Spin Polarization and Color Superconductivity in the Nambu-Jona-Lasinio Model
NASA Astrophysics Data System (ADS)
Matsuoka, Hiroaki; Tsue, Yasuhiko; da Providência, João; Providência, Constança; Yamamura, Masatoshi
In this research we study a possibility that spins of quarks may polarize at large quark chemical potential. In order to discuss this possibility, we introduce a tensor-type interaction into the Nambu-Jona-Lasinio model. Here we pay attention to the relationship between chiral condensate, spin polarization and color superconductivity. It is shown that, at large quark chemical potential and low temperature, the coexisting phase where both the spin-polarized condensate and color superconducting gap exist together may be realized.
Competing quantum orderings in cuprate superconductors: A minimal model
NASA Astrophysics Data System (ADS)
Martin, I.; Ortiz, G.; Balatsky, A. V.; Bishop, A. R.
2001-02-01
We present a minimal model for cuprate superconductors. At the unrestricted mean-field level, the model produces homogeneous superconductivity at large doping, striped superconductivity in the underdoped regime and various antiferromagnetic phases at low doping and for high temperatures. On the underdoped side, the superconductor is intrinsically inhomogeneous and global phase coherence is achieved through Josephson-like coupling of the superconducting stripes. The model is applied to calculate experimentally measurable ARPES spectra.
Competing Quantum Orderings in Cuprate Superconductors:
NASA Astrophysics Data System (ADS)
Martin, I.; Ortiz, G.; Balatsky, A. V.; Bishop, A. R.
We present a minimal model for cuprate superconductors. At the unrestricted mean-field level, the model produces homogeneous superconductivity at large doping, striped superconductivity in the underdoped regime and various antiferromagnetic phases at low doping and for high temperatures. On the underdoped side, the superconductor is intrinsically inhomogeneous and global phase coherence is achieved through Josephson-like coupling of the superconducting stripes. The model is applied to calculate experimentally measurable ARPES spectra.
Integrated Joule switches for the control of current dynamics in parallel superconducting strips
NASA Astrophysics Data System (ADS)
Casaburi, A.; Heath, R. M.; Cristiano, R.; Ejrnaes, M.; Zen, N.; Ohkubo, M.; Hadfield, R. H.
2018-06-01
Understanding and harnessing the physics of the dynamic current distribution in parallel superconducting strips holds the key to creating next generation sensors for single molecule and single photon detection. Non-uniformity in the current distribution in parallel superconducting strips leads to low detection efficiency and unstable operation, preventing the scale up to large area sensors. Recent studies indicate that non-uniform current distributions occurring in parallel strips can be understood and modeled in the framework of the generalized London model. Here we build on this important physical insight, investigating an innovative design with integrated superconducting-to-resistive Joule switches to break the superconducting loops between the strips and thus control the current dynamics. Employing precision low temperature nano-optical techniques, we map the uniformity of the current distribution before- and after the resistive strip switching event, confirming the effectiveness of our design. These results provide important insights for the development of next generation large area superconducting strip-based sensors.
Competing Quantum Orderings in Cuprate Superconductors: A Minimal Model
NASA Astrophysics Data System (ADS)
Martin, Ivar; Ortiz, Gerardo; Balatsky, A. V.; Bishop, A. R.
2001-03-01
We present a minimal model for cuprate superconductors. At the unrestricted mean-field level, the model produces homogeneous superconductivity at large doping, striped superconductivity in the underdoped regime and various antiferromagnetic phases at low doping and for high temperatures. On the underdoped side, the superconductor is intrinsically inhomogeneous and global phase coherence is achieved through Josephson-like coupling of the superconducting stripes. The model is applied to calculate experimentally measurable ARPES spectra, and local density of states measurable by STM.
Large enhancement of superconductivity in Zr point contacts.
Aslam, Mohammad; Singh, Chandan; Das, Shekhar; Kumar, Ritesh; Datta, Soumya; Halder, Soumyadip; Gayen, Sirshendu; Kabir, Mukul; Sheet, Goutam
2018-04-30
For certain complex superconducting systems, the superconducting properties get enhanced under mesoscopic point contacts made of elemental non-superconducting metals. However, understanding of the mechanism through which such contact induced local enhancement of superconductivity happens has been limited due to the complex nature of such compounds. In this paper we present a large enhancement of superconducting transition temperature (T<sub>c</sub>) and superconducting energy gap (Δ) in a simple elemental superconductor Zr. While bulk Zr shows a critical temperature around 0.6K, superconductivity survives at Ag/Zr and Pt/Zr point contacts up to 3K with a corresponding five-fold enhancement of Δ. Further, the first-principles calculations on a model system provide useful insights. We show that the enhancement in superconducting properties can be attributed to a modification in the electron-phonon coupling accompanied by an enhancement of the density of states which involves the appearance of a new electron band at the Ag/Zr interfaces. © 2018 IOP Publishing Ltd.
NASA Technical Reports Server (NTRS)
Goodyer, M. J.; Britcher, C. P.
1983-01-01
The results of experimental demonstrations of a superconducting solenoid model core in the Southampton University Magnetic Suspension and Balance System are detailed. Technology and techniques relevant to large-scale wind tunnel MSBSs comprise the long term goals. The magnetic moment of solenoids, difficulties peculiar to superconducting solenoid cores, lift force and pitching moment, dynamic lift calibration, and helium boil-off measurements are discussed.
NASA Technical Reports Server (NTRS)
Paik, Ho J.; Canavan, Edgar R.; Kong, Qin; Moody, M. V.
1992-01-01
The paper describes the superconducting gravity gradiometers (SGGs) and superconducting accelerometers being developed at the University of Maryland, which take advantage of many exotic properties of superconductivity to obtain the required low noise, high stability, and large dynamic range. Results of laboratory demonstrations of some of these instruments are presented together with the design and operating principles. Particular attention is given to the three-axis Model II SGG and a six-axis superconducting accelerometer model (Model I SSA). Model II SGG, after a residual common-mode balance, exhibited a noise level of 0.05/sq rt Hz above 0.1 Hz and a 1/f-squared noise below 0.1 Hz. All six channels of Model I SSA operated simultaneously with linear and angular acceleration noise levels of 3 x 10 exp -10 g(E)/sq rt Hz and 5 x 10 exp -8 rad/sec per sec per sq rt Hz, respectively.
Flat-band superconductivity in strained Dirac materials
NASA Astrophysics Data System (ADS)
Kauppila, V. J.; Aikebaier, F.; Heikkilä, T. T.
2016-06-01
We consider superconducting properties of a two-dimensional Dirac material such as graphene under strain that produces a flat-band spectrum in the normal state. We show that in the superconducting state, such a model results in a highly increased critical temperature compared to the case without the strain, inhomogeneous order parameter with two-peak shaped local density of states and yet a large and almost uniform and isotropic supercurrent. This model could be realized in strained graphene or ultracold atom systems and could be responsible for unusually strong superconductivity observed in some graphite interfaces and certain IV-VI semiconductor heterostructures.
Theory of superconductivity in oxides. Final technical report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, P.W.
1988-05-18
Progress was made towards a final theory of high-Tc superconductivity. The key elements are the work on normal-state properties and the actual mechanism for Tc. With the understanding (ZA) of the large anisotropy and other transport properties in the normal state, the model is uniquely determined: one must have one version or another of a holon-spinon quantum-fluid state, which is not a normal Fermi liquid. And with the recognition (HWA) of the large-repulsion holon-holon interactions, the author has the first way of thinking quantitatively about the superconducting state. Work on the pure Heisenberg system, which is related but not necessarilymore » crucial to understanding the superconducting properties is described.« less
Microscopic model of superconductivity in carbon nanotubes.
González, J
2002-02-18
We propose the model of a manifold of one-dimensional interacting electron systems to account for the superconductivity observed in ropes of nanotubes. We rely on the strong suppression of single-particle hopping between neighboring nanotubes in a disordered rope and conclude that the tunneling takes place in pairs of electrons, which are formed within each nanotube due to the existence of large superconducting correlations. Our estimate of the transition temperature is consistent with the values that have been measured experimentally in ropes with about 100 metallic nanotubes.
Fidelity Study of Superconductivity in Extended Hubbard Models
NASA Astrophysics Data System (ADS)
Plonka, Nachum; Jia, Chunjing; Moritz, Brian; Wang, Yao; Devereaux, Thomas
2015-03-01
The role of strong electronic correlations on unconventional superconductivity remains an important open question. Here, we explore the influence of long-range Coulomb interactions, present in real material systems, through nearest and next-nearest neighbor extended Hubbard interactions in addition to the usual on-site terms. Utilizing large scale, numerical exact diagonalization, we analyze the signatures of superconductivity in the ground states through the fidelity metric of quantum information theory. We find that these extended interactions enhance charge fluctuations with various wave vectors. These suppress superconductivity in general, but in certain parameter regimes superconductivity is sustained. This has implications for tuning extended interactions in real materials.
Superconductivity in epitaxial InN thin films with large critical fields
NASA Astrophysics Data System (ADS)
Pal, Buddhadeb; Joshi, Bhanu P.; Chakraborti, Himadri; Jain, Aditya K.; Barick, Barun K.; Ghosh, Kankat; Laha, Apurba; Dhar, Subhabrata; Gupta, Kantimay Das
2018-04-01
We report superconductivity in Chemical Vapor Deposition (CVD) and Plasma-Assisted Molecular Beam Epitaxy (PA-MBE) grown epitaxial InN films having carrier density ˜ 1019 - 1020cm-3. The superconducting phase transition starts at temperatures around Tc,onset˜3 K and the resistance goes to zero completely at Tc0 ˜ 1.6 K. The temperature dependence of the critical field HC2(T) does not obey a two fluid Casimir-Gorter (C-G) model rather it is well explained by the 2-D Tinkham model. The extrapolated value of the zero-temperature perpendicular critical field HC2(0) is found to be between 0.25 - 0.9 T, which is ten times greater than that of Indium metal. It may indicate the intrinsic nature of superconductivity in InN films. The angle dependence of critical field is well described by Lawrence-Doniach (L-D) model, which suggest the existence of quasi-2D superconducting layers.
A network of superconducting gravimeters detects submicrogal coseismic gravity changes.
Imanishi, Yuichi; Sato, Tadahiro; Higashi, Toshihiro; Sun, Wenke; Okubo, Shuhei
2004-10-15
With high-resolution continuous gravity recordings from a regional network of superconducting gravimeters, we have detected permanent changes in gravity acceleration associated with a recent large earthquake. Detected changes in gravity acceleration are smaller than 10(-8) meters seconds(-2) (1 micro-Galileo, about 10(-9) times the surface gravity acceleration) and agree with theoretical values calculated from a dislocation model. Superconducting gravimetry can contribute to the studies of secular gravity changes associated with tectonic processes.
NASA Astrophysics Data System (ADS)
Shen, J. Y.; He, M. Q.; He, Q. L.; Law, K. T.; Sou, I. K.; Lortz, R.; Petrovic, A. P.
We investigate directional point-contact spectroscopy on a Bi2Te3/ Fe1+yTe heterostructure, fabricated via van der Waals epitaxy, which is interfacial superconducting with an onset TC at 12K and zero resistance below 8K. A large superconducting twin-gap structure is seen down to 0.27K, together with a zero bias conductance peak. The anisotropic smaller gap (Δ1) is around 5 meV at 0.27K and closes at 8K, while the other one (Δ2), as large as 12 meV, is isotropic and eventually evolves into a pseudogap closing at 40K. Both, the two-gap BTK and Dynes models can well reproduce our data, demonstrating Δ1 should be associated with the proximity-induced superconductivity in the topological Bi2Te3 layer, while Δ2 may be attributed to an intrinsically-doped FeTe thin film at the interface. This work was supported by grants from the Research Grants Council of the Hong Kong Special Administrative Region, China (603010, SEGHKUST03).
NASA Astrophysics Data System (ADS)
Qin, Jinggang; Yue, Donghua; Zhang, Xingyi; Wu, Yu; Liu, Xiaochuan; Liu, Huajun; Jin, Huan; Dai, Chao; Nijhuis, Arend; Zhou, Chao; Devred, Arnaud
2018-07-01
The conductors used in large fusion reactors, e.g. ITER, CFETR and DEMO, are made of cable-in-conduit conductor (CICC) with large diameters up to about 50 mm. The superconducting and copper strands are cabled around a central spiral and then wrapped with stainless-steel tape of 0.1 mm thickness. The cable is then inserted into a jacket under tensile force that increases with the length of insertion. Because the cables are long and with a large diameter, the insertion force could reach values of about 40 kN. The large tensile force could lead to significant rotation forces. This may lead to an increase of the twist pitch, especially for the final one. Understanding the twist pitch variation is very important; in particular, the twist pitch of a cable inside a CICC strongly affects its properties, especially for Nb3Sn conductors. In this paper, a simplified numerical model was used to analyze the cable rotation, including material properties, cabling tension as well as wrap tension. Several rotation experiments with tensile force have been performed to verify the numerical results for CFETR CSMC cables. The results show that the numerical analysis is consistent with the experiments and provides the optimal cabling conditions for large superconducting cables.
Superconducting Magnet Shielding of Astronauts from Cosmic Rays
NASA Astrophysics Data System (ADS)
Fisher, Peter; Hoffman, Jeffrey; Zhou, Feng; Batishchev, Oleg
2004-11-01
Protecting astronauts traveling outside the Earth's protective magnetic field from cosmic and solar radiation [1] is one of the critical problems that must be solved in order to realize the nation's new human space exploration vision. Superconducting magnets, such as those under construction for the ATLAS experiment [2] at CERN, have achieved sufficient size to be able to surround a reasonable habitable volume, and their field strength is high enough to deflect a significant portion of the incoming radiation. We have undertaken a research effort aimed at developing an accurate numerical model of a crew compartment surrounded by a large magnetic field, with which we can calculate the effect on incoming charged particles. We will use this model to optimize the magnetic configuration to produce the maximum shielding effect while minimizing the mass of the superconducting magnet system. We are also investigating some of the practical problems that must be solved if large, superconducting magnet systems are to be incorporated into human space systems. We will present preliminary results of our modeling, showing the reduction of radiation exposure as a function of energy and atomic species. [1] Review of Particle Physics, Ed. Particle Data Group, Phys. Lett. B, 1-4 (592) 1-1109, 2004 [2] http://atlasexperiment.org/
CDW order and unconventional s-wave superconductivity in Ba1-xNaxTi2Sb2O
NASA Astrophysics Data System (ADS)
Kamusella, Sirko; Doan, Phuong; Goltz, Til; Luetkens, Hubertus; Sarkar, Rajib; Guloy, Arnold; Klauss, Hans-Henning
2014-12-01
Due to its anticuprate Ti2O layer and its fascinating phase diagram with a large coexistence area of superconductivity and a density wave phase, the new class of titanium based superconductors attracts great scientific interest. In this paper we report μSR investigation on powder samples of Ba1-xNaxTi2Sb2O (x = 0, 0.15, 0.25). Our results exhibit both the presence of a charge density wave and superconductivity in Ba1-xNaxTi2Sb2O. The superconducting order parameter, extracted from a vortex state analysis using the numeric Ginzburg-Landau model, is compatible with a s-wave symmetry. In the universal Uemura classification of superconductors this compound is at the verge of unconventional superconductivity.
Development of superconducting YBa2Cu3O(x) wires with low resistance electrical contacts
NASA Technical Reports Server (NTRS)
Buoncristiani, A. M.; Byvik, C. E.; Caton, R.; Selim, R.; Lee, B. I.; Modi, V.; Sherrill, M.; Leigh, H. D.; Fain, C. C.; Lewis, G.
1993-01-01
Materials exhibiting superconductivity above liquid nitrogen temperatures (77 K) will enable new applications of this phenomena. One of the first commercial applications of this technology will be superconducting magnets for medical imaging. However, a large number of aerospace applications of the high temperature superconducting materials have also been identified. These include magnetic suspension and balance of models in wind tunnels and resistanceless leads to anemometers. The development of superconducting wires fabricated from the ceramic materials is critical for these applications. The progress in application of a patented fiber process developed by Clemson University for the fabrication of superconducting wires is reviewed. The effect of particle size and heat treatment on the quality of materials is discussed. Recent advances made at Christopher Newport College in the development of micro-ohm resistance electrical contacts which are capable of carrying the highest reported direct current to this material is presented.
Development of superconducting YBa2Cu3O(x) wires with low resistance electrical contacts
NASA Astrophysics Data System (ADS)
Buoncristiani, A. M.; Byvik, C. E.; Caton, R.; Selim, R.; Lee, B. I.; Modi, V.; Sherrill, M.; Leigh, H. D.; Fain, C. C.; Lewis, G.
Materials exhibiting superconductivity above liquid nitrogen temperatures (77 K) will enable new applications of this phenomena. One of the first commercial applications of this technology will be superconducting magnets for medical imaging. However, a large number of aerospace applications of the high temperature superconducting materials have also been identified. These include magnetic suspension and balance of models in wind tunnels and resistanceless leads to anemometers. The development of superconducting wires fabricated from the ceramic materials is critical for these applications. The progress in application of a patented fiber process developed by Clemson University for the fabrication of superconducting wires is reviewed. The effect of particle size and heat treatment on the quality of materials is discussed. Recent advances made at Christopher Newport College in the development of micro-ohm resistance electrical contacts which are capable of carrying the highest reported direct current to this material is presented.
Theoretical studies of superconductivity in doped BaCoSO
NASA Astrophysics Data System (ADS)
Qin, Shengshan; Li, Yinxiang; Zhang, Qiang; Le, Congcong; Hu, Jiangping
2018-06-01
We investigate superconductivity that may exist in the doped BaCoSO, a multi-orbital Mott insulator with a strong antiferromagnetic ground state. The superconductivity is studied in both t-J type and Hubbard type multi-orbital models by mean field approach and random phase approximation (RPA) analysis. Even if there is no C 4 rotational symmetry, it is found that the system still carries a d-wave like pairing symmetry state with gapless nodes and sign changed superconducting order parameters on Fermi surfaces. The results are largely doping insensitive. In this superconducting state, the three {t_{{2_g}}} orbitals have very different superconducting form factors in momentum space. In particular, the intra-orbital pairing of the {d_{{x^2} - {y^2}}} orbital has an s-wave like pairing form factor. The two methods also predict very different pairing strength on different parts of Fermi surfaces. These results suggest that BaCoSO and related materials can be a new ground to test and establish fundamental principles for unconventional high temperature superconductivity.
Piezoelectric tunable microwave superconducting cavity
NASA Astrophysics Data System (ADS)
Carvalho, N. C.; Fan, Y.; Tobar, M. E.
2016-09-01
In the context of engineered quantum systems, there is a demand for superconducting tunable devices, able to operate with high-quality factors at power levels equivalent to only a few photons. In this work, we developed a 3D microwave re-entrant cavity with such characteristics ready to provide a very fine-tuning of a high-Q resonant mode over a large dynamic range. This system has an electronic tuning mechanism based on a mechanically amplified piezoelectric actuator, which controls the resonator dominant mode frequency by changing the cavity narrow gap by very small displacements. Experiments were conducted at room and dilution refrigerator temperatures showing a large dynamic range up to 4 GHz and 1 GHz, respectively, and were compared to a finite element method model simulated data. At elevated microwave power input, nonlinear thermal effects were observed to destroy the superconductivity of the cavity due to the large electric fields generated in the small gap of the re-entrant cavity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grilli, M.; Raimondi, R.; Castellani, C.
1991-07-08
The {ital U}={infinity} limit of the three-band Hubbard model with nearest-neighbor repulsion {ital V} is studied using the slave-boson approach and the large-{ital N} expansion technique to order 1/{ital N}. A charge-transfer instability is found as in weak-coupling theory. The charge-transfer instability is always associated with a diverging compressibility leading to a phase separation. Near the phase-separation, charge-transfer-instability region we find superconducting instabilities in the {ital s}- and {ital d}-wave channel. The requirement for superconductivity is that {ital V} be on the scale of the Cu-O hopping as suggested by Varma, Schmitt-Rink, and Abrahams.
Theory of High-T{sub c} Superconducting Cuprates Based on Experimental Evidence
DOE R&D Accomplishments Database
Abrikosov, A. A.
1999-12-10
A model of superconductivity in layered high-temperature superconducting cuprates is proposed, based on the extended saddle point singularities in the electron spectrum, weak screening of the Coulomb interaction and phonon-mediated interaction between electrons plus a small short-range repulsion of Hund's, or spin-fluctuation, origin. This permits to explain the large values of T{sub c}, features of the isotope effect on oxygen and copper, the existence of two types of the order parameter, the peak in the inelastic neutron scattering, the positive curvature of the upper critical field, as function of temperature etc.
Theory of superconductivity in a three-orbital model of Sr2RuO4
NASA Astrophysics Data System (ADS)
Wang, Q. H.; Platt, C.; Yang, Y.; Honerkamp, C.; Zhang, F. C.; Hanke, W.; Rice, T. M.; Thomale, R.
2013-10-01
In conventional and high transition temperature copper oxide and iron pnictide superconductors, the Cooper pairs all have even parity. As a rare exception, Sr2RuO4 is the first prime candidate for topological chiral p-wave superconductivity, which has time-reversal breaking odd-parity Cooper pairs known to exist before only in the neutral superfluid 3He. However, there are several key unresolved issues hampering the microscopic description of the unconventional superconductivity. Spin fluctuations at both large and small wave vectors are present in experiments, but how they arise and drive superconductivity is not yet clear. Spontaneous edge current is expected but not observed conclusively. Specific experiments point to highly band- and/or momentum-dependent energy gaps for quasiparticle excitations in the superconducting state. Here, by comprehensive functional renormalization group calculations with all relevant bands, we disentangle the various competing possibilities. In particular, we show the small wave vector spin fluctuations, driven by a single two-dimensional band, trigger p-wave superconductivity with quasi-nodal energy gaps.
Enabling Large Focal Plane Arrays Through Mosaic Hybridization
NASA Technical Reports Server (NTRS)
Miller, TImothy M.; Jhabvala, Christine A.; Leong, Edward; Costen, Nicholas P.; Sharp, Elmer; Adachi, Tomoko; Benford, Dominic
2012-01-01
We have demonstrated advances in mosaic hybridization that will enable very large format far-infrared detectors. Specifically we have produced electrical detector models via mosaic hybridization yielding superconducting circuit paths by hybridizing separately fabricated sub-units onto a single detector unit. The detector model was made on a 100mm diameter wafer while four model readout quadrant chips were made from a separate 100mm wafer. The individually fabricated parts were hybridized using a flip-chip bonder to assemble the detector-readout stack. Once all of the hybridized readouts were in place, a single, large and thick silicon substrate was placed on the stack and attached with permanent epoxy to provide strength and a Coefficient of Thermal Expansion match to the silicon components underneath. Wirebond pads on the readout chips connect circuits to warm readout electronics; and were used to validate the successful superconducting electrical interconnection of the model mosaic-hybrid detector. This demonstration is directly scalable to 150 mm diameter wafers, enabling pixel areas over ten times the area currently available.
Analysis of Mechanical Stresses/Strains in Superconducting Wire
NASA Astrophysics Data System (ADS)
Barry, Matthew; Chen, Jingping; Zhai, Yuhu
2016-10-01
The optimization of superconducting magnet performance and development of high-field superconducting magnets will greatly impact the next generation of fusion devices. A successful magnet development, however, relies deeply on the understanding of superconducting materials. Among the numerous factors that impact a superconductor's performance, mechanical stress is the most important because of the extreme operation temperature and large electromagnetic forces. In this study, mechanical theory is used to calculate the stresses/strains in typical superconducting strands, which consist of a stabilizer, a barrier, a matrix and superconducting filaments. Both thermal loads and mechanical loads are included in the analysis to simulate operation conditions. Because this model simulates the typical architecture of major superconducting materials, such as Nb3Sn, MgB2, Bi-2212 etc., it provides a good overall picture for us to understand the behavior of these superconductors in terms of thermal and mechanical loads. This work was supported in part by the U.S. Department of Energy, Office of Science, Office of Workforce Development for Teachers and Scientists (WDTS) under the Science Undergraduate Laboratory Internship (SULI) program.
Effect of superconducting solenoid model cores on spanwise iron magnet roll control
NASA Technical Reports Server (NTRS)
Britcher, C. P.
1985-01-01
Compared with conventional ferromagnetic fuselage cores, superconducting solenoid cores appear to offer significant reductions in the projected cost of a large wind tunnel magnetic suspension and balance system. The provision of sufficient magnetic roll torque capability has been a long-standing problem with all magnetic suspension and balance systems; and the spanwise iron magnet scheme appears to be the most powerful system available. This scheme utilizes iron cores which are installed in the wings of the model. It was anticipated that the magnetization of these cores, and hence the roll torque generated, would be affected by the powerful external magnetic field of the superconducting solenoid. A preliminary study has been made of the effect of the superconducting solenoid fuselage model core concept on the spanwise iron magnet roll torque generation schemes. Computed data for one representative configuration indicate that reductions in available roll torque occur over a range of applied magnetic field levels. These results indicate that a 30-percent increase in roll electromagnet capacity over that previously determined will be required for a representative 8-foot wind tunnel magnetic suspension and balance system design.
Digital-analog quantum simulation of generalized Dicke models with superconducting circuits
NASA Astrophysics Data System (ADS)
Lamata, Lucas
2017-03-01
We propose a digital-analog quantum simulation of generalized Dicke models with superconducting circuits, including Fermi- Bose condensates, biased and pulsed Dicke models, for all regimes of light-matter coupling. We encode these classes of problems in a set of superconducting qubits coupled with a bosonic mode implemented by a transmission line resonator. Via digital-analog techniques, an efficient quantum simulation can be performed in state-of-the-art circuit quantum electrodynamics platforms, by suitable decomposition into analog qubit-bosonic blocks and collective single-qubit pulses through digital steps. Moreover, just a single global analog block would be needed during the whole protocol in most of the cases, superimposed with fast periodic pulses to rotate and detune the qubits. Therefore, a large number of digital steps may be attained with this approach, providing a reduced digital error. Additionally, the number of gates per digital step does not grow with the number of qubits, rendering the simulation efficient. This strategy paves the way for the scalable digital-analog quantum simulation of many-body dynamics involving bosonic modes and spin degrees of freedom with superconducting circuits.
Digital-analog quantum simulation of generalized Dicke models with superconducting circuits
Lamata, Lucas
2017-01-01
We propose a digital-analog quantum simulation of generalized Dicke models with superconducting circuits, including Fermi- Bose condensates, biased and pulsed Dicke models, for all regimes of light-matter coupling. We encode these classes of problems in a set of superconducting qubits coupled with a bosonic mode implemented by a transmission line resonator. Via digital-analog techniques, an efficient quantum simulation can be performed in state-of-the-art circuit quantum electrodynamics platforms, by suitable decomposition into analog qubit-bosonic blocks and collective single-qubit pulses through digital steps. Moreover, just a single global analog block would be needed during the whole protocol in most of the cases, superimposed with fast periodic pulses to rotate and detune the qubits. Therefore, a large number of digital steps may be attained with this approach, providing a reduced digital error. Additionally, the number of gates per digital step does not grow with the number of qubits, rendering the simulation efficient. This strategy paves the way for the scalable digital-analog quantum simulation of many-body dynamics involving bosonic modes and spin degrees of freedom with superconducting circuits. PMID:28256559
NASA Astrophysics Data System (ADS)
Chung, Chung-Hou; Sun, Shih-Jye; Chang, Yung-Yeh; Tsai, Wei-Feng; Zhang, Fuchun
Large Hubbard U limit of the Kane-Mele model on a zigzag ribbon of honeycomb lattice near half-filling is studied via a renormalized mean-field theory. The ground state exhibits time-reversal symmetry (TRS) breaking dx2 -y2 + idxy -wave superconductivity. At large spin-orbit coupling, the Z2 topological phase with non-trivial spin Chern number in the pure Kane-Mele model is persistent into the TRS broken state (called ``spin-Chern phase''), and has two pairs of counter-propagating helical Majorana modes at the edges. As the spin-orbit coupling is reduced, the system undergoes a topological quantum phase transition from the spin-Chern to chiral superconducting states. Possible relevance of our results to adatom-doped graphene and irridate compounds is discussed.Ref.:Shih-Jye Sun, Chung-Hou Chung, Yung-Yeh Chang, Wei-Feng Tsai, and Fu-Chun Zhang, arXiv:1506.02584. CHC acknowledges support from NSC Grant No. 98-2918-I-009-06, No. 98-2112-M-009-010-MY3, the NCTU-CTS, the MOE-ATU program, the NCTS of Taiwan, R.O.C.
3D multiphysics modeling of superconducting cavities with a massively parallel simulation suite
NASA Astrophysics Data System (ADS)
Kononenko, Oleksiy; Adolphsen, Chris; Li, Zenghai; Ng, Cho-Kuen; Rivetta, Claudio
2017-10-01
Radiofrequency cavities based on superconducting technology are widely used in particle accelerators for various applications. The cavities usually have high quality factors and hence narrow bandwidths, so the field stability is sensitive to detuning from the Lorentz force and external loads, including vibrations and helium pressure variations. If not properly controlled, the detuning can result in a serious performance degradation of a superconducting accelerator, so an understanding of the underlying detuning mechanisms can be very helpful. Recent advances in the simulation suite ace3p have enabled realistic multiphysics characterization of such complex accelerator systems on supercomputers. In this paper, we present the new capabilities in ace3p for large-scale 3D multiphysics modeling of superconducting cavities, in particular, a parallel eigensolver for determining mechanical resonances, a parallel harmonic response solver to calculate the response of a cavity to external vibrations, and a numerical procedure to decompose mechanical loads, such as from the Lorentz force or piezoactuators, into the corresponding mechanical modes. These capabilities have been used to do an extensive rf-mechanical analysis of dressed TESLA-type superconducting cavities. The simulation results and their implications for the operational stability of the Linac Coherent Light Source-II are discussed.
Superconducting gravity gradiometer for sensitive gravity measurements. I. Theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chan, H.A.; Paik, H.J.
1987-06-15
Because of the equivalence principle, a global measurement is necessary to distinguish gravity from acceleration of the reference frame. A gravity gradiometer is therefore an essential instrument needed for precision tests of gravity laws and for applications in gravity survey and inertial navigation. Superconductivity and SQUID (superconducting quantum interference device) technology can be used to obtain a gravity gradiometer with very high sensitivity and stability. A superconducting gravity gradiometer has been developed for a null test of the gravitational inverse-square law and space-borne geodesy. Here we present a complete theoretical model of this instrument. Starting from dynamical equations for themore » device, we derive transfer functions, a common mode rejection characteristic, and an error model of the superconducting instrument. Since a gradiometer must detect a very weak differential gravity signal in the midst of large platform accelerations and other environmental disturbances, the scale factor and common mode rejection stability of the instrument are extremely important in addition to its immunity to temperature and electromagnetic fluctuations. We show how flux quantization, the Meissner effect, and properties of liquid helium can be utilized to meet these challenges.« less
Observation of Caroli-de Gennes-Matricon Vortex States in YBa2Cu3O7 -δ
NASA Astrophysics Data System (ADS)
Berthod, Christophe; Maggio-Aprile, Ivan; Bruér, Jens; Erb, Andreas; Renner, Christoph
2017-12-01
The copper oxides present the highest superconducting temperature and properties at odds with other compounds, suggestive of a fundamentally different superconductivity. In particular, the Abrikosov vortices fail to exhibit localized states expected and observed in all clean superconductors. We have explored the possibility that the elusive vortex-core signatures are actually present but weak. Combining local tunneling measurements with large-scale theoretical modeling, we positively identify the vortex states in YBa2Cu3O7 -δ . We explain their spectrum and the observed variations thereof from one vortex to the next by considering the effects of nearby vortices and disorder in the vortex lattice. We argue that the superconductivity of copper oxides is conventional, but the spectroscopic signature does not look so because the superconducting carriers are a minority.
Local switching of two-dimensional superconductivity using the ferroelectric field effect
NASA Astrophysics Data System (ADS)
Takahashi, K. S.; Gabay, M.; Jaccard, D.; Shibuya, K.; Ohnishi, T.; Lippmaa, M.; Triscone, J.-M.
2006-05-01
Correlated oxides display a variety of extraordinary physical properties including high-temperature superconductivity and colossal magnetoresistance. In these materials, strong electronic correlations often lead to competing ground states that are sensitive to many parameters-in particular the doping level-so that complex phase diagrams are observed. A flexible way to explore the role of doping is to tune the electron or hole concentration with electric fields, as is done in standard semiconductor field effect transistors. Here we demonstrate a model oxide system based on high-quality heterostructures in which the ferroelectric field effect approach can be studied. We use a single-crystal film of the perovskite superconductor Nb-doped SrTiO3 as the superconducting channel and ferroelectric Pb(Zr,Ti)O3 as the gate oxide. Atomic force microscopy is used to locally reverse the ferroelectric polarization, thus inducing large resistivity and carrier modulations, resulting in a clear shift in the superconducting critical temperature. Field-induced switching from the normal state to the (zero resistance) superconducting state was achieved at a well-defined temperature. This unique system could lead to a field of research in which devices are realized by locally defining in the same material superconducting and normal regions with `perfect' interfaces, the interface being purely electronic. Using this approach, one could potentially design one-dimensional superconducting wires, superconducting rings and junctions, superconducting quantum interference devices (SQUIDs) or arrays of pinning centres.
Enabling Large Focal Plane Arrays Through Mosaic Hybridization
NASA Technical Reports Server (NTRS)
Miller, Timothy M.; Jhabvala, Christine A.; Leong, Edward; Costen, Nick P.; Sharp, Elmer; Adachi, Tomoko; Benford, Dominic J.
2012-01-01
We have demonstrated advances in mosaic hybridization that will enable very large format far-infrared detectors. Specifically we have produced electrical detector models via mosaic hybridization yielding superconducting circuit patbs by hybridizing separately fabricated sub-units onto a single detector unit. The detector model was made on a 100mm diameter wafer while four model readout quadrant chips were made from a separate 100mm wafer. The individually fabric.ted parts were hybridized using a Suss FCI50 flip chip bonder to assemble the detector-readout stack. Once all of the hybridized readouts were in place, a single, large and thick silicon substrate was placed on the stack and attached with permanent epoxy to provide strength and a Coefficient of Thermal Expansion match to the silicon components underneath. Wirebond pads on the readout chips connect circuits to warm readout electronics; and were used to validate the successful superconducting electrical interconnection of the model mosaic-hybrid detector. This demonstration is directly scalable to 150 mm diameter wafers, enabling pixel areas over ten times the area currently available.
Absence of Local Fluctuating Dimers in Superconducting Ir 1-x(Pt,Rh) xTe 2
Yu, Runze; Banerjee, S.; Lei, H. C.; ...
2018-06-01
The compound IrTe2 is known to exhibit a transition to a modulated state featuring Ir-Ir dimers, with large associated atomic displacements. Partial substitution of Pt or Rh for Ir destabilizes the modulated structure and induces superconductivity. It has been proposed that quantum critical dimer fluctuations might be associated with the superconductivity. Here we test for such local dimer correlations and demonstrate their absence. X-ray pair distribution function approach reveals that the local structure of Ir 0.95Pt 0.05Te 2 and Ir 0.8Rh 0.2Te 2 dichalcogenide superconductors with compositions just past the dimer/superconductor boundary is explained well by a dimer-free model downmore » to 10 K, ruling out the possibility of there being nanoscale dimer fluctuations in this regime. This is inconsistent with the proposed quantum-critical-point-like interplay of the dimer state and superconductivity, and precludes scenarios for dimer fluctuations mediated superconducting pairing.« less
Absence of Local Fluctuating Dimers in Superconducting Ir 1-x(Pt,Rh) xTe 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Runze; Banerjee, S.; Lei, H. C.
The compound IrTe2 is known to exhibit a transition to a modulated state featuring Ir-Ir dimers, with large associated atomic displacements. Partial substitution of Pt or Rh for Ir destabilizes the modulated structure and induces superconductivity. It has been proposed that quantum critical dimer fluctuations might be associated with the superconductivity. Here we test for such local dimer correlations and demonstrate their absence. X-ray pair distribution function approach reveals that the local structure of Ir 0.95Pt 0.05Te 2 and Ir 0.8Rh 0.2Te 2 dichalcogenide superconductors with compositions just past the dimer/superconductor boundary is explained well by a dimer-free model downmore » to 10 K, ruling out the possibility of there being nanoscale dimer fluctuations in this regime. This is inconsistent with the proposed quantum-critical-point-like interplay of the dimer state and superconductivity, and precludes scenarios for dimer fluctuations mediated superconducting pairing.« less
Absence of local fluctuating dimers in superconducting Ir1 -x(Pt,Rh ) xTe2
NASA Astrophysics Data System (ADS)
Yu, Runze; Banerjee, S.; Lei, H. C.; Sinclair, Ryan; Abeykoon, M.; Zhou, H. D.; Petrovic, C.; Guguchia, Z.; Bozin, E. S.
2018-05-01
The compound IrTe2 is known to exhibit a transition to a modulated state featuring Ir-Ir dimers, with large associated atomic displacements. Partial substitution of Pt or Rh for Ir destabilizes the modulated structure and induces superconductivity. It has been proposed that quantum critical dimer fluctuations might be associated with the superconductivity. Here we test for such local dimer correlations and demonstrate their absence. X-ray pair distribution function approach reveals that the local structure of Ir0 :95Pt0 :05Te2 and Ir0 :8Rh0 :2Te2 dichalcogenide superconductors with compositions just past the dimer/superconductor boundary is explained well by a dimer-free model down to 10 K, ruling out the possibility of there being nanoscale dimer fluctuations in this regime. This is inconsistent with the proposed quantum-critical-point-like interplay of the dimer state and superconductivity, and precludes scenarios for dimer fluctuations mediated superconducting pairing.
Strongly correlated superconductivity and quantum criticality
NASA Astrophysics Data System (ADS)
Tremblay, A.-M. S.
Doped Mott insulators and doped charge-transfer insulators describe classes of materials that can exhibit unconventional superconducting ground states. Examples include the cuprates and the layered organic superconductors of the BEDT family. I present results obtained from plaquette cellular dynamical mean-field theory. Continuous-time quantum Monte Carlo evaluation of the hybridization expansion allows one to study the models in the large interaction limit where quasiparticles can disappear. The normal state which is unstable to the superconducting state exhibits a first-order transition between a pseudogap and a correlated metal phase. That transition is the finite-doping extension of the metal-insulator transition obtained at half-filling. This transition serves as an organizing principle for the normal and superconducting states of both cuprates and doped organic superconductors. In the less strongly correlated limit, these methods also describe the more conventional case where the superconducting dome surrounds an antiferromagnetic quantum critical point. Sponsored by NSERC RGPIN-2014-04584, CIFAR, Research Chair in the Theory of Quantum Materials.
Ullom, Joel N.
2003-06-24
A normal-insulator-superconductor (NIS) microrefrigerator in which a superconducting single crystal is both the substrate and the superconducting electrode of the NIS junction. The refrigerator consists of a large ultra-pure superconducting single crystal and a normal metal layer on top of the superconducting crystal, separated by a thin insulating layer. The superconducting crystal can be either cut from bulk material or grown as a thick epitaxial film. The large single superconducting crystal allows quasiparticles created in the superconducting crystal to easily diffuse away from the NIS junction through the lattice structure of the crystal to normal metal traps to prevent the quasiparticles from returning across the NIS junction. In comparison to thin film NIS refrigerators, the invention provides orders of magnitude larger cooling power than thin film microrefrigerators. The superconducting crystal can serve as the superconducting electrode for multiple NIS junctions to provide an array of microrefrigerators. The normal electrode can be extended and supported by microsupports to provide support and cooling of sensors or arrays of sensors.
Calculations of the first frequency moment of the structure factor in the BCS model
NASA Astrophysics Data System (ADS)
Rendell, J. M.; Carbotte, J. P.
1998-03-01
We have calculated the first frequency moment of the dynamical structure factor, S(q,ω), known as the f-sum, using the BCS model of susceptibility, \\chi(q,ω), with phenomenological models of the normal state dispersion, tilde\\varepsilon_k, and the superconducting energy gap, Δ_k(T). We have found an explicit expression for the f-sum in both the normal state and the superconducting state. Numerically, we show that the f-sum is insensitive to temperature changes in the range 0 to the order of magnitude of T_c, to the state (normal or superconducting) and to the size and type of energy gap, Δ_k(T), in the superconducting state. The f-sum does depend intimately on the normal state dispersion model, tilde\\varepsilonk and on the filling in the first Brillouin zone. In addition, we show numerically that the f-sum is nearly constant for the Random Phase Approximation (RPA) of the susceptibility up to pseudo-potentials, U <= U_c, the critical potential. Thus, a large increase in Im \\chi(q_0,ω_0) at frequency ω0 and a potential U > 0 (e.g. examining the 41 meV peak at q0 = (π,π)), is compensated by commensurate reduction in Im \\chi(q_0,ω) at other frequencies.
Aerospace Applications of Magnetic Suspension Technology, part 2
NASA Technical Reports Server (NTRS)
Groom, Nelson J. (Editor); Britcher, Colin P. (Editor)
1991-01-01
In order to examine the state of technology of all areas of magnetic suspension with potential aerospace applications, and to review related recent developments in sensors and control approaches, superconducting technology, and design/implementation practices, a workshop was held at NASA-Langley. Areas of concern are pointing and isolation systems, microgravity and vibration isolation, bearing applications, wind tunnel model suspension systems, large gap magnetic suspension systems, controls, rotating machinery, science and applications of superconductivity, and sensors. Papers presented are included.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okwit, S.; Siegel, K.; Smith, J.G.
1962-09-01
Results of an investigation to determine the feasibility of incorporating superconducting magnet techniques in the design of traveling-wave maser systems are reported. Several different types of magnet configurations were investigated: isomagnets, Helmholtz coils, modified Helmholtz coils, air-core solenoids, and magnetic end-loaded air-core solenoids. The magnetic end-loaded air-core solenoid was found to be the best configuration for the S-band maser under consideration. This technique yielded relatively large regions of field homogeneity with relatively small aspect ratios (length of solenoid/diameter of solenoid). Several small-scale models of full-length superconducting magnets and foreshortened end-loaded superconducting magnets were constructed using un-annealed niobium wire. Measurements havemore » shown that these magnets were adequate for traveling-wave maser applications that require magnetic fields up to 2,200 G and marginal for magnetic fields up to 2,500 G.« less
3D multiphysics modeling of superconducting cavities with a massively parallel simulation suite
Kononenko, Oleksiy; Adolphsen, Chris; Li, Zenghai; ...
2017-10-10
Radiofrequency cavities based on superconducting technology are widely used in particle accelerators for various applications. The cavities usually have high quality factors and hence narrow bandwidths, so the field stability is sensitive to detuning from the Lorentz force and external loads, including vibrations and helium pressure variations. If not properly controlled, the detuning can result in a serious performance degradation of a superconducting accelerator, so an understanding of the underlying detuning mechanisms can be very helpful. Recent advances in the simulation suite ace3p have enabled realistic multiphysics characterization of such complex accelerator systems on supercomputers. In this paper, we presentmore » the new capabilities in ace3p for large-scale 3D multiphysics modeling of superconducting cavities, in particular, a parallel eigensolver for determining mechanical resonances, a parallel harmonic response solver to calculate the response of a cavity to external vibrations, and a numerical procedure to decompose mechanical loads, such as from the Lorentz force or piezoactuators, into the corresponding mechanical modes. These capabilities have been used to do an extensive rf-mechanical analysis of dressed TESLA-type superconducting cavities. Furthermore, the simulation results and their implications for the operational stability of the Linac Coherent Light Source-II are discussed.« less
3D multiphysics modeling of superconducting cavities with a massively parallel simulation suite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kononenko, Oleksiy; Adolphsen, Chris; Li, Zenghai
Radiofrequency cavities based on superconducting technology are widely used in particle accelerators for various applications. The cavities usually have high quality factors and hence narrow bandwidths, so the field stability is sensitive to detuning from the Lorentz force and external loads, including vibrations and helium pressure variations. If not properly controlled, the detuning can result in a serious performance degradation of a superconducting accelerator, so an understanding of the underlying detuning mechanisms can be very helpful. Recent advances in the simulation suite ace3p have enabled realistic multiphysics characterization of such complex accelerator systems on supercomputers. In this paper, we presentmore » the new capabilities in ace3p for large-scale 3D multiphysics modeling of superconducting cavities, in particular, a parallel eigensolver for determining mechanical resonances, a parallel harmonic response solver to calculate the response of a cavity to external vibrations, and a numerical procedure to decompose mechanical loads, such as from the Lorentz force or piezoactuators, into the corresponding mechanical modes. These capabilities have been used to do an extensive rf-mechanical analysis of dressed TESLA-type superconducting cavities. Furthermore, the simulation results and their implications for the operational stability of the Linac Coherent Light Source-II are discussed.« less
NASA Astrophysics Data System (ADS)
Kroeger, D. M.; Koch, C. C.; Scarbrough, J. O.; McKamey, C. G.
1984-02-01
Measurements of the low-temperature specific heat Cp of liquid-quenched Zr-Ni glasses for a large number of compositions in the range from 55 to 74 at.% Zr revealed an unusual composition dependence of the density of states at the Fermi level, N(EF). Furthermore, for some compositions the variation of Cp near the superconducting transition temperature Tc indicated the presence of two superconducting phases, i.e., two superconducting transitions were detected. Comparison of the individual Tc's in phase-separated samples to the composition dependence of Tc for all of the samples suggests that amorphous phases with compositions near 60 and 66.7 at.% Zr occur. We discuss these results in terms of an "association model" for liquid alloys (due to Sommer), in which associations of unlike atoms with definite stoichiometries are assumed to exist in equilibrium with unassociated atoms. We conclude that in the composition range studied, associate clusters with the compositions Zr3Ni2 and Zr2Ni occur. In only a few cases are the clusters sufficiently large, compared with the superconducting coherence length, for separate superconducting transitions to be observed. The variation of N(EF) with composition is discussed, as well as the effects of this chemical short-range ordering on the crystallization behavior and glass-forming tendency.
Present Status of the KSTAR Superconducting Magnet System Development
NASA Astrophysics Data System (ADS)
Kim, Keeman; H, K. Park; K, R. Park; B, S. Lim; S, I. Lee; M, K. Kim; Y, Chu; W, H. Chung; S, H. Baek; J Y, Choi; H, Yonekawa; A, Chertovskikh; Y, B. Chang; J, S. Kim; C, S. Kim; D, J. Kim; N, H. Song; K, P. Kim; Y, J. Song; I, S. Woo; W, S. Han; D, K. Lee; Y, K. Oh; K, W. Cho; J, S. Park; G, S. Lee; H, J. Lee; T, K. Ko; S, J. Lee
2004-10-01
The mission of Korea Superconducting Tokamak Advanced Research (KSTAR) project is to develop an advanced steady-state superconducting tokamak for establishing a scientific and technological basis for an attractive fusion reactor. Because one of the KSTAR mission is to achieve a steady-state operation, the use of superconducting coils is an obvious choice for the magnet system. The KSTAR superconducting magnet system consists of 16 Toroidal Field (TF) coils and 14 Poloidal Field (PF) coils. Internally-cooled Cable-In-Conduit Conductors (CICC) are put into use in both the TF and PF coil systems. The TF coil system provides a field of 3.5 T at the plasma center and the PF coil system is able to provide a flux swing of 17 V-sec. The major achievement in KSTAR magnet-system development includes the development of CICC, the development of a full-size TF model coil, the development of a coil system for background magnetic-field generation, the construction of a large-scale superconducting magnet and CICC test facility. TF and PF coils are in the stage of fabrication to pave the way for the scheduled completion of KSTAR by the end of 2006.
Mechanical behaviors of multi-filament twist superconducting strand under tensile and cyclic loading
NASA Astrophysics Data System (ADS)
Wang, Xu; Li, Yingxu; Gao, Yuanwen
2016-01-01
The superconducting strand, serving as the basic unit cell of the cable-in-conduit-conductors (CICCs), is a typical multi-filament twist composite which is always subjected to a cyclic loading under the operating condition. Meanwhile, the superconducting material Nb3Sn in the strand is sensitive to strain frequently relating to the performance degradation of the superconductivity. Therefore, a comprehensive study on the mechanical behavior of the strand helps understanding the superconducting performance of the strained Nb3Sn strands. To address this issue, taking the LMI (internal tin) strand as an example, a three-dimensional structural finite element model, named as the Multi-filament twist model, of the strand with the real configuration of the LMI strand is built to study the influences of the plasticity of the component materials, the twist of the filament bundle, the initial thermal residual stress and the breakage and its evolution of the filaments on the mechanical behaviors of the strand. The effective properties of superconducting filament bundle with random filament breakage and its evolution versus strain are obtained based on the damage theory of fiber-reinforced composite materials proposed by Curtin and Zhou. From the calculation results of this model, we find that the occurrence of the hysteresis loop in the cyclic loading curve is determined by the reverse yielding of the elastic-plastic materials in the strand. Both the initial thermal residual stress in the strand and the pitch length of the filaments have significant impacts on the axial and hysteretic behaviors of the strand. The damage of the filaments also affects the axial mechanical behavior of the strand remarkably at large axial strain. The critical current of the strand is calculated by the scaling law with the results of the Multi-filament twist model. The predicted results of the Multi-filament twist model show an acceptable agreement with the experiment.
NASA Astrophysics Data System (ADS)
Wang, Xiaoyu; Schattner, Yoni; Berg, Erez; Fernandes, Rafael
The maximum transition temperature Tc observed in the phase diagrams of several unconventional superconductors takes place in the vicinity of a putative antiferromagnetic quantum critical point. This observation motivated the theoretical proposal that superconductivity in these systems may be driven by quantum critical fluctuations, which in turn can also promote non-Fermi liquid behavior. In this talk, we present a combined analytical and sign-problem-free Quantum Monte Carlo investigation of the spin-fermion model - a widely studied low-energy model for the interplay between superconductivity and magnetic fluctuations. By engineering a series of band dispersions that interpolate between near-nested and open Fermi surfaces, and by also varying the strength of the spin-fermion interaction, we find that the hot spots of the Fermi surface provide the dominant contribution to the pairing instability in this model. We show that the analytical expressions for Tc and for the pairing susceptibility, obtained within a large-N Eliashberg approximation to the spin-fermion model, agree well with the Quantum Monte Carlo data, even in the regime of interactions comparable to the electronic bandwidth. DE-SC0012336.
Quantum theory of an atom in proximity to a superconductor
NASA Astrophysics Data System (ADS)
Le Dall, Matthias; Diniz, Igor; Dias da Silva, Luis G. G. V.; de Sousa, Rogério
2018-02-01
The impact of superconducting correlations on localized electronic states is important for a wide range of experiments in fundamental and applied superconductivity. This includes scanning tunneling microscopy of atomic impurities at the surface of superconductors, as well as superconducting-ion-chip spectroscopy of neutral ions and Rydberg states. Moreover, atomlike centers close to the surface are currently believed to be the main source of noise and decoherence in qubits based on superconducting devices. The proximity effect is known to dress atomic orbitals in Cooper-pair-like states known as Yu-Shiba-Rusinov (YSR) states, but the impact of superconductivity on the measured orbital splittings and optical-noise transitions is not known. Here we study the interplay between orbital degeneracy and particle-number admixture in atomic states, beyond the usual classical spin approximation. We model the atom as a generalized Anderson model interacting with a conventional s -wave superconductor. In the limit of zero on-site Coulomb repulsion (U =0 ), we obtain YSR subgap energy levels that are identical to the ones obtained from the classical spin model. When Δ is large and U >0 , the YSR spectra are no longer quasiparticle-like, and the highly degenerate orbital subspaces are split according to their spin, orbital, and number-parity symmetry. We show that U >0 activates additional poles in the atomic Green's function, suggesting an alternative explanation for the peak splittings recently observed in scanning tunneling microscopy of orbitally-degenerate impurities in superconductors. We describe optical excitation and absorption of photons by YSR states, showing that many additional optical channels open up in comparison to the nonsuperconducting case. Conversely, the additional dissipation channels imply increased electromagnetic noise due to impurities in superconducting devices.
Cooling of Compact Stars with Nucleon Superfluidity and Quark Superconductivity
NASA Astrophysics Data System (ADS)
Noda, Tsuneo; Hashimoto, Masa-aki; Yasutake, Nobutoshi; Maruyama, Toshiki; Tatsumi, Toshitaka
We show a cooling scenario of compact stars to satisfy recent observations of compact stars. The central density of compact stars can exceed the nuclear density, and it is considered that many hadronic phases appear at such a density. It is discussed that neutron superfluidity (1S0 for lower density, and 3P2 for higher density) and proton superfluidity/superconductivity (1S0) appears in all compact stars. And some "Exotic" states are considered to appear in compact stars, such as meson condensation, hyperon mixing, deconfinement of quarks and quark colour superconductivity. These exotic states appear at the density region above the threshold densities of each state. We demonstrate the thermal evolution of isolated compact stars, adopting the effects of nucleon superfluidity and quark colour superconductivity. We assume large gap energy (Δ > 10 MeV) for colour superconducting quark phase, and include the effects of nucleon superfluidity with parametrised models. We simulate the cooling history of compact stars, and shows that the heavier star does not always cool faster than lighter one, which is determined by the parameters of neutron 3P2 superfluidity.
Thermal properties of a large-bore cryocooled 10 T superconducting magnet for a hybrid magnet
NASA Astrophysics Data System (ADS)
Ishizuka, M.; Hamajima, T.; Itou, T.; Sakuraba, J.; Nishijima, G.; Awaji, S.; Watanabe, K.
2010-11-01
A cryocooled 10 T superconducting magnet with a 360 mm room temperature bore has been developed for a hybrid magnet. The superconducting magnet cooled by four Gifford-McMahon cryocoolers has been designed to generate a magnetic field of 10 T. Since superconducting wires composed of coils were subjected to large hoop stress over 150 MPa and Nb3Sn superconducting wires particularly showed a low mechanical strength due to those brittle property, Nb3Sn wires strengthened by NbTi-filaments were developed for the cryocooled superconducting magnet. We have already reported that the hybrid magnet could generate the resultant magnetic field of 27.5 T by adding 8.5 T from the superconducting magnet and 19 T from a water-cooled Bitter resistive magnet, after the water-cooled resistive magnet was inserted into the 360 mm room temperature bore of the cryocooled superconducting magnet. When the hybrid magnet generated the field of 27.5 T, it achieved the high magnetic-force field (B × ∂Bz/∂z) of 4500 T2/m, which was useful for magneto-science in high fields such as materials levitation research. In this paper, we particularly focus on the cause that the cryocooled superconducting magnet was limited to generate the designed magnetic field of 10 T in the hybrid magnet operation. As a result, it was found that there existed mainly two causes as the limitation of the magnetic field generation. One was a decrease of thermal conductive passes due to exfoliation from the coil bobbin of the cooling flange. The other was large AC loss due to both a thick Nb3Sn layer and its large diameter formed on Nb-barrier component in Nb3Sn wires.
Far infrared through millimeter backshort-under-grid arrays
NASA Astrophysics Data System (ADS)
Allen, Christine A.; Abrahams, John; Benford, Dominic J.; Chervenak, James A.; Chuss, David T.; Staguhn, Johannes G.; Miller, Timothy M.; Moseley, S. Harvey; Wollack, Edward J.
2006-06-01
We are developing a large-format, versatile, bolometer array for a wide range of infrared through millimeter astronomical applications. The array design consists of three key components - superconducting transition edge sensor bolometer arrays, quarter-wave reflective backshort grids, and Superconducting Quantum Interference Device (SQUID) multiplexer readouts. The detector array is a filled, square grid of bolometers with superconducting sensors. The backshort arrays are fabricated separately and are positioned in the etch cavities behind the detector grid. The grids have unique three-dimensional interlocking features micromachined into the walls for positioning and mechanical stability. The ultimate goal of the program is to produce large-format arrays with background-limited sensitivity, suitable for a wide range of wavelengths and applications. Large-format (kilopixel) arrays will be directly indium bump bonded to a SQUID multiplexer circuit. We have produced and tested 8×8 arrays of 1 mm detectors to demonstrate proof of concept. 8×16 arrays of 2 mm detectors are being produced for a new Goddard Space Flight Center instrument. We have also produced models of a kilopixel detector grid and dummy multiplexer chip for bump bonding development. We present detector design overview, several unique fabrication highlights, and assembly technologies.
Development of a compact superconducting rotating-gantry for heavy-ion therapy
Iwata, Yoshiyuki; Noda, K.; Murakami, T.; Shirai, T.; Furukawa, T.; Fujita, T.; Mori, S.; Sato, S.; Mizushima, K.; Shouda, K.; Fujimoto, T.; Arai, H.; Ogitsu, T.; Obana, T.; Amemiya, N.; Orikasa, T.; Takami, S.; Takayama, S.
2014-01-01
An isocentric superconducting rotating-gantry for heavy-ion therapy is being developed [ 1]. This rotating gantry can transport heavy ions having 430 MeV/u to an isocenter with irradiation angles of over ±180°, and is further capable of performing fast raster-scanning irradiation [ 2]. A layout of the beam-transport line for the compact rotating-gantry is presented in Fig. 1. The rotating gantry has 10 superconducting magnets (BM01-10), a pair of the scanning magnets (SCM-X and SCM-Y) and two pairs of beam profile- monitor and steering magnets (ST01-02 and PRN01-02). For BM01-BM06 and BM09-BM10, the combined-function superconducting magnets are employed. Further, these superconducting magnets are designed for fast slewing of the magnetic field to follow the multiple flattop operation of the synchrotron [ 3]. The use of the combined-function superconducting magnets with optimized beam optics allows a compact gantry design with a large scan size at the isocenter; the length and the radius of the gantry will be to be ∼13 and 5.5 m, respectively, which are comparable to those for the existing proton gantries. Furthermore, the maximum scan size at the isocenter is calculated to be as large as ∼200 mm square for heavy-ion beams at the maximum energy of 430 MeV/u. All of the superconducting magnets were designed, and their magnetic fields were calculated using the Opera-3d code [ 4]. With the calculated magnetic fields, beam-tracking simulations were made. The simulation results agreed well with those of the linear beam-optics calculation, proving validity of the final design for the superconducting magnets. The five out of 10 superconducting magnets, as well as the model magnet were currently manufactured. With these magnets, rotation tests, magnetic field measurements and fast slewing tests were conducted. However, we did not observe any significant temperature increase, which may cause a quench problem. Further, results of the magnetic field measurements roughly agreed with those calculated by the Opera-3d code. The design study as well as major tests of the superconducting magnets was completed, and the construction of the superconducting rotating-gantry is in progress. The construction of the superconducting rotating-gantry will be completed at the end of FY2014, and be commissioned within FY2015. Fig. 1.Layout of the superconducting rotating-gantry. The gantry consists of 10 superconducting magnets (BM01–BM10), a pair of the scanning magnets (SCM-X and SCMY), and two pairs of beam profile-monitor and steering magnets (STR01–STR02 and PRN01–PRN02).
NASA Astrophysics Data System (ADS)
Pan, Y.; Nikitin, A. M.; Araizi, G. K.; Huang, Y. K.; Matsushita, Y.; Naka, T.; de Visser, A.
2016-06-01
Recently it was demonstrated that Sr intercalation provides a new route to induce superconductivity in the topological insulator Bi2Se3. Topological superconductors are predicted to be unconventional with an odd-parity pairing symmetry. An adequate probe to test for unconventional superconductivity is the upper critical field, Bc2. For a standard BCS layered superconductor Bc2 shows an anisotropy when the magnetic field is applied parallel and perpendicular to the layers, but is isotropic when the field is rotated in the plane of the layers. Here we report measurements of the upper critical field of superconducting SrxBi2Se3 crystals (Tc = 3.0 K). Surprisingly, field-angle dependent magnetotransport measurements reveal a large anisotropy of Bc2 when the magnet field is rotated in the basal plane. The large two-fold anisotropy, while six-fold is anticipated, cannot be explained with the Ginzburg-Landau anisotropic effective mass model or flux flow induced by the Lorentz force. The rotational symmetry breaking of Bc2 indicates unconventional superconductivity with odd-parity spin-triplet Cooper pairs (Δ4-pairing) recently proposed for rhombohedral topological superconductors, or might have a structural nature, such as self-organized stripe ordering of Sr atoms.
Pan, Y; Nikitin, A M; Araizi, G K; Huang, Y K; Matsushita, Y; Naka, T; de Visser, A
2016-06-28
Recently it was demonstrated that Sr intercalation provides a new route to induce superconductivity in the topological insulator Bi2Se3. Topological superconductors are predicted to be unconventional with an odd-parity pairing symmetry. An adequate probe to test for unconventional superconductivity is the upper critical field, Bc2. For a standard BCS layered superconductor Bc2 shows an anisotropy when the magnetic field is applied parallel and perpendicular to the layers, but is isotropic when the field is rotated in the plane of the layers. Here we report measurements of the upper critical field of superconducting SrxBi2Se3 crystals (Tc = 3.0 K). Surprisingly, field-angle dependent magnetotransport measurements reveal a large anisotropy of Bc2 when the magnet field is rotated in the basal plane. The large two-fold anisotropy, while six-fold is anticipated, cannot be explained with the Ginzburg-Landau anisotropic effective mass model or flux flow induced by the Lorentz force. The rotational symmetry breaking of Bc2 indicates unconventional superconductivity with odd-parity spin-triplet Cooper pairs (Δ4-pairing) recently proposed for rhombohedral topological superconductors, or might have a structural nature, such as self-organized stripe ordering of Sr atoms.
Pan, Y.; Nikitin, A. M.; Araizi, G. K.; Huang, Y. K.; Matsushita, Y.; Naka, T.; de Visser, A.
2016-01-01
Recently it was demonstrated that Sr intercalation provides a new route to induce superconductivity in the topological insulator Bi2Se3. Topological superconductors are predicted to be unconventional with an odd-parity pairing symmetry. An adequate probe to test for unconventional superconductivity is the upper critical field, Bc2. For a standard BCS layered superconductor Bc2 shows an anisotropy when the magnetic field is applied parallel and perpendicular to the layers, but is isotropic when the field is rotated in the plane of the layers. Here we report measurements of the upper critical field of superconducting SrxBi2Se3 crystals (Tc = 3.0 K). Surprisingly, field-angle dependent magnetotransport measurements reveal a large anisotropy of Bc2 when the magnet field is rotated in the basal plane. The large two-fold anisotropy, while six-fold is anticipated, cannot be explained with the Ginzburg-Landau anisotropic effective mass model or flux flow induced by the Lorentz force. The rotational symmetry breaking of Bc2 indicates unconventional superconductivity with odd-parity spin-triplet Cooper pairs (Δ4-pairing) recently proposed for rhombohedral topological superconductors, or might have a structural nature, such as self-organized stripe ordering of Sr atoms. PMID:27350295
National Action Plan on Superconductivity Research and Development
NASA Astrophysics Data System (ADS)
1989-12-01
The Superconductivity Action Plan pursuant to the Superconductivity and Competitiveness Act of 1988 is presented. The plan draws upon contributions from leaders in the technical community of the Federal Government responsible for research and development in superconductivity programs, as well as from the report of the Committee to Advise the President on Superconductivity. Input from leaders in the private sector was obtained during the formulation and review of the plan. Some contents: Coordination of the plan; Technical areas (high temperature superconductivity materials in general, high temperature superconductivity films for sensors and electronics, magnets, large area high temperature superconductivity films, bulk conductors); and Policy areas.
Passive Superconducting Shielding: Experimental Results and Computer Models
NASA Technical Reports Server (NTRS)
Warner, B. A.; Kamiya, K.
2003-01-01
Passive superconducting shielding for magnetic refrigerators has advantages over active shielding and passive ferromagnetic shielding in that it is lightweight and easy to construct. However, it is not as easy to model and does not fail gracefully. Failure of a passive superconducting shield may lead to persistent flux and persistent currents. Unfortunately, modeling software for superconducting materials is not as easily available as is software for simple coils or for ferromagnetic materials. This paper will discuss ways of using available software to model passive superconducting shielding.
