerical method was developed to solve the densities of various charged species from the Poisson's equation that involves shallow-level dopants and one "negative U" impurity, e.g., H. Time domain implicit method was adopted in finite difference scheme to solve the fully coupled equations. Limiting versions of the model were applied to the problems that are of interest to photovoltaics. Simplified trap-limited model was used to describe the low temperature diffusion profiles, assuming process-induced traps, a constant bulk trap level, and trapping/detrapping mechanisms. The results of the simulation agreed with those obtained from experiments. The best fit yielded a low surface free H concentration, Cs, (˜10 14 cm-3) from high temperature extrapolated diffusivity value. In the case of ion beam hydrogenation, mobile traps needed to be considered. PAS analysis showed the existence of vacancy-type defects in implanted Si substrates. Simulation of hydrogen diffusion in p-n junction was first attempted in this work. The order of magnitude of Cs (˜10 14 cm-3) was confirmed. Simulation results showed that the preferred charged state of H is H- (H +) in n- (p-) side of the junction. The accumulation of H- (H+) species on n+ (p+) side of the n+-p (p+-n) junction was observed, which could retard the diffusion in junction. The diffusion of hydrogen through heavily doped region in a junction is trap-limited. Several popular hydrogenation techniques were evaluated by means of modeling and experimental observations. In particular, PECVD followed by RTP hydrogenation was found to be two-step process: PECVD deposition serves as a predeposition step of H

  1. Roles of molecular hydrogen and a hydrogen donor solvent in the cracking of moal model compounds with dispersed catalysts

    SciTech Connect

    Suzuki, Toshimitsu; Ikenaga, Na-oki; Sakota, Takahiro

    1994-12-31

    It is of great importance to evaluate quantitative hydrogen transfer process by using coal model compounds with a hydrogen-donor solvent. Cronauer el al. showed that in the cracking of benzyl phenyl ether the hydrogen required to stabilize free radicals comes from a donor solvent or intramolecular rearrangement and not from gaseous hydrogen in the absence of a catalyst. Korobkov et al. and Schlosberg et al. showed that the thermolysis of benzyl phenyl ether and dibenzyl ether were accomplished by intramolecular rearrangements. Yokokawa et al. reported that tetralin retarded the catalyzed hydrocracking of coal model compounds containing C-C and C-O bonds. However, few studies dealt with quantitative discussion in the hydrogen transfer process from a hydrogen-donor solvent or molecular hydrogen to free radicals derived from a model compound except a series of studies by Nicole and co-workers. On the other hand, it is well known that the amount of naphthalene produced from tetralin decreases after the liquefaction of coal in tetralin with catalyst as compared to the liquefaction in the absence of catalysts. To account for this, two mechanisms are proposed. One is that the catalyst hydrogenates naphthalene produced from tetralin, and the other is that the catalyst promotes the direct hydrogen transfer from molecular hydrogen to free radicals. The purpose of this work is to elucidate the role of catalyst and tetralin by means of the quantitative treatment of the hydrogen transfer reaction stabilizing thermally decomposed free radicals. Cracking of benzyl phenyl ether (BPE), dibenzyl ether (DBE), 1,2-diphenylethane, and 1,3-diphenylpropane was studied in tetralin in the presence of highly disposed catalyst.

  2. Microbicidal efficacy of an advanced oxidation process using ozone/hydrogen peroxide in water treatment.

    PubMed

    Sommer, R; Pribil, W; Pfleger, S; Haider, T; Werderitsch, M; Gehringer, P

    2004-01-01

    The combined application of ozone and hydrogen peroxide represents a kind of advanced oxidation for water treatment. The radicals that are generated during the process are used for the degradation of organic pollutants from groundwater and industrial effluents. The aim of our study was to evaluate the possible microbicidal, and particularly virucidal, efficacy of such a process, since no substantial data were available. The investigations were performed at a pilot plant installed for the elimination of perchloroethylene from polluted groundwater (reduction efficacy for perchloroethylene from 26 microg/L to 5 microg/L). To enable a reliable evaluation of the microbicidal effect, a set of alternate test organisms was used. As model viruses we chose bacteriophages MS2 (F+ specific, single-stranded RNA), phiX174 (single-stranded DNA) and PRD-1 (coated, double-stranded DNA). Furthermore, spores of Bacillus subtilis were included as possible surrogates for protozoa and Escherichia coli as representative for traditional indicator bacteria used in water analysis. The microbicidal efficiency was compared to the inactivation by means of ozone under two standard conditions (20 degrees C): (a) 0.4 mg/L residual after 4 min and (b) 0.1 mg/L residual after 10 min. Surprisingly, a good microbicidal effect of the ozone/hydrogen peroxide process was found. This was somewhat unexpected, because we had assumed that the disinfection potential of ozone would have been interfered with by the presence of hydrogen peroxide. Escherichia coli and the three test viruses revealed a reduction of about 6-log. In contrast, spores of Bacillus subtilis showed after the total process a reduction of 0.4-log. These results matched the effect of the ozone treatment (a) with a residual of 0.4 mg/L after 4 min contact time (20 degrees C). The test condition (b) with a residual of 0.1 mg/L ozone after a contact time of 10 min at 20 degrees C gave a higher reduction of the B. subtilis spores (1.5-log

  3. Hydrogen production by high temperature water splitting using electron conducting membranes

    DOEpatents

    Balachandran, Uthamalingam; Wang, Shuangyan; Dorris, Stephen E.; Lee, Tae H.

    2006-08-08

    A device and method for separating water into hydrogen and oxygen is disclosed. A first substantially gas impervious solid electron-conducting membrane for selectively passing protons or hydrogen is provided and spaced from a second substantially gas impervious solid electron-conducting membrane for selectively passing oxygen. When steam is passed between the two membranes at dissociation temperatures the hydrogen from the dissociation of steam selectively and continuously passes through the first membrane and oxygen selectively and continuously passes through the second membrane, thereby continuously driving the dissociation of steam producing hydrogen and oxygen. The oxygen is thereafter reacted with methane to produce syngas which optimally may be reacted in a water gas shift reaction to produce CO2 and H2.

  4. High Efficiency Hydrogen Production from Nuclear Energy: Laboratory Demonstration of S-I Water-Splitting

    SciTech Connect

    Buckingham, R.; Russ, B.; Brown, L.; Besenbruch, G.E.; Gelbard, F.; Pickard F.S.; Leybros, J.; Le Duigou, A.; Borgard, J.M.

    2004-11-30

    The objective of the French CEA, US-DOE INERI project is to perform a lab scale demonstration of the sulfur iodine (S-I) water splitting cycle, and assess the potential of this cycle for application to nuclear hydrogen production. The project will design, construct and test the three major component reaction sections that make up the S-I cycle. The CEA will design and test the prime (Bunsen) reaction section. General Atomics will develop and test the HI decomposition section, and SNL will develop and test the H2SO4 decomposition section. Activities for this period included initial program coordination and information exchange, the development of models and analyses that will support the design of the component sections, and preliminary designs for the component reaction sections. The sections are being designed to facilitate integration into a closed loop demonstration in a later stage of the program.

  5. Three-dimensional computer modeling of hydrogen injection and combustion

    SciTech Connect

    Johnson, N.L.; Amsden, A.A.; Naber, J.D.; Siebers, D.L.

    1995-02-01

    The hydrodynamics of hydrogen gas injection into a fixed-volume combustion chamber is analyzed and simulated using KIVA-3, a three-dimensional, reactive flow computer code. Comparisons of the simulation results are made to data obtained at the Combustion Research Facility at Sandia National Laboratory-California (SNL-CA). Simulation of the gas injection problem is found to be of comparable difficulty as the liquid fuel injection in diesel engines. The primary challenge is the large change of length scale from the flow of gas in the orifice to the penetration in the combustion chamber. In the current experiments, the change of length scale is about 4,000. A reduction of the full problem is developed that reduces the change in length scale in the simulation to about 400, with a comparable improvement in computational times. Comparisons of the simulation to the experimental data shows good agreement in the penetration history and pressure rise in the combustion chamber. At late times the comparison is sensitive to the method of determination of the penetration in the simulations. In a comparison of the combustion modeling of methane and hydrogen, hydrogen combustion is more difficult to model, and currently available kinetic models fail to predict the observed autoignition delay at these conditions.

  6. Influence of dissolved hydrogen on nickel alloy SCC in high temperature water

    SciTech Connect

    Morton, D.S.; Attanasio, S.A.; Fish, J.S.; Schurman, M.K.

    1999-03-01

    Stress corrosion crack growth rate (SCCGR) tests of nickel alloys were conducted at 338 C and 360 C as a function of the hydrogen concentration in high purity water. Test results identified up to a 7 x effect of hydrogen levels in the water on crack growth rate, where the lowest growth rates were associated with the highest hydrogen levels. At 338 C, the crack growth rate decreased as the hydrogen levels were increased. However, different results were observed for the test conducted at 360 C. As the hydrogen level was increased in the 360 C tests, the crack growth rate initially increased, a maximum was exhibited at a hydrogen level of {approximately} 20 scc/kg, and thereafter the crack growth rate decreased. Based on this testing and a review of the commercial literature, the thermodynamic stability of nickel oxide, not the dissolved hydrogen concentration, was identified as a fundamental parameter influencing the susceptibility of nickel alloys to SCC. These test results are discussed in relation to the accuracy of extrapolating high temperature SCC results to lower temperatures.

  7. Influence of dissolved hydrogen on nickel alloy SCC in high temperature water

    SciTech Connect

    Morton, D.S.; Attanasio, S.A.; Fish, J.S.; Schurman, M.K.

    1999-07-01

    Stress corrosion crack growth rate (SCCGR) tests of nickel alloys were conducted at 338 C and 360 C as a function of the hydrogen concentration in high purity water. Test results identified up to a 7x effect of hydrogen levels in the water on crack growth rate, where the lowest growth rates were associated with the highest hydrogen levels. At 338 C, the crack growth rate decreased as the hydrogen levels were increased. However, different results were observed for the test conducted at 360 C. As the hydrogen level was increased in the 360 C tests, the crack growth rate initially increased, a maximum was exhibited at a hydrogen level of {approximately}20 scc/kg, and thereafter the crack growth rate decreased. Based on this testing and a review of the commercial literature, the thermodynamic stability of nickel oxide, not the dissolved hydrogen concentration, was identified as a fundamental parameter influencing the susceptibility of nickel alloys to SCC. These test results are discussed in relation to the accuracy of extrapolating high temperature SCC results to lower temperatures.

  8. On the formation of hydrogen gas on copper in anoxic water

    NASA Astrophysics Data System (ADS)

    Johansson, Adam Johannes; Lilja, Christina; Brinck, Tore

    2011-08-01

    Hydrogen gas has been detected in a closed system containing copper and pure anoxic water [P. Szakalos, G. Hultquist, and G. Wikmark, Electrochem. Solid-State Lett. 10, C63 (2007), 10.1149/1.2772085 and G. Hultquist, P. Szakalos, M. Graham, A. Belonoshko, G. Sproule, L. Grasjo, P. Dorogokupets, B. Danilov, T. Aastrup, G. Wikmark, G. Chuah, J. Eriksson, and A. Rosengren, Catal. Lett. 132, 311 (2009), 10.1007/s10562-009-0113-x]. Although bulk corrosion into any of the known phases of copper is thermodynamically forbidden, the present paper shows how surface reactions lead to the formation of hydrogen gas in limited amounts. While water cleavage on copper has been reported and investigated before, formation of molecular hydrogen at a single-crystal Cu[100] surface is here explored using density functional theory and transition state theory. It is found that although solvent catalysis seems possible, the fastest route to the formation of molecular hydrogen is the direct combination of hydrogen atoms on the copper surface. The activation free energy (△Gs‡f) of hydrogen formation in condensed phase is 0.70 eV, which corresponds to a rate constant of 10 s-1 at 298.15 K, i.e., a relatively rapid process. It is estimated that at least 2.4 ng hydrogen gas could form per cm2 on a perfect copper surface.

  9. Exploring the activity of a novel Au/TiC(001) model catalyst towards CO and CO2 hydrogenation

    NASA Astrophysics Data System (ADS)

    Asara, Gian Giacomo; Ricart, Josep M.; Rodriguez, Jose A.; Illas, Francesc

    2015-10-01

    Small metallic nanoparticles supported on transition metal carbides exhibit an unexpected high activity towards a series of chemical reactions. In particular, the Au/TiC system has proven to be an excellent catalyst for SO2 decomposition, thiophene hydrodesulfurization, O2 and H2 dissociation and the water gas shift reaction. Recent studies have shown that Au/TiC is a very good catalyst for the reverse water-gas shift (CO2 + H2 → CO + H2O) and CO2 hydrogenation to methanol. The present work further expands the range of applicability of this novel type of systems by exploring the catalytic activity of Au/TiC towards the hydrogenation of CO or CO2 with periodic density functional theory (DFT) calculations on model systems. Hydrogen dissociates easily on Au/TiC but direct hydrogenation of CO to methanol is hindered by very high activation barriers implying that, on this model catalyst, methanol production from CO2 involves the hydrogenation of a HOCO-like intermediate. When dealing with mixtures of syngas (CO/CO2/H2/H2O), CO could be transformed into CO2 through the water gas shift reaction with subsequent hydrogenation of CO2 to methanol.

  10. Enhanced photocatalytic hydrogen evolution by combining water soluble graphene with cobalt salts.

    PubMed

    Wang, Jing; Feng, Ke; Zhang, Hui-Hui; Chen, Bin; Li, Zhi-Jun; Meng, Qing-Yuan; Zhang, Li-Ping; Tung, Chen-Ho; Wu, Li-Zhu

    2014-01-01

    There is tremendous effort put in the pursuit for cheap and efficient catalysts for photocatalytic hydrogen evolution systems. Herein, we report an active catalyst that uses the earth-abundant element cobalt and water-dispersible sulfonated graphene. The photocatalytic hydrogen evolution activity of the catalyst was tested by using triethanolamine (TEOA) as electron donor and eosin Y (EY) as the photosensitizer under LED irradiation at 525 nm. Hydrogen was produced constantly even after 20 h, and the turnover number (TON) reached 148 (H2/Co) in 4 h with respect to the initial concentration of the added cobalt salts was shown to be 5.6 times larger than that without graphene.

  11. Heterogeneous photocatalytic production of hydrogen and methane from ethanol and water

    NASA Astrophysics Data System (ADS)

    Sakata, Tadayoshi; Kawai, Tomoji

    1981-06-01

    Xe lamp irradiation of various TiO 2 photocatalysts suspended in an ethanol-water mixture can produce hydrogen, methane and acetaldehyde at room temperature. The quantum yield of hydrogen production was increased greatly by supporting metals or metal complexes on the TiO 2 surface, amounting to 38% for a Pt-TiO 2 photocatalyst. A mechanism of the photocatalytic reactions is discussed.

  12. Bioremediation of chlorobenzene-contaminated ground water in an in situ reactor mediated by hydrogen peroxide.

    PubMed

    Vogt, Carsten; Alfreider, Albin; Lorbeer, Helmut; Hoffmann, Doreen; Wuensche, Lothar; Babel, Wolfgang

    2004-01-01

    New in situ reactive barrier technologies were tested nearby a local aquifer in Bitterfeld, Saxonia-Anhalt, Germany, which is polluted mainly by chlorobenzene (CB), in concentrations up to 450 microM. A reactor filled with original aquifer sediment was designed for the microbiological remediation of the ground water by indigenous bacterial communities. Two remediation variants were examined: (a) the degradation of CB under anoxic conditions in the presence of nitrate; (b) the degradation of CB under mixed electron acceptor conditions (oxygen+nitrate) using hydrogen peroxide as the oxygen-releasing compound. Under anoxic conditions, no definite degradation of CB was observed. Adding hydrogen peroxide (2.94 mM) and nitrate (2 mM) led to the disappearance of CB (ca. 150 microM) in the lower part of the reactor, accompanied by a strong increase of the number of cultivable aerobic CB degrading bacteria in reactor water and sediment samples, indicating that CB was degraded mainly by productive bacterial metabolism. Several aerobic CB degrading bacteria, mostly belonging to the genera Pseudomonas and Rhodococcus, were isolated from reactor water and sediments. In laboratory experiments with reactor water, oxygen was rapidly released by hydrogen peroxide, whereas biotic-induced decomposition reactions of hydrogen peroxide were almost four times faster than abiotic-induced decomposition reactions. A clear chemical degradation of CB mediated by hydrogen peroxide was not observed. CB was also completely degraded in the reactor after reducing the hydrogen peroxide concentration to 880 microM. The CB degradation completely collapsed after reducing the hydrogen peroxide concentration to 440 microM. In the following, the hydrogen peroxide concentrations were increased again (to 880 microM, 2.94 mM, and 880 microM, respectively), but the oxygen demand for CB degradation was higher than observed before, indicating a shift in the bacterial population. During the whole experiment

  13. Hydrogen-bonding Interactions between Apigenin and Ethanol/Water: A Theoretical Study

    PubMed Central

    Zheng, Yan-Zhen; Zhou, Yu; Liang, Qin; Chen, Da-Fu; Guo, Rui; Lai, Rong-Cai

    2016-01-01

    In this work, hydrogen-bonding interactions between apigenin and water/ethanol were investigated from a theoretical perspective using quantum chemical calculations. Two conformations of apigenin molecule were considered in this work. The following results were found. (1) For apigenin monomer, the molecular structure is non-planar, and all of the hydrogen and oxygen atoms can be hydrogen-bonding sites. (2) Eight and seven optimized geometries are obtained for apigenin (I)–H2O/CH3CH2OH and apigenin (II)–H2O/CH3CH2OH complexes, respectively. In apigenin, excluding the aromatic hydrogen atoms in the phenyl substituent, all other hydrogen atoms and the oxygen atoms form hydrogen-bonds with H2O and CH3CH2OH. (3) In apigenin–H2O/CH3CH2OH complexes, the electron density and the E(2) in the related localized anti-bonding orbital are increased upon hydrogen-bond formation. These are the cause of the elongation and red-shift of the X−H bond. The sum of the charge change transfers from the hydrogen-bond acceptor to donor. The stronger interaction makes the charge change more intense than in the less stable structures. (4) Most of the hydrogen-bonds in the complexes are electrostatic in nature. However, the C4−O5···H, C9−O4···H and C13−O2···H hydrogen-bonds have some degree of covalent character. Furthermore, the hydroxyl groups of the apigenin molecule are the preferred hydrogen-bonding sites. PMID:27698481

  14. Hydrogen-bonding Interactions between Apigenin and Ethanol/Water: A Theoretical Study

    NASA Astrophysics Data System (ADS)

    Zheng, Yan-Zhen; Zhou, Yu; Liang, Qin; Chen, Da-Fu; Guo, Rui; Lai, Rong-Cai

    2016-10-01

    In this work, hydrogen-bonding interactions between apigenin and water/ethanol were investigated from a theoretical perspective using quantum chemical calculations. Two conformations of apigenin molecule were considered in this work. The following results were found. (1) For apigenin monomer, the molecular structure is non-planar, and all of the hydrogen and oxygen atoms can be hydrogen-bonding sites. (2) Eight and seven optimized geometries are obtained for apigenin (I)–H2O/CH3CH2OH and apigenin (II)–H2O/CH3CH2OH complexes, respectively. In apigenin, excluding the aromatic hydrogen atoms in the phenyl substituent, all other hydrogen atoms and the oxygen atoms form hydrogen-bonds with H2O and CH3CH2OH. (3) In apigenin–H2O/CH3CH2OH complexes, the electron density and the E(2) in the related localized anti-bonding orbital are increased upon hydrogen-bond formation. These are the cause of the elongation and red-shift of the X‑H bond. The sum of the charge change transfers from the hydrogen-bond acceptor to donor. The stronger interaction makes the charge change more intense than in the less stable structures. (4) Most of the hydrogen-bonds in the complexes are electrostatic in nature. However, the C4‑O5···H, C9‑O4···H and C13‑O2···H hydrogen-bonds have some degree of covalent character. Furthermore, the hydroxyl groups of the apigenin molecule are the preferred hydrogen-bonding sites.

  15. Raman spectra from symmetric hydrogen bonds in water by high-intensity laser-induced breakdown.

    PubMed

    Men, Zhiwei; Fang, Wenhui; Li, Dongfei; Li, Zhanlong; Sun, Chenglin

    2014-01-01

    Raman spectra of ice VII and X were investigated using strong plasma shockwave generated by laser-induced breakdown (LIB) in liquid water. Simultaneously, the occurrence of the hydrogen emission lines of 656 nm (Hα), 486 nm (Hβ), 434 nm (Hγ) and 410 nm (Hδ) was observed. At 5 × 10(12) W/cm(2) optical power density, the O-H symmetric stretching, translational and librational modes of ice VII and a single peak at 785 cm(-1) appeared in the spectra. The band was assigned to the Raman-active O-O mode of the monomolecular phase, which was the symmetric hydrogen bond of cuprite ice X. The spectra indicated that ice VII and X structure were formed, as the trajectory of the strong plasma shockwave passes through the stable Pressure-Temperature range of ice VII and X. The shockwave temperature and pressure were calculated by the Grüneisen model.

  16. Raman spectra from Symmetric Hydrogen Bonds in Water by High-intensity Laser-induced Breakdown

    PubMed Central

    Men, Zhiwei; Fang, Wenhui; Li, Dongfei; Li, Zhanlong; Sun, Chenglin

    2014-01-01

    Raman spectra of ice VII and X were investigated using strong plasma shockwave generated by laser-induced breakdown (LIB) in liquid water. Simultaneously, the occurrence of the hydrogen emission lines of 656 nm (Hα), 486 nm (Hβ), 434 nm (Hγ) and 410 nm (Hδ) was observed. At 5 × 1012 W/cm2 optical power density, the O-H symmetric stretching, translational and librational modes of ice VII and a single peak at 785 cm−1 appeared in the spectra. The band was assigned to the Raman-active O-O mode of the monomolecular phase, which was the symmetric hydrogen bond of cuprite ice X. The spectra indicated that ice VII and X structure were formed, as the trajectory of the strong plasma shockwave passes through the stable Pressure-Temperature range of ice VII and X. The shockwave temperature and pressure were calculated by the Grüneisen model. PMID:24709652

  17. Modeling Water Filtration

    ERIC Educational Resources Information Center

    Parks, Melissa

    2014-01-01

    Model-eliciting activities (MEAs) are not new to those in engineering or mathematics, but they were new to Melissa Parks. Model-eliciting activities are simulated real-world problems that integrate engineering, mathematical, and scientific thinking as students find solutions for specific scenarios. During this process, students generate solutions…

  18. The hydrogenation of metals upon interaction with water

    NASA Technical Reports Server (NTRS)

    Andreyev, L. A.; Gelman, B. G.; Zhukhovitskiy, A. A.; Polosina, Y. Y.