Attractive Hubbard model with disorder and the generalized Anderson theorem
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuchinskii, E. Z., E-mail: kuchinsk@iep.uran.ru; Kuleeva, N. A., E-mail: strigina@iep.uran.ru; Sadovskii, M. V., E-mail: sadovski@iep.uran.ru
Using the generalized DMFT+Σ approach, we study the influence of disorder on single-particle properties of the normal phase and the superconducting transition temperature in the attractive Hubbard model. A wide range of attractive potentials U is studied, from the weak coupling region, where both the instability of the normal phase and superconductivity are well described by the BCS model, to the strong-coupling region, where the superconducting transition is due to Bose-Einstein condensation (BEC) of compact Cooper pairs, formed at temperatures much higher than the superconducting transition temperature. We study two typical models of the conduction band with semi-elliptic and flatmore » densities of states, respectively appropriate for three-dimensional and two-dimensional systems. For the semi-elliptic density of states, the disorder influence on all single-particle properties (e.g., density of states) is universal for an arbitrary strength of electronic correlations and disorder and is due to only the general disorder widening of the conduction band. In the case of a flat density of states, universality is absent in the general case, but still the disorder influence is mainly due to band widening, and the universal behavior is restored for large enough disorder. Using the combination of DMFT+Σ and Nozieres-Schmitt-Rink approximations, we study the disorder influence on the superconducting transition temperature T{sub c} for a range of characteristic values of U and disorder, including the BCS-BEC crossover region and the limit of strong-coupling. Disorder can either suppress T{sub c} (in the weak-coupling region) or significantly increase T{sub c} (in the strong-coupling region). However, in all cases, the generalized Anderson theorem is valid and all changes of the superconducting critical temperature are essentially due to only the general disorder widening of the conduction band.« less
Sahebsara, P; Sénéchal, D
2006-12-22
The kappa-(ET)2X layered conductors (where ET stands for BEDT-TTF) are studied within the dimer model as a function of the diagonal hopping t' and Hubbard repulsion U. Antiferromagnetism and d-wave superconductivity are investigated at zero temperature using variational cluster perturbation theory (VCPT). For large U, Néel antiferromagnetism exists for t' < t(c2)', with t(c2)' approximately 0.9. For fixed t', as U is decreased (or pressure increased), a d(x2-y2) superconducting phase appears. When U is decreased further, then a d(xy) order takes over. There is a critical value of t(c1)' approximately 0.8 of t' beyond which the AF and dSC phases are separated by the Mott disordered phase.
Classen, Laura; Xing, Rui-Qi; Khodas, Maxim; Chubukov, Andrey V
2017-01-20
We report the results of the parquet renormalization group (RG) analysis of the phase diagram of the most general 5-pocket model for Fe-based superconductors. We use as an input the orbital structure of excitations near the five pockets made out of d_{xz}, d_{yz}, and d_{xy} orbitals and argue that there are 40 different interactions between low-energy fermions in the orbital basis. All interactions flow under the RG, as one progressively integrates out fermions with higher energies. We find that the low-energy behavior is amazingly simple, despite the large number of interactions. Namely, at low energies the full 5-pocket model effectively reduces either to a 3-pocket model made of one d_{xy} hole pocket and two electron pockets or a 4-pocket model made of two d_{xz}/d_{yz} hole pockets and two electron pockets. The leading instability in the effective 4-pocket model is a spontaneous orbital (nematic) order, followed by s^{+-} superconductivity. In the effective 3-pocket model, orbital fluctuations are weaker, and the system develops either s^{+-} superconductivity or a stripe spin-density wave. In the latter case, nematicity is induced by composite spin fluctuations.
Topological Superconductivity on the Surface of Fe-Based Superconductors.
Xu, Gang; Lian, Biao; Tang, Peizhe; Qi, Xiao-Liang; Zhang, Shou-Cheng
2016-07-22
As one of the simplest systems for realizing Majorana fermions, the topological superconductor plays an important role in both condensed matter physics and quantum computations. Based on ab initio calculations and the analysis of an effective 8-band model with superconducting pairing, we demonstrate that the three-dimensional extended s-wave Fe-based superconductors such as Fe_{1+y}Se_{0.5}Te_{0.5} have a metallic topologically nontrivial band structure, and exhibit a normal-topological-normal superconductivity phase transition on the (001) surface by tuning the bulk carrier doping level. In the topological superconductivity (TSC) phase, a Majorana zero mode is trapped at the end of a magnetic vortex line. We further show that the surface TSC phase only exists up to a certain bulk pairing gap, and there is a normal-topological phase transition driven by the temperature, which has not been discussed before. These results pave an effective way to realize the TSC and Majorana fermions in a large class of superconductors.
A superconducting nanowire can be modeled by using SPICE
NASA Astrophysics Data System (ADS)
Berggren, Karl K.; Zhao, Qing-Yuan; Abebe, Nathnael; Chen, Minjie; Ravindran, Prasana; McCaughan, Adam; Bardin, Joseph C.
2018-05-01
Modeling of superconducting nanowire single-photon detectors typically requires custom simulations or finite-element analysis in one or two dimensions. Here, we demonstrate two simplified one-dimensional SPICE models of a superconducting nanowire that can quickly and efficiently describe the electrical characteristics of a superconducting nanowire. These models may be of particular use in understanding alternative architectures for nanowire detectors and readouts.
Lemberger, Thomas R.; Loh, Yen Lee
2016-10-27
This article models the dynamics of vortices that are generated in the middle of a thin, large-area, superconducting film by a low-frequency magnetic field from a small coil, motivated by a desire to better understand measurements of the superconducting coherence length made with a two-coil apparatus. When the applied field exceeds a critical value, vortices and antivortices originate near the middle of the film at the radius where the Lorentz force of the screening supercurrent is largest. The Lorentz force from the screening supercurrent pushes vortices toward the center of the film and antivortices outward. In an experiment, vortices aremore » detected as an increase in mutual inductance between drive coil and a coaxial “pickup” coil on the opposite side of the film. Lastly, the model shows that the essential features of measurements are well described when vortex pinning and the attendant hysteresis are included.« less
Digital-analog quantum simulation of generalized Dicke models with superconducting circuits
NASA Astrophysics Data System (ADS)
Lamata, Lucas
We propose a digital-analog quantum simulation of generalized Dicke models with superconducting circuits, including Fermi-Bose condensates, biased and pulsed Dicke models, for all regimes of light-matter coupling. We encode these classes of problems in a set of superconducting qubits coupled with a bosonic mode implemented by a transmission line resonator. Via digital-analog techniques, an efficient quantum simulation can be performed in state-of-the-art circuit quantum electrodynamics platforms, by suitable decomposition into analog qubit-bosonic blocks and collective single-qubit pulses through digital steps. Moreover, just a single global analog block would be needed during the whole protocol in most of the cases, superimposed with fast periodic pulses to rotate and detune the qubits. Therefore, a large number of digital steps may be attained with this approach, providing a reduced digital error. Additionally, the number of gates per digital step does not grow with the number of qubits, rendering the simulation efficient. This strategy paves the way for the scalable digital-analog quantum simulation of many-body dynamics involving bosonic modes and spin degrees of freedom with superconducting circuits. The author wishes to acknowledge discussions with I. Arrazola, A. Mezzacapo, J. S. Pedernales, and E. Solano, and support from Ramon y Cajal Grant RYC-2012-11391, Spanish MINECO/FEDER FIS2015-69983-P, UPV/EHU UFI 11/55 and Project EHUA14/04.
Parallel magnetic field suppresses dissipation in superconducting nanostrips
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yong-Lei; Glatz, Andreas; Kimmel, Gregory J.
The motion of Abrikosov vortices in type-II superconductors results in a finite resistance in the presence of an applied electric current. Elimination or reduction of the resistance via immobilization of vortices is the "holy grail" of superconductivity research. Common wisdom dictates that an increase in the magnetic field escalates the loss of energy since the number of vortices increases. Here we show that this is no longer true if the magnetic field and the current are applied parallel to each other. Our experimental studies on the resistive behavior of a superconducting Mo0.79Ge0.21 nanostrip reveal the emergence of a dissipative statemore » with increasing magnetic field, followed by a pronounced resistance drop, signifying a reentrance to the superconducting state. Large-scale simulations of the 3D time-dependent Ginzburg-Landau model indicate that the intermediate resistive state is due to an unwinding of twisted vortices. When the magnetic field increases, this instability is suppressed due to a better accommodation of the vortex lattice to the pinning configuration. Our findings show that magnetic field and geometrical confinement can suppress the dissipation induced by vortex motion and thus radically improve the performance of superconducting materials.« less
NASA Astrophysics Data System (ADS)
Mazdouri, Behnam; Mohammad Hassan Javadzadeh, S.
2017-09-01
Superconducting materials are intrinsically nonlinear, because of nonlinear Meissner effect (NLME). Considering nonlinear behaviors, such as harmonic generation and intermodulation distortion (IMD) in superconducting structures, are very important. In this paper, we proposed distributed nonlinear circuit model for superconducting split ring resonators (SSRRs). This model can be analyzed by using Harmonic Balance method (HB) as a nonlinear solver. Thereafter, we considered a superconducting metamaterial filter which was based on split ring resonators and we calculated fundamental and third-order IMD signals. There are good agreement between nonlinear results from proposed model and measured ones. Additionally, based on the proposed nonlinear model and by using a novel method, we considered nonlinear effects on main parameters in the superconducting metamaterial structures such as phase constant (β) and attenuation factor (α).
The Physics of Superconducting Microwave Resonators
NASA Astrophysics Data System (ADS)
Gao, Jiansong
Over the past decade, low temperature detectors have brought astronomers revolutionary new observational capabilities and led to many great discoveries. Although a single low temperature detector has very impressive sensitivity, a large detector array would be much more powerful and are highly demanded for the study of more difficult and fundamental problems in astronomy. However, current detector technologies, such as transition edge sensors and superconducting tunnel junction detectors, are difficult to integrate into a large array. The microwave kinetic inductance detector (MKID) is a promising new detector technology invented at Caltech and JPL which provides both high sensitivity and an easy solution to the detector integration. It senses the change in the surface impedance of a superconductor as incoming photons break Cooper pairs, by using high-Q superconducting microwave resonators capacitively coupled to a common feedline. This architecture allows thousands of detectors to be easily integrated through passive frequency domain multiplexing. In this thesis, we explore the rich and interesting physics behind these superconducting microwave resonators. The first part of the thesis discusses the surface impedance of a superconductor, the kinetic inductance of a superconducting coplanar waveguide, and the circuit response of a resonator. These topics are related with the responsivity of MKIDs. The second part presents the study of the excess frequency noise that is universally observed in these resonators. The properties of the excess noise, including power, temperature, material, and geometry dependence, have been quantified. The noise source has been identified to be the two-level systems in the dielectric material on the surface of the resonator. A semi-empirical noise model has been developed to explain the power and geometry dependence of the noise, which is useful to predict the noise for a specified resonator geometry. The detailed physical noise mechanism, however, is still not clear. With the theoretical results of the responsivity and the semi-empirical noise model established in this thesis, a prediction of the detector sensitivity (noise equivalent power) and an optimization of the detector design are now possible.
Use of Second Generation Coated Conductors for Efficient Shielding of dc Magnetic Fields (Postprint)
2010-07-15
layer of superconducting film, can attenuate an external magnetic field of up to 5 mT by more than an order of magnitude. For comparison purposes...appears to be especially promising for the realization of large scale high-Tc superconducting screens. 15. SUBJECT TERMS magnetic screens, current...realization of large scale high-Tc superconducting screens. © 2010 American Institute of Physics. doi:10.1063/1.3459895 I. INTRODUCTION Magnetic screening
Development of a superconducting claw-pole linear test-rig
NASA Astrophysics Data System (ADS)
Radyjowski, Patryk; Keysan, Ozan; Burchell, Joseph; Mueller, Markus
2016-04-01
Superconducting generators can help to reduce the cost of energy for large offshore wind turbines, where the size and mass of the generator have a direct effect on the installation cost. However, existing superconducting generators are not as reliable as the alternative technologies. In this paper, a linear test prototype for a novel superconducting claw-pole topology, which has a stationary superconducting coil that eliminates the cryocooler coupler will be presented. The issues related to mechanical, electromagnetic and thermal aspects of the prototype will be presented.
Enhanced superconductivity of fullerenes
Washington, II, Aaron L.; Teprovich, Joseph A.; Zidan, Ragaiy
2017-06-20
Methods for enhancing characteristics of superconductive fullerenes and devices incorporating the fullerenes are disclosed. Enhancements can include increase in the critical transition temperature at a constant magnetic field; the existence of a superconducting hysteresis over a changing magnetic field; a decrease in the stabilizing magnetic field required for the onset of superconductivity; and/or an increase in the stability of superconductivity over a large magnetic field. The enhancements can be brought about by transmitting electromagnetic radiation to the superconductive fullerene such that the electromagnetic radiation impinges on the fullerene with an energy that is greater than the band gap of the fullerene.
Large gap magnetic suspension system
NASA Technical Reports Server (NTRS)
Abdelsalam, Moustafa K.; Eyssa, Y. M.
1991-01-01
The design of a large gap magnetic suspension system is discussed. Some of the topics covered include: the system configuration, permanent magnet material, levitation magnet system, superconducting magnets, resistive magnets, superconducting levitation coils, resistive levitation coils, levitation magnet system, and the nitrogen cooled magnet system.
NASA Astrophysics Data System (ADS)
Fang, Tie-Feng; Guo, Ai-Min; Sun, Qing-Feng
2018-06-01
We investigate Kondo correlations in a quantum dot with normal and superconducting electrodes, where a spin bias voltage is applied across the device and the local interaction U is either attractive or repulsive. When the spin current is blockaded in the large-gap regime, this nonequilibrium strongly correlated problem maps into an equilibrium model solvable by the numerical renormalization group method. The Kondo spectra with characteristic splitting due to the nonequilibrium spin accumulation are thus obtained at high precision. It is shown that while the bias-induced decoherence of the spin Kondo effect is partially compensated by the superconductivity, the charge Kondo effect is enhanced out of equilibrium and undergoes an additional splitting by the superconducting proximity effect, yielding four Kondo peaks in the local spectral density. In the charge Kondo regime, we find a universal scaling of charge conductance in this hybrid device under different spin biases. The universal conductance as a function of the coupling to the superconducting lead is peaked at and hence directly measures the Kondo temperature. Our results are of direct relevance to recent experiments realizing a negative-U charge Kondo effect in hybrid oxide quantum dots [Nat. Commun. 8, 395 (2017), 10.1038/s41467-017-00495-7].
Correlated phonons and the Tc-dependent dynamical phonon anomalies
NASA Astrophysics Data System (ADS)
Hakioğlu, T.; Türeci, H.
1997-11-01
Anomalously large low-temperature phonon anharmonicities can lead to static as well as dynamical changes in the low-temperature properties of the electron-phonon system. In this work, we focus our attention on the dynamically generated low-temperature correlations in an interacting electron-phonon system using a self-consistent dynamical approach in the intermediate coupling range. In the context of the model, the polaron correlations are produced by the charge-density fluctuations which are generated dynamically by the electron-phonon coupling. Conversely, the latter is influenced in the presence of the former. The purpose of this work is to examine the dynamics of this dual mechanism between the two using the illustrative Fröhlich model. In particular, the influence of the low-temperature phonon dynamics on the superconducting properties in the intermediate coupling range is investigated. The influence on the Holstein reduction factor as well as the enhancement in the zero-point fluctuations and in the electron-phonon coupling are calculated numerically. We also examine these effects in the presence of superconductivity. Within this model, the contribution of the electron-phonon interaction as one of the important elements in the mechanisms of superconductivity can reach values as high as 15-20% of the characteristic scale of the lattice vibrational energy. The second motivation of this work is to understand the nature of the Tc-dependent temperature anomalies observed in the Debye-Waller factor, dynamical pair correlations, and average atomic vibrational energies for a number of high-temperature superconductors. In our approach we do not claim nor believe that the electron-phonon interaction is the primary mechanism leading to high-temperature superconductivity. Nevertheless, our calculations suggest that the dynamically induced low-temperature phonon correlation model can account for these anomalies and illustrates their possible common origin. Finally, the relevance of incorporating these low-temperature effects into more realistic models of high-temperature superconductivity including both the charge and spin degrees and other similar ideas existing in the literature are discussed.
The road to superconducting spintronics
NASA Astrophysics Data System (ADS)
Eschrig, Matthias
Energy efficient computing has become a major challenge, with the increasing importance of large data centres across the world, which already today have a power consumption comparable to that of Spain, with steeply increasing trend. Superconducting computing is progressively becoming an alternative for large-scale applications, with the costs for cooling being largely outweighed by the gain in energy efficiency. The combination of superconductivity and spintronics - ``superspintronics'' - has the potential and flexibility to develop into such a green technology. This young field is based on the observation that new phenomena emerge at interfaces between superconducting and other, competing, phases. The past 15 years have seen a series of pivotal predictions and experimental discoveries relating to the interplay between superconductivity and ferromagnetism. The building blocks of superspintronics are equal-spin Cooper pairs, which are generated at the interface between superconducting and a ferromagnetic materials in the presence of non-collinear magnetism. Such novel, spin-polarised Cooper pairs carry spin-supercurrents in ferromagnets and thus contribute to spin-transport and spin-control. Geometric Berry phases appear during the singlet-triplet conversion process in structures with non-coplanar magnetisation, enhancing functionality of devices, and non-locality introduced by superconducting order leads to long-range effects. With the successful generation and control of equal-spin Cooper pairs the hitherto notorious incompatibility of superconductivity and ferromagnetism has been not only overcome, but turned synergistic. I will discuss these developments and their extraordinary potential. I also will present open questions posed by recent experiments and point out implications for theory. This work is supported by the Engineering and Physical Science Research Council (EPSRC Grant No. EP/J010618/1).
Groll, Nickolas; Pellin, Michael J.; Zasadzinksi, John F.; ...
2015-09-18
In this paper, we describe the design and testing of a point contact tunneling spectroscopy device that can measure material surface superconducting properties (i.e., the superconducting gap Δ and the critical temperature T C) and density of states over large surface areas with size up to mm 2. The tip lateral (X,Y) motion, mounted on a (X,Y,Z) piezo-stage, was calibrated on a patterned substrate consisting of Nb lines sputtered on a gold film using both normal (Al) and superconducting (PbSn) tips at 1.5 K. The tip vertical (Z) motion control enables some adjustment of the tip-sample junction resistance that canmore » be measured over 7 orders of magnitudes from a quasi-ohmic regime (few hundred Ω) to the tunnel regime (from tens of kΩ up to few GΩ). The low noise electronic and LabVIEW program interface are also presented. Finally, the point contact regime and the large-scale motion capabilities are of particular interest for mapping and testing the superconducting properties of macroscopic scale superconductor-based devices.« less
Potočnik, Anton; Krajnc, Andraž; Jeglič, Peter; Takabayashi, Yasuhiro; Ganin, Alexey Y; Prassides, Kosmas; Rosseinsky, Matthew J; Arčon, Denis
2014-03-03
The alkali fullerides, A(3)C(60) (A = alkali metal) are molecular superconductors that undergo a transition to a magnetic Mott-insulating state at large lattice parameters. However, although the size and the symmetry of the superconducting gap, Δ, are both crucial for the understanding of the pairing mechanism, they are currently unknown for superconducting fullerides close to the correlation-driven magnetic insulator. Here we report a comprehensive nuclear magnetic resonance (NMR) study of face-centred-cubic (f.c.c.) Cs(3)C(60) polymorph, which can be tuned continuously through the bandwidth-controlled Mott insulator-metal/superconductor transition by pressure. When superconductivity emerges from the insulating state at large interfullerene separations upon compression, we observe an isotropic (s-wave) Δ with a large gap-to-superconducting transition temperature ratio, 2Δ0/k(B)T(c) = 5.3(2) [Δ0 = Δ(0 K)]. 2Δ0/k(B)T(c) decreases continuously upon pressurization until it approaches a value of ~3.5, characteristic of weak-coupling BCS theory of superconductivity despite the dome-shaped dependence of Tc on interfullerene separation. The results indicate the importance of the electronic correlations for the pairing interaction as the metal/superconductor-insulator boundary is approached.
Potočnik, Anton; Krajnc, Andraž; Jeglič, Peter; Takabayashi, Yasuhiro; Ganin, Alexey Y.; Prassides, Kosmas; Rosseinsky, Matthew J.; Arčon, Denis
2014-01-01
The alkali fullerides, A3C60 (A = alkali metal) are molecular superconductors that undergo a transition to a magnetic Mott-insulating state at large lattice parameters. However, although the size and the symmetry of the superconducting gap, Δ, are both crucial for the understanding of the pairing mechanism, they are currently unknown for superconducting fullerides close to the correlation-driven magnetic insulator. Here we report a comprehensive nuclear magnetic resonance (NMR) study of face-centred-cubic (f.c.c.) Cs3C60 polymorph, which can be tuned continuously through the bandwidth-controlled Mott insulator-metal/superconductor transition by pressure. When superconductivity emerges from the insulating state at large interfullerene separations upon compression, we observe an isotropic (s-wave) Δ with a large gap-to-superconducting transition temperature ratio, 2Δ0/kBTc = 5.3(2) [Δ0 = Δ(0 K)]. 2Δ0/kBTc decreases continuously upon pressurization until it approaches a value of ~3.5, characteristic of weak-coupling BCS theory of superconductivity despite the dome-shaped dependence of Tc on interfullerene separation. The results indicate the importance of the electronic correlations for the pairing interaction as the metal/superconductor-insulator boundary is approached. PMID:24584087
High-Tc superconducting materials for electric power applications.
Larbalestier, D; Gurevich, A; Feldmann, D M; Polyanskii, A
2001-11-15
Large-scale superconducting electric devices for power industry depend critically on wires with high critical current densities at temperatures where cryogenic losses are tolerable. This restricts choice to two high-temperature cuprate superconductors, (Bi,Pb)2Sr2Ca2Cu3Ox and YBa2Cu3Ox, and possibly to MgB2, recently discovered to superconduct at 39 K. Crystal structure and material anisotropy place fundamental restrictions on their properties, especially in polycrystalline form. So far, power applications have followed a largely empirical, twin-track approach of conductor development and construction of prototype devices. The feasibility of superconducting power cables, magnetic energy-storage devices, transformers, fault current limiters and motors, largely using (Bi,Pb)2Sr2Ca2Cu3Ox conductor, is proven. Widespread applications now depend significantly on cost-effective resolution of fundamental materials and fabrication issues, which control the production of low-cost, high-performance conductors of these remarkable compounds.
NASA Astrophysics Data System (ADS)
Hecher, J.; Ishida, S.; Song, D.; Ogino, H.; Iyo, A.; Eisaki, H.; Nakajima, M.; Kagerbauer, D.; Eisterer, M.
2018-01-01
The phase diagram of iron-based superconductors exhibits structural transitions, electronic nematicity, and magnetic ordering, which are often accompanied by an electronic in-plane anisotropy and a sharp maximum of the superconducting critical current density (Jc) near the phase boundary of the tetragonal and the antiferromagnetic-orthorhombic phase. We utilized scanning Hall-probe microscopy to visualize the Jc of twinned and detwinned Ba (Fe1-xCox) 2As2 (x =5 %-8 % ) crystals to compare the electronic normal state properties with superconducting properties. We find that the electronic in-plane anisotropy continues into the superconducting state. The observed correlation between the electronic and the Jc anisotropy agrees qualitatively with basic models, however, the Jc anisotropy is larger than predicted from the resistivity data. Furthermore, our measurements show that the maximum of Jc at the phase boundary does not vanish when the crystals are detwinned. This shows that twin boundaries are not responsible for the large Jc, suggesting an exotic pinning mechanism.
The role of local repulsion in superconductivity in the Hubbard-Holstein model
NASA Astrophysics Data System (ADS)
Lin, Chungwei; Wang, Bingnan; Teo, Koon Hoo
2017-01-01
We examine the superconducting solution in the Hubbard-Holstein model using Dynamical Mean Field Theory. The Holstein term introduces the site-independent Boson fields coupling to local electron density, and has two competing influences on superconductivity: The Boson field mediates the effective electron-electron attraction, which is essential for the S-wave electron pairing; the same coupling to the Boson fields also induces the polaron effect, which makes the system less metallic and thus suppresses superconductivity. The Hubbard term introduces an energy penalty U when two electrons occupy the same site, which is expected to suppress superconductivity. By solving the Hubbard-Holstein model using Dynamical Mean Field theory, we find that the Hubbard U can be beneficial to superconductivity under some circumstances. In particular, we demonstrate that when the Boson energy Ω is small, a weak local repulsion actually stabilizesthe S-wave superconducting state. This behavior can be understood as an interplay between superconductivity, the polaron effect, and the on-site repulsion: As the polaron effect is strong and suppresses superconductivity in the small Ω regime, the weak on-site repulsion reduces the polaron effect and effectively enhances superconductivity. Our calculation elucidates the role of local repulsion in the conventional S-wave superconductors.
TRILEX and G W +EDMFT approach to d -wave superconductivity in the Hubbard model
NASA Astrophysics Data System (ADS)
Vučičević, J.; Ayral, T.; Parcollet, O.
2017-09-01
We generalize the recently introduced TRILEX approach (TRiply irreducible local EXpansion) to superconducting phases. The method treats simultaneously Mott and spin-fluctuation physics using an Eliashberg theory supplemented by local vertex corrections determined by a self-consistent quantum impurity model. We show that, in the two-dimensional Hubbard model, at strong coupling, TRILEX yields a d -wave superconducting dome as a function of doping. Contrary to the standard cluster dynamical mean field theory (DMFT) approaches, TRILEX can capture d -wave pairing using only a single-site effective impurity model. We also systematically explore the dependence of the superconducting temperature on the bare dispersion at weak coupling, which shows a clear link between strong antiferromagnetic (AF) correlations and the onset of superconductivity. We identify a combination of hopping amplitudes particularly favorable to superconductivity at intermediate doping. Finally, we study within G W +EDMFT the low-temperature d -wave superconducting phase at strong coupling in a region of parameter space with reduced AF fluctuations.
Simulation of the cabling process for Rutherford cables: An advanced finite element model
NASA Astrophysics Data System (ADS)
Cabanes, J.; Garlasche, M.; Bordini, B.; Dallocchio, A.
2016-12-01
In all existing large particle accelerators (Tevatron, HERA, RHIC, LHC) the main superconducting magnets are based on Rutherford cables, which are characterized by having: strands fully transposed with respect to the magnetic field, a significant compaction that assures a large engineering critical current density and a geometry that allows efficient winding of the coils. The Nb3Sn magnets developed in the framework of the HL-LHC project for improving the luminosity of the Large Hadron Collider (LHC) are also based on Rutherford cables. Due to the characteristics of Nb3Sn wires, the cabling process has become a crucial step in the magnet manufacturing. During cabling the wires experience large plastic deformations that strongly modify the geometrical dimensions of the sub-elements constituting the superconducting strand. These deformations are particularly severe on the cable edges and can result in a significant reduction of the cable critical current as well as of the Residual Resistivity Ratio (RRR) of the stabilizing copper. In order to understand the main parameters that rule the cabling process and their impact on the cable performance, CERN has developed a 3D Finite Element (FE) model based on the LS-Dyna® software that simulates the whole cabling process. In the paper the model is presented together with a comparison between experimental and numerical results for a copper cable produced at CERN.
Numerical analysis of magnetic field in superconducting magnetic energy storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kanamaru, Y.; Amemiya, Y.
1991-09-01
This paper reports that the superconducting magnetic energy storage (SMES) is more useful than the other systems of electric energy storage because of larger stored energy and higher efficiency. The other systems are the battery, the flywheel, the pumped-storage power station. Some models of solenoid type SMES are designed in U.S.A. and Japan. But a high magnetic field happens by the large scale SMES in the living environment, and makes the erroneous operations of the computer display, the pacemaker of the heart and the electronic equipments. We study some fit designs of magnetic shielding of the solenoidal type SMES formore » reduction of the magnetic field in living environment. When some superconducting shielding coils are over the main storage coil, magnetic field reduces remarkably than the case of non shielding coil. The calculated results of the magnetic field are obtained y the finite element method.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kazakevich, G.; Johnson, R.; Lebedev, V.
State of the art high-current superconducting accelerators require efficient RF sources with a fast dynamic phase and power control. This allows for compensation of the phase and amplitude deviations of the accelerating voltage in the Superconducting RF (SRF) cavities caused by microphonics, etc. Efficient magnetron transmitters with fast phase and power control are attractive RF sources for this application. They are more cost effective than traditional RF sources such as klystrons, IOTs and solid-state amplifiers used with large scale accelerator projects. However, unlike traditional RF sources, controlled magnetrons operate as forced oscillators. Study of the impact of the controlling signalmore » on magnetron stability, noise and efficiency is therefore important. This paper discusses experiments with 2.45 GHz, 1 kW tubes and verifies our analytical model which is based on the charge drift approximation.« less
Majorana surface modes of nodal topological pairings in spin-3/2 semimetals
NASA Astrophysics Data System (ADS)
Yang, Wang; Xiang, Tao; Wu, Congjun
2017-10-01
When solid state systems possess active orbital-band structures subject to spin-orbit coupling, their multicomponent electronic structures are often described in terms of effective large-spin fermion models. Their topological structures of superconductivity are beyond the framework of spin singlet and triplet Cooper pairings for spin-1/2 systems. Examples include the half-Heusler compound series of RPtBi, where R stands for a rare-earth element. Their spin-orbit coupled electronic structures are described by the Luttinger-Kohn model with effective spin-3/2 fermions and are characterized by band inversion. Recent experiments provide evidence to unconventional superconductivity in the YPtBi material with nodal spin-septet pairing. We systematically study topological pairing structures in spin-3/2 systems with the cubic group symmetries and calculate the surface Majorana spectra, which exhibit zero energy flat bands, or, cubic dispersion depending on the specific symmetry of the superconducting gap functions. The signatures of these surface states in the quasiparticle interference patterns of tunneling spectroscopy are studied, which can be tested in future experiments.
Fabrication and test of model superconducting inflector for g-2 at FNAL
Krave, Steven; Kashikhin, Vladimir S.; Strauss, Thomas
2017-03-01
The new FNAL g-2 experiment is based on the muon storage ring previously used at BNL. The 1.45 T dipole magnetic field in the storage ring is required to have very high (1 ppm) homogeneity. The muon beam injected into the ring must be transported through the magnet yoke and the main superconducting coil cryostat with minimal distortions. The old inflector magnet shielded the main dipole fringe field inside the muon transport beam pipe, with an outer NbTi superconducting screen, and did not disturb the field in the area of circulating beam. Nevertheless, this magnet had coils with closed endsmore » in which a large fraction of muon beam particles were lost. A new magnet is envisioned utilizing the same cross section as the original with open ends for improved beam transport. A model magnet has been wound utilizing 3d printed parts to verify the magnetic behavior of the magnet at room temperature and validate winding of the complicated geometry required for the magnet ends. Finally, room temperature magnetic measurements have been performed and confirm the magnetic design« less
The LHC magnet system and its status of development
NASA Technical Reports Server (NTRS)
Bona, Maurizio; Perin, Romeo; Vlogaert, Jos
1995-01-01
CERN is preparing for the construction of a new high energy accelerator/collider, the Large Hadron Collider (LHC). This new facility will mainly consist of two superconducting magnetic beam channels, 27 km long, to be installed in the existing LEP tunnel. The magnetic system comprises about 1200 twin-aperture dipoles, 13.145 m long, with an operational field of 8.65 T, about 600 quadrupoles, 3 m long, and a very large number of other superconducting magnetic components. A general description of the system is given together with the main features of the design of the regular lattice magnets. The paper also describes the present state of the magnet R & D program. Results from short model work, as well as from full scale prototypes will be presented, including the recently tested 10 m long full-scale prototype dipole manufactured in industry.
Bulk superconducting phase with a full energy gap in the doped topological insulator Cu(x)Bi₂Se₃.
Kriener, M; Segawa, Kouji; Ren, Zhi; Sasaki, Satoshi; Ando, Yoichi
2011-03-25
The superconductivity recently found in the doped topological insulator Cu(x)Bi₂Se₃ offers a great opportunity to search for a topological superconductor. We have successfully prepared a single-crystal sample with a large shielding fraction and measured the specific-heat anomaly associated with the superconductivity. The temperature dependence of the specific heat suggests a fully gapped, strong-coupling superconducting state, but the BCS theory is not in full agreement with the data, which hints at a possible unconventional pairing in Cu(x)Bi₂Se₃. Also, the evaluated effective mass of 2.6m(e) (m(e) is the free electron mass) points to a large mass enhancement in this material.
Dynamics of heavy carriers in the ferromagnetic superconductor UGe2
NASA Astrophysics Data System (ADS)
Storchak, V. G.; Brewer, J. H.; Eshchenko, D. G.; Mengyan, P. W.; Parfenov, O. E.; Tokmachev, A. M.
2018-04-01
Superconductivity and ferromagnetism in a number of uranium-based materials come from the same f-electrons with a relatively large effective mass, suggesting the presence of a band of heavy quasiparticles, whose nature is still a mystery. Here, UGe2 dynamics in both ferromagnetic and paramagnetic phases is studied employing high-field μ +SR spectroscopy. The spectra exhibit a doublet structure characteristic to formation of subnanometer-sized magnetic polarons. This model is thoroughly explored here and correlated with the unconventional physics of UGe2. The heavy-fermion behaviour is ascribed to magnetic polarons; when coherent they form a narrow band, thus reconciling heavy carriers with superconductivity and itinerant ferromagnetism.
Aerospace Applications of Magnetic Suspension Technology, part 1
NASA Technical Reports Server (NTRS)
Groom, Nelson J. (Editor); Britcher, Colin P. (Editor)
1991-01-01
Papers presented at the conference on aerospace applications of magnetic suspension technology are compiled. The following subject areas are covered: pointing and isolation systems; microgravity and vibration isolation; bearing applications; wind tunnel model suspension systems; large gap magnetic suspension systems; control systems; rotating machinery; science and application of superconductivity; and sensors.
A New Facility for Testing Superconducting Solenoid Magnets with Large Fringe Fields at Fermilab
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orris, D.; Carcagno, R.; Nogiec, J.
2013-09-01
Testing superconducting solenoid with no iron flux return can be problematic for a magnet test facility due to the large magnetic fringe fields generated. These large external fields can interfere with the operation of equipment while precautions must be taken for personnel supporting the test. The magnetic forces between the solenoid under test and the external infrastructure must also be taken under consideration. A new test facility has been designed and built at Fermilab specifically for testing superconducting magnets with large external fringe fields. This paper discusses the test stand design, capabilities, and details of the instrumentation and controls withmore » data from the first solenoid tested in this facility: the Muon Ionization Cooling Experiment (MICE) coupling coil.« less
NASA Technical Reports Server (NTRS)
Shelton, Duane; Gamota, George
1989-01-01
The Japanese regard success in R and D in high temperature superconductivity as an important national objective. The results of a detailed evaluation of the current state of Japanese high temperature superconductivity development are provided. The analysis was performed by a panel of technical experts drawn from U.S. industry and academia, and is based on reviews of the relevant literature and visits to Japanese government, academic and industrial laboratories. Detailed appraisals are presented on the following: Basic research; superconducting materials; large scale applications; processing of superconducting materials; superconducting electronics and thin films. In all cases, comparisons are made with the corresponding state-of-the-art in the United States.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, Ramesh; Scanlan, Ronald; Ghosh, Arup K.
A dipole-magnet system and method for producing high-magnetic-fields, including an open-region located in a radially-central-region to allow particle-beam transport and other uses, low-temperature-superconducting-coils comprised of low-temperature-superconducting-wire located in radially-outward-regions to generate high magnetic-fields, high-temperature-superconducting-coils comprised of high-temperature-superconducting-tape located in radially-inward-regions to generate even higher magnetic-fields and to reduce erroneous fields, support-structures to support the coils against large Lorentz-forces, a liquid-helium-system to cool the coils, and electrical-contacts to allow electric-current into and out of the coils. The high-temperature-superconducting-tape may be comprised of bismuth-strontium-calcium-copper-oxide or rare-earth-metal, barium-copper-oxide (ReBCO) where the rare-earth-metal may be yttrium, samarium, neodymium, or gadolinium. Advantageously, alignment of themore » large-dimension of the rectangular-cross-section or curved-cross-section of the high-temperature-superconducting-tape with the high-magnetic-field minimizes unwanted erroneous magnetic fields. Alignment may be accomplished by proper positioning, tilting the high-temperature-superconducting-coils, forming the high-temperature-superconducting-coils into a curved-cross-section, placing nonconducting wedge-shaped-material between windings, placing nonconducting curved-and-wedge-shaped-material between windings, or by a combination of these techniques.« less
Frequency-Domain Analysis of Diffusion-Cooled Hot-Electron Bolometer Mixers
NASA Technical Reports Server (NTRS)
Skalare, A.; McGrath, W. R.; Bumble, B.; LeDuc, H. G.
1998-01-01
A new theoretical model is introduced to describe heterodyne mixer conversion efficiency and noise (from thermal fluctuation effects) in diffusion-cooled superconducting hot-electron bolometers. The model takes into account the non-uniform internal electron temperature distribution generated by Wiedemann-Franz heat conduction, and accepts for input an arbitrary (analytical or experimental) superconducting resistance-versus- temperature curve. A non-linear large-signal solution is solved iteratively to calculate the temperature distribution, and a linear frequency-domain small-signal formulation is used to calculate conversion efficiency and noise. In the small-signal solution the device is discretized into segments, and matrix algebra is used to relate the heating modulation in the segments to temperature and resistance modulations. Matrix expressions are derived that allow single-sideband mixer conversion efficiency and coupled noise power to be directly calculated. The model accounts for self-heating and electrothermal feedback from the surrounding bias circuit.
Preparation of MgB2 superconducting microbridges by focused ion beam direct milling
NASA Astrophysics Data System (ADS)
Zhang, Xuena; Li, Yanli; Xu, Zhuang; Kong, Xiangdong; Han, Li
2017-01-01
MgB2 superconducting microbridges were prepared by focused ion beam (FIB) direct milling on MgB2 films. The surface topography of the microbridges were observed using SEM and AFM and the superconductivity was measured in this paper. Lots of cracks and holes were found near the milled area. And the superconducting transition temperature was decreased a lot and the bridges prepared were not superconducting due to ion damage after milled with large dose. Through these works, we explored the effect regular of FIB milling and experimental parameters on the performance of microbridges.
NASA Astrophysics Data System (ADS)
Granados, Xavier; Sánchez, Àlvar; López-López, Josep
2012-10-01
The development of superconducting applications and superconducting engineering requires the support of consistent tools which can provide models for obtaining a good understanding of the behaviour of the systems and predict novel features. These models aim to compute the behaviour of the superconducting systems, design superconducting devices and systems, and understand and test the behavior of the superconducting parts. 50 years ago, in 1962, Charles Bean provided the superconducting community with a model efficient enough to allow the computation of the response of a superconductor to external magnetic fields and currents flowing through in an understandable way: the so called critical-state model. Since then, in addition to the pioneering critical-state approach, other tools have been devised for designing operative superconducting systems, allowing integration of the superconducting design in nearly standard electromagnetic computer-aided design systems by modelling the superconducting parts with consideration of time-dependent processes. In April 2012, Barcelona hosted the 3rd International Workshop on Numerical Modelling of High Temperature Superconductors (HTS), the third in a series of workshops started in Lausanne in 2010 and followed by Cambridge in 2011. The workshop reflected the state-of-the-art and the new initiatives of HTS modelling, considering mathematical, physical and technological aspects within a wide and interdisciplinary scope. Superconductor Science and Technology is now publishing a selection of papers from the workshop which have been selected for their high quality. The selection comprises seven papers covering mathematical, physical and technological topics which contribute to an improvement in the development of procedures, understanding of phenomena and development of applications. We hope that they provide a perspective on the relevance and growth that the modelling of HTS superconductors has achieved in the past 25 years.
NASA Astrophysics Data System (ADS)
Oishi, Ikuo; Nishijima, Kenichi
2002-03-01
A 70 MW class superconducting model generator was designed, manufactured, and tested from 1988 to 1999 as Phase I, which was Japan's national project on applications of superconducting technologies to electric power apparatuses that was commissioned by NEDO as part of New Sunshine Program of AIST and MITI. Phase II then is now being carried out by almost same organization as Phase I. With the development of the 70 MW class superconducting model generator, technologies for a 200 MW class pilot generator were established. The world's largest output (79 MW), world's longest continuous operation (1500 h), and other sufficient characteristics were achieved on the 70 MW class superconducting model generator, and key technologies of design and manufacture required for the 200 MW class pilot generator were established. This project contributed to progress of R&D of power apparatuses. Super-GM has started the next project (Phase II), which shall develop the key technologies for larger-capacity and more-compact machine and is scheduled from 2000 to 2003. Phase II shall be the first step for commercialization of superconducting generator.
Superconducting pipes and levitating magnets.
Levin, Yan; Rizzato, Felipe B
2006-12-01
Motivated by a beautiful demonstration of the Faraday and the Lenz laws in which a small neodymium magnet falls slowly through a conducting nonferromagnetic tube, we consider the dynamics of a magnet falling coaxially through a superconducting pipe. Unlike the case of normal conducting pipes, in which the magnet quickly reaches the terminal velocity, inside a superconducting tube the magnet falls freely. On the other hand, to enter the pipe the magnet must overcome a large electromagnetic energy barrier. For sufficiently strong magnets, the barrier is so large that the magnet will not be able to penetrate it and will be levitated over the mouth of the pipe. We calculate the work that must done to force the magnet to enter a superconducting tube. The calculations show that superconducting pipes are very efficient at screening magnetic fields. For example, the magnetic field of a dipole at the center of a short pipe of radius a and length L approximately > a decays, in the axial direction, with a characteristic length xi approximately 0.26a. The efficient screening of the magnetic field might be useful for shielding highly sensitive superconducting quantum interference devices. Finally, the motion of the magnet through a superconducting pipe is compared and contrasted to the flow of ions through a trans-membrane channel.
Superconducting pipes and levitating magnets
NASA Astrophysics Data System (ADS)
Levin, Yan; Rizzato, Felipe B.
2006-12-01
Motivated by a beautiful demonstration of the Faraday and the Lenz laws in which a small neodymium magnet falls slowly through a conducting nonferromagnetic tube, we consider the dynamics of a magnet falling coaxially through a superconducting pipe. Unlike the case of normal conducting pipes, in which the magnet quickly reaches the terminal velocity, inside a superconducting tube the magnet falls freely. On the other hand, to enter the pipe the magnet must overcome a large electromagnetic energy barrier. For sufficiently strong magnets, the barrier is so large that the magnet will not be able to penetrate it and will be levitated over the mouth of the pipe. We calculate the work that must done to force the magnet to enter a superconducting tube. The calculations show that superconducting pipes are very efficient at screening magnetic fields. For example, the magnetic field of a dipole at the center of a short pipe of radius a and length L≳a decays, in the axial direction, with a characteristic length ξ≈0.26a . The efficient screening of the magnetic field might be useful for shielding highly sensitive superconducting quantum interference devices. Finally, the motion of the magnet through a superconducting pipe is compared and contrasted to the flow of ions through a trans-membrane channel.
Modeling Strongly Correlated Fermi Systems Using Ultra-Cold Atoms
2008-06-28
the two-dimensional Hubbard model on a square lattice ( a model which is purported to describe the high-temperature superconducting cuprates...beams and (2) stroboscopically alternating the beams very rapidly (~100 kHz) such that the beams were never on simultaneously ( the atoms experience a ...gases relies on (1) using a large-volume, magnetic trap to compress the atomic gas to a volume that can be captured by an optical trap
Spectroscopy of infrared-active phonons in high-temperature superconductors
NASA Technical Reports Server (NTRS)
Litvinchuk, A. P.; Thomsen, C.; Cardona, M.; Borjesson, L.
1995-01-01
For a large variety of superconducting materials both experimental and theoretical lattice dynamical studies have been performed to date. The assignment of the observed infrared- and Raman-active phonon modes to the particular lattice eigenmodes is generally accepted. We will concentrate here upon the analysis of the changes of the infrared-phonon parameters (frequency and linewidth) upon entering the superconducting state which, as will be shown, may provide information on the magnitude of the superconductivity-related gap and its dependence on the superconducting transition temperature Tc.
Superconductivity in disordered thin films: giant mesoscopic fluctuations.
Skvortsov, M A; Feigel'man, M V
2005-07-29
We discuss the intrinsic inhomogeneities of superconductive properties of uniformly disordered thin films with a large dimensionless conductance g. It is shown that mesoscopic fluctuations, which usually contain a small factor 1/g, are crucially enhanced near the critical conductance g(cF) > 1 where superconductivity is destroyed at T = 0 due to Coulomb suppression of the Cooper attraction. This leads to strong spatial fluctuations of the local transition temperature and thus to the percolative nature of the thermal superconductive transition.
NASA Astrophysics Data System (ADS)
Arai, Yuuki; Seino, Hiroshi; Nagashima, Ken
2010-11-01
We have been developing a flywheel energy storage system (FESS) with 36 MJ energy capacity for a railway system with superconducting magnetic bearings (SMBs). We prepared two kinds of models using superconducting coils and bulk superconductors (SCs). One model demonstrated SMB load capacity of 20 kN and the other model proved non-contact stable levitation and non-contact rotation with SMBs. Combining these results, the feasibility of a 36 MJ energy capacity FESS with SMBs completely inside a cryostat has been confirmed. In this paper, we report the levitation properties of SMBs in these models.
Fabrication of Large Bulk High Temperature Superconducting Articles
NASA Technical Reports Server (NTRS)
Koczor, Ronald (Inventor); Hiser, Robert A. (Inventor)
2003-01-01
A method of fabricating large bulk high temperature superconducting articles which comprises the steps of selecting predetermined sizes of crystalline superconducting materials and mixing these specific sizes of particles into a homogeneous mixture which is then poured into a die. The die is placed in a press and pressurized to predetermined pressure for a predetermined time and is heat treated in the furnace at predetermined temperatures for a predetermined time. The article is left in the furnace to soak at predetermined temperatures for a predetermined period of time and is oxygenated by an oxygen source during the soaking period.
Interface-Induced Zeeman-Protected Superconductivity in Ultrathin Crystalline Lead Films
NASA Astrophysics Data System (ADS)
Liu, Yi; Wang, Ziqiao; Zhang, Xuefeng; Liu, Chaofei; Liu, Yongjie; Zhou, Zhimou; Wang, Junfeng; Wang, Qingyan; Liu, Yanzhao; Xi, Chuanying; Tian, Mingliang; Liu, Haiwen; Feng, Ji; Xie, X. C.; Wang, Jian
2018-04-01
Two-dimensional (2D) superconducting systems are of great importance for exploring exotic quantum physics. The recent development of fabrication techniques has stimulated studies of high-quality single-crystalline 2D superconductors, where intrinsic properties give rise to unprecedented physical phenomena. Here, we report the observation of Zeeman-type spin-orbit interaction protected superconductivity (Zeeman-protected superconductivity) in 4-monolayer (ML) to 6-ML crystalline Pb films grown on striped incommensurate Pb layers on Si(111) substrates by molecular beam epitaxy. An anomalously large in-plane critical field far beyond the Pauli limit is detected, which can be attributed to the Zeeman-protected superconductivity due to the in-plane inversion symmetry breaking at the interface. Our work demonstrates that, in superconducting heterostructures, the interface can induce Zeeman-type spin-orbit interactions and modulate the superconductivity.
A superconducting large-angle magnetic suspension
NASA Technical Reports Server (NTRS)
Downer, James; Goldie, James; Torti, Richard
1991-01-01
The component technologies were developed required for an advanced control moment gyro (CMG) type of slewing actuator for large payloads. The key component of the CMG is a large-angle magnetic suspension (LAMS). The LAMS combines the functions of the gimbal structure, torque motors, and rotor bearings of a CMG. The LAMS uses a single superconducting source coil and an array of cryoresistive control coils to produce a specific output torque more than an order of magnitude greater than conventional devices. The designed and tested LAMS system is based around an available superconducting solenoid, an array of twelve room-temperature normal control coils, and a multi-input, multi-output control system. The control laws were demonstrated for stabilizing and controlling the LAMS system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gung, C.Y.
1993-01-01
Energy dissipation, which is also called AC loss, of a composite multifilamentary superconducting wire is one of the most fundamental concerns in building a stable superconducting magnet. Characterization and reduction of AC losses are especially important in designing a superconducting magnet for generating transient magnetic fields. The goal of this thesis is to improve the understanding of AC-loss properties of superconducting wires developed for high-current ramp-field magnet applications. The major tasks include: (1) building an advanced AC-loss measurement system, (2) measuring AC losses of superconducting wires under simulated pulse magnet operations, (3) developing an analytical model for explaining the newmore » AC-loss properties found in the experiment, and (4) developing a computational methodology for comparing AC losses of a superconducting wire with those of a cable for a superconducting pulse magnet. A new experimental system using an isothermal calorimetric method was designed and constructed to measure the absolute AC losses in a composite superconductor. This unique experimental setup is capable of measuring AC losses of a brittle Nb{sub 3}Sn wire carrying high AC current in-phase with a large-amplitude pulse magnetic field. Improvements of the accuracy and the efficiency of this method are discussed. Three different types of composite wire have been measured: a Nb{sub 3}Sn modified jelly-roll (MJR) internal-tin wire used in a prototype ohmic heating coil, a Nb{sub 3}Sn internal-tin wire developed for a fusion reactor ohmic heating coil, and a NbTi wire developed for the magnets in a particle accelerator. The cross sectional constructions of these wires represent typical commercial wires manufactured for pulse magnet applications.« less
Rotor compound concept for designing an industrial HTS synchronous motor
NASA Astrophysics Data System (ADS)
Kashani, M.; Hosseina, M.; Sarrafan, K.; Darabi, A.
2013-06-01
Recently, producing power with smaller amount of losses become as a goal in our daily life. Today, large amount of energy waste in power networks all around the world. The main reason is “resistive electric equipments” of power networks. Since early 1980s, simultaneous with the development of high temperature superconductive (HTS) technology, superconductors gently attracted the mankind attentions. Using superconductive equipments instead of conventional resistive ones are result in salient electric loss reduction in power systems. Especially to reduce losses in power networks superconductive industrial rotating machines can potentially perform a significant role. In early recent century, first generation of HTS rotating machines was born. But unfortunately they have long way to penetrate the commercial markets yet. In HTS rotating machines the conventional copper made windings are replaced with the HTS superconductors. In this paper an industrial HTS synchronous motor with YBCO coated conductor field windings was designed. As a new approach, model was equipped with a compound rotor that includes both magnetic and non-magnetic materials. So, large amount of heavy iron made part was replaced by light non-magnetic material such as G-10 fiberglass. Furthermore, in this structure iron loss in rotor could be reduced to its lowest value. Also less weight and more air gap energy density were the additional advantages. Regarding zero electric loss production in field windings and less iron loss in rotor construction, this model potentially is more effective than the other iron made HTS motors.
NASA Astrophysics Data System (ADS)
Kelouaz, Moussa; Ouazir, Youcef; Hadjout, Larbi; Mezani, Smail; Lubin, Thiery; Berger, Kévin; Lévêque, Jean
2018-05-01
In this paper a new superconducting inductor topology intended for synchronous machine is presented. The studied machine has a standard 3-phase armature and a new kind of 2-poles inductor (claw-pole structure) excited by two coaxial superconducting coils. The air-gap spatial variation of the radial flux density is obtained by inserting a superconducting bulk, which deviates the magnetic field due to the coils. The complex geometry of this inductor usually needs 3D finite elements (FEM) for its analysis. However, to avoid a long computational time inherent to 3D FEM, we propose in this work an alternative modeling, which uses a 3D meshed reluctance network. The results obtained with the developed model are compared to 3D FEM computations as well as to measurements carried out on a laboratory prototype. Finally, a 3D FEM study of the shielding properties of the superconducting screen demonstrates the suitability of using a diamagnetic-like model of the superconducting screen.
NASA Astrophysics Data System (ADS)
Mierau, A.; Schnizer, P.; Fischer, E.; Macavei, J.; Wilfert, S.; Koch, S.; Weiland, T.; Kurnishov, R.; Shcherbakov, P.
SIS100, the world second large scale heavy ion synchrotron using fast ramped superconducting magnets, is to be built at FAIR. Its high current operation of intermediate charge state ions requires stable vacuum pressures < 10-12 mbar under dynamic machine conditions which are only achievable when the whole beam pipe is used as an huge cryopump. In order to find technological feasible design solutions, three opposite requirements have to be met: minimum magnetic field distortion caused by AC losses, mechanical stability and low and stable wall temperatures of the beam pipe. We present the possible design versions of the beam pipe for the high current curved dipole. The pros and cons of these proposed designs were studied using simplified analytical models, FEM calculations and tests on models.
Wu, J. B.; Zhang, X.; Jin, B. B.; Liu, H. T.; Chen, Y. H.; Li, Z. Y.; Zhang, C. H.; Kang, L.; Xu, W. W.; Chen, J.; Wang, H. B.; Tonouchi, M.; Wu, P. H.
2015-01-01
Superconductor is a compelling plasmonic medium at terahertz frequencies owing to its intrinsic low Ohmic loss and good tuning property. However, the microscopic physics of the interaction between terahertz wave and superconducting plasmonic structures is still unknown. In this paper, we conducted experiments of the enhanced terahertz transmission through a series of superconducting NbN subwavelength hole arrays, and employed microscopic hybrid wave model in theoretical analysis of the role of hybrid waves in the enhanced transmission. The theoretical calculation provided a good match of experimental data. In particular, we obtained the following results. When the width of the holes is far below wavelength, the enhanced transmission is mainly caused by localized resonance around individual holes. On the contrary, when the holes are large, hybrid waves scattered by the array of holes dominate the extraordinary transmission. The surface plasmon polaritions are proved to be launched on the surface of superconducting film and the excitation efficiency increases when the temperature approaches critical temperature and the working frequency goes near energy gap frequency. This work will enrich our knowledge on the microscopic physics of extraordinary optical transmission at terahertz frequencies and contribute to developing terahertz plasmonic devices. PMID:26498994
Magnetic field distribution in superconducting composites as revealed by ESR-probe and magnetization
NASA Astrophysics Data System (ADS)
Davidov, D.; Bontemps, N.; Golosovsky, M.; Waysand, G.
1998-03-01
The distribution of a static magnetic field in superconductor-insulator composites consisting of BSCCO (YBCO) powder in paraffin wax is studied by ESR bulk probing and magnetization. The average field and field variance in the non-superconducting host are measured as function of temperature and volume fraction of superconductor. We develop a model of the field distribution in dilute magnetic and superconducting composites that relates the field inhomogeneity to magnetization and particle shape. We find that this model satisfactorily describes field distribution in our superconducting composites in the regime of strong flux pinning, i.e. below irreversibility line. We find deviations from the model above the irreversibility line and attribute this to flux motion. We show that the field distribution in superconducting composites is determined not only by magnetization and particle shape, but is strongly affected by the flux profile within the superconducting particles.
A superconducting large-angle magnetic suspension
NASA Technical Reports Server (NTRS)
Downer, James R.; Anastas, George V., Jr.; Bushko, Dariusz A.; Flynn, Frederick J.; Goldie, James H.; Gondhalekar, Vijay; Hawkey, Timothy J.; Hockney, Richard L.; Torti, Richard P.
1992-01-01
SatCon Technology Corporation has completed a Small Business Innovation Research (SBIR) Phase 2 program to develop a Superconducting Large-Angle Magnetic Suspension (LAMS) for the NASA Langley Research Center. The Superconducting LAMS was a hardware demonstration of the control technology required to develop an advanced momentum exchange effector. The Phase 2 research was directed toward the demonstration for the key technology required for the advanced concept CMG, the controller. The Phase 2 hardware consists of a superconducting solenoid ('source coils') suspended within an array of nonsuperconducting coils ('control coils'), a five-degree-of-freedom positioning sensing system, switching power amplifiers, and a digital control system. The results demonstrated the feasibility of suspending the source coil. Gimballing (pointing the axis of the source coil) was demonstrated over a limited range. With further development of the rotation sensing system, enhanced angular freedom should be possible.
A superconducting large-angle magnetic suspension
NASA Astrophysics Data System (ADS)
Downer, James R.; Anastas, George V., Jr.; Bushko, Dariusz A.; Flynn, Frederick J.; Goldie, James H.; Gondhalekar, Vijay; Hawkey, Timothy J.; Hockney, Richard L.; Torti, Richard P.
1992-12-01
SatCon Technology Corporation has completed a Small Business Innovation Research (SBIR) Phase 2 program to develop a Superconducting Large-Angle Magnetic Suspension (LAMS) for the NASA Langley Research Center. The Superconducting LAMS was a hardware demonstration of the control technology required to develop an advanced momentum exchange effector. The Phase 2 research was directed toward the demonstration for the key technology required for the advanced concept CMG, the controller. The Phase 2 hardware consists of a superconducting solenoid ('source coils') suspended within an array of nonsuperconducting coils ('control coils'), a five-degree-of-freedom positioning sensing system, switching power amplifiers, and a digital control system. The results demonstrated the feasibility of suspending the source coil. Gimballing (pointing the axis of the source coil) was demonstrated over a limited range. With further development of the rotation sensing system, enhanced angular freedom should be possible.
Overview of Superconductivity and Challenges in Applications
NASA Astrophysics Data System (ADS)
Flükiger, Rene
2012-01-01
Considerable progress has been achieved during the last few decades in the various fields of applied superconductivity, while the related low temperature technology has reached a high level. Magnetic resonance imaging (MRI) and nuclear magnetic resonance (NMR) are so far the most successful applications, with tens of thousands of units worldwide, but high potential can also be recognized in the energy sector, with high energy cables, transformers, motors, generators for wind turbines, fault current limiters and devices for magnetic energy storage. A large number of magnet and cable prototypes have been constructed, showing in all cases high reliability. Large projects involving the construction of magnets, solenoids as well as dipoles and quadrupoles are described in the present book. A very large project, the LHC, is currently in operation, demonstrating that superconductivity is a reliable technology, even in a device of unprecedented high complexity. A project of similar complexity is ITER, a fusion device that is presently under construction. This article starts with a brief historical introduction to superconductivity as a phenomenon, and some fundamental properties necessary for the understanding of the technical behavior of superconductors are described. The introduction of superconductivity in the industrial cycle faces many challenges, first for the properties of the base elements, e.g. the wires, tapes and thin films, then for the various applied devices, where a number of new difficulties had to be resolved. A variety of industrial applications in energy, medicine and communications are briefly presented, showing how superconductivity is now entering the market.
Gerbershagen, Alexander; Meer, David; Schippers, Jacobus Maarten; Seidel, Mike
2016-09-01
A first order design of the beam optics of a superconducting proton therapy gantry beam is presented. The possibilities of superconducting magnets with respect to the beam optics such as strong fields, large apertures and superposition of different multipole fields have been exploited for novel concepts in a gantry. Since various techniques used in existing gantries have been used in our first design steps, some examples of the existing superconducting gantry designs are described and the necessary requirements of such a gantry are explained. The study of a gantry beam optics design is based on superconducting combined function magnets. The simulations have been performed in first order with the conventional beam transport codes. The superposition of strong dipole and quadrupole fields generated by superconducting magnets enables the introduction of locally achromatic bending sections without increasing the gantry size. A rigorous implementation of such beam optics concepts into the proposed gantry design dramatically increases the momentum acceptance compared to gantries with normal conducting magnets. In our design this large acceptance has been exploited by the implementation of a degrader within the gantry and a potential possibility to use the same magnetic field for all energies used in a treatment, so that the superconducting magnets do not have to vary their fields during a treatment. This also enables very fast beam energy changes, which is beneficial for spreading the Bragg peak over the thickness of the tumor. The results show an improvement of its momentum acceptance. Large momentum acceptance in the gantry creates a possibility to implement faster dose application techniques. Copyright © 2016. Published by Elsevier GmbH.
Dynamical onset of superconductivity and retention of magnetic fields in cooling neutron stars
NASA Astrophysics Data System (ADS)
Ho, Wynn C. G.; Andersson, Nils; Graber, Vanessa
2017-12-01
A superconductor of paired protons is thought to form in the core of neutron stars soon after their birth. Minimum energy conditions suggest magnetic flux is expelled from the superconducting region due to the Meissner effect, such that the neutron star core is largely devoid of magnetic fields for some nuclear equation of state and proton pairing models. We show via neutron star cooling simulations that the superconducting region expands faster than flux is expected to be expelled because cooling timescales are much shorter than timescales of magnetic field diffusion. Thus magnetic fields remain in the bulk of the neutron star core for at least 106-107yr . We estimate the size of flux free regions at 107yr to be ≲100 m for a magnetic field of 1011G and possibly smaller for stronger field strengths. For proton pairing models that are narrow, magnetic flux may be completely expelled from a thin shell of approximately the above size after 105yr . This shell may insulate lower conductivity outer layers, where magnetic fields can diffuse and decay faster, from fields maintained in the highly conducting deep core.
Status and future perspective of applications of high temperature superconductors
NASA Astrophysics Data System (ADS)
Tanaka, Shoji
The material research on the high temperature superconductivity for the past ten years gave us sufficient information on the new phenomena of these new materials. It seems that new applications in a very wide range of industries are increasing rapidly. In this report three main topics of the applications are given ; [a] progress of the superconducting bulk materials and their applications to the flywheel electricity storage system and others, [b] progress in the development of superconducting tapes and their applications to power cables, the high field superconducting magnet for the SMES and for the pulling system of large silicon single crystal, and [c] development of new superconducting electronic devices (SFQ) and the possiblity of the application to next generation supercomputers. These examples show the great capability of the superconductivity technology and it is expected that the real superconductivity industry will take off around the year of 2005.
Multiband superconductivity and nanoscale inhomogeneity at oxide interfaces
NASA Astrophysics Data System (ADS)
Caprara, S.; Biscaras, J.; Bergeal, N.; Bucheli, D.; Hurand, S.; Feuillet-Palma, C.; Rastogi, A.; Budhani, R. C.; Lesueur, J.; Grilli, M.
2013-07-01
The two-dimensional electron gas at the LaTiO3/SrTiO3 or LaAlO3/SrTiO3 oxide interfaces becomes superconducting when the carrier density is tuned by gating. The measured resistance and superfluid density reveal an inhomogeneous superconductivity resulting from percolation of filamentary structures of superconducting “puddles” with randomly distributed critical temperatures, embedded in a nonsuperconducting matrix. Following the evidence that superconductivity is related to the appearance of high-mobility carriers, we model intrapuddle superconductivity by a multiband system within a weak coupling BCS scheme. The microscopic parameters, extracted by fitting the transport data with a percolative model, yield a consistent description of the dependence of the average intrapuddle critical temperature and superfluid density on the carrier density.
Non-Linear Meissner Effect in Mesoscopic Superconductors
1998-06-01
6525 ED Nijmegen, the Netherlands Abstract. Magnetization measurements on superconducting bulk samples and large radius cylinders had resulted in the...Phenomenological London’s theory that is found to be violated in recent magnetization measurements in superconducting mesoscopic discs that exhibit a...quantity. Recently Geim et al [1] used sub-micron Hall probes to detect the magnetization of thin (thickness down to d - 0.07 pm) single superconducting
NASA Astrophysics Data System (ADS)
Wu, Xiangyang; Tan, Yunfei; Fang, Zhen; Jiang, Donghui; Chen, Zhiyou; Chen, Wenge; Kuang, Guangli
2017-10-01
A large cable-in-conduit-conductor (CICC) test facility has been designed and fabricated at the High Magnetic Field Laboratory of the Chinese Academy of Sciences (CHMFL) in order to meet the test requirement of the conductors which are applied to the future fusion reactor. The critical component of the test facility is an 80 kA superconducting transformer which consists of a multi-turn primary coil and a minor-turn secondary coil. As the current source of the conductor samples, the electromagnetic performance of the superconducting transformer determines the stability and safety of the test facility. In this paper, the key factors and parameters, which have much impact on the performance of the transformer, are analyzed in detail. The conceptual design and optimizing principles of the transformer are discussed. An Electromagnetic-Circuit coupled model built in ANSYS Multiphysics is successfully used to investigate the electromagnetic characterization of the transformer under the dynamic operation condition.
NASA Technical Reports Server (NTRS)
Stevenson, T. R.; Hsieh, W.-T.; Li, M. J.; Stahle, C. M.; Wollack, E. J.; Schoelkopf, R. J.; Krebs, Carolyn (Technical Monitor)
2002-01-01
The science drivers for the SPIRIT/SPECS missions demand sensitive, fast, compact, low-power, large-format detector arrays for high resolution imaging and spectroscopy in the far infrared and submillimeter. Detector arrays with 10,000 pixels and sensitivity less than 10(exp 20)-20 W/Hz(exp 20)0.5 are needed. Antenna-coupled superconducting tunnel junction detectors with integrated rf single-electron transistor readout amplifiers have the potential for achieving this high level of sensitivity, and can take advantage of an rf multiplexing technique when forming arrays. The device consists of an antenna structure to couple radiation into a small superconducting volume and cause quasiparticle excitations, and a single-electron transistor to measure currents through tunnel junction contacts to the absorber volume. We will describe optimization of device parameters, and recent results on fabrication techniques for producing devices with high yield for detector arrays. We will also present modeling of expected saturation power levels, antenna coupling, and rf multiplexing schemes.
Wang, Y; Yin, D C; Liu, Y M; Shi, J Z; Lu, H M; Shi, Z H; Qian, A R; Shang, P
2011-03-01
A high-field superconducting magnet can provide both high-magnetic fields and large-field gradients, which can be used as a special environment for research or practical applications in materials processing, life science studies, physical and chemical reactions, etc. To make full use of a superconducting magnet, shared instruments (the operating platform, sample holders, temperature controller, and observation system) must be prepared as prerequisites. This paper introduces the design of a set of sample holders and a temperature controller in detail with an emphasis on validating the performance of the force and temperature sensors in the high-magnetic field.
NASA Astrophysics Data System (ADS)
Wang, Y.; Yin, D. C.; Liu, Y. M.; Shi, J. Z.; Lu, H. M.; Shi, Z. H.; Qian, A. R.; Shang, P.
2011-03-01
A high-field superconducting magnet can provide both high-magnetic fields and large-field gradients, which can be used as a special environment for research or practical applications in materials processing, life science studies, physical and chemical reactions, etc. To make full use of a superconducting magnet, shared instruments (the operating platform, sample holders, temperature controller, and observation system) must be prepared as prerequisites. This paper introduces the design of a set of sample holders and a temperature controller in detail with an emphasis on validating the performance of the force and temperature sensors in the high-magnetic field.
Prediction of phonon-mediated superconductivity in hole-doped black phosphorus.
Feng, Yanqing; Sun, Hongyi; Sun, Junhui; Lu, Zhibin; You, Yong
2018-01-10
We study the conventional electron-phonon mediated superconducting properties of hole-doped black phosphorus by density functional calculations and get quite a large electron-phonon coupling (EPC) constant λ ~ 1.0 with transition temperature T C ~ 10 K, which is comparable to MgB 2 when holes are doped into the degenerate and nearly flat energy bands around the Fermi level. We predict that the softening of low-frequency [Formula: see text] optical mode and its phonon displacement, which breaks the lattice nonsymmorphic symmetry of gliding plane and lifts the band double degeneracy, lead to a large EPC. These factors are favorable for BCS superconductivity.
Prediction of phonon-mediated superconductivity in hole-doped black phosphorus
NASA Astrophysics Data System (ADS)
Feng, Yanqing; Sun, Hongyi; Sun, Junhui; Lu, Zhibin; You, Yong
2018-01-01
We study the conventional electron-phonon mediated superconducting properties of hole-doped black phosphorus by density functional calculations and get quite a large electron-phonon coupling (EPC) constant λ ~ 1.0 with transition temperature T C ~ 10 K, which is comparable to MgB2 when holes are doped into the degenerate and nearly flat energy bands around the Fermi level. We predict that the softening of low-frequency B3g1 optical mode and its phonon displacement, which breaks the lattice nonsymmorphic symmetry of gliding plane and lifts the band double degeneracy, lead to a large EPC. These factors are favorable for BCS superconductivity.
Point-contact tunneling in monophasic and polyphasic Y-Ba-Cu-O samples: Experiment and model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gonnelli, R.S.; Andreone, D.; Lacquaniti, V.
1989-02-01
Tunneling experiments using large-area point-contact structures have been performed on several monophasic polycrystalline Ba/sub 2/Cu/sub 3/O/sub 7-//sub delta/ samples and on polyphasic samples containing, mixed with the previous superconducting phase, also about 11% of the so-called green phase (BaY/sub 2/CuO/sub 5/). Both niobium and Y-Ba-Cu-O tips were used as counterelectrodes and measurements were made at 4.2 and 77 K. Results obtained at different experimental conditions show great reproducibility indicating the presence of the gap voltage at about 20 mV in the dynamic resistance curves. A phenomenological model was then developed to interpret in a quantitative way our data by meansmore » of a decomposition of the experimental conductance into a background component and a superconducting-tunneling component. The former results essentially in a parabolic contribution versus the bias voltage typical of a tunneling between normallike junction electrodes while the latter component is smeared out in voltage by a large amount of broadening. Using the model in a least-squares fit of the experimental data of Nb/Y-Ba-Cu-O junctions, values V/sub G/ = 21.3 +- 0.8 mV and V/sub G/ = 22.0 +- 0.6 mV for the voltage gaps at 4.2 K of monophasic and polyphasic materials, respectively, have been determined. These results have been well confirmed by measurements on Y-Ba-Cu-O/Y-Ba-Cu-O junctions while, at 77 K, there are no indications of a superconducting tunneling. We obtained also the parameters of the background conductance, which indicates the presence of a nonsuperconducting layer at the surface of the material.« less
NASA Astrophysics Data System (ADS)
Koyama, Tomonori; Kaiho, Katsuyuki; Yamaguchi, Iwao; Yanabu, Satoru
Using a high-temperature superconductor, we constructed and tested a model superconducting fault current limiter (SFCL). The superconductor and vacuum interrupter as the commutation switch were connected in parallel using a bypass coil. When the fault current flows in this equipment, the superconductor is quenched and the current is then transferred to the parallel coil due to the voltage drop in the superconductor. This large current in the parallel coil actuates the magnetic repulsion mechanism of the vacuum interrupter and the current in the superconductor is broken. Using this equipment, the current flow time in the superconductor can be easily minimized. On the other hand, the fault current is also easily limited by large reactance of the parallel coil. This system has many merits. So, we introduced to electromagnetic repulsion switch. There is duty of high speed re-closing after interrupting fault current in the electrical power system. So the SFCL should be recovered to superconducting state before high speed re-closing. But, superconductor generated heat at the time of quench. It takes time to recover superconducting state. Therefore it is a matter of recovery time. In this paper, we studied recovery time of superconductor. Also, we proposed electromagnetic repulsion switch with reclosing system.
NASA Technical Reports Server (NTRS)
Stevenson, Thomas R.; Balvin, M. A.; Denis, K. L.; Hsieh, W.-T.; Sadleir, J. E.; Bandler, Simon E.; Busch, Sarah E.; Merrell, W.; Kelly, Daniel P.; Nagler, Peter C.;
2012-01-01
We have made high resolution x-ray microcalorimeters using superconducting MoAu bilayers and Nb meander coils. The temperature sensor is a Magnetic Penetration Thermometer (MPT). Operation is similar to metallic magnetic calorimeters, but instead of the magnetic susceptibility of a paramagnetic alloy, we use the diamagnetic response of the superconducting MoAu to sense temperature changes in an x-ray absorber. Flux-temperature responsivtty can be large for small sensor heat capacity, with enough dynamic range for applications. We find models of observed flux-temperature curves require several effects to explain flux penetration or expulsion in the microscopic devices. The superconductor is non-local, with large coherence length and weak pinning of flux. At lowest temperatures, behavior is dominated by screening currents that vary as a result of the temperature dependence of the magnetic penetration depth, modified by the effect of the nonuniformity of the applied field occurring on a scale comparable to the coherence length. In the temperature regime where responslvity is greatest, spadal variations in the order parameter become important: both local variations as flux enters/leaves the film and an intermediate state is formed, and globally as changing stability of the electrical circuit creates a Meissner transition and flux is expelled/penetrates to minimize free energy.
NASA Astrophysics Data System (ADS)
Matsumoto, Karin; Ogura, Daisuke; Kuroki, Kazuhiko
2018-01-01
We study superconductivity in the Hubbard model on various quasi-one-dimensional lattices with coexisting wide and narrow bands originating from multiple sites within a unit cell, where each site corresponds to a single orbital. The systems studied are the two-leg and three-leg ladders, the diamond chain, and the crisscross ladder. These one-dimensional lattices are weakly coupled to form two-dimensional (quasi-one-dimensional) ones, and the fluctuation exchange approximation is adopted to study spin-fluctuation-mediated superconductivity. When one of the bands is perfectly flat and the Fermi level intersecting the wide band is placed in the vicinity of, but not within, the flat band, superconductivity arising from the interband scattering processes is found to be strongly enhanced owing to the combination of the light electron mass of the wide band and the strong pairing interaction due to the large density of states of the flat band. Even when the narrow band has finite bandwidth, the pairing mechanism still works since the edge of the narrow band, due to its large density of states, plays the role of the flat band. The results indicate the wide applicability of the high-Tc pairing mechanism due to coexisting wide and "incipient" narrow bands in quasi-one-dimensional systems.
Irreversibility and critical current density of FeSr2ErCu2O6+y
NASA Astrophysics Data System (ADS)
Hata, Y.; Iida, I.; Mochiku, T.; Yasuoka, H.
2018-03-01
FeSr2ErCu2O6+y (ErFe1212) and non-superconducting FeSr2ErCu1.9Zn0.1O6+y were synthesized to study the property of the superconductivity and the irreversibility of ErFe1212. A large irreversibility in the temperature dependence of magnetization and a hysteresis in the magnetization curve were observed in ErFe1212. By comparison with non-superconducting FeSr2ErCu1.9Zn0.1O6+y, it was found that the most part of the hysteresis at high magnetic eld originates from the magnetism of Fe ion and some part of the hysteresis at low magnetic eld originates from the superconductivity. Using the magnetization curve of ErFe1212 and FeSr2ErCu1.9Zn0.1O6+y, the J c of ErFe1212 in individual grains at 10 K under 0.1 T was estimated by the Bean model and {J}\\text{c}\\text{intra} was 2.6 × 109 A/m2. The critical current density across inter-grain boundaries at 10 K estimated by V ‑ I measurement was {J}\\text{c}\\text{intra} = 5.7 × 104 A/m2. A large difference between {J}\\text{c}\\text{intra} and {J}\\text{c}\\text{intra} was observed in ErFe1212. {J}\\text{c}\\text{intra} and {J}\\text{c}\\text{intra} of ErFe1212 are 2.2 and 5.2 times larger than these of YFe1212, respectively.
Mito, Masaki; Matsui, Hideaki; Tsuruta, Kazuki; Yamaguchi, Tomiko; Nakamura, Kazuma; Deguchi, Hiroyuki; Shirakawa, Naoki; Adachi, Hiroki; Yamasaki, Tohru; Iwaoka, Hideaki; Ikoma, Yoshifumi; Horita, Zenji
2016-01-01
Finding a physical approach for increasing the superconducting transition temperature (Tc) is a challenge in the field of material science. Shear strain effects on the superconductivity of rhenium were investigated using magnetic measurements, X-ray diffraction, transmission electron microscopy, and first-principles calculations. A large shear strain reduces the grain size and simultaneously expands the unit cells, resulting in an increase in Tc. Here we show that this shear strain approach is a new method for enhancing Tc and differs from that using hydrostatic strain. The enhancement of Tc is explained by an increase in net electron–electron coupling rather than a change in the density of states near the Fermi level. The shear strain effect in rhenium could be a successful example of manipulating Bardeen–Cooper–Schrieffer-type Cooper pairing, in which the unit cell volumes are indeed a key parameter. PMID:27811983
DOE Office of Scientific and Technical Information (OSTI.GOV)
A. S. Dhavale, G. Ciovati, G. R. Myneni
Measurements of superconducting properties such as bulk and surface critical fields and thermal conductivity have been carried out in the temperature range from 2 K to 8 K on large-grain samples of different purity and on a high-purity fine-grain sample, for comparison. The samples were treated by electropolishing and low temperature baking (120° C, 48 h). While the residual resistivity ratio changed by a factor of ~3 among the samples, no significant variation was found in their superconducting properties. The onset field for flux penetration at 2 K, Hffp, measured within a ~30 µm depth from the surface, was ~160more » mT, close to the bulk value. The baking effect was mainly to increase the field range up to which a coherent superconducting phase persists on the surface, above the upper critical field.« less
NASA Astrophysics Data System (ADS)
Saito, Tetsuro; Onari, Seiichiro; Kontani, Hiroshi
2011-04-01
We study the superconducting state in recently discovered high-Tc superconductor KxFe2Se2 based on the ten-orbital Hubbard-Holstein model without hole pockets. When the Coulomb interaction is large, a spin-fluctuation-mediated d-wave state appears due to the nesting between electron pockets. Interestingly, the symmetry of the body-centered tetragonal structure in KxFe2Se2 requires the existence of nodes in the d-wave gap, although a fully gapped d-wave state is realized in the case of a simple tetragonal structure. In the presence of moderate electron-phonon interaction due to Fe-ion optical modes, however, orbital fluctuations give rise to the fully gapped s++-wave state without sign reversal. Therefore, both superconducting states are distinguishable by careful measurements of the gap structure or the impurity effect on Tc.
Simulation of superconducting tapes and coils with convex quadratic programming method
NASA Astrophysics Data System (ADS)
Zhang, Yan; Song, Yuntao; Wang, Lei; Liu, Xufeng
2015-08-01
Second-generation (2G) high-temperature superconducting coated conductors are playing an increasingly important role in power applications due to their large current density under high magnetic fields. In this paper, we conclude and explore the ability and possible potential of J formulation from the mathematical modeling point of view. An equivalent matrix form of J formulation has been presented and a relation between electromagnetic quantities and Karush-Kuhn-Tucker (KKT) conditions in optimization theory has been discovered. The use of the latest formulae to calculate inductance in a coil system and the primal-dual interior-point method algorithm is a trial to make the process of modeling stylized and build a bridge to commercial optimization solvers. Two different dependences of the critical current density on the magnetic field have been used in order to make a comparison with those published papers.
Coupling an Ensemble of Electrons on Superfluid Helium to a Superconducting Circuit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Ge; Fragner, A.; Koolstra, G.
2016-03-01
The quantized lateral motional states and the spin states of electrons trapped on the surface of superfluid helium have been proposed as basic building blocks of a scalable quantum computer. Circuit quantum electrodynamics allows strong dipole coupling between electrons and a high-Q superconducting microwave resonator, enabling such sensitive detection and manipulation of electron degrees of freedom. Here, we present the first realization of a hybrid circuit in which a large number of electrons are trapped on the surface of superfluid helium inside a coplanar waveguide resonator. The high finesse of the resonator allows us to observe large dispersive shifts thatmore » are many times the linewidth and make fast and sensitive measurements on the collective vibrational modes of the electron ensemble, as well as the superfluid helium film underneath. Furthermore, a large ensemble coupling is observed in the dispersive regime during experiment, and it shows excellent agreement with our numeric model. The coupling strength of the ensemble to the cavity is found to be approximate to 1 MHz per electron, indicating the feasibility of achieving single electron strong coupling.« less
Superconducting-electromagnetic hybrid bearing using YBCO bulk blocks for passive axial levitation
NASA Astrophysics Data System (ADS)
Nicolsky, R.; de Andrade, R., Jr.; Ripper, A.; David, D. F. B.; Santisteban, J. A.; Stephan, R. M.; Gawalek, W.; Habisreuther, T.; Strasser, T.
2000-06-01
A superconducting/electromagnetic hybrid bearing has been designed using active radial electromagnetic positioning and a superconducting passive axial levitator. This bearing has been tested for an induction machine with a vertical shaft. The prototype was conceived as a four-pole, two-phase induction machine using specially designed stator windings for delivering torque and radial positioning simultaneously. The radial bearing uses four eddy-current sensors, displaced 90° from each other, for measuring the shaft position and a PID control system for feeding back the currents. The stator windings have been adapted from the ones of a standard induction motor. The superconducting axial bearing has been assembled with commercial NdFeB permanent magnets and a set of seven top-seeded-melt-textured YBCO large-grain cylindrical blocks. The bearing set-up was previously simulated by a finite element method for different permanent magnet-superconductor block configurations. The stiffness of the superconducting axial bearing has been investigated by measuring by a dynamic method the vertical and transversal elastic constants for different field cooling processes. The resulting elastic constants show a linear dependence on the air gap, i.e. the clearance between the permanent magnet assembly and the set of superconducting large-grain blocks, which is dependent on cooling distance.
Potential damage to dc superconducting magnets due to high frequency electromagnetic waves
NASA Technical Reports Server (NTRS)
Gabriel, G. J.; Burkhart, J. A.
1977-01-01
Studies of a d.c. superconducting magnet coil indicate that the large coil behaves as a straight waveguide structure. Voltages between layers within the coil sometimes exceeded those recorded at terminals where protective resistors are located. Protection of magnet coils against these excessive voltages could be accomplished by impedance matching throughout the coil system. The wave phenomenon associated with superconducting magnetic coils may create an instability capable of converting the energy of a quiescent d.c. superconducting coil into dissipative a.c. energy, even in cases when dielectric breakdown does not take place.
Large bipolarons and oxide superconductivity
NASA Astrophysics Data System (ADS)
Emin, David
2017-02-01
Large-bipolaron superconductivity is plausible with carrier densities well below those of conventional metals. Bipolarons form when carriers self-trap in pairs. Coherently moving large-bipolarons require extremely large ratios of static to optical dielectric-constants. The mutual Coulomb repulsion of a planar large-bipolaron's paired carriers drives it to a four-lobed shape. A phonon-mediated attraction among large-bipolarons propels their condensation into a liquid. This liquid's excitations move slowly with a huge effective mass. Excitations' concomitant weak scattering by phonons produces a moderate low-temperature dc resistivity that increases linearly with rising temperature. With falling temperature an energy gap opens between large-bipolarons' excitations and those of their self-trapped electronic carriers.
Excitonic Order and Superconductivity in the Two-Orbital Hubbard Model: Variational Cluster Approach
NASA Astrophysics Data System (ADS)
Fujiuchi, Ryo; Sugimoto, Koudai; Ohta, Yukinori
2018-06-01
Using the variational cluster approach based on the self-energy functional theory, we study the possible occurrence of excitonic order and superconductivity in the two-orbital Hubbard model with intra- and inter-orbital Coulomb interactions. It is known that an antiferromagnetic Mott insulator state appears in the regime of strong intra-orbital interaction, a band insulator state appears in the regime of strong inter-orbital interaction, and an excitonic insulator state appears between them. In addition to these states, we find that the s±-wave superconducting state appears in the small-correlation regime, and the dx2 - y2-wave superconducting state appears on the boundary of the antiferromagnetic Mott insulator state. We calculate the single-particle spectral function of the model and compare the band gap formation due to the superconducting and excitonic orders.
Fidelity study of superconductivity in extended Hubbard models
NASA Astrophysics Data System (ADS)
Plonka, N.; Jia, C. J.; Wang, Y.; Moritz, B.; Devereaux, T. P.
2015-07-01
The Hubbard model with local on-site repulsion is generally thought to possess a superconducting ground state for appropriate parameters, but the effects of more realistic long-range Coulomb interactions have not been studied extensively. We study the influence of these interactions on superconductivity by including nearest- and next-nearest-neighbor extended Hubbard interactions in addition to the usual on-site terms. Utilizing numerical exact diagonalization, we analyze the signatures of superconductivity in the ground states through the fidelity metric of quantum information theory. We find that nearest and next-nearest neighbor interactions have thresholds above which they destabilize superconductivity regardless of whether they are attractive or repulsive, seemingly due to competing charge fluctuations.
Errea, Ion; Calandra, Matteo; Mauri, Francesco
2013-10-25
Palladium hydrides display the largest isotope effect anomaly known in the literature. Replacement of hydrogen with the heavier isotopes leads to higher superconducting temperatures, a behavior inconsistent with harmonic theory. Solving the self-consistent harmonic approximation by a stochastic approach, we obtain the anharmonic free energy, the thermal expansion, and the superconducting properties fully ab initio. We find that the phonon spectra are strongly renormalized by anharmonicity far beyond the perturbative regime. Superconductivity is phonon mediated, but the harmonic approximation largely overestimates the superconducting critical temperatures. We explain the inverse isotope effect, obtaining a -0.38 value for the isotope coefficient in good agreement with experiments, hydrogen anharmonicity being mainly responsible for the isotope anomaly.
Adaptation of superconducting fault current limiter to high-speed reclosing
NASA Astrophysics Data System (ADS)
Koyama, T.; Yanabu, S.
2009-10-01
Using a high temperature superconductor, we constructed and tested a model superconducting fault current limiter (SFCL). The superconductor might break in some cases because of its excessive generation of heat. Therefore, it is desirable to interrupt early the current that flows to superconductor. So, we proposed the SFCL using an electromagnetic repulsion switch which is composed of a superconductor, a vacuum interrupter and a by-pass coil, and its structure is simple. Duration that the current flow in the superconductor can be easily minimized to the level of less than 0.5 cycle using this equipment. On the other hand, the fault current is also easily limited by large reactance of the parallel coil. There is duty of high-speed reclosing after interrupting fault current in the electric power system. After the fault current is interrupted, the back-up breaker is re-closed within 350 ms. So, the electromagnetic repulsion switch should return to former state and the superconductor should be recovered to superconducting state before high-speed reclosing. Then, we proposed the SFCL using an electromagnetic repulsion switch which employs our new reclosing function. We also studied recovery time of the superconductor, because superconductor should be recovered to superconducting state within 350 ms. In this paper, the recovery time characteristics of the superconducting wire were investigated. Also, we combined the superconductor with the electromagnetic repulsion switch, and we did performance test. As a result, a high-speed reclosing within 350 ms was proven to be possible.
Hole pairing and ground state properties of high-Tc superconductivity within the t-t'-J-V model
NASA Astrophysics Data System (ADS)
Roy, Krishanu; Pal, Papiya; Nath, Subhadip; Ghosh, Nanda Kumar
2018-04-01
The t-t'-J-V model, one of the realistic models for studying high-Tc cuprates, has been investigated to explore the hole pairing and other ground state properties using exact diagonalization (ED) technique with 2 holes in a small 8-site cluster. The role of next-nearest-neighbor (NNN) hopping and nearest-neighbor (NN) Coulomb repulsion has been considered. It appears that qualitative behavior of the ground state energies of an 8-site and 16- or 18-site cluster is similar. Results show that a small short-ranged antiferromagnetic (AF) correlation exists in the 2 hole case which is favored by large V/t. A superconducting phase emerges at 0 ≤ V/t ≤ 4J. Hole-hole correlation calculation also suggests that the two holes of the pair are either at |i - j| = 1 or √2. Negative t'/t suppresses the possibility of pairing of holes. Though s-wave pairing susceptibility is dominant, pairing correlation length calculation indicates that the long range pairing, which is suitable for superconductivity, is in the d-wave channel. Both s- and d-wave pairing susceptibility gets suppressed by V/t while d-(s-) wave susceptibility gets favored (suppressed) by t'/t. The charge gap shows a gapped behavior while a spin-gapless region exists at small V/t for finite t'/t.
A nanocryotron comparator can connect single-flux-quantum circuits to conventional electronics
NASA Astrophysics Data System (ADS)
Zhao, Qing-Yuan; McCaughan, Adam N.; Dane, Andrew E.; Berggren, Karl K.; Ortlepp, Thomas
2017-04-01
Integration with conventional electronics offers a straightforward and economical approach to upgrading existing superconducting technologies, such as scaling up superconducting detectors into large arrays and combining single flux quantum (SFQ) digital circuits with semiconductor logic gates and memories. However, direct output signals from superconducting devices (e.g., Josephson junctions) are usually not compatible with the input requirements of conventional devices (e.g., transistors). Here, we demonstrate the use of a single three-terminal superconducting-nanowire device, called the nanocryotron (nTron), as a digital comparator to combine SFQ circuits with mature semiconductor circuits such as complementary metal oxide semiconductor (CMOS) circuits. Since SFQ circuits can digitize output signals from general superconducting devices and CMOS circuits can interface existing CMOS-compatible electronics, our results demonstrate the feasibility of a general architecture that uses an nTron as an interface to realize a ‘super-hybrid’ system consisting of superconducting detectors, superconducting quantum electronics, CMOS logic gates and memories, and other conventional electronics.
A minimal model of striped superconductors
NASA Astrophysics Data System (ADS)
Martin, I.; Ortiz, G.; Balatsky, A. V.; Bishop, A. R.
2001-12-01
We present a minimal model of high-temperature superconductors that simultaneously supports antiferromagnetic stripes and d-wave superconductivity. At the unrestricted mean-field level, the various phases of the cuprates, including weak and strong pseudogap phases, and two different types of superconductivity in the underdoped and the overdoped regimes, find a natural interpretation. We argue that on the underdoped side, the superconductor is intrinsically inhomogeneous and global phase coherence is achieved through Josephson-like coupling of the superconducting stripes. On the overdoped side, the state is overall homogeneous and the superconductivity is of a classical BCS type.
Superconductivity in the Penson-Kolb Model on a Triangular Lattice
NASA Astrophysics Data System (ADS)
Ptok, A.; Mierzejewski, M.
2008-07-01
We investigate properties of the two-dimensional Penson-Kolb model with repulsive pair hopping interaction. In the case of a bipartite square lattice this interaction may lead to the η-type pairing, when the phase of superconducting order parameter changes from one lattice site to the neighboring one. We show that this interaction may be responsible for the onset of superconductivity also for a triangular lattice. We discuss the spatial dependence of the superconducting order parameter and demonstrate that the total momentum of the paired electrons is determined by the lattice geometry.
Superconducting quantum circuits theory and application
NASA Astrophysics Data System (ADS)
Deng, Xiuhao
Superconducting quantum circuit models are widely used to understand superconducting devices. This thesis consists of four studies wherein the superconducting quantum circuit is used to illustrate challenges related to quantum information encoding and processing, quantum simulation, quantum signal detection and amplification. The existence of scalar Aharanov-Bohm phase has been a controversial topic for decades. Scalar AB phase, defined as time integral of electric potential, gives rises to an extra phase factor in wavefunction. We proposed a superconducting quantum Faraday cage to detect temporal interference effect as a consequence of scalar AB phase. Using the superconducting quantum circuit model, the physical system is solved and resulting AB effect is predicted. Further discussion in this chapter shows that treating the experimental apparatus quantum mechanically, spatial scalar AB effect, proposed by Aharanov-Bohm, can't be observed. Either a decoherent interference apparatus is used to observe spatial scalar AB effect, or a quantum Faraday cage is used to observe temporal scalar AB effect. The second study involves protecting a quantum system from losing coherence, which is crucial to any practical quantum computation scheme. We present a theory to encode any qubit, especially superconducting qubits, into a universal quantum degeneracy point (UQDP) where low frequency noise is suppressed significantly. Numerical simulations for superconducting charge qubit using experimental parameters show that its coherence time is prolong by two orders of magnitude using our universal degeneracy point approach. With this improvement, a set of universal quantum gates can be performed at high fidelity without losing too much quantum coherence. Starting in 2004, the use of circuit QED has enabled the manipulation of superconducting qubits with photons. We applied quantum optical approach to model coupled resonators and obtained a four-wave mixing toolbox to operate photons states. The model and toolbox are engineered with a superconducting quantum circuit where two superconducting resonators are coupled via the UQDP circuit. Using fourth order perturbation theory one can realize a complete set of quantum operations between these two photon modes. This helps open a new field to treat photon modes as qubits. Additional, a three-wave mixing scheme using phase qubits permits one to engineer the coupling Hamiltonian using a phase qubit as a tunable coupler. Along with Feynman's idea using quantum to simulate quantum, superconducting quantum simulators have been studied intensively recently. Taking the advantage of mesoscopic size of superconducting circuit and local tunability, we came out the idea to simulate quantum phase transition due to disorder. Our first paper was to propose a superconducting quantum simulator of Bose-Hubbard model to do site-wise manipulation and observe Mott-insulator to superfluid phase transition. The side-band cooling of an array of superconducting resonators is solved after the paper was published. In light of the developed technology in manipulating quantum information with superconducting circuit, one can couple other quantum oscillator system to superconducting resonators in order manipulation of its quantum states or parametric amplification of weak quantum signal. A theory that works for different coupling schemes has been studied in chapter 5. This will be a platform for further research.
NASA Astrophysics Data System (ADS)
Kim, Jeehoon; Haberkorn, N.; Graf, M. J.; Usov, I.; Ronning, F.; Civale, L.; Nazaretski, E.; Chen, G. F.; Yu, W.; Thompson, J. D.; Movshovich, R.
2012-10-01
We report on the dramatic effect of random point defects, produced by proton irradiation, on the superfluid density ρs in superconducting Ca0.5Na0.5Fe2As2 single crystals. The magnitude of the suppression is inferred from measurements of the temperature-dependent magnetic penetration depth λ(T) using magnetic force microscopy. Our findings indicate that a radiation dose of 2×1016 cm-2 produced by 3 MeV protons results in a reduction of the superconducting critical temperature Tc by approximately 10%. In contrast, ρs(0) is suppressed by approximately 60%. This breakdown of the Abrikosov-Gorkov theory may be explained by the so-called “Swiss cheese model,” which accounts for the spatial suppression of the order parameter near point defects similar to holes in Swiss cheese. Both the slope of the upper critical field and the penetration depth λ(T/Tc)/λ(0) exhibit similar temperature dependences before and after irradiation. This may be due to a combination of the highly disordered nature of Ca0.5Na0.5Fe2As2 with large intraband and simultaneous interband scattering as well as the s±-wave nature of short coherence length superconductivity.
Quench simulations for superconducting elements in the LHC accelerator
NASA Astrophysics Data System (ADS)
Sonnemann, F.; Schmidt, R.
2000-08-01
The design of the protection system for the superconducting elements in an accelerator such as the large Hadron collider (LHC), now under construction at CERN, requires a detailed understanding of the thermo-hydraulic and electrodynamic processes during a quench. A numerical program (SPQR - simulation program for quench research) has been developed to evaluate temperature and voltage distributions during a quench as a function of space and time. The quench process is simulated by approximating the heat balance equation with the finite difference method in presence of variable cooling and powering conditions. The simulation predicts quench propagation along a superconducting cable, forced quenching with heaters, impact of eddy currents induced by a magnetic field change, and heat transfer through an insulation layer into helium, an adjacent conductor or other material. The simulation studies allowed a better understanding of experimental quench data and were used for determining the adequate dimensioning and protection of the highly stabilised superconducting cables for connecting magnets (busbars), optimising the quench heater strip layout for the main magnets, and studying quench back by induced eddy currents in the superconductor. After the introduction of the theoretical approach, some applications of the simulation model for the LHC dipole and corrector magnets are presented and the outcome of the studies is compared with experimental data.
Ultrasonic investigation of the superconducting properties of the Nb-Mo system
NASA Technical Reports Server (NTRS)
Lacy, L. L.
1972-01-01
The superconducting properties of single crystals of Nb and two alloys of Nb with Mo were investigated by ultrasonic techniques. The results of measurements of the ultrasonic attenuation and velocities as a function of temperature, Mo composition, crystallographic direction, and ultrasonic frequency are reported. The attenuation and small velocity changes associated with the superconductivity of the samples are shown to be dependent on the sample resistivity ratio which varied from 4.3 for Nb-9% Mo to 6500 for pure Nb. The ultrasonic attenuation data are analyzed in terms of the superconducting energy gap term of the BCS theory. A new model is proposed for the analysis of ultrasonic attenuation in pure superconductors with two partially decoupled energy bands. To analyze the attenuation in pure superconducting Nb, the existence of two energy gaps was assumed to be associated with the two partially decoupled energy bands. One of the gaps was found to have the normal BCS value of 3.4 and the other gap was found to have the anomalously large value of 10. No experimental evidence was found to suggest that the second energy gap had a different transition temperature. The interpretation of the results for the Nb-Mo alloys is shown to be complicated by the possible existence of a second superconducting phase in Nb-Mo alloys with a transition temperature of 0.35 of the transition temperature of the first phase. The elastic constants of Nb and Nb-Mo alloys are shown to be approximately independent of Mo composition to nine atomic percent Mo. These results do not agree with the current microscopic theory of transition temperature for the transition elements.
NASA Astrophysics Data System (ADS)
Kumagai, Daisuke; Ohsaki, Hiroyuki; Tomita, Masaru
2016-12-01
A superconducting power cable has merits of a high power transmission capacity, transmission losses reduction, a compactness, etc., therefore, we have been studying the feasibility of applying superconducting power cables to DC electric railway feeding systems. However, a superconducting power cable is required to be cooled down and kept at a very low temperature, so it is important to reveal its thermal and cooling characteristics. In this study, electric circuit analysis models of the system and thermal analysis models of superconducting cables were constructed and the system behaviors were simulated. We analyzed the heat generation by a short circuit accident and transient temperature distribution of the cable to estimate the value of temperature rise and the time required from the accident. From these results, we discussed a feasibility of superconducting cables for DC electric railway feeding systems. The results showed that the short circuit accident had little impact on the thermal condition of a superconducting cable in the installed system.
NASA Technical Reports Server (NTRS)
Itoh, Tatsuo
1991-01-01
The analysis and modeling of superconducting planar transmission lines were performed. Theoretically, the highest possible Q values of superconducting microstrip line was calculated and, as a result, it provided the Q value that the experiment can aim for. As an effort to search for a proper superconducting transmission line structure, the superconducting microstrip line and coplanar waveguide were compared in terms of loss characteristics and their design aspects. Also, the research was expanded to a superconducting coplanar waveguide family in the microwave packaging environment. Theoretically, it was pointed out that the substrate loss is critical in the superconducting transmission line structures.
Modified magnetism within the coherence volume of superconducting Fe1+δSexTe1-x
NASA Astrophysics Data System (ADS)
Leiner, J.; Thampy, V.; Christianson, A. D.; Abernathy, D. L.; Stone, M. B.; Lumsden, M. D.; Sefat, A. S.; Sales, B. C.; Hu, Jin; Mao, Zhiqiang; Bao, Wei; Broholm, C.
2014-09-01
Neutron scattering is used to probe magnetic interactions as superconductivity develops in optimally doped Fe1+δSexTe1-x. Applying the first moment sum rule to comprehensive neutron scattering data, we extract the change in magnetic exchange energy Δ [JR -R'
NASA Astrophysics Data System (ADS)
Dinh, Minh-Chau; Ju, Chang-Hyeon; Kim, Sung-Kyu; Kim, Jin-Geun; Park, Minwon; Yu, In-Keun
2013-01-01
The combination of a high temperature superconducting DC power cable and a voltage source converter based HVDC (VSC-HVDC) creates a new option for transmitting power with multiple collection and distribution points for long distance and bulk power transmissions. It offers some greater advantages compared with HVAC or conventional HVDC transmission systems, and it is well suited for the grid integration of renewable energy sources in existing distribution or transmission systems. For this reason, a superconducting DC transmission system based HVDC transmission technologies is planned to be set up in the Jeju power system, Korea. Before applying this system to a real power system on Jeju Island, system analysis should be performed through a real time test. In this paper, a model-sized superconducting VSC-HVDC system, which consists of a small model-sized VSC-HVDC connected to a 2 m YBCO HTS DC model cable, is implemented. The authors have performed the real-time simulation method that incorporates the model-sized superconducting VSC-HVDC system into the simulated Jeju power system using Real Time Digital Simulator (RTDS). The performance analysis of the superconducting VSC-HVDC systems has been verified by the proposed test platform and the results were discussed in detail.
NASA Astrophysics Data System (ADS)
Dinh, Minh-Chau; Ju, Chang-Hyeon; Kim, Sung-Kyu; Kim, Jin-Geun; Park, Minwon; Yu, In-Keun
2012-08-01
The combination of a high temperature superconducting DC power cable and a voltage source converter based HVDC (VSC-HVDC) creates a new option for transmitting power with multiple collection and distribution points for long distance and bulk power transmissions. It offers some greater advantages compared with HVAC or conventional HVDC transmission systems, and it is well suited for the grid integration of renewable energy sources in existing distribution or transmission systems. For this reason, a superconducting DC transmission system based HVDC transmission technologies is planned to be set up in the Jeju power system, Korea. Before applying this system to a real power system on Jeju Island, system analysis should be performed through a real time test. In this paper, a model-sized superconducting VSC-HVDC system, which consists of a small model-sized VSC-HVDC connected to a 2 m YBCO HTS DC model cable, is implemented. The authors have performed the real-time simulation method that incorporates the model-sized superconducting VSC-HVDC system into the simulated Jeju power system using Real Time Digital Simulator (RTDS). The performance analysis of the superconducting VSC-HVDC systems has been verified by the proposed test platform and the results were discussed in detail.
NASA Astrophysics Data System (ADS)
Yuan, Weijia; Coombs, T. A.; Kim, Jae-Ho; Han Kim, Chul; Kvitkovic, Jozef; Pamidi, Sastry
2011-12-01
Theoretical and experimental AC loss data on a superconducting pancake coil wound using second generation (2 G) conductors are presented. An anisotropic critical state model is used to calculate critical current and the AC losses of a superconducting pancake coil. In the coil there are two regions, the critical state region and the subcritical region. The model assumes that in the subcritical region the flux lines are parallel to the tape wide face. AC losses of the superconducting pancake coil are calculated using this model. Both calorimetric and electrical techniques were used to measure AC losses in the coil. The calorimetric method is based on measuring the boil-off rate of liquid nitrogen. The electric method used a compensation circuit to eliminate the inductive component to measure the loss voltage of the coil. The experimental results are consistent with the theoretical calculations thus validating the anisotropic critical state model for loss estimations in the superconducting pancake coil.
Gate-Induced Interfacial Superconductivity in 1T-SnSe2.
Zeng, Junwen; Liu, Erfu; Fu, Yajun; Chen, Zhuoyu; Pan, Chen; Wang, Chenyu; Wang, Miao; Wang, Yaojia; Xu, Kang; Cai, Songhua; Yan, Xingxu; Wang, Yu; Liu, Xiaowei; Wang, Peng; Liang, Shi-Jun; Cui, Yi; Hwang, Harold Y; Yuan, Hongtao; Miao, Feng
2018-02-14
Layered metal chalcogenide materials provide a versatile platform to investigate emergent phenomena and two-dimensional (2D) superconductivity at/near the atomically thin limit. In particular, gate-induced interfacial superconductivity realized by the use of an electric-double-layer transistor (EDLT) has greatly extended the capability to electrically induce superconductivity in oxides, nitrides, and transition metal chalcogenides and enable one to explore new physics, such as the Ising pairing mechanism. Exploiting gate-induced superconductivity in various materials can provide us with additional platforms to understand emergent interfacial superconductivity. Here, we report the discovery of gate-induced 2D superconductivity in layered 1T-SnSe 2 , a typical member of the main-group metal dichalcogenide (MDC) family, using an EDLT gating geometry. A superconducting transition temperature T c ≈ 3.9 K was demonstrated at the EDL interface. The 2D nature of the superconductivity therein was further confirmed based on (1) a 2D Tinkham description of the angle-dependent upper critical field B c2 , (2) the existence of a quantum creep state as well as a large ratio of the coherence length to the thickness of superconductivity. Interestingly, the in-plane B c2 approaching zero temperature was found to be 2-3 times higher than the Pauli limit, which might be related to an electric field-modulated spin-orbit interaction. Such results provide a new perspective to expand the material matrix available for gate-induced 2D superconductivity and the fundamental understanding of interfacial superconductivity.
Elaboration of the α-model derived from the BCS theory of superconductivity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnston, David C.
2013-10-14
The single-band α-model of superconductivity (Padamsee et al 1973 J. Low Temp. Phys. 12 387) is a popular model that was adapted from the single-band Bardeen–Cooper–Schrieffer (BCS) theory of superconductivity mainly to allow fits to electronic heat capacity versus temperature T data that deviate from the BCS prediction. The model assumes that the normalized superconducting order parameter Δ(T)/Δ(0) and therefore the normalized London penetration depth λL(T)/λL(0) are the same as in BCS theory, calculated using the BCS value αBCS ≈ 1.764 of α ≡ Δ(0)/kBTc, where kB is The single-band α-model of superconductivity (Padamsee et al 1973 J. Low Temp.more » Phys. 12 387) is a popular model that was adapted from the single-band Bardeen–Cooper–Schrieffer (BCS) theory of superconductivity mainly to allow fits to electronic heat capacity versus temperature T data that deviate from the BCS prediction. The model assumes that the normalized superconducting order parameter Δ(T)/Δ(0) and therefore the normalized London penetration depth λL(T)/λL(0) are the same as in BCS theory, calculated using the BCS value αBCS ≈ 1.764 of α ≡ Δ(0)/kBTc, where kB is Boltzmann's constant and Tc is the superconducting transition temperature. On the other hand, to calculate the electronic free energy, entropy, heat capacity and thermodynamic critical field versus T, the α-model takes α to be an adjustable parameter. Here we write the BCS equations and limiting behaviors for the superconducting state thermodynamic properties explicitly in terms of α, as needed for calculations within the α-model, and present plots of the results versus T and α that are compared with the respective BCS predictions. Mechanisms such as gap anisotropy and strong coupling that can cause deviations of the thermodynamics from the BCS predictions, especially the heat capacity jump at Tc, are considered. Extensions of the α-model that have appeared in the literature, such as the two-band model, are also discussed. Tables of values of Δ(T)/Δ(0), the normalized London parameter Λ(T)/Λ(0) and λL(T)/λL(0) calculated from the BCS theory using α = αBCS are provided, which are the same in the α-model by assumption. Tables of values of the entropy, heat capacity and thermodynamic critical field versus T for seven values of α, including αBCS, are also presented.« less
NASA Astrophysics Data System (ADS)
Bergen, A.; van Weers, H. J.; Bruineman, C.; Dhallé, M. M. J.; Krooshoop, H. J. G.; ter Brake, H. J. M.; Ravensberg, K.; Jackson, B. D.; Wafelbakker, C. K.
2016-10-01
The paper describes the development and the experimental validation of a cryogenic magnetic shielding system for transition edge sensor based space detector arrays. The system consists of an outer mu-metal shield and an inner superconducting niobium shield. First, a basic comparison is made between thin-walled mu-metal and superconducting shields, giving an off-axis expression for the field inside a cup-shaped superconductor as a function of the transverse external field. Starting from these preliminary analytical considerations, the design of an adequate and realistic shielding configuration for future space flight applications (either X-IFU [D. Barret et al., e-print arXiv:1308.6784 [astro-ph.IM] (2013)] or SAFARI [B. Jackson et al., IEEE Trans. Terahertz Sci. Technol. 2, 12 (2012)]) is described in more detail. The numerical design and verification tools (static and dynamic finite element method (FEM) models) are discussed together with their required input, i.e., the magnetic-field dependent permeability data. Next, the actual manufacturing of the shields is described, including a method to create a superconducting joint between the two superconducting shield elements that avoid flux penetration through the seam. The final part of the paper presents the experimental verification of the model predictions and the validation of the shield's performance. The shields were cooled through the superconducting transition temperature of niobium in zero applied magnetic field (<10 nT) or in a DC field with magnitude ˜100 μT, applied either along the system's symmetry axis or perpendicular to it. After cool-down, DC trapped flux profiles were measured along the shield axis with a flux-gate magnetometer and the attenuation of externally applied AC fields (100 μT, 0.1 Hz, both axial and transverse) was verified along this axis with superconducting quantum interference device magnetometers. The system's measured on-axis shielding factor is greater than 106, well exceeding the requirement of the envisaged missions. Following field-cooling in an axial field of 85 μT, the residual internal DC field normal to the detector plane is less than 1 μT. The trapped field patterns are compared to the predictions of the dynamic FEM model, which describes them well in the region where the internal field exceeds 6 μT.
Bergen, A; van Weers, H J; Bruineman, C; Dhallé, M M J; Krooshoop, H J G; Ter Brake, H J M; Ravensberg, K; Jackson, B D; Wafelbakker, C K
2016-10-01
The paper describes the development and the experimental validation of a cryogenic magnetic shielding system for transition edge sensor based space detector arrays. The system consists of an outer mu-metal shield and an inner superconducting niobium shield. First, a basic comparison is made between thin-walled mu-metal and superconducting shields, giving an off-axis expression for the field inside a cup-shaped superconductor as a function of the transverse external field. Starting from these preliminary analytical considerations, the design of an adequate and realistic shielding configuration for future space flight applications (either X-IFU [D. Barret et al., e-print arXiv:1308.6784 [astro-ph.IM] (2013)] or SAFARI [B. Jackson et al., IEEE Trans. Terahertz Sci. Technol. 2, 12 (2012)]) is described in more detail. The numerical design and verification tools (static and dynamic finite element method (FEM) models) are discussed together with their required input, i.e., the magnetic-field dependent permeability data. Next, the actual manufacturing of the shields is described, including a method to create a superconducting joint between the two superconducting shield elements that avoid flux penetration through the seam. The final part of the paper presents the experimental verification of the model predictions and the validation of the shield's performance. The shields were cooled through the superconducting transition temperature of niobium in zero applied magnetic field (<10 nT) or in a DC field with magnitude ∼100 μT, applied either along the system's symmetry axis or perpendicular to it. After cool-down, DC trapped flux profiles were measured along the shield axis with a flux-gate magnetometer and the attenuation of externally applied AC fields (100 μT, 0.1 Hz, both axial and transverse) was verified along this axis with superconducting quantum interference device magnetometers. The system's measured on-axis shielding factor is greater than 10 6 , well exceeding the requirement of the envisaged missions. Following field-cooling in an axial field of 85 μT, the residual internal DC field normal to the detector plane is less than 1 μT. The trapped field patterns are compared to the predictions of the dynamic FEM model, which describes them well in the region where the internal field exceeds 6 μT.
NASA Astrophysics Data System (ADS)
Kulkarni, Devdatta; Chen, Edward; Ho, Mantak; Karmaker, Haran
For offshore large multi-megawatt direct drive wind generators, because of its ability to generate high flux fields, superconducting (SC) technology can offer significant size and mass reduction over traditional technologies. However, cryogenic cooling design remains as one of the major obstacles to overcome. Different cryogenic cooling designs, such as warm shaft and cold shaft rotor design, present different advantages and challenges technically and commercially. This paper presents the investigations on both designs for large SC generators from manufacturability and service perspectives.
The t J model for the oxide high-Tc superconductors
NASA Astrophysics Data System (ADS)
Ogata, Masao; Fukuyama, Hidetoshi
2008-03-01
A theoretical review is given on high temperature superconductivity in copper oxides (cuprates) by focusing on the hole doping cases based on the view that it is realized in carrier doped Mott insulators, as noted by Anderson in the initial stage. From the detailed knowledge of electronic states deduced from experiments that showed the undoped parent case is Mott insulators (charge transfer type insulators, to be precise) and that the hole doping is mainly on oxygen sites, the t-J model, as derived by Zhang and Rice, is shown to be a canonical model for hole doped cuprates and values of various parameters of the model have been assessed. Results of many different numerical methods so far obtained for this t-J model, especially the variational Monte Carlo method, have clearly indicated the stability of the \\rmd_{x^2-y^2} -wave superconductivity at absolute zero for the parameter region of actual experimental interest and the particular doping dependences of the condensation energy of superconductivity reflecting particular features of doped Mott insulators. For finite temperatures, on the other hand, the field theoretical slave-boson approximation based on the spin (spinons) and charge (holons) separations and the gauge fields as a glue combining them predicts qualitatively particular features of the existence of characteristic crossover temperatures of the spin singlet of the resonating valence bond (RVB) state, TRVB and the onset of Bose condensation of holons, TB, triggering coherent motion of electrons as convoluted particles of spinons and holons. The considerations based on the gauge field indicate that the onset temperature of superconductivity, Tc, is the lower one of these two, i.e. either TB (overdoped cases) or TRVB (underdoped cases), respectively. These characteristic features of the 'phase diagram' at finite temperatures are in overall agreement with various experimental observations, especially with the existence of spin-gap or pseudo-gap phases. In more detailed examinations of the underdoped region, the antiferromagnetic long-range order and superconductivity show a very intricate relationship at low temperatures depending on the system; they coexist as clarified in the inner layer of Hg-1245 but spin glass states intervene between them in La2-xSrxCuO4 (LSCO). It is argued that these differences can be attributed to the different degrees of disorder. Actually, theories based on the t-J model have also predicted the coexistence of antiferromagnetism and superconductivity in the ground state of clean systems. On the other hand, interesting experimental findings of large Nernst effect and 'Fermi arc' in LSCO and impurity effects in YBCO have prompted the necessity of theoretical investigations of electronic states of lightly doped Mott insulators in the presence of strong disorder.
Testing beam-induced quench levels of LHC superconducting magnets
NASA Astrophysics Data System (ADS)
Auchmann, B.; Baer, T.; Bednarek, M.; Bellodi, G.; Bracco, C.; Bruce, R.; Cerutti, F.; Chetvertkova, V.; Dehning, B.; Granieri, P. P.; Hofle, W.; Holzer, E. B.; Lechner, A.; Nebot Del Busto, E.; Priebe, A.; Redaelli, S.; Salvachua, B.; Sapinski, M.; Schmidt, R.; Shetty, N.; Skordis, E.; Solfaroli, M.; Steckert, J.; Valuch, D.; Verweij, A.; Wenninger, J.; Wollmann, D.; Zerlauth, M.
2015-06-01
In the years 2009-2013 the Large Hadron Collider (LHC) has been operated with the top beam energies of 3.5 and 4 TeV per proton (from 2012) instead of the nominal 7 TeV. The currents in the superconducting magnets were reduced accordingly. To date only seventeen beam-induced quenches have occurred; eight of them during specially designed quench tests, the others during injection. There has not been a single beam-induced quench during normal collider operation with stored beam. The conditions, however, are expected to become much more challenging after the long LHC shutdown. The magnets will be operating at near nominal currents, and in the presence of high energy and high intensity beams with a stored energy of up to 362 MJ per beam. In this paper we summarize our efforts to understand the quench levels of LHC superconducting magnets. We describe beam-loss events and dedicated experiments with beam, as well as the simulation methods used to reproduce the observable signals. The simulated energy deposition in the coils is compared to the quench levels predicted by electrothermal models, thus allowing one to validate and improve the models which are used to set beam-dump thresholds on beam-loss monitors for run 2.
Fidelity study of superconductivity in extended Hubbard models
Plonka, N.; Jia, C. J.; Wang, Y.; ...
2015-07-08
The Hubbard model with local on-site repulsion is generally thought to possess a superconducting ground state for appropriate parameters, but the effects of more realistic long-range Coulomb interactions have not been studied extensively. We study the influence of these interactions on superconductivity by including nearest- and next-nearest-neighbor extended Hubbard interactions in addition to the usual on-site terms. Utilizing numerical exact diagonalization, we analyze the signatures of superconductivity in the ground states through the fidelity metric of quantum information theory. Finally, we find that nearest and next-nearest neighbor interactions have thresholds above which they destabilize superconductivity regardless of whether they aremore » attractive or repulsive, seemingly due to competing charge fluctuations.« less
Thermal response of large area high temperature superconducting YBaCuO infrared bolometers
NASA Technical Reports Server (NTRS)
Khalil, Ali E.
1991-01-01
Thermal analysis of large area high temperature superconducting infrared detector operating in the equilibrium mode (bolometer) was performed. An expression for the temperature coefficient beta = 1/R(dR/dT) in terms of the thermal conductance and the thermal time constant of the detector were derived. A superconducting transition edge bolometer is a thermistor consisting of a thin film superconducting YBaCuO evaporated into a suitable thermally isolated substrate. The operating temperature of the bolometer is maintained close to the midpoint of the superconducting transition region where the resistance R has a maximum dynamic range. A detector with a strip configuration was analyzed and an expression for the temperature rise (delta T) above the ambient due to a uniform illumination with a source of power density was calculated. An expression for the thermal responsibility depends upon the spatial modulation frequency and the angular frequency of the incoming radiation. The problem of the thermal cross talk between different detector elements was addressed. In the case of monolithic HTS detector array with a row of square elements of dimensions 2a and CCD or CID readout electronics the thermal spread function was derived for different spacing between elements.
NASA Astrophysics Data System (ADS)
Sung, Hae-Jin; Kim, Gyeong-Hun; Kim, Kwangmin; Park, Minwon; Yu, In-Keun; Kim, Jong-Yul
2013-11-01
Wind turbine concepts can be classified into the geared type and the gearless type. The gearless type wind turbine is more attractive due to advantages of simplified drive train and increased energy yield, and higher reliability because the gearbox is omitted. In addition, this type resolves the weight issue of the wind turbine with the light weight of gearbox. However, because of the low speed operation, this type has disadvantage such as the large diameter and heavy weight of generator. Super-Conducting (SC) wind power generator can reduce the weight and volume of a wind power system. Properties of superconducting wire are very different from each company. This paper considers the design and comparative analysis of 10 MW class SC wind power generators according to different types of SC wires. Super-Conducting Synchronous Generators (SCSGs) using YBCO and Bi-2223 wires are optimized by an optimal method. The magnetic characteristics of the SCSGs are investigated using the finite elements method program. The optimized specifications of the SCSGs are discussed in detail, and the optimization processes can be used effectively to develop large scale wind power generation systems.
Fabrication of Large YBCO Superconducting Disks
NASA Technical Reports Server (NTRS)
Koczor, Ronald J.; Noever, David A.; Robertson, Glen A.
1999-01-01
We have undertaken fabrication of large bulk items to develop a repeatable process and to provide test articles in laboratory experiments investigating reported coupling of electromagnetic fields with the local gravity field in the presence of rotating superconducting disks. A successful process was developed which resulted in fabrication of 30 cm diameter annular disks. The disks were fabricated of the superconductor YBa2Cu3O(7-x). Various material parameters of the disks were measured.
Pt-Bi Antibonding Interaction: The Key Factor for Superconductivity in Monoclinic BaPt2Bi2.
Gui, Xin; Xing, Lingyi; Wang, Xiaoxiong; Bian, Guang; Jin, Rongying; Xie, Weiwei
2018-02-19
In the search for superconductivity in a BaAu 2 Sb 2 -type monoclinic structure, we have successfully synthesized the new compound BaPt 2 Bi 2 , which crystallizes in the space group P2 1 /m (No. 11; Pearson symbol mP10) according to a combination of powder and single-crystal X-ray diffraction and scanning electron microscopy. A sharp electrical resistivity drop and large diamagnetic magnetization below 2.0 K indicates it owns superconducting ground state. This makes BaPt 2 Bi 2 the first reported superconductor in a monoclinic BaAu 2 Sb 2 -type structure, a previously unappreciated structure for superconductivity. First-principles calculations considering spin-orbit coupling indicate that Pt-Bi antibonding interaction plays a critical role in inducing superconductivity.
Hole superconductivity in a generalized two-band model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, X.Q.; Hirsch, J.E.
1992-06-01
We study superconductivity in a two-band model that generalizes the model introduced by Suhl, Matthias, and Walker: All possible interaction terms coupling both bands are included. The pairing interaction is assumed to originate in the momentum dependence of the intraband interactions that arises in the model of hole superconductivity. The model generically displays a single critical temperature and two gaps, with the larger gap associated with the band with strongest holelike character to the carriers. The dependence of the critical temperature and of the magnitudes of the gaps on the various parameters in the Hamiltonian is studied.
14 MeV Neutron Irradiation Effect on Superconducting Magnet Materials for Fusion Device
NASA Astrophysics Data System (ADS)
Nishimura, A.; Hishinuma, Y.; Seo, K.; Tanaka, T.; Muroga, T.; Nishijima, S.; Katagiri, K.; Takeuchi, T.; Shindo, Y.; Ochiai, K.; Nishitani, T.; Okuno, K.
2006-03-01
As a large-scale plasma experimental device is planned and designed, the importance of investigations on irradiation effect of 14 MeV neutron increases and an experimental database is desired to be piled up. Recently, intense streaming of fast neutron from ports are reported and degradation of superconducting magnet performance is anticipated. To investigate the pure neutron effect on superconducting magnet materials, a cryogenic target system was newly developed and installed at Fusion Neutronics Source in Japan Atomic Energy Research Institute. Although production rate of 14 MeV neutron is not large, only 14 MeV neutron can be supplied to irradiation test without gamma ray. Copper wires, superconducting wires, glass fiber reinforced composites are irradiated and the irradiation effects are characterized. At the same time, sensors for measuring temperature and magnetic field are irradiated and their performance was investigated after irradiation. This paper presents outline of the cryogenic target system and some irradiation test results.
AC Loss Analysis of MgB2-Based Fully Superconducting Machines
NASA Astrophysics Data System (ADS)
Feddersen, M.; Haran, K. S.; Berg, F.
2017-12-01
Superconducting electric machines have shown potential for significant increase in power density, making them attractive for size and weight sensitive applications such as offshore wind generation, marine propulsion, and hybrid-electric aircraft propulsion. Superconductors exhibit no loss under dc conditions, though ac current and field produce considerable losses due to hysteresis, eddy currents, and coupling mechanisms. For this reason, many present machines are designed to be partially superconducting, meaning that the dc field components are superconducting while the ac armature coils are conventional conductors. Fully superconducting designs can provide increases in power density with significantly higher armature current; however, a good estimate of ac losses is required to determine the feasibility under the machines intended operating conditions. This paper aims to characterize the expected losses in a fully superconducting machine targeted towards aircraft, based on an actively-shielded, partially superconducting machine from prior work. Various factors are examined such as magnet strength, operating frequency, and machine load to produce a model for the loss in the superconducting components of the machine. This model is then used to optimize the design of the machine for minimal ac loss while maximizing power density. Important observations from the study are discussed.
Development of 70 MW class superconducting generator with quick-response excitation
NASA Astrophysics Data System (ADS)
Miyaike, Kiyoshi; Kitajima, Toshio; Ito, Tetsuo
2002-03-01
The development of a superconducting generator had been carried out for 12 years under the first stage of a Super GM project. The 70 MW class model machine with quick response excitation was manufactured and evaluated in the project. This type of superconducting generator improves power system stability against rapid load fluctuations at the power system faults. This model machine achieved all development targets including high stability during rapid excitation control. It was also connected to the actual 77 kV electrical power grid as a synchronous condenser and proved advantages and high-operation reliability of the superconducting generator.
The use of superconductivity in magnetic balance design
NASA Technical Reports Server (NTRS)
Moss, F. E.
1973-01-01
The magnetic field and field gradient requirements for magnetic suspension in a Mach 3, 6-in. diameter wind tunnel are stated, along with the power requirements for gradient coil pairs wound of copper operating at room temperature and aluminum cooled to 20 K. The power dissipated is large enough that the use of superconductivity in the coil design becomes an attractive alternative. The problems of stability and ac losses are outlined along with the properties of stabilized superconductors. A brief review of a simplified version of the critical state model of C. P. Bean is presented, and the problems involved in calculations of the ac losses in superconducting coils are outlined. A summary of ac loss data taken on pancake coils wound of commercially available Nb3Sn partially stabilized tape is presented and shown as leading to the U.Va. gradient coil design. The actual coil performance is compared with predictions based on the BNL results. Finally, some remarks are presented concerning scaling of the ac losses to larger magnetic suspension systems as well as prospects for improved performance using newer multifilament superconductors.
NASA Astrophysics Data System (ADS)
Harada, T.; Shiogai, J.; Miyakawa, T.; Nojima, T.; Tsukazaki, A.
2018-05-01
The framework of phase transition, such as superconducting transition, occasionally depends on the dimensionality of materials. Superconductivity is often weakened in the experimental conditions of two-dimensional thin films due to the fragile superconducting state against defects and interfacial effects. In contrast to this general trend, superconductivity in the thin limit of FeSe exhibits an opposite trend, such as an increase in critical temperature (T c) and the superconducting gap exceeding the bulk values; however, the dominant mechanism is still under debate. Here, we measured thickness-dependent electrical transport properties of the ion-gated FeSe thin films to evaluate the superconducting critical current (I c) in the ultrathin FeSe. Upon systematically decreasing the FeSe thickness by the electrochemical etching technique in the Hall bar-shaped electric double-layer transistors, we observed a dramatic enhancement of I c reaching about 10 mA and corresponding to about 107 A cm‑2 in the thinnest condition. By analyzing the transition behavior, we clarify that the suppressed superconducting fluctuation is one of the origins of the large I c in the ion-gated ultrathin FeSe films. These results indicate the existence of a robust superconducting state possibly with dense Cooper pairs at the thin limit of FeSe.
Superconductivity and spin-orbit coupling in non-centrosymmetric materials: a review
NASA Astrophysics Data System (ADS)
Smidman, M.; Salamon, M. B.; Yuan, H. Q.; Agterberg, D. F.
2017-03-01
In non-centrosymmetric superconductors, where the crystal structure lacks a centre of inversion, parity is no longer a good quantum number and an electronic antisymmetric spin-orbit coupling (ASOC) is allowed to exist by symmetry. If this ASOC is sufficiently large, it has profound consequences on the superconducting state. For example, it generally leads to a superconducting pairing state which is a mixture of spin-singlet and spin-triplet components. The possibility of such novel pairing states, as well as the potential for observing a variety of unusual behaviors, led to intensive theoretical and experimental investigations. Here we review the experimental and theoretical results for superconducting systems lacking inversion symmetry. Firstly we give a conceptual overview of the key theoretical results. We then review the experimental properties of both strongly and weakly correlated bulk materials, as well as two dimensional systems. Here the focus is on evaluating the effects of ASOC on the superconducting properties and the extent to which there is evidence for singlet-triplet mixing. This is followed by a more detailed overview of theoretical aspects of non-centrosymmetric superconductivity. This includes the effects of the ASOC on the pairing symmetry and the superconducting magnetic response, magneto-electric effects, superconducting finite momentum pairing states, and the potential for non-centrosymmetric superconductors to display topological superconductivity.
NASA Astrophysics Data System (ADS)
Powell, James; Maise, George; Rather, John
2010-01-01
A new approach for the erection of rigid large scale structures in space-MIC (Magnetically Inflated Cable)-is described. MIC structures are launched as a compact payload of superconducting cables and attached tethers. After reaching orbit, the superconducting cables are energized with electrical current. The magnet force interactions between the cables cause them to expand outwards into the final large structure. Various structural shapes and applications are described. The MIC structure can be a simple flat disc with a superconducting outer ring that supports a tether network holding a solar cell array, or it can form a curved mirror surface that concentrates light and focuses it on a smaller region-for example, a high flux solar array that generates electric power, a high temperature receiver that heats H2 propellant for high Isp propulsion, and a giant primary reflector for a telescope for astronomy and Earth surveillance. Linear dipole and quadrupole MIC structures are also possible. The linear quadrupole structure can be used for magnetic shielding against cosmic radiation for astronauts, for example. MIC could use lightweight YBCO superconducting HTS (High Temperature Superconductor) cables, that can operate with liquid N2 coolant at engineering current densities of ~105 amp/cm2. A 1 kilometer length of MIC cable would weigh only 3 metric tons, including superconductor, thermal insulations, coolant circuits, and refrigerator, and fit within a 3 cubic meter compact package for launch. Four potential MIC applications are described: Solar-thermal propulsion using H2 propellant, space based solar power generation for beaming power to Earth, a large space telescope, and solar electric generation for a manned lunar base. The first 3 applications use large MIC solar concentrating mirrors, while the 4th application uses a surface based array of solar cells on a magnetically levitated MIC structure to follow the sun. MIC space based mirrors can be very large and light in weight. A 300 meter diameter MIC mirror in orbit for example, would weigh 20 metric tons and MIC structures can be easily developed and tested on Earth at small scale in existing evacuated chambers followed by larger scale tests in the atmosphere, using a vacuum tight enclosure on the small diameter superconducting cable to prevent air leakage into the evacuated thermal insulation around the superconducting cable.
Te vacancy-driven superconductivity in orthorhombic molybdenum ditelluride
NASA Astrophysics Data System (ADS)
Cho, Suyeon; Kang, Se Hwang; Yu, Ho Sung; Kim, Hyo Won; Ko, Wonhee; Hwang, Sung Woo; Han, Woo Hyun; Choe, Duk-Hyun; Jung, Young Hwa; Chang, Kee Joo; Lee, Young Hee; Yang, Heejun; Wng Kim, Sung
2017-06-01
Two-dimensional (2D) transition metal dichalcogenides (TMDs) have received great attentions because of diverse quantum electronic states such as topological insulating (TI), Weyl semimetallic (WSM) and superconducting states. Recently, the superconducting states emerged in pressurized semimetallic TMDs such as MoTe2 and WTe2 have become one of the central issues due to their predicted WSM states. However, the difficulty in synthetic control of chalcogen vacancies and the ambiguous magneto transport properties have hindered the rigorous study on superconducting and WSM states. Here, we report the emergence of superconductivity at 2.1 K in Te-deficient orthorhombic T d-MoTe2-x with an intrinsic electron-doping, while stoichiometric monoclinic 1T‧-MoTe2 shows no superconducting state down to 10 mK, but exhibits a large magnetoresistance of 32 000% at 2 K in a magnetic field of 14 T originating from nearly perfect compensation of electron and hole carriers. Scanning tunnelling spectroscopy and synchrotron x-ray diffraction combined with theoretical calculations clarify that Te vacancies trigger superconductivity via intrinsic electron doping and the evolution of the T d phase from the 1T‧ phase below 200 K. Unlike the pressure-induced superconducting state of monoclinic MoTe2, this Te vacancy-induced superconductivity is emerged in orthorhombic MoTe2, which is predicted as Weyl semimetal, via electron-doping. This chalcogen vacancy induced-superconductivity provides a new route for cultivating superconducting state together with WSM state in 2D van der Waals materials.
Probing optically silent superfluid stripes in cuprates
NASA Astrophysics Data System (ADS)
Rajasekaran, S.; Okamoto, J.; Mathey, L.; Fechner, M.; Thampy, V.; Gu, G. D.; Cavalleri, A.