    1979-01-01

    Hydrogen evolution at 600 deg and 5 x 10 to the 7th power - 10 to the 6th power torr from AVOOO Al samples, which were pickled in 10 percent NaOH, is discussed. An H evolution kinetic equation is derived for samples of equal vol. and different surfaces (5 and 20 sq cm). The values of the H evolution coefficient K indicated an agreement with considered H diffusion mechanism through an oxide layer. The activation energy for the H evolution process, obtained from the K-temp. relation, was 13,000 2000 cal/g-atom.

  19. Performance model of a recirculating stack nickel hydrogen cell

    NASA Technical Reports Server (NTRS)

    Zimmerman, Albert H.

    1994-01-01

    A theoretical model of the nickel hydrogen battery cell has been utilized to describe the chemical and physical changes during charge and overcharge in a recirculating stack nickel hydrogen cell. In particular, the movement of gas and electrolyte have been examined as a function of the amount of electrolyte put into the cell stack during cell activation, and as a function of flooding in regions of the gas screen in this cell design. Additionally, a two-dimensional variation on this model has been utilized to describe the effects of non-uniform loading in the nickel-electrode on the movement of gas and electrolyte within the recirculating stack nickel hydrogen cell. The type of nonuniform loading that has been examined here is that associated with higher than average loading near the surface of the sintered nickel electrode, a condition present to some degree in many nickel electrodes made by electrochemical impregnation methods. The effects of high surface loading were examined primarily under conditions of overcharge, since the movement of gas and electrolyte in the overcharging condition was typically where the greatest effects of non-uniform loading were found. The results indicate that significant changes in the capillary forces between cell components occur as the percentage of free volume in the stack filled by electrolyte becomes very high. These changes create large gradients in gas-filled space and oxygen concentrations near the boundary between the separator and the hydrogen electrode when the electrolyte fill is much greater than about 95 percent of the stack free volume. At lower electrolyte fill levels, these gaseous and electrolyte gradients become less extreme, and shift through the separator towards the nickel electrode. Similarly, flooding of areas in the gas screen cause higher concentrations of oxygen gas to approach the platinum/hydrogen electrode that is opposite the back side of the nickel electrode. These results illustrate the need for

  20. Modeled ground water age distributions

    USGS Publications Warehouse

    Woolfenden, Linda R.; Ginn, Timothy R.

    2009-01-01

    The age of ground water in any given sample is a distributed quantity representing distributed provenance (in space and time) of the water. Conventional analysis of tracers such as unstable isotopes or anthropogenic chemical species gives discrete or binary measures of the presence of water of a given age. Modeled ground water age distributions provide a continuous measure of contributions from different recharge sources to aquifers. A numerical solution of the ground water age equation of Ginn (1999) was tested both on a hypothetical simplified one-dimensional flow system and under real world conditions. Results from these simulations yield the first continuous distributions of ground water age using this model. Complete age distributions as a function of one and two space dimensions were obtained from both numerical experiments. Simulations in the test problem produced mean ages that were consistent with the expected value at the end of the model domain for all dispersivity values tested, although the mean ages for the two highest dispersivity values deviated slightly from the expected value. Mean ages in the dispersionless case also were consistent with the expected mean ages throughout the physical model domain. Simulations under real world conditions for three dispersivity values resulted in decreasing mean age with increasing dispersivity. This likely is a consequence of an edge effect. However, simulations for all three dispersivity values tested were mass balanced and stable demonstrating that the solution of the ground water age equation can provide estimates of water mass density distributions over age under real world conditions.

  1. Hydrogen and oxygen in brine shrimp chitin reflect environmental water and dietary isotopic composition

    NASA Astrophysics Data System (ADS)

    Nielson, Kristine E.; Bowen, Gabriel J.

    2010-03-01

    Hydrogen and oxygen isotope ratios of the common structural biopolymer chitin are a potential recorder of ecological and environmental information, but our understanding of the mechanisms of incorporation of H and O from environmental substrates into chitin is limited. We report the results of a set of experiments in which the isotopic compositions of environmental water and diet were varied independently in order to assess the contribution of these variables to the H and O isotopic composition of Artemia franciscana chitin. Hydrogen isotope ratios of chitin were strongly linearly correlated with both food and water, with approximately 26% of the hydrogen signal reflecting food and approximately 38% reflecting water. Oxygen isotopes were also strongly correlated with the isotopic composition of water and food, but whereas 69% of oxygen in chitin exchanged with environmental water, only 10% was derived from food. We propose that these observations reflect the position-specific, partial exchange of H and O atoms with brine shrimp body water during the processes of digestion and chitin biosynthesis. Comparison of culture experiments with a set of natural samples collected from the Great Salt Lake, UT in 2006 shows that, with some exceptions, oxygen isotope compositions of chitin track those of water, whereas hydrogen isotopes vary inversely with those of lake water. The different behavior of the two isotopic systems can be explained in terms of a dietary shift from allochthonous particulate matter with relatively higher δ 2H values in the early spring to autochthonous particulate matter with significantly lower δ 2H values in the late summer to autumn. These results suggest oxygen in chitin may be a valuable proxy for the oxygen isotopic composition of environmental water, whereas hydrogen isotope values from the same molecule may reveal ecological and biogeochemical changes within lakes.

  2. Synechocystis sp. PCC6803 metabolic models for the enhanced production of hydrogen.

    PubMed

    Montagud, Arnau; Gamermann, Daniel; Fernández de Córdoba, Pedro; Urchueguía, Javier F

    2015-06-01

    In the present economy, difficulties to access energy sources are real drawbacks to maintain our current lifestyle. In fact, increasing interests have been gathered around efficient strategies to use energy sources that do not generate high CO2 titers. Thus, science-funding agencies have invested more resources into research on hydrogen among other biofuels as interesting energy vectors. This article reviews present energy challenges and frames it into the present fuel usage landscape. Different strategies for hydrogen production are explained and evaluated. Focus is on biological hydrogen production; fermentation and photon-fuelled hydrogen production are compared. Mathematical models in biology can be used to assess, explore and design production strategies for industrially relevant metabolites, such as biofuels. We assess the diverse construction and uses of genome-scale metabolic models of cyanobacterium Synechocystis sp. PCC6803 to efficiently obtain biofuels. This organism has been studied as a potential photon-fuelled production platform for its ability to grow from carbon dioxide, water and photons, on simple culture media. Finally, we review studies that propose production strategies to weigh this organism's viability as a biofuel production platform. Overall, the work presented in this review unveils the industrial capabilities of cyanobacterium Synechocystis sp. PCC6803 to evolve interesting metabolites as a clean biofuel production platform.

  3. Synechocystis sp. PCC6803 metabolic models for the enhanced production of hydrogen.

    PubMed

    Montagud, Arnau; Gamermann, Daniel; Fernández de Córdoba, Pedro; Urchueguía, Javier F

    2015-06-01

    In the present economy, difficulties to access energy sources are real drawbacks to maintain our current lifestyle. In fact, increasing interests have been gathered around efficient strategies to use energy sources that do not generate high CO2 titers. Thus, science-funding agencies have invested more resources into research on hydrogen among other biofuels as interesting energy vectors. This article reviews present energy challenges and frames it into the present fuel usage landscape. Different strategies for hydrogen production are explained and evaluated. Focus is on biological hydrogen production; fermentation and photon-fuelled hydrogen production are compared. Mathematical models in biology can be used to assess, explore and design production strategies for industrially relevant metabolites, such as biofuels. We assess the diverse construction and uses of genome-scale metabolic models of cyanobacterium Synechocystis sp. PCC6803 to efficiently obtain biofuels. This organism has been studied as a potential photon-fuelled production platform for its ability to grow from carbon dioxide, water and photons, on simple culture media. Finally, we review studies that propose production strategies to weigh this organism's viability as a biofuel production platform. Overall, the work presented in this review unveils the industrial capabilities of cyanobacterium Synechocystis sp. PCC6803 to evolve interesting metabolites as a clean biofuel production platform. PMID:24090244

  4. a Nonequilibrium Plasmadynamics Model for Nitrogen/hydrogen Arcjets

    NASA Astrophysics Data System (ADS)

    Megli, Thomas W.

    Electrothermal arcjets offer significant cost advantage over conventional satellite propulsion systems. In these devices, the propellant is electrically heated, allowing for higher temperatures and specific impulse than chemical rockets. Despite the relative simplicity of the basic design, many complex physical processes are poorly understood. Less than 50% of the electrical power is converted to thrust kinetic power. A numerical model is developed to study arcjet plasma flowfields. The model employs a modified set of Navier-Stokes equations, which includes separate energy equations for the electrons and heavy species. A thermal nonequilibrium, chemical equilibrium model is first developed, and then generalized to chemical nonequilibrium. A seven -species plasma of molecules, atoms, and ions is assumed for a variable mixture ratio of nitrogen and hydrogen. This permits simulation of various propellants, including hydrogen, ammonia, and hydrazine. Equations for charge continuity and Ohm's Law are employed to predict the arc current distribution. A thermal model for the nozzle is also included. The combined features of thermal nonequilibrium, chemical nonequilibrium, and propellant flexibility distinguish this model from previous research efforts. Model calculations are presented for 1-2 kW-class arcjets operating with hydrogen and hydrazine propellants. Thermal equilibrium is predicted in the highly ionized arc core, while electron temperatures near the electrodes are an order of magnitude greater than heavy species temperatures. The thermal nonequilibrium enhances ionization and electrical conductivity, and thus governs the current attachment to the nozzle. A comparison of chemical equilibrium and nonequilibrium simulations indicates that ambipolar diffusion of electrons and ions also controls the current conduction. The model is compared with experimental measurements. Respective calculations for specific impulse and exhaust velocities are within approximately 5

  5. Modelling OH⋯O hydrogen bonds in carbohydrates

    NASA Astrophysics Data System (ADS)

    Jeffrey, G. A.

    1990-09-01

    Hydrogen-bonding is particularly significant in the molecular modelling of the molecules of glycobiology because of the large number of OH⋯O functional groups for each carbohydrate monomer in these oligo- and macromolecules. This requires appropriate parameterization of the electrostatic interactions, which is considered to be the least well-developed component of molecular mechanics and dynamics formulations. Oligo- and polysaccharides are more difficult to model, in this respect, than oligo- and polypeptides and nucleotides because of the orientational freedom of the hydroxyl groups. The extension of present methods to carbohydrates is discussed.

  6. Metal-encapsulated organolead halide perovskite photocathode for solar-driven hydrogen evolution in water

    NASA Astrophysics Data System (ADS)

    Crespo-Quesada, Micaela; Pazos-Outón, Luis M.; Warnan, Julien; Kuehnel, Moritz F.; Friend, Richard H.; Reisner, Erwin

    2016-09-01

    Lead-halide perovskites have triggered the latest breakthrough in photovoltaic technology. Despite the great promise shown by these materials, their instability towards water even in the presence of low amounts of moisture makes them, a priori, unsuitable for their direct use as light harvesters in aqueous solution for the production of hydrogen through water splitting. Here, we present a simple method that enables their use in photoelectrocatalytic hydrogen evolution while immersed in an aqueous solution. Field's metal, a fusible InBiSn alloy, is used to efficiently protect the perovskite from water while simultaneously allowing the photogenerated electrons to reach a Pt hydrogen evolution catalyst. A record photocurrent density of -9.8 mA cm-2 at 0 V versus RHE with an onset potential as positive as 0.95+/-0.03 V versus RHE is obtained. The photoelectrodes show remarkable stability retaining more than 80% of their initial photocurrent for ~1 h under continuous illumination.

  7. Hydrogen and oxygen isotope exchange reactions between clay minerals and water

    USGS Publications Warehouse

    O'Neil, J.R.; Kharaka, Y.K.

    1976-01-01

    The extent of hydrogen and oxygen isotope exchange between clay minerals and water has been measured in the temperature range 100-350?? for bomb runs of up to almost 2 years. Hydrogen isotope exchange between water and the clays was demonstrable at 100??. Exchange rates were 3-5 times greater for montmorillonite than for kaolinite or illite and this is attributed to the presence of interlayer water in the montmorillonite structure. Negligible oxygen isotope exchange occurred at these low temperatures. The great disparity in D and O18 exchange rates observed in every experiment demonstrates that hydrogen isotope exchange occurred by a mechanism of proton exchange independent of the slower process of O18 exchange. At 350?? kaolinite reacted to form pyrophyllite and diaspore. This was accompanied by essentially complete D exchange but minor O18 exchange and implies that intact structural units in the pyrophyllite were inherited from the kaolinite precursor. ?? 1976.

  8. Hydrogen-water mixtures in giant planet interiors studied with ab initio simulations

    NASA Astrophysics Data System (ADS)

    Soubiran, F.; Militzer, B.

    2015-12-01

    We study water-hydrogen mixtures under planetary interior conditions using ab initio molecular dynamics simulations. We determine the thermodynamic properties of various water-hydrogen mixing ratios at temperatures of 2000 and 6000 K for pressures of a few tens of GPa. These conditions are relevant for ice giant planets and for the outer envelope of the gas giants. We find that at 2000 K the mixture is in a molecular regime, while at 6000 K the dissociation of hydrogen and water is important and affects the thermodynamic properties. We study the structure of the liquid and analyze the radial distribution function. We provide estimates for the transport properties, diffusion and viscosity, based on autocorrelation functions. We obtained viscosity estimates of the order of a few tenths of mPa s for the conditions under consideration. These results are relevant for dynamo simulations of ice giant planets.

  9. Water co-catalyzed selective dehydrogenation of methanol to formaldehyde and hydrogen

    NASA Astrophysics Data System (ADS)

    Shan, Junjun; Lucci, Felicia R.; Liu, Jilei; El-Soda, Mostafa; Marcinkowski, Matthew D.; Allard, Lawrence F.; Sykes, E. Charles H.; Flytzani-Stephanopoulos, Maria

    2016-08-01

    The non-oxidative dehydrogenation of methanol to formaldehyde is considered a promising method to produce formaldehyde and clean hydrogen gas. Although Cu-based catalysts have an excellent catalytic activity in the oxidative dehydrogenation of methanol, metallic Cu is commonly believed to be unreactive for the dehydrogenation of methanol in the absence of oxygen adatoms or oxidized copper. Herein we show that metallic Cu can catalyze the dehydrogenation of methanol in the absence of oxygen adatoms by using water as a co-catalyst both under realistic reaction conditions using silica-supported PtCu nanoparticles in a flow reactor system at temperatures below 250 °C, and in ultra-high vacuum using model PtCu(111) catalysts. Adding small amounts of isolated Pt atoms into the Cu surface to form PtCu single atom alloys (SAAs) greatly enhances the dehydrogenation activity of Cu. Under the same reaction conditions, the yields of formaldehyde from PtCu SAA nanoparticles are more than one order of magnitude higher than on the Cu nanoparticles, indicating a significant promotional effect of individual, isolated Pt atoms. Moreover, this study also shows the unexpected role of water in the activation of methanol. Water, a catalyst for methanol dehydrogenation at low temperatures, becomes a reactant in the methanol steam reforming reactions only at higher temperatures over the same metal catalyst.

  10. Monte Carlo-quantum mechanics study of magnetic properties of hydrogen peroxide in liquid water.

    PubMed

    Caputo, María Cristina; Provasi, Patricio F; Benitez, Lucía; Georg, Herbert C; Canuto, Sylvio; Coutinho, Kaline

    2014-08-14

    A theoretical study of magnetic properties of hydrogen peroxide in water has been carried out by means of Monte Carlo simulation and quantum mechanics calculations. The solvent effects were evaluated in supermolecular structures generated by simulations in the NPT ensemble. The solute-solvent structure was analyzed in terms of radial distribution functions, and the solute-solvent hydrogen bonds were identified with geometric and energetic criteria. Approximately three water molecules are hydrogen bonded to H2O2 (0.6 and 0.8 in each hydrogen and oxygen atom, respectively, of the H2O2). Although, on average, both hydroxyls of the peroxide are equivalent, the distribution of hydrogen-bonded water molecules is highly asymmetric. Analyzing the statistics of the hydrogen bonds, we identify that only 34% of the configurations give symmetric distributions around the two hydroxyls of the H2O2 simultaneously. The magnetic shieldings and the indirect spin-spin coupling constants were calculated at the B3LYP/aug-cc-pVTZ and aug-cc-pVTZ-J computational level. We find that the solvent shields the oxygen and unshields the hydrogen atoms of the peroxide (+5.5 and -2.9 ppm, respectively), with large fluctuation from configuration to configuration in the oxygen case, an effect largely accounted for in terms of a single hydrogen bond with H2O2 as the proton donor. The most sensitive coupling in the presence of the solvent is observed to be the one-bond J(O,H).

  11. UO2 surface oxidation by mixtures of water vapor and hydrogen as a function of temperature

    NASA Astrophysics Data System (ADS)

    Espriu-Gascon, A.; Llorca, J.; Domínguez, M.; Giménez, J.; Casas, I.; de Pablo, J.

    2015-12-01

    In the present work, X-Ray Photoelectron Spectroscopy (XPS) was used to study the effect of water vapor on the UO2 surface as a function of temperature. The experiments were performed in situ inside a high pressure chamber attached to the XPS instrument. UO2 samples were put in contact with either hydrogen or argon streams, saturated with water at room temperature, and the sample surface evolution was analyzed by XPS. In the case of the water vapor/argon experiments, one experiment at 350 °C was performed and, in the case of the water vapor/hydrogen experiments, the temperatures used inside the reactor were 60, 120, 200 and 350 °C. On one hand, in presence of argon, the results obtained showed that the water vapor in the argon stream oxidized 93% of the U(IV) in the sample surface. On the other hand, the degree of UO2 surface oxidation showed a different dependence on the temperature in the experiments performed in the presence of hydrogen: the maximum surface oxidation occurred at 120 °C, where 65.4% of U(IV) in the sample surface was oxidized, while at higher temperatures, the surface oxidation decreased. This observation is attributed to the increase of hydrogen reducing effect when temperature increases which prevents part of the oxidation of the UO2 surface by the water vapor.

  12. Hydrogen Macro System Model User Guide, Version 1.2.1

    SciTech Connect

    Ruth, M.; Diakov, V.; Sa, T.; Goldsby, M.; Genung, K.; Hoseley, R.; Smith, A.; Yuzugullu, E.

    2009-07-01

    The Hydrogen Macro System Model (MSM) is a simulation tool that links existing and emerging hydrogen-related models to perform rapid, cross-cutting analysis. It allows analysis of the economics, primary energy-source requirements, and emissions of hydrogen production and delivery pathways.

  13. Macro-System Model for Hydrogen Energy Systems Analysis in Transportation: Preprint

    SciTech Connect

    Diakov, V.; Ruth, M.; Sa, T. J.; Goldsby, M. E.

    2012-06-01

    The Hydrogen Macro System Model (MSM) is a simulation tool that links existing and emerging hydrogen-related models to perform rapid, cross-cutting analysis. It allows analysis of the economics, primary energy-source requirements, and emissions of hydrogen production and delivery pathways.

  14. Oral ‘hydrogen water' induces neuroprotective ghrelin secretion in mice

    PubMed Central

    Matsumoto, Akio; Yamafuji, Megumi; Tachibana, Tomoko; Nakabeppu, Yusaku; Noda, Mami; Nakaya, Haruaki

    2013-01-01

    The therapeutic potential of molecular hydrogen (H2) is emerging in a number of human diseases and in their animal models, including in particular Parkinson's disease (PD). H2 supplementation of drinking water has been shown to exert disease-modifying effects in PD patients and neuroprotective effects in experimental PD model mice. However, H2 supplementation does not result in detectable changes in striatal H2 levels, indicating an indirect effect. Here we show that H2 supplementation increases gastric expression of mRNA encoding ghrelin, a growth hormone secretagogue, and ghrelin secretion, which are antagonized by the β1-adrenoceptor blocker, atenolol. Strikingly, the neuroprotective effect of H2 water was abolished by either administration of the ghrelin receptor-antagonist, D-Lys3 GHRP-6, or atenolol. Thus, the neuroprotective effect of H2 in PD is mediated by enhanced production of ghrelin. Our findings point to potential, novel strategies for ameliorating pathophysiology in which a protective effect of H2 supplementation has been demonstrated. PMID:24253616

  15. Hydrogen bonding mediated by key orbital interactions determines hydration enthalpy differences of phosphate water clusters.

    PubMed

    Ruben, Eliza A; Chapman, Michael S; Evanseck, Jeffrey D

    2007-10-25

    Electronic structure calculations have been carried out to provide a molecular interpretation for dihydrogen phosphate stability in water relative to that of metaphosphate. Specifically, hydration enthalpies of biologically important metaphosphate and dihydrogen phosphate with one to three waters have been computed with second-order Møller-Plesset perturbation and density functional theory (B3LYP) with up to the aug-cc-pvtz basis set and compared to experiment. The inclusion of basis set superposition error corrections and supplemental diffuse functions are necessary to predict hydration enthalpies within experimental uncertainty. Natural bond orbital analysis is used to rationalize underlying hydrogen bond configurations and key orbital interactions responsible for the experimentally reported difference in hydration enthalpies between metaphosphate and dihydrogen phosphate. In general, dihydrogen phosphate forms stronger hydrogen bonds compared to metaphosphate due to a greater charge transfer or enhanced orbital overlap between the phosphoryl oxygen lone pairs, n(O), and the antibonding O-H bond of water. Intramolecular distal lone pair repulsion with the donor n(O) orbital of dihydrogen phosphate distorts symmetric conformations, which improves n(O) and sigma*(O-H) overlap and ultimately the hydrogen bond strength. Unlike metaphosphate, water complexed to dihydrogen phosphate can serve as both a hydrogen bond donor and a hydrogen bond acceptor, which results in cooperative charge transfer and a reduction of the energy gap between n(O) and sigma*(O-H), leading to stronger hydrogen bonds. This study offers insight into how orbital interactions mediate hydrogen bond strengths with potential implications on the understanding of the kinetics and mechanism in enzymatic phosphoryl transfer reactions.

  16. Thermochemical production of hydrogen via multistage water splitting processes

    NASA Technical Reports Server (NTRS)

    Funk, J. E.

    1975-01-01

    This paper presents and reviews the fundamental thermodynamic principles underlying thermochemical water splitting processes. The overall system is considered first and the temperature limitation in process thermal efficiency is developed. The relationship to an ideal water electrolysis cell is described and the nature of efficient multistage reaction processes is discussed. The importance of the reaction entropy change and the relation of the reaction free energy change to the work of separation is described. A procedure for analyzing thermochemical water splitting processes is presented and its use to calculate individual stage efficiency is demonstrated. A number of processes are used to illustrate the concepts and procedures.