2018-02-01
Unconventional superconductivity in the cuprates coexists with other types of electronic order. However, some of these orders are invisible to most experimental probes because of their symmetry. For example, the possible existence of superfluid stripes is not easily validated with linear optics, because the stripe alignment causes interlayer superconducting tunneling to vanish on average. Here we show that this frustration is removed in the nonlinear optical response. A giant terahertz third harmonic, characteristic of nonlinear Josephson tunneling, is observed in La1.885Ba0.115CuO4 above the transition temperature Tc = 13 kelvin and up to the charge-ordering temperature Tco = 55 kelvin. We model these results by hypothesizing the presence of a pair density wave condensate, in which nonlinear mixing of optically silent tunneling modes drives large dipole-carrying supercurrents.
d -wave superconductivity in the presence of nearest-neighbor Coulomb repulsion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, M.; Hahner, U. R.; Schulthess, T. C.
Dynamic cluster quantum Monte Carlo calculations for a doped two-dimensional extended Hubbard model are used to study the stability and dynamics of d-wave pairing when a nearest-neighbor Coulomb repulsion V is present in addition to the on-site Coulomb repulsion U. We find that d-wave pairing and the superconducting transition temperature Tc are only weakly suppressed as long as V does not exceed U/2. This stability is traced to the strongly retarded nature of pairing that allows the d-wave pairs to minimize the repulsive effect of V. When V approaches U/2, large momentum charge fluctuations are found to become important andmore » to give rise to a more rapid suppression of d-wave pairing and T c than for smaller V.« less
NASA Astrophysics Data System (ADS)
Sanfilippo, S.; Siemko, A.
2000-08-01
This paper presents a study of the thermal effects on quench performance for several large Hadron collider (LHC) single aperture short dipole models. The analysis is based on the temperature profile in a superconducting magnet evaluated after a quench. Peak temperatures and temperature gradients in the magnet coil are estimated for different thicknesses of insulation layer between the quench heaters and the coil and different powering and protection parameters. The results show clear correlation between the thermo-mechanical response of the magnet and quench performance. They also display that the optimisation of the position of quench heaters can reduce the decrease of training performance caused by the coexistence of a mechanical weak region and of a local temperature rise.
NASA Astrophysics Data System (ADS)
Inomata, Kunihiro; Yamamoto, Tsuyoshi; Billangeon, Pierre-M.; Lin, Zhirong; Nakamura, Yasunobu; Tsai, Jaw-Shen; Koshino, Kazuki
2013-03-01
We demonstrate enhancement of the dispersive frequency shift in a coplanar waveguide resonator induced by a capacitively coupled superconducting flux qubit in the straddling regime. The magnitude of the observed shift, 80 MHz for the qubit-resonator detuning of 5 GHz, is quantitatively explained by the generalized Rabi model which takes into account the contribution of the qubit higher energy levels. By applying the enhanced dispersive shift to the qubit readout, we achieved 90 % contrast of the Rabi oscillations which is mainly limited by the energy relaxation of the qubit. We also discuss the qubit readout using a Josephson parametric amplifier. This work was supported by the MEXT Kakenhi ``Quantum Cybernetics'', the JSPS through its FIRST Program, and the NICT Commissioned Research.
The circular form of the linear superconducting machine for marine propulsion
NASA Astrophysics Data System (ADS)
Rakels, J. H.; Mahtani, J. L.; Rhodes, R. G.
1981-01-01
The superconducting linear synchronous machine (LSM) is an efficient method of propulsion of advanced ground transport systems and can also be used in marine engineering for the propulsion of large commercial vessels, tankers, and military ships. It provides high torque at low shaft speeds and ease of reversibility; a circular LSM design is proposed as a drive motor. The equipment is compared with the superconducting homopolar motors, showing flexibility in design, built in redundancy features, and reliability.
Shimojima, Takahiro; Malaeb, Walid; Nakamura, Asuka; Kondo, Takeshi; Kihou, Kunihiro; Lee, Chul-Ho; Iyo, Akira; Eisaki, Hiroshi; Ishida, Shigeyuki; Nakajima, Masamichi; Uchida, Shin-ichi; Ohgushi, Kenya; Ishizaka, Kyoko; Shin, Shik
2017-01-01
A major problem in the field of high-transition temperature (Tc) superconductivity is the identification of the electronic instabilities near superconductivity. It is known that the iron-based superconductors exhibit antiferromagnetic order, which competes with the superconductivity. However, in the nonmagnetic state, there are many aspects of the electronic instabilities that remain unclarified, as represented by the orbital instability and several in-plane anisotropic physical properties. We report a new aspect of the electronic state of the optimally doped iron-based superconductors by using high–energy resolution angle-resolved photoemission spectroscopy. We find spectral evidence for the folded electronic structure suggestive of an antiferroic electronic instability, coexisting with the superconductivity in the nonmagnetic state of Ba1−xKxFe2As2. We further establish a phase diagram showing that the antiferroic electronic structure persists in a large portion of the nonmagnetic phase covering the superconducting dome. These results motivate consideration of a key unknown electronic instability, which is necessary for the achievement of high-Tc superconductivity in the iron-based superconductors. PMID:28875162
Shimojima, Takahiro; Malaeb, Walid; Nakamura, Asuka; Kondo, Takeshi; Kihou, Kunihiro; Lee, Chul-Ho; Iyo, Akira; Eisaki, Hiroshi; Ishida, Shigeyuki; Nakajima, Masamichi; Uchida, Shin-Ichi; Ohgushi, Kenya; Ishizaka, Kyoko; Shin, Shik
2017-08-01
A major problem in the field of high-transition temperature ( T c ) superconductivity is the identification of the electronic instabilities near superconductivity. It is known that the iron-based superconductors exhibit antiferromagnetic order, which competes with the superconductivity. However, in the nonmagnetic state, there are many aspects of the electronic instabilities that remain unclarified, as represented by the orbital instability and several in-plane anisotropic physical properties. We report a new aspect of the electronic state of the optimally doped iron-based superconductors by using high-energy resolution angle-resolved photoemission spectroscopy. We find spectral evidence for the folded electronic structure suggestive of an antiferroic electronic instability, coexisting with the superconductivity in the nonmagnetic state of Ba 1- x K x Fe 2 As 2 . We further establish a phase diagram showing that the antiferroic electronic structure persists in a large portion of the nonmagnetic phase covering the superconducting dome. These results motivate consideration of a key unknown electronic instability, which is necessary for the achievement of high- T c superconductivity in the iron-based superconductors.
NASA Technical Reports Server (NTRS)
Britcher, C. P.; Fortescue, P. W.; Allcock, G. A.; Goodyer, M. J.
1979-01-01
The technology which is required to allow the principles of magnetic suspension and balance systems (MSBS) to be applied to the high Reynolds number transonic testing of aircraft models is examined. A test facility is presented as comprising a pressurized transonic cryogenic wind tunnel, with the MSBS providing full six degree of freedom control. The electro-magnets which are superconducting and fed from quiet, bipolar power supplies are examined. A model control system having some self adaptive characteristics is discussed.
Structural differences between superconducting and non-superconducting CaCuO2/SrTiO3 interfaces
NASA Astrophysics Data System (ADS)
Zarotti, Francesca; Di Castro, Daniele; Felici, Roberto; Balestrino, Giuseppe
2018-06-01
A study of the interface structure of superconducting and non-superconducting CaCuO2/SrTiO3 heterostructures grown on NdGaO3(110) substrates is reported. Using the combination of high resolution x-ray reflectivity and surface diffraction, the crystallographic structure of superconducting and non-superconducting samples has been investigated. The analysis has demonstrated the excellent sharpness of the CaCuO2/SrTiO3 interface (roughness smaller than one perovskite unit cell). Furthermore, we were able to discriminate between the superconducting and the non-superconducting phase. In the former case, we found an increase of the spacing between the topmost Ca plane of CaCuO2 block and the first TiO2 plane of the overlaying STO block, relative to the non-superconducting case. These results are in agreement with the model that foresees a strong oxygen incorporation in the interface Ca plane in the superconducting heterostructures.
Thermal stabilization of superconducting sigma strings and their drum vortons
NASA Astrophysics Data System (ADS)
Carter, Brandon; Brandenberger, Robert H.; Davis, Anne-Christine
2002-05-01
We discuss various issues related to stabilized embedded strings in a thermal background. In particular, we demonstrate that such strings will generically become superconducting at moderately low temperatures, thus enhancing their stability. We then present a new class of defects-drum vortons-which arise when a small symmetry breaking term is added to the potential. We display these points within the context of the O(4) sigma model, relevant for hadrodynamics below the QCD scale. This model admits ``embedded defects'' (topological defect configurations of a simpler-in this case O(2) symmetric-model obtained by imposing an embedding constraint) that are unstable in the full model at zero temperature, but that can be stabilized (by electromagnetic coupling to photons) in a thermal gas at moderately high termperatures. It is shown here that below the embedded defect stabilization threshold, there will still be stabilized cosmic string defects. However, they will not be of the symmetric embedded vortex type, but of an ``asymmetric'' vortex type, and are automatically superconducting. In the presence of weak symmetry breaking terms, such as arise naturally when using the O(4) model for hadrodynamics, the strings become the boundary of a new kind of cosmic sigma membrane, with tension given by the pion mass. The string current would then make it possible for a loop to attain a (classically) stable equilibrium state that differs from an ``ordinary'' vorton state by the presence of a sigma membrane stretched across it in a drum-like configuration. Such defects will however be entirely destabilized if the symmetry breaking is too strong, as is found to be the case-due to the rather large value of the pion mass-in the hadronic application of the O(4) sigma model.
Clem, John; Prozorov, Ruslan; Wijngaarden, Rinke J.
2013-09-04
The equilibrium topology of superconducting and normal domains in flat type-I superconductors is investigated. Important improvements with respect to previous work are that (1) the energy of the external magnetic field, as deformed by the presence of superconducting domains, is calculated in the same way for three different topologies and (2) calculations are made for arbitrary orientation of the applied field. A phase diagram is presented for the minimum-energy topology as a function of applied field magnitude and angle. For small (large) applied fields, normal (superconducting) tubes are found, while for intermediate fields, parallel domains have a lower energy. Themore » range of field magnitudes for which the superconducting-tubes structure is favored shrinks when the field is more in-plane oriented.« less
Quantum simulation of the spin-boson model with a microwave circuit
NASA Astrophysics Data System (ADS)
Leppäkangas, Juha; Braumüller, Jochen; Hauck, Melanie; Reiner, Jan-Michael; Schwenk, Iris; Zanker, Sebastian; Fritz, Lukas; Ustinov, Alexey V.; Weides, Martin; Marthaler, Michael
2018-05-01
We consider superconducting circuits for the purpose of simulating the spin-boson model. The spin-boson model consists of a single two-level system coupled to bosonic modes. In most cases, the model is considered in a limit where the bosonic modes are sufficiently dense to form a continuous spectral bath. A very well known case is the Ohmic bath, where the density of states grows linearly with the frequency. In the limit of weak coupling or large temperature, this problem can be solved numerically. If the coupling is strong, the bosonic modes can become sufficiently excited to make a classical simulation impossible. Here we discuss how a quantum simulation of this problem can be performed by coupling a superconducting qubit to a set of microwave resonators. We demonstrate a possible implementation of a continuous spectral bath with individual bath resonators coupling strongly to the qubit. Applying a microwave drive scheme potentially allows us to access the strong-coupling regime of the spin-boson model. We discuss how the resulting spin relaxation dynamics with different initialization conditions can be probed by standard qubit-readout techniques from circuit quantum electrodynamics.
Quantum Devices Bonded Beneath a Superconducting Shield: Part 2
NASA Astrophysics Data System (ADS)
McRae, Corey Rae; Abdallah, Adel; Bejanin, Jeremy; Earnest, Carolyn; McConkey, Thomas; Pagel, Zachary; Mariantoni, Matteo
The next-generation quantum computer will rely on physical quantum bits (qubits) organized into arrays to form error-robust logical qubits. In the superconducting quantum circuit implementation, this architecture will require the use of larger and larger chip sizes. In order for on-chip superconducting quantum computers to be scalable, various issues found in large chips must be addressed, including the suppression of box modes (due to the sample holder) and the suppression of slot modes (due to fractured ground planes). By bonding a metallized shield layer over a superconducting circuit using thin-film indium as a bonding agent, we have demonstrated proof of concept of an extensible circuit architecture that holds the key to the suppression of spurious modes. Microwave characterization of shielded transmission lines and measurement of superconducting resonators were compared to identical unshielded devices. The elimination of box modes was investigated, as well as bond characteristics including bond homogeneity and the presence of a superconducting connection.
Superconducting shielded core reactor with reduced AC losses
Cha, Yung S.; Hull, John R.
2006-04-04
A superconducting shielded core reactor (SSCR) operates as a passive device for limiting excessive AC current in a circuit operating at a high power level under a fault condition such as shorting. The SSCR includes a ferromagnetic core which may be either closed or open (with an air gap) and extends into and through a superconducting tube or superconducting rings arranged in a stacked array. First and second series connected copper coils each disposed about a portion of the iron core are connected to the circuit to be protected and are respectively wound inside and outside of the superconducting tube or rings. A large impedance is inserted into the circuit by the core when the shielding capability of the superconducting arrangement is exceeded by the applied magnetic field generated by the two coils under a fault condition to limit the AC current in the circuit. The proposed SSCR also affords reduced AC loss compared to conventional SSCRs under continuous normal operation.
de la Barrera, Sergio C; Sinko, Michael R; Gopalan, Devashish P; Sivadas, Nikhil; Seyler, Kyle L; Watanabe, Kenji; Taniguchi, Takashi; Tsen, Adam W; Xu, Xiaodong; Xiao, Di; Hunt, Benjamin M
2018-04-12
Systems simultaneously exhibiting superconductivity and spin-orbit coupling are predicted to provide a route toward topological superconductivity and unconventional electron pairing, driving significant contemporary interest in these materials. Monolayer transition-metal dichalcogenide (TMD) superconductors in particular lack inversion symmetry, yielding an antisymmetric form of spin-orbit coupling that admits both spin-singlet and spin-triplet components of the superconducting wavefunction. Here, we present an experimental and theoretical study of two intrinsic TMD superconductors with large spin-orbit coupling in the atomic layer limit, metallic 2H-TaS 2 and 2H-NbSe 2 . We investigate the superconducting properties as the material is reduced to monolayer thickness and show that high-field measurements point to the largest upper critical field thus reported for an intrinsic TMD superconductor. In few-layer samples, we find the enhancement of the upper critical field is sustained by the dominance of spin-orbit coupling over weak interlayer coupling, providing additional candidate systems for supporting unconventional superconducting states in two dimensions.
Superconducting parity effect across the Anderson limit
Vlaic, Sergio; Pons, Stéphane; Zhang, Tianzhen; Assouline, Alexandre; Zimmers, Alexandre; David, Christophe; Rodary, Guillemin; Girard, Jean-Christophe; Roditchev, Dimitri; Aubin, Hervé
2017-01-01
How small can superconductors be? For isolated nanoparticles subject to quantum size effects, P.W. Anderson in 1959 conjectured that superconductivity could only exist when the electronic level spacing δ is smaller than the superconducting gap energy Δ. Here we report a scanning tunnelling spectroscopy study of superconducting lead (Pb) nanocrystals grown on the (110) surface of InAs. We find that for nanocrystals of lateral size smaller than the Fermi wavelength of the 2D electron gas at the surface of InAs, the electronic transmission of the interface is weak; this leads to Coulomb blockade and enables the extraction of electron addition energy of the nanocrystals. For large nanocrystals, the addition energy displays superconducting parity effect, a direct consequence of Cooper pairing. Studying this parity effect as a function of nanocrystal volume, we find the suppression of Cooper pairing when the mean electronic level spacing overcomes the superconducting gap energy, thus demonstrating unambiguously the validity of the Anderson criterion. PMID:28240294
Superconductivity in the Narrow Gap Semiconductor RbBi 11/3Te 6
Malliakas, Christos D.; Chung, Duck Young; Claus, Helmut; ...
2016-10-16
Superconductivity was discovered in the layered compound RbBi 11/3Te 6, featuring Bi vacancies and a narrow band gap of 0.25(2) eV at room temperature. In addition, a sharp superconducting transition at similar to 3.2 K was observed in polycrystalline ingots. The superconducting volume fraction of oriented single crystals is almost 100%, confirming bulk superconductivity. Systematic Se and Sb substitutions in RbBi 11/3-ySb ySe xTe 6-x, revealed a dependence of the superconducting transition on composition that can increase the T c up to similar to 10%. The RbBi 11/3Te 6 system is the first member of the new homologous series Rb[Bimore » 2n+11/3Te 3n+6] with infinite Bi 2Te 3-like layers. Lastly, the large degree of chemical tunability of the electronic structure of the homology via doping and/or substitution gives rise to a new family of superconductors.« less
HEB spool pieces design description
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, D.; Strube, D.
1994-02-01
The many varied types of spool pieces for the High Energy Booster (HEB) of the Superconducting Super Collider (SSC) Laboratory are presented. Each type of spool piece is discussed, and the specific components are identified. The spool piece components allow each spool piece to perform as a unique electromechanical device positioned in series with large superconducting magnets to provide electrical and mechanical support for each superconducting magnet in areas of cryogenics, electrical power, instrumentation, diagnostics, and vacuum. A specialized HEB superspool is identified that perhaps has the potential to aid in the overall configuration management of the HEB lattice bymore » combining HEB superconducting quadrupole magnets and spool pieces within a common cryostat.« less
NASA Astrophysics Data System (ADS)
Calegari, E. J.; Magalhães, S. G.; Gomes, A. A.
2005-04-01
The Roth's two-pole approximation has been used by the present authors to study the effects of the hybridization in the superconducting properties of a strongly correlated electron system. The model used is the extended Hubbard model which includes the d-p hybridization, the p-band and a narrow d-band. The present work is an extension of our previous work (J. Mod. Phys. B 18(2) (2004) 241). Nevertheless, some important correlation functions necessary to estimate the Roth's band shift, are included together with the temperature T and the Coulomb interaction U to describe the superconductivity. The superconducting order parameter of a cuprate system, is obtained following Beenen and Edwards formalism. Here, we investigate in detail the change of the order parameter associated to temperature, Coulomb interaction and Roth's band shift effects on superconductivity. The phase diagram with Tc versus the total occupation number nT, shows the difference respect to the previous work.
Two-dimensional lattice gauge theories with superconducting quantum circuits
Marcos, D.; Widmer, P.; Rico, E.; Hafezi, M.; Rabl, P.; Wiese, U.-J.; Zoller, P.
2014-01-01
A quantum simulator of U(1) lattice gauge theories can be implemented with superconducting circuits. This allows the investigation of confined and deconfined phases in quantum link models, and of valence bond solid and spin liquid phases in quantum dimer models. Fractionalized confining strings and the real-time dynamics of quantum phase transitions are accessible as well. Here we show how state-of-the-art superconducting technology allows us to simulate these phenomena in relatively small circuit lattices. By exploiting the strong non-linear couplings between quantized excitations emerging when superconducting qubits are coupled, we show how to engineer gauge invariant Hamiltonians, including ring-exchange and four-body Ising interactions. We demonstrate that, despite decoherence and disorder effects, minimal circuit instances allow us to investigate properties such as the dynamics of electric flux strings, signaling confinement in gauge invariant field theories. The experimental realization of these models in larger superconducting circuits could address open questions beyond current computational capability. PMID:25512676
Time-reversal symmetry-breaking superconductivity in epitaxial bismuth/nickel bilayers.
Gong, Xinxin; Kargarian, Mehdi; Stern, Alex; Yue, Di; Zhou, Hexin; Jin, Xiaofeng; Galitski, Victor M; Yakovenko, Victor M; Xia, Jing
2017-03-01
Superconductivity that spontaneously breaks time-reversal symmetry (TRS) has been found, so far, only in a handful of three-dimensional (3D) crystals with bulk inversion symmetry. We report an observation of spontaneous TRS breaking in a 2D superconducting system without inversion symmetry: the epitaxial bilayer films of bismuth and nickel. The evidence comes from the onset of the polar Kerr effect at the superconducting transition in the absence of an external magnetic field, detected by the ultrasensitive loop-less fiber-optic Sagnac interferometer. Because of strong spin-orbit interaction and lack of inversion symmetry in a Bi/Ni bilayer, superconducting pairing cannot be classified as singlet or triplet. We propose a theoretical model where magnetic fluctuations in Ni induce the superconducting pairing of the [Formula: see text] orbital symmetry between the electrons in Bi. In this model, the order parameter spontaneously breaks the TRS and has a nonzero phase winding number around the Fermi surface, thus making it a rare example of a 2D topological superconductor.
Effect of Eu substitution on superconductivity in Ba{sub 8−x}Eu{sub x}Al{sub 6}Si{sub 40} clathrates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Lihua; Bi, Shanli; Peng, Bailu
2015-05-07
The silicon clathrate superconductor is uncommon as its structure is dominated by strong Si-Si covalent bonds, rather than the metallic bond, that are more typical of traditional superconductors. To understand the influence of large magnetic moment of Eu on superconductivity for type-I clathrates, a series of samples with the chemical formula Ba{sub 8−x}Eu{sub x}Al{sub 6}Si{sub 40} (x = 0, 0.5, 1, and 2) were synthesised in which Eu occupied Ba sites in cage center. With the increase of Eu content, the cubic lattice parameter decreases monotonically signifying continuous shrinkage of the constituting (Ba/Eu)@Si{sub 20} and (Ba/Eu)@Si{sub 24} cages. The temperature dependence ofmore » magnetization at low temperature revealed that Ba{sub 8}Al{sub 6}Si{sub 40} is superconductive with transition temperature at T{sub C} = 5.6 K. The substitution of Eu for Ba results in a strong superconductivity suppression; Eu-doping largely decreases the superconducting volume and transition temperature T{sub C}. Eu atoms enter the clathrate lattice and their magnetic moments break paired electrons. The Curie-Weiss temperatures were observed at 3.9, 6.6, and 10.9 K, respectively, for samples with x = 0.5, 1.0, and 2.0. Such ferromagnetic interaction of Eu can destroy superconductivity.« less
Magnetic properties of type-I and type-II Weyl semimetals in the superconducting state
NASA Astrophysics Data System (ADS)
Rosenstein, Baruch; Shapiro, B. Ya.; Li, Dingping; Shapiro, I.
2018-04-01
Superconductivity was observed in certain range of pressure and chemical composition in Weyl semimetals of both type I and type II (when the Dirac cone tilt parameter κ >1 ). Magnetic properties of these superconductors are studied on the basis of microscopic phonon-mediated pairing model. The Ginzburg-Landau effective theory for the order parameter is derived using the Gorkov approach and used to determine anisotropic coherence length, the penetration depth determining the Abrikosov parameter for a layered material and applied to recent extensive experiments on MoTe2. It is found that superconductivity is of second kind near the topological transition at κ =1 . For a larger tilt parameter, superconductivity becomes first kind. For κ <1 , the Abrikosov parameter also tends to be reduced, often crossing over to the first kind. For the superconductors of the second kind, the dependence of critical fields Hc 2 and Hc 1 on the tilt parameter κ (governed by pressure) is compared with the experiments. Strength of thermal fluctuations is estimated and it is found that they are strong enough to cause Abrikosov vortex lattice melting near Hc 2. The melting line is calculated and is consistent with experiments provided the fluctuations are three dimensional in the type-I phase (large pressure) and two dimensional in the type-II phase (small pressure).
NASA Astrophysics Data System (ADS)
Wang, Xiaoyu; Schattner, Yoni; Berg, Erez; Fernandes, Rafael M.
2017-05-01
In several unconventional superconductors, the highest superconducting transition temperature Tc is found in a region of the phase diagram where the antiferromagnetic transition temperature extrapolates to zero, signaling a putative quantum critical point. The elucidation of the interplay between these two phenomena—high-Tc superconductivity and magnetic quantum criticality—remains an important piece of the complex puzzle of unconventional superconductivity. In this paper, we combine sign-problem-free quantum Monte Carlo simulations and field-theoretical analytical calculations to unveil the microscopic mechanism responsible for the superconducting instability of a general low-energy model, called the spin-fermion model. In this approach, low-energy electronic states interact with each other via the exchange of quantum critical magnetic fluctuations. We find that even in the regime of moderately strong interactions, both the superconducting transition temperature and the pairing susceptibility are governed not by the properties of the entire Fermi surface, but instead by the properties of small portions of the Fermi surface called hot spots. Moreover, Tc increases with increasing interaction strength, until it starts to saturate at the crossover from hot-spots-dominated to Fermi-surface-dominated pairing. Our work provides not only invaluable insights into the system parameters that most strongly affect Tc, but also important benchmarks to assess the origin of superconductivity in both microscopic models and actual materials.
Digital quantum simulators in a scalable architecture of hybrid spin-photon qubits
Chiesa, Alessandro; Santini, Paolo; Gerace, Dario; Raftery, James; Houck, Andrew A.; Carretta, Stefano
2015-01-01
Resolving quantum many-body problems represents one of the greatest challenges in physics and physical chemistry, due to the prohibitively large computational resources that would be required by using classical computers. A solution has been foreseen by directly simulating the time evolution through sequences of quantum gates applied to arrays of qubits, i.e. by implementing a digital quantum simulator. Superconducting circuits and resonators are emerging as an extremely promising platform for quantum computation architectures, but a digital quantum simulator proposal that is straightforwardly scalable, universal, and realizable with state-of-the-art technology is presently lacking. Here we propose a viable scheme to implement a universal quantum simulator with hybrid spin-photon qubits in an array of superconducting resonators, which is intrinsically scalable and allows for local control. As representative examples we consider the transverse-field Ising model, a spin-1 Hamiltonian, and the two-dimensional Hubbard model and we numerically simulate the scheme by including the main sources of decoherence. PMID:26563516
Twisted Hubbard model for Sr2IrO4: magnetism and possible high temperature superconductivity.
Wang, Fa; Senthil, T
2011-04-01
Sr(2)IrO(4) has been suggested as a Mott insulator from a single J(eff)=1/2 band, similar to the cuprates. However, this picture is complicated by the measured large magnetic anisotropy and ferromagnetism. Based on a careful mapping to the J(eff)=1/2 (pseudospin-1/2) space, we propose that the low energy electronic structure of Sr(2)IrO(4) can indeed be described by a SU(2) invariant pseudospin-1/2 Hubbard model very similar to that of the cuprates, but with a twisted coupling to an external magnetic field (a g tensor with a staggered antisymmetric component). This perspective naturally explains the magnetic properties of Sr(2)IrO(4). We also derive several simple facts based on this mapping and the known results about the Hubbard model and the cuprates, which may be tested in future experiments on Sr(2)IrO(4). In particular, we propose that (electron-)doping Sr(2)IrO(4) can potentially realize high-temperature superconductivity. © 2011 American Physical Society
Córdoba, Rosa; Ibarra, Alfonso; Mailly, Dominique; De Teresa, José Ma
2018-02-14
Novel physical properties appear when the size of a superconductor is reduced to the nanoscale, in the range of its superconducting coherence length (ξ 0 ). Such nanosuperconductors are being investigated for potential applications in nanoelectronics and quantum computing. The design of three-dimensional nanosuperconductors allows one to conceive novel schemes for such applications. Here, we report for the first time the use of a He + focused-ion-beam-microscope in combination with the W(CO) 6 precursor to grow three-dimensional superconducting hollow nanowires as small as 32 nm in diameter and with an aspect ratio (length/diameter) of as much as 200. Such extreme resolution is achieved by using a small He + beam spot of 1 nm for the growth of the nanowires. As shown by transmission electron microscopy, they display grains of large size fitting with face-centered cubic WC 1-x phase. The nanowires, which are grown vertically to the substrate, are felled on the substrate by means of a nanomanipulator for their electrical characterization. They become superconducting at 6.4 K and show large critical magnetic field and critical current density resulting from their quasi-one-dimensional superconducting character. These results pave the way for future nanoelectronic devices based on three-dimensional nanosuperconductors.
Ultralow-Background Large-Format Bolometer Arrays
NASA Technical Reports Server (NTRS)
Benford, Dominic; Chervenak, Jay; Irwin, Kent; Moseley, S. Harvey; Oegerle, William (Technical Monitor)
2002-01-01
In the coming decade, work will commence in earnest on large cryogenic far-infrared telescopes and interferometers. All such observatories - for example, SAFIR, SPIRIT, and SPECS - require large format, two dimensional arrays of close-packed detectors capable of reaching the fundamental limits imposed by the very low photon backgrounds present in deep space. In the near term, bolometer array architectures which permit 1000 pixels - perhaps sufficient for the next generation of space-based instruments - can be arrayed efficiently. Demonstrating the necessary performance, with Noise Equivalent Powers (NEPs) of order 10-20 W/square root of Hz, will be a hurdle in the coming years. Superconducting bolometer arrays are a promising technology for providing both the performance and the array size necessary. We discuss the requirements for future detector arrays in the far-infrared and submillimeter, describe the parameters of superconducting bolometer arrays able to meet these requirements, and detail the present and near future technology of superconducting bolometer arrays. Of particular note is the coming development of large format planar arrays with absorber-coupled and antenna-coupled bolometers.
Superconductivity in Al-substituted Ba8Si46 clathrates
NASA Astrophysics Data System (ADS)
Li, Yang; Garcia, Jose; Chen, Ning; Liu, Lihua; Li, Feng; Wei, Yuping; Bi, Shanli; Cao, Guohui; Feng, Z. S.
2013-05-01
There is a great deal of interest vested in the superconductivity of Si clathrate compounds with sp3 network, in which the structure is dominated by strong covalent bonds among silicon atoms, rather than the metallic bonding that is more typical of traditional superconductors. A joint experimental and theoretical investigation of superconductivity in Al-substituted type-I silicon clathrates is reported. Samples of the general formula Ba8Si46-xAlx, with different values of x were prepared. With an increase in the Al composition, the superconducting transition temperature TC was observed to decrease systematically. The resistivity measurement revealed that Ba8Si42Al4 is superconductive with transition temperature at TC = 5.5 K. The magnetic measurements showed that the bulk superconducting Ba8Si42Al4 is a type II superconductor. For x = 6 sample Ba8Si40Al6, the superconducting transition was observed down to TC = 4.7 K which pointed to a strong suppression of superconductivity with increasing Al content as compared with TC = 8 K for Ba8Si46. Suppression of superconductivity can be attributed primarily to a decrease in the density of states at the Fermi level, caused by reduced integrity of the sp3 hybridized networks as well as the lowering of carrier concentration. These results corroborated by first-principles calculations showed that Al substitution results in a large decrease of the electronic density of states at the Fermi level, which also explains the decreased superconducting critical temperature within the BCS framework. The work provided a comprehensive understanding of the doping effect on superconductivity of clathrates.
Conceptual study of superconducting urban area power systems
NASA Astrophysics Data System (ADS)
Noe, Mathias; Bach, Robert; Prusseit, Werner; Willén, Dag; Gold-acker, Wilfried; Poelchau, Juri; Linke, Christian
2010-06-01
Efficient transmission, distribution and usage of electricity are fundamental requirements for providing citizens, societies and economies with essential energy resources. It will be a major future challenge to integrate more sustainable generation resources, to meet growing electricity demand and to renew electricity networks. Research and development on superconducting equipment and components have an important role to play in addressing these challenges. Up to now, most studies on superconducting applications in power systems have been concentrated on the application of specific devices like for example cables and current limiters. In contrast to this, the main focus of our study is to show the consequence of a large scale integration of superconducting power equipment in distribution level urban power systems. Specific objectives are to summarize the state-of-the-art of superconducting power equipment including cooling systems and to compare the superconducting power system with respect to energy and economic efficiency with conventional solutions. Several scenarios were considered starting from the replacement of an existing distribution level sub-grid up to a full superconducting urban area distribution level power system. One major result is that a full superconducting urban area distribution level power system could be cost competitive with existing solutions in the future. In addition to that, superconducting power systems offer higher energy efficiency as well as a number of technical advantages like lower voltage drops and improved stability.
Superconducting Proximity Effect in Graphene Nanodevices: A Transport and Tunneling Study
NASA Astrophysics Data System (ADS)
Wang, I.-Jan
Provided that it is in good electrical contact with a superconductor, a normal metal can acquire superconducting properties when the temperature is low enough. Known as the superconducting proximity effect, this phenomenon has been studied for more than 50 years and, because of the richness of its physics, continues to fascinate many scientists. In this thesis, we present our study of the superconducting proximity effect in a hybrid system made by bringing graphene, a mono- layer of carbon atoms arranged in a hexagonal lattice, into contact with metallic BCS superconductors. Here graphene plays two roles: First it is a truly 2-dimensional crystal whose electron gas can be accessed on the surface easily. This property allows both transparent electrical contact with superconductors and direct observation of electronic properties made by a variety of probing schemes. Second, with its unique gapless band structure and linear energy dispersion, graphene provides a platform for the study of superconductivity carried by Dirac fermions. Graphene's first role may facilitate endeavors to reach a deeper understanding of proximity effects. However, it is predicted that in its second role graphene may give rise to exotic phenomena in superconducting regime. In order to realize these potentials, it is crucial to have good control of this material in regard to both fabrication and characterization. Two key elements have been recognized as necessary in fabrication: a graphene device with low disorder and a large induced gap in the normal region. In addition, a deeper understanding of the microscopic mechanism of supercurrent transport in graphene or any 2-dimensional system in general, is bound to provide a basis for abundant insights or may even produce surprises. The research discussed in this thesis has been shaped by this overall approach. An introduction to the basic electronic properties of graphene is given in Chapter 1, which presents the band structure of graphene based on a tight-binding model. In addition, gate-tunability and the chiral nature of Dirac fermions in graphene, both of which are essential in our experiments, are also discussed. Chapter 2 provides a theoretical background to superconductivity, with an emphasis on its manifestation in inhomogeneous systems at the mesoscopic scale. The Andreev reflection, the phase-coherent transport of particles coupled by superconductors, and the corresponding energy bound states (Andreev bound states) are studied in long- and short-junction limits. We will also show how the existence of impurity affects the physics presented in our experiments. Chapter 3 demonstrates the first graphene-based superconducting devices that we investigated. Fabrication and low-temperature measurement techniques of SGS junctions made of graphene and NbN, a type II superconductor with a large gap (TC ~ 12K) and a large critical field (HC2 > 9T ) are also discussed. Chapter 4 focuses on the development of h-BN-encapsulated graphene Josephson junctions. The pick-up and transfer techniques for the 2- dimensional Van der Waals materials that we used to make these heterostructures are described in details. The device we fabricated in this way exhibits ballistic transport characteristics, i.e. the signs of low disorder in graphene, in both normal and superconducting regimes. In Chapter 5, the tunneling spectroscopy of supercurrent-carrying Andreev states is presented. In order to study the intrinsic properties of the sample, we developed a new fabrication scheme aiming at preserving the pristine nature of the 2-DEGS as well as to minimize the doping introduced by external probes. The tunneling spectroscopy of graphene in superconducting regime reveals not only the Andreev bound states in the 2-dimensional limit, but also what we call the "Andreev scattering state" in the energy continuum.
Visualizing domain wall and reverse domain superconductivity.
Iavarone, M; Moore, S A; Fedor, J; Ciocys, S T; Karapetrov, G; Pearson, J; Novosad, V; Bader, S D
2014-08-28
In magnetically coupled, planar ferromagnet-superconductor (F/S) hybrid structures, magnetic domain walls can be used to spatially confine the superconductivity. In contrast to a superconductor in a uniform applied magnetic field, the nucleation of the superconducting order parameter in F/S structures is governed by the inhomogeneous magnetic field distribution. The interplay between the superconductivity localized at the domain walls and far from the walls leads to effects such as re-entrant superconductivity and reverse domain superconductivity with the critical temperature depending upon the location. Here we use scanning tunnelling spectroscopy to directly image the nucleation of superconductivity at the domain wall in F/S structures realized with Co-Pd multilayers and Pb thin films. Our results demonstrate that such F/S structures are attractive model systems that offer the possibility to control the strength and the location of the superconducting nucleus by applying an external magnetic field, potentially useful to guide vortices for computing application.
Visualizing domain wall and reverse domain superconductivity
Iavarone, M.; Moore, S. A.; Fedor, J.; Ciocys, S. T.; Karapetrov, G.; Pearson, J.; Novosad, V.; Bader, S. D.
2014-01-01
In magnetically coupled, planar ferromagnet-superconductor (F/S) hybrid structures, magnetic domain walls can be used to spatially confine the superconductivity. In contrast to a superconductor in a uniform applied magnetic field, the nucleation of the superconducting order parameter in F/S structures is governed by the inhomogeneous magnetic field distribution. The interplay between the superconductivity localized at the domain walls and far from the walls leads to effects such as re-entrant superconductivity and reverse domain superconductivity with the critical temperature depending upon the location. Here we use scanning tunnelling spectroscopy to directly image the nucleation of superconductivity at the domain wall in F/S structures realized with Co-Pd multilayers and Pb thin films. Our results demonstrate that such F/S structures are attractive model systems that offer the possibility to control the strength and the location of the superconducting nucleus by applying an external magnetic field, potentially useful to guide vortices for computing application. PMID:25164004
Superconducting noise bolometer with microwave bias and readout for array applications
NASA Astrophysics Data System (ADS)
Kuzmin, A. A.; Semenov, A. D.; Shitov, S. V.; Merker, M.; Wuensch, S. H.; Ustinov, A. V.; Siegel, M.
2017-07-01
We present a superconducting noise bolometer for terahertz radiation, which is suitable for large-format arrays. It is based on an antenna-coupled superconducting micro-bridge embedded in a high-quality factor superconducting resonator for a microwave bias and readout with frequency-division multiplexing in the GHz range. The micro-bridge is kept below its critical temperature and biased with a microwave current of slightly lower amplitude than the critical current of the micro-bridge. The response of the detector is the rate of superconducting fluctuations, which depends exponentially on the concentration of quasiparticles in the micro-bridge. Excess quasiparticles are generated by an incident THz signal. Since the quasiparticle lifetime increases exponentially at lower operation temperature, the noise equivalent power rapidly decreases. This approach allows for large arrays of noise bolometers operating above 1 K with sensitivity, limited by 300-K background noise. Moreover, the response of the bolometer always dominates the noise of the readout due to relatively large amplitude of the bias current. We performed a feasibility study on a proof-of-concept device with a 1.0 × 0.5 μm2 micro-bridge from a 9-nm thin Nb film on a sapphire substrate. Having a critical temperature of 5.8 K, it operates at 4.2 K and is biased at the frequency 5.6 GHz. For the quasioptical input at 0.65 THz, we measured the noise equivalent power ≈3 × 10-12 W/Hz1/2, which is close to expectations for this particular device in the noise-response regime.
Recent advances in superconducting-mixer simulations
NASA Technical Reports Server (NTRS)
Withington, S.; Kennedy, P. R.
1992-01-01
Over the last few years, considerable progress have been made in the development of techniques for fabricating high-quality superconducting circuits, and this success, together with major advances in the theoretical understanding of quantum detection and mixing at millimeter and submillimeter wavelengths, has made the development of CAD techniques for superconducting nonlinear circuits an important new enterprise. For example, arrays of quasioptical mixers are now being manufactured, where the antennas, matching networks, filters and superconducting tunnel junctions are all fabricated by depositing niobium and a variety of oxides on a single quartz substrate. There are no adjustable tuning elements on these integrated circuits, and therefore, one must be able to predict their electrical behavior precisely. This requirement, together with a general interest in the generic behavior of devices such as direct detectors and harmonic mixers, has lead us to develop a range of CAD tools for simulating the large-signal, small-signal, and noise behavior of superconducting tunnel junction circuits.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malliakas, Christos D.; Chung, Duck Young; Claus, Helmut
Superconductivity was discovered in the layered compound RbBi 11/3Te 6, featuring Bi vacancies and a narrow band gap of 0.25(2) eV at room temperature. In addition, a sharp superconducting transition at similar to 3.2 K was observed in polycrystalline ingots. The superconducting volume fraction of oriented single crystals is almost 100%, confirming bulk superconductivity. Systematic Se and Sb substitutions in RbBi 11/3-ySb ySe xTe 6-x, revealed a dependence of the superconducting transition on composition that can increase the T c up to similar to 10%. The RbBi 11/3Te 6 system is the first member of the new homologous series Rb[Bimore » 2n+11/3Te 3n+6] with infinite Bi 2Te 3-like layers. Lastly, the large degree of chemical tunability of the electronic structure of the homology via doping and/or substitution gives rise to a new family of superconductors.« less
Si, W.; Zhang, C.; Wu, L.; ...
2015-09-01
Recent discovery of the topological crystalline insulator SnTe has triggered a search for topological superconductors, which have potential application to topological quantum computing. The present work reports on the superconducting properties of indium doped SnTe thin films. The (100) and (111) oriented thin films were epitaxially grown by pulsed-laser deposition on (100) and (111) BaF2 crystalline substrates respectively. The onset superconducting transition temperatures are about 3.8 K for (100) and 3.6 K for (111) orientations, slightly lower than that of the bulk. Magneto-resistive measurements indicate that these thin films may have upper critical fields higher than that of the bulk.more » With large surface-to-bulk ratio, superconducting indium doped SnTe thin films provide a rich platform for the study of topological superconductivity and potential device applications based on topological superconductors.« less
NASA Astrophysics Data System (ADS)
Qiao, Jia-Bin; Gong, Yue; Zuo, Wei-Jie; Wei, Yi-Cong; Ma, Dong-Lin; Yang, Hong; Yang, Ning; Qiao, Kai-Yao; Shi, Jin-An; Gu, Lin; He, Lin
2017-05-01
Assembling different two-dimensional (2D) crystals, covering a very broad range of properties, into van der Waals (vdW) heterostructures enables unprecedented possibilities for combining the best of different ingredients in one objective material. So far, metallic, semiconducting, and insulating 2D crystals have been used successfully in making functional vdW heterostructures with properties by design. Here, we expand 2D superconducting crystals as a building block of vdW hererostructures. One-step growth of large-scale high-quality vdW heterostructures of graphene and 2D superconducting α -M o2C by using chemical vapor deposition is reported. The superconductivity and its 2D nature of the heterostructures are characterized by our scanning tunneling microscopy measurements. This adds 2D superconductivity, the most attractive property of condensed matter physics, to vdW heterostructures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Si, Weidong, E-mail: wds@bnl.gov, E-mail: qiangli@bnl.gov; Zhang, Cheng; Wu, Lijun
2015-08-31
Recent discovery of the topological crystalline insulator SnTe has triggered a search for topological superconductors, which have potential application to topological quantum computing. The present work reports on the superconducting properties of indium doped SnTe thin films. The (100) and (111) oriented thin films were epitaxially grown by pulsed-laser deposition on (100) and (111) BaF{sub 2} crystalline substrates, respectively. The onset superconducting transition temperatures are about 3.8 K for (100) and 3.6 K for (111) orientations, slightly lower than that of the bulk. Magneto-resistive measurements indicate that these thin films may have upper critical fields higher than that of the bulk. Withmore » large surface-to-bulk ratio, superconducting indium doped SnTe thin films provide a rich platform for the study of topological superconductivity and potential device applications based on topological superconductors.« less
NASA Astrophysics Data System (ADS)
Larbalestier, D. C.; Osamura, K.; Hampshire, D. P.
2008-05-01
MEM07 was the 5th international workshop concentrating on the mechanical and electrical properties of composite superconductors, which are the technological conductor forms from which practical superconducting devices are made. Such superconducting conductors respond to important challenges we currently face, especially those concerned with the proper management of the world's energy resources. Superconductivity provides a means to address the challenges in the generation, transmission and distribution, and use of energy. For energy generation, the ITER Fusion Tokomak (now underway in France) provides exciting new challenges for the whole superconductivity community, due to the enormous size and strong fields of the plasma confinement superconducting magnets that will form the largest and most powerful superconducting machine yet built. Significant attention was paid at MEM07 to the modeling, characterization, testing and validation of the high-amperage Nb3Sn cable-in-conduit conductors needed for ITER. As for electric energy industry uses, there was much discussion of both first generation (Bi,Pb)2Sr2Ca2Cu3Ox conductors and the rapidly emerging second generation coated conductors made from YBa2Cu37-x. High-performing, affordable conductors of these materials are vital for large capacity transmission cables, energy storage systems, fault current limiters, generators and motors—many prototypes of which are being pursued in technologically advanced countries. There is a broad consensus that the prototype stage for high-current-high-field superconducting applications is nearing its end and that large scale applications are technologically feasible. However full industrialization of large-scale superconducting technologies in electric utility applications will benefit from continuous improvement in critical current, lower ac loss, higher strength and other vital conductor properties. The establishment of optimal procedures for the system design accompanying scale-up is a second vital task. As system design is dependent on material development, there is a critical need to study the key issues in developing high performance superconducting materials. The emphases of MEM07 were The mechanical properties of superconductors including the influence of stress and strain on the critical current of practical conductors including YBCO and ReBCO coated conductors, BSCCO tapes, MgB2 wires and Nb3Sn filamentary conductors. The intrinsic strain effects on critical current density in Nb3Sn, YBCO, BSCCO and MgB2. Recent advances in critical current, the mechanical properties and the reduction in ac losses of HTS tapes and wires. The compositional and microstructural dependence of E-J characteristics and explanations based on flux pinning, grain boundary weak-links and other mechanisms. Standardized test-methods: international cooperative research work to establish test methods for assessing the mechano-electromagnetic properties of superconductors based on the activities of IEC/TC90 and VAMAS/TWA-16. More than 60 researchers from more than 12 countries attended the MEM07 workshop, and about 40 presentations were made. A small selection of papers (15) from the workshop are included in this special issue of Superconductor Science and Technology. Taken together with papers published at earlier MEM meetings, this issue provides an updated view of some of the current state-of-the-art research in the mechano-electromagnetic properties of composite superconductors. The workshop was organized under the activities of the NEDO Grant Project (Applied Superconductivity, 2004EA004) and VAMAS/TWA-16. The meeting was organized by a committee composed of David Larbalestier (Conference Chair) aided by MEM05 and MEM06 Conference Chairs Kozo Osamura (Research Institute for Applied Sciences, Kyoto, Japan), Damian Hampshire (Durham University, UK) and Arman Nyilas (CEME). The Program Committee was composed of Ettore Salpietro (European Fusion Development Agreement), Neil Mitchell (ITER), Kozo Osamura, Damian Hampshire and Arman Nyilas. We express our great thanks to all those whose efforts were key in organizing the meeting, with very special thanks to our Meeting Planner Kate Liu who organized matters large and small with discretion and great efficiency.
Levitating a Magnet Using a Superconductive Material.
ERIC Educational Resources Information Center
Juergens, Frederick H.; And Others
1987-01-01
Presented are the materials and a procedure for demonstrating the levitation of a magnet above a superconducting material. The demonstration can be projected with an overhead projector for a large group of students. Kits to simplify the demonstration can be purchased from the Institute for Chemical Education of the University of Wisconsin-Madison.…
Gamma-ray bursts from cusps on superconducting cosmic strings at large redshifts
NASA Technical Reports Server (NTRS)
Paczynski, Bohdan
1988-01-01
Babul et al. (1987) proposed that some gamma-ray bursts may be caused by energy released at the cusps of oscillating loops made of superconducting cosmic strings. It is claimed that there were some errors and omissions in that work, which are claimed to be corrected in the present paper. Arguments are presented, that given certain assumptions, the cusps on oscillating superconducting cosmic strings produce highly collimated and energetic electromagnetic bursts and that a fair fraction of electromagnetic energy is likely to come out as gamma rays.
PREFACE: The 6th European Conference on Applied Superconductivity (EUCAS 2003)
NASA Astrophysics Data System (ADS)
Vaglio, Ruggero; Donaldson, Gordon
2004-05-01
This special issue of Superconductor Science and Technology contains papers presented at the 6th European Conference on Applied Superconductivity (EUCAS), which was held in Sorrento, Italy, 14--18 September 2003. This important biennial event followed previous successful meetings held in Gottingen, Germany; Edinburgh, Scotland; Eindhoven, the Netherlands; Sitges (Barcelona), Spain; and Copenhagen, Denmark. Following tradition, this EUCAS conference focused on the role of superconductivity in bridging various aspects of research with a variety of concrete advanced applications. EUCAS 2003 attracted about 1000 participants from all around the world with large participation from non-European countries. This conference benefited the worldwide superconductivity community tremendously as scientists operating internationally were able to share their knowledge and experience with one another. We are grateful to all those who submitted papers to the Conference Proceedings, which will be published in an Institute of Physics Conference Series, and also to those who contributed to this special issue. Unfortunately we could not consider every one of the large number of papers submitted to this issue and we express our regret to those whose work could not be included.
Optimization of the Mu2e Production Solenoid Heat and Radiation Shield
NASA Astrophysics Data System (ADS)
Pronskikh, V. S.; Coleman, R.; Glenzinski, D.; Kashikhin, V. V.; Mokhov, N. V.
2014-03-01
The Mu2e experiment at Fermilab is designed to study the conversion of a negative muon to electron in the field of a nucleus without emission of neutrinos. Observation of this process would provide unambiguous evidence for physics beyond the Standard Model, and can point to new physics beyond the reach of the LHC. The main parts of the Mu2e apparatus are its superconducting solenoids: Production Solenoid (PS), Transport Solenoid (TS), and Detector Solenoid (DS). Being in the vicinity of the beam, PS magnets are most subjected to the radiation damage. In order for the PS superconducting magnet to operate reliably, the peak neutron flux in the PS coils must be reduced by 3 orders of magnitude by means of sophisticatedly designed massive Heat and Radiation Shield (HRS), optimized for the performance and cost. An issue with radiation damage is related to large residual electrical resistivity degradation in the superconducting coils, especially its Al stabilizer. A detailed MARS15 analysis and optimization of the HRS has been carried out both to satisfy the Mu2e requirements to the radiation quantities (such as displacements per atom, peak temperature and power density in the coils, absorbed dose in the insulation, and dynamic heat load) and cost. Results of MARS15 simulations of these radiation quantities are reported and optimized HRS models are presented; it is shown that design levels satisfy all requirements.
Limits on Lorentz violation in gravity from worldwide superconducting gravimeters
NASA Astrophysics Data System (ADS)
Shao, Cheng-Gang; Chen, Ya-Fen; Sun, Rong; Cao, Lu-Shuai; Zhou, Min-Kang; Hu, Zhong-Kun; Yu, Chenghui; Müller, Holger
2018-01-01
We have investigated Lorentz violation through analyzing tides-subtracted gravity data measured by superconducting gravimeters. At the level of precision of superconducting gravimeters, we have brought up and resolved an existing issue of accuracy due to unaccounted local tidal effects in previous solid-earth tidal model used. Specifically, we have taken local tides into account with a brand new first-principles tidal model with ocean tides included, as well as removed potential bias from local tides by using a worldwide array of 12 superconducting gravimeters. Compared with previous test with local gravimeters, a more accurate and competitive bound on space-space components of gravitational Lorentz violation has been achieved up to the order of 10-10.
Probing optically silent superfluid stripes in cuprates
Rajasekaran, S.; Okamoto, J.; Mathey, L.; ...
2018-02-02
Unconventional superconductivity in the cuprates coexists with other types of electronic order. However, some of these orders are invisible to most experimental probes because of their symmetry. For example, the possible existence of superfluid stripes is not easily validated with linear optics, because the stripe alignment causes interlayer superconducting tunneling to vanish on average. In this paper, we show that this frustration is removed in the nonlinear optical response. A giant terahertz third harmonic, characteristic of nonlinear Josephson tunneling, is observed in La 1.885Ba 0.115CuO 4 above the transition temperature T c = 13 kelvin and up to the charge-orderingmore » temperature T co = 55 kelvin. We model these results by hypothesizing the presence of a pair density wave condensate, in which nonlinear mixing of optically silent tunneling modes drives large dipole-carrying supercurrents.« less
Probing optically silent superfluid stripes in cuprates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rajasekaran, S.; Okamoto, J.; Mathey, L.
Unconventional superconductivity in the cuprates coexists with other types of electronic order. However, some of these orders are invisible to most experimental probes because of their symmetry. For example, the possible existence of superfluid stripes is not easily validated with linear optics, because the stripe alignment causes interlayer superconducting tunneling to vanish on average. In this paper, we show that this frustration is removed in the nonlinear optical response. A giant terahertz third harmonic, characteristic of nonlinear Josephson tunneling, is observed in La 1.885Ba 0.115CuO 4 above the transition temperature T c = 13 kelvin and up to the charge-orderingmore » temperature T co = 55 kelvin. We model these results by hypothesizing the presence of a pair density wave condensate, in which nonlinear mixing of optically silent tunneling modes drives large dipole-carrying supercurrents.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dhavale Ashavai, Pashupati Dhakal, Anatolii A Polyanskii, Gianluigi Ciovati
We present the results of from DC magnetization and penetration depth measurements of cylindrical bulk large-grain (LG) and fine-grain (FG) niobium samples used for the fabrication of superconducting radio frequency (SRF) cavities. The surface treatment consisted of electropolishing and low temperature baking as they are typically applied to SRF cavities. The magnetization data were fitted using a modified critical state model. The critical current density Jc and pinning force Fp are calculated from the magnetization data and their temperature dependence and field dependence are presented. The LG samples have lower critical current density and pinning force density compared to FGmore » samples which implies a lower flux trapping efficiency. This effect may explain the lower values of residual resistance often observed in LG cavities than FG cavities.« less
Dependence of superconductivity in CuxBi2Se3 on quenching conditions
NASA Astrophysics Data System (ADS)
Schneeloch, J. A.; Zhong, R. D.; Xu, Z. J.; Gu, G. D.; Tranquada, J. M.
2015-04-01
Topological superconductivity, implying gapless protected surface states, has recently been proposed to exist in the compound CuxBi2Se3 . Unfortunately, low diamagnetic shielding fractions and considerable inhomogeneity have been reported in this compound. In an attempt to understand and improve on the finite superconducting volume fractions, we have investigated the effects of various growth and postannealing conditions. With a melt-growth (MG) method, diamagnetic shielding fractions of up to 56% in Cu0.3Bi2Se3 have been obtained, the highest value reported for this method. We investigate the efficacy of various quenching and annealing conditions, finding that quenching from temperatures above 560∘C is essential for superconductivity, whereas quenching from lower temperatures or not quenching at all is detrimental. A modified floating zone (FZ) method yielded large single crystals but little superconductivity. Even after annealing and quenching, FZ-grown samples had much less chance of being superconducting than MG-grown samples. From the low shielding fractions in FZ-grown samples and the quenching dependence, we suggest that a metastable secondary phase having a small volume fraction in most of the samples may be responsible for the superconductivity.
Collective coupling in hybrid superconducting circuits
NASA Astrophysics Data System (ADS)
Saito, Shiro
Hybrid quantum systems utilizing superconducting circuits have attracted significant recent attention, not only for quantum information processing tasks but also as a way to explore fundamentally new physics regimes. In this talk, I will discuss two superconducting circuit based hybrid quantum system approaches. The first is a superconducting flux qubit - electron spin ensemble hybrid system in which quantum information manipulated in the flux qubit can be transferred to, stored in and retrieved from the ensemble. Although the coherence time of the ensemble is short, about 20 ns, this is a significant first step to utilize the spin ensemble as quantum memory for superconducting flux qubits. The second approach is a superconducting resonator - flux qubit ensemble hybrid system in which we fabricated a superconducting LC resonator coupled to a large ensemble of flux qubits. Here we observed a dispersive frequency shift of approximately 250 MHz in the resonators transmission spectrum. This indicates thousands of flux qubits are coupling to the resonator collectively. Although we need to improve our qubits inhomogeneity, our system has many potential uses including the creation of new quantum metamaterials, novel applications in quantum metrology and so on. This work was partially supported by JSPS KAKENHI Grant Number 25220601.
Tunnelling spectroscopy of gate-induced superconductivity in MoS2
NASA Astrophysics Data System (ADS)
Costanzo, Davide; Zhang, Haijing; Reddy, Bojja Aditya; Berger, Helmuth; Morpurgo, Alberto F.
2018-06-01
The ability to gate-induce superconductivity by electrostatic charge accumulation is a recent breakthrough in physics and nanoelectronics. With the exception of LaAlO3/SrTiO3 interfaces, experiments on gate-induced superconductors have been largely confined to resistance measurements, which provide very limited information about the superconducting state. Here, we explore gate-induced superconductivity in MoS2 by performing tunnelling spectroscopy to determine the energy-dependent density of states (DOS) for different levels of electron density n. In the superconducting state, the DOS is strongly suppressed at energy smaller than the gap Δ, which is maximum (Δ 2 meV) for n of 1 × 1014 cm-2 and decreases monotonously for larger n. A perpendicular magnetic field B generates states at E < Δ that fill the gap, but a 20% DOS suppression of superconducting origin unexpectedly persists much above the transport critical field. Conversely, an in-plane field up to 10 T leaves the DOS entirely unchanged. Our measurements exclude that the superconducting state in MoS2 is fully gapped and reveal the presence of a DOS that vanishes linearly with energy, the explanation of which requires going beyond a conventional, purely phonon-driven Bardeen-Cooper-Schrieffer mechanism.
Signatures of Induced Superconductivity in NbTi Contacted InAs Quantum Wells
NASA Astrophysics Data System (ADS)
McFadden, Anthony; Shabani, Javad; Shojaei, Borzoyeh; Lee, Joon Sue; Palmstrøm, Chris
We have studied electrical transport through InAs quantum wells grown by MBE with unannealed superconducting NbTi contacts deposited ex-situ and patterned by optical photolithography. Characterization of the InAs 2DEG's without superconducting contacts yields typical mobilities greater than 100,000 cm2/Vs at a density of 4e11 cm-2. NbTi-InAs-NbTi (SNS) and NbTi-InAs (SN) devices with dimensions greater than 1 µm are fabricated using optical lithography. Although the dimensions of the fabricated SNS devices are too large to observe a supercurrent, signatures of superconductivity induced in the InAs are present. We observe two superconducting critical temperatures: one of the NbTi leads (Tc~8K), and a second (Tc <4.5K) attributed to superconductivity induced in the InAs channel. dI/dV vs V spectroscopy on SNS junctions below the second critical temperature shows a conductance maximum at zero applied voltage while conductance minima appear at finite bias voltage which is attributed to the presence of an induced superconducting gap in the InAs quantum well. This work has been supported by Microsoft research.
Dependence of superconductivity in Cu x Bi 2 Se 3 on quenching conditions
Schneeloch, J. A.; Zhong, R. D.; Xu, Z. J.; ...
2015-04-20
Topological superconductivity, implying gapless protected surface states, has recently been proposed to exist in the compound Cu xBi₂Se₃. Unfortunately, low diamagnetic shielding fractions and considerable inhomogeneity have been reported in this compound. In an attempt to understand and improve on the finite superconducting volume fractions, we have investigated the effects of various growth and post-annealing conditions. With a melt-growth (MG) method, diamagnetic shielding fractions of up to 56% in Cu₀̣₃Bi₂Se₃ have been obtained, the highest value reported for this method. We investigate the efficacy of various quenching and annealing conditions, finding that quenching from temperatures above 560°C is essential formore » superconductivity, whereas quenching from lower temperatures or not quenching at all is detrimental. A modified floating zone (FZ) method yielded large single crystals but little superconductivity. Even after annealing and quenching, FZ-grown samples had much less chance of being superconducting than MG-grown samples. Thus, from the low shielding fractions in FZ-grown samples and the quenching dependence, we suggest that a metastable secondary phase having a small volume fraction in most of the samples may be responsible for the superconductivity.« less
NASA Astrophysics Data System (ADS)
Avdeev, Maxim V.; Proshin, Yurii N.
2017-10-01
We theoretically study the proximity effect in the thin-film layered ferromagnet (F) - superconductor (S) heterostructures in F1F2S design. We consider the boundary value problem for the Usadel-like equations in the case of so-called ;dirty; limit. The ;latent; superconducting pairing interaction in F layers taken into account. The focus is on the recipe of experimental preparation the state with so-called solitary superconductivity. We also propose and discuss the model of the superconducting spin valve based on F1F2S trilayers in solitary superconductivity regime.
NASA Technical Reports Server (NTRS)
Cocks, F. Hadley
1991-01-01
The discovery of materials which are superconducting above 100 K makes possible the use of superconducting coils deployed beyong the hull of an interplanetary spacecraft to produce a magnetic shield capable of giving protection not only against solar flare radiation, but also even against Galactic radiation. Such deployed coils can be of very large size and can thus achieve the great magnetic moments required using only relatively low currents. Deployable high-temperature-superconducting coil magnetic shields appear to offer very substantial reductions in mass and energy compared to other concepts and could readily provide the radiation protection needed for a Mars mission or space colonies.
Spectroscopy of bulk and few-layer superconducting NbSe2 with van der Waals tunnel junctions.
Dvir, T; Massee, F; Attias, L; Khodas, M; Aprili, M; Quay, C H L; Steinberg, H
2018-02-09
Tunnel junctions, an established platform for high resolution spectroscopy of superconductors, require defect-free insulating barriers; however, oxides, the most common barrier, can only grow on a limited selection of materials. We show that van der Waals tunnel barriers, fabricated by exfoliation and transfer of layered semiconductors, sustain stable currents with strong suppression of sub-gap tunneling. This allows us to measure the spectra of bulk (20 nm) and ultrathin (3- and 4-layer) NbSe 2 devices at 70 mK. These exhibit two distinct superconducting gaps, the larger of which decreases monotonically with thickness and critical temperature. The spectra are analyzed using a two-band model incorporating depairing. In the bulk, the smaller gap exhibits strong depairing in in-plane magnetic fields, consistent with high out-of-plane Fermi velocity. In the few-layer devices, the large gap exhibits negligible depairing, consistent with out-of-plane spin locking due to Ising spin-orbit coupling. In the 3-layer device, the large gap persists beyond the Pauli limit.
Robustness against non-magnetic impurities in topological superconductors
NASA Astrophysics Data System (ADS)
Nagai, Y.; Ota, Y.; Machida, M.
2014-12-01
We study the robustness against non-magnetic impurities in a three-dimensional topological superconductor, focusing on an effective model (massive Dirac Bogoliubov-de Gennes (BdG) Hamiltonian with s-wave on-site pairing) of CuxBi2Se3 with the parameter set determined by the first-principles calculation. With the use of the self-consistent T- matrix approximation for impurity scattering, we discuss the impurity-concentration dependence of the zero-energy density of states. We show that a single material variable, measuring relativistic effects in the Dirac-BdG Hamiltonian, well characterizes the numerical results. In the nonrelativistic limit, the odd-parity fully-gapped topological superconductivity is fragile against non-magnetic impurities, since this superconductivity can be mapped onto the p-wave superconductivity. On the other hand, in the ultrarelativistic limit, the superconductivity is robust against the non-magnetic impurities, since the effective model has the s-wave superconductivity. We derive the effective Hamiltonian in the both limit.
Characterization of superconducting radiofrequency breakdown by two-mode excitation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eremeev, Grigory V.; Palczewski, Ari D.
2014-01-14
We show that thermal and magnetic contributions to the breakdown of superconductivity in radiofrequency (RF) fields can be separated by applying two RF modes simultaneously to a superconducting surface. We develop a simple model that illustrates how mode-mixing RF data can be related to properties of the superconductor. Within our model the data can be described by a single parameter, which can be derived either from RF or thermometry data. Our RF and thermometry data are in good agreement with the model. We propose to use mode-mixing technique to decouple thermal and magnetic effects on RF breakdown of superconductors.
Fidelity study of the superconducting phase diagram in the two-dimensional single-band Hubbard model
NASA Astrophysics Data System (ADS)
Jia, C. J.; Moritz, B.; Chen, C.-C.; Shastry, B. Sriram; Devereaux, T. P.
2011-09-01
Extensive numerical studies have demonstrated that the two-dimensional single-band Hubbard model contains much of the key physics in cuprate high-temperature superconductors. However, there is no definitive proof that the Hubbard model truly possesses a superconducting ground state or, if it does, of how it depends on model parameters. To answer these longstanding questions, we study an extension of the Hubbard model including an infinite-range d-wave pair field term, which precipitates a superconducting state in the d-wave channel. Using exact diagonalization on 16-site square clusters, we study the evolution of the ground state as a function of the strength of the pairing term. This is achieved by monitoring the fidelity metric of the ground state, as well as determining the ratio between the two largest eigenvalues of the d-wave pair/spin/charge-density matrices. The calculations show a d-wave superconducting ground state in doped clusters bracketed by a strong antiferromagnetic state at half filling controlled by the Coulomb repulsion U and a weak short-range checkerboard charge ordered state at larger hole doping controlled by the next-nearest-neighbor hopping t'. We also demonstrate that negative t' plays an important role in facilitating d-wave superconductivity.
ISLES: Probing Extra Dimensions Using a Superconducting Accelerometer
NASA Technical Reports Server (NTRS)
Paik, Ho Jung; Moody, M. Vol; Prieto-Gortcheva, Violeta A.