  17. Herschel Legacy Survey of Hydrogen Fluoride and Water Towards Nearby Galaxies

    NASA Astrophysics Data System (ADS)

    Rodriguez Monje, Raquel

    Hydride molecules, molecules containing just one heavy element atom with one or more hydrogen atoms, play an importance role in interstellar chemistry, as they are often stable end points of chemical reactions, or represent important intermediate stages of the reaction chains theorized to form gas phase molecules. This makes hydride molecules a sensitive test of these chemical models, as well as potential tracers of molecular hydrogen. Due to the low moment of inertia, hydrides have their fundamental rotational transitions in the submillimeter band, blocked by the Earth's atmosphere and in most cases, only accessible with the past NASA mission, Herschel Space Observatory. Two of the key results from Herschel observations are: the first detection of the fundamental J = 1 - 0 rotational transition of hydrogen fluoride (HF) at 1.232 THz (243 μm) and the discovery of HF's ubiquitous nature in the Milky Way. HF has not only been observed toward almost every bright continuum source in the Galactic plane, but also in some nearby ultra luminous galaxies, establishing its importance outside the Milky Way as well. Despite fluorine's (F) relative low abundance in the interstellar medium (ISM) (about four times lower than carbon), F plays an important role in the interstellar chemistry due to the unique thermochemistry of the reaction between F and molecular hydrogen (H2). F is the only atom that reacts exothermically with H2, to form the compound HF. Once formed, HF becomes the main reservoir of fluorine in the ISM, with a strong bond only destroyed by reactions with low abundance ions H3+, C+ and He+, or photodissociation. This unusual stability allows the build up of large amounts of HF in the ISM, which has now been confirmed by Herschel. Chemical model predicted that the ground state rotational transition line of HF J = 1 - 0 would yield an extremely sensitive probe of the diffuse molecular gas along the line-of-sight to background far-infrared continuum sources and a

  18. Spontaneous high-yield hydrogen production from cellulosic materials and water catalyzed by enzyme cocktail

    SciTech Connect

    Ye, Xinhao; Wang, Yiran; Hopkins, Robert C.; Adams, Michael W. W.; Evans, Barbara R; Mielenz, Jonathan R; Zhang, Y.-H. Percival

    2009-01-01

    Carbon-neutral hydrogen gas is a compelling energy carrier, especially for the transportation section. Low-cost hydrogen can be produced from abundant renewable lignocellulosic biomass through a number of methods employing chemical catalysis, biocatalysis or a combination of both, but these technologies suffer from low hydrogen yields (well below the theoretical yield of 12 H2 per glucose), undesired side-products and/or required severe reaction conditions. Here we present a novel in vitro synthetic biology approach for producing near theoretical hydrogen yields from cellulosic materials (cellodextrins) and water at 32oC and 1 atm. These non-natural catabolic pathways containing up to 14 enzymes and one coenzyme degrade cellodextrins initially to glucose-1-phosphate and eventually to CO2, split water and finally release the chemical energy in the form of hydrogen gas. Up to 11.2 H2 per anhydroglucose was produced in a batch reaction. This spontaneous endothermic reaction is driven by entropy gain, suggesting that the thermal energy is adsorbed for generating more chemical energy (hydrogen gas) than that in cellodextrins, i.e., output/input of chemical energy > 1, with an input of ambient-temperature thermal energy.

  19. Titanium Dioxide Nanorods with Hydrogenated Oxygen Vacancies for Enhanced Solar Water Splitting.

    PubMed

    Sun, Bo; Shi, Tielin; Tan, Xianhua; Liu, Zhiyong; Wu, Youni; Liao, Guanglan

    2016-06-01

    We demonstrate that moderate hydrogen annealing is a simple and effective approach to substantially improve the photocatalytic activity of TiO2 nanorods via increasing oxygen vacancies in outer layer. Hydrogenated TiO2 nanorods are obtained by annealing in hydrogen atmosphere at various temperatures ranging from 200 degrees C to 350 degrees C. TEM images directly illustrate the disordered layer on the surface of nanorods induced by hydrogen annealing. The photoelectrochemical measurements reveal that the photocurrent is improved first as the temperature increases and reaches to the maximum value at an appropriate temperature (250 degrees C), corresponding to about 50% enhancement compared to the pristine TiO2. Incident photon-to-electron conversion efficiency spectra reveal that the photocurrent improvement is mainly attributed to the enhanced photocatalytic activity of TiO2 in ultraviolet region. Mott-Schottky plots further betray that hydrogen annealing can significantly enhance the electric conductivity, via increasing the oxygen vacancies density in the outer layer. In addition, time-dependent measurements indicate the hydrogenated TiO2 nanorods possess excellent chemical stability. Thus, we believe the hydrogenated TiO2 nanorods would be a promising candidate for photoanode in solar water splitting.

  20. A Comprehensive Study of Hydrogen Adsorbing to Amorphous Water ice: Defining Adsorption in Classical Molecular Dynamics

    NASA Astrophysics Data System (ADS)

    Dupuy, John L.; Lewis, Steven P.; Stancil, P. C.

    2016-11-01

    Gas–grain and gas–phase reactions dominate the formation of molecules in the interstellar medium (ISM). Gas–grain reactions require a substrate (e.g., a dust or ice grain) on which the reaction is able to occur. The formation of molecular hydrogen (H2) in the ISM is the prototypical example of a gas–grain reaction. In these reactions, an atom of hydrogen will strike a surface, stick to it, and diffuse across it. When it encounters another adsorbed hydrogen atom, the two can react to form molecular hydrogen and then be ejected from the surface by the energy released in the reaction. We perform in-depth classical molecular dynamics simulations of hydrogen atoms interacting with an amorphous water-ice surface. This study focuses on the first step in the formation process; the sticking of the hydrogen atom to the substrate. We find that careful attention must be paid in dealing with the ambiguities in defining a sticking event. The technical definition of a sticking event will affect the computed sticking probabilities and coefficients. Here, using our new definition of a sticking event, we report sticking probabilities and sticking coefficients for nine different incident kinetic energies of hydrogen atoms [5–400 K] across seven different temperatures of dust grains [10–70 K]. We find that probabilities and coefficients vary both as a function of grain temperature and incident kinetic energy over the range of 0.99–0.22.

  1. Titanium Dioxide Nanorods with Hydrogenated Oxygen Vacancies for Enhanced Solar Water Splitting.

    PubMed

    Sun, Bo; Shi, Tielin; Tan, Xianhua; Liu, Zhiyong; Wu, Youni; Liao, Guanglan

    2016-06-01

    We demonstrate that moderate hydrogen annealing is a simple and effective approach to substantially improve the photocatalytic activity of TiO2 nanorods via increasing oxygen vacancies in outer layer. Hydrogenated TiO2 nanorods are obtained by annealing in hydrogen atmosphere at various temperatures ranging from 200 degrees C to 350 degrees C. TEM images directly illustrate the disordered layer on the surface of nanorods induced by hydrogen annealing. The photoelectrochemical measurements reveal that the photocurrent is improved first as the temperature increases and reaches to the maximum value at an appropriate temperature (250 degrees C), corresponding to about 50% enhancement compared to the pristine TiO2. Incident photon-to-electron conversion efficiency spectra reveal that the photocurrent improvement is mainly attributed to the enhanced photocatalytic activity of TiO2 in ultraviolet region. Mott-Schottky plots further betray that hydrogen annealing can significantly enhance the electric conductivity, via increasing the oxygen vacancies density in the outer layer. In addition, time-dependent measurements indicate the hydrogenated TiO2 nanorods possess excellent chemical stability. Thus, we believe the hydrogenated TiO2 nanorods would be a promising candidate for photoanode in solar water splitting. PMID:27427684

  2. Dependence of molecular hydrogen formation in water on scavengers of the precursor to the hydrated electron

    SciTech Connect

    Pastina, B. |; LaVerne, J.A.; Pimblott, S.M.

    1999-07-22

    Early studies on the radiolysis of water suggested a wide variety of precursors, and mechanisms, for the formation of the observed yield of molecular hydrogen. Molecular hydrogen yields have been measured in the {gamma} radiolysis of aqueous solutions with a wide variety of scavengers of the hydrated electron and its precursors. A decrease in molecular hydrogen yield with increasing scavenging capacity of the hydrated electron is found with all solutes. Scavengers with particularly high rate coefficients for reaction with the precursors to the hydrated electron compared to the hydrated electron, such as selenate and to a lesser extent molybdate, show a more rapid decrease in hydrogen yields with increasing scavenging capacity than is observed with the other solutes. The yield of molecular hydrogen is better parameterized by the scavenging capacity for the precursors to the hydrated electron than by the scavenging capacity for the hydrated electron. Good scavengers of precursors to the hydrated electrons do not exhibit a nonscavengable hydrogen yield in the high scavenging capacity limit. These results suggest that the previously accepted nonscavengable yield of molecular hydrogen is due to precursors of the hydrated electron and it can be lowered with appropriate scavengers.

  3. HIERARCHICAL METHODOLOGY FOR MODELING HYDROGEN STORAGE SYSTEMS. PART I: SCOPING MODELS

    SciTech Connect

    Hardy, B; Donald L. Anton, D

    2008-12-22

    Detailed models for hydrogen storage systems provide essential design information about flow and temperature distributions, as well as, the utilization of a hydrogen storage media. However, before constructing a detailed model it is necessary to know the geometry and length scales of the system, along with its heat transfer requirements, which depend on the limiting reaction kinetics. More fundamentally, before committing significant time and resources to the development of a detailed model, it is necessary to know whether a conceptual storage system design is viable. For this reason, a hierarchical system of models progressing from scoping models to detailed analyses was developed. This paper, which discusses the scoping models, is the first in a two part series that presents a collection of hierarchical models for the design and evaluation of hydrogen storage systems.

  4. Hydrogen Futures Simulation Model Elsevier Edition 2.2

    2006-03-09

    Hydrogen has the potential to become an integral part of our energy transportation and heat and power sectors in the coming decades and offers a possible solution to many of the problems associated with a heavy reliance on oil and other fossil fuels. The Hydrogen Futures Simulation Model (H2Sim) was developed to provide a high level, internally consistent, strategic tool for evaluating the economic and environmental trade offs of alternative hydrogen production. storage, transport andmore » end use options in the year 2020. Based on the model’s default assumptions, estimated hydrogen production costs range from 0.68 $!kg for coal gasification to as high as 5.64$! kg for centralized electrolysis using solar PV. Coal gasification remains the least cost option if carbon capture and sequestration costs ($0.16/kg) are added. This result is fairly robust: for example, assumed coal prices would have to more than triple or the assumed capital cost would have to increase by more than 2.5 times for natural gas reformation to become the cheaper option. Alternatively, assumed natural gas prices would have to fall below $2/MBtu to compete with coal gasification. The electrolysis results are highly sensitive to electricity costs, but electrolysis only becomes cost competitive with other options when electricity drops below 1 cent/ kWhr. Delivered 2020 hydrogen costs are likely to be double the estimated production costs due to the inherent difficulties associated with storing, transporting, and dispensing hydrogen due to its low volumetric density. H2Sim estimates distribution costs ranging from 1.37 5/kg (low distance, low production) to 3.23 s/kg (long distance, high production volumes, carbon sequestration). Distributed hydrogen production options, such as on site natural gas, would avoid some of these costs. H2Sim compares the expected 2020 per mile driving costs (fuel, capital, maintenance, license, and registration) of current technology internal combustion engine (ICE

  5. Hydrogen bonding in maltooligomer-glycerol-water matrices: Relation to physical state and molecular free volume.

    PubMed

    Roussenova, Mina; Andrieux, Jean-Christophe; Alam, M Ashraf; Ubbink, Job

    2014-02-15

    We use Fourier Transform Infra Red (FTIR) Spectroscopy to explore the effects of water and glycerol on the hydrogen bonding of low water content maltooligomer matrices by monitoring the shifts in the position of the peak associated with the fundamental stretching vibration of the hydroxyl groups, νOH. Changes in hydrogen bonding are investigated in relation to the physical state and the molecular packing of the maltooligomer matrices, which are measured by Positron Annihilation Lifetime Spectroscopy (PALS). In the concentration range studied (0-20 wt.%), glycerol acts as an anti-plasticizer whereby it reduces the average molecular hole size, vh, while modulating the hydrogen bond network of the carbohydrate matrices. Depending on the level of hydration, water can cause anti-plasticization or plasticization of the maltooligomer-glycerol matrices. For water contents below ∼ 5 wt.%, water acts as an anti-plasticizer, whereby it reduces vh and we measure a reduction νOH. At higher water contents, water acts as a plasticizer, causing a systematic increase in vh, while νOH continues to decrease as a function of increasing water content. PMID:24507320

  6. Potential of hydrogen bond in water. Comparison of the theory with vibrational spectra and results of molecular dynamics simulations.

    PubMed

    Efimov, Yuri Ya; Naberukhin, Yuri I

    2011-02-01

    Potential of hydrogen bond is the function which relates its energy to geometrical parameters of hydrogen bridge: its length R(O…O) and angles between direction O…O and OH group [φ (H-O…O)] and/or lone pair of proton accepting oxygen atom [χ(-O…O)]. Previously we have suggested an approach to design such potentials based on the approximate numerical solution of a reverse problem of the spectrum band shape in the frames of the fluctuation theory of hydrogen bonding. In the given work this method is applied to construction of the two-parameter potentials that depend on parameters {R(O…O), φ (H-O…O} or {φ (H-O…O), χ (-O…O)}. Using them, the spectra of OH vibrations of HOD molecules in a liquid phase are calculated theoretically in good agreement with experiment in the temperature range up to 200 °C. Distributions of angles P(φ, T), P(χ, T), and energies P(E) are calculated also. The same distributions and spectra are independently calculated on the basis of the geometrical parameters of the hydrogen bridges obtained from molecular dynamics models of water. The shapes of the spectral contours and their temperature evolution calculated for computer models turned out to be similar to experimental ones only for the potential that includes the length of H-bond R(O…O).

  7. Lewis acid-water/alcohol complexes as hydrogen atom donors in radical reactions.

    PubMed

    Povie, Guillaume; Renaud, Philippe

    2013-01-01

    Water or low molecular weight alcohols are, due to their availability, low price and low toxicity ideal reagents for organic synthesis. Recently, it was reported that, despite the very strong BDE of the O-H bond, they can be used as hydrogen atom donors in place of expensive and/or toxic group 14 metal hydrides when boron and titanium(III) Lewis acids are present. This finding represents a considerable innovation and uncovers a new perspective on the paradigm of hydrogen atom transfers to radicals. We discuss here the influence of complex formation and other association processes on the efficacy of the hydrogen transfer step. A delicate balance between activation by complex formation and deactivation by further hydrogen bonding is operative.

  8. Identification of sources and production processes of bottled waters by stable hydrogen and oxygen isotope ratios.

    PubMed

    Brencic, Mihael; Vreca, Polona

    2006-01-01

    Bottled water is a food product that considerably depends on the environment from which it originates, not only at the place where it is produced, but predominantly on the conditions in the recharge area of the wells captured for bottling. According to their source and the bottling process, bottled waters can be divided into natural and artificially sparkling waters, still and flavoured waters. These waters originate from various parts of the hydrological cycle and their natural origin is reflected in their hydrogen and oxygen stable isotopic compositions (delta(2)H and delta(18)O). A total of 58 domestic and foreign brands and 16 replicates of bottled waters, randomly collected on the Slovene market in September 2004, were analysed for delta(2)H and delta(18)O. The isotopic composition varied between -83 per thousand and -46 per thousand with an average of -66 per thousand for hydrogen, and between -11.9 per thousand and -7.5 per thousand with an average of -9.6 per thousand for oxygen. This investigation helped (1) to determine and test the classification of bottled waters, (2) to determine the natural origin of bottled water, and (3) to indicate differences between the natural and production processes. The production process may influence the isotopic composition of flavoured waters and artificially sparkling waters. No such modification was observed for still and natural sparkling waters. The methods applied, together with hydrological knowledge, can be used for the authentication of bottled waters for regulatory and consumer control applications.

  9. Development of Efficient Flowsheet and Transient Modeling for Nuclear Heat Coupled Sulfur Iodine Cyclefor Hydrogen Production

    SciTech Connect

    Shripad T. Revankar; Nicholas R. Brown; Cheikhou Kane; Seungmin Oh

    2010-05-01

    The realization of the hydrogen as an energy carrier for future power sources relies on a practical method of producing hydrogen in large scale with no emission of green house gases. Hydrogen is an energy carrier which can be produced by a thermochemical water splitting process. The Sulfur-Iodine (SI) process is an example of a water splitting method using iodine and sulfur as recycling agents.

  10. Exploring the activity of a novel Au/TiC(001) model catalyst towards CO and CO2 hydrogenation

    DOE PAGES

    Asara, Gian Giacomo; Ricart, Josep M.; Rodriguez, Jose A.; Illas, Francesc

    2015-02-02

    Small metallic nanoparticles supported on transition metal carbides exhibit an unexpected high activity towards a series of chemical reactions. In particular, the Au/TiC system has proven to be an excellent catalyst for SO2 decomposition, thiophene hydrodesulfurization, O2 and H2 dissociation and the water gas shift reaction. Recent studies have shown that Au/TiC is a very good catalyst for the reverse water–gas shift (CO2 + H2 → CO + H2O) and CO2 hydrogenation to methanol. The present work further expands the range of applicability of this novel type of systems by exploring the catalytic activity of Au/TiC towards the hydrogenation ofmore » CO or CO2 with periodic density functional theory (DFT) calculations on model systems. Hydrogen dissociates easily on Au/TiC but direct hydrogenation of CO to methanol is hindered by very high activation barriers implying that, on this model catalyst, methanol production from CO2 involves the hydrogenation of a HOCO-like intermediate. Thus, when dealing with mixtures of syngas (CO/CO2/H2/H2O), CO could be transformed into CO2 through the water gas shift reaction with subsequent hydrogenation of CO2 to methanol.« less

  11. Small-scale, hydrogen-oxidizing-denitrifying bioreactor for treatment of nitrate-contaminated drinking water

    USGS Publications Warehouse

    Smith, R.L.; Buckwalter, S.P.; Repert, D.A.; Miller, D.N.

    2005-01-01

    Nitrate removal by hydrogen-coupled denitrification was examined using flow-through, packed-bed bioreactors to develop a small-scale, cost effective system for treating nitrate-contaminated drinking-water supplies. Nitrate removal was accomplished using a Rhodocyclus sp., strain HOD 5, isolated from a sole-source drinking-water aquifer. The autotrophic capacity of the purple non-sulfur photosynthetic bacterium made it particularly adept for this purpose. Initial tests used a commercial bioreactor filled with glass beads and countercurrent, non-sterile flow of an autotrophic, air-saturated, growth medium and hydrogen gas. Complete removal of 2 mM nitrate was achieved for more than 300 days of operation at a 2-h retention time. A low-cost hydrogen generator/bioreactor system was then constructed from readily available materials as a water treatment approach using the Rhodocyclus strain. After initial tests with the growth medium, the constructed system was tested using nitrate-amended drinking water obtained from fractured granite and sandstone aquifers, with moderate and low TDS loads, respectively. Incomplete nitrate removal was evident in both water types, with high-nitrite concentrations in the bioreactor output, due to a pH increase, which inhibited nitrite reduction. This was rectified by including carbon dioxide in the hydrogen stream. Additionally, complete nitrate removal was accomplished with wastewater-impacted surface water, with a concurrent decrease in dissolved organic carbon. The results of this study using three chemically distinct water supplies demonstrate that hydrogen-coupled denitrification can serve as the basis for small-scale remediation and that pilot-scale testing might be the next logical step.

  12. Small-scale, hydrogen-oxidizing-denitrifying bioreactor for treatment of nitrate-contaminated drinking water.

    PubMed

    Smith, Richard L; Buckwalter, Seanne P; Repert, Deborah A; Miller, Daniel N

    2005-05-01

    Nitrate removal by hydrogen-coupled denitrification was examined using flow-through, packed-bed bioreactors to develop a small-scale, cost effective system for treating nitrate-contaminated drinking-water supplies. Nitrate removal was accomplished using a Rhodocyclus sp., strain HOD 5, isolated from a sole-source drinking-water aquifer. The autotrophic capacity of the purple non-sulfur photosynthetic bacterium made it particularly adept for this purpose. Initial tests used a commercial bioreactor filled with glass beads and countercurrent, non-sterile flow of an autotrophic, air-saturated, growth medium and hydrogen gas. Complete removal of 2 mM nitrate was achieved for more than 300 days of operation at a 2-h retention time. A low-cost hydrogen generator/bioreactor system was then constructed from readily available materials as a water treatment approach using the Rhodocyclus strain. After initial tests with the growth medium, the constructed system was tested using nitrate-amended drinking water obtained from fractured granite and sandstone aquifers, with moderate and low TDS loads, respectively. Incomplete nitrate removal was evident in both water types, with high-nitrite concentrations in the bioreactor output, due to a pH increase, which inhibited nitrite reduction. This was rectified by including carbon dioxide in the hydrogen stream. Additionally, complete nitrate removal was accomplished with wastewater-impacted surface water, with a concurrent decrease in dissolved organic carbon. The results of this study using three chemically distinct water supplies demonstrate that hydrogen-coupled denitrification can serve as the basis for small-scale remediation and that pilot-scale testing might be the next logical step.

  13. Modeling the hydrothermal circulation and the hydrogen production at the Rainbow site with Cast3M

    NASA Astrophysics Data System (ADS)

    Perez, F.; Mügler, C.; Charlou, J.; Jean-baptiste, P.

    2012-12-01

    On the Mid-Atlantic Ridge, the Rainbow venting site is described as an ultramafic-hosted active hydrothermal site and releases high fluxes of methane and hydrogen [1, 2]. This behavior has first been interpreted as the result of serpentinization processes. But geochemical reactions involving olivine and plagioclase assemblages, and leading to chlorite, tremolite, talc and magnetite assemblages, could contribute to the observed characteristics of the exiting fluid [2]. The predominance of one of these geochemical reactions or their coexistence strongly depend on the hydrothermal fluid circulation. We developed and validated a 2D/3D numerical model using a Finite Volume method to simulate heat driven fluid flows in the framework of the Cast3M code [3, 4]. We also developed a numerical model for hydrogen production and transport that is based on experimental studies of the serpentinization processes [5-6]. This geochemical model takes into account the exothermic and water-consuming behavior of the serpentinization reaction and it can be coupled to our thermo-hydrogeological model. Our simulations provide temperatures, mass fluxes and venting surface areas very close to those estimated in-situ [7]. We showed that a single-path model [8] was necessary to simulate high values such as the in-situ measured temperatures and estimated water mass fluxes of the Rainbow site [7]. This single-path model will be used to model the production and transport of hydrogen at the Rainbow hydrothermal site. References [1]Charlou et al. (2010) AGU Monograph series. [2]Seyfried et al. (2011) Geochim. Cosmochim. Acta 75, 1574-1593. [3]http://www-cast3m.cea.fr. [4]Martin & Fyfe (1970) Chem. Geol. 6, 185-202. [5] Marcaillou et al. (2011) Earth and Planet. Sci. Lett. 303, 281-290. [6]Malvoisin et al. (2012) JGR, 117, B01104. [7]Perez et al. (2012) submited to Computational Geosciences. [8]Lowell & Germanovich (2004) AGU, Washington DC, USA.

  14. A new perspective on hydrogen production by photosynthetic water-splitting

    SciTech Connect

    Lee, J.W.; Greenbaum, E.

    1996-05-01

    Present energy systems are heavily dependent on fossil fuels. This will eventually lead to the foreseeable depletion of fossil energy resources and, according to some reports, global climate changes due to the emission of carbon dioxide. In principle, hydrogen production by biophotolysis of water can be an ideal solar energy conversion system for sustainable development of human activities in harmony with the global environment. In photosynthetic hydrogen production research, there are currently two main efforts: (1) Direct photoevolution of hydrogen and oxygen by photosynthetic water splitting using the ferredoxin/hydrogenase pathway; (2) Dark hydrogen production by fermentation of organic reserves such as starch that are generated by photosynthesis during the light period. In this chapter, the advantages and challenges of the two approaches for hydrogen production will be discussed, in relation to a new opportunity brought by our recent discovery of a new photosynthetic water-splitting reaction which, potentially, has twice the energy efficiency of conventional watersplitting via the two light reaction Z-scheme of photosynthesis.

  15. Kinetics Study of Solid Ammonia Borane Hydrogen Release – Modeling and Experimental Validation for Chemical Hydrogen Storage

    SciTech Connect

    Choi, Yong-Joon; Ronnebro, Ewa; Rassat, Scot D.; Karkamkar, Abhijeet J.; Maupin, Gary D.; Holladay, Jamelyn D.; Simmons, Kevin L.; Brooks, Kriston P.

    2014-02-24

    Ammonia borane (AB), NH3BH3, is a promising material for chemical hydrogen storage with 19.6 wt% gravimetric hydrogen capacity of which 16.2 wt% hydrogen can be utilized below 200°C. We have investigated the kinetics of hydrogen release from AB and from an AB-methyl cellulose (AB/MC) composite at temperatures of 160-300°C using both experiments and modeling. The purpose of our study was to show safe hydrogen release without thermal runaway effects and to validate system model kinetics. AB/MC released hydrogen at ~20°C lower than neat AB and at a rate that is two times faster. Based on the experimental results, the kinetics equations were revised to better represent the growth and nucleation process during decomposition of AB. We explored two different reactor concepts; Auger and fixed bed. The current Auger reactor concept turned out to not be appropriate, however, we demonstrated safe self-propagation of the hydrogen release reaction of solid AB/MC in a fixed bed reactor.

  16. Low-pressure hydrogen plasmas explored using a global model

    NASA Astrophysics Data System (ADS)

    Samuell, Cameron M.; Corr, Cormac S.

    2016-02-01

    Low-pressure hydrogen plasmas have found applications in a variety of technology areas including fusion, neutral beam injection and material processing applications. To better understand these discharges, a global model is developed to predict the behaviour of electrons, ground-state atomic and molecular hydrogen, three positive ion species (H+, \\text{H}2+ , and \\text{H}3+ ), a single negative ion species (H-), and fourteen vibrationally excited states of molecular hydrogen ({{\\text{H}}2}≤ft(\\upsilon =1\\right. -14)). The model is validated by comparison with experimental results from a planar inductively coupled GEC reference cell and subsequently applied to the MAGPIE linear helicon reactor. The MAGPIE reactor is investigated for a range of pressures from 1 to 100 mTorr and powers up to 5 kW. With increasing power between 50 W and 5 kW at 10 mTorr the density of all charged species increases as well as the dissociative fraction while the electron temperature remains almost constant at around 3 eV. For gas pressures from 1-100 mTorr at an input power of 1 kW, the electron density remains almost constant, the electron temperature and dissociative fraction decreases, while \\text{H}3+ density increases in density and also dominates amongst ion species. Across these power and pressure scans, electronegativity remains approximately constant at around 2.5%. The power and pressure determines the dominant ion species in the plasma with \\text{H}3+ observed to dominate at high pressures and low powers whereas H+ tends to be dominant at low pressures and high powers. A sensitivity analysis is used to demonstrate how experimental parameters (power, pressure, reactor wall material, geometry etc) influence individual species’ density as well as the electron temperature. Physical reactor changes including the length, radius and wall recombination coefficient are found to have the largest influence on outputs obtained from the model.

  17. Hydrogen production from water using copper and barium hydroxide

    DOEpatents

    Bamberger, Carlos E.; Richardson, deceased, Donald M.

    1979-01-01

    A process for producing hydrogen comprises the step of reacting metallic Cu with Ba(OH).sub.2 in the presence of steam to produce hydrogen and BaCu.sub.2 O.sub.2. The BaCu.sub.2 O.sub.2 is reacted with H.sub.2 O to form Cu.sub.2 O and a Ba(OH).sub.2 product for recycle to the initial reaction step. Cu can be obtained from the Cu.sub.2 O product by several methods. In one embodiment the Cu.sub.2 O is reacted with HF solution to provide CuF.sub.2 and Cu. The CuF.sub.2 is reacted with H.sub.2 O to provide CuO and HF. CuO is decomposed to Cu.sub.2 O and O.sub.2. The HF, Cu and Cu.sub.2 O are recycled. In another embodiment the Cu.sub.2 O is reacted with aqueous H.sub.2 SO.sub.4 solution to provide CuSO.sub.4 solution and Cu. The CuSO.sub.4 is decomposed to CuO and SO.sub.3. The CuO is decomposed to form Cu.sub.2 O and O.sub.2. The SO.sub.3 is dissolved to form H.sub.2 SO.sub.4. H.sub.2 SO.sub.4, Cu and Cu.sub.2 O are recycled. In another embodiment Cu.sub.2 O is decomposed electrolytically to Cu and O.sub.2. In another aspect of the invention, Cu is recovered from CuO by the steps of decomposing CuO to Cu.sub.2 O and O.sub.2, reacting the Cu.sub.2 O with aqueous HF solution to produce Cu and CuF.sub.2, reacting the CuF.sub.2 with H.sub.2 O to form CuO and HF, and recycling the CuO and HF to previous reaction steps.

  18. Optical model analyses of heavy ion fragmentation in hydrogen targets

    NASA Technical Reports Server (NTRS)

    Townsend, Lawrence W.

    1994-01-01

    Quantum-mechanical optical-model methods for calculating cross sections for the fragmentation of high-energy heavy ions by hydrogen targets are presented. The cross sections are calculated with a knockout-ablation collision formalism which has no arbitrary fitting parameters. Predictions of elemental production cross sections from the fragmentation of 1.2A Ge(V(La-139) nuclei and of isotope production cross sections from the fragmentation of 400A MeV(S-32) nuclei are in good agreement with recently reported experimental measurements.

  19. [Continuous Generation of Hydrogen Peroxide in Water Containing Very Low Concentrations of Unsymmetrical Dimethylhydrazine].

    PubMed

    Bruskov, V I; Yaguzhinsky, L S; Masalimov, Z K; Chernikov, A V; Emelyanenko, V I; Gudkov, S V

    2015-01-01

    Continuous generation of hydrogen peroxide catalyzed by low concentrations of 1,1-dimethylhydrazine (heptyl)--a rocket fuel component--in air saturated water was shown by the method of enhanced chemiluminescence in the system of luminol-p-iodophenol-peroxidase. The concentration dependence and the influence of heat and light on the formation of hydrogen peroxide in the water under the influence of dimethylhydrazine at concentrations considerably lower than maximum allowable concentrations were studied, and the physical-chemical mechanism of this process was considered. It is supposed that dimethylhydrazine at ultra-low concentrations is associated with air nanobubbles and represents a long-lived complex performing catalysis of hydrogen peroxide formation under the influence of heat and light. We put forward the new concept of.toxicity of dimethylhydrazine at very low concentrations due to violation of homeostasis of reactive oxygen species formation in aqueous solutions entering the body of humans and animals.

  20. Cobalt-Nanocrystal-Assembled Hollow Nanoparticles for Electrocatalytic Hydrogen Generation from Neutral-pH Water.

    PubMed

    Liu, Bingrui; Zhang, Lin; Xiong, Weilin; Ma, Mingming

    2016-06-01

    Highly active and stable electrocatalysts for hydrogen generation from neutral-pH water are highly desired, but very difficult to achieve. Herein we report a facile synthetic approach to cobalt nanocrystal assembled hollow nanoparticles (Co-HNP), which serve as an electrocatalyst for hydrogen generation from neutral-pH water. An electrode composed of Co-HNP on a carbon cloth (CC) produces cathodic current densities of 10 and 100 mA cm(-2) at overpotentials of -85 mV and -237 mV, respectively. The Co-HNP/CC electrode retains its high activity after 20 h hydrogen generation at a high current density of 150 mA cm(-2) , indicating the superior activity and stability of Co-HNP as electrocatalyst.

  1. UV raman examination of alpha-helical peptide water hydrogen bonding.

    PubMed

    Pimenov, Konstantin V; Bykov, Sergei V; Mikhonin, Aleksandr V; Asher, Sanford A

    2005-03-01

    UV resonance Raman spectra (UVRS) of an alpha-helical, 21 residue, mainly Ala peptide (AP) in the dehydrated solid state were compared to those in aqueous solution at different temperatures. The UVRS amide band frequencies of a dehydrated solid alpha-helix peptide show frequency shifts compared to those in aqueous solution due to the loss of amide backbone hydrogen bonding to water; the amide II and amide III bands of the solid alpha-helix downshift, while the amide I band upshifts. The shifts are identical in direction but smaller than those that occur for alpha-helices in aqueous solution as the temperature increases; water hydrogen bonding strengths decrease as the temperature increases. The UV Raman amide band frequency shifts can be used to monitor alpha-helix hydrogen bonding. PMID:15740105

  2. Covalency of hydrogen bonds in liquid water can be probed by proton nuclear magnetic resonance experiments.

    PubMed

    Elgabarty, Hossam; Khaliullin, Rustam Z; Kühne, Thomas D

    2015-09-15

    The concept of covalency is widely used to describe the nature of intermolecular bonds, to explain their spectroscopic features and to rationalize their chemical behaviour. Unfortunately, the degree of covalency of an intermolecular bond cannot be directly measured in an experiment. Here we established a simple quantitative relationship between the calculated covalency of hydrogen bonds in liquid water and the anisotropy of the proton magnetic shielding tensor that can be measured experimentally. This relationship enabled us to quantify the degree of covalency of hydrogen bonds in liquid water using the experimentally measured anisotropy. We estimated that the amount of electron density transferred between molecules is on the order of 10  m while the stabilization energy due to this charge transfer is ∼15 kJ mol(-1). The physical insight into the fundamental nature of hydrogen bonding provided in this work will facilitate new studies of intermolecular bonding in a variety of molecular systems.

  3. Ab initio study on microscopic properties of III-V/water interfaces for photoelectrochemical hydrogen production

    NASA Astrophysics Data System (ADS)

    Wood, Brandon; Choi, Woon Ih; Schwegler, Eric; Ogitsu, Tadashi

    2013-03-01

    Photoelectrodes made of III-V semiconductors are known to exhibit very high solar-to-hydrogen conversion efficiency (from solar energy to chemical energy as H2 bond); however, photocorrosion of the electrode in electrolyte solution remains an issue. Based on ab-initio molecular dynamics simulations, we study the structure, stability, and chemical activity of GaP/InP(001) semiconductor electrodes in contact with water. We will show how surface oxygen and hydroxyl change the electronic and chemical properties of water at the interface, leading to the formation of a strong hydrogen-bond network where fast surface hydrogen transport seems to be realized. Implications from our findings will be discussed in detail at the presentation. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52- 07NA27344.

  4. Modeling phase equilibria in mixtures containing hydrogen fluoride and halocarbons

    SciTech Connect

    Lencka, M. ); Anderko, A. Polish Academy of Sciences, Warszawa )

    1993-03-01

    Recently, much attention has been focused on the production of environmentally acceptable refrigerants, which not only offer desirable physico-chemical properties, but do not deplete the ozone layer and do not cause the greenhouse effect. The production of such refrigerants involves the separation of multicomponent mixtures containing hydrogen fluoride, hydrogen chloride, and various chlorinated and fluorinated hydrocarbons. Therefore, it is indispensable to know the phase behavior of these mixtures. While the phase behavior of refrigerant mixtures can be adequately modeled in the absence of HF using standard thermodynamic techniques, drastically increases the complexity of the mixture because of its unusually strong association. The association of HF manifests itself in its significantly reduced gas-phase compressibility factor and the strong nonideality of mixtures containing HF and hydrocarbons or halocarbons. In this work, the authors develop an accurate, yet simple, association model for HF and compare it with simulation data. The model is combined with a simple equation of state to yield a closed-form expression that is applicable to both pure fluids and mixtures. In addition to representing the pure-component data for HF, the theory accurately predicts phase equilibria in HF + halocarbon systems.

  5. Water-Soluble Iridium-NHC-Phosphine Complexes as Catalysts for Chemical Hydrogen Batteries Based on Formate.

    PubMed

    Horváth, Henrietta; Papp, Gábor; Szabolcsi, Roland; Kathó, Ágnes; Joó, Ferenc

    2015-09-21

    Molecular hydrogen, obtained by water electrolysis or photocatalytic water splitting, can be used to store energy obtained from intermittent sources such as wind and solar power. The storage and safe transportation of H2 , however, is an open and central question in such a hydrogen economy. Easy-to-synthesize, water-soluble iridium-N-heterocyclic carbene-phosphine (Ir(I) -NHC-phosphine) catalysts show unprecedented high catalytic activity in dehydrogenation of aqueous sodium formate. Fast reversible generation and storage of hydrogen can be achieved with these catalysts by a simple decrease or increase in the hydrogen pressure, respectively.

  6. Water-Soluble Iridium-NHC-Phosphine Complexes as Catalysts for Chemical Hydrogen Batteries Based on Formate.

    PubMed

    Horváth, Henrietta; Papp, Gábor; Szabolcsi, Roland; Kathó, Ágnes; Joó, Ferenc

    2015-09-21

    Molecular hydrogen, obtained by water electrolysis or photocatalytic water splitting, can be used to store energy obtained from intermittent sources such as wind and solar power. The storage and safe transportation of H2 , however, is an open and central question in such a hydrogen economy. Easy-to-synthesize, water-soluble iridium-N-heterocyclic carbene-phosphine (Ir(I) -NHC-phosphine) catalysts show unprecedented high catalytic activity in dehydrogenation of aqueous sodium formate. Fast reversible generation and storage of hydrogen can be achieved with these catalysts by a simple decrease or increase in the hydrogen pressure, respectively. PMID:26289830

  7. Hydrogen production from high-moisture content biomass in supercritical water

    SciTech Connect

    Antal, M.J. Jr.; Matsumura, Y.; Onuma, M.T.

    1995-09-01

    Wet biomass (water hyacinth, banana trees, cattails, green algae, kelp, etc.) grows rapidly and abundantly around the world. However, wet biomass is not regarded as a promising feedstock for conventional thermochemical conversion processes because the cost of drying the material is too high. Prior work has shown that low concentrations of glucose (a model compound for whole biomass) and various wet biomass species (water hyacinth, algae) can be completely gasified in supercritical water at 600{degrees}C and 34.5 MPa after a 30 s residence time. But higher concentrations of glucose evidenced incomplete conversion. For this reason, flow reactors were fabricated which could accommodate packed beds of catalyst, and studies were initiated of the steam reforming (gasification) reactions in the presence of various candidate heterogeneous catalysts. The goal is to identify active catalysts for steam reforming biomass slurries in supercritical water. Soon after tests began, a suitable class of carbon-based catalysts was discovered. These catalysts effect complete (>99%) conversion of high-concentration glucose (up to 22% by weight) to a hydrogen-rich synthesis gas. High space velocities are realized [>20 (g/hr)/g], and the catalyst is stable over a period of several hours. The carbon catalyst is not expensive, and exists in a wide variety of forms and compositions. After this discovery, work has focused on four interrelated tasks: (1) tests to identify the most active form and composition of the catalyst; (2) tests employing the preferred catalyst to study the effect of feedstock composition on carbon conversion and gas composition; (3) studies of catalyst deactivation and subsequent reactivation, including the in-house synthesis of bifunctional catalysts which incorporate promoters and stabilizers; and (4) the design and fabrication of a larger, new reactor with a slurry feeder intended to handle high-concentration, wet biomass feeds.

  8. Estimation of Solvation Entropy and Enthalpy via Analysis of Water Oxygen-Hydrogen Correlations.

    PubMed

    Velez-Vega, Camilo; McKay, Daniel J J; Kurtzman, Tom; Aravamuthan, Vibhas; Pearlstein, Robert A; Duca, José S

    2015-11-10

    A statistical-mechanical framework for estimation of solvation entropies and enthalpies is proposed, which is based on the analysis of water as a mixture of correlated water oxygens and water hydrogens. Entropic contributions of increasing order are cast in terms of a Mutual Information Expansion that is evaluated to pairwise interactions. In turn, the enthalpy is computed directly from a distance-based hydrogen bonding energy algorithm. The resulting expressions are employed for grid-based analyses of Molecular Dynamics simulations. In this first assessment of the methodology, we obtained global estimates of the excess entropy and enthalpy of water that are in good agreement with experiment and examined the method's ability to enable detailed elucidation of solvation thermodynamic structures, which can provide valuable knowledge toward molecular design.

  9. A molecular molybdenum-oxo catalyst for generating hydrogen from water.

    PubMed

    Karunadasa, Hemamala I; Chang, Christopher J; Long, Jeffrey R

    2010-04-29

    A growing awareness of issues related to anthropogenic climate change and an increase in global energy demand have made the search for viable carbon-neutral sources of renewable energy one of the most important challenges in science today. The chemical community is therefore seeking efficient and inexpensive catalysts that can produce large quantities of hydrogen gas from water. Here we identify a molybdenum-oxo complex that can catalytically generate gaseous hydrogen either from water at neutral pH or from sea water. This work shows that high-valency metal-oxo species can be used to create reduction catalysts that are robust and functional in water, a concept that has broad implications for the design of 'green' and sustainable chemistry cycles.

  10. Investigation of Iron Oxide Morphology in a Cyclic Redox Water Splitting Process for Hydrogen Generation

    SciTech Connect

    Bobek, MM; Stehle, RC; Hahn, DW

    2012-10-23

    A solar fuels generation research program is focused on hydrogen production by means of reactive metal water splitting in a cyclic iron-based redox process. Iron-based oxides are explored as an intermediary reactive material to dissociate water molecules at significantly reduced thermal energies. With a goal of studying the resulting oxide chemistry and morphology, chemical assistance via CO is used to complete the redox cycle. In order to exploit the unique characteristics of highly reactive materials at the solar reactor scale, a monolithic laboratory scale reactor has been designed to explore the redox cycle at temperatures ranging from 675 to 875 K. Using high resolution scanning electron microscope (SEM) and electron dispersive X-ray spectroscopy (EDS), the oxide morphology and the oxide state are quantified, including spatial distributions. These images show the change of the oxide layers directly after oxidation and after reduction. The findings show a significant non-stoichiometric O/Fe gradient in the atomic ratio following oxidation, which is consistent with a previous kinetics model, and a relatively constant, non-stoichiometric O/Fe atomic ratio following reduction.

  11. Hydrogen sulphide release to surface waters at the Precambrian/Cambrian boundary.

    PubMed

    Wille, Martin; Nägler, Thomas F; Lehmann, Bernd; Schröder, Stefan; Kramers, Jan D

    2008-06-01

    Animal-like multicellular fossils appeared towards the end of the Precambrian, followed by a rapid increase in the abundance and diversity of fossils during the Early Cambrian period, an event also known as the 'Cambrian explosion'. Changes in the environmental conditions at the Precambrian/Cambrian transition (about 542 Myr ago) have been suggested as a possible explanation for this event, but are still a matter of debate. Here we report molybdenum isotope signatures of black shales from two stratigraphically correlated sample sets with a depositional age of around 542 Myr. We find a transient molybdenum isotope signal immediately after the Precambrian/Cambrian transition. Using a box model of the oceanic molybdenum cycle, we find that intense upwelling of hydrogen sulphide-rich deep ocean water best explains the observed Early Cambrian molybdenum isotope signal. Our findings suggest that the Early Cambrian animal radiation may have been triggered by a major change in ocean circulation, terminating a long period during which the Proterozoic ocean was stratified, with sulphidic deep water.

  12. Hydrogen sulphide release to surface waters at the Precambrian/Cambrian boundary.

    PubMed

    Wille, Martin; Nägler, Thomas F; Lehmann, Bernd; Schröder, Stefan; Kramers, Jan D

    2008-06-01

    Animal-like multicellular fossils appeared towards the end of the Precambrian, followed by a rapid increase in the abundance and diversity of fossils during the Early Cambrian period, an event also known as the 'Cambrian explosion'. Changes in the environmental conditions at the Precambrian/Cambrian transition (about 542 Myr ago) have been suggested as a possible explanation for this event, but are still a matter of debate. Here we report molybdenum isotope signatures of black shales from two stratigraphically correlated sample sets with a depositional age of around 542 Myr. We find a transient molybdenum isotope signal immediately after the Precambrian/Cambrian transition. Using a box model of the oceanic molybdenum cycle, we find that intense upwelling of hydrogen sulphide-rich deep ocean water best explains the observed Early Cambrian molybdenum isotope signal. Our findings suggest that the Early Cambrian animal radiation may have been triggered by a major change in ocean circulation, terminating a long period during which the Proterozoic ocean was stratified, with sulphidic deep water. PMID:18509331

  13. BUBBLE STRIPPING TO DETERMINE HYDROGEN CONCENTRATIONS IN GROUND WATER: A PRACTICAL APPLICATION OF HENRY'S LAW

    EPA Science Inventory

    The Bubble Stripping Method is a chemical testing method that operates on the principle of Henry's Law. It is useful for determining concentrations of hydrogen in well water, and it is capable of detecting concentrations on the order of nanomoles per liter. The method provides ...

  14. Physics Beyond the Standard Model from Molecular Hydrogen Spectroscopy

    NASA Astrophysics Data System (ADS)

    Ubachs, Wim; Salumbides, Edcel John; Bagdonaite, Julija

    2015-06-01

    The spectrum of molecular hydrogen can be measured in the laboratory to very high precision using advanced laser and molecular beam techniques, as well as frequency-comb based calibration [1,2]. The quantum level structure of this smallest neutral molecule can now be calculated to very high precision, based on a very accurate (10-15 precision) Born-Oppenheimer potential [3] and including subtle non-adiabatic, relativistic and quantum electrodynamic effects [4]. Comparison between theory and experiment yields a test of QED, and in fact of the Standard Model of Physics, since the weak, strong and gravitational forces have a negligible effect. Even fifth forces beyond the Standard Model can be searched for [5]. Astronomical observation of molecular hydrogen spectra, using the largest telescopes on Earth and in space, may reveal possible variations of fundamental constants on a cosmological time scale [6]. A study has been performed at a 'look-back' time of 12.5 billion years [7]. In addition the possible dependence of a fundamental constant on a gravitational field has been investigated from observation of molecular hydrogen in the photospheres of white dwarfs [8]. The latter involves a test of the Einsteins equivalence principle. [1] E.J. Salumbides et al., Phys. Rev. Lett. 107, 143005 (2011). [2] G. Dickenson et al., Phys. Rev. Lett. 110, 193601 (2013). [3] K. Pachucki, Phys. Rev. A82, 032509 (2010). [4] J. Komasa et al., J. Chem. Theory Comp. 7, 3105 (2011). [5] E.J. Salumbides et al., Phys. Rev. D87, 112008 (2013). [6] F. van Weerdenburg et al., Phys. Rev. Lett. 106, 180802 (2011). [7] J. Badonaite et al., Phys. Rev. Lett. 114, 071301 (2015). [8] J. Bagdonaite et al., Phys. Rev. Lett. 113, 123002 (2014).