2003-01-01
In string theories, extra dimensions must be compactified. The possibility that gravity can have large radii of compactification leads to a violation of the inverse square law at submillimeter distances. The objective of ISLES is to perform a null test of Newton s law in space with a resolution of one part in 10(exp 5) or better at 100 microns. The experiment will be cooled to less than or equal to 2 K, which permits superconducting magnetic levitation of the test masses. To minimize Newtonian errors, ISLES employs a near null source, a circular disk of large diameter-to-thickness ratio. Two test masses, also disk-shaped, are suspended on the two sides of the source mass at a nominal distance of 100 microns. The signal is detected by a superconducting differential accelerometer. A ground test apparatus is under construction.
Variable temperature superconducting microscope
NASA Astrophysics Data System (ADS)
Cheng, Bo; Yeh, W. J.
2000-03-01
We have developed and tested a promising type of superconducting quantum interference device (SQUID) microscope, which can be used to detect vortex motion and can operate in magnetic fields over a large temperature range. The system utilizes a single-loop coupling transformer, consisting of a patterned high Tc superconducting thin film. At one end of the transformer, a 20 μm diam detecting loop is placed close to the sample. At the other end, a large loop is coupled to a NbTi coil, which is connected to a low Tc SQUID sensor. Transformers in a variety of sizes have been tested and calibrated. The results show that the system is capable of detecting the motion of a single vortex. We have used the microscope to study the behavior of moving vortices at various positions in a YBa2Cu3O7 thin film bridge.
FOREWORD: Focus on Superconductivity in Semiconductors Focus on Superconductivity in Semiconductors
NASA Astrophysics Data System (ADS)
Takano, Yoshihiko
2008-12-01
Since the discovery of superconductivity in diamond, much attention has been given to the issue of superconductivity in semiconductors. Because diamond has a large band gap of 5.5 eV, it is called a wide-gap semiconductor. Upon heavy boron doping over 3×1020 cm-3, diamond becomes metallic and demonstrates superconductivity at temperatures below 11.4 K. This discovery implies that a semiconductor can become a superconductor upon carrier doping. Recently, superconductivity was also discovered in boron-doped silicon and SiC semiconductors. The number of superconducting semiconductors has increased. In 2008 an Fe-based superconductor was discovered in a research project on carrier doping in a LaCuSeO wide-gap semiconductor. This discovery enhanced research activities in the field of superconductivity, where many scientists place particular importance on superconductivity in semiconductors. This focus issue features a variety of topics on superconductivity in semiconductors selected from the 2nd International Workshop on Superconductivity in Diamond and Related Materials (IWSDRM2008), which was held at the National Institute for Materials Science (NIMS), Tsukuba, Japan in July 2008. The 1st workshop was held in 2005 and was published as a special issue in Science and Technology of Advanced Materials (STAM) in 2006 (Takano 2006 Sci. Technol. Adv. Mater. 7 S1). The selection of papers describe many important experimental and theoretical studies on superconductivity in semiconductors. Topics on boron-doped diamond include isotope effects (Ekimov et al) and the detailed structure of boron sites, and the relation between superconductivity and disorder induced by boron doping. Regarding other semiconductors, the superconducting properties of silicon and SiC (Kriener et al, Muranaka et al and Yanase et al) are discussed, and In2O3 (Makise et al) is presented as a new superconducting semiconductor. Iron-based superconductors are presented as a new series of high-TC superconductors (Tamegai et al), and the mechanism of superconductivity is discussed. Last but not least, a novel highest-density phase of boron is produced and characterized (Zarechnaya et al). We hope that this focus issue will help readers to understand the frontiers of superconductivity in semiconductors and assist in the application of new devices using a combination of superconductivity and semiconductivity.
The relation between ferroelasticity and superconductivity
NASA Technical Reports Server (NTRS)
Molak, A.; Manka, R.
1991-01-01
The high-temperature superconductivity is explained widely by the layered crystal structure. The one- and two-dimensional subsystems and their interaction are investigated here. It is assumed that the high-T(sub c) superconductivity takes place in the two-dimensional subsystem and the increase of the phase transition temperature from 60 K up to 90 K is the consequence of turning on the influence of one-dimensional chains. The interaction between the two subsystems is transferred along the c axis by the phonons of breathing mode, which causes the hybridization of the electronic bonds between these subsystems. The experimental works indicate that the existence of both the chains Cu(1)-O and their interaction with the superconducting plane of Cu(2)-O modify the temperature of the transition to the superconducting state. It is seen from the neutron scattering data that the rates of the interatomic distance dependencies on temperature are changed around 240 K and 90 K. The 'zig-zag' order in Cu(1)-O chains has been postulated but, on the other hand, the vibrations with a large amplitude only were reported. The bi-stabilized situation of the oxygen ions can be caused by the change of distance between these ions and the Ba ions. It leads to the appearance of a two-well potential. Its parameters depend on temperature and the dynamics of the oxygen ions' movement. They can induce the antipolar order, which can be, however, more or less chaotic. The investigation of the ferroelastic properties of Y-Ba-Cu-O samples lead to the conclusion that they are related to jumps of ions inside the given chain and not to a diffusion between different sites in the ab plane. Researchers deduce, thus, that the fluctuating oxygen ions from these chains create dipoles in the ab plane. They can be described with the pseudo-spin formalism (- Pauli matrices). The system can be described with the Ising model. The pseudo-spins interact with phonons and influence the superconductivity in the second subsystem.
The relation between ferroelasticity and superconductivity
NASA Technical Reports Server (NTRS)
Molak, A.; Manka, R.
1990-01-01
The high-temperature superconductivity is explained widely by the layered crystal structure. The one- and two-dimensional subsystems and their interaction are investigated here. It is assumed that the high-T(sub c) superconductivity takes place in the two-dimensional subsystem and the increase of the phase transition temperature from 60 K up to 90 K is the consequence of turning on the influence of one-dimensional chains. The interaction between the two subsystems is transferred along the c axis by the phonons of breathing mode, which causes the hybridization of the electronic bonds between these subsystems. The experimental works indicate that the existence of both the chains Cu(1)-O and their interaction with the superconducting plane of Cu(2)-O modify the temperature of the transition to the superconducting state. It is seen from the neutron scattering data that the rates of the interatomic distance dependencies on temperature are changed around 140 K and 90 K. The 'zig-zag' order in Cu(1)-O chains has been postulated but, on the other hand, the vibrations with a large amplitude only were reported. The bi-stabilized situation of the oxygen ions can be caused by the change of distance between these ions and the Ba ions. It leads to the appearance of a two-well potential. Its parameters depend on temperature and the dynamics of the oxygen ions' movement. They can induce the antipolar order, which can be, however, more or less chaotic. The investigation of the ferroelastic properties of Y-Ba-Cu-O samples lead to the conclusion that they are related to jumps of ions inside the given chain and not to a diffusion between different sites in the ab plane. Researchers deduce thus that the fluctuating oxygen ions from these chains create dipoles in the ab plane. They can be described with the pseudo-spin formalism/ - Pauli matrices/. The system can be described with the Ising model. The pseudo-spins interact with phonons and influence the superconductivity in the second subsystem.
Modeling the static fringe field of superconducting magnets.
Jeglic, P; Lebar, A; Apih, T; Dolinsek, J
2001-05-01
The resonance frequency-space and the frequency gradient-space relations are evaluated analytically for the static fringe magnetic field of superconducting magnets used in the NMR diffusion measurements. The model takes into account the actual design of the high-homogeneity magnet coil system that consists of the main coil and the cryoshim coils and enables a precise calibration of the on-axis magnetic field gradient and the resonance frequency inside and outside of the superconducting coil. Copyright 2001 Academic Press.
Schemm, E R; Gannon, W J; Wishne, C M; Halperin, W P; Kapitulnik, A
2014-07-11
Models of superconductivity in unconventional materials can be experimentally differentiated by the predictions they make for the symmetries of the superconducting order parameter. In the case of the heavy-fermion superconductor UPt3, a key question is whether its multiple superconducting phases preserve or break time-reversal symmetry (TRS). We tested for asymmetry in the phase shift between left and right circularly polarized light reflected from a single crystal of UPt3 at normal incidence and found that this so-called polar Kerr effect appears only below the lower of the two zero-field superconducting transition temperatures. Our results provide evidence for broken TRS in the low-temperature superconducting phase of UPt3, implying a complex two-component order parameter for superconductivity in this system. Copyright © 2014, American Association for the Advancement of Science.
Yaghoobpour Tari, Shima; Wachowicz, Keith; Gino Fallone, B
2017-04-21
A prototype rotating hybrid magnetic resonance imaging system and linac has been developed to allow for simultaneous imaging and radiation delivery parallel to B 0 . However, the design of a compact magnet capable of rotation in a small vault with sufficient patient access and a typical clinical source-to-axis distance (SAD) is challenging. This work presents a novel superconducting magnet design as a proof of concept that allows for a reduced SAD and ample patient access by moving the superconducting coils to the side of the yoke. The yoke and pole-plate structures are shaped to direct the magnetic flux appropriately. The outer surface of the pole plate is optimized subject to the minimization of a cost function, which evaluates the uniformity of the magnetic field over an ellipsoid. The magnetic field calculations required in this work are performed with the 3D finite element method software package Opera-3D. Each tentative design strategy is virtually modeled in this software package, which is externally controlled by MATLAB, with its key geometries defined as variables. The optimization variables are the thickness of the pole plate at control points distributed over the pole plate surface. A novel design concept as a superconducting non-axial magnet is introduced, which could create a large uniform B 0 magnetic field with fewer geometric restriction. This non-axial 0.5 T superconducting magnet has a moderately reduced SAD of 123 cm and a vertical patient opening of 68 cm. This work is presented as a proof of principle to investigate the feasibility of a non-axial magnet with the coils located around the yoke, and the results encourage future design optimizations to maximize the benefits of this non-axial design.
NASA Astrophysics Data System (ADS)
Yaghoobpour Tari, Shima; Wachowicz, Keith; Fallone, B. Gino
2017-04-01
A prototype rotating hybrid magnetic resonance imaging system and linac has been developed to allow for simultaneous imaging and radiation delivery parallel to B 0. However, the design of a compact magnet capable of rotation in a small vault with sufficient patient access and a typical clinical source-to-axis distance (SAD) is challenging. This work presents a novel superconducting magnet design as a proof of concept that allows for a reduced SAD and ample patient access by moving the superconducting coils to the side of the yoke. The yoke and pole-plate structures are shaped to direct the magnetic flux appropriately. The outer surface of the pole plate is optimized subject to the minimization of a cost function, which evaluates the uniformity of the magnetic field over an ellipsoid. The magnetic field calculations required in this work are performed with the 3D finite element method software package Opera-3D. Each tentative design strategy is virtually modeled in this software package, which is externally controlled by MATLAB, with its key geometries defined as variables. The optimization variables are the thickness of the pole plate at control points distributed over the pole plate surface. A novel design concept as a superconducting non-axial magnet is introduced, which could create a large uniform B 0 magnetic field with fewer geometric restriction. This non-axial 0.5 T superconducting magnet has a moderately reduced SAD of 123 cm and a vertical patient opening of 68 cm. This work is presented as a proof of principle to investigate the feasibility of a non-axial magnet with the coils located around the yoke, and the results encourage future design optimizations to maximize the benefits of this non-axial design.
Numerical modelling of dynamic resistance in high-temperature superconducting coated-conductor wires
NASA Astrophysics Data System (ADS)
Ainslie, Mark D.; Bumby, Chris W.; Jiang, Zhenan; Toyomoto, Ryuki; Amemiya, Naoyuki
2018-07-01
The use of superconducting wire within AC power systems is complicated by the dissipative interactions that occur when a superconductor is exposed to an alternating current and/or magnetic field, giving rise to a superconducting AC loss caused by the motion of vortices within the superconducting material. When a superconductor is exposed to an alternating field whilst carrying a constant DC transport current, a DC electrical resistance can be observed, commonly referred to as ‘dynamic resistance.’ Dynamic resistance is relevant to many potential high-temperature superconducting (HTS) applications and has been identified as critical to understanding the operating mechanism of HTS flux pump devices. In this paper, a 2D numerical model based on the finite-element method and implementing the H -formulation is used to calculate the dynamic resistance and total AC loss in a coated-conductor HTS wire carrying an arbitrary DC transport current and exposed to background AC magnetic fields up to 100 mT. The measured angular dependence of the superconducting properties of the wire are used as input data, and the model is validated using experimental data for magnetic fields perpendicular to the plane of the wire, as well as at angles of 30° and 60° to this axis. The model is used to obtain insights into the characteristics of such dynamic resistance, including its relationship with the applied current and field, the wire’s superconducting properties, the threshold field above which dynamic resistance is generated and the flux-flow resistance that arises when the total driven transport current exceeds the field-dependent critical current, I c( B ), of the wire. It is shown that the dynamic resistance can be mostly determined by the perpendicular field component with subtle differences determined by the angular dependence of the superconducting properties of the wire. The dynamic resistance in parallel fields is essentially negligible until J c is exceeded and flux-flow resistance occurs.
Emergence of superconductivity in heavy-electron materials
Yang, Yi-feng; Pines, David
2014-01-01
Although the pairing glue for the attractive quasiparticle interaction responsible for unconventional superconductivity in heavy-electron materials has been identified as the spin fluctuations that arise from their proximity to a magnetic quantum critical point, there has been no model to describe their superconducting transition at temperature Tc that is comparable to that found by Bardeen, Cooper, and Schrieffer (BCS) for conventional superconductors, where phonons provide the pairing glue. Here we propose such a model: a phenomenological BCS-like expression for Tc in heavy-electron materials that is based on a simple model for the effective range and strength of the spin-fluctuation-induced quasiparticle interaction and reflects the unusual properties of the heavy-electron normal state from which superconductivity emerges. We show that it provides a quantitative understanding of the pressure-induced variation of Tc in the “hydrogen atoms” of unconventional superconductivity, CeCoIn5 and CeRhIn5, predicts scaling behavior and a dome-like structure for Tc in all heavy-electron quantum critical superconductors, provides unexpected connections between members of this family, and quantifies their variations in Tc with a single parameter. PMID:25489102
Electronic structure and superconductivity of FeSe-related superconductors.
Liu, Xu; Zhao, Lin; He, Shaolong; He, Junfeng; Liu, Defa; Mou, Daixiang; Shen, Bing; Hu, Yong; Huang, Jianwei; Zhou, X J
2015-05-13
FeSe superconductors and their related systems have attracted much attention in the study of iron-based superconductors owing to their simple crystal structure and peculiar electronic and physical properties. The bulk FeSe superconductor has a superconducting transition temperature (Tc) of ~8 K and it can be dramatically enhanced to 37 K at high pressure. On the other hand, its cousin system, FeTe, possesses a unique antiferromagnetic ground state but is non-superconducting. Substitution of Se with Te in the FeSe superconductor results in an enhancement of Tc up to 14.5 K and superconductivity can persist over a large composition range in the Fe(Se,Te) system. Intercalation of the FeSe superconductor leads to the discovery of the AxFe2-ySe2 (A = K, Cs and Tl) system that exhibits a Tc higher than 30 K and a unique electronic structure of the superconducting phase. A recent report of possible high temperature superconductivity in single-layer FeSe/SrTiO3 films with a Tc above 65 K has generated much excitement in the community. This pioneering work opens a door for interface superconductivity to explore for high Tc superconductors. The distinct electronic structure and superconducting gap, layer-dependent behavior and insulator-superconductor transition of the FeSe/SrTiO3 films provide critical information in understanding the superconductivity mechanism of iron-based superconductors. In this paper, we present a brief review of the investigation of the electronic structure and superconductivity of the FeSe superconductor and related systems, with a particular focus on the FeSe films.
Nonlinear vibration of a coupled high- Tc superconducting levitation system
NASA Astrophysics Data System (ADS)
Sugiura, T.; Inoue, T.; Ura, H.
2004-10-01
High- Tc superconducting levitation can be applied to electro-mechanical systems, such as flywheel energy storage and linear-drive transportation. Such a system can be modeled as a magnetically coupled system of many permanent magnets and high- Tc superconducting bulks. It is a multi-degree-of-freedom dynamical system coupled by nonlinear interaction between levitated magnets and superconducting bulks. This nonlinearly coupled system, with small damping due to no contact support, can easily show complicated phenomena of nonlinear dynamics. In mechanical design, it is important to evaluate this nonlinear dynamics, though it has not been well studied so far. This research deals with forced vibration of a coupled superconducting levitation system. As a simple modeling of a coupled system, a permanent magnet levitated above a superconducting bulk is placed between two fixed permanent magnets without contact. Frequency response of the levitated magnet under excitation of one of the fixed magnets was examined theoretically. The results show typical nonlinear vibration, such as jump, hysteresis, and parametric resonance, which were confirmed in our numerical analyses and experiments.
Time-reversal symmetry-breaking superconductivity in epitaxial bismuth/nickel bilayers
Gong, Xinxin; Kargarian, Mehdi; Stern, Alex; ...
2017-03-31
Superconductivity that spontaneously breaks time-reversal symmetry (TRS) has been found, so far, only in a handful of three-dimensional (3D) crystals with bulk inversion symmetry. We report an observation of spontaneous TRS breaking in a 2D superconducting system without inversion symmetry: the epitaxial bilayer films of bismuth and nickel. The evidence comes from the onset of the polar Kerr effect at the superconducting transition in the absence of an external magnetic field, detected by the ultrasensitive loop-less fiber-optic Sagnac interferometer. Because of strong spin-orbit interaction and lack of inversion symmetry in a Bi/Ni bilayer, superconducting pairing cannot be classified as singletmore » or triplet.We propose a theoretical model where magnetic fluctuations in Ni induce the superconducting pairing of the d xy ± id x2-y2 orbital symmetry between the electrons in Bi. In this model, the order parameter spontaneously breaks the TRS and has a nonzero phase winding number around the Fermi surface, thus making it a rare example of a 2D topological superconductor.« less
NASA Astrophysics Data System (ADS)
Sun, Jiuce; Sanz, Santiago; Neumann, Holger
2015-12-01
Superconducting generators show the potential to reduce the head mass of large offshore wind turbines. A 10 MW offshore superconducting wind turbine has been investigated in the SUPRAPOWER project. The superconducting coils based on MgB2 tapes are supposed to work at cryogenic temperature of 20 K. In this paper, a novel modular rotating cryostat was presented for one single coil of the superconducting wind turbine. The modular concept and cryogen-free cooling method were proposed to fulfil the requirements of handling, maintenance, reliability of long term and offshore operations. Two stage Gifford-McMahon cryocoolers were used to provide cooling source. Supporting rods made of titanium alloy were selected as support structures of the cryostat in aim of reducing the heat load. The thermal performance in the modular cryostat was carefully investigated. The heat load applied to the cryocooler second stage was 2.17 W@20 K per coil. The corresponding temperature difference along the superconducting coil was only around 1 K.
Two gaps make a high-temperature superconductor?
NASA Astrophysics Data System (ADS)
Hüfner, S.; Hossain, M. A.; Damascelli, A.; Sawatzky, G. A.
2008-06-01
One of the keys to the high-temperature superconductivity puzzle is the identification of the energy scales associated with the emergence of a coherent condensate of superconducting electron pairs. These might provide a measure of the pairing strength and of the coherence of the superfluid, and ultimately reveal the nature of the elusive pairing mechanism in the superconducting cuprates. To this end, a great deal of effort has been devoted to investigating the connection between the superconducting transition temperature Tc and the normal-state pseudogap crossover temperature T*. Here we present a review of a large body of experimental data which suggests a coexisting two-gap scenario, i.e. superconducting gap and pseudogap, over the whole superconducting dome. We focus on spectroscopic data from cuprate systems characterized by T_c^max\\sim 95\\,K , such as Bi2Sr2CaCu2O8+δ, YBa2Cu3O7-δ, Tl2Ba2CuO6+δ and HgBa2CuO4+δ, with particular emphasis on the Bi-compound which has been the most extensively studied with single-particle spectroscopies.
Heterogeneous Superconducting Low-Noise Sensing Coils
NASA Technical Reports Server (NTRS)
Hahn, Inseob; Penanen, Konstantin I.; Ho Eom, Byeong
2008-01-01
A heterogeneous material construction has been devised for sensing coils of superconducting quantum interference device (SQUID) magnetometers that are subject to a combination of requirements peculiar to some advanced applications, notably including low-field magnetic resonance imaging for medical diagnosis. The requirements in question are the following: The sensing coils must be large enough (in some cases having dimensions of as much as tens of centimeters) to afford adequate sensitivity; The sensing coils must be made electrically superconductive to eliminate Johnson noise (thermally induced noise proportional to electrical resistance); and Although the sensing coils must be cooled to below their superconducting- transition temperatures with sufficient cooling power to overcome moderate ambient radiative heat leakage, they must not be immersed in cryogenic liquid baths. For a given superconducting sensing coil, this combination of requirements can be satisfied by providing a sufficiently thermally conductive link between the coil and a cold source. However, the superconducting coil material is not suitable as such a link because electrically superconductive materials are typically poor thermal conductors. The heterogeneous material construction makes it possible to solve both the electrical- and thermal-conductivity problems. The basic idea is to construct the coil as a skeleton made of a highly thermally conductive material (typically, annealed copper), then coat the skeleton with an electrically superconductive alloy (typically, a lead-tin solder) [see figure]. In operation, the copper skeleton provides the required thermally conductive connection to the cold source, while the electrically superconductive coating material shields against Johnson noise that originates in the copper skeleton.
The freedom to choose neutron star magnetic field equilibria: Table 1.
NASA Astrophysics Data System (ADS)
Glampedakis, Kostas; Lasky, Paul D.
2016-12-01
Our ability to interpret and glean useful information from the large body of observations of strongly magnetized neutron stars rests largely on our theoretical understanding of magnetic field equilibria. We answer the following question: is one free to arbitrarily prescribe magnetic equilibria such that fluid degrees of freedom can balance the equilibrium equations? We examine this question for various models for neutron star matter; from the simplest single-fluid barotrope to more realistic non-barotropic multifluid models with superfluid/superconducting components, muons and entropy. We do this for both axi- and non-axisymmetric equilibria, and in Newtonian gravity and general relativity. We show that, in axisymmetry, the most realistic model allows complete freedom in choosing a magnetic field equilibrium whereas non-axisymmetric equilibria are never completely arbitrary.
Using LSTM recurrent neural networks for monitoring the LHC superconducting magnets
NASA Astrophysics Data System (ADS)
Wielgosz, Maciej; Skoczeń, Andrzej; Mertik, Matej
2017-09-01
The superconducting LHC magnets are coupled with an electronic monitoring system which records and analyzes voltage time series reflecting their performance. A currently used system is based on a range of preprogrammed triggers which launches protection procedures when a misbehavior of the magnets is detected. All the procedures used in the protection equipment were designed and implemented according to known working scenarios of the system and are updated and monitored by human operators. This paper proposes a novel approach to monitoring and fault protection of the Large Hadron Collider (LHC) superconducting magnets which employs state-of-the-art Deep Learning algorithms. Consequently, the authors of the paper decided to examine the performance of LSTM recurrent neural networks for modeling of voltage time series of the magnets. In order to address this challenging task different network architectures and hyper-parameters were used to achieve the best possible performance of the solution. The regression results were measured in terms of RMSE for different number of future steps and history length taken into account for the prediction. The best result of RMSE = 0 . 00104 was obtained for a network of 128 LSTM cells within the internal layer and 16 steps history buffer.
Thermo-electric analysis of the interconnection of the LHC main superconducting bus bars
NASA Astrophysics Data System (ADS)
Granieri, P. P.; Breschi, M.; Casali, M.; Bottura, L.; Siemko, A.
2013-01-01
Spurred by the question of the maximum allowable energy for the operation of the Large Hadron Collider (LHC), we have progressed in the understanding of the thermo-electric behavior of the 13 kA superconducting bus bars interconnecting its main magnets. A deep insight of the underlying mechanisms is required to ensure the protection of the accelerator against undesired effects of resistive transitions. This is especially important in case of defective interconnections which can jeopardize the operation of the whole LHC. In this paper we present a numerical model of the interconnections between the main dipole and quadrupole magnets, validated against experimental tests of an interconnection sample with a purposely built-in defect. We consider defective interconnections featuring a lack of bonding among the superconducting cables and the copper stabilizer components, such as those that could be present in the machine. We evaluate the critical defect length limiting the maximum allowable current for powering the magnets. We determine the dependence of the critical defect length on different parameters as the heat transfer towards the cooling helium bath, the quality of manufacturing, the operating conditions and the protection system parameters, and discuss the relevant mechanisms.
Emulating Many-Body Localization with a Superconducting Quantum Processor
NASA Astrophysics Data System (ADS)
Xu, Kai; Chen, Jin-Jun; Zeng, Yu; Zhang, Yu-Ran; Song, Chao; Liu, Wuxin; Guo, Qiujiang; Zhang, Pengfei; Xu, Da; Deng, Hui; Huang, Keqiang; Wang, H.; Zhu, Xiaobo; Zheng, Dongning; Fan, Heng
2018-02-01
The law of statistical physics dictates that generic closed quantum many-body systems initialized in nonequilibrium will thermalize under their own dynamics. However, the emergence of many-body localization (MBL) owing to the interplay between interaction and disorder, which is in stark contrast to Anderson localization, which only addresses noninteracting particles in the presence of disorder, greatly challenges this concept, because it prevents the systems from evolving to the ergodic thermalized state. One critical evidence of MBL is the long-time logarithmic growth of entanglement entropy, and a direct observation of it is still elusive due to the experimental challenges in multiqubit single-shot measurement and quantum state tomography. Here we present an experiment fully emulating the MBL dynamics with a 10-qubit superconducting quantum processor, which represents a spin-1 /2 X Y model featuring programmable disorder and long-range spin-spin interactions. We provide essential signatures of MBL, such as the imbalance due to the initial nonequilibrium, the violation of eigenstate thermalization hypothesis, and, more importantly, the direct evidence of the long-time logarithmic growth of entanglement entropy. Our results lay solid foundations for precisely simulating the intriguing physics of quantum many-body systems on the platform of large-scale multiqubit superconducting quantum processors.
Deformation of Water by a Magnetic Field
NASA Astrophysics Data System (ADS)
Chen, Zijun; Dahlberg, E. Dan
2011-03-01
After the discovery that superconducting magnets could levitate diamagnetic objects,1,2 researchers became interested in measuring the repulsion of diamagnetic fluids in strong magnetic fields,3-5 which was given the name "The Moses Effect."5 Both for the levitation experiments and the quantitative studies on liquids, the large magnetic fields necessary were produced by superconducting magnets.
Alternating-gradient canted cosine theta superconducting magnets for future compact proton gantries
Wan, Weishi; Brouwer, Lucas; Caspi, Shlomo; ...
2015-10-23
We present a design of superconducting magnets, optimized for application in a gantry for proton therapy. We have introduced a new magnet design concept, called an alternating-gradient canted cosine theta (AG-CCT) concept, which is compatible with an achromatic layout. This layout allows a large momentum acceptance. The 15 cm radius of the bore aperture enables the application of pencil beam scanning in front of the SC-magnet. The optical and dynamic performance of a gantry based on these magnets has been analyzed using the fields derived (via Biot-Savart law) from the actual windings of the AG-CCT combined with the full equationsmore » of motion. The results show that with appropriate higher order correction, a large 3D volume can be rapidly scanned with little beam shape distortion. A very big advantage is that all this can be done while keeping the AG-CCT fields fixed. This reduces the need for fast field ramping of the superconducting magnets between the successive beam energies used for the scanning in depth and it is important for medical application since this reduces the technical risk (e.g., a quench) associated with fast field changes in superconducting magnets. For proton gantries the corresponding superconducting magnet system holds promise of dramatic reduction in weight. For heavier ion gantries there may furthermore be a significant reduction in size.« less
Magnetic forces in high-Tc superconducting bearings
NASA Technical Reports Server (NTRS)
Moon, F. C.
1991-01-01
In September 1987, researchers at Cornell levitated a small rotor on superconducting bearings at 10,000 rpm. In April 1989, a speed of 120,000 rpm was achieved in a passive bearing with no active control. The bearing material used was YBa2Cu307. There is no evidence that the rotation speed has any significant effect on the lift force. Magnetic force measurements between a permanent rare-earth magnet and high T(sub c) superconducting material versus vertical and lateral displacements were made. A large hysteresis loop results for large displacements, while minor loops result for small displacements. These minor loops seem to give a slope proportional to the magnetic stiffness, and are probably indicative of flux pinning forces. Experiments of rotary speed versus time show a linear decay in a vacuum. Measurements of magnetic dipole over a high-T(sub c) superconducting disc of YBCO show that the lateral vibrations of levitated rotors were measured which indicates that transverse flux motion in the superconductor will create dissipation. As a result of these force measurements, an optimum shape for the superconductor bearing pads which gives good lateral and axial stability was designed. Recent force measurements on melt-quench processed superconductors indicate a substantial increase in levitation force and magnetic stiffness over free sintered materials. As a result, application of high-T(sub c) superconducting bearings are beginning to show great promise at this time.
Alternating-gradient canted cosine theta superconducting magnets for future compact proton gantries
NASA Astrophysics Data System (ADS)
Wan, Weishi; Brouwer, Lucas; Caspi, Shlomo; Prestemon, Soren; Gerbershagen, Alexander; Schippers, Jacobus Maarten; Robin, David
2015-10-01
We present a design of superconducting magnets, optimized for application in a gantry for proton therapy. We have introduced a new magnet design concept, called an alternating-gradient canted cosine theta (AG-CCT) concept, which is compatible with an achromatic layout. This layout allows a large momentum acceptance. The 15 cm radius of the bore aperture enables the application of pencil beam scanning in front of the SC-magnet. The optical and dynamic performance of a gantry based on these magnets has been analyzed using the fields derived (via Biot-Savart law) from the actual windings of the AG-CCT combined with the full equations of motion. The results show that with appropriate higher order correction, a large 3D volume can be rapidly scanned with little beam shape distortion. A very big advantage is that all this can be done while keeping the AG-CCT fields fixed. This reduces the need for fast field ramping of the superconducting magnets between the successive beam energies used for the scanning in depth and it is important for medical application since this reduces the technical risk (e.g., a quench) associated with fast field changes in superconducting magnets. For proton gantries the corresponding superconducting magnet system holds promise of dramatic reduction in weight. For heavier ion gantries there may furthermore be a significant reduction in size.
Theory of disordered unconventional superconductors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keles, A.; Andreev, A. V.; Spivak, B. Z., E-mail: spivak@uw.edu
In contrast to conventional s-wave superconductivity, unconventional (e.g., p- or d-wave) superconductivity is strongly suppressed even by relatively weak disorder. Upon approaching the superconductormetal transition, the order parameter amplitude becomes increasingly inhomogeneous, leading to effective granularity and a phase ordering transition described by the Mattis model of spin glasses. One consequence of this is that at sufficiently low temperatures, between the clean unconventional superconducting and the diffusive metallic phases, there is necessarily an intermediate superconducting phase that exhibits s-wave symmetry on macroscopic scales.
The physics of inhomogeneous striped superconductors
NASA Astrophysics Data System (ADS)
Martin, I.; Ortiz, G.; Eroles, J.; Balatsky, A. V.; Bishop, A. R.
2001-05-01
We present a minimal model of a doped Mott insulator that simultaneously supports antiferromagnetic stripes and d-wave superconductivity. At the unrestricted mean-field level, the various phases of the cuprates, including weak and strong pseudogap phases, and two different types of superconductivity in the underdoped and the overdoped regimes, find a natural interpretation. We argue that on the underdoped side, the superconductor is intrinsically inhomogeneous — striped nanoscale coexistence of superconductivity and magnetism — and global phase coherence is achieved through Josephson-like coupling of the superconducting stripes. On the overdoped side, the state is overall homogeneous and the superconductivity is of the classical BCS type.
NASA Astrophysics Data System (ADS)
Talantsev, E. F.; Crump, W. P.; Tallon, J. L.
2018-01-01
Proximity-induced superconductivity in single-layer graphene (SLG) and in topological insulators represent almost ideal examples of superconductivity in two dimensions. Fundamental mechanisms governing superconductivity in the 2D limit are of central interest for modern condensed-matter physics. To deduce fundamental parameters of superconductor/graphene/superconductor and superconductor/bismuth selenide/superconductor junctions we investigate the self-field critical currents in these devices using the formalism of the Ambegaokar-Baratoff model. Our central finding is that the induced superconducting state in SLG and bismuth selenide each exhibits gapping on two superconducting bands. Based on recent results obtained on ultra-thin films of natural superconductors, including single-atomic layer of iron selenide, double and triple atomic layers of gallium, and several atomic layer tantalum disulphide, we conclude that a two-band induced superconducting state in SLG and bismuth selenide is part of a wider, more general multiple-band phenomenology of currently unknown origin.
Cosmic strings and galaxy formation
NASA Technical Reports Server (NTRS)
Bertschinger, Edmund
1989-01-01
The cosmogonical model proposed by Zel'dovich and Vilenkin (1981), in which superconducting cosmic strings act as seeds for the origin of structure in the universe, is discussed, summarizing the results of recent theoretical investigations. Consideration is given to the formation of cosmic strings, the microscopic structure of strings, gravitational effects, cosmic string evolution, and the formation of galaxies and large-scale structure. Simulation results are presented in graphs, and several outstanding issues are listed and briefly characterized.
Monte Carlo simulations for the space radiation superconducting shield project (SR2S).
Vuolo, M; Giraudo, M; Musenich, R; Calvelli, V; Ambroglini, F; Burger, W J; Battiston, R
2016-02-01
Astronauts on deep-space long-duration missions will be exposed for long time to galactic cosmic rays (GCR) and Solar Particle Events (SPE). The exposure to space radiation could lead to both acute and late effects in the crew members and well defined countermeasures do not exist nowadays. The simplest solution given by optimized passive shielding is not able to reduce the dose deposited by GCRs below the actual dose limits, therefore other solutions, such as active shielding employing superconducting magnetic fields, are under study. In the framework of the EU FP7 SR2S Project - Space Radiation Superconducting Shield--a toroidal magnetic system based on MgB2 superconductors has been analyzed through detailed Monte Carlo simulations using Geant4 interface GRAS. Spacecraft and magnets were modeled together with a simplified mechanical structure supporting the coils. Radiation transport through magnetic fields and materials was simulated for a deep-space mission scenario, considering for the first time the effect of secondary particles produced in the passage of space radiation through the active shielding and spacecraft structures. When modeling the structures supporting the active shielding systems and the habitat, the radiation protection efficiency of the magnetic field is severely decreasing compared to the one reported in previous studies, when only the magnetic field was modeled around the crew. This is due to the large production of secondary radiation taking place in the material surrounding the habitat. Copyright © 2016 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.
Performance of Superconducting Magnet Prototypes for LCLS-II Linear Accelerator
Kashikhin, Vladimir; Andreev, Nikolai; DiMarco, Joseph; ...
2017-01-05
The new LCLS-II Linear Superconducting Accelerator at SLAC needs superconducting magnet packages installed inside SCRF Cryomodules to focus and steer an electron beam. Two magnet prototypes were built and successfully tested at Fermilab. Magnets have an iron dominated configuration, quadrupole and dipole NbTi superconducting coils, and splittable in the vertical plane configuration. Magnets inside the Cryomodule are conductively cooled through pure Al heat sinks. Both magnets performance was verified by magnetic measurements at room temperature, and during cold tests in liquid helium. Test results including magnetic measurements are discussed. Special attention was given to the magnet performance at low currentsmore » where the iron yoke and the superconductor hysteresis effects have large influence. Both magnet prototypes were accepted for the installation in FNAL and JLAB prototype Cryomodules.« less
BaBar superconducting coil: design, construction and test
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bell, R A; Berndt, M; Burgess, W
2001-01-26
The BABAR Detector, located in the PEP-II B-Factory at the Stanford Linear Accelerator Center, includes a large 1.5 Tesla superconducting solenoid, 2.8 m bore and length 3.7 m. The two layer solenoid is wound with an aluminum stabilized conductor which is graded axially to produce a {+-} 3% field uniformity in the tracking region. This paper summarizes the 3 year design, fabrication and testing program of the superconducting solenoid. The work was carried out by an international collaboration between INFN, LLNL and SLAC. The coil was constructed by Ansaldo Energia. Critical current measurements of the superconducting strand, cable and conductor,more » cool-down, operation with the thermo-siphon cooling, fast and slow discharges, and magnetic forces are discussed in detail.« less
Superconducting light generator for large offshore wind turbines
NASA Astrophysics Data System (ADS)
Sanz, S.; Arlaban, T.; Manzanas, R.; Tropeano, M.; Funke, R.; Kováč, P.; Yang, Y.; Neumann, H.; Mondesert, B.
2014-05-01
Offshore wind market demands higher power rate and reliable turbines in order to optimize capital and operational cost. These requests are difficult to overcome with conventional generator technologies due to a significant weight and cost increase with the scaling up. Thus superconducting materials appears as a prominent solution for wind generators, based on their capacity to held high current densities with very small losses, which permits to efficiently replace copper conductors mainly in the rotor field coils. However the state-of-the-art superconducting generator concepts still seem to be expensive and technically challenging for the marine environment. This paper describes a 10 MW class novel direct drive superconducting generator, based on MgB2 wires and a modular cryogen free cooling system, which has been specifically designed for the offshore wind industry needs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Canning, C.
1992-01-01
This paper reports that only a few years ago superconducting magnetic separation was viewed as the next major market for superconducting magnets. The first commercial units had been installed, worked flawlessly, and demonstrated real economic viability. The potential market was seen as quite large, and many people believed that superconducting magnetic separation would soon show the same rapid growth that MRI had demonstrated after its initial success. These hopes even prompted IGC, one of the top MRI magnet builders, to form a separate division devoted to magnetic separation. Despite the existence of Magstream, IGC has not been overly active inmore » the market. As a technology that has applications from the clay on the Earth to the soil on the moon, superconducting magnetic separation has yet to become widely used.« less
Interface induced high temperature superconductivity in single unit-cell FeSe on SrTiO{sub 3}(110)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Guanyu; Zhang, Ding; Liu, Chong
2016-05-16
We report high temperature superconductivity in one unit-cell (1-UC) FeSe films grown on SrTiO{sub 3} (STO)(110) substrate by molecular beam epitaxy. By in-situ scanning tunneling microscopy measurement, we observe a superconducting gap as large as 17 meV on the 1-UC FeSe films. Transport measurements on 1-UC FeSe/STO(110) capped with FeTe layers reveal superconductivity with an onset transition temperature (T{sub C}) of 31.6 K and an upper critical magnetic field of 30.2 T. We also find that T{sub C} can be further increased by external electric field although the effect is weaker than that on STO(001) substrate.
Superconductivity of lanthanum revisited: enhanced critical temperature in the clean limit.
Löptien, P; Zhou, L; Khajetoorians, A A; Wiebe, J; Wiesendanger, R
2014-10-22
The thickness dependence of the superconducting energy gap ΔLa of double hexagonally close packed (dhcp) lanthanum islands grown on W(110) is studied by scanning tunneling spectroscopy, from the bulk to the thin-film limit. Superconductivity is suppressed by the boundary conditions for the superconducting wavefunction on the surface and W/La interface, leading to a linear decrease of the critical temperature Tc as a function of the inverse film thickness. For the thick, bulk-like films, ΔLa and Tc are 40% larger compared to the literature values of dhcp La as measured by other techniques. This finding is reconciled by examining the effects of surface contamination as probed by modifications of the surface state, suggesting that the large Tc originates in the superior purity of the samples investigated here.
Superconductivity of lanthanum revisited: enhanced critical temperature in the clean limit
NASA Astrophysics Data System (ADS)
Löptien, P.; Zhou, L.; Khajetoorians, A. A.; Wiebe, J.; Wiesendanger, R.
2014-10-01
The thickness dependence of the superconducting energy gap ΔLa of double hexagonally close packed (dhcp) lanthanum islands grown on W(110) is studied by scanning tunneling spectroscopy, from the bulk to the thin-film limit. Superconductivity is suppressed by the boundary conditions for the superconducting wavefunction on the surface and W/La interface, leading to a linear decrease of the critical temperature Tc as a function of the inverse film thickness. For the thick, bulk-like films, ΔLa and Tc are 40% larger compared to the literature values of dhcp La as measured by other techniques. This finding is reconciled by examining the effects of surface contamination as probed by modifications of the surface state, suggesting that the large Tc originates in the superior purity of the samples investigated here.
Iadecola, A; Joseph, B; Simonelli, L; Puri, A; Mizuguchi, Y; Takeya, H; Takano, Y; Saini, N L
2012-03-21
We have measured the local structure of superconducting K(0.8)Fe(1.6)Se(2) chalcogenide (T(c) = 31.8 K) by temperature dependent polarized extended x-ray absorption fine structure (EXAFS) at the Fe and Se K-edges. We find that the system is characterized by a large local disorder. The Fe-Se and Fe-Fe distances are found to be shorter than the distances measured by diffraction, while the corresponding mean square relative displacements reveal large Fe-site disorder and relatively large c-axis disorder. The local force constant for the Fe-Se bondlength (k ~ 5.8 eV Å(-2)) is similar to the one found in the binary FeSe superconductor, however, the Fe-Fe bondlength appears to be flexible (k ~ 2.1 eV Å(-2)) in comparison to the binary FeSe (k ~ 3.5 eV Å(-2)), an indication of partly relaxed Fe-Fe networks in K(0.8)Fe(1.6)Se(2). The results suggest a glassy nature for the title system, with the superconductivity being similar to that in the granular materials. © 2012 IOP Publishing Ltd
Superconducting transition detectors for low-energy gamma-ray astrophysics
NASA Astrophysics Data System (ADS)
Kurfess, J. D.; Johnson, W. N.; Fritz, G. G.; Strickman, M. S.; Kinzer, R. L.; Jung, G.; Drukier, A. K.; Chmielowski, M.
1990-08-01
A program to investigate superconducting devices such as STDs for use in high-resolution Compton telescopes and coded-aperture detectors is presented. For higher energy applications, techniques are investigated with potential for scaling to large detectors, while also providing excellent energy and positional resolution. STDs are discussed, utilizing a uniform array of spherical granules tens of microns in diameter. The typical temperature-magnetic field phase for a low-temperature superconductor, the signal produced by the superconducting-normal transition in the 32-m diameter Sn granule, and the temperature history of an STD granule following heating by an ionizing particle are illustrated.
NASA Astrophysics Data System (ADS)
Yamamoto, R.; Yanagita, Y.; Namaizawa, T.; Komuro, S.; Furukawa, T.; Itou, T.; Kato, R.
2018-06-01
We measured the ac magnetic susceptibility for the layered organic superconductor EtMe3P [Pd(dmit)2] 2 under pressure with a dc magnetic field applied perpendicular to the ac field. We investigated the dc field dependence of the ac susceptibility in detail and concluded that the superconductivity in EtMe3P [Pd(dmit)2] 2 is an anisotropic three-dimensional superconductivity even at low temperatures, which contrasts with the large majority of other correlated electron layered superconductors such as high-Tc cuprate and κ -(ET) 2X systems.
Experimenting with a Superconducting Levitation Train
ERIC Educational Resources Information Center
Miryala, Santosh; Koblischka, M. R.
2014-01-01
The construction and operation of a prototype high-"Tc" superconducting train model is presented. The train is levitated by a melt-processed GdBa[subscript 2]Cu[subscript 3]O[subscript x] (Gd-123) superconducting material over a magnetic rail (track). The oval shaped track is constructed in S-N-S or PM3N configuration arranged on an iron…
Shielding superconductors with thin films as applied to rf cavities for particle accelerators
Posen, Sam; Transtrum, Mark K.; Catelani, Gianluigi; ...
2015-10-29
Determining the optimal arrangement of superconducting layers to withstand large-amplitude ac magnetic fields is important for certain applications such as superconducting radio-frequency cavities. In this paper, we evaluate the shielding potential of the superconducting-film–insulating-film–superconductor (SIS') structure, a configuration that could provide benefits in screening large ac magnetic fields. After establishing that, for high-frequency magnetic fields, flux penetration must be avoided, the superheating field of the structure is calculated in the London limit both numerically and, for thin films, analytically. For intermediate film thicknesses and realistic material parameters, we also solve numerically the Ginzburg-Landau equations. As a result, it is shownmore » that a small enhancement of the superheating field is possible, on the order of a few percent, for the SIS' structure relative to a bulk superconductor of the film material, if the materials and thicknesses are chosen appropriately.« less
NASA Technical Reports Server (NTRS)
Fast, R. W. (Editor)
1982-01-01
Applications of superconductivity are considered, taking into account MHD and fusion, generators, transformers, transmission lines, magnets for physics, cryogenic techniques, electrtronics, and aspects of magnet stability. Advances related to heat transfer in He I are discussed along with subjects related to theat transfer in He II, refrigeration of superconducting systems, refrigeration and liquefaction, dilution and magnetic refrigerators, refrigerators for space applications, mass transfer and flow phenomena, and the properties of fluids. Developments related to cryogenic applications are also explored, giving attention to bulk storage and transfer of cryogenic fluids, liquefied natural gas operations, space science and technology, and cryopumping. Topics related to cryogenic instrumentation and controls include the production and use of high grade silicon diode temperature sensors, the choice of strain gages for use in a large superconducting alternator, microprocessor control of cryogenic pressure, and instrumentation, data acquisition and reduction for a large spaceborne helium dewar.
Detectors for Tomorrow's Instruments
NASA Technical Reports Server (NTRS)
Moseley, Harvey
2009-01-01
Cryogenically cooled superconducting detectors have become essential tools for a wide range of measurement applications, ranging from quantum limited heterodyne detection in the millimeter range to direct searches for dark matter with superconducting phonon detectors operating at 20 mK. Superconducting detectors have several fundamental and practical advantages which have resulted in their rapid adoption by experimenters. Their excellent performance arises in part from reductions in noise resulting from their low operating temperatures, but unique superconducting properties provide a wide range of mechanisms for detection. For example, the steep dependence of resistance with temperature on the superconductor/normal transition provides a sensitive thermometer for calorimetric and bolometric applications. Parametric changes in the properties of superconducting resonators provides a mechanism for high sensitivity detection of submillimeter photons. From a practical point of view, the use of superconducting detectors has grown rapidly because many of these devices couple well to SQUID amplifiers, which are easily integrated with the detectors. These SQUID-based amplifiers and multiplexers have matured with the detectors; they are convenient to use, and have excellent noise performance. The first generation of fully integrated large scale superconducting detection systems are now being deployed. I will discuss the prospects for a new generation of instruments designed to take full advantage of the revolution in detector technology.
Macroscopic character of composite high-temperature superconducting wires
NASA Astrophysics Data System (ADS)
Kivelson, S. A.; Spivak, B.
2015-11-01
The "d -wave" symmetry of the superconducting order in the cuprate high temperature superconductors is a well established fact [J. Tsuei and J. R. Kirtley, Rev. Mod. Phys. 72, 969 (2000), 10.1103/RevModPhys.72.969 and D. J. Vanharlingen, Rev. Mod. Phys. 67, 515 (1995), 10.1103/RevModPhys.67.515], and one which identifies them as "unconventional." However, in macroscopic contexts—including many potential applications (i.e., superconducting "wires")—the material is a composite of randomly oriented superconducting grains in a metallic matrix, in which Josephson coupling between grains mediates the onset of long-range phase coherence. [See, e.g., D. C. Larbalestier et al., Nat. Mater. 13, 375 (2014), 10.1038/nmat3887, A. P. Malozemoff, MRS Bull. 36, 601 (2011), 10.1557/mrs.2011.160, and K. Heine et al., Appl. Phys. Lett. 55, 2441 (1989), 10.1063/1.102295] Here we analyze the physics at length scales that are large compared to the size of such grains, and in particular the macroscopic character of the long-range order that emerges. While X Y -superconducting glass order and macroscopic d -wave superconductivity may be possible, we show that under many circumstances—especially when the d -wave superconducting grains are embedded in a metallic matrix—the most likely order has global s -wave symmetry.
Correlation effects in superconducting quantum dot systems
NASA Astrophysics Data System (ADS)
Pokorný, Vladislav; Žonda, Martin
2018-05-01
We study the effect of electron correlations on a system consisting of a single-level quantum dot with local Coulomb interaction attached to two superconducting leads. We use the single-impurity Anderson model with BCS superconducting baths to study the interplay between the proximity induced electron pairing and the local Coulomb interaction. We show how to solve the model using the continuous-time hybridization-expansion quantum Monte Carlo method. The results obtained for experimentally relevant parameters are compared with results of self-consistent second order perturbation theory as well as with the numerical renormalization group method.
1995-08-01
Onellion Shadow Bands in Models of Correlated Electrons 475 Adriana Moreo, Stephan Haas, and Elbio Dagotto Electronic Properties of CuO 2 Planes 479...witlh each band, in agreement with experiments. lattice constant a, c(k) = -2t [cos(k/a) + cos(kya)] 3. CALCULATIONS +4t’ cos( ka ) cos(kya). (4) Using...C 170, 291 (1990). Journal of Superconductivity, Vol. 8, No. 4, 1995 Shadow Bands in Models of Correlated Electrons Adriana Moreo’, Stephan Haas
Artificial neural networks for AC losses prediction in superconducting round filaments
NASA Astrophysics Data System (ADS)
Leclerc, J.; Makong Hell, L.; Lorin, C.; Masson, P. J.
2016-06-01
An extensive and fast method to estimate superconducting AC losses within a superconducting round filament carrying an AC current and subjected to an elliptical magnetic field (both rotating and oscillating) is presented. Elliptical fields are present in rotating machine stators and being able to accurately predict AC losses in fully superconducting machines is paramount to generating realistic machine designs. The proposed method relies on an analytical scaling law (ASL) combined with two artificial neural network (ANN) estimators taking 9 input parameters representing the superconductor, external field and transport current characteristics. The ANNs are trained with data generated by finite element (FE) computations with a commercial software (FlexPDE) based on the widely accepted H-formulation. After completion, the model is validated through comparison with additional randomly chosen data points and compared for simple field configurations to other predictive models. The loss estimation discrepancy is about 3% on average compared to the FEA analysis. The main advantages of the model compared to FE simulations is the fast computation time (few milliseconds) which allows it to be used in iterated design processes of fully superconducting machines. In addition, the proposed model provides a higher level of fidelity than the scaling laws existing in literature usually only considering pure AC field.
Bulk Superconductivity Induced by In-Plane Chemical Pressure Effect in Eu0.5La0.5FBiS2-xSex
NASA Astrophysics Data System (ADS)
Jinno, Gen; Jha, Rajveer; Yamada, Akira; Higashinaka, Ryuji; Matsuda, Tatsuma D.; Aoki, Yuji; Nagao, Masanori; Miura, Osuke; Mizuguchi, Yoshikazu
2016-12-01
We have investigated the Se substitution effect on the superconductivity of optimally doped BiS2-based superconductor Eu0.5La0.5FBiS2. Eu0.5La0.5FBiS2-xSex samples with x = 0-1 were synthesized. With increasing x, in-plane chemical pressure is enhanced. For x ≥ 0.6, superconducting transitions with a large shielding volume fraction are observed in magnetic susceptibility measurements, and the highest Tc is 3.8 K for x = 0.8. From low-temperature electrical resistivity measurements, a zero-resistivity state is observed for all the samples, and the highest Tc is observed for x = 0.8. With increasing Se concentration, the characteristic electrical resistivity changes from semiconducting-like to metallic, suggesting that the emergence of bulk superconductivity is linked with the enhanced metallicity. A superconductivity phase diagram of the Eu0.5La0.5FBiS2-xSex superconductor is established.
Addressing surface-induced loss and decoherence in superconducting quantum circuits
NASA Astrophysics Data System (ADS)
Fuhrer, Andreas; Mueller, Peter; Kuhlmann, Andreas; Filipp, Stefan; Deshpande, Veeresh; Drechsler, Ute
Many of the advances in coherence and fidelity of superconducting qubits have been made possible by clever engineering of the coupling to the environment and operation at noise-insensitive sweet spots. However, this leads to a compromise in experimental flexibility and device tunability, which can become inhibitive as the system size is scaled up. Material and interface related degrees of freedoms are harder to mitigate and are expected to become increasingly important in more complex systems. They impose limits both on coherence (flux-noise) and lifetimes (surface loss) of superconducting qubits. To study and eliminate these effects we have constructed a reusable UHV-compatible sample enclosure that enables us to perform various surface passivation steps before cooling superconducting devices to cryogenic temperatures. The enclosure can accommodate large chips with up to 18 microwave ports and can be vacuum sealed at pressures below 8e-10 mbar. We discuss its operation principle and present first measurement results of superconducting CPW resonators and qubit devices with and without prior surface treatments.
Superconducting thermoelectric generator
Metzger, J.D.; El-Genk, M.S.
1994-01-01
Thermoelectricity is produced by applying a temperature differential to dissimilar electrically conducting or semiconducting materials, thereby producing a voltage that is proportional to the temperature difference. Thermoelectric generators use this effect to directly convert heat into electricity; however, presently-known generators have low efficiencies due to the production of high currents which in turn cause large resistive heating losses. Some thermoelectric generators operate at efficiencies between 4% and 7% in the 800{degrees} to 1200{degrees}C range. According to its major aspects and bradly stated, the present invention is an apparatus and method for producing electricity from heat. In particular, the invention is a thermoelectric generator that juxtaposes a superconducting material and a semiconducting material - so that the superconducting and the semiconducting materials touch - to convert heat energy into electrical energy without resistive losses in the temperature range below the critical temperature of the superconducting material. Preferably, an array of superconducting material is encased in one of several possible configurations within a second material having a high thermal conductivity, preferably a semiconductor, to form a thermoelectric generator.
Magnetic preferential orientation of metal oxide superconducting materials
Capone, D.W.; Dunlap, B.D.; Veal, B.W.
1990-07-17
A superconductor comprised of a polycrystalline metal oxide such as YBa[sub 2]Cu[sub 3]O[sub 7[minus]X] (where 0 < X < 0.5) exhibits superconducting properties and is capable of conducting very large current densities. By aligning the two-dimensional Cu-O layers which carry the current in the superconducting state in the a- and b-directions, i.e., within the basal plane, a high degree of crystalline axes alignment is provided between adjacent grains permitting the conduction of high current densities. The highly anisotropic diamagnetic susceptibility of the polycrystalline metal oxide material permits the use of an applied magnetic field to orient the individual crystals when in the superconducting state to substantially increase current transport between adjacent grains. In another embodiment, the anisotropic paramagnetic susceptibility of rare-earth ions substituted into the oxide material is made use of as an applied magnetic field orients the particles in a preferential direction. This latter operation can be performed with the material in the normal (non-superconducting) state. 4 figs.
Superconductivity in Weyl semimetal candidate MoTe2.
Qi, Yanpeng; Naumov, Pavel G; Ali, Mazhar N; Rajamathi, Catherine R; Schnelle, Walter; Barkalov, Oleg; Hanfland, Michael; Wu, Shu-Chun; Shekhar, Chandra; Sun, Yan; Süß, Vicky; Schmidt, Marcus; Schwarz, Ulrich; Pippel, Eckhard; Werner, Peter; Hillebrand, Reinald; Förster, Tobias; Kampert, Erik; Parkin, Stuart; Cava, R J; Felser, Claudia; Yan, Binghai; Medvedev, Sergey A
2016-03-14
Transition metal dichalcogenides have attracted research interest over the last few decades due to their interesting structural chemistry, unusual electronic properties, rich intercalation chemistry and wide spectrum of potential applications. Despite the fact that the majority of related research focuses on semiconducting transition-metal dichalcogenides (for example, MoS2), recently discovered unexpected properties of WTe2 are provoking strong interest in semimetallic transition metal dichalcogenides featuring large magnetoresistance, pressure-driven superconductivity and Weyl semimetal states. We investigate the sister compound of WTe2, MoTe2, predicted to be a Weyl semimetal and a quantum spin Hall insulator in bulk and monolayer form, respectively. We find that bulk MoTe2 exhibits superconductivity with a transition temperature of 0.10 K. Application of external pressure dramatically enhances the transition temperature up to maximum value of 8.2 K at 11.7 GPa. The observed dome-shaped superconductivity phase diagram provides insights into the interplay between superconductivity and topological physics.
Superconductivity in Weyl semimetal candidate MoTe2
Qi, Yanpeng; Naumov, Pavel G.; Ali, Mazhar N.; Rajamathi, Catherine R.; Schnelle, Walter; Barkalov, Oleg; Hanfland, Michael; Wu, Shu-Chun; Shekhar, Chandra; Sun, Yan; Süß, Vicky; Schmidt, Marcus; Schwarz, Ulrich; Pippel, Eckhard; Werner, Peter; Hillebrand, Reinald; Förster, Tobias; Kampert, Erik; Parkin, Stuart; Cava, R. J.; Felser, Claudia; Yan, Binghai; Medvedev, Sergey A.
2016-01-01
Transition metal dichalcogenides have attracted research interest over the last few decades due to their interesting structural chemistry, unusual electronic properties, rich intercalation chemistry and wide spectrum of potential applications. Despite the fact that the majority of related research focuses on semiconducting transition-metal dichalcogenides (for example, MoS2), recently discovered unexpected properties of WTe2 are provoking strong interest in semimetallic transition metal dichalcogenides featuring large magnetoresistance, pressure-driven superconductivity and Weyl semimetal states. We investigate the sister compound of WTe2, MoTe2, predicted to be a Weyl semimetal and a quantum spin Hall insulator in bulk and monolayer form, respectively. We find that bulk MoTe2 exhibits superconductivity with a transition temperature of 0.10 K. Application of external pressure dramatically enhances the transition temperature up to maximum value of 8.2 K at 11.7 GPa. The observed dome-shaped superconductivity phase diagram provides insights into the interplay between superconductivity and topological physics. PMID:26972450
Magnetic preferential orientation of metal oxide superconducting materials
Capone, Donald W.; Dunlap, Bobby D.; Veal, Boyd W.
1990-01-01
A superconductor comprised of a polycrystalline metal oxide such as YBa.sub.2 Cu.sub.3 O.sub.7-X (where 0
Fang, Yuankan; Wolowiec, Christian T.; Yazici, Duygu; ...
2015-12-14
A large number of compounds which contain BiSmore » $$_2$$ layers exhibit enhanced superconductivity upon electron doping. Much interest and research effort has been focused on BiS$$_2$$-based compounds which provide new opportunities for exploring the nature of superconductivity. Important to the study of BiS2-based superconductors is the relation between structure and superconductivity. By modifying either the superconducting BiS$$_2$$ layers or the blocking layers in these layered compounds, one can effectively tune the lattice parameters, local atomic environment, electronic structure, and other physical properties of these materials. In this article, we will review some of the recent progress on research of the effects of chemical substitution in BiS$$_2$$-based compounds, with special attention given to the compounds in the LnOBiSS$$_2$$ (Ln = La-Nd) system. Strategies which are reported to be essential in optimizing superconductivity of these materials will also be discussed.« less
Lumped-Element Dynamic Electro-Thermal model of a superconducting magnet
NASA Astrophysics Data System (ADS)
Ravaioli, E.; Auchmann, B.; Maciejewski, M.; ten Kate, H. H. J.; Verweij, A. P.
2016-12-01
Modeling accurately electro-thermal transients occurring in a superconducting magnet is challenging. The behavior of the magnet is the result of complex phenomena occurring in distinct physical domains (electrical, magnetic and thermal) at very different spatial and time scales. Combined multi-domain effects significantly affect the dynamic behavior of the system and are to be taken into account in a coherent and consistent model. A new methodology for developing a Lumped-Element Dynamic Electro-Thermal (LEDET) model of a superconducting magnet is presented. This model includes non-linear dynamic effects such as the dependence of the magnet's differential self-inductance on the presence of inter-filament and inter-strand coupling currents in the conductor. These effects are usually not taken into account because superconducting magnets are primarily operated in stationary conditions. However, they often have significant impact on magnet performance, particularly when the magnet is subject to high ramp rates. Following the LEDET method, the complex interdependence between the electro-magnetic and thermal domains can be modeled with three sub-networks of lumped-elements, reproducing the electrical transient in the main magnet circuit, the thermal transient in the coil cross-section, and the electro-magnetic transient of the inter-filament and inter-strand coupling currents in the superconductor. The same simulation environment can simultaneously model macroscopic electrical transients and phenomena at the level of superconducting strands. The model developed is a very useful tool for reproducing and predicting the performance of conventional quench protection systems based on energy extraction and quench heaters, and of the innovative CLIQ protection system as well.
Method for obtaining large levitation pressure in superconducting magnetic bearings
Hull, John R.
1997-01-01
A method and apparatus for compressing magnetic flux to achieve high levitation pressures. Magnetic flux produced by a magnetic flux source travels through a gap between two high temperature superconducting material structures. The gap has a varying cross-sectional area to compress the magnetic flux, providing an increased magnetic field and correspondingly increased levitation force in the gap.
Method for obtaining large levitation pressure in superconducting magnetic bearings
Hull, John R.
1996-01-01
A method and apparatus for compressing magnetic flux to achieve high levitation pressures. Magnetic flux produced by a magnetic flux source travels through a gap between two high temperature superconducting material structures. The gap has a varying cross-sectional area to compress the magnetic flux, providing an increased magnetic field and correspondingly increased levitation force in the gap.
Applications of high-energy heavy-ions from superconducting cyclotrons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grimm, T. L.
1999-06-10
The superconducting cyclotrons of the National Superconducting Cyclotron Laboratory (NSCL), a major nuclear physics facility, can provide ions of any element from hydrogen to uranium. A major upgrade to the NSCL is underway and will consist of an electron cyclotron resonance (ECR) ion source followed by two large superconducting cyclotrons (K500 and K1200). Ions can be extracted at any point along this chain allowing a large range of energies and charge states. The ion energies range from a few keV to over 20 GeV, and charge states up to fully stripped {sup 197}Au{sup 79+} and two electron {sup 238}U{sup 90+}more » are possible. The long range of the high-energy heavy-ions allows them to penetrate deeply into a target that is placed in air, outside a vacuum chamber. The ion beams have already been used for a number of applications including; ion implantation, atomic physics, single event effects in integrated circuits, DNA radiation studies, radiation detector studies, flux pinning in high-T{sub c} superconductors, calibration of a space-based spectrometer, isotropic ratio measurements, material wear studies, and continuous positron emission tomography imaging.« less
First Tests of Prototype SCUBA-2 Superconducting Bolometer Array
NASA Astrophysics Data System (ADS)
Woodcraft, Adam L.; Ade, Peter A. R.; Bintley, Dan; Hunt, Cynthia L.; Sudiwala, Rashmi V.; Hilton, Gene C.; Irwin, Kent D.; Reintsema, Carl D.; Audley, Michael D.; Holland, Wayne S.; MacIntosh, Mike
2006-09-01
We present results of the first tests on a 1280 pixel superconducting bolometer array, a prototype for SCUBA-2, a sub-mm camera being built for the James Clerk Maxwell Telescope in Hawaii. The bolometers are TES (transition edge sensor) detectors; these take advantage of the large variation of resistance with temperature through the superconducting transition. To keep the number of wires reasonable, a multiplexed read-out is used. Each pixel is read out through an individual DC SQUID; room temperature electronics switch between rows in the array by biasing the appropriate SQUIDs in turn. Arrays of 100 SQUIDs in series for each column then amplify the output. Unlike previous TES arrays, the multiplexing elements are located beneath each pixel, making large arrays possible, but construction more challenging. The detectors are constructed from Mo/Cu bi-layers; this technique enables the transition temperature to be tuned using the proximity effect by choosing the thickness of the normal and superconducting materials. To achieve the required performance, the detectors are operated at a temperature of approximately 120 mK. We describe the results of a basic characterisation of the array, demonstrating that it is fully operational, and give the results of signal to noise measurements.
NASA Astrophysics Data System (ADS)
Takahata, Kazuya; Moriuchi, Sadatomo; Ooba, Kouki; Takami, Shigeyuki; Iwamoto, Akifumi; Mito, Toshiyuki; Imagawa, Shinsaku
2018-04-01
The Large Helical Device (LHD) superconducting magnet system consists of two pairs of helical coils and three pairs of poloidal coils. The poloidal coils use cable-in-conduit (CIC) conductors, which have now been adopted in many fusion devices, with forced cooling by supercritical helium. The poloidal coils were first energized with the helical coils on March 27, 1998. Since that time, the coils have experienced 54,600 h of steady cooling, 10,600 h of excitation operation, and nineteen thermal cycles for twenty years. During this period, no superconducting-to-normal transition of the conductors has been observed. The stable operation of the poloidal coils demonstrates that a CIC conductor is suited to large-scale superconducting magnets. The AC loss has remained constant, even though a slight decrease was observed in the early phase of operation. The hydraulic characteristics have been maintained without obstruction over the entire period of steady cooling. The experience gained from twenty years of operation has also provided lessons regarding malfunctions of peripheral equipment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim J.; Nazaretski E.; Ronning, F.