  15. An analysis of hydrogen production via closed-cycle schemes. [thermochemical processings from water

    NASA Technical Reports Server (NTRS)

    Chao, R. E.; Cox, K. E.

    1975-01-01

    A thermodynamic analysis and state-of-the-art review of three basic schemes for production of hydrogen from water: electrolysis, thermal water-splitting, and multi-step thermochemical closed cycles is presented. Criteria for work-saving thermochemical closed-cycle processes are established, and several schemes are reviewed in light of such criteria. An economic analysis is also presented in the context of energy costs.

  16. Hydrogen Incorporation in Bridgmanite and Water in Earth's Lower Mantle

    NASA Astrophysics Data System (ADS)

    Smyth, J. R.

    2014-12-01

    We have synthesized aluminum-bearing MgSiO3 bridgmanite samples at 25GPa and various temperatures from 1600 to 2200ºC in a multi-anvil press and have characterized the samples by single-crystal X-ray diffraction, Raman spectroscopy, electron microprobe (EPMA), transmission electron microscopy (TEM), and secondary ion mass spectroscopy (SIMS). Bridgmanite crystals range up to 100 micrometers in size and contain 1 - 2.5% by weight Al2O3. SIMS analysis indicates up to several thousand ppm by weight H2O within probe spot areas of approximately 10 x 10 mm, which corresponds to one H per Al atom in the structure. Microprobe chemical analysis and crystal structure refinement from single crystal X-ray data indicates that Al substitutes in the Si site, but not in the Mg site. However, Raman spectroscopy indicates the presence of micro-inclusions of brucite, super-hydrous phase B (Shy-B), possible magnesite, and stishovite in most of the runs. Some of the bridgmanite crystals in the samples synthesized at temperatures above 2100º C exhibit rounded inclusions that are interpreted to be melt that quenched to bridgmanite plus brucite, phase D, and/or stishovite. These results indicate that hydrogen may have a small but significant solubility in at least the upper part of Earth's lower mantle related to the presence of Al in bridgmanite. The solubility of H in the lower mantle is thus likely to be much lower than in the phases of the transition zone at depths less than 660 km. This raises the possibility that significant amounts of H may be trapped and stored in the transition zone.

  17. The Role of Water for Photodecomposition of Aqueous Hydrogen Sulfide Using Stratified Photocatalyst—Experimental Part

    NASA Astrophysics Data System (ADS)

    Arai, Takeo; Matsumoto, Takatoshi; Sakima, Shuhei; Shinoda, Kozo; Nagashima, Umpei; Tohji, Kazuyuki

    2006-05-01

    Splitting of hydrogen sulfide using sunlight is a useful reaction to produce hydrogen. Alkaline sulfide solution, which is prepared by dissolving hydrogen sulfide into alkaline water, is selected as the reaction medium of photocatalytic hydrogen generation reaction. In this system, the photocatalytic reaction is assumed to occur as follows: 2H2O + 2e- → H2 + 2OH- (1) 2S2- + 2h+ → S22- (2) However, as the reaction progresses white solids precipitate in the reaction medium. Furthermore, the HPLC analysis suggested that the ratio between the consumption of sulfide ion and the amount of hydrogen generation was about 3:2, which is not stoichiometric. Thus, in this paper, we characterized the white solid precipitate and tried to optimize the solution condition to prevent the precipitation of the same. From our study, the white solid precipitate was confirmed as sulfur derived from the oxidation of the disulfide ion. It was confirmed that the addition of sulfite ions prevented the oxidation of disulfide ions, which causes the precipitation. In the absence of sulfite ions and for sufide ion concentration less than 0.1M, the precipitation of sulfur occurs in a very short reaction time. On the other hand the hydrogen evolution rate retarded when the sulfide ion concentration is higher than 0.1M. This was due to the degradation of the stratified CdS particles. Thus, the optimal concentration of Na2S solution was determined to be around 0.1M.

  18. Modulating memristive performance of hexagonal WO3 nanowire by water-oxidized hydrogen ion implantation.

    PubMed

    Zhou, Yong; Peng, Yuehua; Yin, Yanling; Zhou, Fang; Liu, Chang; Ling, Jing; Lei, Le; Zhou, Weichang; Tang, Dongsheng

    2016-01-01

    In a two-terminal Au/hexagonal WO3 nanowire/Au device, ions drifting or carriers self-trapping under external electrical field will modulate the Schottky barriers between the nanowire and electrodes, and then result in memristive effect. When there are water molecules adsorbed on the surface of WO3 nanowire, hydrogen ions will generate near the positively-charged electrode and transport in the condensed water film, which will enhance the memristive performance characterized by analogic resistive switching remarkably. When the bias voltage is swept repeatedly under high relative humidity level, hydrogen ions will accumulate on the surface and then implant into the lattice of the WO3 nanowire, which leads to a transition from semiconducting WO3 nanowire to metallic HxWO3 nanowire. This insulator-metal transition can be realized more easily after enough electron-hole pairs being excited by laser illumination. The concentration of hydrogen ions in HxWO3 nanowire will decrease when the device is exposed to oxygen atmosphere or the bias voltage is swept in atmosphere with low relative humidity. By modulating the concentration of hydrogen ions, conductive hydrogen tungsten bronze filament might form or rupture near electrodes when the polarity of applied voltage changes, which will endow the device with memristive performance characterized by digital resistive switching. PMID:27600368

  19. Modulating memristive performance of hexagonal WO3 nanowire by water-oxidized hydrogen ion implantation

    PubMed Central

    Zhou, Yong; Peng, Yuehua; Yin, Yanling; Zhou, Fang; Liu, Chang; Ling, Jing; Lei, Le; Zhou, Weichang; Tang, Dongsheng

    2016-01-01

    In a two-terminal Au/hexagonal WO3 nanowire/Au device, ions drifting or carriers self-trapping under external electrical field will modulate the Schottky barriers between the nanowire and electrodes, and then result in memristive effect. When there are water molecules adsorbed on the surface of WO3 nanowire, hydrogen ions will generate near the positively-charged electrode and transport in the condensed water film, which will enhance the memristive performance characterized by analogic resistive switching remarkably. When the bias voltage is swept repeatedly under high relative humidity level, hydrogen ions will accumulate on the surface and then implant into the lattice of the WO3 nanowire, which leads to a transition from semiconducting WO3 nanowire to metallic HxWO3 nanowire. This insulator-metal transition can be realized more easily after enough electron-hole pairs being excited by laser illumination. The concentration of hydrogen ions in HxWO3 nanowire will decrease when the device is exposed to oxygen atmosphere or the bias voltage is swept in atmosphere with low relative humidity. By modulating the concentration of hydrogen ions, conductive hydrogen tungsten bronze filament might form or rupture near electrodes when the polarity of applied voltage changes, which will endow the device with memristive performance characterized by digital resistive switching. PMID:27600368

  20. Hydrogen atom formation from the photodissociation of water ice at 193 nm.

    PubMed

    Yabushita, Akihiro; Hashikawa, Yuichi; Ikeda, Atsushi; Kawasaki, Masahiro; Tachikawa, Hiroto

    2004-03-15

    The TOF spectra of photofragment hydrogen atoms from the 193 nm photodissociation of amorphous ice at 90-140 K have been measured. The spectra consist of both a fast and a slow components that are characterized by average translational energies of 2k(B)T(trans)=0.39+/-0.04 eV (2300+/-200 K) and 0.02 eV (120+/-20 K), respectively. The incident laser power dependency of the hydrogen atom production suggests one-photon process. The electronic excitation energy of a branched cluster, (H(2)O)(6+1), has been theoretically calculated, where (H(2)O)(6+1) is a (H(2)O)(6) cyclic cluster attached by a water molecule with the hydrogen bond. The photoabsorption of this branched cluster is expected to appear at around 200 nm. The source of the hydrogen atoms is attributed to the photodissociation of the ice surface that is attached by water molecules with the hydrogen bond. Atmospheric implications are estimated for the photodissociation of the ice particles (Noctilucent clouds) at 190-230 nm in the region between 80 and 85 km altitude.

  1. The Role of Water in the Storage of Hydrogen in Metals

    NASA Technical Reports Server (NTRS)

    Hampton, Michael D.; Lomness, Janice K.; Giannuzzi, Lucille A.

    2001-01-01

    One major problem with the use of hydrogen is safe and efficient storage. In the pure form, bulky and heavy containers are required greatly reducing the efficiency of its use. Safety is also a great concern. Storage of hydrogen in the form of a metal hydride offers distinct advantages both in terms of volumetric efficiency and in terms of safety. As a result, an enormous amount of research is currently being done on metal-hydrogen systems. Practical application of these systems to storage of hydrogen can only occur when they are very well understood. In this paper, the preliminary results of a study of the surfaces of magnesium nickel alloys will be presented. Alloys that have been rendered totally unreactive with hydrogen as well as those that have been activated with liquid water and with water vapor were studied. Data obtained from XPS (X-ray Photoelectron Spectrometer) analysis, with samples held in vacuum for the shortest possible time to minimize the hydroxide degradation will be presented. Furthermore, TEM data on samples prepared in a new way that largely protects the surface from the high vacuum will be discussed.

  2. Modulating memristive performance of hexagonal WO3 nanowire by water-oxidized hydrogen ion implantation.

    PubMed

    Zhou, Yong; Peng, Yuehua; Yin, Yanling; Zhou, Fang; Liu, Chang; Ling, Jing; Lei, Le; Zhou, Weichang; Tang, Dongsheng

    2016-01-01

    In a two-terminal Au/hexagonal WO3 nanowire/Au device, ions drifting or carriers self-trapping under external electrical field will modulate the Schottky barriers between the nanowire and electrodes, and then result in memristive effect. When there are water molecules adsorbed on the surface of WO3 nanowire, hydrogen ions will generate near the positively-charged electrode and transport in the condensed water film, which will enhance the memristive performance characterized by analogic resistive switching remarkably. When the bias voltage is swept repeatedly under high relative humidity level, hydrogen ions will accumulate on the surface and then implant into the lattice of the WO3 nanowire, which leads to a transition from semiconducting WO3 nanowire to metallic HxWO3 nanowire. This insulator-metal transition can be realized more easily after enough electron-hole pairs being excited by laser illumination. The concentration of hydrogen ions in HxWO3 nanowire will decrease when the device is exposed to oxygen atmosphere or the bias voltage is swept in atmosphere with low relative humidity. By modulating the concentration of hydrogen ions, conductive hydrogen tungsten bronze filament might form or rupture near electrodes when the polarity of applied voltage changes, which will endow the device with memristive performance characterized by digital resistive switching.

  3. Validation of hydrogen gas stratification and mixing models

    DOE PAGES

    Wu, Hsingtzu; Zhao, Haihua

    2015-05-26

    Two validation benchmarks confirm that the BMIX++ code is capable of simulating unintended hydrogen release scenarios efficiently. The BMIX++ (UC Berkeley mechanistic MIXing code in C++) code has been developed to accurately and efficiently predict the fluid mixture distribution and heat transfer in large stratified enclosures for accident analyses and design optimizations. The BMIX++ code uses a scaling based one-dimensional method to achieve large reduction in computational effort compared to a 3-D computational fluid dynamics (CFD) simulation. Two BMIX++ benchmark models have been developed. One is for a single buoyant jet in an open space and another is for amore » large sealed enclosure with both a jet source and a vent near the floor. Both of them have been validated by comparisons with experimental data. Excellent agreements are observed. The entrainment coefficients of 0.09 and 0.08 are found to fit the experimental data for hydrogen leaks with the Froude number of 99 and 268 best, respectively. In addition, the BIX++ simulation results of the average helium concentration for an enclosure with a vent and a single jet agree with the experimental data within a margin of about 10% for jet flow rates ranging from 1.21 × 10⁻⁴ to 3.29 × 10⁻⁴ m³/s. In conclusion, computing time for each BMIX++ model with a normal desktop computer is less than 5 min.« less

  4. Validation of hydrogen gas stratification and mixing models

    SciTech Connect

    Wu, Hsingtzu; Zhao, Haihua

    2015-05-26

    Two validation benchmarks confirm that the BMIX++ code is capable of simulating unintended hydrogen release scenarios efficiently. The BMIX++ (UC Berkeley mechanistic MIXing code in C++) code has been developed to accurately and efficiently predict the fluid mixture distribution and heat transfer in large stratified enclosures for accident analyses and design optimizations. The BMIX++ code uses a scaling based one-dimensional method to achieve large reduction in computational effort compared to a 3-D computational fluid dynamics (CFD) simulation. Two BMIX++ benchmark models have been developed. One is for a single buoyant jet in an open space and another is for a large sealed enclosure with both a jet source and a vent near the floor. Both of them have been validated by comparisons with experimental data. Excellent agreements are observed. The entrainment coefficients of 0.09 and 0.08 are found to fit the experimental data for hydrogen leaks with the Froude number of 99 and 268 best, respectively. In addition, the BIX++ simulation results of the average helium concentration for an enclosure with a vent and a single jet agree with the experimental data within a margin of about 10% for jet flow rates ranging from 1.21 × 10⁻⁴ to 3.29 × 10⁻⁴ m³/s. In conclusion, computing time for each BMIX++ model with a normal desktop computer is less than 5 min.

  5. Geospatial analysis and seasonal changes in water-equivalent hydrogen in eastern equatorial Mars

    NASA Astrophysics Data System (ADS)

    Clevy, June Renee

    2014-10-01

    This dissertation describes the relationship between hydrogen abundance, as measured through epithermal neutron counts, and the topographic, geologic, and surficial features in the equatorial region of eastern Mars. In Chapter 1, I present an alternative method for resampling the epithermal neutron count data collected by the neutron spectrometer from Mars Odyssey's Gamma Ray Spectrometer suite. Chapter 2 provides a seasonal break down of mean and median epithermal neutron count rates and examines areas of static, seasonal, and episodic hydrogen enrichment. Armed with new maps of mean epithermal neutron count rates and derivative maps of weight percent water equivalent hydrogen, I examine the spatial relationships between equatorial hydrogen concentrations and satellite-measured surface properties such as elevation, its derivatives slope and aspect, albedo, dust cover, geologic units, and valley networks in Chapter 3. The chapters in this dissertation represent a workflow from the development of the Water Equivalent Hydrogen dataset used in this research (Chapter 1), to an analysis of seasonal changes in the hydrogen signal (Chapter 2), and the relationships between this data and measurements of elevation, crustal thickness, surface composition, and geomorphology (Chapter 3). These investigations were made possible by the application of terrestrial geographic information science to planetary geology through Geographic Information Systems (GIS). Neighborhood processing allowed me to refine the spatial resolution of the epithermal neutron count in the first chapter. Class frequency tables permitted the identification of changes over time in chapter two and facilitated the identification of high and low variability areas. Finally, a quantitative process known as the Location Quotient, which builds upon frequency tables, was applied to identify more frequent than expected combinations of hydrogen abundance and other martian data (e.g., elevation) for the purpose of

  6. Protein structural dynamics at the gas/water interface examined by hydrogen exchange mass spectrometry.

    PubMed

    Xiao, Yiming; Konermann, Lars

    2015-08-01

    Gas/water interfaces (such as air bubbles or foam) are detrimental to the stability of proteins, often causing aggregation. This represents a potential problem for industrial processes, for example, the production and handling of protein drugs. Proteins possess surfactant-like properties, resulting in a high affinity for gas/water interfaces. The tendency of previously buried nonpolar residues to maximize contact with the gas phase can cause significant structural distortion. Most earlier studies in this area employed spectroscopic tools that could only provide limited information. Here we use hydrogen/deuterium exchange (HDX) mass spectrometry (MS) for probing the conformational dynamics of the model protein myoglobin (Mb) in the presence of N(2) bubbles. HDX/MS relies on the principle that unfolded and/or highly dynamic regions undergo faster deuteration than tightly folded segments. In bubble-free solution Mb displays EX2 behavior, reflecting the occurrence of short-lived excursions to partially unfolded conformers. A dramatically different behavior is seen in the presence of N(2) bubbles; EX2 dynamics still take place, but in addition the protein shows EX1 behavior. The latter results from interconversion of the native state with conformers that are globally unfolded and long-lived. These unfolded species likely correspond to Mb that is adsorbed to the surface of gas bubbles. N(2) sparging also induces aggregation. To explain the observed behavior we propose a simple model, that is, "semi-unfolded" ↔ "native" ↔ "globally unfolded" → "aggregated". This model quantitatively reproduces the experimentally observed kinetics. To the best of our knowledge, the current study marks the first exploration of surface denaturation phenomena by HDX/MS. PMID:25761782

  7. Protein structural dynamics at the gas/water interface examined by hydrogen exchange mass spectrometry

    PubMed Central

    Xiao, Yiming; Konermann, Lars

    2015-01-01

    Gas/water interfaces (such as air bubbles or foam) are detrimental to the stability of proteins, often causing aggregation. This represents a potential problem for industrial processes, for example, the production and handling of protein drugs. Proteins possess surfactant-like properties, resulting in a high affinity for gas/water interfaces. The tendency of previously buried nonpolar residues to maximize contact with the gas phase can cause significant structural distortion. Most earlier studies in this area employed spectroscopic tools that could only provide limited information. Here we use hydrogen/deuterium exchange (HDX) mass spectrometry (MS) for probing the conformational dynamics of the model protein myoglobin (Mb) in the presence of N2 bubbles. HDX/MS relies on the principle that unfolded and/or highly dynamic regions undergo faster deuteration than tightly folded segments. In bubble-free solution Mb displays EX2 behavior, reflecting the occurrence of short-lived excursions to partially unfolded conformers. A dramatically different behavior is seen in the presence of N2 bubbles; EX2 dynamics still take place, but in addition the protein shows EX1 behavior. The latter results from interconversion of the native state with conformers that are globally unfolded and long-lived. These unfolded species likely correspond to Mb that is adsorbed to the surface of gas bubbles. N2 sparging also induces aggregation. To explain the observed behavior we propose a simple model, that is, “semi-unfolded” ↔ “native” ↔ “globally unfolded” → “aggregated”. This model quantitatively reproduces the experimentally observed kinetics. To the best of our knowledge, the current study marks the first exploration of surface denaturation phenomena by HDX/MS. PMID:25761782

  8. Revisiting the Boundary Layer Leaf Water Isotopic Model

    NASA Astrophysics Data System (ADS)

    Feng, X.; Shu, Y.; Posmentier, E. S.; Sonder, L. J.; Yakir, D.

    2007-12-01

    The boundary layer (BL) model for oxygen or hydrogen isotopic composition of leaf water has been widely used in the past four decades, and has been incorporated into models that require information about leaf water isotopic variations. However, since its introduction, model predictions of the bulk leaf water have often exceeded observed isotopic enrichments. There are also cases in which the model yielded lower than observed isotopic enrichments of bulk leaf water. In general, underpredictions occur under relatively high humidity. In order to explain why the BL model overpredicts the isotopic composition, several modifications of the model have been proposed. However, no explanation exists for why the BL model underestimates observed isotopic enrichments. We recently developed a 2D model that successfully simulates the observed along-leaf 18O enrichment of pine needles, and can explain why the BL model could have over- or under-predicted the bulk leaf water δ18O values. In the BL model, bulk leaf water is isotopically equivalent to water at the evaporation site, fed directly by stem water. In a real leaf, however, stem water enters the base of the leaf and becomes progressively enriched in 18O towards the tip due to fractionation by transpiration, consistent with both our observations and behavior of the 2D model. Therefore, at least part of the leaf water, that near the base, would have isotopic values lower than water at transpiration sites predicted by the BL model, which might thus overestimate bulk isotope values. On the other hand, as water moves through a leaf, it becomes increasingly enriched in 18O, and the leaf water near the tip may have δ18O values well above the BL model prediction. Therefore, it is also possible for the BL model to underestimate the bulk leaf water δ18O. The actual isotopic composition of the bulk leaf water is a combination of these two effects. It is clear then that the BL model may not accurately predict the δ18O value of the

  9. Water Distribution and Removal Model

    SciTech Connect

    Y. Deng; N. Chipman; E.L. Hardin

    2005-08-26

    The design of the Yucca Mountain high level radioactive waste repository depends on the performance of the engineered barrier system (EBS). To support the total system performance assessment (TSPA), the Engineered Barrier System Degradation, Flow, and Transport Process Model Report (EBS PMR) is developed to describe the thermal, mechanical, chemical, hydrological, biological, and radionuclide transport processes within the emplacement drifts, which includes the following major analysis/model reports (AMRs): (1) EBS Water Distribution and Removal (WD&R) Model; (2) EBS Physical and Chemical Environment (P&CE) Model; (3) EBS Radionuclide Transport (EBS RNT) Model; and (4) EBS Multiscale Thermohydrologic (TH) Model. Technical information, including data, analyses, models, software, and supporting documents will be provided to defend the applicability of these models for their intended purpose of evaluating the postclosure performance of the Yucca Mountain repository system. The WD&R model ARM is important to the site recommendation. Water distribution and removal represents one component of the overall EBS. Under some conditions, liquid water will seep into emplacement drifts through fractures in the host rock and move generally downward, potentially contacting waste packages. After waste packages are breached by corrosion, some of this seepage water will contact the waste, dissolve or suspend radionuclides, and ultimately carry radionuclides through the EBS to the near-field host rock. Lateral diversion of liquid water within the drift will occur at the inner drift surface, and more significantly from the operation of engineered structures such as drip shields and the outer surface of waste packages. If most of the seepage flux can be diverted laterally and removed from the drifts before contacting the wastes, the release of radionuclides from the EBS can be controlled, resulting in a proportional reduction in dose release at the accessible environment. The purposes

  10. Hydrogen bond donors accelerate vibrational cooling of hot purine derivatives in heavy water.

    PubMed

    Zhang, Yuyuan; Chen, Jinquan; Kohler, Bern

    2013-08-01

    Natural nucleobases and many of their derivatives have ultrashort excited state lifetimes that make them excellent model systems for studying intermolecular energy flow from a hot solute molecule to the solvent. UV-pump/broadband-mid-IR-probe transient absorption spectra of canonical purine nucleobases and several xanthine derivatives were acquired in D2O and acetonitrile in the probe frequency range of 1500-1750 cm(-1). The spectra reveal that vibrationally hot ground state molecules created by ultrafast internal conversion return to thermal equilibrium in several picoseconds by dissipating their excess energy to solvent molecules. In acetonitrile solution, where hydrogen bonding is minimal, vibrational cooling (VC) occurs with the same time constant of 10 ± 3 ps for paraxanthine, theophylline, and caffeine within experimental uncertainty. In D2O, VC by these molecules occurs more rapidly and at different rates that are correlated with the number of N-D bonds. Hypoxanthine has a VC time constant of 3 ± 1 ps, while similar lifetimes of 2.3 ± 0.8 ps and 3.1 ± 0.3 ps are seen for 5'-adenosine monophosphate and 5'-guanosine monophosphate, respectively. All three molecules have at least two N-D bonds. Slightly slower VC time constants are measured for paraxanthine (4 ± 1 ps) and theophylline (5.1 ± 0.8 ps), dimethylated xanthines that have only one N-D bond. Caffeine, a trimethylated xanthine with no N-D bonds, has a VC time constant of 7.7 ± 0.9 ps, the longest ever observed for any nucleobase in aqueous solution. Hydrogen bond donation by solute molecules is proposed to enable rapid energy disposal to water via direct coupling of high frequency solute-solvent modes.