2012-05-18
We have measured the temperature dependence of the absolute value of the magnetic penetration depth {lambda}(T) in a Ca{sub 10}(Pt{sub 3}As{sub 8})[(Fe{sub 1-x}Pt{sub x}){sub 2}As{sub 2}]{sub 5} (x = 0.097) single crystal using a low-temperature magnetic force microscope (MFM). We obtain {lambda}{sub ab}(0) {approx} 1000 nm via extrapolating the data to T = 0. This large {lambda} and pronounced anisotropy in this system are responsible for large thermal fluctuations and the presence of a liquid vortex phase in this low-temperature superconductor with a critical temperature of 11 K, consistent with the interpretation of the electrical transport data. The superconducting parametersmore » obtained from {lambda} and coherence length {zeta} place this compound in the extreme type II regime. Meissner responses (via MFM) at different locations across the sample are similar to each other, indicating good homogeneity of the superconducting state on a submicron scale.« less
Theory of superconductivity and spin excitations in cuprates
NASA Astrophysics Data System (ADS)
Plakida, Nikolay M.
2018-06-01
A microscopic theory of high-temperature superconductivity in strongly correlated systems as cuprates is presented. The two-subband extended Hubbard model is considered where the intersite Coulomb repulsion and electron-phonon interaction are taken into account. The low-energy spin excitations are considered within the t-J model.
Multicomponent order parameter superconductivity of Sr2RuO4 revealed by topological junctions
NASA Astrophysics Data System (ADS)
Anwar, M. S.; Ishiguro, R.; Nakamura, T.; Yakabe, M.; Yonezawa, S.; Takayanagi, H.; Maeno, Y.
2017-06-01
Single crystals of the Sr2RuO4 -Ru eutectic system are known to exhibit enhanced superconductivity at 3 K in addition to the bulk superconductivity of Sr2RuO4 at 1.5 K. The 1.5 K phase is believed to be a spin-triplet, chiral p -wave state with a multicomponent order parameter, giving rise to chiral domain structure. In contrast, the 3 K phase is attributable to enhanced superconductivity of Sr2RuO4 in the strained interface region between Ru inclusion of a few to tens of micrometers in size and the surrounding Sr2RuO4 . We investigate the dynamic behavior of a topological junction, where a superconductor is surrounded by another superconductor. Specifically, we fabricated Nb/Ru/Sr2RuO4 topological superconducting junctions, in which the difference in phase winding between the s -wave superconductivity in Ru microislands induced from Nb and the superconductivity of Sr2RuO4 mainly governs the junction behavior. Comparative results of the asymmetry, hysteresis, and noise in junctions with different sizes, shapes, and configurations of Ru inclusions are explained by the chiral domain-wall motion in these topological junctions. Furthermore, a striking difference between the 1.5 and 3 K phases is clearly revealed: the large noise in the 1.5 K phase sharply disappears in the 3 K phase. These results confirm the multicomponent order-parameter superconductivity of the bulk Sr2RuO4 , consistent with the chiral p -wave state, and the proposed nonchiral single-component superconductivity of the 3 K phase.
Study on superconducting state parameters of Cu1-xZrx metallic glasses using model potentials
NASA Astrophysics Data System (ADS)
Jambusarwala, Tasneem S.; Gajjar, P. N.
2018-05-01
The superconducting state parameters (SSP) of Cu1-xZrx metallic glasses over the full range of concentration x of Zr have been investigated to study influence of various local pseudopotentials. The study includes the computation of electron-phonon coupling strength (λ), transition temperature (TC), isotope effect exponent (α) and effective interaction strength (N0V) using fourteen different forms of local model potentials. The local field correction function proposed by Taylor (T) is used. The influence of model potential on various parameters is ranging from 6% to 83% for pure Zr and 28% to 84% for pure Cu. The present study confirms that the identification of model potential is vital in studying Superconducting State Parameters.
Exotic superconducting states in the extended attractive Hubbard model.
Nayak, Swagatam; Kumar, Sanjeev
2018-04-04
We show that the extended attractive Hubbard model on a square lattice allows for a variety of superconducting phases, including exotic mixed-symmetry phases with [Formula: see text] and [Formula: see text] symmetries, and a novel [Formula: see text] state. The calculations are performed within the Hartree-Fock Bardeen-Cooper-Schrieffer framework. The ground states of the mean-field Hamiltonian are obtained via a minimization scheme that relaxes the symmetry constraints on the superconducting solutions, hence allowing for a mixing of s-, p- and d-wave order parameters. The results are obtained within the assumption of uniform-density states. Our results show that extended attractive Hubbard model can serve as an effective model for investigating properties of exotic superconductors.
Exotic superconducting states in the extended attractive Hubbard model
NASA Astrophysics Data System (ADS)
Nayak, Swagatam; Kumar, Sanjeev
2018-04-01
We show that the extended attractive Hubbard model on a square lattice allows for a variety of superconducting phases, including exotic mixed-symmetry phases with dx^2-y^2 + i [s + s^*] and dx^2-y^2 + px symmetries, and a novel px + i py state. The calculations are performed within the Hartree-Fock Bardeen-Cooper-Schrieffer framework. The ground states of the mean-field Hamiltonian are obtained via a minimization scheme that relaxes the symmetry constraints on the superconducting solutions, hence allowing for a mixing of s-, p- and d-wave order parameters. The results are obtained within the assumption of uniform-density states. Our results show that extended attractive Hubbard model can serve as an effective model for investigating properties of exotic superconductors.
On effective holographic Mott insulators
NASA Astrophysics Data System (ADS)
Baggioli, Matteo; Pujolàs, Oriol
2016-12-01
We present a class of holographic models that behave effectively as prototypes of Mott insulators — materials where electron-electron interactions dominate transport phenomena. The main ingredient in the gravity dual is that the gauge-field dynamics contains self-interactions by way of a particular type of non-linear electrodynamics. The electrical response in these models exhibits typical features of Mott-like states: i) the low-temperature DC conductivity is unboundedly low; ii) metal-insulator transitions appear by varying various parameters; iii) for large enough self-interaction strength, the conductivity can even decrease with increasing doping (density of carriers) — which appears as a sharp manifestation of `traffic-jam'-like behaviour; iv) the insulating state becomes very unstable towards superconductivity at large enough doping. We exhibit some of the properties of the resulting insulator-superconductor transition, which is sensitive to the momentum dissipation rate in a specific way. These models imply a clear and generic correlation between Mott behaviour and significant effects in the nonlinear electrical response. We compute the nonlinear current-voltage curve in our model and find that indeed at large voltage the conductivity is largely reduced.
Phase Separation of Superconducting Phases in the Penson-Kolb-Hubbard Model
NASA Astrophysics Data System (ADS)
Jerzy Kapcia, Konrad; Czart, Wojciech Robert; Ptok, Andrzej
2016-04-01
In this paper, we determine the phase diagrams (for T = 0 as well as T > 0) of the Penson-Kolb-Hubbard model for two dimensional square lattice within Hartree-Fock mean-field theory focusing on an investigation of superconducting phases and on a possibility of the occurrence of the phase separation. We obtain that the phase separation, which is a state of coexistence of two different superconducting phases (with s- and η-wave symmetries), occurs in definite ranges of the electron concentration. In addition, increasing temperature can change the symmetry of the superconducting order parameter (from η-wave into s-wave). The system considered exhibits also an interesting multicritical behaviour including bicritical points. The relevance of the results to experiments for real materials is also discussed.
NASA Astrophysics Data System (ADS)
Li, Jipeng; Li, Haitao; Zheng, Jun; Zheng, Botian; Huang, Huan; Deng, Zigang
2017-06-01
The nonlinear vibration of high temperature superconducting (HTS) bulks in an applied permanent magnetic array (Halbach array) field, as a precondition for commercial application to HTS maglev train and HTS bearing, is systematically investigated. This article reports the actual vibration rules of HTS bulks from three aspects. First, we propose a new numerical model to simplify the calculation of levitation force. This model could provide precise simulations, especially the estimation of eigenfrequency. Second, an approximate analytic solution of the vibration of the HTS bulks is obtained by using the method of harmonic balance. Finally, to verify the results mentioned above, we measure the vertical vibration acceleration signals of an HTS maglev model, consisting of eight YBaCuO bulks, oscillating freely above a Halbach array with large displacement excitation. Higher order harmonic components, which indicate the nonlinear vibration phenomenon, are detected in the responses. All the three results are compared and agreed well with each other. This study combines the experimental and theoretical analyses and provides a deep understanding of the physical phenomenon of the nonlinear vibration and is meaningful for the vibration control of the relevant applications.
Experimental and numerical analysis of interfilament resistances in NbTi strands
NASA Astrophysics Data System (ADS)
Breschi, M.; Massimini, M.; Ribani, P. L.; Spina, T.; Corato, V.
2014-05-01
Superconducting strands are composite wires made of fine superconducting filaments embedded in a metallic matrix. The transverse resistivity among superconducting filaments affects the coupling losses during electromagnetic transients and the electro-thermal behavior of the wire in case of a quench. A direct measurement of the transverse interfilament resistance as a function of temperature in NbTi multi-filamentary wires was performed at the ENEA Frascati Superconductivity Division, Italy by means of a four-probe method. The complexity of these measurements is remarkable, due to the current distribution phenomena that occur among superconducting filaments during these tests. A two-dimensional finite element method model of the wire cross section and a three-dimensional electrical circuit model of the wire sample developed at the University of Bologna are applied here to derive qualitative and quantitative information about the transverse electrical resistance matrix. The experiment is aimed at verifying the qualitative behaviors and trends predicted by the numerical calculations, especially concerning the current redistribution length and consequent length effects of the sample under test. A fine tuning of the model parameters at the filament level allowed us to reproduce the experimental results and get quantitative information about the current distribution phenomena between filaments.
Superconductivity-induced features in the electronic Raman spectrum of monolayer graphene
NASA Astrophysics Data System (ADS)
García-Ruiz, A.; Mucha-Kruczyński, M.; Fal'ko, V. I.
2018-04-01
Using the continuum model, we investigate theoretically the contribution of the low-energy electronic excitations to the Raman spectrum of superconducting monolayer graphene. We consider superconducting phases characterised by an isotropic order parameter in a single valley and find a Raman peak at a shift set by the size of the superconducting gap. The height of this peak is proportional to the square root of the gap and the third power of the Fermi level, and we estimate its quantum efficiency as I ˜10-14 .
NASA Astrophysics Data System (ADS)
Konno, R.; Hatayama, N.; Chaudhury, R.
2014-04-01
We investigated the pressure coefficients of the superconducting order parameters at the ground state of ferromagnetic superconductors based on the microscopic single band model by Linder et al. The superconducting gaps (i) similar to the ones seen in the thin film of A2 phase in liquid 3He and (ii) with the line node were used. This study shows that we would be able to estimate the pressure coefficients of the superconducting and magnetic order parameters at the ground state of ferromagnetic superconductors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xue, Cun; He, An; Yong, Huadong
We present an exact analytical approach for arbitrary field-dependent critical state of high-T{sub c} superconducting strip with transport current. The sheet current and flux-density profiles are derived by solving the integral equations, which agree with experiments quite well. For small transport current, the approximate explicit expressions of sheet current, flux-density and penetration depth for the Kim model are derived based on the mean value theorem for integration. We also extend the results to the field-dependent critical state of superconducting strip in the simultaneous presence of applied field and transport current. The sheet current distributions calculated by the Kim model agreemore » with experiments better than that by the Bean model. Moreover, the lines in the I{sub a}-B{sub a} plane for the Kim model are not monotonic, which is quite different from that the Bean model. The results reveal that the maximum transport current in thin superconducting strip will decrease with increasing applied field which vanishes for the Bean model. The results of this paper are useful to calculate ac susceptibility and ac loss.« less
Superconductivity in compensated and uncompensated semiconductors.
Yanase, Youichi; Yorozu, Naoyuki
2008-12-01
We investigate the localization and superconductivity in heavily doped semiconductors. The crossover from the superconductivity in the host band to that in the impurity band is described on the basis of the disordered three-dimensional attractive Hubbard model for binary alloys. The microscopic inhomogeneity and the thermal superconducting fluctuation are taken into account using the self-consistent 1-loop order theory. The superconductor-insulator transition accompanies the crossover from the host band to the impurity band. We point out an enhancement of the critical temperature T c around the crossover. Further localization of electron wave functions leads to the localization of Cooper pairs and induces the pseudogap. We find that both the doping compensation by additional donors and the carrier increase by additional acceptors suppress the superconductivity. A theoretical interpretation is proposed for the superconductivity in the boron-doped diamond, SiC, and Si.
Superconductivity in compensated and uncompensated semiconductors
Yanase, Youichi; Yorozu, Naoyuki
2008-01-01
We investigate the localization and superconductivity in heavily doped semiconductors. The crossover from the superconductivity in the host band to that in the impurity band is described on the basis of the disordered three-dimensional attractive Hubbard model for binary alloys. The microscopic inhomogeneity and the thermal superconducting fluctuation are taken into account using the self-consistent 1-loop order theory. The superconductor-insulator transition accompanies the crossover from the host band to the impurity band. We point out an enhancement of the critical temperature Tc around the crossover. Further localization of electron wave functions leads to the localization of Cooper pairs and induces the pseudogap. We find that both the doping compensation by additional donors and the carrier increase by additional acceptors suppress the superconductivity. A theoretical interpretation is proposed for the superconductivity in the boron-doped diamond, SiC, and Si. PMID:27878018
Assembly, characterization, and operation of large-scale TES detector arrays for ACTPol
NASA Astrophysics Data System (ADS)
Pappas, Christine Goodwin
2016-01-01
The Polarization-sensitive Receiver for the Atacama Cosmology Telescope (ACTPol) is designed to measure the Cosmic Microwave Background (CMB) temperature and polarization anisotropies on small angular scales. Measurements of the CMB temperature and polarization anisotropies have produced arguably the most important cosmological data to date, establishing the LambdaCDM model and providing the best constraints on most of its parameters. To detect the very small fluctuations in the CMB signal across the sky, ACTPol uses feedhorn-coupled Transition-Edge Sensor (TES) detectors. A TES is a superconducting thin film operated in the transition region between the superconducting and normal states, where it functions as a highly sensitive resistive thermometer. In this thesis, aspects of the assembly, characterization, and in-field operation of the ACTPol TES detector arrays are discussed. First, a novel microfabrication process for producing high-density superconducting aluminum/polyimide flexible circuitry (flex) designed to connect large-scale detector arrays to the first stage of readout is presented. The flex is used in parts of the third ACTPol array and is currently being produced for use in the AdvACT detector arrays, which will begin to replace the ACTPol arrays in 2016. Next, we describe methods and results for the in-lab and on-telescope characterization of the detectors in the third ACTPol array. Finally, we describe the ACTPol TES R(T,I) transition shapes and how they affect the detector calibration and operation. Methods for measuring the exact detector calibration and re-biasing functions, taking into account the R(T,I) transition shape, are presented.
Reliability of large superconducting magnets through design
NASA Astrophysics Data System (ADS)
Henning, C. D.
1981-01-01
Design and quality control of large superconducting magnets for reliability comparable to pressure vessels are discussed. The failure modes are analyzed including thermoelectric instabilities, electrical shorts, cryogenic/vacuum defects, and mechanical malfunctions. Design must take into consideration conductor stability, insulation based on the Paschen curves, and the possible burnout of cryogenic transition leads if the He flow is interrupted. The final stage of the metal drawing process should stress the superconductor material to a stress value higher than the magnet design stress, cabled conductors should be used to achieve mechanical redundancy, and ground-plane insulation must be multilayered for arc prevention.
Pseudogap and proximity effect in the Bi2Te3/Fe1+yTe interfacial superconductor.
He, M Q; Shen, J Y; Petrović, A P; He, Q L; Liu, H C; Zheng, Y; Wong, C H; Chen, Q H; Wang, J N; Law, K T; Sou, I K; Lortz, R
2016-09-02
In the interfacial superconductor Bi2Te3/Fe1+yTe, two dimensional superconductivity occurs in direct vicinity to the surface state of a topological insulator. If this state were to become involved in superconductivity, under certain conditions a topological superconducting state could be formed, which is of high interest due to the possibility of creating Majorana fermionic states. We report directional point-contact spectroscopy data on the novel Bi2Te3/Fe1+yTe interfacial superconductor for a Bi2Te3 thickness of 9 quintuple layers, bonded by van der Waals epitaxy to a Fe1+yTe film at an atomically sharp interface. Our data show highly unconventional superconductivity, which appears as complex as in the cuprate high temperature superconductors. A very large superconducting twin-gap structure is replaced by a pseudogap above ~12 K which persists up to 40 K. While the larger gap shows unconventional order parameter symmetry and is attributed to a thin FeTe layer in proximity to the interface, the smaller gap is associated with superconductivity induced via the proximity effect in the topological insulator Bi2Te3.
A modular and cost-effective superconducting generator design for offshore wind turbines
NASA Astrophysics Data System (ADS)
Keysan, Ozan; Mueller, Markus
2015-03-01
Superconducting generators have the potential to reduce the tower head mass for large (∼10 MW) offshore wind turbines. However, a high temperature superconductor generator should be as reliable as conventional generators for successful entry into the market. Most of the proposed designs use the superconducting synchronous generator concept, which has a higher cost than conventional generators and suffers from reliability issues. In this paper, a novel claw pole type of superconducting machine is presented. The design has a stationary superconducting field winding, which simplifies the design and increases the reliability. The machine can be operated in independent modules; thus even if one of the sections fails, the rest can operate until the next planned maintenance. Another advantage of the design is the very low superconducting wire requirement; a 10 MW, 10 rpm design is presented which uses 13 km of MgB2 wire at 30 K. The outer diameter of the machine is 6.63 m and it weighs 184 tonnes including the structural mass. The design is thought to be a good candidate for entering the renewable energy market, with its low cost and robust structure.
Malliakas, Christos D; Chung, Duck Young; Claus, Helmut; Kanatzidis, Mercouri G
2018-05-17
Superconductivity in the two-dimensional AM m Bi 3 Q 5+m family of semimetals is reported. The AMBi 3 Te 6 (m=1) and AM 2 Bi 3 Te 7 (m=2) members of the homologous series with A=Rb, Cs and M=Pb, Sn undergo a bulk superconducting transition ranging from 2.7 to 1.4 K depending on the composition. The estimated superconducting volume fraction is about 90 %. Superconducting phase diagrams as a function of chemical pressure are constructed for the solid solution products of each member of the homologous series, AMBi 3-x Sb x Te 6-y Se y and AM 2 Bi 3-x Sb x Te 7-y Se y (0≤x≤3 or 0≤y≤2). The structural flexibility of the ternary AM m M' 3 Te 5+m semiconducting homology to form isostructural analogues with a variety of metals, M=Pb, Sn; M'=Bi, Sb, gives access to a large number of electronic configurations and superconductivity due to chemical pressure effects. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Pseudogap and proximity effect in the Bi2Te3/Fe1+yTe interfacial superconductor
He, M. Q.; Shen, J. Y.; Petrović, A. P.; He, Q. L.; Liu, H. C.; Zheng, Y.; Wong, C. H.; Chen, Q. H.; Wang, J. N.; Law, K. T.; Sou, I. K.; Lortz, R.
2016-01-01
In the interfacial superconductor Bi2Te3/Fe1+yTe, two dimensional superconductivity occurs in direct vicinity to the surface state of a topological insulator. If this state were to become involved in superconductivity, under certain conditions a topological superconducting state could be formed, which is of high interest due to the possibility of creating Majorana fermionic states. We report directional point-contact spectroscopy data on the novel Bi2Te3/Fe1+yTe interfacial superconductor for a Bi2Te3 thickness of 9 quintuple layers, bonded by van der Waals epitaxy to a Fe1+yTe film at an atomically sharp interface. Our data show highly unconventional superconductivity, which appears as complex as in the cuprate high temperature superconductors. A very large superconducting twin-gap structure is replaced by a pseudogap above ~12 K which persists up to 40 K. While the larger gap shows unconventional order parameter symmetry and is attributed to a thin FeTe layer in proximity to the interface, the smaller gap is associated with superconductivity induced via the proximity effect in the topological insulator Bi2Te3. PMID:27587000
NASA Astrophysics Data System (ADS)
Li, Hao; Liu, Jianshe; Zhang, Yingshan; Cai, Han; Li, Gang; Liu, Qichun; Han, Siyuan; Chen, Wei
2017-03-01
A negative-inductance superconducting quantum interference device (nSQUID) is an adiabatic superconducting logic device with high energy efficiency, and therefore a promising building block for large-scale low-power superconducting computing. However, the principle of the nSQUID is not that straightforward and an nSQUID driven by voltage is vulnerable to common mode noise. We investigate a single nSQUID driven by current instead of voltage, and clarify the principle of the adiabatic transition of the current-driven nSQUID between different states. The basic logic operations of the current-driven nSQUID with proper parameters are simulated by WRspice. The corresponding circuit is fabricated with a 100 A cm-2 Nb-based lift-off process, and the experimental results at low temperature confirm the basic logic operations as a gated buffer.
Experimental evaluation of a high performance superconducting torquer
NASA Astrophysics Data System (ADS)
Goldie, James H.; Avakian, Kevin M.; Downer, James R.; Gerver, Michael; Gondhalekar, Vijay; Johnson, Bruce G.
The high performance superconducting torquer (HPSCT) was designed to slew a large inertia in one degree of freedom with a double versine torque profile, a profile used for pointing applications which minimizes the exciting of structural resonances. The program culminated with the successful demonstration of closed loop torque control, following a desired double versine torque profile to an accuracy of approximately 1 percent of the peak torque of the profile. The targeted double versine possessed a peak torque which matches the torque capacity of the Sperry M4500 CMG (controlled moment gyro). The research provided strong evidence of the feasibility of an advanced concept CMG which would use cryoresistive control coils in conjunction with an electromagnetically suspended rotor and superconducting source coil. The cryoresistive coils interact with the superconducting solenoid to develop the desired torque and, in addition, the required suspension forces.
Sustained phase separation and spin glass in Co-doped K x Fe 2 - y Se 2 single crystals
Ryu, Hyejin; Wang, Kefeng; Opacic, M.; ...
2015-11-19
We describe Co substitution effects in K xFe 2-y-zCo zSe 2 (0.06 ≤ z ≤ 1.73) single crystal alloys. By 3.5% of Co doping superconductivity is suppressed whereas phase separation of semiconducting K 2Fe 4Se 5 and superconducting/metallic K xFe 2Se 2 is still present. We show that the arrangement and distribution of superconducting phase (stripe phase) is connected with the arrangement of K, Fe and Co atoms. Semiconducting spin glass is found in proximity to superconducting state, persisting for large Co concentrations. At high Co concentrations ferromagnetic metallic state emerges above the spin glass. This is coincident withmore » changes of the unit cell, arrangement and connectivity of stripe conducting phase.« less
Electrothermal feedback in kinetic inductance detectors
NASA Astrophysics Data System (ADS)
Guruswamy, T.; Thomas, C. N.; Withington, S.; Goldie, D. J.
2017-06-01
In kinetic inductance detectors (KIDs) and other similar applications of superconducting microresonators, both the large and small-signal behaviour of the device may be affected by electrothermal feedback. Microwave power applied to read out the device is absorbed by and heats the superconductor quasiparticles, changing the superconductor conductivity and hence the readout power absorbed in a positive or negative feedback loop. In this work, we explore numerically the implications of an extensible theoretical model of a generic superconducting microresonator device for a typical KID, incorporating recent work on the power flow between superconductor quasiparticles and phonons. This model calculates the large-signal (changes in operating point) and small-signal behaviour of a device, allowing us to determine the effect of electrothermal feedback on device responsivity and noise characteristics under various operating conditions. We also investigate how thermally isolating the device from the bath, for example by designing the device on a membrane only connected to the bulk substrate by thin legs, affects device performance. We find that at a typical device operating point, positive electrothermal feedback reduces the effective thermal conductance from the superconductor quasiparticles to the bath, and so increases responsivity to signal (pair-breaking) power, increases noise from temperature fluctuations, and decreases the noise equivalent power (NEP). Similarly, increasing the thermal isolation of the device while keeping the quasiparticle temperature constant decreases the NEP, but also decreases the device response bandwidth.
Superconducting characteristics of short MgB2 wires of long level sensor for liquid hydrogen
NASA Astrophysics Data System (ADS)
Takeda, M.; Inoue, Y.; Maekawa, K.; Matsuno, Y.; Fujikawa, S.; Kumakura, H.
2015-12-01
To establish the worldwide storage and marine transport of hydrogen, it is important to develop a high-precision and long level sensor, such as a superconducting magnesium diboride (MgB2) level sensor for large liquid hydrogen (LH2) tanks on board ships. Three 1.7- m-long MgB2 wires were fabricated by an in situ method, and the superconducting characteristics of twenty-four 20-mm-long MgB2 wires on the 1.7-m-long wires were studied. In addition, the static level-detecting characteristics of five 500-mm-long MgB2 level sensors were evaluated under atmospheric pressure.
Use of high temperature superconductors in magnetoplasmadynamic systems
NASA Technical Reports Server (NTRS)
Reed, C. B.; Sovey, J. S.
1988-01-01
The use of Tesla-class high-temperature superconducting magnets may have an extremely large impact on critical development issues (erosion, heat transfer, and performance) related to magnetoplasmadynamic (MPD) thrusters and also may provide significant benefits in reducing the mass of magnetics used in the power processing system. These potential performance improvements, coupled with additional benefits of high-temperature superconductivity, provide a very strong motivation to develop high-temperature superconductivity (HTS) applied-field MPD thruster propulsion systems. The application of HTS to MPD thruster propulsion systems may produce an enabling technology for these electric propulsion systems. This paper summarizes the impact that HTS may have upon MPD propulsion systems.
The status, recent progress and promise of superconducting materials for practical applications
NASA Astrophysics Data System (ADS)
Rowell, J. M.
1989-03-01
The author summarizes the progress in materials science and engineering that created today's superconducting technology. He reviews the state of the technology with conventional materials by looking at two particular applications: large-scale applications involving conductors, for example, magnets; and electronics and instrumentation applications. The state-of-the art is contrasted with the present understanding of the high-Tc oxide materials.
Method for obtaining large levitation pressure in superconducting magnetic bearings
Hull, J.R.
1997-08-05
A method and apparatus are disclosed for compressing magnetic flux to achieve high levitation pressures. Magnetic flux produced by a magnetic flux source travels through a gap between two high temperature superconducting material structures. The gap has a varying cross-sectional area to compress the magnetic flux, providing an increased magnetic field and correspondingly increased levitation force in the gap. 4 figs.
Method for obtaining large levitation pressure in superconducting magnetic bearings
Hull, J.R.
1996-10-08
A method and apparatus are disclosed for compressing magnetic flux to achieve high levitation pressures. Magnetic flux produced by a magnetic flux source travels through a gap between two high temperature superconducting material structures. The gap has a varying cross-sectional area to compress the magnetic flux, providing an increased magnetic field and correspondingly increased levitation force in the gap. 4 figs.
Mechanism of Superconductivity in Quasi-Two-Dimensional Organic Conductor β-(BDA-TTP) Salts
NASA Astrophysics Data System (ADS)
Nonoyama, Yoshito; Maekawa, Yukiko; Kobayashi, Akito; Suzumura, Yoshikazu; Ito, Hiroshi
2008-09-01
We investigate theoretically the superconductivity of two-dimensional organic conductors, β-(BDA-TTP)2SbF6 and β-(BDA-TTP)2AsF6, to understand the role of the spin and charge fluctuations. The transition temperature is estimated by applying random phase approximation to an extended Hubbard model wherein realistic transfer energies are estimated by extended Hückel calculation. We find a gapless superconducting state with a dxy-like symmetry, which is consistent with the experimental results obtained by specific heat and scanning tunneling microscope. In the present model with an effectively half-filled triangular lattice, spin fluctuation competes with charge fluctuation as a mechanism of pairing interaction since both fluctuations have the same characteristic momentum q=(π,0) for V being smaller than U. This is in contrast to a model with a quarter-filled square lattice, wherein both fluctuations contribute cooperatively to pairing interaction due to fluctuations having different characteristic momenta. The resultant difference in the superconductivity of these two materials is also discussed.
Search for Invisible Axion Dark Matter with the Axion Dark Matter Experiment
NASA Astrophysics Data System (ADS)
Du, N.; Force, N.; Khatiwada, R.; Lentz, E.; Ottens, R.; Rosenberg, L. J.; Rybka, G.; Carosi, G.; Woollett, N.; Bowring, D.; Chou, A. S.; Sonnenschein, A.; Wester, W.; Boutan, C.; Oblath, N. S.; Bradley, R.; Daw, E. J.; Dixit, A. V.; Clarke, J.; O'Kelley, S. R.; Crisosto, N.; Gleason, J. R.; Jois, S.; Sikivie, P.; Stern, I.; Sullivan, N. S.; Tanner, D. B.; Hilton, G. C.; ADMX Collaboration
2018-04-01
This Letter reports the results from a haloscope search for dark matter axions with masses between 2.66 and 2.81 μ eV . The search excludes the range of axion-photon couplings predicted by plausible models of the invisible axion. This unprecedented sensitivity is achieved by operating a large-volume haloscope at subkelvin temperatures, thereby reducing thermal noise as well as the excess noise from the ultralow-noise superconducting quantum interference device amplifier used for the signal power readout. Ongoing searches will provide nearly definitive tests of the invisible axion model over a wide range of axion masses.
Ran, Keijing; Tranquada, John M.; Zhong, Ruidan; ...
2018-06-30
Here, we present inelastic neutron scattering results of phonons in (Pb 0.5Sn 0.5) 1–xIn xTe powders, with x = 0, and 0.3.The x = 0 sample is a topological crystalline insulator, and the x = 0 . 3 sample is a superconductor with a bulk superconducting transition temperature T c of 4.7 K. In both samples, we observe unexpected van Hove singularities in the phonon density of states at energies of 1– 2.5 meV, suggestive of local modes. On cooling the superconducting sample through T c, there is an enhancement of these features for energies below twice the superconducting-gap energy.more » We further note that the superconductivity in (Pb 0.5Sn 0.5) 1–xIn xTe occurs in samples with normal-state resistivities of order 10 mΩ cm, indicative of bad-metal behavior. Calculations based on density functional theory suggest that the superconductivity is easily explainable in terms of electron-phonon coupling; however, they completely miss the low-frequency modes and do not explain the large resistivity. While the bulk superconducting state of (Pb 0.5Sn 0.5) 0.7In 0.3Te appears to be driven by phonons, a proper understanding will require ideas beyond simple BCS theor« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ran, Keijing; Tranquada, John M.; Zhong, Ruidan
Here, we present inelastic neutron scattering results of phonons in (Pb 0.5Sn 0.5) 1–xIn xTe powders, with x = 0, and 0.3.The x = 0 sample is a topological crystalline insulator, and the x = 0 . 3 sample is a superconductor with a bulk superconducting transition temperature T c of 4.7 K. In both samples, we observe unexpected van Hove singularities in the phonon density of states at energies of 1– 2.5 meV, suggestive of local modes. On cooling the superconducting sample through T c, there is an enhancement of these features for energies below twice the superconducting-gap energy.more » We further note that the superconductivity in (Pb 0.5Sn 0.5) 1–xIn xTe occurs in samples with normal-state resistivities of order 10 mΩ cm, indicative of bad-metal behavior. Calculations based on density functional theory suggest that the superconductivity is easily explainable in terms of electron-phonon coupling; however, they completely miss the low-frequency modes and do not explain the large resistivity. While the bulk superconducting state of (Pb 0.5Sn 0.5) 0.7In 0.3Te appears to be driven by phonons, a proper understanding will require ideas beyond simple BCS theor« less
Spin fluctuation induced linear magnetoresistance in ultrathin superconducting FeSe films
Wang, Qingyan; Zhang, Wenhao; Chen, Weiwei; ...
2017-07-21
The discovery of high-temperature superconductivity in FeSe/STO has trigged great research interest to reveal a range of exotic physical phenomena in this novel material. Here we present a temperature dependent magnetotransport measurement for ultrathin FeSe/STO films with different thickness and protection layers. Remarkably, a surprising linear magnetoresistance (LMR) is observed around the superconducting transition temperatures but absent otherwise. The experimental LMR can be reproduced by magnetotransport calculations based on a model of magnetic field dependent disorder induced by spin fluctuation. Thus, the observed LMR in coexistence with superconductivity provides the first magnetotransport signature for spin fluctuation around the superconducting transitionmore » region in ultrathin FeSe/STO films.« less
Nodal liquids in extended t-J models and dynamical supersymmetry
NASA Astrophysics Data System (ADS)
Mavromatos, Nick E.; Sarkar, Sarben
2000-08-01
In the context of extended t-J models, with intersite Coulomb interactions of the form -V∑ninj, with ni denoting the electron number operator at site i, nodal liquids are discussed. We use the spin-charge separation ansatz as applied to the nodes of a d-wave superconducting gap. Such a situation may be of relevance to the physics of high-temperature superconductivity. We point out the possibility of existence of certain points in the parameter space of the model characterized by dynamical supersymmetries between the spinon and holon degrees of freedom, which are quite different from the symmetries in conventional supersymmetric t-J models. Such symmetries pertain to the continuum effective-field theory of the nodal liquid, and one's hope is that the ancestor lattice model may differ from the continuum theory only by renormalization-group irrelevant operators in the infrared. We give plausible arguments that nodal liquids at such supersymmetric points are characterized by superconductivity of Kosterlitz-Thouless type. The fact that quantum fluctuations around such points can be studied in a controlled way, probably makes such systems of special importance for an eventual nonperturbative understanding of the complex phase diagram of the associated high-temperature superconducting materials.
Multipole Superconductivity in Nonsymmorphic Sr_{2}IrO_{4}.
Sumita, Shuntaro; Nomoto, Takuya; Yanase, Youichi
2017-07-14
Discoveries of marked similarities to high-T_{c} cuprate superconductors point to the realization of superconductivity in the doped J_{eff}=1/2 Mott insulator Sr_{2}IrO_{4}. Contrary to the mother compound of cuprate superconductors, several stacking patterns of in-plane canted antiferromagnetic moments have been reported, which are distinguished by the ferromagnetic components as -++-, ++++, and -+-+. In this paper, we clarify unconventional features of the superconductivity coexisting with -++- and -+-+ structures. Combining the group theoretical analysis and numerical calculations for an effective J_{eff}=1/2 model, we show unusual superconducting gap structures in the -++- state protected by nonsymmorphic magnetic space group symmetry. Furthermore, our calculation shows that the Fulde-Ferrell-Larkin-Ovchinnikov superconductivity is inevitably stabilized in the -+-+ state since the odd-parity magnetic -+-+ order makes the band structure asymmetric by cooperating with spin-orbit coupling. These unusual superconducting properties are signatures of magnetic multipole order in nonsymmorphic crystal.
Multipole Superconductivity in Nonsymmorphic Sr2IrO4
NASA Astrophysics Data System (ADS)
Sumita, Shuntaro; Nomoto, Takuya; Yanase, Youichi
2017-07-01
Discoveries of marked similarities to high-Tc cuprate superconductors point to the realization of superconductivity in the doped Jeff=1 /2 Mott insulator Sr2IrO4. Contrary to the mother compound of cuprate superconductors, several stacking patterns of in-plane canted antiferromagnetic moments have been reported, which are distinguished by the ferromagnetic components as -++-, ++++, and -+-+ . In this paper, we clarify unconventional features of the superconductivity coexisting with -++- and -+-+ structures. Combining the group theoretical analysis and numerical calculations for an effective Jeff=1 /2 model, we show unusual superconducting gap structures in the -++- state protected by nonsymmorphic magnetic space group symmetry. Furthermore, our calculation shows that the Fulde-Ferrell-Larkin-Ovchinnikov superconductivity is inevitably stabilized in the -+-+ state since the odd-parity magnetic -+-+ order makes the band structure asymmetric by cooperating with spin-orbit coupling. These unusual superconducting properties are signatures of magnetic multipole order in nonsymmorphic crystal.
d +i d chiral superconductivity in a triangular lattice from trigonal bipyramidal complexes
NASA Astrophysics Data System (ADS)
Lu, Chen; Zhang, Li-Da; Wu, Xianxin; Yang, Fan; Hu, Jiangping
2018-04-01
We model the newly predicted high-Tc superconducting candidates constructed by corner-shared trigonal bipyramidal complexes with an effective three-orbital tight-binding Hamiltonian and investigate the pairing symmetry of their superconducting states driven by electron-electron interactions. Our combined weak- and strong-coupling-based calculations consistently identify the chiral d +i d superconductivity as the leading pairing symmetry in a wide doping range with realistic interaction parameters. This pairing state has a nontrivial topological Chern number and can host gapless chiral edge modes, and the vortex cores under magnetic field can carry Majorana zero modes.
μ SR and magnetometry study of superconducting 5% Pt-doped IrTe 2
Wilson, M. N.; Medina, T.; Munsie, T. J.; ...
2016-11-11
In this paper, we present magnetometry and muon spin rotation ( SR) measurements of the superconducting dichalcogenide Ir 0.95Pt 0.05Te 2. From both sets of measurements we calculate the penetration depth and thence superfluid density as a function of temperature. The temperature dependence of the superfluid densities from both sets of data indicate fully gapped superconductivity that can be fit to a conventional s-wave model and yield fitting parameters consistent with a BCS weak coupling superconductor. Finally, we therefore see no evidence for exotic superconductivity in Ir 0.95Pt 0.05Te 2.
μ SR and magnetometry study of superconducting 5% Pt-doped IrTe2
NASA Astrophysics Data System (ADS)
Wilson, M. N.; Medina, T.; Munsie, T. J.; Cheung, S. C.; Frandsen, B. A.; Liu, L.; Yan, J.; Mandrus, D.; Uemura, Y. J.; Luke, G. M.
2016-11-01
We present magnetometry and muon spin rotation (μ SR ) measurements of the superconducting dichalcogenide Ir0.95Pt0.05Te2 . From both sets of measurements, we calculate the penetration depth and thence superfluid density as a function of temperature. The temperature dependence of the superfluid densities from both sets of data indicate fully gapped superconductivity that can be fit to a conventional s -wave model and yield fitting parameters consistent with a BCS weak coupling superconductor. We therefore see no evidence for exotic superconductivity in Ir0.95Pt0.05Te2 .
NASA Astrophysics Data System (ADS)
Barrentine, Emily Margaret
In this thesis the development of a Transition-Edge Hot-Electron Microbolometer (THM) is presented. This detector will have the capacity to make sensitive and broadband astrophysical observations when deployed in large detector arrays in future ground- or space-based instruments, over frequencies ranging from 30-300 GHz (10-1 mm). This thesis focuses on the development of the THM for observations of the Cosmic Microwave Background (CMB), and specifically for observations of the CMB polarization signal. The THM is a micron-sized bolometer that is fabricated photolithographically. It consists of a superconducting Molybdenum/Gold Transition-Edge Sensor (TES) and a thin-film semi-metal Bismuth microwave absorber, both of which are deposited directly on the substrate. The THM employs the decoupling between electrons and phonons at low temperatures (˜100-300 mK) to provide thermal isolation for the bolometer. The devices are read out with Superconducting Quantum Interference Devices (SQUIDs). In this thesis a summary of the thermal and electrical models for the THM detector is presented. The physical processes within the detector, with particular attention to electron-phonon decoupling, and the lateral proximity effect between the superconducting leads and the TES, are also discussed. This understanding of the detector and these models are used to interpret measurements of thermal conductance, noise, responsivity and the transition behaviour of a variety of THM test devices. The optimization of the THM design, based on these models and measurements, is also discussed, and the thesis concludes with a presentation of the recommended THM design for CMB applications. In addition, a planar-microwave circuit design and a quasi-optical scheme for coupling microwave radiation to the THM detector are presented.
Superconducting quantum simulator for topological order and the toric code
NASA Astrophysics Data System (ADS)
Sameti, Mahdi; Potočnik, Anton; Browne, Dan E.; Wallraff, Andreas; Hartmann, Michael J.
2017-04-01
Topological order is now being established as a central criterion for characterizing and classifying ground states of condensed matter systems and complements categorizations based on symmetries. Fractional quantum Hall systems and quantum spin liquids are receiving substantial interest because of their intriguing quantum correlations, their exotic excitations, and prospects for protecting stored quantum information against errors. Here, we show that the Hamiltonian of the central model of this class of systems, the toric code, can be directly implemented as an analog quantum simulator in lattices of superconducting circuits. The four-body interactions, which lie at its heart, are in our concept realized via superconducting quantum interference devices (SQUIDs) that are driven by a suitably oscillating flux bias. All physical qubits and coupling SQUIDs can be individually controlled with high precision. Topologically ordered states can be prepared via an adiabatic ramp of the stabilizer interactions. Strings of qubit operators, including the stabilizers and correlations along noncontractible loops, can be read out via a capacitive coupling to read-out resonators. Moreover, the available single-qubit operations allow to create and propagate elementary excitations of the toric code and to verify their fractional statistics. The architecture we propose allows to implement a large variety of many-body interactions and thus provides a versatile analog quantum simulator for topological order and lattice gauge theories.
Evidence of s-wave superconductivity in the noncentrosymmetric La7Ir3.
Li, B; Xu, C Q; Zhou, W; Jiao, W H; Sankar, R; Zhang, F M; Hou, H H; Jiang, X F; Qian, B; Chen, B; Bangura, A F; Xu, Xiaofeng
2018-01-12
Superconductivity in noncentrosymmetric compounds has attracted sustained interest in the last decades. Here we present a detailed study on the transport, thermodynamic properties and the band structure of the noncentrosymmetric superconductor La 7 Ir 3 (T c ~ 2.3 K) that was recently proposed to break the time-reversal symmetry. It is found that La 7 Ir 3 displays a moderately large electronic heat capacity (Sommerfeld coefficient γ n ~ 53.1 mJ/mol K 2 ) and a significantly enhanced Kadowaki-Woods ratio (KWR ~32 μΩ cm mol 2 K 2 J -2 ) that is greater than the typical value (~10 μΩ cm mol 2 K 2 J -2 ) for strongly correlated electron systems. The upper critical field H c2 was seen to be nicely described by the single-band Werthamer-Helfand-Hohenberg model down to very low temperatures. The hydrostatic pressure effects on the superconductivity were also investigated. The heat capacity below T c reveals a dominant s-wave gap with the magnitude close to the BCS value. The first-principles calculations yield the electron-phonon coupling constant λ = 0.81 and the logarithmically averaged frequency ω ln = 78.5 K, resulting in a theoretical T c = 2.5 K, close to the experimental value. Our calculations suggest that the enhanced electronic heat capacity is more likely due to electron-phonon coupling, rather than the electron-electron correlation effects. Collectively, these results place severe constraints on any theory of exotic superconductivity in this system.
NASA Astrophysics Data System (ADS)
Wang, Tiening; Chiesa, Luisa; Takayasu, Makoto; Bordini, Bernardo
2014-09-01
Superconducting Nb3Sn Powder-In-Tube (PIT) strands could be used for the superconducting magnets of the next generation Large Hadron Collider. The strands are cabled into the typical flat Rutherford cable configuration. During the assembly of a magnet and its operation the strands experience not only longitudinal but also transverse load due to the pre-compression applied during the assembly and the Lorentz load felt when the magnets are energized. To properly design the magnets and guarantee their safe operation, mechanical load effects on the strand superconducting properties are studied extensively; particularly, many scaling laws based on tensile load experiments have been established to predict the critical current dependence on strain. However, the dependence of the superconducting properties on transverse load has not been extensively studied so far. One of the reasons is that transverse loading experiments are difficult to conduct due to the small diameter of the strand (about 1 mm) and the data currently available do not follow a common measurement standard making the comparison between different data sets difficult. Recently at the University of Geneva, a new device has been developed to characterize the critical current of Nb3Sn strands under transverse loads. In this work we present a new 2D Finite Element Analysis (FEA) to predict the electro-mechanical response of a PIT strand that was tested at the University of Geneva when transverse load is applied. The FEA provides the strain map for the superconducting filaments when the load is applied. Those strain maps are then used to evaluate the critical current behavior of a PIT strand using a recently developed scaling law that correlates the superconducting properties of a wire with the strain invariants due to the load applied on the superconductor. The benefits and limitations of this method are discussed based on the comparison between the critical current simulation results obtained with the filament strain map and the experimental results available for PIT strands.
Smart monitoring system based on adaptive current control for superconducting cable test.
Arpaia, Pasquale; Ballarino, Amalia; Daponte, Vincenzo; Montenero, Giuseppe; Svelto, Cesare
2014-12-01
A smart monitoring system for superconducting cable test is proposed with an adaptive current control of a superconducting transformer secondary. The design, based on Fuzzy Gain Scheduling, allows the controller parameters to adapt continuously, and finely, to the working variations arising from transformer nonlinear dynamics. The control system is integrated in a fully digital control loop, with all the related benefits, i.e., high noise rejection, ease of implementation/modification, and so on. In particular, an accurate model of the system, controlled by a Fuzzy Gain Scheduler of the superconducting transformer, was achieved by an experimental campaign through the working domain at several current ramp rates. The model performance was characterized by simulation, under all the main operating conditions, in order to guide the controller design. Finally, the proposed monitoring system was experimentally validated at European Organization for Nuclear Research (CERN) in comparison to the state-of-the-art control system [P. Arpaia, L. Bottura, G. Montenero, and S. Le Naour, "Performance improvement of a measurement station for superconducting cable test," Rev. Sci. Instrum. 83, 095111 (2012)] of the Facility for the Research on Superconducting Cables, achieving a significant performance improvement: a reduction in the system overshoot by 50%, with a related attenuation of the corresponding dynamic residual error (both absolute and RMS) up to 52%.
A double-superconducting axial bearing system for an energy storage flywheel model
NASA Astrophysics Data System (ADS)
Deng, Z.; Lin, Q.; Ma, G.; Zheng, J.; Zhang, Y.; Wang, S.; Wang, J.
2008-02-01
The bulk high temperature superconductors (HTSCs) with unique flux-pinning property have been applied to fabricate two superconducting axial bearings for an energy storage flywheel model. The two superconducting axial bearings are respectively fixed at two ends of the vertical rotational shaft, whose stator is composed of seven melt-textured YBa2Cu3O7-x (YBCO) bulks with diameter of 30 mm, height of 18 mm and rotor is made of three cylindrical axial-magnetized NdFeB permanent magnets (PM) by superposition with diameter of 63 mm, height of 27 mm. The experimental results show the total levitation and lateral force produced by the two superconducting bearings are enough to levitate and stabilize the 2.4 kg rotational shaft. When the two YBCO stators were both field cooled to the liquid nitrogen temperature at respective axial distances above or below the PM rotor, the shaft could be automatically levitated between the two stators without any contact. In the case of a driving motor, it can be stably rotated along the central axis besides the resonance frequency. This double-superconducting axial bearing system can be used to demonstrate the flux-pinning property of bulk HTSC for stable levitation and suspension and the principle of superconducting flywheel energy storage system to visitors.
NASA Astrophysics Data System (ADS)
Nakhmedov, E.; Mammadova, S.; Alekperov, O.
2016-01-01
A time-reversal invariant topological superconductivity is suggested to be realized in a quasi-one-dimensional structure on a plane, which is fabricated by filling the superconducting materials into the periodic channel of dielectric matrices like zeolite and asbestos under high pressure. The topological superconducting phase sets up in the presence of large spin-orbit interactions when intra-wire s-wave and inter-wire d-wave pairings take place. Kramers pairs of Majorana bound states emerge at the edges of each wire. We analyze effects of the Zeeman magnetic field on Majorana zero-energy states. In-plane magnetic field was shown to make asymmetric the energy dispersion, nevertheless Majorana fermions survive due to protection of a particle-hole symmetry. Tunneling of Majorana quasiparticle from the end of one wire to the nearest-neighboring one yields edge fractional Josephson current with 4π-periodicity.
AC magnetic-field response of the ferromagnetic superconductor UGe2 with different magnetized states
NASA Astrophysics Data System (ADS)
Tanaka, Hiroyuki; Yamaguchi, Akira; Kawasaki, Ikuto; Sumiyama, Akihiko; Motoyama, Gaku; Yamamura, Tomoo
2018-01-01
We have performed parallel measurements of dc-magnetization and ac-magnetic susceptibility for a ferromagnetic superconductor, UGe2, in the ferromagnetic-superconducting phase. dc-magnetization measurements revealed that adequate demagnetizing of the sample allows for the preparation of various magnetized states with different zero-field residual magnetization. We observed that these states exhibit varying ac superconducting response at large ac-field amplitudes. The amount of ac flux penetration is less in the demagnetized state involving many domain walls. This result seems to contradict the theory that considers the domain walls as weak links. Moreover, the ferromagnetic domain walls enforce the shielding capability of superconductivity. This observation sheds light on the role of the domain walls on superconductivity, which has been a controversial issue for several decades. Two possible scenarios are presented to explain the enhancement of the shielding capability by the domain walls.
Future of IT, PT and superconductivity technology
NASA Astrophysics Data System (ADS)
Tanaka, Shoji
2003-10-01
Recently the Information Technology is developing very rapidly and the total traffic on the Internet is increasing dramatically. The numerous equipments connected to the Internet must be operated at very high-speed and the electricity consumed in the Internet is also increasing. Superconductivity devices of very high-speed and very low power consumption must be introduced. These superconducting devices will play very important roles in the future information society. Coated conductors will be used to generate extremely high magnetic fields of beyond 20 T at low temperatures. At the liquid nitrogen temperature they can find many applications in a wide range of Power Technology and other industries, since we have already large critical current and brilliant magnetic field dependences in some prototypes of coated conductors. It is becoming certain that the market for the superconductivity technology will be opened between the years of 2005 and 2010.
Quantum criticality and nodal superconductivity in the FeAs-based superconductor KFe2As2.
Dong, J K; Zhou, S Y; Guan, T Y; Zhang, H; Dai, Y F; Qiu, X; Wang, X F; He, Y; Chen, X H; Li, S Y
2010-02-26
The in-plane resistivity rho and thermal conductivity kappa of the FeAs-based superconductor KFe2As2 single crystal were measured down to 50 mK. We observe non-Fermi-liquid behavior rho(T) approximately T{1.5} at H{c{2}}=5 T, and the development of a Fermi liquid state with rho(T) approximately T{2} when further increasing the field. This suggests a field-induced quantum critical point, occurring at the superconducting upper critical field H{c{2}}. In zero field, there is a large residual linear term kappa{0}/T, and the field dependence of kappa_{0}/T mimics that in d-wave cuprate superconductors. This indicates that the superconducting gaps in KFe2As2 have nodes, likely d-wave symmetry. Such a nodal superconductivity is attributed to the antiferromagnetic spin fluctuations near the quantum critical point.
Universal phase diagrams with superconducting domes for electronic flat bands
NASA Astrophysics Data System (ADS)
Löthman, Tomas; Black-Schaffer, Annica M.
2017-08-01
Condensed matter systems with flat bands close to the Fermi level generally exhibit, due to their very large density of states, extraordinarily high critical ordering temperatures of symmetry-breaking orders, such as superconductivity and magnetism. Here we show that the critical temperatures follow one of two universal curves with doping away from a flat band depending on the ordering channel, which completely dictates both the general order competition and the phase diagram. Notably, we find that orders in the particle-particle channel (superconducting orders) survive decisively farther than orders in the particle-hole channel (magnetic or charge orders) because the channels have fundamentally different polarizabilities. Thus, even if a magnetic or charge order initially dominates, superconducting domes are still likely to exist on the flanks of flat bands. We apply these general results to both the topological surface flat bands of rhombohedral ABC-stacked graphite and to the Van Hove singularity of graphene.
Romanenko, A.; Grassellino, A.; Crawford, A. C.; ...
2014-12-10
Ambient magnetic field, if trapped in the penetration depth, leads to the residual resistance and therefore sets the limit for the achievable quality factors in superconducting niobium resonators for particle accelerators. Here, we show that a complete expulsion of the magnetic flux can be performed and leads to: (1) record quality factors Q > 2 x 10¹¹ up to accelerating gradient of 22 MV/m; (2) Q ~ 3 x 10¹⁰ at 2 K and 16 MV/m in up to 190 mG magnetic fields. This is achieved by large thermal gradients at the normal/superconducting phase front during the cooldown. Our findingsmore » open up a way to ultra-high quality factors at low temperatures and show an alternative to the sophisticated magnetic shielding implemented in modern superconducting accelerators.« less
Unified Phase Diagram for Iron-Based Superconductors.
Gu, Yanhong; Liu, Zhaoyu; Xie, Tao; Zhang, Wenliang; Gong, Dongliang; Hu, Ding; Ma, Xiaoyan; Li, Chunhong; Zhao, Lingxiao; Lin, Lifang; Xu, Zhuang; Tan, Guotai; Chen, Genfu; Meng, Zi Yang; Yang, Yi-Feng; Luo, Huiqian; Li, Shiliang
2017-10-13
High-temperature superconductivity is closely adjacent to a long-range antiferromagnet, which is called a parent compound. In cuprates, all parent compounds are alike and carrier doping leads to superconductivity, so a unified phase diagram can be drawn. However, the properties of parent compounds for iron-based superconductors show significant diversity and both carrier and isovalent dopings can cause superconductivity, which casts doubt on the idea that there exists a unified phase diagram for them. Here we show that the ordered moments in a variety of iron pnictides are inversely proportional to the effective Curie constants of their nematic susceptibility. This unexpected scaling behavior suggests that the magnetic ground states of iron pnictides can be achieved by tuning the strength of nematic fluctuations. Therefore, a unified phase diagram can be established where superconductivity emerges from a hypothetical parent compound with a large ordered moment but weak nematic fluctuations, which suggests that iron-based superconductors are strongly correlated electron systems.
Giant supercurrent states in a superconductor-InAs/GaSb-superconductor junction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Xiaoyan, E-mail: xshi@sandia.gov; Pan, W.; Hawkins, S. D.
2015-10-07
Superconductivity in topological materials has attracted a great deal of interest in both electron physics and material sciences since the theoretical predictions that Majorana fermions can be realized in topological superconductors. Topological superconductivity could be realized in a type II, band-inverted, InAs/GaSb quantum well if it is in proximity to a conventional superconductor. Here, we report observations of the proximity effect induced giant supercurrent states in an InAs/GaSb bilayer system that is sandwiched between two superconducting tantalum electrodes to form a superconductor-InAs/GaSb-superconductor junction. Electron transport results show that the supercurrent states can be preserved in a surprisingly large temperature-magnetic fieldmore » (T – H) parameter space. In addition, the evolution of differential resistance in T and H reveals an interesting superconducting gap structure.« less
Spin-orbit coupling enhanced superconductivity in Bi-rich compounds ABi3 (A = Sr and Ba)
Shao, D. F.; Luo, X.; Lu, W. J.; Hu, L.; Zhu, X. D.; Song, W. H.; Zhu, X. B.; Sun, Y. P.
2016-01-01
Recently, Bi-based compounds have attracted attentions because of the strong spin-orbit coupling (SOC). In this work, we figured out the role of SOC in ABi3 (A = Sr and Ba) by theoretical investigation of the band structures, phonon properties, and electron-phonon coupling. Without SOC, strong Fermi surface nesting leads to phonon instabilities in ABi3. SOC suppresses the nesting and stabilizes the structure. Moreover, without SOC the calculation largely underestimates the superconducting transition temperatures (Tc), while with SOC the calculated Tc are very close to those determined by measurements on single crystal samples. The SOC enhanced superconductivity in ABi3 is due to not only the SOC induced phonon softening, but also the SOC related increase of electron-phonon coupling matrix elements. ABi3 can be potential platforms to construct heterostructure of superconductor/topological insulator to realize topological superconductivity. PMID:26892681
Spin-orbit coupling enhanced superconductivity in Bi-rich compounds ABi₃ (A = Sr and Ba).
Shao, D F; Luo, X; Lu, W J; Hu, L; Zhu, X D; Song, W H; Zhu, X B; Sun, Y P
2016-02-19
Recently, Bi-based compounds have attracted attentions because of the strong spin-orbit coupling (SOC). In this work, we figured out the role of SOC in ABi3 (A = Sr and Ba) by theoretical investigation of the band structures, phonon properties, and electron-phonon coupling. Without SOC, strong Fermi surface nesting leads to phonon instabilities in ABi3. SOC suppresses the nesting and stabilizes the structure. Moreover, without SOC the calculation largely underestimates the superconducting transition temperatures (Tc), while with SOC the calculated Tc are very close to those determined by measurements on single crystal samples. The SOC enhanced superconductivity in ABi3 is due to not only the SOC induced phonon softening, but also the SOC related increase of electron-phonon coupling matrix elements. ABi3 can be potential platforms to construct heterostructure of superconductor/topological insulator to realize topological superconductivity.
Casimir energy for two and three superconducting coupled cavities: Numerical calculations
NASA Astrophysics Data System (ADS)
Rosa, L.; Avino, S.; Calloni, E.; Caprara, S.; De Laurentis, M.; De Rosa, R.; Esposito, Giampiero; Grilli, M.; Majorana, E.; Pepe, G. P.; Petrarca, S.; Puppo, P.; Rapagnani, P.; Ricci, F.; Rovelli, C.; Ruggi, P.; Saini, N. L.; Stornaiolo, C.; Tafuri, F.
2017-11-01
In this paper we study the behavior of the Casimir energy of a "multi-cavity" across the transition from the metallic to the superconducting phase of the constituting plates. Our analysis is carried out in the framework of the ARCHIMEDES experiment, aiming at measuring the interaction of the electromagnetic vacuum energy with a gravitational field. For this purpose it is foreseen to modulate the Casimir energy of a layered structure composing a multy-cavity coupled system by inducing a transition from the metallic to the superconducting phase. This implies a thorough study of the behavior of the cavity, in which normal metallic layers are alternated with superconducting layers, across the transition. Our study finds that, because of the coupling between the cavities, mainly mediated by the transverse magnetic modes of the radiation field, the variation of energy across the transition can be very large.
Model of superconductivity formation on ideal crystal lattice defect–twin or twin boundary (MSC-TB)
NASA Astrophysics Data System (ADS)
Chizhov, V. A.; Zaitsev, F. S.; Bychkov, V. L.
2018-03-01
The report provides a review of the experimental material on superconductivity (SP) accumulated by 2017, a critical analysis of the Bardeen-Cooper-Schrieffer theory (BCS) has been given, and a new model of the super-conductivity effect proposed in works of V.A. Chizhov has been presented. The new model allows to understand the mechanism of the SP formation and to explain many experimental facts on the basis of the theory of pro-cesses occurring in the ideal defect of the crystal lattice – the twinning boundary (MSC-TB). Specific materials, including new ones, are described, which, in accordance with the theory of MSC-TB, should have improved properties of SC, promising directions for further research are formulated.
NASA Astrophysics Data System (ADS)
Hu, Shouxiang
In bulk high-T_{rm c } superconductors, weak links at the grain boundaries and weak flux pinning are the two major causes of low critical current density (J_{ rm c}) at 77 K. In the present study, various processes designed and developed to address these problems are discussed. The novel pressurized-partial -melt-growth process, which leads to a relatively large improvement in the microstructure as well as in the superconducting properties of bulk Y-Ba-Cu-O superconductors, is described. The effects of introducing foreign elements to serve as pinning centers are reported, and the associated anomalous superconducting phenomena are explained on the basis of a detailed study of basic pinning mechanisms related to the presence of small defects. It is demonstrated that in certain cases the pinning force induced by the compression of the vortex line may be comparable to, or even larger than, the usually recognized pinning force due to the condensation energy. Studies of the pinning mechanism corresponding to large boundary defects show that boundary defects associated with certain non-superconducting inclusions and isolated weak links have a very positive role in the enhancement of both the critical current density and the effective activation energy for flux creep. However, even optimized theoretical estimates show that it will be difficult to reach J_ {rm c} values of 5 times 10^5 A/cm^2 at 77 K and H = 1 T by increasing the number of Y_2BaCuO inclusions alone. Although even higher J_{rm c} values may be achieved by introducing other types of defects using alternative approaches such as irradiation, and, probably, chemical doping, the presence of large amount of boundary defects is very important in causing a large increase in the effective activation energy for flux creep. Also studied are the anisotropic electromagnetic features of the grain-aligned YBa_2Cu _3O_{rm x} bulk superconductors. The development of novel processing methods guided by improved understanding of the basic mechanisms involved opens the way for the preparation of high-quality bulk high-T_{rm c} superconducting materials for a wide variety of applications.
Schneeloch, J. A.; Guguchia, Z.; Stone, M. B.; ...
2017-12-01
Lmore » arge crystals of a 2 - x Ca 1 + x Cu 2 O 6 (a-Ca-2126) with x = 0:10 and 0.15 have been grown and converted to bulk superconductors by high-pressure oxygen annealing. The superconducting transition temperature, T c, is as high as 55 K; this can be raised to 60 K by post-annealing in air. Here we present structural and magnetic characterizations of these crystals using neutron scattering and muon spin rotation techniques. While the as-grown, non-superconducting crystals are single phase, we nd that the superconducting crystals contain 3 phases forming coherent domains stacked along the c axis: the dominant a-Ca-2126 phase, very thin (1.5 unit-cell) intergrowths of a 2CuO 4, and an antiferromagnetic a 8Cu 8O 20 phase. We propose that the formation and segregation of the latter phases increases the Ca concentration of the a-Ca-2126, thus providing the hole-doping that supports superconductivity.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schneeloch, J. A.; Guguchia, Z.; Stone, M. B.
Lmore » arge crystals of a 2 - x Ca 1 + x Cu 2 O 6 (a-Ca-2126) with x = 0:10 and 0.15 have been grown and converted to bulk superconductors by high-pressure oxygen annealing. The superconducting transition temperature, T c, is as high as 55 K; this can be raised to 60 K by post-annealing in air. Here we present structural and magnetic characterizations of these crystals using neutron scattering and muon spin rotation techniques. While the as-grown, non-superconducting crystals are single phase, we nd that the superconducting crystals contain 3 phases forming coherent domains stacked along the c axis: the dominant a-Ca-2126 phase, very thin (1.5 unit-cell) intergrowths of a 2CuO 4, and an antiferromagnetic a 8Cu 8O 20 phase. We propose that the formation and segregation of the latter phases increases the Ca concentration of the a-Ca-2126, thus providing the hole-doping that supports superconductivity.« less
Perspectives of synchrotron radiation sources with superconductivity
NASA Astrophysics Data System (ADS)
Tanaka, Takashi
2007-10-01
The synchrotron radiation source is a magnetic device to generate a periodic magnetic field where a relativistic electron moves along a periodic trajectory and emits light called synchrotron radiation (SR), which has been used as a scientific probe for many years in various fields. Although permanent magnets (PMs) are usually used to generate the magnetic field in the SR source because of their cost-effectiveness and availability, a large number of SR sources with superconductors have been constructed for special uses, i.e., to obtain a strong magnetic field over 3 T, which cannot be achieved by using PMs alone. Most of these SR sources are composed of electromagnets with superconducting coils made of NbTi as in commercially available superconducting magnets. For stronger magnetic field, research on application of Nb3Sn is in progress. On the other hand, utilization of high Tc superconducting bulk magnets has been recently proposed and R&Ds toward realization are being carried out. This paper reviews the currents status of the SR sources with superconductivity and describes the future perspectives.
Theoretical study of stability and superconductivity of ScHn (n =4 -8 ) at high pressure
NASA Astrophysics Data System (ADS)
Qian, Shifeng; Sheng, Xiaowei; Yan, Xiaozhen; Chen, Yangmei; Song, Bo
2017-09-01
The synthesis of hydrogen sulfides, with the potential of high-temperature superconductivity, was recently proposed at high Tc = 203 K. It motivated us to employ an ab initio approach for the predictions of crystal structures to find the stable scandium hydrides. In addition to the earlier predicted three stoichiometries of ScH, ScH2, and ScH3, we identify three other metallic stoichiometries of ScH4, ScH6, and ScH8, which show superconductivity at significantly higher temperatures. The phases of ScH4 and ScH6, whose stability does not require extremely high pressures (<150 GPa with ZPE), are primarily ionic compounds containing exotic quasimolecular H2 arrangements. The present electron-phonon calculations revealed the superconductive potential of ScH4 and ScH6 with estimated Tc of 98 K and 129 K at 200 GPa and 130 GPa, respectively. The superconductivity of ScHn stems from the large electron-phonon coupling associated with the wagging, bending, and intermediate-frequency modes attributed mainly to the hydrogen atoms.
Wang, Yonggang; Ying, Jianjun; Zhou, Zhengyang; Sun, Junliang; Wen, Ting; Zhou, Yannan; Li, Nana; Zhang, Qian; Han, Fei; Xiao, Yuming; Chow, Paul; Yang, Wenge; Struzhkin, Viktor V; Zhao, Yusheng; Mao, Ho-Kwang
2018-05-15
The discovery of iron-based superconductors (FeSCs), with the highest transition temperature (T c ) up to 55 K, has attracted worldwide research efforts over the past ten years. So far, all these FeSCs structurally adopt FeSe-type layers with a square iron lattice and superconductivity can be generated by either chemical doping or external pressure. Herein, we report the observation of superconductivity in an iron-based honeycomb lattice via pressure-driven spin-crossover. Under compression, the layered FePX 3 (X = S, Se) simultaneously undergo large in-plane lattice collapses, abrupt spin-crossovers, and insulator-metal transitions. Superconductivity emerges in FePSe 3 along with the structural transition and vanishing of magnetic moment with a starting T c ~ 2.5 K at 9.0 GPa and the maximum T c ~ 5.5 K around 30 GPa. The discovery of superconductivity in iron-based honeycomb lattice provides a demonstration for the pursuit of transition-metal-based superconductors via pressure-driven spin-crossover.