  11. Improvements in the gaseous hydrogen-water equilibration technique for hydrogen isotope ratio analysis

    USGS Publications Warehouse

    Coplen, T.B.; Wildman, J.D.; Chen, J.

    1991-01-01

    Improved precision in the H2-H2O equilibration method for ??D analysis has been achieved in an automated system. Reduction in 1-?? standard deviation of a single mass-spectrometer analysis to 1.3??? is achieved by (1) bonding catalyst to glass rods and assigning use to specific equilibration chambers to monitor performance of catalyst, (2) improving the apparatus design, and (3) reducing the H3+ contribution of the mass-spectrometer ion source. For replicate analysis of a water sample, the standard deviation improved to 0.8???. H2S-bearing samples and samples as small as 0.1 mL can be analyzed routinely with this method.

  12. SWQM: Source Water Quality Modeling Software

    2008-01-08

    The Source Water Quality Modeling software (SWQM) simulates the water quality conditions that reflect properties of water generated by water treatment facilities. SWQM consists of a set of Matlab scripts that model the statistical variation that is expected in a water treatment facility’s water, such as pH and chlorine levels.

  13. Efficient photocatalytic hydrogen production from water over Pt-Eosin Y catalyst: A systemic study of reaction parameters

    NASA Astrophysics Data System (ADS)

    Wang, Li; Zhao, Hui; Chen, Yong; Sun, Ruimin; Han, Bing

    2016-07-01

    A high efficient homogeneous system for hydrogen production from water consisting of Eosin Y as a photosensitizer, methyl viologen (MV2+) as an electron transfer mediator, triethanolamine (TEOA) as a sacrificial electron donor and colloid Pt as a catalyst, has been systemicly studied. The initial system pH and the concentration of Eosin Y have remarkable effects on the rate of hydrogen evolution. The optimal pH and concentration of Eosin Y are 9 and 7.2×10-5 M. Triethanolamine (TEOA) as an electron donor, can reductively quench the oxidized Eosin Y and the quenching is well modeled by the Stern-Volmer equation. The optimal concentration of TEOA and the concentration of MV2+ are 0.3 M and 3.1×10-4 M, respectively. In addition, the role of colloid Pt has been investigated.

  14. Study of the Hydrogen Bond Network in sub-and supercritical Water by Molecular Dynamics Simulations

    NASA Astrophysics Data System (ADS)

    Krishtal, S.; Kiselev, M.; Puhovski, Y.; Kerdcharoen, T.; Hannongbua, S.; Heinzinger, K.

    2001-08-01

    For 12 points along the tangent to the saturation curve at the critical point the temperature dependen­cies of the heights of the first maximum in the 0 -0 RDF, the average number of hydrogen bonds, and the self-diffusion coefficients have been calculated from MD simulations. The curves of these three properties show an inflection near the critical point. To improve the understanding of these changes in going from subcritical to supercritical water the librational spectra and the change in the fractions of wa­ter molecules with a given number of hydrogen bonds as a function of temperature have been derived from the simulations, additionally.

  15. Kinetic modelling of molecular hydrogen transport in microporous carbon materials.

    SciTech Connect

    Hankel, M.; Zhang, H.; Nguyen, T. X.; Bhatia, S. K.; Gray, S. K.; Smith, S. C.

    2011-01-01

    The proposal of kinetic molecular sieving of hydrogen isotopes is explored by employing statistical rate theory methods to describe the kinetics of molecular hydrogen transport in model microporous carbon structures. A Lennard-Jones atom-atom interaction potential is utilized for the description of the interactions between H{sub 2}/D{sub 2} and the carbon framework, while the requisite partition functions describing the thermal flux of molecules through the transition state are calculated quantum mechanically in view of the low temperatures involved in the proposed kinetic molecular sieving application. Predicted kinetic isotope effects for initial passage from the gas phase into the first pore mouth are consistent with expectations from previous modeling studies, namely, that at sufficiently low temperatures and for sufficiently narrow pore mouths D{sub 2} transport is dramatically favored over H{sub 2}. However, in contrast to expectations from previous modeling, the absence of any potential barrier along the minimum energy pathway from the gas phase into the first pore mouth yields a negative temperature dependence in the predicted absolute rate coefficients - implying a negative activation energy. In pursuit of the effective activation barrier, we find that the minimum potential in the cavity is significantly higher than in the pore mouth for nanotube-shaped models, throwing into question the common assumption that passage through the pore mouths should be the rate-determining step. Our results suggest a new mechanism that, depending on the size and shape of the cavity, the thermal activation barrier may lie in the cavity rather than at the pore mouth. As a consequence, design strategies for achieving quantum-mediated kinetic molecular sieving of H{sub 2}/D{sub 2} in a microporous membrane will need, at the very least, to take careful account of cavity shape and size in addition to pore-mouth size in order to ensure that the selective step, namely passage

  16. Spectroscopic identification of ethanol-water conformers by large-amplitude hydrogen bond librational modes

    NASA Astrophysics Data System (ADS)

    Andersen, J.; Heimdal, J.; Wugt Larsen, R.

    2015-12-01

    The far-infrared absorption spectra have been recorded for hydrogen-bonded complexes of water with ethanol embedded in cryogenic neon matrices at 2.8 K. The partial isotopic H/D-substitution of the ethanol subunit enabled by a dual inlet deposition procedure enables the observation and unambiguous assignment of the intermolecular high-frequency out-of-plane and the low-frequency in-plane donor OH librational modes for two different conformations of the mixed binary ethanol/water complex. The resolved donor OH librational bands confirm directly previous experimental evidence that ethanol acts as the O⋯HO hydrogen bond acceptor in the two most stable conformations. In the most stable conformation, the water subunit forces the ethanol molecule into its less stable gauche configuration upon dimerization owing to a cooperative secondary weak O⋯HC hydrogen bond interaction evidenced by a significantly blue-shift of the low-frequency in-plane donor OH librational band origin. The strong correlation between the low-frequency in-plane donor OH librational motion and the secondary intermolecular O⋯HC hydrogen bond is demonstrated by electronic structure calculations. The experimental findings are further supported by CCSD(T)-F12/aug-cc-pVQZ calculations of the conformational energy differences together with second-order vibrational perturbation theory calculations of the large-amplitude donor OH librational band origins.

  17. Spectroscopic identification of ethanol-water conformers by large-amplitude hydrogen bond librational modes

    SciTech Connect

    Andersen, J.; Wugt Larsen, R.; Heimdal, J.

    2015-12-14

    The far-infrared absorption spectra have been recorded for hydrogen-bonded complexes of water with ethanol embedded in cryogenic neon matrices at 2.8 K. The partial isotopic H/D-substitution of the ethanol subunit enabled by a dual inlet deposition procedure enables the observation and unambiguous assignment of the intermolecular high-frequency out-of-plane and the low-frequency in-plane donor OH librational modes for two different conformations of the mixed binary ethanol/water complex. The resolved donor OH librational bands confirm directly previous experimental evidence that ethanol acts as the O⋯HO hydrogen bond acceptor in the two most stable conformations. In the most stable conformation, the water subunit forces the ethanol molecule into its less stable gauche configuration upon dimerization owing to a cooperative secondary weak O⋯HC hydrogen bond interaction evidenced by a significantly blue-shift of the low-frequency in-plane donor OH librational band origin. The strong correlation between the low-frequency in-plane donor OH librational motion and the secondary intermolecular O⋯HC hydrogen bond is demonstrated by electronic structure calculations. The experimental findings are further supported by CCSD(T)-F12/aug-cc-pVQZ calculations of the conformational energy differences together with second-order vibrational perturbation theory calculations of the large-amplitude donor OH librational band origins.

  18. Spectroscopic identification of ethanol-water conformers by large-amplitude hydrogen bond librational modes.

    PubMed

    Andersen, J; Heimdal, J; Wugt Larsen, R

    2015-12-14

    The far-infrared absorption spectra have been recorded for hydrogen-bonded complexes of water with ethanol embedded in cryogenic neon matrices at 2.8 K. The partial isotopic H/D-substitution of the ethanol subunit enabled by a dual inlet deposition procedure enables the observation and unambiguous assignment of the intermolecular high-frequency out-of-plane and the low-frequency in-plane donor OH librational modes for two different conformations of the mixed binary ethanol/water complex. The resolved donor OH librational bands confirm directly previous experimental evidence that ethanol acts as the O⋯HO hydrogen bond acceptor in the two most stable conformations. In the most stable conformation, the water subunit forces the ethanol molecule into its less stable gauche configuration upon dimerization owing to a cooperative secondary weak O⋯HC hydrogen bond interaction evidenced by a significantly blue-shift of the low-frequency in-plane donor OH librational band origin. The strong correlation between the low-frequency in-plane donor OH librational motion and the secondary intermolecular O⋯HC hydrogen bond is demonstrated by electronic structure calculations. The experimental findings are further supported by CCSD(T)-F12/aug-cc-pVQZ calculations of the conformational energy differences together with second-order vibrational perturbation theory calculations of the large-amplitude donor OH librational band origins. PMID:26671383

  19. Intermolecular potential and second virial coefficient of the water-hydrogen complex

    SciTech Connect

    Hodges, Matthew P.; Wheatley, Richard J.; Schenter, Gregory K.; Harvey, Allen H.

    2004-01-08

    We construct a rigid-body (5-dimensional) potential-energy surface for the water-hydrogen complex using scaled perturbation theory (SPT). An analytic fit of this surface is obtained, and using this, two minima are found: the global minimum has C{sub 2v} symmetry, with the hydrogen molecule acting as a proton donor to the oxygen atom on water; a local minimum with C{sub s} symmetry has the hydrogen molecule acting as a proton acceptor to one of the hydrogen atoms on water, where the OH bond and H{sub 2} are in a T-shaped configuration. The SPT global and local minima are bound by 1097 {micro}E{sub h} (E{sub h} {approx} 4.359 744 x 10{sup -18} J). Our best estimate of the binding energy, from a complete basis set extrapolation of coupled-cluster calculations, is 1076.1 {micro}E{sub h}. The fitted surface is used to calculate the second cross virial coefficient over a wide temperature range (100-3000 K). Three complementary methods are used to quantify quantum statistical mechanical effects that become significant at low temperatures. We compare our results with experimental data, which are available over a smaller temperature range (230-700 K). Generally good agreement is found, but the experimental data are subject to larger uncertainties.

  20. Analytical model for three-dimensional Mercedes-Benz water molecules

    PubMed Central

    Urbic, T.

    2013-01-01

    We developed a statistical model which describes the thermal and volumetric properties of water-like molecules. A molecule is presented as a three-dimensional sphere with four hydrogen-bonding arms. Each water molecule interacts with its neighboring waters through a van der Waals interaction and an orientation-dependent hydrogen-bonding interaction. This model, which is largely analytical, is a variant of a model developed before for a two-dimensional Mercedes-Benz model of water. We explored properties such as molar volume, density, heat capacity, thermal expansion coefficient, and isothermal compressibility as a function of temperature and pressure. We found that the volumetric and thermal properties follow the same trends with temperature as in real water and are in good general agreement with Monte Carlo simulations, including the density anomaly, the minimum in the isothermal compressibility, and the decreased number of hydrogen bonds upon increasing the temperature. PMID:23005100

  1. Analytical model for three-dimensional Mercedes-Benz water molecules

    NASA Astrophysics Data System (ADS)

    Urbic, T.

    2012-06-01

    We developed a statistical model which describes the thermal and volumetric properties of water-like molecules. A molecule is presented as a three-dimensional sphere with four hydrogen-bonding arms. Each water molecule interacts with its neighboring waters through a van der Waals interaction and an orientation-dependent hydrogen-bonding interaction. This model, which is largely analytical, is a variant of a model developed before for a two-dimensional Mercedes-Benz model of water. We explored properties such as molar volume, density, heat capacity, thermal expansion coefficient, and isothermal compressibility as a function of temperature and pressure. We found that the volumetric and thermal properties follow the same trends with temperature as in real water and are in good general agreement with Monte Carlo simulations, including the density anomaly, the minimum in the isothermal compressibility, and the decreased number of hydrogen bonds upon increasing the temperature.

  2. Analytical model for three-dimensional Mercedes-Benz water molecules.

    PubMed

    Urbic, T

    2012-06-01

    We developed a statistical model which describes the thermal and volumetric properties of water-like molecules. A molecule is presented as a three-dimensional sphere with four hydrogen-bonding arms. Each water molecule interacts with its neighboring waters through a van der Waals interaction and an orientation-dependent hydrogen-bonding interaction. This model, which is largely analytical, is a variant of a model developed before for a two-dimensional Mercedes-Benz model of water. We explored properties such as molar volume, density, heat capacity, thermal expansion coefficient, and isothermal compressibility as a function of temperature and pressure. We found that the volumetric and thermal properties follow the same trends with temperature as in real water and are in good general agreement with Monte Carlo simulations, including the density anomaly, the minimum in the isothermal compressibility, and the decreased number of hydrogen bonds upon increasing the temperature.

  3. Analytical model for three-dimensional Mercedes-Benz water molecules.

    PubMed

    Urbic, T

    2012-06-01

    We developed a statistical model which describes the thermal and volumetric properties of water-like molecules. A molecule is presented as a three-dimensional sphere with four hydrogen-bonding arms. Each water molecule interacts with its neighboring waters through a van der Waals interaction and an orientation-dependent hydrogen-bonding interaction. This model, which is largely analytical, is a variant of a model developed before for a two-dimensional Mercedes-Benz model of water. We explored properties such as molar volume, density, heat capacity, thermal expansion coefficient, and isothermal compressibility as a function of temperature and pressure. We found that the volumetric and thermal properties follow the same trends with temperature as in real water and are in good general agreement with Monte Carlo simulations, including the density anomaly, the minimum in the isothermal compressibility, and the decreased number of hydrogen bonds upon increasing the temperature. PMID:23005100

  4. COMPILATION OF GROUND WATER MODELS

    EPA Science Inventory

    The full report presents an overview of currently available computer-based simulation models for ground-water flow, solute and heat transport, and hydrogeochemistry in both porous media and fractured rock. Separate sections address multiphase flow and related chemical species tra...

  5. Slow dielectric response of Debye-type in water and other hydrogen bonded liquids

    NASA Astrophysics Data System (ADS)

    Jansson, Helén; Bergman, Rikard; Swenson, Jan

    2010-05-01

    The slow dynamics of some hydrogen bonded glass-forming liquids has been investigated by broadband dielectric spectroscopy. We show that the polyalcohols glycerol, xylitol, and sorbitol, and mixtures of glycerol and water, and in fact, even pure water exhibit a process of Debye character at longer time-scales than the glass transition and viscosity related α-relaxation. Even if it is less pronounced, this process displays many similarities to the well-studied Debye-like process in monoalcohols. It can be observed in both the negative derivative of the real part of the permittivity or in the imaginary part of the permittivity, if the conductivity contribution is reduced. In the present study the conductivity contribution has been suppressed by use of a thin Teflon film placed between the sample and one of the electrodes. The new findings might have important implications for the structure and dynamics of hydrogen bonded liquids in general, and for water in particular.

  6. Hydrogen-Bonded Multifunctional Supramolecular Copolymers in Water.

    PubMed

    Xiang, Yunjie; Moulin, Emilie; Buhler, Eric; Maaloum, Mounir; Fuks, Gad; Giuseppone, Nicolas

    2015-07-21

    We have investigated the self-assembly in water of molecules having a single hydrophobic bis-urea domain linked to different hydrophilic functional side chains, i.e., bioactive peptidic residues and fluorescent cyanine dyes. By using a combination of spectroscopy, scattering, and microscopy techniques, we show that each one of these molecules can individually produce well-defined nanostructures such as twisted ribbons, two-dimensional plates, or branched fibers. Interestingly, when these monomers of different functionalities are mixed in an equimolar ratio, supramolecular copolymers are preferred to narcissistic segregation. Radiation scattering and imaging techniques demonstrate that one of the molecular units dictates the formation of a preferential nanostructure, and optical spectroscopies reveal the alternated nature of the copolymerization process. This work illustrates how social self-sorting in H-bond supramolecular polymers can give straightforward access to multifunctional supramolecular copolymers. PMID:26087392

  7. Towards a unified description of the hydrogen bond network of liquid water: A dynamics based approach

    SciTech Connect

    Ozkanlar, Abdullah Zhou, Tiecheng; Clark, Aurora E.

    2014-12-07

    The definition of a hydrogen bond (H-bond) is intimately related to the topological and dynamic properties of the hydrogen bond network within liquid water. The development of a universal H-bond definition for water is an active area of research as it would remove many ambiguities in the network properties that derive from the fixed definition employed to assign whether a water dimer is hydrogen bonded. This work investigates the impact that an electronic-structure based definition, an energetic, and a geometric definition of the H-bond has upon both topological and dynamic network behavior of simulated water. In each definition, the use of a cutoff (either geometric or energetic) to assign the presence of a H-bond leads to the formation of transiently bonded or broken dimers, which have been quantified within the simulation data. The relative concentration of transient species, and their duration, results in two of the three definitions sharing similarities in either topological or dynamic features (H-bond distribution, H-bond lifetime, etc.), however no two definitions exhibit similar behavior for both classes of network properties. In fact, two networks with similar local network topology (as indicated by similar average H-bonds) can have dramatically different global network topology (as indicated by the defect state distributions) and altered H-bond lifetimes. A dynamics based correction scheme is then used to remove artificially transient H-bonds and to repair artificially broken bonds within the network such that the corrected network exhibits the same structural and dynamic properties for two H-bond definitions (the properties of the third definition being significantly improved). The algorithm described represents a significant step forward in the development of a unified hydrogen bond network whose properties are independent of the original hydrogen bond definition that is employed.

  8. Towards a unified description of the hydrogen bond network of liquid water: a dynamics based approach.

    PubMed

    Ozkanlar, Abdullah; Zhou, Tiecheng; Clark, Aurora E

    2014-12-01

    The definition of a hydrogen bond (H-bond) is intimately related to the topological and dynamic properties of the hydrogen bond network within liquid water. The development of a universal H-bond definition for water is an active area of research as it would remove many ambiguities in the network properties that derive from the fixed definition employed to assign whether a water dimer is hydrogen bonded. This work investigates the impact that an electronic-structure based definition, an energetic, and a geometric definition of the H-bond has upon both topological and dynamic network behavior of simulated water. In each definition, the use of a cutoff (either geometric or energetic) to assign the presence of a H-bond leads to the formation of transiently bonded or broken dimers, which have been quantified within the simulation data. The relative concentration of transient species, and their duration, results in two of the three definitions sharing similarities in either topological or dynamic features (H-bond distribution, H-bond lifetime, etc.), however no two definitions exhibit similar behavior for both classes of network properties. In fact, two networks with similar local network topology (as indicated by similar average H-bonds) can have dramatically different global network topology (as indicated by the defect state distributions) and altered H-bond lifetimes. A dynamics based correction scheme is then used to remove artificially transient H-bonds and to repair artificially broken bonds within the network such that the corrected network exhibits the same structural and dynamic properties for two H-bond definitions (the properties of the third definition being significantly improved). The algorithm described represents a significant step forward in the development of a unified hydrogen bond network whose properties are independent of the original hydrogen bond definition that is employed.

  9. Confined water: a Mercedes-Benz model study.

    PubMed

    Urbic, T; Vlachy, V; Dill, K A

    2006-03-16

    We study water that is confined within small geometric spaces. We use the Mercedes-Benz (MB) model of water, in NVT and muVT Monte Carlo computer simulations. For MB water molecules between two planes separated by a distance d, we explore the structures, hydrogen bond networks, and thermodynamics as a function of d, temperature T, and water chemical potential mu. We find that squeezing the planes close enough together leads to a vaporization of waters out of the cavity. This vaporization transition has a corresponding peak in the heat capacity of the water. We also find that, in small pores, hydrogen bonding is not isotropic but, rather, it preferentially forms chains along the axis of the cavity. This may be relevant for fast proton transport in pores. Our simulations show oscillations in the forces between the inert plates, due to water structure, even for plate separations of 5-10 water diameters, consistent with experiments by Israelachvili et al. [Nature 1983, 306, 249]. Finally, we find that confinement affects water's heat capacity, consistent with recent experiments of Tombari et al. on Vycor nanopores [J. Chem. Phys. 2005, 122, 104712].

  10. Confined water: a Mercedes-Benz model study.

    PubMed

    Urbic, T; Vlachy, V; Dill, K A

    2006-03-16

    We study water that is confined within small geometric spaces. We use the Mercedes-Benz (MB) model of water, in NVT and muVT Monte Carlo computer simulations. For MB water molecules between two planes separated by a distance d, we explore the structures, hydrogen bond networks, and thermodynamics as a function of d, temperature T, and water chemical potential mu. We find that squeezing the planes close enough together leads to a vaporization of waters out of the cavity. This vaporization transition has a corresponding peak in the heat capacity of the water. We also find that, in small pores, hydrogen bonding is not isotropic but, rather, it preferentially forms chains along the axis of the cavity. This may be relevant for fast proton transport in pores. Our simulations show oscillations in the forces between the inert plates, due to water structure, even for plate separations of 5-10 water diameters, consistent with experiments by Israelachvili et al. [Nature 1983, 306, 249]. Finally, we find that confinement affects water's heat capacity, consistent with recent experiments of Tombari et al. on Vycor nanopores [J. Chem. Phys. 2005, 122, 104712]. PMID:16526737

  11. Synthesis, characterization, and modeling of hydrogen storage in carbon aerogels

    SciTech Connect

    Pekala, R.W.; Coronado, P.R.; Calef, D.F.

    1995-04-01

    Carbon aerogels are a special class of open-cell foams with an ultrafine cell/pore size (<50 nm), high surface area (600-800 m{sup 2}/g), and a solid matrix composed of interconnected colloidal-like particles or fibers with characteristic diameters of 10 nm. These materials are usually synthesized from the sol-gel polymerization of resorcinol-formaldehyde or phenolic-furfural, followed by supercritical extraction of the solvent and pyrolysis in an inert atmosphere. The resultant aerogel has a nanocrystalline structure with micropores (<2 nm diameter) located within the solid matrix. Carbon aerogel monoliths can be prepared at densities ranging from 0.05-1.0 g/cm{sup 3}, leading to volumetric surface areas (> 500 m{sup 2}/cm{sup 3}) that are much larger than commercially available materials. This research program is directed at optimization of the aerogel structure for maximum hydrogen adsorption over a wide range of temperatures and pressures. Computer modeling of hydrogen adsorption at carbon surfaces was also examined.