Superconducting Magnetic Projectile Launcher
NASA Technical Reports Server (NTRS)
Jan, Darrell L.; Lawson, Daniel D.
1991-01-01
Proposed projectile launcher exploits Meissner effect to transfer much of kinetic energy of relatively massive superconducting plunger to smaller projectile, accelerating projectile to high speed. Because it operates with magnetic fields, launcher not limited by gas-expansion thermodynamics. Plunger energized mechanically and/or chemically, avoiding need for large electrical power supplies and energy-storage systems. Potential applications include launching of projectiles for military purposes and for scientific and industrial tests of hypervelocity impacts.
Design of superconducting corrector magnets for LHC
NASA Astrophysics Data System (ADS)
Baynham, D. E.; Coombs, R. C.; Ijspeert, A.; Perin, R.
1994-07-01
The Large Hadron Collider (LHC) will require a range of superconducting corrector magnets. This paper presents the design of sextupole and decapole corrector coils which will be included as spool pieces adjacent to each main ring dipole. The paper gives detailed 3D field computations of the coil configurations to meet LHC beam dynamics requirements. Coil protection within a long string environment is addressed and mechanical design outlines are presented.
Cryogenic techniques for large superconducting magnets in space
NASA Technical Reports Server (NTRS)
Green, M. A.
1989-01-01
A large superconducting magnet is proposed for use in a particle astrophysics experiment, ASTROMAG, which is to be mounted on the United States Space Station. This experiment will have a two-coil superconducting magnet with coils which are 1.3 to 1.7 meters in diameter. The two-coil magnet will have zero net magnetic dipole moment. The field 15 meters from the magnet will approach earth's field in low earth orbit. The issue of high Tc superconductor will be discussed in the paper. The reasons for using conventional niobium-titanium superconductor cooled with superfluid helium will be presented. Since the purpose of the magnet is to do particle astrophysics, the superconducting coils must be located close to the charged particle detectors. The trade off between the particle physics possible and the cryogenic insulation around the coils is discussed. As a result, the ASTROMAG magnet coils will be operated outside of the superfluid helium storage tank. The fountain effect pumping system which will be used to cool the coil is described in the report. Two methods for extending the operating life of the superfluid helium dewar are discussed. These include: operation with a third shield cooled to 90 K with a sterling cycle cryocooler, and a hybrid cryogenic system where there are three hydrogen-cooled shields and cryostat support heat intercept points.
NASA Astrophysics Data System (ADS)
Chu, S. Y.; Hwang, Y. J.; Choi, S.; Na, J. B.; Kim, Y. J.; Chang, K. S.; Bae, D. K.; Lee, C. Y.; Ko, T. K.
2011-11-01
A high speed electromagnetic suspension (EMS) maglev has emerged as the solution to speed limit problem that conventional high-speed railroad has. In the EMS maglev, small levitation gap needs uniform guide-way which leads to increase the construction cost. The large levitation gap can reduce the construction cost. However it is hard for normal conducting electromagnet to produce larger magneto-motive force (MMF) for generating levitation force as increased levitation gap. This is because normal conductors have limited rating current to their specific volume. Therefore, the superconducting electromagnet can be one of the solutions for producing both large levitation gap and sufficient MMF. The superconducting electromagnets have incomparably high allowable current density than what normal conductors have. In this paper, the prototype of high temperature superconducting (HTS) electromagnets were designed and manufactured applicable to hybrid electromagnetic suspension system (H-EMS). The H-EMS consists of control coils for levitation control and superconducting coils for producing MMF for levitation. The required MMF for generating given levitation force was calculated by both equations of ideal U-core magnet and magnetic field analysis using the finite element method (FEM). The HTS electromagnets were designed as double pancakes with Bi-2223/Ag tapes. Experiments to confirm its operating performance were performed in liquid nitrogen (LN2).
Anomalous electron doping independent two-dimensional superconductivity
NASA Astrophysics Data System (ADS)
Zhou, Wei; Xing, Xiangzhuo; Zhao, Haijun; Feng, Jiajia; Pan, Yongqiang; Zhou, Nan; Zhang, Yufeng; Qian, Bin; Shi, Zhixiang
2017-07-01
Transition metal (Co and Ni) co-doping effects are investigated on an underdoped Ca0.94La0.06Fe2As2 compound. It is discovered that electron doping from substituting Fe with transition metal (TM = Co, Ni) can trigger high-{T}{{c}} superconductivity around 35 K, which emerges abruptly before the total suppression of the innate spin-density-wave/anti-ferromagnetism (SDW/AFM) state. Remarkably, the critical temperature for the high-{T}{{c}} superconductivity remains constant against a wide range of TM doping levels. And the net electron doping density dependence of the superconducting {T}{{c}} based on the rigid band model can be nicely scaled into a single curve for Co and Ni substitutions, in stark contrast to the case of Ba(Fe1-x TM x )2As2. This carrier density independent superconductivity and the unusual scaling behavior are presumably resulted from the interface superconductivity based on the similarity with the interface superconductivity in a La2-x Sr x CuO4-La2CuO4 bilayer. Evidence of the two-dimensional character of the superfluid by angle-resolved magneto-resistance measurements can further strengthen the interface nature of the high-{T}{{c}} superconductivity.
Preferential orientation of metal oxide superconducting materials by mechanical means
Capone, Donald W.
1990-01-01
A superconductor comprised of a polycrystalline metal oxide such as YBa.sub.2 Cu.sub.3 O.sub.7-X (where 0<.times.<0.5) is capable of accommodating very large current densities. By aligning the two-dimensional Cu--O layers which carry the current in the superconducting state in the a- and b-directions, i.e., within the basal plane, a high degree of crystalline axes alignment is provided between adjacent grains permitting the metal oxide material to accommodate high current densities. The orthorhombic crystalline particles have a tendency to lie down on one of the longer sides, i.e., on the a- or b-direction. Aligning the crystals in this orientation is accomplished by mechanical working of the material such as by extrusion, tape casting or slip casting, provided a single crystal powder is used as a starting material, to provide a highly oriented, e.g., approximately 90% of the crystal particles have a common orientation, superconducting matrix capable of supporting large current densities.
Preferential orientation of metal oxide superconducting materials by mechanical means
Capone, D.W.
1990-11-27
A superconductor comprised of a polycrystalline metal oxide such as YBa[sub 2]Cu[sub 3]O[sub 7[minus]X] (where 0 < X < 0.5) is capable of accommodating very large current densities. By aligning the two-dimensional Cu-O layers which carry the current in the superconducting state in the a- and b-directions, i.e., within the basal plane, a high degree of crystalline axes alignment is provided between adjacent grains permitting the metal oxide material to accommodate high current densities. The orthorhombic crystalline particles have a tendency to lie down on one of the longer sides, i.e., on the a- or b-direction. Aligning the crystals in this orientation is accomplished by mechanical working of the material such as by extrusion, tape casting or slip casting, provided a single crystal powder is used as a starting material, to provide a highly oriented, e.g., approximately 90% of the crystal particles have a common orientation, superconducting matrix capable of supporting large current densities. 3 figs.
NASA Technical Reports Server (NTRS)
1985-01-01
The ASTROMAG facility is the heart of a large charged particle detection and resolution system. ASTROMAG utilizes a superconducting magnet consisting of a large superconducting magnet coil with a stored magnetic energy of approximately 15 MJ. The active coil will have a mass of 1200 kg. This magnet will be cooled by a cryostat using a liquid helium Dewar for storage. The cryostat will have a series of gas-cooled shields with an external guard vacuum shield and an internal Dewar. The magnet and cryostat will be designed for shuttle or Delta launch and will be designed to withstand the internal pressure of expanded helium under full quench conditions when venting is prevented. The external guard vacuum shell is required to maintain a vacuum for Earth based testing and for cold launch of the cryostat and magnet. The magnet is designed to operate at 4.4 K with a peak field of 7.0 tesla. The superconducting material within the magnet is niobium titanium in a conductive matrix.
NASA Astrophysics Data System (ADS)
Fast, R. W.
Applications of superconductivity are considered, taking into account MHD and fusion, generators, transformers, transmission lines, magnets for physics, cryogenic techniques, electrtronics, and aspects of magnet stability. Advances related to heat transfer in He I are discussed along with subjects related to theat transfer in He II, refrigeration of superconducting systems, refrigeration and liquefaction, dilution and magnetic refrigerators, refrigerators for space applications, mass transfer and flow phenomena, and the properties of fluids. Developments related to cryogenic applications are also explored, giving attention to bulk storage and transfer of cryogenic fluids, liquefied natural gas operations, space science and technology, and cryopumping. Topics related to cryogenic instrumentation and controls include the production and use of high grade silicon diode temperature sensors, the choice of strain gages for use in a large superconducting alternator, microprocessor control of cryogenic pressure, and instrumentation, data acquisition and reduction for a large spaceborne helium dewar. For individual items see A83-43221 to A83-43250
Evaluation of metal-foil strain gages for cryogenic application in magnetic fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freynik, H.S. Jr.; Roach, D.R.; Deis, D.W.
1977-07-08
The requirement for the design and construction of large superconducting magnet systems for fusion research has raised a number of new questions regarding the properties of composite superconducting conductors. One of these, the effect of mechanical stress on the current-carrying capacity of Nb/sub 3/Sn, is of major importance in determining the feasibility of constructing large magnets with this material. A typical experiment for determining such data involves the measurement of critical current versus magnetic field while the conductor is being mechanically strained to various degrees. Techniques are well developed for the current and field measurements, but much less so formore » the accurate measurement of strain at liquid-helium temperature in a high magnetic field. A study was made of commercial, metal-foil strain gages for use under these conditions. The information developed can also be applied to the use of strain gages as diagnostic tools in superconducting magnets.« less
Development of superconducting links for the Large Hadron Collider machine
NASA Astrophysics Data System (ADS)
Ballarino, Amalia
2014-04-01
In the framework of the upgrade of the Large Hadron Collider (LHC) machine, new superconducting lines are being developed for the feeding of the LHC magnets. The proposed electrical layout envisages the location of the power converters in surface buildings, and the transfer of the current from the surface to the LHC tunnel, where the magnets are located, via superconducting links containing tens of cables feeding different circuits and transferring altogether more than 150 kA. Depending on the location, the links will have a length ranging from 300 m to 500 m, and they will span a vertical distance of about 80 m. An overview of the R&D program that has been launched by CERN is presented, with special attention to the development of novel types of cables made from MgB2 and high temperature superconductors (Bi-2223 and REBCO) and to the results of the tests performed on prototype links. Plans for future activities are presented, together with a timeline for potential future integration in the LHC machine.
Feasibility study of superconducting LSM rocket launcher system
NASA Technical Reports Server (NTRS)
Yoshida, Kinjiro; Ohashi, Takaaki; Shiraishi, Katsuto; Takami, Hiroshi
1994-01-01
A feasibility study is presented concerning an application of a superconducting linear synchronous motor (LSM) to a large-scale rocket launcher, whose acceleration guide tube of LSM armature windings is constructed 1,500 meters under the ground. The rocket is released from the linear launcher just after it gets to a peak speed of about 900 kilometers per hour, and it flies out of the guide tube to obtain the speed of 700 kilometers per hour at the height of 100 meters above ground. The linear launcher is brought to a stop at the ground surface for a very short time of 5 seconds by a quick control of deceleration. Very large current variations in the single-layer windings of the LSM armature, which are produced at the higher speed region of 600 to 900 kilometers per hour, are controlled successfully by adopting the double-layer windings. The proposed control method makes the rocket launcher ascend stably in the superconducting LSM system, controlling the Coriolis force.
NASA Astrophysics Data System (ADS)
Li, J.
2010-01-01
High-sensitivity superconducting SIS (superconductor-insulator-superconductor) mixers are playing an increasingly important role in the terahertz (THz) astronomical observation, which is an emerging research frontier in modern astrophysics. Superconducting SIS mixers with niobium (Nb) tunnel junctions have reached a sensitivity close to the quantum limit, but have a frequency limit about 0.7 THz (i.e., gap frequency of Nb tunnel junctions). Beyond this frequency Nb superconducting films will absorb energetic photons (i.e., energy loss) to break Cooper pairs, thereby resulting in significant degradation of the mixer performance. Therefore, it is of particular interest to develop THz superconducting SIS mixers incorporating tunnel junctions with a larger energy gap. Niobium-nitride (NbN) superconducting tunnel junctions have been long known for their large energy gap, almost double that of Nb ones. With the introduction of epitaxially grown NbN films, the fabrication technology of NbN superconducting tunnel junctions has been considerably improved in the recent years. Nevertheless, their performances are still not as good as Nb ones, and furthermore they are not yet demonstrated in real astronomical applications. Given the facts mentioned above, in this paper we systematically study the quantum mixing behaviors of NbN superconducting tunnel junctions in the THz regime and demonstrate an astronomical testing observation with a 0.5 THz superconducting SIS mixer developed with NbN tunnel junctions. The main results of this study include: (1) successful design and fabrication of a 0.4˜0.6 THz waveguide mixing circuit with the high-dielectric-constant MgO substrate; (2) successful fabrication of NbN superconducting tunnel junctions with the gap voltage reaching 5.6 mV and the quality factor as high as 15; (3) demonstration of a 0.5 THz waveguide NbN superconducting SIS mixer with a measured receiver noise temperature (no correction) as low as five times the quantum limit (5hω/kB), which is the best among NbN superconducting SIS mixers developed in this frequency band; (4) demonstration of high sensitivity for NbN superconducting SIS mixers operated at temperatures as high as 10 K, and demonstration of much less interference resulting from the Josephson effect; (5) demonstration of the first astronomical observation ever done with an NbN superconducting SIS mixer. This study has provided further understanding of the quantum mixing behaviors of NbN superconducting SIS mixers. It has been demonstrated that NbN superconducting SIS mixers can reach nearly quantum-limited sensitivity and have good stability. Furthermore, NbN superconducting SIS mixers have less stringent requirement for cooling and magnetic field compared with Nb ones. Hence they can be used in astronomical applications, especially for space-borne projects and complex systems such as multi-beam receivers.
Cryogenic expansion joint for large superconducting magnet structures
Brown, Robert L.
1978-01-01
An expansion joint is provided that accommodates dimensional changes occurring during the cooldown and warm-up of large cryogenic devices such as superconducting magnet coils. Flattened tubes containing a refrigerant such as gaseous nitrogen (N.sub.2) are inserted into expansion spaces in the structure. The gaseous N.sub.2 is circulated under pressure and aids in the cooldown process while providing its primary function of accommodating differential thermal contraction and expansion in the structure. After lower temperatures are reached and the greater part of the contraction has occured, the N.sub.2 liquefies then solidifies to provide a completely rigid structure at the cryogenic operating temperatures of the device.
Distortion of the cosmic background radiation by superconducting strings
NASA Technical Reports Server (NTRS)
Ostriker, J. P.; Thompson, C.
1987-01-01
Superconducting cosmic strings can be significant energy sources, keeping the universe ionized past the commonly assumed epoch of recombination. As a result, the spectrum of the cosmic background radiation is distorted in the presence of heated primordial gas via the Suniaev-Zel'dovich effect. Thiis distortion can be relatively large: the Compton y parameter attains a maximum in the range 0.001-0.005, with these values depending on the mass scale of the string. A significant contribution to y comes from loops decaying at high redshift when the universe is optically thick to Thomson scattering. Moreover, the isotropic spectral distortion is large compared to fluctuations at all angular scales.
Repulsive force support system feasibility study
NASA Technical Reports Server (NTRS)
Boom, R. W.; Abdelsalam, M. K.; Eyssa, Y. M.; Mcintosh, G. E.
1987-01-01
A new concept in magnetic levitation and control is introduced for levitation above a plane. A set of five vertical solenoid magnets mounted flush below the plane supports and controls the model in five degrees of freedom. The compact system of levitation coils is contained in a space 2.4 m (96 in) diameter by 1 m (40 in) deep with the top of the levitation system 0.9 m (36 in) below the center line of the suspended model. The levitated model has a permanent magnet core held in position by the five parallel superconductive solenoids symmetrically located in a circle. The control and positioning system continuously corrects for model position in five dimensions using computer current pulses superimposed on the levitation coil base currents. The conceptual designs include: superconductive and Nd-Fe-B permanent magnet model cores and levitation solenoids of either superconductive, cryoresistive, or room temperature windings.
Langmuir vacuum and superconductivity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Veklenko, B. A.
It is shown that, in the 'jelly' model of cold electron-ion plasma, the interaction between electrons and the quantum electromagnetic vacuum of Langmuir waves involves plasma superconductivity with an energy gap proportional to the energy of the Langmuir quantum.
Test of a Nb thin film superconducting detector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lacquaniti, V.; Maggi, S.; Menichetti, E.
1993-08-01
Results from tests of several Nb thin film microstrip superconducting detectors are reported. A preliminary measurement of critical radius of the hot spot generated by 5 MeV [alpha]-particles is compared with simple model predictions.
Duality picture of Superconductor-insulator transitions on Superconducting nanowire.
Makise, Kazumasa; Terai, Hirotaka; Tominari, Yukihiro; Tanaka, Shukichi; Shinozaki, Bunju
2016-06-17
In this study, we investigated the electrical transport properties of niobium titanium nitride (NbTiN) nanowire with four-terminal geometries to clarify the superconducting phase slip phenomena and superconducting-insulator transitions (SIT) for one-dimensional superconductors. We fabricated various nanowires with different widths and lengths from epitaxial NbTiN films using the electron beam lithography method. The temperature dependence of resistance R(T) below the superconducting transition temperature Tc was analyzed using thermal activation phase slip (TAPS) and quantum phase slip (QPS) theories. Although the accuracy of experimental data at low temperatures can deviate when using the TAPS model, the QPS model thoroughly represents the R(T) characteristic with resistive tail at low temperatures. From the analyses of data on Tc, we found that NbTiN nanowires exhibit SIT because of the change in the ratio of kinetic inductance energy and QPS amplitude energy with respect to the flux-charge duality theory.
Optical Probe of the Superconducting Normal Mixed State in a Magnetic Penetration Thermometer
NASA Technical Reports Server (NTRS)
Stevenson, T. R.; Balvin, M. A.; Bandler, S. R.; Denis, K. L.; Lee, S. -J.; Nagler, P. C.; Smith, S. J.
2016-01-01
Using ultraviolet photon pulses, we have probed the internal behavior of a molybdenum-gold Magnetic Penetration Thermometer (MPT) that we designed for x-ray microcalorimetry. In this low-temperature detector, the diamagnetic response of a superconducting MoAu bilayer is used to sense temperature changes in response to absorbed photons. We have previously described an approximate model that explains the high responsivity of the detector to temperature changes as a consequence of a Meissner transition of the molybdenum-gold film in the magnetic field applied by the superconducting circuit used to bias the detector. We compare measurements of MPT heat capacity and thermal conductance, derived from UV photon pulse data, to our model predictions for the thermodynamic properties of the sensor and for the electron cooling obtained by quasiparticle recombination. Our data on electron cooling power is also relevant to the operation of other superconducting detectors, such as Microwave Kinetic Inductance Detectors.
Ultrafast relaxation dynamics in BiFeO 3/YBa 2Cu 3O 7 bilayers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Springer, D.; Nair, Saritha K.; He, Mi
The temperature dependence of the relaxation dynamics in the bilayer thin film heterostructure composed of multiferroic BiFeO 3 (BFO) and superconducting YBa 2Cu 3O 7 (YBCO) grown on (001) SrTiO 3 substrate is studied by time-resolved pump-probe technique, and compared with that of pure YBCO thin film grown under the same growth conditions. The superconductivity of YBCO is found to be retained in the heterostructure. We observe a speeding up of the YBCO recombination dynamics in the superconducting state of the heterostructure, and attribute it to the presence of weak ferromagnetism at the BFO/YBCOinterface as observed inmagnetization data. An extensionmore » of the Rothwarf-Taylor model is used to fit the ultrafast dynamics of BFO/YBCO, that models an increased quasiparticle occupation of the ferromagnetic interfacial layer in the superconducting state of YBCO.« less
Ultrafast relaxation dynamics in BiFeO 3/YBa 2Cu 3O 7 bilayers
Springer, D.; Nair, Saritha K.; He, Mi; ...
2016-02-12
The temperature dependence of the relaxation dynamics in the bilayer thin film heterostructure composed of multiferroic BiFeO 3 (BFO) and superconducting YBa 2Cu 3O 7 (YBCO) grown on (001) SrTiO 3 substrate is studied by time-resolved pump-probe technique, and compared with that of pure YBCO thin film grown under the same growth conditions. The superconductivity of YBCO is found to be retained in the heterostructure. We observe a speeding up of the YBCO recombination dynamics in the superconducting state of the heterostructure, and attribute it to the presence of weak ferromagnetism at the BFO/YBCOinterface as observed inmagnetization data. An extensionmore » of the Rothwarf-Taylor model is used to fit the ultrafast dynamics of BFO/YBCO, that models an increased quasiparticle occupation of the ferromagnetic interfacial layer in the superconducting state of YBCO.« less
PREFACE: 11th European Conference on Applied Superconductivity (EUCAS2013)
NASA Astrophysics Data System (ADS)
Farinon, Stefania; Pallecchi, Ilaria; Malagoli, Andrea; Lamura, Gianrico
2014-05-01
During the 11th edition of the European Conference on Applied Superconductivity, successfully held in Genoa from 15-19 September 2013, more than one thousand participants from over 40 countries were registered and contributions of 7 plenary lectures, 23 invited talks, 203 oral talks and 550 posters were presented. The present issue of Journal of Physics: Conference Series (JPCS) collects the 218 submitted papers that were peer reviewed and accepted in the Conference Proceedings. Similarly to the Superconductor Science and Technology Special issue: ''EUCAS 11th European Conference on Applied Superconductivity'' which contains some plenary and invited contributions, as well as some selected contributions, in this issue the papers are sorted according to the four traditional topics of interest of EUCAS, namely Materials (56 papers), Wires and Tapes (47 papers), Large Scale Applications (64 papers) and Electronics (51 papers). While the it Superconductors Science and Technology special issue focuses on the scientific and technological highlights of the conference, this collection provides an overall view of the worldwide research activity on applied superconductivity, mirroring the main guidelines and the hottest issues, which range from basic studies on newly discovered superconducting compounds to the state-of-the-art advances in large scale applications, wires and tapes fabrication and electronics. We would like to point out that, among the JPCS contributions, six papers present works financed by ongoing EU-Japan projects, three papers belong to the session on junctions and SQUIDs dedicated to the memory of Antonio Barone and one paper belongs to the session on pinning and flux dynamics dedicated to the memory of John Clem. Finally, we would like to thank all the people whose careful work contributed to the preparation of this JPCS issue, in particular the session chairs as well as the peer reviewers. The Editors Stefania Farinon (Editor in Chief, Large Scale), Ilaria Pallecchi (Materials), Andrea Malagoli (Wires and Tapes), and Gianrico Lamura (Electronics)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhai, Y.; D'Hauthuille, L.; Barth, C.
High-field superconducting magnets play a very important role in many large-scale physics experiments, particularly particle colliders and fusion confinement devices such as Large Hadron Collider (LHC) and International Thermonuclear Experimental Reactor (ITER). The two most common superconductors used in these applications are NbTi and Nb 3Sn. Nb 3Sn wires are favored because of their significantly higher J c (critical current density) for higher field applications. The main disadvantage of Nb 3Sn is that the superconducting performance of the wire is highly strain sensitive and it is very brittle. This strain sensitivity is strongly influenced by two factors: plasticity and crackedmore » filaments. Cracks are induced by large stress concentrators that can be traced to the presence of voids in the wire. We develop detailed 2-D and 3-D finite-element models containing wire filaments and different possible distributions of voids in a bronze-route Nb 3Sn wire. We apply compressive transverse loads for various cases of void distributions to simulate the stress and strain response of a Nb 3Sn wire under the Lorentz force. Furthermore, this paper improves our understanding of the effect voids have on the Nb 3Sn wire's mechanical properties, and in so, the connection between the distribution of voids and performance degradation such as the correlation between irreversible strain limit and the void-induced local stress concentrations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Altmeyer, Michaela; Guterding, Daniel; Hirschfeld, P. J.
2016-12-21
In the framework of a multiorbital Hubbard model description of superconductivity, a matrix formulation of the superconducting pairing interaction that has been widely used is designed to treat spin, charge, and orbital fluctuations within a random phase approximation (RPA). In terms of Feynman diagrams, this takes into account particle-hole ladder and bubble contributions as expected. It turns out, however, that this matrix formulation also generates additional terms which have the diagrammatic structure of vertex corrections. Furthermore we examine these terms and discuss the relationship between the matrix-RPA superconducting pairing interaction and the Feynman diagrams that it sums.
NASA Astrophysics Data System (ADS)
Pang, G. M.; Nie, Z. Y.; Wang, A.; Singh, D.; Xie, W.; Jiang, W. B.; Chen, Y.; Singh, R. P.; Smidman, M.; Yuan, H. Q.
2018-06-01
The noncentrosymmetric superconductor Re6Zr has attracted much interest due to the observation of broken time-reversal symmetry in the superconducting state. Here we report an investigation of the superconducting gap structure of Re6Zr single crystals by measuring the magnetic penetration depth shift Δ λ (T ) and electronic specific heat Ce(T ) . Δ λ (T ) exhibits an exponential temperature dependence behavior for T ≪Tc , which indicates a fully open superconducting gap. Our analysis shows that a single gap s -wave model is sufficient to describe both the superfluid density ρs(T ) and Ce(T ) results, with a fitted gap magnitude larger than the weak coupling BCS value, providing evidence for fully gapped superconductivity in Re6Zr with moderate coupling.
Superconducting Properties and μSR Study of the Noncentrosymmetric Superconductor Nb0.5Os0.5.
Singh, D; Barker, J A T; Arumugam, Thamizhavel; Hillier, A D; Paul, D McK; Singh, R P
2017-12-21
The properties of the noncentrosymmetric superconductor ($\\alpha$-$\\textit{Mn}$ structure) Nb$_{0.5}$Os$_{0.5}$ is investigated using resistivity, magnetization, specific heat, and muon spin relaxation and rotation ($\\mu$SR) measurements. These measurements suggest that Nb$_{0.5}$Os$_{0.5}$ is a weakly coupled ($\\lambda_{e-ph}$ $\\sim$ 0.53) type-II superconductor ($\\kappa_{GL}$ $\\approx$ 61) having a bulk superconducting transition temperature $T_c$ = 3.07 K. The specific heat data in the superconductive regime fits well with the single-gap BCS model indicating nodeless s-wave superconductivity in Nb$_{0.5}$Os$_{0.5}$. The $\\mu$SR measurements also confirm $\\textit{s}$-wave superconductivity with the preserved time-reversal symmetry. © 2017 IOP Publishing Ltd.
Novel voltage signal at proximity-induced superconducting transition temperature in gold nanowires
NASA Astrophysics Data System (ADS)
Wang, Jian; Tang, JunXiong; Wang, ZiQiao; Sun, Yi; Sun, QingFeng; Chan, Moses H. W.
2018-08-01
We observed a novel voltage peak in the proximity-induced superconducting gold (Au) nanowire while cooling the sample through the superconducting transition temperature. The voltage peak turned dip during warming. The voltage peak or dip was found to originate respectively from the emergence or vanishing of the proximity-induced superconductivity in the Au nanowire. The amplitude of the voltage signal depends on the temperature scanning rate, and it cannot be detected when the temperature is changed slower than 0.03 K/min. This transient feature suggests the non-equilibrium property of the effect. Ginzburg-Landau model clarified the voltage peak by considering the emergence of Cooper pairs of relatively lower free energy in superconducting W contact and the non-equilibrium diffusion of Cooper pairs and quasiparticles.
Magnetic suspension and balance system advanced study, phase 2
NASA Technical Reports Server (NTRS)
Boom, R. W.; Abdelsalam, M. K.; Eyssa, Y. M.; Mcintosh, G. E.
1990-01-01
The design improvements for the system encompass 14 or 18 external superconductive coils mounted on a 8 x 8 foot wind tunnel, a superconductive model core magnet on a holmium mandrel to fit an F-16 model, model wings of permanent magnet material Nd2Fe14B, and fiber glass epoxy structure. The Magnetic Suspension and Balance System (MSBS) advanced design is confirmed by the successful construction and test of a full size superconductive model core solenoid with holmium mandrel. The solenoid is 75 cm long and 12.6 cm in diameter and produces 6.1 tesla for a hold time of 47 minutes. An integrated coil system design of a new compact configuration without specific coils for roll or pitch shows promise of simplicity; magnet reductions of 30 percent compared to the most recent 1985 design are possible.
NASA Astrophysics Data System (ADS)
Urata, T.; Tanabe, Y.; Huynh, K. K.; Yamakawa, Y.; Kontani, H.; Tanigaki, K.
2016-01-01
In high-superconducting transition temperature (Tc) iron-based superconductors, interband sign reversal (s±) and sign preserving (s++) s -wave superconducting states have been primarily discussed as the plausible superconducting mechanism. We study Co impurity scattering effects on the superconductivity in order to achieve an important clue on the pairing mechanism using single-crystal Fe1 -xCoxSe and depict a phase diagram of a FeSe system. Both superconductivity and structural transition/orbital order are suppressed by the Co replacement on the Fe sites and disappear above x = 0.036. These correlated suppressions represent a common background physics behind these physical phenomena in the multiband Fermi surfaces of FeSe. By comparing experimental data and theories so far proposed, the suppression of Tc against the residual resistivity is shown to be much weaker than that predicted in the case of general sign reversal and full gap s± models. The origin of the superconducting paring in FeSe is discussed in terms of its multiband electronic structure.
ERIC Educational Resources Information Center
Alexander, George
1984-01-01
Discusses small-scale integrated (SSI), medium-scale integrated (MSI), large-scale integrated (LSI), very large-scale integrated (VLSI), and ultra large-scale integrated (ULSI) chips. The development and properties of these chips, uses of gallium arsenide, Josephson devices (two superconducting strips sandwiching a thin insulator), and future…
Electronic structure of the bismuth family of high-temperature superconductors
NASA Astrophysics Data System (ADS)
Feng, Donglai
High temperature superconductivity remains the central intellectual problem in condensed matter physics fifteen years after its discovery. Angle resolved photoemission spectroscopy (ARPES) directly probes the electronic structure, and has played an important role in the field of high temperature superconductors. With the recent advances in sample growth and the photoemission technique, we are able to study the electronic structure in great detail, and address regimes that were previously inaccessible. This thesis work contains systematic photoemission studies of the electronic structure of the Bi-family of high temperature superconductors, which include the single-layer system (Bi2201), the bi-layer system (Bi2212), and the tri-layer system (Bi2223). We show that, unlike conventional BCS superconductors, phase coherence information emerges in the single particle excitation spectrum of high temperature superconductors as the superconducting peak in Bi2212. The universality and various properties of this superconducting peak are studied in various systems. We argue that the origin of the superconducting peak may provide the key to understanding the mechanism of High-Tc superconductors. In addition, we identified a new experimental energy scale in the bilayer material, the anisotropic intra-bilayer coupling energy. For a long time, it was predicted that this energy scale would cause bilayer band splitting. We observe this phenomenon, for the first time, in heavily overdoped Bi2212. This new observation requires the revision of the previous picture of the electronic excitation in the Brillouin zone boundary. As the first ARPES study of a trilayer system, various detailed electronic properties of Bi2223 are examined. We show that, comparing with Bi2212, both superconducting gap and relative superconducting peak intensity become larger in Bi2223, however, the strength of the interlayer coupling within each unit cell is possibly weaker. These results suggest that the large superconducting phase transition temperature in a high temperature superconductor is associated with parameters that cause both large pairing strength and strong phase coherence in the system. The number of CuO2 layers in each unit cell is just one of the factors that affect these parameters.
Hidden magnetism and quantum criticality in the heavy fermion superconductor CeRhIn5.
Park, Tuson; Ronning, F; Yuan, H Q; Salamon, M B; Movshovich, R; Sarrao, J L; Thompson, J D
2006-03-02
With only a few exceptions that are well understood, conventional superconductivity does not coexist with long-range magnetic order (for example, ref. 1). Unconventional superconductivity, on the other hand, develops near a phase boundary separating magnetically ordered and magnetically disordered phases. A maximum in the superconducting transition temperature T(c) develops where this boundary extrapolates to zero Kelvin, suggesting that fluctuations associated with this magnetic quantum-critical point are essential for unconventional superconductivity. Invariably, though, unconventional superconductivity masks the magnetic phase boundary when T < T(c), preventing proof of a magnetic quantum-critical point. Here we report specific-heat measurements of the pressure-tuned unconventional superconductor CeRhIn5 in which we find a line of quantum-phase transitions induced inside the superconducting state by an applied magnetic field. This quantum-critical line separates a phase of coexisting antiferromagnetism and superconductivity from a purely unconventional superconducting phase, and terminates at a quantum tetracritical point where the magnetic field completely suppresses superconductivity. The T --> 0 K magnetic field-pressure phase diagram of CeRhIn5 is well described with a theoretical model developed to explain field-induced magnetism in the high-T(c) copper oxides, but in which a clear delineation of quantum-phase boundaries has not been possible. These experiments establish a common relationship among hidden magnetism, quantum criticality and unconventional superconductivity in copper oxides and heavy-electron systems such as CeRhIn5.
Optimization of radial-type superconducting magnetic bearing using the Taguchi method
NASA Astrophysics Data System (ADS)
Ai, Liwang; Zhang, Guomin; Li, Wanjie; Liu, Guole; Liu, Qi
2018-07-01
It is important and complicated to model and optimize the levitation behavior of superconducting magnetic bearing (SMB). That is due to the nonlinear constitutive relationships of superconductor and ferromagnetic materials, the relative movement between the superconducting stator and PM rotor, and the multi-parameter (e.g., air-gap, critical current density, and remanent flux density, etc.) affecting the levitation behavior. In this paper, we present a theoretical calculation and optimization method of the levitation behavior for radial-type SMB. A simplified model of levitation force calculation is established using 2D finite element method with H-formulation. In the model, the boundary condition of superconducting stator is imposed by harmonic series expressions to describe the traveling magnetic field generated by the moving PM rotor. Also, experimental measurements of the levitation force are performed and validate the model method. A statistical method called Taguchi method is adopted to carry out an optimization of load capacity for SMB. Then the factor effects of six optimization parameters on the target characteristics are discussed and the optimum parameters combination is determined finally. The results show that the levitation behavior of SMB is greatly improved and the Taguchi method is suitable for optimizing the SMB.
Superconductivity in gallium-substituted Ba8Si46 clathrates
NASA Astrophysics Data System (ADS)
Li, Yang; Zhang, Ruihong; Liu, Yang; Chen, Ning; Luo, Z. P.; Ma, Xingqiao; Cao, Guohui; Feng, Z. S.; Hu, Chia-Ren; Ross, Joseph H., Jr.
2007-02-01
We report a joint experimental and theoretical investigation of superconductivity in Ga-substituted type-I silicon clathrates. We prepared samples of the general formula Ba8Si46-xGax , with different values of x . We show that Ba8Si40Ga6 is a bulk superconductor, with an onset at TC≈3.3K . For x=10 and higher, no superconductivity was observed down to T=1.8K . This represents a strong suppression of superconductivity with increasing Ga content, compared to Ba8Si46 with TC≈8K . Suppression of superconductivity can be attributed primarily to a decrease in the density of states at the Fermi level, caused by a reduced integrity of the sp3 -hybridized networks as well as the lowering of carrier concentration. These results are corroborated by first-principles calculations, which show that Ga substitution results in a large decrease of the electronic density of states at the Fermi level, which explains the decreased superconducting critical temperature within the BCS framework. To further characterize the superconducting state, we carried out magnetic measurements showing Ba8Si40Ga6 to be a type-II superconductor. The critical magnetic fields were measured to be HC1≈35Oe and HC2≈8.5kOe . We deduce the London penetration depth λ≈3700Å and the coherence length ξc≈200Å . Our estimate of the electron-phonon coupling reveals that Ba8Si40Ga6 is a moderate phonon-mediated BCS superconductor.
International Symposium on Magnetic Suspension Technology, Part 2
NASA Technical Reports Server (NTRS)
Groom, Nelson J. (Editor); Britcher, Colin P. (Editor)
1992-01-01
In order to examine the state of technology of all areas of magnetic suspension and to review related recent developments in sensors and controls approaches, superconducting magnet technology, and design/implementation practices, a symposium was held. The proceedings are presented. The sessions covered the areas of bearings, sensors and controls, microgravity and vibration isolation, superconductivity, manufacturing applications, wind tunnel magnetic suspension systems, magnetically levitated trains (MAGLEV), space applications, and large gap magnetic suspension systems.
U. S. Navy’s Superconductivity Programs; Scientific Curosity To Fleet Utility
2010-10-01
NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND...ADDRESS(ES) Naval Research Laboratory,Washington,DC,20375 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS...classes of materials studied for superconductivity were ternary alloys13, and organic materials14. The dilution refrigerator largely replaced
High Temperature Semiconductor Process
NASA Technical Reports Server (NTRS)
1998-01-01
A sputtering deposition system capable of depositing large areas of high temperature superconducting materials was developed by CVC Products, Inc. with the support of the Jet Propulsion Laboratory SBIR (Small Business Innovative Research) program. The system was devleoped for NASA to produce high quality films of high temperature superconducting material for microwave communication system components. The system is also being used to deposit ferroelectric material for capacitors and the development of new electro-optical materials.2002103899
Quantum memristor in a superconducting circuit
NASA Astrophysics Data System (ADS)
Salmilehto, Juha; Sanz, Mikel; di Ventra, Massimiliano; Solano, Enrique
Memristors, resistive elements that retain information of their past, have garnered interest due to their paradigm-changing potential in information processing and electronics. The emergent hysteretic behaviour allows for novel architectural applications and has recently been classically demonstrated in a simplified superconducting setup using the phase-dependent conductance in the tunnel-junction-microscopic model. In this contribution, we present a truly quantum model for a memristor constructed using established elements and techniques in superconducting nanoelectronics, and explore the parameters for feasible operation as well as refine the methods for quantifying the memory retention. In particular, the memristive behaviour is shown to arise from quasiparticle-induced tunneling in the full dissipative model and can be observed in the phase-driven tunneling current. The relevant hysteretic behaviour should be observable using current state-of-the-art measurements for detecting quasiparticle excitations. Our theoretical findings constitute the first quantum memristor in a superconducting circuit and act as the starting point for designing further circuit elements that have non-Markovian characteristics The authors acknowledge support from the CCQED EU project and the Finnish Cultural Foundation.
Investigations of possible states for coexistence of superconductivity and ferromagnetism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ham, T.E.
1984-01-01
Ginzburg-Landau theory is used to investigate states in which both superconductivity and ferromagnetism exist simultaneously in certain rare-earth ternary compounds. The spontaneous vortex state of Kuper, Revzen and Ron is reexamined and extended to include magnetic oscillations within each vortex cell and the existence of antiferromagnetically aligned vortices. The linearly polarized state of Greenside, Blount and Varma is reinvestigated in what appears to be a more physically acceptable range of parameters that are used in the Ginzburg-Landau free energy functional. The square antiferromagnetic vortex lattice state proposed by Hu and Ham is investigated here for the first time, energetically comparedmore » to the states proposed by Kuper, et al. and Greenside, et al., and used to model the observed coexistence state observed in ErRh/sub 4/B/sub 4/. The results show that this square antiferromagnetic vortex lattice state is energetically favored over the linearly polarized state in large parameter and temperature range. Such a lattice also appears to be a good model to explain many of the experimental observations made on ErRh/sub 4/B/sub 4/. Thus, it is felt that this vortex lattice is the best model, yet examined, to explain the coexistence state in ErRh/sub 4/B/sub 4/.« less
NASA Astrophysics Data System (ADS)
Liu, Donghui; Yong, Huadong; Zhou, Youhe
2017-11-01
No-insulation (NI) high-temperature superconducting (HTS) REBCO coil has been a promising candidate for manufacturing high-field superconducting magnets with high thermal stability and self-protecting features. When NI coil is operated at the external field, it is necessary to analyze charging and sudden-discharging characteristics of NI coil by considering the effect of magnetic field. In addition, the self-field effect has an obvious influence on the critical current for large-scale coil. Thus, an electromagnetic coupling model in which an equivalent circuit axisymmetric model considers the effect of magnetic field is proposed. The results show that when the radial current exists, the coil voltage and central field will tend to be stable faster. In a high field, the decrease of the critical current leads to the increase of radial current and this effect is more obvious for a larger field. And the charging time with the increase of the external field reduces significantly, while the sudden-discharging time is almost unchanged. For NI coils composed of many double-pancake coils, the charging time and sudden-discharging time proportionally increase with the increase of the number of double-pancake coil and turn number of single-pancake coil.
DOE Office of Scientific and Technical Information (OSTI.GOV)
van den Berg, M.; Chow, D.; Loshak, A.
2000-09-21
We are developing detectors based on bulk superconducting absorbers coupled to superconducting transition edge sensors (TES) for high-resolution spectroscopy of hard X-rays and soft gamma-rays. We have achieved an energy resolution of 70 eV FWHM at 60 keV using a 1 x 1 x 0.25 mm{sup 3} Sn absorber coupled to a Mo/Cu multilayer TES with a transition temperature of 100 mK. The response of the detector is compared with a simple model using only material properties data and characteristics derived from IV-measurements. We have also manufactured detectors using superconducting absorbers with a higher stopping power, such as Pb andmore » Ta. We present our first measurements of these detectors, including the thermalization characteristics of the bulk superconducting absorbers. The differences in performance between the detectors are discussed and an outline of the future direction of our detector development efforts is given.« less
Competing orders in the Hofstadter t -J model
NASA Astrophysics Data System (ADS)
Tu, Wei-Lin; Schindler, Frank; Neupert, Titus; Poilblanc, Didier
2018-01-01
The Hofstadter model describes noninteracting fermions on a lattice in the presence of an external magnetic field. Motivated by the plethora of solid-state phases emerging from electron interactions, we consider an interacting version of the Hofstadter model, including a Hubbard repulsion U . We investigate this model in the large-U limit corresponding to a t -J Hamiltonian with an external (orbital) magnetic field. By using renormalized mean-field theory supplemented by exact diagonalization calculations of small clusters, we find evidence for competing symmetry-breaking phases, exhibiting (possibly coexisting) charge, bond, and superconducting orders. Topological properties of the states are also investigated, and some of our results are compared to related experiments involving ultracold atoms loaded on optical lattices in the presence of a synthetic gauge field.
NASA Astrophysics Data System (ADS)
Chiuchiolo, A.; Bajas, H.; Bajko, M.; Consales, M.; Giordano, M.; Perez, J. C.; Cusano, A.
2016-05-01
The luminosity upgrade of the Large Hadron Collider (HL-LHC) planned at the European Organization for Nuclear Research (CERN) requires the development of a new generation of superconducting magnets based on Nb3Sn technology. The instrumentation required for the racetrack coils needs the development of reliable sensing systems able to monitor the magnet thermo-mechanical behavior during its service life, from the coil fabrication to the magnet operation. With this purpose, Fiber Bragg Grating (FBG) sensors have been embedded in the coils of the Short Model Coil (SMC) magnet fabricated at CERN. The FBG sensitivity to both temperature and strain required the development of a solution able to separate mechanical and temperature effects. This work presents for the first time a feasibility study devoted to the implementation of an embedded FBG sensor for the measurement of the "true" temperature in the impregnated Nb3Sn coil during the fabrication process.
NASA Astrophysics Data System (ADS)
Bhattachryya, Pranab; Gupta, Anjan Dutta; Dhar, S.; Sarma, P. R.; Mukherjee, Paramita
2017-06-01
The helium vessel of the superconducting cyclotron (SCC) at the Variable Energy Cyclotron centre (VECC), Kolkata shows a gradual loss of insulation vacuum from 10-7 mbar to 10-4 mbar with increasing coil current in the magnet. The insulation vacuum restores back to its initial value with the withdrawal of current. The origin of such behavior has been thought to be related to the electromagnetic stress in the magnet. The electromagnetic stress distribution in the median plane of the helium vessel was studied to figure out the possible location of the helium leak. The stress field from the possible location was transferred to a simplified 2D model with different leak geometries to study the changes in conductance with coil current. The leak rate calculated from the changes in the leak geometry was compared with the leak rate calculated from the experimental insulation vacuum degradation behavior to estimate the initial leak shape and size.
Cooperative Search of Autonomous Vehicles for Unknown Targets
NASA Astrophysics Data System (ADS)
Yang, Sheng Qing; Yu, Jian Qiao; Zhang, Si Yu
2013-01-01
We study the orbital-dependent superconducting pairing in a five-orbital t-J1-J2 model for iron pnictides. Depending on the orbital selectivity of electron correlations and the orbital characters along the Fermi surface, the superconducting gap in an A_{1g} pairing state may exhibit anisotropy. This anisotropy varies with the degree of J1-J2 magnetic frustration. We have also calculated the dynamical spin susceptibility in the superconducting state. The frequency dependence of the susceptibility at the antiferromagnetic wavevector (\\pi,0) shows a resonance, whose width is enhanced by the orbital dependence of the superconducting gap; when the latter is sufficiently strong, the resonance peak may be split into two. We discuss the implications of our results on the recent angle-resolved photoemission and neutron-scattering measurements in several superconducting iron pnictides.
Application of Superconducting Power Cables to DC Electric Railway Systems
NASA Astrophysics Data System (ADS)
Ohsaki, Hiroyuki; Lv, Zhen; Sekino, Masaki; Tomita, Masaru
For novel design and efficient operation of next-generation DC electric railway systems, especially for their substantial energy saving, we have studied the feasibility of applying superconducting power cables to them. In this paper it is assumed that a superconducting power cable is applied to connect substations supplying electric power to trains. An analysis model line was described by an electric circuit, which was analyzed with MATLAB-Simulink. From the calculated voltages and currents of the circuit, the regenerative brake and the energy losses were estimated. In addition, assuming the heat loads of superconducting power cables and the cryogenic efficiency, the energy saving of the total system was evaluated. The results show that the introduction of superconducting power cables could achieve the improved use of regenerative brake, the loss reduction, the decreased number of substations, the reduced maintenance, etc.
Superconducting Detectors Come of Age, or Ready to Leave the Lab
NASA Technical Reports Server (NTRS)
Moseley, Samuel H.
2008-01-01
Cryogenically cooled superconducting detectors have become essential tools for a wide range of measurement applications, ranging from quantum limited heterodyne detection in the millimeter range to direct searches for dark matter with superconducting phonon detectors operating at 20 mK. Superconducting detectors have several fundamental and practical advantages which have resulted in their rapid adoption by experimenters. Their excellent performance arises in part from reductions in noise resulting from their low operating temperatures, but unique superconducting properties provide a wide range of mechanisms for detection. For example, the steep dependence of resistance with temperature on the superconductor normal transition provides a sensitive thermometer for calorimetric and bolometric applications. Parametric changes in the properties of superconducting resonators provide a mechanism for high sensitivity detection of submillil.neter photons. From a practical point of view, the use of superconducting detectors has grown rapidly because many of these devices couple well to SQUID amplifiers, which are easily integrated with the detectors. These SQUID-based amplifiers and multiplexers have matured with the detectors; they are convenient to use, and have excellent noise performance. The first generation of fully integrated large-scale superconducting detection systems is now being deployed. Improved understanding of the operation of these detectors, combined with rapidly improving fabrication techniques, is quickly expanding the capability of these detectors. I will review the development and application of superconductor-based detectors, the ultimate limits to their performance, and consider prospects for their future applications. Continued advances promise to enable important new measurements in physics, and with appropriate advances in cryogenic infrastncturem, ay result in the use of these detectors in everyday monitoring applications.
R&D of high reliable refrigeration system for superconducting generators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hosoya, T.; Shindo, S.; Yaguchi, H.
1996-12-31
Super-GM carries out R&D of 70 MW class superconducting generators (model machines), refrigeration system and superconducting wires to apply superconducting technology to electric power apparatuses. The helium refrigeration system for keeping field windings of superconducting generator (SCG) in cryogenic environment must meet the requirement of high reliability for uninterrupted long term operation of the SCG. In FY 1992, a high reliable conventional refrigeration system for the model machines was integrated by combining components such as compressor unit, higher temperature cold box and lower temperature cold box which were manufactured utilizing various fundamental technologies developed in early stage of the projectmore » since 1988. Since FY 1993, its performance tests have been carried out. It has been confirmed that its performance was fulfilled the development target of liquefaction capacity of 100 L/h and impurity removal in the helium gas to < 0.1 ppm. Furthermore, its operation method and performance were clarified to all different modes as how to control liquefaction rate and how to supply liquid helium from a dewar to the model machine. In addition, the authors have made performance tests and system performance analysis of oil free screw type and turbo type compressors which greatly improve reliability of conventional refrigeration systems. The operation performance and operational control method of the compressors has been clarified through the tests and analysis.« less
Valley density-wave (VDW) and Superconductivity in Iron-Pnictides
NASA Astrophysics Data System (ADS)
Cvetkovic, Vladimir; Tesanovic, Zlatko
2009-03-01
One of the experimentally observed features of iron-pnictide superconductors is the structural transition and SDW ordering occurring at almost the same temperature. Starting from a tight-binding model [1], we construct an effective theory for iron-pnictides with the distinctive two hole and two electron Fermi surfaces. This theory is then mapped onto a negative-U Hubbard model with additional orbital and spin flavors [2]. We demonstrate that the superconducting instability of the attractive Hubbard model --- valley density-wave (VDW) --- corresponds to the observed structural and SDW orders. The deviations from perfect nesting between the hole and electron Fermi surfaces are mapped onto the Zeeman field which causes portions of Fermi surface to remain ungapped. The origin of pnictide superconductivity in this model, and its ties to the VDW are discussed. [1] V. Cvetkovic and Z. Tesanovic, http://arxiv.org/abs/0804.4678. [2] V. Cvetkovic and Z. Tesanovic, http://arxiv.org/abs/0808.3742.
NASA Astrophysics Data System (ADS)
Bünemann, Jörg; Seibold, Götz
2017-12-01
Pump-probe experiments have turned out as a powerful tool in order to study the dynamics of competing orders in a large variety of materials. The corresponding analysis of the data often relies on standard linear-response theory generalized to nonequilibrium situations. Here we examine the validity of such an approach for the charge and pairing response of systems with charge-density wave and (or) superconducting (SC) order. Our investigations are based on the attractive Hubbard model which we study within the time-dependent Hartree-Fock approximation. In particular, we calculate the quench and pump-probe dynamics for SC and charge order parameters in order to analyze the frequency spectra and the coupling of the probe field to the specific excitations. Our calculations reveal that the "linear-response assumption" is justified for small to moderate nonequilibrium situations (i.e., pump pulses) in the case of a purely charge-ordered ground state. However, the pump-probe dynamics on top of a superconducting ground state is determined by phase and amplitude modes which get coupled far from the equilibrium state indicating the failure of the linear-response assumption.
Search for Invisible Axion Dark Matter with the Axion Dark Matter Experiment
Du, N.; Force, N.; Khatiwada, R.; ...
2018-04-09
This Letter reports the results from a haloscope search for dark matter axions with masses between 2.66 and 2.81 μ eV . The search excludes the range of axion-photon couplings predicted by plausible models of the invisible axion. This unprecedented sensitivity is achieved by operating a large-volume haloscope at subkelvin temperatures, thereby reducing thermal noise as well as the excess noise from the ultralow-noise superconducting quantum interference device amplifier used for the signal power readout. Finally, ongoing searches will provide nearly definitive tests of the invisible axion model over a wide range of axion masses.
Search for Invisible Axion Dark Matter with the Axion Dark Matter Experiment.
Du, N; Force, N; Khatiwada, R; Lentz, E; Ottens, R; Rosenberg, L J; Rybka, G; Carosi, G; Woollett, N; Bowring, D; Chou, A S; Sonnenschein, A; Wester, W; Boutan, C; Oblath, N S; Bradley, R; Daw, E J; Dixit, A V; Clarke, J; O'Kelley, S R; Crisosto, N; Gleason, J R; Jois, S; Sikivie, P; Stern, I; Sullivan, N S; Tanner, D B; Hilton, G C
2018-04-13
This Letter reports the results from a haloscope search for dark matter axions with masses between 2.66 and 2.81 μeV. The search excludes the range of axion-photon couplings predicted by plausible models of the invisible axion. This unprecedented sensitivity is achieved by operating a large-volume haloscope at subkelvin temperatures, thereby reducing thermal noise as well as the excess noise from the ultralow-noise superconducting quantum interference device amplifier used for the signal power readout. Ongoing searches will provide nearly definitive tests of the invisible axion model over a wide range of axion masses.
Search for Invisible Axion Dark Matter with the Axion Dark Matter Experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Du, N.; Force, N.; Khatiwada, R.
This Letter reports the results from a haloscope search for dark matter axions with masses between 2.66 and 2.81 μ eV . The search excludes the range of axion-photon couplings predicted by plausible models of the invisible axion. This unprecedented sensitivity is achieved by operating a large-volume haloscope at subkelvin temperatures, thereby reducing thermal noise as well as the excess noise from the ultralow-noise superconducting quantum interference device amplifier used for the signal power readout. Finally, ongoing searches will provide nearly definitive tests of the invisible axion model over a wide range of axion masses.
NASA Astrophysics Data System (ADS)
Hébert, Charles-David; Sémon, Patrick; Tremblay, A.-M. S.
2015-11-01
Layered organic superconductors of the BEDT family are model systems for understanding the interplay of the Mott transition with superconductivity, magnetic order, and frustration, ingredients that are essential to understand superconductivity also in the cuprate high-temperature superconductors. Recent experimental studies on a hole-doped version of the organic compounds reveals an enhancement of superconductivity and a rapid crossover between two different conducting phases above the superconducting dome. One of these phases is a Fermi liquid, the other not. Using plaquette cellular dynamical mean field theory with state-of-the-art continuous-time quantum Monte Carlo calculations, we study this problem with the two-dimensional Hubbard model on the anisotropic triangular lattice. Phase diagrams as a function of temperature T and interaction strength U /t are obtained for anisotropy parameters t'=0.4 t ,t'=0.8 t and for various fillings. As in the case of the cuprates, we find, at finite doping, a first-order transition between two normal-state phases. One of theses phases has a pseudogap while the other does not. At temperatures above the critical point of the first-order transition, there is a Widom line where crossovers occur. The maximum (optimal) superconducting critical temperature Tcm at finite doping is enhanced by about 25% compared with its maximum at half filling and the range of U /t where superconductivity appears is greatly extended. These results are in broad agreement with experiment. Also, increasing frustration (larger t'/t ) significantly reduces magnetic ordering, as expected. This suggests that for compounds with intermediate to high frustration, very light doping should reveal the influence of the first-order transition and associated crossovers. These crossovers could possibly be even visible in the superconducting phase through subtle signatures. We also predict that destroying the superconducting phase by a magnetic field should reveal the first-order transition between metal and pseudogap. Finally, we predict that electron doping should also lead to an increased range of U /t for superconductivity but with a reduced maximum Tc. This work also clearly shows that the superconducting dome in organic superconductors is tied to the Mott transition and its continuation as a transition separating pseudogap phase from correlated metal in doped compounds, as in the cuprates. Contrary to heavy fermions for example, the maximum Tc is definitely not attached to an antiferromagnetic quantum critical point. That can also be verified experimentally.
Edge currents in frustrated Josephson junction ladders
NASA Astrophysics Data System (ADS)
Marques, A. M.; Santos, F. D. R.; Dias, R. G.
2016-09-01
We present a numerical study of quasi-1D frustrated Josephson junction ladders with diagonal couplings and open boundary conditions, in the large capacitance limit. We derive a correspondence between the energy of this Josephson junction ladder and the expectation value of the Hamiltonian of an analogous tight-binding model, and show how the overall superconducting state of the chain is equivalent to the minimum energy state of the tight-binding model in the subspace of one-particle states with uniform density. To satisfy the constraint of uniform density, the superconducting state of the ladder is written as a linear combination of the allowed k-states of the tight-binding model with open boundaries. Above a critical value of the parameter t (ratio between the intra-rung and inter-rung Josephson couplings) the ladder spontaneously develops currents at the edges, which spread to the bulk as t is increased until complete coverage is reached. Above a certain value of t, which varies with ladder size (t = 1 for an infinite-sized ladder), the edge currents are destroyed. The value t = 1 corresponds, in the tight-binding model, to the opening of a gap between two bands. We argue that the disappearance of the edge currents with this gap opening is not coincidental, and that this points to a topological origin for these edge current states.
Supercomputer optimizations for stochastic optimal control applications
NASA Technical Reports Server (NTRS)
Chung, Siu-Leung; Hanson, Floyd B.; Xu, Huihuang
1991-01-01
Supercomputer optimizations for a computational method of solving stochastic, multibody, dynamic programming problems are presented. The computational method is valid for a general class of optimal control problems that are nonlinear, multibody dynamical systems, perturbed by general Markov noise in continuous time, i.e., nonsmooth Gaussian as well as jump Poisson random white noise. Optimization techniques for vector multiprocessors or vectorizing supercomputers include advanced data structures, loop restructuring, loop collapsing, blocking, and compiler directives. These advanced computing techniques and superconducting hardware help alleviate Bellman's curse of dimensionality in dynamic programming computations, by permitting the solution of large multibody problems. Possible applications include lumped flight dynamics models for uncertain environments, such as large scale and background random aerospace fluctuations.
Superconductivity and the environment: a Roadmap
NASA Astrophysics Data System (ADS)
Nishijima, Shigehiro; Eckroad, Steven; Marian, Adela; Choi, Kyeongdal; Kim, Woo Seok; Terai, Motoaki; Deng, Zigang; Zheng, Jun; Wang, Jiasu; Umemoto, Katsuya; Du, Jia; Febvre, Pascal; Keenan, Shane; Mukhanov, Oleg; Cooley, Lance D.; Foley, Cathy P.; Hassenzahl, William V.; Izumi, Mitsuru
2013-11-01
There is universal agreement between the United Nations and governments from the richest to the poorest nations that humanity faces unprecedented global challenges relating to sustainable energy, clean water, low-emission transportation, coping with climate change and natural disasters, and reclaiming use of land. We have invited researchers from a range of eclectic research areas to provide a Roadmap of how superconducting technologies could address these major challenges confronting humanity. Superconductivity has, over the century since its discovery by Kamerlingh Onnes in 1911, promised to provide solutions to many challenges. So far, most superconducting technologies are esoteric systems that are used in laboratories and hospitals. Large science projects have long appreciated the ability of superconductivity to efficiently create high magnetic fields that are otherwise very costly to achieve with ordinary materials. The most successful applications outside of large science are high-field magnets for magnetic resonance imaging, laboratory magnetometers for mineral and materials characterization, filters for mobile communications, and magnetoencephalography for understanding the human brain. The stage is now set for superconductivity to make more general contributions. Humanity uses practically unthinkable amounts of energy to drive our modern way of life. Overall, global power usage has been predicted to almost double from 16.5 to 30 TW in the next four decades (2011 Equinox Summit: Energy 2030 http://wgsi.org/publications-resources). The economy with which electrons carry energy compels the continued quest for efficient superconducting power generation, energy storage, and power transmission. The growing global population requires new arable land and treatment of water, especially in remote areas, and superconductivity offers unique solutions to these problems. Exquisite detectors give warning of changes that are otherwise invisible. Prediction of climate and disasters will be helped by future supercomputer technologies that support huge amounts of data and sophisticated modeling, and with the aid of superconductivity these systems might not require the energy of a large city. We present different sections on applications that could address (or are addressing) a range of environmental issues. The Roadmap covers water purification, power distribution and storage, low-environmental impact transport, environmental sensing (particularly for the removal of unexploded munitions), monitoring the Earth’s magnetic fields for earthquakes and major solar activity, and, finally, developing a petaflop supercomputer that only requires 3% of the current supercomputer power provision while being 50 times faster. Access to fresh water. With only 2.5% of the water on Earth being fresh and climate change modeling forecasting that many areas will become drier, the ability to recycle water and achieve compact water recycling systems for sewage or ground water treatment is critical. The first section (by Nishijima) points to the potential of superconducting magnetic separation to enable water recycling and reuse. Energy. The Equinox Summit held in Waterloo Canada 2011 (2011 Equinox Summit: Energy 2030 http://wgsi.org/publications-resources) identified electricity use as humanity’s largest contributor to greenhouse gas emissions. Our appetite for electricity is growing faster than for any other form of energy. The communiqué from the summit said ‘Transforming the ways we generate, distribute and store electricity is among the most pressing challenges facing society today…. If we want to stabilize CO2 levels in our atmosphere at 550 parts per million, all of that growth needs to be met by non-carbon forms of energy’ (2011 Equinox Summit: Energy 2030 http://wgsi.org/publications-resources). Superconducting technologies can provide the energy efficiencies to achieve, in the European Union alone, 33-65% of the required reduction in greenhouse gas emissions according to the Kyoto Protocol (Hartikainen et al 2003 Supercond. Sci. Technol. 16 963). New technologies would include superconducting energy storage systems to effectively store power generation from renewable sources as well as high-temperature superconducting systems used in generators, transformers and synchronous motors in power stations and heavy-industry facilities. However, to be effective, these systems must be superior to conventional systems and, in reality, market penetration will occur as existing electrical machinery is written off. At current write-off rates, to achieve a 50% transfer to superconducting systems will take 20 years (Hartikainen et al 2003 Supercond. Sci. Technol. 16 963). The Roadmap next considers dc transmission of green power with a section by Eckroad and Marian who provide an update on the development of superconducting power transmission lines in view of recent sustainability studies. The potential of magnetic energy storage is then presented by Coi and Kim, who argue that a successful transition to wind and solar power generation must be harmonized with the conventional electrical network, which requires a storage technology with a fast response and long backup times. Transport. Superconducting Maglev trains and motors for international shipping have the potential to considerably reduce the emissions that contribute to greenhouse gases while improving their economic viability by reducing losses and improving efficiencies. International shipping, alone, contributes 3% of the greenhouse gas emissions. Three sections of the Roadmap identify how high-speed rail can be a major solution to providing fast, low energy, environmentally-friendly transport enabling reduction in automobile and aircraft travel by offering an alternative that is very competitive. With maritime international environmental regulations tightening, HTS motors with the characteristics of high torque and compactness will become important devices for high-performance and low-emission electric ship propulsion systems. A section on the development of a megawatt-class superconducting motor for ship propulsion is presented by Umemoto. Monitoring in manufacturing for waste reduction. Environmental impact from the waste created by the manufacturing sector and the need to make manufacturing efficient can be addressed by terahertz imaging. This technology has great potential in non-destructive testing, industrial process monitoring and control to greatly improve the industry process efficiency and reliability by reducing waste materials and toxic by-products. The section by Du shows how terahertz imaging can provide process and property information such as rust levels under paint that can assist with the reduction of waste in manufacturing and maintenance. Monitoring for naturally occurring disturbances. The environmental and social impact of natural disasters is mounting. Febvre provides the Roadmap for the use of ultra-sensitive magnetometry to understand geomagnetic phenomena and Earth-ionosphere couplings through the study of very small variations of the magnetic field. This magnetic monitoring has many implications for understanding our environment and providing new tools for early warning of natural hazards, either on Earth or in space which will enable us to be better prepared for natural disasters. Restoring environments after military use. Throughout the world, there are many areas confirmed or suspected of being contaminated by unexploded munitions known as unexploded ordnance (UXO). Its presence is the result of wars and training of military forces. Areas affected by UXO contamination are hazardous to the public and have a major influence on the nature of land use. UXO has impact in developed as well as developing nations. For example, the USA has UXO dating back to the American Civil War and countries such as Cambodia are living with landmines as a daily issue due to more recent wars. Underwater UXO has caused severe impacts such as the explosion in 1969 in the waters of Kent in the UK that caused a reading of 4.5 on the Richter scale for earthquake monitors. Another example was a land-based detonation of a 500 kg World War II bomb in Germany killing three people in 2010. There is countless UXO from recent conflicts worldwide. Detection and accurate location with 100% reliability is required to return land to safe civilian use. Keenan provides details of a prototype magnetic gradiometer developed for this purpose. Reducing power needs for high-end IT. Supercomputers are so large that they are close to requiring their own small power plant to support the energy needed to run the computer. For example, in 2011 Facebook data centers and operations used 532 million kW hours of energy. Mukhanov explores the potential of reducing the power dissipation for future supercomputers from more than 500 MW for Exascale systems to 0.2 MW by using superconducting-ferromagnetic Josephson junctions for magnetic memory and programmable logic. Clearly superconductivity is an ultimate energy-saving technology, and its practical implementation will contribute to the reduction of CO2 emissions, improved water purification, reduction of waste and timely preparedness for natural disasters or significant events. This Roadmap shows how the application of superconducting technologies will have a significant impact when they are adopted.