  12. Covariance of oxygen and hydrogen isotopic composition in plant water: Species effects

    SciTech Connect

    Cooper, L.W.; DeNiro, M.J. )

    1989-12-01

    Leaf water becomes enriched in the heavy isotopes of oxygen and hydrogen during evapotranspiration. The magnitude of the enrichment has been shown to be influenced by temperature and humidity, but the effects of species-specific factors on leaf water enrichment of D and {sup 18}O have not been studied for different plants growing together. To learn whether leaf water enrichment patterns and processes for D and {sup 18}O are different for individual species growing under the same environmental conditions the authors tested the proposal that leaf waters in plants with crassulacean acid metabolism (CAM) show high sloped (m in the leaf water equation {delta}D = m {delta}{sup 18}O + b) than in C{sub 3} plants. They determined the relationships between the stable hydrogen ({delta}D) and oxygen ({delta}{sup 18}O) isotope ratios of leaf waters collected during the diurnal cycle of evapotranspiration for Yucca schidigera, Ephedra aspera, Agave deserti, Prunus ilicifolia, Yucca whipplei, Heteromeles arbutifolia, Dyckia fosteriana, Simmondsia chinensis, and Encelia farinosa growing at two sites in southern California. The findings indicate that m in the aforementioned equation is related to the overall residence time for water in the leaf and proportions of water subjected to repeated evapotranspiration enrichments of heavy isotopes.

  13. Stable hydrogen and oxygen isotope ratios of bottled waters of the world.

    PubMed

    Bowen, Gabriel J; Winter, David A; Spero, Howard J; Zierenberg, Robert A; Reeder, Mathew D; Cerling, Thure E; Ehleringer, James R

    2005-01-01

    Bottled and packaged waters are an increasingly significant component of the human diet. These products are regulated at the regional, national, and international levels, and determining the authenticity of marketing and labeling claims represents a challenge to regulatory agencies. Here, we present a dataset of stable isotope ratios for bottled waters sampled worldwide, and consider potential applications of such data for regulatory, forensic and geochemical standardization applications. The hydrogen and oxygen isotope ratios of 234 samples of bottled water range from -147 per thousand to +15 per thousand and from -19.1 per thousand to +3.0 per thousand, respectively. These values fall within and span most of the normal range for meteoric waters, indicating that these commercially available products represent a source of waters for use as laboratory working standards in applications requiring standardization over a large range of isotope ratios. The measured values of bottled water samples cluster along the global meteoric water line, suggesting that bottled water isotope ratios preserve information about the water sources from which they were derived. Using the dataset, we demonstrate how bottled water isotope ratios provide evidence for substantial evaporative enrichment of water sources prior to bottling and for the marketing of waters derived from mountain and lowland sources under the same name. Comparison of bottled water isotope ratios with natural environmental water isotope ratios demonstrates that on average the isotopic composition of bottled water tends to be similar to the composition of naturally available local water sources, suggesting that in many cases bottled water need not be considered as an isotopically distinct component of the human diet. Our findings suggest that stable isotope ratios of bottled water have the power to distinguish ultimate (e.g., recharge) and proximal (e.g., reservoir) sources of bottled water and constitute a potential

  14. Hydrogen assisted cracking of 2205 duplex stainless steel in synthetic sea water

    NASA Astrophysics Data System (ADS)

    Michalska, J.; Łabanowski, J.; Ćwiek, J.

    2012-05-01

    The cracking behavior of 2205 duplex stainless steels (DSSs) in synthetic sea water under cathodic polarization condition was investigated. (SSRT) method was employed in aim to evaluate the susceptibility to hydrogen assisted cracking. The results showed that the reduction in the uniform elongation (UEL) and the reduction of area (RA) varied with the applied cathodic current density. Significant reductions in ductility were found, indicating its susceptibility to hydrogen-assisted fracture at current density of 10 mA cm-2. Fractographical examinations showed that increase in hydrogenation current density cause an increase in brittle character on the fracture surface. Complete brittle fractures were observed after SSRT at10 and 20 mA cm-2.

  15. Hydrogen from renewable energy - Photovoltaic/water electrolysis as an exemplary approach

    NASA Astrophysics Data System (ADS)

    Sprafka, R. J.; Tison, R. R.; Escher, W. J. D.

    A feasibility study has been conducted for a NASA Kennedy Space Center liquid hydrogen/liquid oxygen production facility using solar cell arrays as the power source for electrolysis. The 100 MW output of the facility would be split into 67.6 and 32 MW portions for electrolysis and liquefaction, respectively. The solar cell array would cover 1.65 sq miles, and would be made up of 249 modular 400-kW arrays. Hydrogen and oxygen are generated at either dispersed or centralized water electrolyzers. The yearly hydrogen output is projected to be 5.76 million lbs, with 8 times that much oxygen; these fuel volumes can support approximately 18 Space Shuttle launches/year.

  16. Hydrogen from renewable energy - Photovoltaic/water electrolysis as an exemplary approach

    NASA Technical Reports Server (NTRS)

    Sprafka, R. J.; Tison, R. R.; Escher, W. J. D.

    1984-01-01

    A feasibility study has been conducted for a NASA Kennedy Space Center liquid hydrogen/liquid oxygen production facility using solar cell arrays as the power source for electrolysis. The 100 MW output of the facility would be split into 67.6 and 32 MW portions for electrolysis and liquefaction, respectively. The solar cell array would cover 1.65 sq miles, and would be made up of 249 modular 400-kW arrays. Hydrogen and oxygen are generated at either dispersed or centralized water electrolyzers. The yearly hydrogen output is projected to be 5.76 million lbs, with 8 times that much oxygen; these fuel volumes can support approximately 18 Space Shuttle launches/year.

  17. Electrochemically hydrogenated TiO2 nanotubes with improved photoelectrochemical water splitting performance

    PubMed Central

    2013-01-01

    One-dimensional anodic titanium oxide (ATO) nanotube arrays hold great potential as photoanode for photoelectrochemical (PEC) water splitting. In this work, we report a facile and eco-friendly electrochemical hydrogenation method to modify the electronic and PEC properties of ATO nanotube films. The hydrogenated ATO (ATO-H) electrodes present a significantly improved photocurrent of 0.65 mA/cm2 in comparison with that of pristine ATO nanotubes (0.29 mA/cm2) recorded under air mass 1.5 global illumination. The incident photon-to-current efficiency measurement suggests that the enhanced photocurrent of ATO-H nanotubes is mainly ascribed to the improved photoactivity in the UV region. We propose that the electrochemical hydrogenation induced surface oxygen vacancies contribute to the substantially enhanced electrical conductivity and photoactivity. PMID:24047205

  18. Oral intake of hydrogen-rich water ameliorated chlorpyrifos-induced neurotoxicity in rats

    SciTech Connect

    Wang, Tingting; Zhao, Ling; Liu, Mengyu; Xie, Fei; Ma, Xuemei Zhao, Pengxiang; Liu, Yunqi; Li, Jiala; Wang, Minglian; Yang, Zhaona; Zhang, Yutong

    2014-10-01

    Chronic exposure to low-levels of organophosphate (OP) compounds, such as chlorpyrifos (CPF), induces oxidative stress and could be related to neurological disorders. Hydrogen has been identified as a novel antioxidant which could selectively scavenge hydroxyl radicals. We explore whether intake of hydrogen-rich water (HRW) can protect Wistar rats from CPF-induced neurotoxicity. Rats were gavaged daily with 6.75 mg/kg body weight (1/20 LD{sub 50}) of CPF and given HRW by oral intake. Nissl staining and electron microscopy results indicated that HRW intake had protective effects on the CPF-induced damage of hippocampal neurons and neuronal mitochondria. Immunostaining results showed that the increased glial fibrillary acidic protein (GFAP) expression in astrocytes induced by CPF exposure can be ameliorated by HRW intake. Moreover, HRW intake also attenuated CPF-induced oxidative stress as evidenced by enhanced level of MDA, accompanied by an increase in GSH level and SOD and CAT activity. Acetylcholinesterase (AChE) activity tests showed significant decrease in brain AChE activity after CPF exposure, and this effect can be ameliorated by HRW intake. An in vitro study demonstrated that AChE activity was more intense in HRW than in normal water with or without chlorpyrifos-oxon (CPO), the metabolically-activated form of CPF. These observations suggest that HRW intake can protect rats from CPF-induced neurotoxicity, and the protective effects of hydrogen may be mediated by regulating the oxidant and antioxidant status of rats. Furthermore, this work defines a novel mechanism of biological activity of hydrogen by directly increasing the AChE activity. - Highlights: • Hydrogen molecules protect rats from CPF-induced damage of hippocampal neurons. • The increased GFAP expression induced by CPF can also be ameliorated by hydrogen. • Hydrogen molecules attenuated the increase in CPF-induced oxidative stress. • Hydrogen molecules attenuated AChE inhibition in vivo

  19. Revisited reaction-diffusion model of thermal desorption spectroscopy experiments on hydrogen retention in material

    SciTech Connect

    Guterl, Jerome Smirnov, R. D.; Krasheninnikov, S. I.

    2015-07-28

    Desorption phase of thermal desorption spectroscopy (TDS) experiments performed on tungsten samples exposed to flux of hydrogen isotopes in fusion relevant conditions is analyzed using a reaction-diffusion model describing hydrogen retention in material bulk. Two regimes of hydrogen desorption are identified depending on whether hydrogen trapping rate is faster than hydrogen diffusion rate in material during TDS experiments. In both regimes, a majority of hydrogen released from material defects is immediately outgassed instead of diffusing deeply in material bulk when the evolution of hydrogen concentration in material is quasi-static, which is the case during TDS experiments performed with tungsten samples exposed to flux of hydrogen isotopes in fusion related conditions. In this context, analytical expressions of the hydrogen outgassing flux as a function of the material temperature are obtained with sufficient accuracy to describe main features of thermal desorption spectra (TDSP). These expressions are then used to highlight how characteristic temperatures of TDSP depend on hydrogen retention parameters, such as trap concentration or activation energy of detrapping processes. The use of Arrhenius plots to characterize retention processes is then revisited when hydrogen trapping takes place during TDS experiments. Retention processes are also characterized using the shape of desorption peaks in TDSP, and it is shown that diffusion of hydrogen in material during TDS experiment can induce long desorption tails visible aside desorption peaks at high temperature in TDSP. These desorption tails can be used to estimate activation energy of diffusion of hydrogen in material.

  20. Do-It-Yourself: 3D Models of Hydrogenic Orbitals through 3D Printing

    ERIC Educational Resources Information Center

    Griffith, Kaitlyn M.; de Cataldo, Riccardo; Fogarty, Keir H.

    2016-01-01

    Introductory chemistry students often have difficulty visualizing the 3-dimensional shapes of the hydrogenic electron orbitals without the aid of physical 3D models. Unfortunately, commercially available models can be quite expensive. 3D printing offers a solution for producing models of hydrogenic orbitals. 3D printing technology is widely…

  1. [Accelerated senescence of fresh-cut Chinese water chestnut tissues in relation to hydrogen peroxide accumulation].

    PubMed

    Peng, Li-Tao; Jiang, Yue-Ming; Yang, Shu-Zhen; Pan, Si-Yi

    2005-10-01

    Accelerated senescence of fresh-cut Chinese water chestnut (CWC) tissues in relation to active oxygen species (AOS) metabolism was investigated. Fresh-cut CWC (2 mm thick) and intact CWC were stored at 4 degrees C in trays wrapped with plastic films. Changes in superoxide anion production rate, activities of superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX) were monitored, while contents of hydrogen peroxide, ascorbic acid, MDA as well as electrolyte leakage were measured. Fresh-cutting of CWC induced activities of SOD, CAT and APX to a certain extent (Fig. 2B and Fig. 3), but simultaneously stimulated superoxide anion production markedly (Fig. 2A), enhanced hydrogen peroxide accumulation and accelerated loss in ascorbic acid (Figs. 4 and 5), which resulted in increased lipid peroxidation indicated by malondialdehyde (MDA) content and electrolyte leakage (Fig. 1). Statistics analysis indicated that there was a significantly positive correlation among hydrogen peroxide accumulation, MDA content and electrolyte leakage (Table 1). Histochemical detection with 3, 3'-diaminobenzidine further demonstrated that hydrogen peroxide accumulation increased in fresh-cut CWC during storage (Fig. 5). AOS production rate and activities of SOD, CAT and APX changed little while no obvious hydrogen peroxide accumulation was observed, in intact CWC during storage.

  2. Thermochemical processes for hydrogen production by water decomposition. Final report

    SciTech Connect

    Perlmutter, D.D.

    1980-08-01

    The principal contributions of the research are in the area of gas-solid reactions, ranging from models and data interpretation for fundamental kinetics and mixing of solids to simulations of engineering scale reactors. Models were derived for simulating the heat and mass transfer processes inside the reactor and tested by experiments. The effects of surface renewal of solids on the mass transfer phenomena were studied and related to the solid mixing. Catalysis by selected additives were studied experimentally. The separate results were combined in a simulation study of industrial-scale rotary reactor performance. A study was made of the controlled decompositions of a series of inorganic sulfates and their common hydrates, carried out in a Thermogravimetric Analyzer (TGA), a Differential Scanning Calorimeter (DSC), and a Differential Thermal Analyzer (DTA). Various sample sizes, heating rates, and ambient atmospheres were used to demonstrate their influence on the results. The purposes of this study were to: (i) reveal intermediate compounds, (ii) determine the stable temperature range of each compound, and (iii) measure reaction kinetics. In addition, several solid additives: carbon, metal oxides, and sodium chloride, were demonstrated to have catalytic effects to varying degrees for the different salts.

  3. Solar photocatalytic hydrogen production from water using a dual bed photosystem. Task 2 report; Annual report

    SciTech Connect

    Linkous, C.A.; McKaige, G.T.; Slattery, D.K.; Ouellette, A.J.A.; Austin, B.C.N.

    1995-12-01

    This work is an investigation into the use of photocatalytic particles in a dual bed configuration, so as to effect the solar-driven decomposition of water to its constituent elements, particularly hydrogen. The system envisioned would consist of two modules, each consisting of a shallow, flat, sealed container, in which micron-sized photocatalytic particles are immobilized. An aqueous solution containing a redox mediator is pumped between the two chambers. Different photoparticles and catalysts are chosen for their respective modules so as to effect oxidative water-splitting in one vessel to evolve oxygen gas, and reductive water-splitting in the other to evolve hydrogen. This is a direct photoconversion scheme that breaks down the energetic requirement for water decomposition into a 2-photon process, and enables separate production of hydrogen and oxygen. Titanium dioxide, TiO{sub 2}, and indium phosphide, InP, were employed as photoparticles in the O{sub 2}- and H{sub 2}-evolving beds, respectively. Platinum catalysts were evaluated to prompt H{sub 2}-evolution. Calculations on the energy band structure of free and immobilized particles provided guidance as to how the microstructure of the particles should be configured. A series of redox mediators, spanning a range of redox potentials, were tested. While many electron donors facilitated H{sub 2}-evolution, only the most oxidizing ones enabled O{sub 2}-evolution. A single redox couple, capable of charge exchange in both modules, is desirable to avoid system design complexity.

  4. The effect of plutonium dioxide water surface coverage on the generation of hydrogen and oxygen

    SciTech Connect

    Veirs, Douglas K.; Berg, John M.; Crowder, Mark L.

    2012-06-20

    The conditions for the production of oxygen during radiolysis of water adsorbed onto plutonium dioxide powder are discussed. Studies in the literature investigating the radiolysis of water show that both oxygen and hydrogen can be generated from water adsorbed on high-purity plutonium dioxide powder. These studies indicate that there is a threshold in the amount of water below which oxygen is not generated. The threshold is associated with the number of monolayers of adsorbed water and is shown to occur at approximately two monolayers of molecularly adsorbed water. Material in equilibrium with 50% relative humidity (RH) will be at the threshold for oxygen generation. Using two monolayers of molecularly adsorbed water as the threshold for oxygen production, the total pressure under various conditions is calculated assuming stoichiometric production of hydrogen and oxygen. The specific surface area of the oxide has a strong effect on the final partial pressure. The specific surface areas resulting in the highest pressures within a 3013 container are evaluated. The potential for oxygen generation is mitigated by reduced relative humidity, and hence moisture adsorption, at the oxide surface which occurs if the oxide is warmer than the ambient air. The potential for oxygen generation approaches zero as the temperature difference between the ambient air and the material approaches 6 C.

  5. An insight into liquid water networks through hydrogen bonding halide anion: Stimulated Raman scattering

    NASA Astrophysics Data System (ADS)

    Wang, Shenghan; Fang, Wenhui; Li, Tianyu; Li, Fangfang; Sun, Chenglin; Li, Zuowei; Huang, Yuxin; Men, Zhiwei

    2016-04-01

    We have studied the interaction between water molecules and halide anions and acquired the influence of concentration by the spontaneous Raman spectrum. The results agreed well with the previous researches. To explore further, the stimulated Raman scattering of a halide-water binary solution is measured to study the nature of the hydrogen bonding between water molecules and halogen anions. Under the effect of laser-induced plasma, the OH stretching vibration spectra of aqueous solutions of halogen ions pretty exhibit different trend compared with that of spontaneous Raman spectrum. The frequency shifts of water OH vibration show different values and directions with adding different halide anions. The red shift of F-- and Cl--water molecule clusters is due to the process of charge transfer, whereas the blue shift of Br-- and I--water molecule cluster is due to polarization effect without charge transfer. The results demonstrate that F- and Cl- slightly weaken the hydrogen bond (HB), whereas Br- and I- enhance HB in the water cluster. The decrease of concentration of halogen ions aqueous solution can weaken the effect on the HB.

  6. Water-containing hydrogen-bonding network in the active center of channelrhodopsin.

    PubMed

    Ito, Shota; Kato, Hideaki E; Taniguchi, Reiya; Iwata, Tatsuya; Nureki, Osamu; Kandori, Hideki

    2014-03-01

    Channelrhodopsin (ChR) functions as a light-gated ion channel in Chlamydomonas reinhardtii. Passive transport of cations by ChR is fundamentally different from the active transport by light-driven ion pumps such as archaerhodopsin, bacteriorhodopsin, and halorhodopsin. These microbial rhodopsins are important tools for optogenetics, where ChR is used to activate neurons by light, while the ion pumps are used for neural silencing. Ion-transport functions by these rhodopsins strongly depend on the specific hydrogen-bonding networks containing water near the retinal chromophore. In this work, we measured protein-bound water molecules in a chimeric ChR protein of ChR1 (helices A to E) and ChR2 (helices F and G) of Chlamydomonas reinhardtii using low-temperature FTIR spectroscopy at 77 K. We found that the active center of ChR possesses more water molecules (9 water vibrations) than those of other microbial (2-6 water vibrations) and animal (6-8 water vibrations) rhodopsins. We conclude that the protonated retinal Schiff base interacts with the counterion (Glu162) directly, without the intervening water molecule found in proton-pumping microbial rhodopsins. The present FTIR results and the recent X-ray structure of ChR reveal a unique hydrogen-bonding network around the active center of this light-gated ion channel. PMID:24512107

  7. Ion hydration and associated defects in hydrogen bond network of water: Observation of reorientationally slow water molecules beyond first hydration shell in aqueous solutions of MgCl 2

    NASA Astrophysics Data System (ADS)

    Baul, Upayan; Vemparala, Satyavani

    2015-01-01

    Effects of the presence of ions, at moderate to high concentrations, on dynamical properties of water molecules are investigated through classical molecular dynamics simulations using two well-known nonpolarizable water models. Simulations reveal that the presence of magnesium chloride (MgCl2) induces perturbations in the hydrogen bond network of water leading to the formation of bulklike domains with ``defect sites'' on boundaries of such domains: water molecules at such defect sites have less number of hydrogen bonds than those in bulk water. Reorientational autocorrelation functions for dipole vectors of such defect water molecules are computed at different concentrations of ions and compared with system of pure water. Earlier experimental and simulation studies indicate significant differences in reorientational dynamics for water molecules in the first hydration shell of many dissolved ions. Results of this study suggest that defect water molecules, which are beyond the first hydration shells of ions, also experience significant slowing of reorientation times as a function of concentration in the case of MgCl2. However, addition of cesium chloride (CsCl) to water does not perturb the hydrogen bond network of water significantly even at higher concentrations. This difference in behavior between MgCl2 and CsCl is consistent with the well-known Hofmeister series.

  8. Ion hydration and associated defects in hydrogen bond network of water: observation of reorientationally slow water molecules beyond first hydration shell in aqueous solutions of MgCl2.

    PubMed

    Baul, Upayan; Vemparala, Satyavani

    2015-01-01

    Effects of the presence of ions, at moderate to high concentrations, on dynamical properties of water molecules are investigated through classical molecular dynamics simulations using two well-known nonpolarizable water models. Simulations reveal that the presence of magnesium chloride (MgCl(2)) induces perturbations in the hydrogen bond network of water leading to the formation of bulklike domains with ''defect sites'' on boundaries of such domains: water molecules at such defect sites have less number of hydrogen bonds than those in bulk water. Reorientational autocorrelation functions for dipole vectors of such defect water molecules are computed at different concentrations of ions and compared with system of pure water. Earlier experimental and simulation studies indicate significant differences in reorientational dynamics for water molecules in the first hydration shell of many dissolved ions. Results of this study suggest that defect water molecules, which are beyond the first hydration shells of ions, also experience significant slowing of reorientation times as a function of concentration in the case of MgCl(2). However, addition of cesium chloride (CsCl) to water does not perturb the hydrogen bond network of water significantly even at higher concentrations. This difference in behavior between MgCl(2) and CsCl is consistent with the well-known Hofmeister series.

  9. Physics beyond the Standard Model from hydrogen spectroscopy

    NASA Astrophysics Data System (ADS)

    Ubachs, W.; Koelemeij, J. C. J.; Eikema, K. S. E.; Salumbides, E. J.

    2016-02-01

    Spectroscopy of hydrogen can be used for a search into physics beyond the Standard Model. Differences between the absorption spectra of the Lyman and Werner bands of H2 as observed at high redshift and those measured in the laboratory can be interpreted in terms of possible variations of the proton-electron mass ratio μ =mp /me over cosmological history. Investigation of ten such absorbers in the redshift range z = 2.0 -4.2 yields a constraint of | Δμ / μ | < 5 ×10-6 at 3σ. Observation of H2 from the photospheres of white dwarf stars inside our Galaxy delivers a constraint of similar magnitude on a dependence of μ on a gravitational potential 104 times as strong as on the Earth's surface. While such astronomical studies aim at finding quintessence in an indirect manner, laboratory precision measurements target such additional quantum fields in a direct manner. Laser-based precision measurements of dissociation energies, vibrational splittings and rotational level energies in H2 molecules and their deuterated isotopomers HD and D2 produce values for the rovibrational binding energies fully consistent with quantum ab initio calculations including relativistic and quantum electrodynamical (QED) effects. Similarly, precision measurements of high-overtone vibrational transitions of HD+ ions, captured in ion traps and sympathetically cooled to mK temperatures, also result in transition frequencies fully consistent with calculations including QED corrections. Precision measurements of inter-Rydberg transitions in H2 can be extrapolated to yield accurate values for level splittings in the H2+ -ion. These comprehensive results of laboratory precision measurements on neutral and ionic hydrogen molecules can be interpreted to set bounds on the existence of possible fifth forces and of higher dimensions, phenomena describing physics beyond the Standard Model.

  10. Water management of proton exchange membrane fuel cell based on control of hydrogen pressure drop

    NASA Astrophysics Data System (ADS)

    Song, Mancun; Pei, Pucheng; Zha, Hongshan; Xu, Huachi

    2014-12-01

    Flooding experiments in various conditions are developed and the hydrogen pressure drop is investigated on a two-piece PEM fuel cell in this study. A two-level characteristic of hydrogen pressure drop is observed and analyzed in combination with water droplet accumulation in channels. Based on the characteristic, the flooding process can be divided into four continuous periods, which are the proper period, the humid period, the transitional period and the flooding period. The voltage shows the segmented tendency during these periods. Experimental results show that current and temperature have little influence on the growth rate of the two levels, while the effects of pressure and hydrogen stoichiometry are remarkable. The growth rate can be calculated through the channel dimensions and matches the experimental results well. Hydrogen purge is not a fundamental method to solve flooding. The end of the humid period should be the boundary before flooding. The moist section can be obtained in the beginning part of the humid period. In this section PEM fuel cell is neither flooding nor dehydration by adjusting the cell temperature, which is verified by two additional experiments. This water management is convenient and swift for PEM fuel cell applications and the fault diagnosis.

  11. Characterizing the chemical pathways for water formation--a deep search for hydrogen peroxide.

    PubMed

    Parise, Bérengère; Bergman, Per; Menten, Karl

    2014-01-01

    In 2011, hydrogen peroxide (HOOH) was observed for the first time outside the solar system (Bergman et al., Astron. Astrophys., 2011, 531, L8). This detection appeared a posteriori to be quite natural, as HOOH is an intermediate product in the formation of water on the surface of dust grains. Following up on this detection, we present a search for HOOH in a diverse sample of sources in different environments, including low-mass protostars and regions with very high column densities, such as Infrared Dark Clouds (IRDCs). We do not detect the molecule in any other source than Oph A, and derive 3sigma upper limits for the abundance of HOOH relative to H2 lower than that in Oph A for most sources. This result sheds a different light on our understanding of the detection of HOOH in Oph A, and shifts the question of why this source seems to be special. Therefore we rediscuss the detection of HOOH in Oph A, as well as the implications of the low abundance of HOOH, and its similarity with the case of O2. Our chemical models show that the production of HOOH is extremely sensitive to temperature, and is favored only in the range 20-30 K. The relatively high abundance of HOOH observed in Oph A suggests that the bulk of the material lies at a temperature in the range 20-30 K.

  12. Hydrogen diffusion in forsterite and implications for determining the water content of the mantle

    NASA Astrophysics Data System (ADS)

    Jollands, Michael; Hermann, Joerg; O'Neill, Hugh; Padrón-Navarta, Jose Alberto

    2014-05-01

    The retention of mantle hydrogen concentrations in 'nominally anhydrous' minerals in mantle peridotites depends on the rates of exhumation versus diffusion. The infrared spectra of the hydroxyl stretching band in olivine of spinel lherzolite xenoliths are dominated by the substitution mechanism associated with trace Ti4+ (Berry et. al., 2005), suggesting the possibility that hydrogen diffusion rates may be dependent on Ti concentration and valence in these olivines. A single slab of synthetic forsterite was doped with ca. 400ppm Ti by annealing at 1500° C, 1atm, QFM-5.6 in the presence of an MgTiO3-Mg2Ti2O5mix. This forsterite then served as the target for hydrogen diffusion-in experiments, with the point defect population homogenous, elevated, and defined by Ti concentration and the Ti3+/Ti4+ ratio in the high-temperature pre-annealed experiments. The doped forsterite was then cut into cubes, which were placed inside a mix of forsterite+enstatite or forsterite+periclase in a thick walled silver capsule along with a saturating quantity of water and an oxygen fugacity buffer assemblage (Re-ReO2), and taken to run conditions (15kbar, 650-950° C) in an end-loaded piston cylinder. The crystals were recovered from the capsules and analysed by FTIR. Progressive 'decoration' of the homogenous titanium defect population, from crystal rim to core, yielded diffusion profiles of hydrogen associated to different defects. The spectra show that Ti occurs as both as Ti3+ and Ti4+. The ratio of OH associated with each of these Ti species remains constant along the diffusion pathways. There is no evidence for re-equilibration of the Ti3+/Ti4+ ratio with the external Re-ReO2 oxygen buffer, which would be expected to eliminate Ti3+. In all cases, hydrogen diffusion was anisotropic, fastest along the c-axis and slowest along a-axis. Hydrogen diffusion is slightly faster than in previous studies considering hydrogen diffusion-in (Demouchy & Mackwell, 2006), but significantly faster

  13. Modelling of Impulsional pH Variations Using ChemFET-Based Microdevices: Application to Hydrogen Peroxide Detection

    PubMed Central

    Diallo, Abdou Karim; Djeghlaf, Lyes; Launay, Jerome; Temple-Boyer, Pierre

    2014-01-01

    This work presents the modelling of impulsional pH variations in microvolume related to water-based electrolysis and hydrogen peroxide electrochemical oxidation using an Electrochemical Field Effect Transistor (ElecFET) microdevice. This ElecFET device consists of a pH-Chemical FET (pH-ChemFET) with an integrated microelectrode around the dielectric gate area in order to trigger electrochemical reactions. Combining oxidation/reduction reactions on the microelectrode, water self-ionization and diffusion properties of associated chemical species, the model shows that the sensor response depends on the main influential parameters such as: (i) polarization parameters on the microelectrode, i.e., voltage (Vp) and time (tp); (ii) distance between the gate sensitive area and the microelectrode (d); and (iii) hydrogen peroxide concentration ([H2O2]). The model developed can predict the ElecFET response behaviour and creates new opportunities for H2O2-based enzymatic detection of biomolecules. PMID:24556666

  14. World water dynamics: global modeling of water resources.

    PubMed

    Simonovic, Slobodan P

    2002-11-01

    The growing scarcity of fresh and clean water is among the most important issues facing civilization in the 21st century. Despite the growing attention to a chronic, pernicious crisis in world's water resources our ability to correctly assess and predict global water availability, use and balance is still quite limited. An attempt is documented here in modeling global world water resources using system dynamics approach. Water resources sector (quantity and quality) is integrated with five sectors that drive industrial growth: population; agriculture; economy; nonrenewable resources; and persistent pollution. WorldWater model is developed on the basis of the last version of World3 model. Simulations of world water dynamics with WorldWater indicate that there is a strong relationship between the world water resources and future industrial growth of the world. It is also shown that the water pollution is the most important future water issue on the global level. PMID:12448404

  15. Study of the interaction between water and hydrogen sulfide with polycyclic aromatic hydrocarbons.

    PubMed

    Cabaleiro-Lago, Enrique M; Carrazana-García, Jorge A; Rodríguez-Otero, Jesús

    2009-06-21

    A computational study has been carried out for determining the characteristics of the interaction between one water and hydrogen sulfide molecule with a series of polycyclic aromatic hydrocarbons of increasing size, namely, benzene, anthracene, triphenylene, coronene, circumcoronene, and dicircumcoronene. Potential energy curves were calculated for structures where H(2)X (X=O,S) molecule is located over the central six-membered ring with its hydrogen atoms pointing toward to (mode A) or away from (mode B) the hydrocarbon. The accuracy of different methods has been tested against the results of coupled cluster calculations extrapolated to basis set limit for the smaller hydrocarbons. The spin component scaled MP2 (SCS-MP2) method and a density functional theory method empirically corrected for dispersion (DFT-D) reproduce fairly well the results of high level calculations and therefore were employed for studying the larger systems, though DFT-D seems to underestimate the interaction in hydrogen sulfide clusters. Water complexes in mode A have interaction energies that hardly change with the size of the hydrocarbon due to compensation between the increase in the correlation contribution to the interaction energy and the increase in the repulsive character of the Hartree-Fock energy. For all the other clusters studied, there is a continuous increase in the intensity of the interaction as the size of the hydrocarbon increases, suggesting already converged values for circumcoronene. The interaction energy for water clusters extrapolated to an infinite number of carbon atoms amounts to -13.0 and -15.8 kJ/mol with SCS-MP2 and DFT-D, respectively. Hydrogen sulfide interacts more strongly than water with the hydrocarbons studied, leading to a limiting value of -21.7 kJ/mol with the SCS-MP2 method. Also, complexes in mode B are less stable than the corresponding A structures, with interaction energies amounting to -8.2 and -18.2 kJ/mol for water and hydrogen sulfide

  16. Extreme hydrogen, oxygen and carbon isotope anomalies in the pore waters and carbonates of the sediments and basalts from the Norwegian Sea: Methane and hydrogen from the mantle?

    NASA Astrophysics Data System (ADS)

    Lawrence, J. R.; Taviani, M.

    1988-08-01

    D/H ratios in the pore waters of the sediments from the Norwegian Sea decrease as a function of depth to values as low as -14%. Oxygen isotope ratios in the pore waters and carbon and oxygen isotope ratios in carbonates both in the sediments and basalts are low. Extensive alteration of basalt has been given as the explanation for the low oxygen isotope ratios. Material balance calculations suggest that alteration of volcanic material and oxidation of organic matter cannot explain the hydrogen and carbon isotope anomalies. Arguments are presented suggesting that methane and hydrogen from the mantle are oxidized to carbon dioxide and water by sulfate and ferric iron in the basaltic crust to yield the low hydrogen and carbon isotope ratios.

  17. Formation of water-soluble soybean polysaccharides from spent flakes by hydrogen peroxide treatment.

    PubMed

    Pierce, Brian C; Wichmann, Jesper; Tran, Tam H; Cheetamun, Roshan; Bacic, Antony; Meyer, Anne S

    2016-06-25

    In this paper we propose a novel chemical process for the generation of water-soluble polysaccharides from soy spent flake, a by-product of the soy food industry. This process entails treatment of spent flake with hydrogen peroxide at an elevated temperature, resulting in the release of more than 70% of the original insoluble material as high molar mass soluble polysaccharides. A design of experiment was used to quantify the effects of pH, reaction time, and hydrogen peroxide concentration on the reaction yield, average molar mass, and free monosaccharides generated. The resulting product is low in protein, fat, and minerals and contains predominantly water-soluble polysaccharides of high molar mass, including arabinan, type I arabinogalactan, homogalacturonan, xyloglucan, rhamnogalacturonan, and (glucurono)arabinoxylan. This treatment provides a straightforward approach for generation of soluble soy polysaccharides and opens a new range of opportunities for this abundant and underutilized material in future research and industrial applications. PMID:27083842

  18. Pressure Dependence of Hydrogen-Bond Dynamics in Liquid Water Probed by Ultrafast Infrared Spectroscopy.

    PubMed

    Lapini, Andrea; Pagliai, Marco; Fanetti, Samuele; Citroni, Margherita; Scandolo, Sandro; Bini, Roberto; Righini, Roberto

    2016-09-15

    Clarifying the structure/dynamics relation of water hydrogen-bond network has been the aim of extensive research over many decades. By joining anvil cell high-pressure technology, femtosecond 2D infrared spectroscopy, and molecular dynamics simulations, we studied, for the first time, the spectral diffusion of the stretching frequency of an HOD impurity in liquid water as a function of pressure. Our experimental and simulation results concordantly demonstrate that the rate of spectral diffusion is almost insensitive to the applied pressure. This behavior is in contrast with the previously reported pressure-induced speed up of the orientational dynamics, which can be rationalized in terms of large angular jumps involving sudden switching between two hydrogen-bonded configurations. The different trend of the spectral diffusion can be, instead, inferred considering that the first solvation shell preserves the tetrahedral structure with pressure and the OD stretching frequency is only slight perturbed. PMID:27560355

  19. Supramolecular polymerisation in water; elucidating the role of hydrophobic and hydrogen-bond interactions.

    PubMed

    Leenders, Christianus M A; Baker, Matthew B; Pijpers, Imke A B; Lafleur, René P M; Albertazzi, Lorenzo; Palmans, Anja R A; Meijer, E W

    2016-03-21

    Understanding the self-assembly of small molecules in water is crucial for the development of responsive, biocompatible soft materials. Here, a family of benzene-1,3,5-tricarboxamide (BTA) derivatives that comprise a BTA moiety connected to an amphiphilic chain is synthesised with the aim to elucidate the role of hydrophobic and hydrogen-bonding interactions in the self-assembly of these BTAs. The amphiphilic chain consists of an alkyl chain with a length of 10, 11, or 12 methylene units, connected to a tetraethylene glycol (at the periphery). The results show that an undecyl spacer is the minimum length required for these BTAs to self-assemble into supramolecular polymers. Interestingly, exchange studies reveal only minor differences in exchange rates between BTAs containing undecyl or dodecyl spacers. Additionally, IR spectroscopy provides the first experimental evidence that hydrogen-bonding is operative and contributes to the stabilisation of the supramolecular polymers in water. PMID:26892482

  20. Oscillating water column structural model

    SciTech Connect

    Copeland, Guild; Bull, Diana L; Jepsen, Richard Alan; Gordon, Margaret Ellen

    2014-09-01

    An oscillating water column (OWC) wave energy converter is a structure with an opening to the ocean below the free surface, i.e. a structure with a moonpool. Two structural models for a non-axisymmetric terminator design OWC, the Backward Bent Duct Buoy (BBDB) are discussed in this report. The results of this structural model design study are intended to inform experiments and modeling underway in support of the U.S. Department of Energy (DOE) initiated Reference Model Project (RMP). A detailed design developed by Re Vision Consulting used stiffeners and girders to stabilize the structure against the hydrostatic loads experienced by a BBDB device. Additional support plates were added to this structure to account for loads arising from the mooring line attachment points. A simplified structure was designed in a modular fashion. This simplified design allows easy alterations to the buoyancy chambers and uncomplicated analysis of resulting changes in buoyancy.

  1. Modelling the post-reionization neutral hydrogen (H I ) bias

    NASA Astrophysics Data System (ADS)

    Sarkar, Debanjan; Bharadwaj, Somnath; Anathpindika, S.

    2016-08-01

    Observations of the neutral hydrogen (H I) 21-cm signal hold the potential of allowing us to map out the cosmological large-scale structures (LSS) across the entire post-reionization era (z ≤ 6). Several experiments are planned to map the LSS over a large range of redshifts and angular scales, many of these targeting the Baryon Acoustic Oscillations. It is important to model the H I distribution in order to correctly predict the expected signal, and more so to correctly interpret the results after the signal is detected. In this paper we have carried out semi-numerical simulations to model the H I distribution and study the H I power spectrum P_{H I}(k,z) across the redshift range 1 ≤ z ≤ 6. We have modelled the H I bias as a complex quantity tilde{b}(k,z) whose modulus squared b2(k, z) relates P_{H I}(k,z) to the matter power spectrum P(k, z), and whose real part br(k, z) quantifies the cross-correlation between the H I and the matter distribution. We study the z and k dependence of the bias, and present polynomial fits which can be used to predict the bias across 0 ≤ z ≤ 6 and 0.01 ≤ k ≤ 10 Mpc-1. We also present results for the stochasticity r = br/b which is important for cross-correlation studies.

  2. Hydrogenous mineral neoformations in Tomsk water intake facility from underground sources

    NASA Astrophysics Data System (ADS)

    Dutova, E.; Vologdina, I.; Pokrovsky, D.; Nalivaiko, N.; Kuzevanov, K.; Pokrovsky, V.

    2016-03-01

    The article considers study outcomes of hydrogenous mineral neoformations precipitated on deferrization filters of Tomsk water intake facility from underground sources. Compositionally, these precipitations are colloform and polymineral including ferrous, carbonate and aluminosilicate mineral phases. Ferrous phase predominates and embraces ferric hydroxides (ferrihydrate, goethite, hematite and lepidocrocite) and ferrous hydrophosphates (vivianite, strengite, strunzite and rockbridgeit). Carbonate and aluminosilicate minerals are calcite and kaolinite-group, respectively.

  3. Hydrogen Sensors Boost Hybrids; Today's Models Losing Gas?

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Advanced chemical sensors are used in aeronautic and space applications to provide safety monitoring, emission monitoring, and fire detection. In order to fully do their jobs, these sensors must be able to operate in a range of environments. NASA has developed sensor technologies addressing these needs with the intent of improving safety, optimizing combustion efficiencies, and controlling emissions. On the ground, the chemical sensors were developed by NASA engineers to detect potential hydrogen leaks during Space Shuttle launch operations. The Space Shuttle uses a combination of hydrogen and oxygen as fuel for its main engines. Liquid hydrogen is pumped to the external tank from a storage tank located several hundred feet away. Any hydrogen leak could potentially result in a hydrogen fire, which is invisible to the naked eye. It is important to detect the presence of a hydrogen fire in order to prevent a major accident. In the air, the same hydrogen-leak dangers are present. Stress and temperature changes can cause tiny cracks or holes to form in the tubes that line the Space Shuttle s main engine nozzle. Such defects could allow the hydrogen that is pumped through the nozzle during firing to escape. Responding to the challenges associated with pinpointing hydrogen leaks, NASA endeavored to improve propellant leak-detection capabilities during assembly, pre-launch operations, and flight. The objective was to reduce the operational cost of assembling and maintaining hydrogen delivery systems with automated detection systems. In particular, efforts have been focused on developing an automated hydrogen leak-detection system using multiple, networked hydrogen sensors that are operable in harsh conditions.

  4. Lake Louise Water (USGS47): A new isotopic reference water for stable hydrogen and oxygen isotope measurements

    USGS Publications Warehouse

    Qi, Haiping; Lorenz, Jennifer M.; Coplen, Tyler B.; Tarbox, Lauren V.; Mayer, Bernhard; Taylor, Steve

    2014-01-01

    RESULTS: The δ2H and δ18O values of this reference water are –150.2 ± 0.5 ‰ and –19.80 ± 0.02 ‰, respectively, relative to VSMOW on scales normalized such that the δ2H and δ18O values of SLAP reference water are, respectively, –428 and –55.5 ‰. Each uncertainty is an estimated expanded uncertainty (U = 2uc) about the reference value that provides an interval that has about a 95-percent probability of encompassing the true value. CONCLUSION: This isotopic reference material, designated as USGS47, is intended as one of two isotopic reference waters for daily normalization of stable hydrogen and stable oxygen isotopic analysis of water with a mass spectrometer or a laser absorption spectrometer. "

  5. Hydrogen-bonding alterations of the protonated Schiff base and water molecule in the chloride pump of Natronobacterium pharaonis.

    PubMed

    Shibata, Mikihiro; Muneda, Norikazu; Sasaki, Takanori; Shimono, Kazumi; Kamo, Naoki; Demura, Makoto; Kandori, Hideki

    2005-09-20

    Halorhodopsin is a light-driven chloride ion pump. Chloride ion is bound in the Schiff base region of the retinal chromophore, and unidirectional chloride transport is probably enforced by the specific hydrogen-bonding interaction with the protonated Schiff base and internal water molecules. In this article, we study hydrogen-bonding alterations of the Schiff base and water molecules in halorhodopsin of Natronobacterium pharaonis (pHR) by assigning their N-D and O-D stretching vibrations in D(2)O, respectively. Highly accurate low-temperature Fourier transform infrared spectroscopy revealed that hydrogen bonds of the Schiff base and water molecules are weak in the unphotolyzed state, whereas they are strengthened upon retinal photoisomerization. Halide dependence of the stretching vibrations enabled us to conclude that the Schiff base forms a direct hydrogen bond with Cl(-) only in the K intermediate. Hydrogen bond of the Schiff base is further strengthened in the L(1) intermediate, whereas the halide dependence revealed that the acceptor is not Cl(-), but presumably a water molecule. Thus, it is concluded that the hydrogen-bonding interaction between the Schiff base and Cl(-) is not a driving force of the motion of Cl(-). Rather, the removal of its hydrogen bonds with the Schiff base and water(s) makes the environment around Cl(-) less polar in the L(1) intermediate, which presumably drives the motion of Cl(-) from its binding site to the cytoplasmic domain.

  6. A statistical mechanical theory for a two-dimensional model of water

    PubMed Central

    Urbic, Tomaz; Dill, Ken A.

    2010-01-01

    We develop a statistical mechanical model for the thermal and volumetric properties of waterlike fluids. Each water molecule is a two-dimensional disk with three hydrogen-bonding arms. Each water interacts with neighboring waters through a van der Waals interaction and an orientation-dependent hydrogen-bonding interaction. This model, which is largely analytical, is a variant of the Truskett and Dill (TD) treatment of the “Mercedes-Benz” (MB) model. The present model gives better predictions than TD for hydrogen-bond populations in liquid water by distinguishing strong cooperative hydrogen bonds from weaker ones. We explore properties versus temperature T and pressure p. We find that the volumetric and thermal properties follow the same trends with T as real water and are in good general agreement with Monte Carlo simulations of MB water, including the density anomaly, the minimum in the isothermal compressibility, and the decreased number of hydrogen bonds for increasing temperature. The model reproduces that pressure squeezes out water’s heat capacity and leads to a negative thermal expansion coefficient at low temperatures. In terms of water structuring, the variance in hydrogen-bonding angles increases with both T and p, while the variance in water density increases with T but decreases with p. Hydrogen bonding is an energy storage mechanism that leads to water’s large heat capacity (for its size) and to the fragility in its cagelike structures, which are easily melted by temperature and pressure to a more van der Waals-like liquid state. PMID:20550408

  7. Hydrogen production by the naked active site of the di-iron hydrogenases in water.

    PubMed

    Zipoli, Federico; Car, Roberto; Cohen, Morrel H; Selloni, Annabella

    2009-10-01

    We explored the reactivity of the active center of the [FeFe]-hydrogenases detached from the enzyme and immersed in acidified water by first-principles Car-Parrinello molecular-dynamics simulations. We focused on the identification of the structures that are stable and metastable in acidified water and on their activity for hydrogen production. Our calculations revealed that the naked active center could be an efficient catalyst provided that electrons are transferred to the cluster. We found that both bridging and terminal isomers are present at equilibrium and that the bridging configuration is essential for efficient hydrogen production. The formation of the hydrogen molecule occurs via sequential protonations of the distal iron and of the N-atom of the S-CH(2)-NH-CH(2)-S chelating group. H(2) desorpti