Renormalization of Coulomb interactions in s-wave superconductor NaxCoO2
NASA Astrophysics Data System (ADS)
Yada, Keiji; Kontani, Hiroshi
2007-03-01
We study the renormalized Coulomb interactions due to retardation effect in NaxCoO2. Although the Morel Anderson's pseudo-potential for a1g orbital μa1g* is relatively large because the direct Coulomb repulsion U is large, that for interband transition between a1g and eg' orbitals μa1g,eg'* is very small since the renormalization factor for pair hopping J is square of that for U. Therefore, the s-wave superconductivity due to valence-band Suhl-Kondo mechanism will survive against strong Coulomb interactions. The interband hopping of Cooper pairs due to shear phonons is essential to understand the superconductivity in NaxCoO2.
Cryogenic Selective Surface - How Cold Can We Go?
NASA Technical Reports Server (NTRS)
Youngquist, Robert; Nurge, Mark
2015-01-01
Selective surfaces have wavelength dependent emissivitya bsorption. These surfaces can be designed to reflect solar radiation, while maximizing infrared emittance, yielding a cooling effect even in sunlight. On earth cooling to -50 C below ambient has been achieved, but in space, outside of the atmosphere, theory using ideal materials has predicted a maximum cooling to 40 K! If this result holds up for real world materials and conditions, then superconducting systems and cryogenic storage can be achieved in space without active cooling. Such a result would enable long term cryogenic storage in deep space and the use of large scale superconducting systems for such applications as galactic cosmic radiation (GCR) shielding and large scale energy storage.
Insufficiency of avoided crossings for witnessing large-scale quantum coherence in flux qubits
NASA Astrophysics Data System (ADS)
Fröwis, Florian; Yadin, Benjamin; Gisin, Nicolas
2018-04-01
Do experiments based on superconducting loops segmented with Josephson junctions (e.g., flux qubits) show macroscopic quantum behavior in the sense of Schrödinger's cat example? Various arguments based on microscopic and phenomenological models were recently adduced in this debate. We approach this problem by adapting (to flux qubits) the framework of large-scale quantum coherence, which was already successfully applied to spin ensembles and photonic systems. We show that contemporary experiments might show quantum coherence more than 100 times larger than experiments in the classical regime. However, we argue that the often-used demonstration of an avoided crossing in the energy spectrum is not sufficient to make a conclusion about the presence of large-scale quantum coherence. Alternative, rigorous witnesses are proposed.
Superconductivity in Doped sp3 Semiconductors: The Case of the Clathrates
NASA Astrophysics Data System (ADS)
Connétable, D.; Timoshevskii, V.; Masenelli, B.; Beille, J.; Marcus, J.; Barbara, B.; Saitta, A. M.; Rignanese, G.-M.; Mélinon, P.; Yamanaka, S.; Blase, X.
2003-12-01
We present a joint experimental and theoretical study of the superconductivity in doped silicon clathrates. The critical temperature in Ba8@Si-46 is shown to strongly decrease with applied pressure. These results are corroborated by ab initio calculations using MacMillan's formulation of the BCS theory with the electron-phonon coupling constant λ calculated from perturbative density functional theory. Further, the study of I8@Si-46 and of gedanken pure silicon diamond and clathrate phases doped within a rigid-band approach show that the superconductivity is an intrinsic property of the sp3 silicon network. As a consequence, carbon clathrates are predicted to yield large critical temperatures with an effective electron-phonon interaction much larger than in C60.
Magnetic properties of electrospun non-woven superconducting fabrics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koblischka, Michael R.; Zeng, Xian Lin; Karwoth, Thomas
2016-03-15
Non-woven superconducting fabrics were prepared by the electrospinning technique, consisting of Bi{sub 2}Sr{sub 2}CaCuO{sub 8} (Bi-2212) nanowires. The individual nanowires have a diameter of ∼150-200 nm and lengths of up to 100 μm. A non-woven fabric forming a network with a large number of interconnects results, which enables the flow of transport currents through the entire network. We present here magnetization data [M(T) and M(H)-loops] of this new class of superconducting material. The magnetic properties of these nanowire networks are discussed including the irreversibility line and effects of different field sweep rates, regarding the microstructure of the nanowire networks investigatedmore » by electron microscopy.« less
NASA Astrophysics Data System (ADS)
Sun, Shanshan; Wang, Shaohua; Yu, Rong; Lei, Hechang
2017-08-01
We report the growth of heavily electron doped Li-NH3 intercalated FeSe single crystals that are free of material complexities and allow access to the intrinsic superconducting properties. Lix(NH3)yFe2Se2 single crystals show extremely large electronic anisotropy in both normal and superconducting states. They also exhibit anomalous transport properties in the normal state, which are believed to possibly be related to the anisotropy of relaxation time and/or temperature-dependent electron carrier concentration. Taking into account the great chemical flexibility of intercalants in the system, our findings provide a platform to understanding the origin of superconductivity in FeSe-related superconductors.
Nuclear magnetic resonance in high magnetic field: Application to condensed matter physics
NASA Astrophysics Data System (ADS)
Berthier, Claude; Horvatić, Mladen; Julien, Marc-Henri; Mayaffre, Hadrien; Krämer, Steffen
2017-05-01
In this review, we describe the potentialities offered by the nuclear magnetic resonance (NMR) technique to explore at a microscopic level new quantum states of condensed matter induced by high magnetic fields. We focus on experiments realised in resistive (up to 34 T) or hybrid (up to 45 T) magnets, which open a large access to these quantum phase transitions. After an introduction on NMR observables, we consider several topics: quantum spin systems (spin-Peierls transition, spin ladders, spin nematic phases, magnetisation plateaus, and Bose-Einstein condensation of triplet excitations), the field-induced charge density wave (CDW) in high-Tc superconductors, and exotic superconductivity including the Fulde-Ferrel-Larkin-Ovchinnikov superconducting state and the field-induced superconductivity due to the Jaccarino-Peter mechanism.
NASA Astrophysics Data System (ADS)
Lee, Hansang; Jung, Seungmin; Cho, Yoonsung; Yoon, Donghee; Jang, Gilsoo
2013-11-01
This paper proposes an application of the 100 kWh superconducting flywheel energy storage systems to reduce the peak power of the electric railway system. The electric railway systems have high-power characteristics and large amount of regenerative energy during vehicles’ braking. The high-power characteristic makes operating cost high as the system should guarantee the secure capacity of electrical equipment and the low utilization rate of regenerative energy limits the significant energy efficiency improvement. In this paper, it had been proved that the peak power reduction and energy efficiency improvement can be achieved by using 100 kWh superconducting flywheel energy storage systems with the optimally controlled charging or discharging operations. Also, economic benefits had been assessed.
Flexible Microstrip Circuits for Superconducting Electronics
NASA Technical Reports Server (NTRS)
Chervenak, James; Mateo, Jennette
2013-01-01
Flexible circuits with superconducting wiring atop polyimide thin films are being studied to connect large numbers of wires between stages in cryogenic apparatus with low heat load. The feasibility of a full microstrip process, consisting of two layers of superconducting material separated by a thin dielectric layer on 5 mil (approximately 0.13 mm) Kapton sheets, where manageable residual stress remains in the polyimide film after processing, has been demonstrated. The goal is a 2-mil (approximately 0.051-mm) process using spin-on polyimide to take advantage of the smoother polyimide surface for achieving highquality metal films. Integration of microstrip wiring with this polyimide film may require high-temperature bakes to relax the stress in the polyimide film between metallization steps.
Progress of applied superconductivity research at Materials Research Laboratories, ITRI (Taiwan)
NASA Technical Reports Server (NTRS)
Liu, R. S.; Wang, C. M.
1995-01-01
A status report based on the applied high temperature superconductivity (HTS) research at Materials Research Laboratories (MRL), Industrial Technology Research Institute (ITRI) is given. The aim is to develop fabrication technologies for the high-TC materials appropriate to the industrial application requirements. To date, the majorities of works have been undertaken in the areas of new materials, wires/tapes with long length, prototypes of magnets, large-area thin films, SQUID's and microwave applications.
NASA Astrophysics Data System (ADS)
Chung, Y. D.; Kim, D. W.; Lee, C. Y.
2017-07-01
This paper presents the feasibility of technical fusion between wireless power transfer (WPT) and superconducting technology to improve the transfer efficiency and evaluate operating costs such as refrigerant consumption. Generally, in WPT technology, the various copper wires have been adopted. From this reason, the transfer efficiency is limited since the copper wires of Q value are intrinsically critical point. On the other hand, as superconducting wires keep larger current density and relatively higher Q value, the superconducting resonance coil can be expected as a reasonable option to deliver large transfer power as well as improve the transfer ratio since it exchanges energy at a much higher rate and keeps stronger magnetic fields out. However, since superconducting wires should be cooled indispensably, the cooling cost of consumed refrigerant for resonance HTS wires should be estimated. In this study, the transmission ratios using HTS resonance receiver (Rx) coil and various cooled and noncooled copper resonance Rx coils were presented under non cooled copper antenna within input power of 200 W of 370 kHz respectively. In addition, authors evaluated cooling cost of liquid nitrogen for HTS resonance coil and various cooled copper resonance coils based on nitrogen evaporation method.
NASA Astrophysics Data System (ADS)
Peng, Feng; Sun, Ying; Pickard, Chris J.; Needs, Richard J.; Wu, Qiang; Ma, Yanming
2017-09-01
Room-temperature superconductivity has been a long-held dream and an area of intensive research. Recent experimental findings of superconductivity at 200 K in highly compressed hydrogen (H) sulfides have demonstrated the potential for achieving room-temperature superconductivity in compressed H-rich materials. We report first-principles structure searches for stable H-rich clathrate structures in rare earth hydrides at high pressures. The peculiarity of these structures lies in the emergence of unusual H cages with stoichiometries H24 , H29 , and H32 , in which H atoms are weakly covalently bonded to one another, with rare earth atoms occupying the centers of the cages. We have found that high-temperature superconductivity is closely associated with H clathrate structures, with large H-derived electronic densities of states at the Fermi level and strong electron-phonon coupling related to the stretching and rocking motions of H atoms within the cages. Strikingly, a yttrium (Y) H32 clathrate structure of stoichiometry YH10 is predicted to be a potential room-temperature superconductor with an estimated Tc of up to 303 K at 400 GPa, as derived by direct solution of the Eliashberg equation.
Switching effects and spin-valley Andreev resonant peak shifting in silicene superconductor
NASA Astrophysics Data System (ADS)
Soodchomshom, Bumned; Niyomsoot, Kittipong; Pattrawutthiwong, Eakkarat
2018-03-01
The magnetoresistance and spin-valley transport properties in a silicene-based NM/FB/SC junction are investigated, where NM, FB and SC are normal, ferromagnetic and s-wave superconducting silicene, respectively. In the FB region, perpendicular electric and staggered exchange fields are applied. The quasiparticles may be described by Dirac Bogoliubov-de Gennes equation due to Cooper pairs formed by spin-valley massive fermions. The spin-valley conductances are calculated based on the modified Blonder-Tinkham-Klapwijk formalism. We find the spin-valley dependent Andreev resonant peaks in the junction shifted by applying exchange field. Perfect conductance switch generated by interplay of intrinsic spin orbit interaction and superconducting gap has been predicted. Spin and valley polarizations are almost linearly dependent on biased voltage near zero bias and then turn into perfect switch at biased voltage approaching the superconducting gap. The perfect switching of large magnetoresistance has been also predicted at biased energy near the superconducting gap. These switching effects may be due to the presence of spin-valley Andreev resonant peak near the superconducting gap. Our work reveals potential of silicene as applications of electronic switching devices and linear control of spin and valley polarizations.
Spin excitations in hole-overdoped iron-based superconductors.
Horigane, K; Kihou, K; Fujita, K; Kajimoto, R; Ikeuchi, K; Ji, S; Akimitsu, J; Lee, C H
2016-09-12
Understanding the overall features of magnetic excitation is essential for clarifying the mechanism of Cooper pair formation in iron-based superconductors. In particular, clarifying the relationship between magnetism and superconductivity is a central challenge because magnetism may play a key role in their exotic superconductivity. BaFe2As2 is one of ideal systems for such investigation because its superconductivity can be induced in several ways, allowing a comparative examination. Here we report a study on the spin fluctuations of the hole-overdoped iron-based superconductors Ba1-xKxFe2As2 (x = 0.5 and 1.0; Tc = 36 K and 3.4 K, respectively) over the entire Brillouin zone using inelastic neutron scattering. We find that their spin spectra consist of spin wave and chimney-like dispersions. The chimney-like dispersion can be attributed to the itinerant character of magnetism. The band width of the spin wave-like dispersion is almost constant from the non-doped to optimum-doped region, which is followed by a large reduction in the overdoped region. This suggests that the superconductivity is suppressed by the reduction of magnetic exchange couplings, indicating a strong relationship between magnetism and superconductivity in iron-based superconductors.
Peng, Feng; Sun, Ying; Pickard, Chris J; Needs, Richard J; Wu, Qiang; Ma, Yanming
2017-09-08
Room-temperature superconductivity has been a long-held dream and an area of intensive research. Recent experimental findings of superconductivity at 200 K in highly compressed hydrogen (H) sulfides have demonstrated the potential for achieving room-temperature superconductivity in compressed H-rich materials. We report first-principles structure searches for stable H-rich clathrate structures in rare earth hydrides at high pressures. The peculiarity of these structures lies in the emergence of unusual H cages with stoichiometries H_{24}, H_{29}, and H_{32}, in which H atoms are weakly covalently bonded to one another, with rare earth atoms occupying the centers of the cages. We have found that high-temperature superconductivity is closely associated with H clathrate structures, with large H-derived electronic densities of states at the Fermi level and strong electron-phonon coupling related to the stretching and rocking motions of H atoms within the cages. Strikingly, a yttrium (Y) H_{32} clathrate structure of stoichiometry YH_{10} is predicted to be a potential room-temperature superconductor with an estimated T_{c} of up to 303 K at 400 GPa, as derived by direct solution of the Eliashberg equation.
Anisotropic superconductivity in β-(BDA-TTP)2SbF6: STM spectroscopy
NASA Astrophysics Data System (ADS)
Nomura, K.; Muraoka, R.; Matsunaga, N.; Ichimura, K.; Yamada, J.
2009-03-01
We have investigated the gap symmetry in the superconducting phase of β-(BDA-TTP)2SbF6 with use of the scanning tunneling microscope (STM). The tunneling spectra obtained on the conducting surface show a clear superconducting gap structure. Its functional form is of V-shaped similarly to κ-(BEDT-TTF)2X and suggests the anisotropic superconducting gap with line nodes. For lateral surfaces the shape of tunneling spectra varies from the U-shape with relatively large gap to the V-shape with small gap depending on the tunneling direction alternately twice between directional angle 0 and π. From the analysis of conductance curve taking the k dependence of the tunneling probability into account, it is found that the gap has maximum near the a* and c* axes and the nodes appear along near a*+c* and the a-c* directions. These indicate that the d like superconducting pair is formed in this system as the case of κ-(BEDT-TTF)2X. This node direction is consistent with the theoretical prediction based on the spin fluctuation mechanism. However, the zero-bias conductance peak has not been observed yet.
NASA Astrophysics Data System (ADS)
Wang, Wei; Coombs, Tim
2018-04-01
We have uncovered at the macroscopic scale a magnetic coupling phenomenon in a superconducting YBa2Cu3O7 -δ (YBCO) film, which physically explains the mechanism of the high-temperature superconducting flux pump. The coupling occurs between the applied magnetic poles and clusters of vortices induced in the YBCO film, with each cluster containing millions of vortices. The coupling energy is verified to originate from the inhomogeneous field of the magnetic poles, which reshapes the vortex distribution, aggregates millions of vortices into a single cluster, and accordingly moves with the poles. A contrast study is designed to verify that, to provide the effective coupling energy, the applied wavelength must be short while the field amplitude must be strong, i.e., local-field inhomogeneity is the crucial factor. This finding broadens our understanding of the collective vortex behavior in an applied magnetic field with strong local inhomogeneity. Moreover, this phenomenon largely increases the controlled vortex flow rate by several orders of magnitude compared with existing methods, providing motivation for and physical support to a new branch of wireless superconducting dc power sources, i.e., the high-temperature superconducting flux pump.
A role for high frequency superconducting devices in free space power transmission systems
NASA Technical Reports Server (NTRS)
Christian, Jose L., Jr.; Cull, Ronald C.
1988-01-01
Major advances in space power technology are being made in photovoltaic, solar thermal, and nuclear systems. Despite these advances, the power systems required by the energy and power intensive mission of the future will be massive due to the large collecting surfaces, large thermal management systems, and heavy shielding. Reducing this mass on board the space vehicle can result in significant benefits because of the high cost of transporting and moving mass about in space. An approach to this problem is beaming the power from a point where the massiveness of the power plant is not such a major concern. The viability of such an approach was already investigated. Efficient microwave power beam transmission at 2.45 GHz was demonstrated over short range. Higher frequencies are desired for efficient transmission over several hundred or thousand kilometers in space. Superconducting DC-RF conversion as well as RF-DC conversion offers exciting possibilities. Multivoltage power conditioning for multicavity high power RF tubes could be eliminated since only low voltages are required for Josephson junctions. Small, high efficiency receivers may be possible using the reverse Josephson effects. A conceptual receiving antenna design using superconducting devices to determine possible system operating efficiency is assessed. If realized, these preliminary assessments indicate a role for superconducting devices in millimeter and submillimeter free space power transmission systems.
Inhomogeneities and superconductivity in poly-phase Fe-Se-Te systems
NASA Astrophysics Data System (ADS)
Hartwig, S.; Schäfer, N.; Schulze, M.; Landsgesell, S.; Abou-Ras, D.; Blum, Ch. G. F.; Wurmehl, S.; Sokolowski, A.; Büchner, B.; Prokeš, K.
2018-02-01
The impact of synthesis conditions, post-preparation heating procedure, aging and influence of pressure on the superconducting properties of FeSe0.4Te0.6 crystals is reported. Two FeSe0.4Te0.6 single crystals were used in the study, prepared from stoichiometric melt but cooled down with very different cooling rates, and investigated using magnetic bulk and electrical-resistivity methods. The fast-cooled crystal contains large inclusions of Fe3Se2.1Te1.8 and exhibits bulk superconductivity in its as-prepared state, while the other is homogeneous and shows only traces of superconductivity. AC susceptibility measurements under hydrostatic pressure show that the superconducting transition temperature of the inhomogeneous crystal increases from 12.3 K at ambient pressure to Tsc = 17.9 K at 9 kbar. On the other hand, neither pressure nor mechanically-induced stress is sufficient to induce superconductivity in the homogeneous crystal. However, an additional heat treatment at 673 K followed by fast cooling down and/or long-term aging at ambient conditions leads to the appearance of bulk superconductivity also in the latter sample. This sample remains homogeneous on a scale down to few μm but shows an additional magnetic phase transition around 130 K suggesting that it must be inhomogeneous. For comparison also Fe3Se2.1Te1.8 polycrystals have been prepared and their magnetic properties have been studied. It appears that this phase is not superconducting by itself. It is concluded that nano-scale inhomogeneities that appear in the FeSexTe1-x system due to a spinodal decomposition in the solid state are necessary for bulk superconductivity, possibly due to minor changes in the crystal structure and microstructure. Macroscopic inclusions quenched by fast cooling from high temperatures lead obviously to strain and hence variations in the lattice constants, an effect that is further supported by application of pressure/stress.
NASA Astrophysics Data System (ADS)
Ekino, T.; Sugimoto, A.; Gabovich, A. M.
2018-05-01
We studied correlations between the superconducting gap features of Te-substituted FeSe observed by scanning tunnelling spectroscopy (STS) and break-junction tunnelling spectroscopy (BJTS). At bias voltages outside the superconducting gap-energy range, the broad gap structure exists, which becomes the normal-state gap above the critical temperature, T c. Such behaviour is consistent with the model of the partially gapped density-wave superconductor involving both superconducting gaps and pseudogaps, which has been applied by us earlier to high-Tc cuprates. The similarity suggests that the parent electronic spectrum features should have much in common for these classes of materials.
Superconductivity in layered BiS 2-based compounds
Yazici, D.; Jeon, I.; White, B. D.; ...
2015-02-25
Here, a novel family of superconductors based on BiS 2-based superconducting layers were discovered in 2012. In short order, other BiS 2-based superconductors with the same or related crystal structures were discovered with superconducting critical temperatures T c of up to 10 K. Many experimental and theoretical studies have been carried out with the goal of establishing the basic properties of these new materials and understanding the underlying mechanism for superconductivity. In this selective review of the literature, we distill the central discoveries from this extensive body of work, and discuss the results from different types of experiments on thesemore » materials within the context of theoretical concepts and models.« less
Crossover from impurity-controlled to granular superconductivity in (TMTSF) 2ClO4
NASA Astrophysics Data System (ADS)
Yonezawa, Shingo; Marrache-Kikuchi, Claire A.; Bechgaard, Klaus; Jérome, Denis
2018-01-01
Using a proper cooling procedure, a controllable amount of nonmagnetic structural disorder can be introduced at low temperature in (TMTSF) 2ClO4 . Here we performed simultaneous measurements of transport and magnetic properties of (TMTSF) 2ClO4 in its normal and superconducting states, while finely covering three orders of magnitude of the cooling rate around the anion ordering temperature. Our result reveals, with increasing density of disorder, the existence of a crossover between homogeneous defect-controlled d -wave superconductivity and granular superconductivity. At slow cooling rates, with small amount of disorder, the evolution of superconducting properties is well described with the Abrikosov-Gorkov theory, providing further confirmation of non-s -wave pairing in this compound. In contrast, at fast cooling rates, zero resistance and diamagnetic shielding are achieved through a randomly distributed network of superconducting puddles embedded in a normal conducting background and interconnected by proximity effect coupling. The temperature dependence of the ac complex susceptibility reveals features typical for a network of granular superconductors. This makes (TMTSF) 2ClO4 a model system for granular superconductivity where the grain size and their concentration are tunable within the same sample.
The Fluctuating Bond Model, a Glue for Cuprate Superconductivity?
NASA Astrophysics Data System (ADS)
Newns, Dennis
2008-03-01
Twenty years of research have yet to produce a consensus on the origin of high temperature superconductivity (HTS). The mechanism of HTS - which originates in the CuO2 plane, common to all HTS families - can be constrained by some key experimental facts regarding superconducting and pseudogap behaviors. Superconductivity, involving a Tc of order 100 K, exhibits an unusual d-wave superconducting gap, with Fermi liquid nodal excitations, and an anomalous doping- dependent oxygen isotope shift. A ``pseudogap,'' also with d-symmetry, leads to a dip in the density of states below a characteristic temperature scale T^*, which has a negative isotope shift; we associate the pseudogap with the recently observed spatially inhomogeneous (nanometer- scale) C4 symmetry breaking. The isotope shifts and other evidence imply a key role for oxygen vibrations, but conventional BCS single-phonon coupling is essentially forbidden by symmetry and by the on-site Coulomb interaction U. In a novel approach, we introduce a model based on a strong, local, nonlinear interaction between electrons within the Cu-O-Cu bond in the CuO2 plane, and the oxygen vibrational degrees of freedom, termed the Fluctuating Bond Model (FBM) [D.M. Newns and C.C. Tsuei, Nature Physics 3, 184 (2007)]. In mean field the model predicts a phase manifesting broken C4 symmetry, with a d-type pseudogap, and an upper phase boundary in temperature, with a negative isotope shift, which we identify with T^*. An intrinsic d-wave pairing tendency is found, leading to a transition temperature dome and an anomalous isotope shift similar to that found experimentally. The softening in the oxygen vibrational frequency below Tc, seen in Raman and neutron spectra, has a natural explanation in the FBM. Recent ab initio calculations have been implemented which provide microscopic support for the model.
From antiferromagnetic insulator to correlated metal in pressurized and doped LaMnPO.
Simonson, J W; Yin, Z P; Pezzoli, M; Guo, J; Liu, J; Post, K; Efimenko, A; Hollmann, N; Hu, Z; Lin, H-J; Chen, C-T; Marques, C; Leyva, V; Smith, G; Lynn, J W; Sun, L L; Kotliar, G; Basov, D N; Tjeng, L H; Aronson, M C
2012-07-03
Widespread adoption of superconducting technologies awaits the discovery of new materials with enhanced properties, especially higher superconducting transition temperatures T(c). The unexpected discovery of high T(c) superconductivity in cuprates suggests that the highest T(c)s occur when pressure or doping transform the localized and moment-bearing electrons in antiferromagnetic insulators into itinerant carriers in a metal, where magnetism is preserved in the form of strong correlations. The absence of this transition in Fe-based superconductors may limit their T(c)s, but even larger T(c)s may be possible in their isostructural Mn analogs, which are antiferromagnetic insulators like the cuprates. It is generally believed that prohibitively large pressures would be required to suppress the effects of the strong Hund's rule coupling in these Mn-based compounds, collapsing the insulating gap and enabling superconductivity. Indeed, no Mn-based compounds are known to be superconductors. The electronic structure calculations and X-ray diffraction measurements presented here challenge these long held beliefs, finding that only modest pressures are required to transform LaMnPO, isostructural to superconducting host LaFeAsO, from an antiferromagnetic insulator to a metallic antiferromagnet, where the Mn moment vanishes in a second pressure-driven transition. Proximity to these charge and moment delocalization transitions in LaMnPO results in a highly correlated metallic state, the familiar breeding ground of superconductivity.
Antiferromagnetism and superconductivity in the half-Heusler semimetal HoPdBi
Pavlosiuk, Orest; Kaczorowski, Dariusz; Fabreges, Xavier; Gukasov, Arsen; Wiśniewski, Piotr
2016-01-01
We observed the coexistence of superconductivity and antiferromagnetic order in the single-crystalline ternary pnictide HoPdBi, a plausible topological semimetal. The compound orders antiferromagnetically at TN = 1.9 K and exhibits superconductivity below Tc = 0.7 K, which was confirmed by magnetic, electrical transport and specific heat measurements. The specific heat shows anomalies corresponding to antiferromagnetic ordering transition and crystalline field effect, but not to superconducting transition. Single-crystal neutron diffraction indicates that the antiferromagnetic structure is characterized by the propagation vector. Temperature variation of the electrical resistivity reveals two parallel conducting channels of semiconducting and metallic character. In weak magnetic fields, the magnetoresistance exhibits weak antilocalization effect, while in strong fields and temperatures below 50 K it is large and negative. At temperatures below 7 K Shubnikov-de Haas oscillations with two frequencies appear in the resistivity. These oscillations have non-trivial Berry phase, which is a distinguished feature of Dirac fermions. PMID:26728755
The Quantum Socket: Wiring for Superconducting Qubits - Part 3
NASA Astrophysics Data System (ADS)
Mariantoni, M.; Bejianin, J. H.; McConkey, T. G.; Rinehart, J. R.; Bateman, J. D.; Earnest, C. T.; McRae, C. H.; Rohanizadegan, Y.; Shiri, D.; Penava, B.; Breul, P.; Royak, S.; Zapatka, M.; Fowler, A. G.
The implementation of a quantum computer requires quantum error correction codes, which allow to correct errors occurring on physical quantum bits (qubits). Ensemble of physical qubits will be grouped to form a logical qubit with a lower error rate. Reaching low error rates will necessitate a large number of physical qubits. Thus, a scalable qubit architecture must be developed. Superconducting qubits have been used to realize error correction. However, a truly scalable qubit architecture has yet to be demonstrated. A critical step towards scalability is the realization of a wiring method that allows to address qubits densely and accurately. A quantum socket that serves this purpose has been designed and tested at microwave frequencies. In this talk, we show results where the socket is used at millikelvin temperatures to measure an on-chip superconducting resonator. The control electronics is another fundamental element for scalability. We will present a proposal based on the quantum socket to interconnect a classical control hardware to a superconducting qubit hardware, where both are operated at millikelvin temperatures.
Xu, Zhijun; Wen, Jinsheng; Zhao, Yang; Matsuda, Masaaki; Ku, Wei; Liu, Xuerong; Gu, Genda; Lee, D-H; Birgeneau, R J; Tranquada, J M; Xu, Guangyong
2012-11-30
Spin excitations are one of the top candidates for mediating electron pairing in unconventional superconductors. Their coupling to superconductivity is evident in a large number of systems, by the observation of an abrupt redistribution of magnetic spectral weight at the superconducting transition temperature, T(c), for energies comparable to the superconducting gap. Here we report inelastic neutron scattering measurements on Fe-based superconductors, Fe(1+y-x)(Ni/Cu)(x)Te(0.5)Se(0.5) that emphasize an additional signature. The overall shape of the low energy magnetic dispersion changes from two incommensurate vertical columns at T≫T(c) to a distinctly different U-shaped dispersion at low temperature. Importantly, this spectral reconstruction is apparent for temperatures up to ~3T(c). If the magnetic excitations are involved in the pairing mechanism, their surprising modification on the approach to T(c) demonstrates that strong interactions are involved.
Absence of superconductivity in LiPdHx
NASA Astrophysics Data System (ADS)
Liu, Wenhao; Wang, Enyu; Chen, Guanyu; Zhu, Xiyu; Zhang, Yue; Sheng, Yuzong; Wen, Hai-Hu
2018-03-01
Theoretical calculations about LiPdH predict that it may be a superconductor. Using the high-pressure synthesis technique up to 3 GPa, we have successfully fabricated the LiPdH? compound. The sample looks quite pure judging from the refinement of the X-ray diffraction pattern. However, no superconductivity has been detected down to about 2 K. The specific heat measurement shows a small Sommerfeld constant ? = 1.22 mJ mol? K?, which is a bit smaller than the theoretically predicted value. The magnetic susceptibility measured at 1 Tesla reveals a Curie-Weiss law behaviour in the low-temperature region with an estimate of the magnetic moment of 0.08 ?/Pd. The temperature dependence of resistivity has also been measured up to 25.2 GPa, but superconductivity is still not observed above 2 K. The large residual resistivity and small residual-resistivity ratio suggest that the quasiparticle scattering by impurities is quite strong, which might be induced by the hydrogen deficiency, and intimately hinders the occurrence of superconductivity in LiPdH?.
NASA Astrophysics Data System (ADS)
Bruno, A.; Michalak, D. J.; Poletto, S.; Clarke, J. S.; Dicarlo, L.
Large-scale quantum computation hinges on the ability to preserve and process quantum information with higher fidelity by increasing redundancy in a quantum error correction code. We present the realization of a scalable footprint for superconducting surface code based on planar circuit QED. We developed a tileable unit cell for surface code with all I/O routed vertically by means of superconducting through-silicon vias (TSVs). We address some of the challenges encountered during the fabrication and assembly of these chips, such as the quality of etch of the TSV, the uniformity of the ALD TiN coating conformal to the TSV, and the reliability of superconducting indium contact between the chips and PCB. We compare measured performance to a detailed list of specifications required for the realization of quantum fault tolerance. Our demonstration using centimeter-scale chips can accommodate the 50 qubits needed to target the experimental demonstration of small-distance logical qubits. Research funded by Intel Corporation and IARPA.
NASA Astrophysics Data System (ADS)
Watashige, Tatsuya; Arsenijević, Stevan; Yamashita, Takuya; Terazawa, Daiki; Onishi, Takafumi; Opherden, Lars; Kasahara, Shigeru; Tokiwa, Yoshifumi; Kasahara, Yuichi; Shibauchi, Takasada; von Löhneysen, Hilbert; Wosnitza, Jochen; Matsuda, Yuji
2017-01-01
There is growing evidence that the superconducting semimetal FeSe (Tc ˜ 8 K) is in the crossover regime between weak-coupling Bardeen-Cooper-Schrieffer (BCS) and strong-coupling Bose-Einstein-condensate (BEC) limits. We report on longitudinal and transverse thermal conductivities, κxx and κxy, respectively, in magnetic fields up to 20 T. The field dependences of κxx and κxy imply that a highly anisotropic small superconducting gap forms at the electron Fermi-surface pocket whereas a more isotropic and larger gap forms at the hole pocket. Below ˜1.0 K, both κxx and κxy exhibit distinct anomalies (kinks) at the upper critical field Hc2 and at a field H* slightly below Hc2. The analysis of the thermal Hall angle (κxy/κxx) indicates a change of the quasiparticle scattering rate at H*. These results provide strong support to the previous suggestion that above H* a distinct field-induced superconducting phase emerges with an unprecedented large spin imbalance.
Research briefing on high-temperature superconductivity
NASA Astrophysics Data System (ADS)
1987-10-01
The research briefing was prepared in response to the exciting developments in superconductivity in ceramic oxide materials announced earlier in 1987. The panel's specific charge was to examine not only the scientific opportunities in high-temperature superconductivity but also the barriers to commercial exploitation. While the base of experimental knowledge on the superconductors is growing rapidly, there is as yet no generally accepted theoretical explanation of their behavior. The fabrication and processing challenges presented by the materials suggest that the period or precommercial exploration for applications will probably extend for a decade or more. Near term prospects for applications include magnetic shielding, the voltage standard, superconducting quantum interference devices, infrared sensors, microwave devices, and analog signal processing. The panel also identified a number of longer-term prospects in high-field and large-scale applications, and in electronics. The United States' competitive position in the field is discussed, major scientific and technological objectives for research and development identified, and concludes with a series of recommendations.
Acoustic plane wave preferential orientation of metal oxide superconducting materials
Tolt, Thomas L.; Poeppel, Roger B.
1991-01-01
A polycrystalline metal oxide such as YBa.sub.2 Cu.sub.3 O.sub.7-X (where 0
Superconductivity with extremely large upper critical fields in Nb2Pd0.81S5
Zhang, Q.; Li, G.; Rhodes, D.; Kiswandhi, A.; Besara, T.; Zeng, B.; Sun, J.; Siegrist, T.; Johannes, M. D.; Balicas, L.
2013-01-01
Here, we report the discovery of superconductivity in a new transition metal-chalcogenide compound, i.e. Nb2Pd0.81S5, with a transition temperature Tc ≅ 6.6 K. Despite its relatively low Tc, it displays remarkably high and anisotropic superconducting upper critical fields, e.g. μ0Hc2 (T → 0 K) > 37 T for fields applied along the crystallographic b-axis. For a field applied perpendicularly to the b-axis, μ0Hc2 shows a linear dependence in temperature which coupled to a temperature-dependent anisotropy of the upper critical fields, suggests that Nb2Pd0.81S5 is a multi-band superconductor. This is consistent with band structure calculations which reveal nearly cylindrical and quasi-one-dimensional Fermi surface sheets having hole and electron character, respectively. The static spin susceptibility as calculated through the random phase approximation, reveals strong peaks suggesting proximity to a magnetic state and therefore the possibility of unconventional superconductivity. PMID:23486091
Casting of superconducting composite materials (M-4)
NASA Technical Reports Server (NTRS)
Togano, Kazumasa
1993-01-01
An aluminum-lead-bismuth alloy is a flexible alloy and is promising for easily workable embedded-type, filament-dispersed superconducting wire material. It is difficult to produce homogeneous ingots of this material because it is easily separated into elements when melted on Earth due to the large specific gravity differences. In this experiment, a homogeneous alloy will first be produced in molten state in microgravity. It will then be returned to Earth and processed into a wire or tape form. It will then be dispersed as the second phase in micro texture form into the primary phase of aluminum. Superconducting wire material with high-critical-magnetic-field characteristics will be produced. The texture of the material will be observed, and its performance will be evaluated. In addition to the above alloy, a four-element alloy will be produced from silver, a rare Earth element, barium, and copper. The alloys will be oxidized and drawn into wire after being returned to Earth. The materials are expected to be forerunners in obtaining superconducting wire materials from oxide superconductors.
Imaging of super-fast dynamics and flow instabilities of superconducting vortices
Embon, L.; Anahory, Y.; Jelić, Ž. L.; ...
2017-07-20
Quantized magnetic vortices driven by electric current determine key electromagnetic properties of superconductors. And while the dynamic behavior of slow vortices has been thoroughly investigated, the physics of ultrafast vortices under strong currents remains largely unexplored. Here, we use a nanoscale scanning superconducting quantum interference device to image vortices penetrating into a superconducting Pb film at rates of tens of GHz and moving with velocities of up to tens of km/s, which are not only much larger than the speed of sound but also exceed the pair-breaking speed limit of superconducting condensate. These experiments reveal formation of mesoscopic vortex channelsmore » which undergo cascades of bifurcations as the current and magnetic field increase. Our numerical simulations predict metamorphosis of fast Abrikosov vortices into mixed Abrikosov-Josephson vortices at even higher velocities. Our work offers an insight into the fundamental physics of dynamic vortex states of superconductors at high current densities, crucial for many applications.« less
NASA Astrophysics Data System (ADS)
D'Hauthuille, Luc; Zhai, Yuhu; Princeton Plasma Physics Lab Collaboration; University of Geneva Collaboration
2015-11-01
High field superconductors play an important role in many large-scale physics experiments, particularly particle colliders and fusion devices such as the LHC and ITER. The two most common superconductors used are NbTi and Nb3Sn. Nb3Sn wires are favored because of their significantly higher Jc, allowing them to produce much higher magnetic fields. The main disadvantage is that the superconducting performance of Nb3Sn is highly strain-sensitive and it is very brittle. The strain-sensitivity is strongly influenced by two factors: plasticity and cracked filaments. Cracks are induced by large stress concentrators due to the presence of voids. We will attempt to understand the correlation between Nb3Sn's irreversible strain limit and the void-induced stress concentrations around the voids. We will develop accurate 2D and 3D finite element models containing detailed filaments and possible distributions of voids in a bronze-route Nb3Sn wire. We will apply a compressive transverse load for the various cases to simulate the stress response of a Nb3Sn wire from the Lorentz force. Doing this will further improve our understanding of the effect voids have on the wire's mechanical properties, and thus, the connection between the shape & distribution of voids and performance degradation.
Parametrically excited motion of a levitated rigid bar over high- Tc superconducting bulks
NASA Astrophysics Data System (ADS)
Shimizu, T.; Sugiura, T.; Ogawa, S.
2006-10-01
High-Tc superconducting levitation systems achieve, under no contact support, stable levitation without control. This feature can be applied to flywheels, magnetically levitated trains, and so on. But no contact support has small damping. So these mechanisms can show complicated phenomena of dynamics due to nonlinearity in their magnetic force. For application to large-scale machines, we need to analyze dynamics of a large levitated body supported at multiple points. This research deals with nonlinearly coupled oscillation of a homogeneous and symmetric rigid bar supported at its both ends by equal electromagnetic forces between superconductors and permanent magnets. In our past study, using a rigid bar, we found combination resonance. Combination resonance happens owing to the asymmetry of the system. But, even if support forces are symmetric, parametric resonance can happen. With a simple symmetric model, this research focuses on especially the parametric resonance, and evaluates nonlinear effect of the symmetric support forces by experiment and numerical analysis. Obtained results show that two modes, caused by coupling of horizontal translation and roll motion, can be excited nonlinearly when the superconductor is excited vertically in the neighborhood of twice the natural frequencies of those modes. We confirmed these resonances have nonlinear characteristics of soft-spring, hysteresis and so on.
Bipolaronic charge density waves, polaronic spin density waves and high Tc superconductivity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aubry, S.
1992-01-01
At large enough electron phonon coupling, the existence of bipolaronic, polaronic and mixed states is rigorously proven for the adiabatic Holstein model at any dimension and any band filling. The ground-state is one of them which then prove the existence of insulating Bipolaronic Charge Density Waves. The role of the quantum lattice fluctuations is analysed and found to be neglegible in that regime but to become essential in case of phonon softening then favoring the occurence of superconductivity. When a strong Hubbard term is also present, the bipolarons break into polorons and the ground state is expected to be amore » polaronic spin density wave. If the repulsive Hubbard term is comparable to the electron-phonon coupling, the energy for breaking a bipoloron into two polarons can become small and we get instead of these two degenerate structures, a pait of polarons bounded by a spin resonance which we call spin resonant bipolaron''. This resonant bipolaron is still strongly bound, but the role of the quantum lattice fluctuations becomes now very important and yields a sharp broadening of the bandwidth of this resonant bipolarona. Thus, the strong quantum character of these resonant bipolarons could prevent their localization into real space structures which could be insulating bipolaronic CDWs or polaronic SDWS, then favoring the formation of a superconducting coherent state with a possible high {Tc}.« less
Bipolaronic charge density waves, polaronic spin density waves and high {Tc} superconductivity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aubry, S.
1992-09-01
At large enough electron phonon coupling, the existence of bipolaronic, polaronic and mixed states is rigorously proven for the adiabatic Holstein model at any dimension and any band filling. The ground-state is one of them which then prove the existence of insulating Bipolaronic Charge Density Waves. The role of the quantum lattice fluctuations is analysed and found to be neglegible in that regime but to become essential in case of phonon softening then favoring the occurence of superconductivity. When a strong Hubbard term is also present, the bipolarons break into polorons and the ground state is expected to be amore » polaronic spin density wave. If the repulsive Hubbard term is comparable to the electron-phonon coupling, the energy for breaking a bipoloron into two polarons can become small and we get instead of these two degenerate structures, a pait of polarons bounded by a spin resonance which we call ``spin resonant bipolaron``. This resonant bipolaron is still strongly bound, but the role of the quantum lattice fluctuations becomes now very important and yields a sharp broadening of the bandwidth of this resonant bipolarona. Thus, the strong quantum character of these resonant bipolarons could prevent their localization into real space structures which could be insulating bipolaronic CDWs or polaronic SDWS, then favoring the formation of a superconducting coherent state with a possible high {Tc}.« less
Magnuson, M; Schmitt, T; Strocov, V N; Schlappa, J; Kalabukhov, A S; Duda, L-C
2014-11-12
The interplay between the quasi 1-dimensional CuO-chains and the 2-dimensional CuO2 planes of YBa(2)Cu(3)O(6+x) (YBCO) has been in focus for a long time. Although the CuO-chains are known to be important as charge reservoirs that enable superconductivity for a range of oxygen doping levels in YBCO, the understanding of the dynamics of its temperature-driven metal-superconductor transition (MST) remains a challenge. We present a combined study using x-ray absorption spectroscopy and resonant inelastic x-ray scattering (RIXS) revealing how a reconstruction of the apical O(4)-derived interplanar orbitals during the MST of optimally doped YBCO leads to substantial hole-transfer from the chains into the planes, i.e. self-doping. Our ionic model calculations show that localized divalent charge-transfer configurations are expected to be abundant in the chains of YBCO. While these indeed appear in the RIXS spectra from YBCO in the normal, metallic, state, they are largely suppressed in the superconducting state and, instead, signatures of Cu trivalent charge-transfer configurations in the planes become enhanced. In the quest for understanding the fundamental mechanism for high-Tc-superconductivity (HTSC) in perovskite cuprate materials, the observation of such an interplanar self-doping process in YBCO opens a unique novel channel for studying the dynamics of HTSC.
Xu, Chen; Reece, Charles E.; Kelley, Michael J.
2016-03-22
A simplified numerical model has been developed to simulate nonlinear superconducting radiofrequency (SRF) losses on Nb surfaces. This study focuses exclusively on excessive surface resistance (R s) losses due to the microscopic topographical magnetic field enhancements. When the enhanced local surface magnetic field exceeds the superconducting critical transition magnetic field H c, small volumes of surface material may become normal conducting and increase the effective surface resistance without inducing a quench. We seek to build an improved quantitative characterization of this qualitative model. Using topographic data from typical buffered chemical polish (BCP)- and electropolish (EP)-treated fine grain niobium, we havemore » estimated the resulting field-dependent losses and extrapolated this model to the implications for cavity performance. The model predictions correspond well to the characteristic BCP versus EP high field Q 0 performance differences for fine grain niobium. Lastly, we describe the algorithm of the model, its limitations, and the effects of this nonlinear loss contribution on SRF cavity performance.« less
NASA Astrophysics Data System (ADS)
Aizawa, Hirohito; Kuroki, Kazuhiko
2018-03-01
We present a first-principles band calculation for the quasi-one-dimensional (Q1D) organic superconductor (TMTSF) 2ClO4 . An effective tight-binding model with the TMTSF molecule to be regarded as the site is derived from a calculation based on maximally localized Wannier orbitals. We apply a two-particle self-consistent (TPSC) analysis by using a four-site Hubbard model, which is composed of the tight-binding model and an onsite (intramolecular) repulsive interaction, which serves as a variable parameter. We assume that the pairing mechanism is mediated by the spin fluctuation, and the sign of the superconducting gap changes between the inner and outer Fermi surfaces, which correspond to a d -wave gap function in a simplified Q1D model. With the parameters we adopt, the critical temperature for superconductivity estimated by the TPSC approach is approximately 1 K, which is consistent with experiment.
Superconducting Bolometer Array Architectures
NASA Technical Reports Server (NTRS)
Benford, Dominic; Chervenak, Jay; Irwin, Kent; Moseley, S. Harvey; Shafer, Rick; Staguhn, Johannes; Wollack, Ed; Oegerle, William (Technical Monitor)
2002-01-01
The next generation of far-infrared and submillimeter instruments require large arrays of detectors containing thousands of elements. These arrays will necessarily be multiplexed, and superconducting bolometer arrays are the most promising present prospect for these detectors. We discuss our current research into superconducting bolometer array technologies, which has recently resulted in the first multiplexed detections of submillimeter light and the first multiplexed astronomical observations. Prototype arrays containing 512 pixels are in production using the Pop-Up Detector (PUD) architecture, which can be extended easily to 1000 pixel arrays. Planar arrays of close-packed bolometers are being developed for the GBT (Green Bank Telescope) and for future space missions. For certain applications, such as a slewed far-infrared sky survey, feedhorncoupling of a large sparsely-filled array of bolometers is desirable, and is being developed using photolithographic feedhorn arrays. Individual detectors have achieved a Noise Equivalent Power (NEP) of -10(exp 17) W/square root of Hz at 300mK, but several orders of magnitude improvement are required and can be reached with existing technology. The testing of such ultralow-background detectors will prove difficult, as this requires optical loading of below IfW. Antenna-coupled bolometer designs have advantages for large format array designs at low powers due to their mode selectivity.
Superconducting linear actuator
NASA Technical Reports Server (NTRS)
Johnson, Bruce; Hockney, Richard
1993-01-01
Special actuators are needed to control the orientation of large structures in space-based precision pointing systems. Electromagnetic actuators that presently exist are too large in size and their bandwidth is too low. Hydraulic fluid actuation also presents problems for many space-based applications. Hydraulic oil can escape in space and contaminate the environment around the spacecraft. A research study was performed that selected an electrically-powered linear actuator that can be used to control the orientation of a large pointed structure. This research surveyed available products, analyzed the capabilities of conventional linear actuators, and designed a first-cut candidate superconducting linear actuator. The study first examined theoretical capabilities of electrical actuators and determined their problems with respect to the application and then determined if any presently available actuators or any modifications to available actuator designs would meet the required performance. The best actuator was then selected based on available design, modified design, or new design for this application. The last task was to proceed with a conceptual design. No commercially-available linear actuator or modification capable of meeting the specifications was found. A conventional moving-coil dc linear actuator would meet the specification, but the back-iron for this actuator would weigh approximately 12,000 lbs. A superconducting field coil, however, eliminates the need for back iron, resulting in an actuator weight of approximately 1000 lbs.
Design of the superconducting magnet for 9.4 Tesla whole-body magnetic resonance imaging
NASA Astrophysics Data System (ADS)
Li, Y.; Wang, Q.; Dai, Y.; Ni, Z.; Zhu, X.; Li, L.; Zhao, B.; Chen, S.
2017-02-01
A superconducting magnet for 9.4 Tesla whole-body magnetic resonance imaging is designed and fabricated in Institute of Electrical Engineering, Chinese Academy of Sciences. In this paper, the electromagnetic design methods of the main coils and compensating coils are presented. Sensitivity analysis is performed for all superconducting coils. The design of the superconducting shimming coils is also presented and the design of electromagnetic decoupling of the Z2 coils from the main coils is introduced. Stress and strain analysis with both averaged and detailed models is performed with finite element method. A quench simulation code with anisotropic continuum model and control volume method is developed by us and is verified by experimental study. By means of the quench simulation code, the quench protection system for the 9.4 T magnet is designed for the main coils, the compensating coils and the shimming coils. The magnet cryostat design with zero helium boiling-off technology is also introduced.
Multiple Quantum Phase Transitions in a two-dimensional superconductor
NASA Astrophysics Data System (ADS)
Bergeal, Nicolas; Biscaras, J.; Hurand, S.; Feuillet-Palma, C.; Lesueur, J.; Budhani, R. C.; Rastogi, A.; Caprara, S.; Grilli, M.
2013-03-01
We studied the magnetic field driven Quantum Phase Transition (QPT) in electrostatically gated superconducting LaTiO3/SrTiO3 interfaces. Through finite size scaling analysis, we showed that it belongs to the (2 +1)D XY model universality class. The system can be described as a disordered array of superconducting islands coupled by a two dimensional electron gas (2DEG). Depending on the 2DEG conductance tuned by the gate voltage, the QPT is single (corresponding to the long range phase coherence in the whole array) or double (one related to local phase coherence, the other one to the array). By retrieving the coherence length critical exponent ν, we showed that the QPT can be ``clean'' or ``dirty'' according to the Harris criteria, depending on whether the phase coherence length is smaller or larger than the island size. The overall behaviour is well described by a model of coupled superconducting puddles in the framework of the fermionic scenario of 2D superconducting QPT.
Modeling tunneling for the unconventional superconducting proximity effect
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zareapour, Parisa; Xu, Jianwei; Zhao, Shu Yang F.
Recently there has been reinvigorated interest in the superconducting proximity effect, driven by predictions of the emergence of Majorana fermions. To help guide this search, we have developed a phenomenological model for the tunneling spectra in anisotropic superconductor-normal metal proximity devices. We combine successful approaches used in s-wave proximity and standard d-wave tunneling to reproduce tunneling spectra in d-wave proximity devices, and clarify the origin of various features. Different variations of the pair potential are considered, resulting from the proximity-induced superconductivity. Furthermore, the effective pair potential felt by the quasiparticles is momentum-dependent in contrast to s-wave superconductors. The probabilities ofmore » reflection and transmission are calculated by solving the Bogoliubov equations. Our results are consistent with experimental observations of the unconventional proximity effect and provide important experimental parameters such as the size and length scale of the proximity induced gap, as well as the conditions needed to observe the reduced and full superconducting gaps.« less
Detecting sign-changing superconducting gap in LiFeAs using quasiparticle interference
NASA Astrophysics Data System (ADS)
Altenfeld, D.; Hirschfeld, P. J.; Mazin, I. I.; Eremin, I.
2018-02-01
Using a realistic ten-orbital tight-binding model Hamiltonian fitted to the angle-resolved photoemission spectroscopy data on LiFeAs, we analyze the temperature, frequency, and momentum dependencies of quasiparticle interference to identify gap sign changes in a qualitative way, following our original proposal [Phys. Rev. B 92, 184513 (2015), 10.1103/PhysRevB.92.184513]. We show that all features present for the simple two-band model for the sign-changing s+--wave superconducting gap employed previously are still present in the realistic tight-binding approximation and gap values observed experimentally. We discuss various superconducting gap structures proposed for LiFeAs and identify various features of these superconducting gap functions in the quasiparticle interference patterns. On the other hand, we show that it will be difficult to identify the more complicated possible sign structures of the hole pocket gaps in LiFeAs due to the smallness of the pockets and the near proximity of two of the gap energies.
Modeling tunneling for the unconventional superconducting proximity effect
Zareapour, Parisa; Xu, Jianwei; Zhao, Shu Yang F.; ...
2016-10-12
Recently there has been reinvigorated interest in the superconducting proximity effect, driven by predictions of the emergence of Majorana fermions. To help guide this search, we have developed a phenomenological model for the tunneling spectra in anisotropic superconductor-normal metal proximity devices. We combine successful approaches used in s-wave proximity and standard d-wave tunneling to reproduce tunneling spectra in d-wave proximity devices, and clarify the origin of various features. Different variations of the pair potential are considered, resulting from the proximity-induced superconductivity. Furthermore, the effective pair potential felt by the quasiparticles is momentum-dependent in contrast to s-wave superconductors. The probabilities ofmore » reflection and transmission are calculated by solving the Bogoliubov equations. Our results are consistent with experimental observations of the unconventional proximity effect and provide important experimental parameters such as the size and length scale of the proximity induced gap, as well as the conditions needed to observe the reduced and full superconducting gaps.« less
NASA Astrophysics Data System (ADS)
Goto, Yosuke; Sogabe, Ryota; Mizuguchi, Yoshikazu
2017-10-01
We report the effect of Se substitution on the crystal structure and superconductivity of BiCh2-based (Ch: S, Se) layered compounds Eu0.5Ce0.5FBiS2-xSex (x = 0-1). Crystal structure analysis showed that both lattice constants, a and c, increased with increasing x, which is different from the related La-doped system Eu0.5La0.5FBiS2-xSex. This is due to Se substitution at both in-plane and out-of-plane Ch sites in the present Ce-doped system. Zero resistivity was observed for x = 0.2-1 above 2 K. The superconducting properties of Eu0.5Ce0.5FBiS2-xSex were investigated by magnetic susceptibility measurement, and the highest superconducting transition temperature of 3.5 K was obtained for x = 0.6 with a large shielding volume fraction. The emergence of bulk superconductivity and metallic conductivity can be qualitatively described in terms of the increased in-plane chemical pressure effect. A magnetic anomaly below 8 K, probably because of the ferromagnetic order of the magnetic moment of Ce3+ ions, coexists with bulk superconductivity in the BiCh2 layer. Since the effect of Se substitution on the magnetic transition temperature is ignorable, we suggest that the coupling between the magnetic order at the (Eu,Ce)F layer and the superconductivity at the Bi(S,Se)2 layer is weak.
Levitation force of small clearance superconductor-magnet system under non-coaxial condition
NASA Astrophysics Data System (ADS)
Xu, Jimin; Jin, Yingze; Yuan, Xiaoyang; Miao, Xusheng
2017-03-01
A novel superconducting tilting-pad bearing was proposed for the advanced research of reusable liquid hydrogen turbopump in liquid rocket. The bearing is a combination of superconducting magnetic bearing and hydrodynamic fluid-film bearing. Since the viscosity of cryogenic fuel to activate superconducting state and form hydrodynamic fluid-film is very low, bearing clearance will be very small. This study focuses on the investigation of superconducting levitation force in this kind of small clearance superconductor-magnet system. Based on Bean critical state model and three-dimensional finite element method, an analysis method is presented to obtain the levitation force under such situation. Since the complicated operational conditions and structural arrangement for application in liquid rocket, center lines of bulk superconductor and magnet rotor will usually be in non-coaxial state. Superconducting levitation forces in axial direction and radial direction under non-coaxial situation are also analyzed by the presented method.
Introduction to the HL-LHC Project
NASA Astrophysics Data System (ADS)
Rossi, L.; Brüning, O.
The Large Hadron Collider (LHC) is one of largest scientific instruments ever built. It has been exploring the new energy frontier since 2010, gathering a global user community of 7,000 scientists. To extend its discovery potential, the LHC will need a major upgrade in the 2020s to increase its luminosity (rate of collisions) by a factor of five beyond its design value and the integrated luminosity by a factor of ten. As a highly complex and optimized machine, such an upgrade of the LHC must be carefully studied and requires about ten years to implement. The novel machine configuration, called High Luminosity LHC (HL-LHC), will rely on a number of key innovative technologies, representing exceptional technological challenges, such as cutting-edge 11-12 tesla superconducting magnets, very compact superconducting cavities for beam rotation with ultra-precise phase control, new technology for beam collimation and 300-meter-long high-power superconducting links with negligible energy dissipation. HL-LHC federates efforts and R&D of a large community in Europe, in the US and in Japan, which will facilitate the implementation of the construction phase as a global project.
NASA Astrophysics Data System (ADS)
Choi, Hyoung Joon; Cohen, Marvin L.; Louie, Steven G.
2003-03-01
The anisotropic Eliashberg formalism, employing results from the ab initio pseudopotential density functional calculations, is applied to study the superconducting properties of MgB 2. It is shown that the relatively high transition temperature of MgB 2 originates from strong electron-phonon coupling of the hole states in the boron σ-bonds although the coupling strength averaged over the Fermi surface is moderate, and the reduction of the isotope effect arises from the large anharmonicity of the relevant phonons. The superconducting energy gap is nodeless but its value varies strongly on different pieces of the Fermi surface. The gap values Δ( k) cluster into two groups at low temperature, a small value of ∼2 meV and a large value of ∼7 meV, resulting in two thresholds in the quasiparticle density of states and an increase in the specific heat at low temperature due to quasiparticle excitations over the small gap. All of these results are in good agreement with corresponding experiments and support the view that MgB 2 is a phonon-mediated multiple-gap superconductor.
Quarterly Progress Report: Modeling and Simulation of the Homopolar Motor Test Apparatus
2006-05-01
Quarterly Progress Report: Modeling and Simulation of the Homopolar Motor Test Apparatus 5. FUNDING NUMBERS Contract # N00014-1-0588 6. AUTHOR(S) K...superconducting homopolar motor /generator (SCHPMG) machine for ship propulsion. Electrical contact (brush/slip ring) performance is a limiting factor in SCHPMG...SUBJECT TERMS superconducting homopolar motors , inhomogenous brush wear, polarity dependence, destabilized force 15. NUMBER OF PAGES 11 16. PRICE CODE
Radiation shielding for deep space manned missions by cryogen free superconducting magnets.
NASA Astrophysics Data System (ADS)
Spillantini, Piero
In last years some activity was dedicated to the solution of the following problem: can be artificially created, around a space vehicle in a manned interplanetary travel or around a manned `space base' in deep space, a magnetic field approaching as much as possible the terrestrial one in terms of bending power on the arriving particles? Preliminary evaluations for active shielding based on superconducting magnets were made a few years ago in ESA supported studies. The present increasing interest of permanent space `bases' located in `deep' space requires that this activity continue toward the goal of protecting from Galactic Cosmic Ray (GCR) a large volume `habitat', allowing long duration permanence in space to citizens conducting there `normal' activities besides to a restricted number of astronauts. The problem had to be stated at this global scale because it must be afforded as soon as possible for preparing the needed technologies and their integration in the spacecraft designs for the future manned exploration and for inhabitation of deep space. The realization of the magnetic protection of large volume habitats by well-established nowadays materials and techniques is in principle possible, but not workable in practice for the huge required mass of the superconductor, the too low operating temperature (10K) and the corresponding required cooling power and thermal shielding. The concept of Cryogen Free Superconducting Magnets is the only one practicable. Fast progress in the production of reliable High Temperature Superconducting (HTS) or MgB2 cables and of cryocoolers suitable for space operation opens the perspective of practicable solutions. Quantitative evaluations for the protection of large volume habitats in deep space from GCRs are reported and discussed.
International Symposium on Magnetic Suspension Technology, Part 1
NASA Technical Reports Server (NTRS)
Groom, Nelson J. (Editor); Britcher, Colin P. (Editor)
1992-01-01
The goal of the symposium was to examine the state of technology of all areas of magnetic suspension and to review related recent developments in sensors and controls approaches, superconducting magnet technology, and design/implementation practices. The symposium included 17 technical sessions in which 55 papers were presented. The technical session covered the areas of bearings, sensors and controls, microgravity and vibration isolation, superconductivity, manufacturing applications, wind tunnel magnetic suspension systems, magnetically levitated trains (MAGLEV), space applications, and large gap magnetic suspension systems.
Nernst effect from fluctuating pairs in the pseudogap phase of the cuprates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levchenko, A.; Norman, M. R.; Varlamov, A. A.
2011-01-31
The observation of a large Nernst signal in cuprates above the superconducting transition temperature has attracted much attention. A potential explanation is that it originates from superconducting fluctuations. Although the Nernst signal is indeed consistent with Gaussian fluctuations for overdoped cuprates, Gaussian theory fails to describe the temperature dependence seen for underdoped cuprates. Here, we consider the vertex correction to Gaussian theory resulting from the pseudogap. This yields a Nernst signal in good agreement with the data.
Nonlinear heat transport in ferromagnetic-quantum dot-superconducting systems
NASA Astrophysics Data System (ADS)
Hwang, Sun-Yong; Sánchez, David
2018-03-01
We analyze the heat current traversing a quantum dot sandwiched between a ferromagnetic and a superconducting electrode. The heat flow generated in response to a voltage bias presents rectification as a function of the gate potential applied to the quantum dot. Remarkably, in the thermally driven case the heat shows a strong diode effect with large asymmetry ratios that can be externally tuned with magnetic fields or spin-polarized tunneling. Our results thus demonstrate the importance of hybrid systems as promising candidates for thermal applications.
Horizontal cryogenic bushing for the termination of a superconducting power-transmission line
Minati, K.F.; Morgan, G.H.; McNerney, A.J.; Schauer, F.
1982-07-29
A termination for a superconducting power transmission line is disclosed which is comprised of a standard air entrance insulated vertical bushing with an elbow, a horizontal cryogenic bushing linking the pressurized cryogenic cable environment to the ambient temperature bushing and a stress cone which terminated the cable outer shield and transforms the large radial voltage gradient in the cable dielectric into a much lower radial voltage gradient in the high density helium coolant at the cold end of the cryogenic bushing.
Termination for a superconducting power transmission line including a horizontal cryogenic bushing
Minati, Kurt F.; Morgan, Gerry H.; McNerney, Andrew J.; Schauer, Felix
1984-01-01
A termination for a superconducting power transmission line is disclosed which is comprised of a standard air entrance insulated vertical bushing with an elbow, a horizontal cryogenic bushing linking the pressurized cryogenic cable environment to the ambient temperature bushing and a stress cone which terminates the cable outer shield and transforms the large radial voltage gradient in the cable dielectric into a much lower radial voltage gradient in the high density helium coolant at the cold end of the cryogenic bushing.
Impact of nearest-neighbor repulsion on superconducting pairing in 2D extended Hubbard model
NASA Astrophysics Data System (ADS)
Jiang, Mi; Hahner, U. R.; Maier, T. A.; Schulthess, T. C.
Using dynamical cluster approximation (DCA) with an continuous-time QMC solver for the two-dimensional extended Hubbard model, we studied the impact of nearest-neighbor Coulomb repulsion V on d-wave superconducting pairing dynamics. By solving Bethe-Salpeter equation for particle-particle superconducting channel, we focused on the evolution of leading d-wave eigenvalue with V and the momentum and frequency dependence of the corresponding eigenfunction. The comparison with the evolution of both spin and charge susceptibilities versus V is presented showing the competition between spin and charge fluctuations. This research received generous support from the MARVEL NCCR and used resources of the Swiss National Supercomputing Center, as well as (INCITE) program in Oak Ridge Leadership Computing Facility.
Infrared Quenched Photoinduced Superconductivity
NASA Astrophysics Data System (ADS)
Federici, J. F.; Chew, D.; Guttierez-Solana, J.; Molina, G.; Savin, W.; Wilber, W.
1996-03-01
Persistant photoconductivity (PPC) and photoinduced superconductivity (PISC) in oxygen deficient YBa_2Cu_3O_6+x have received recent attention. It has been suggested that oxygen vacancy defects play an important role in the PISC/PPC mechanism.(J. F. Federici, D. Chew, B. Welker, W. Savin, J. Gutierrez-Solana, and T. Fink, Phys. Rev. B), December 1995 Supported by National Science Foundation In this model, defects trap photogenerated electrons so that electron-hole recombination can not occur thereby allowing photogenerated holes to contribute to the carrier density. Nominally, the photoinduced state is long-lived, persisting for days at low temperature. Experiment results will be presented demonstrating that the photoinduced superconductivity state can be quenched using infrared radiation. Implications for the validity of the PISC/PCC defect model will be discussed.
Fractionalized Fermi liquids and exotic superconductivity in the Kitaev-Kondo lattice
NASA Astrophysics Data System (ADS)
Seifert, Urban F. P.; Meng, Tobias; Vojta, Matthias
2018-02-01
Fractionalized Fermi liquids (FL*) have been introduced as non-Fermi-liquid metallic phases, characterized by coexisting electron-like charge carriers and local moments which form a fractionalized spin liquid. Here we investigate a Kondo lattice model on the honeycomb lattice with Kitaev interactions among the local moments, a concrete model hosting FL* phases based on Kitaev's Z2 spin liquid. We characterize the FL* phases via perturbation theory, and we employ a Majorana-fermion mean-field theory to map out the full phase diagram. Most remarkably we find nematic triplet superconducting phases which mask the quantum phase transition between fractionalized and conventional Fermi liquid phases. Their pairing structure is inherited from the Kitaev spin liquid; i.e., superconductivity is driven by Majorana glue.
NASA Astrophysics Data System (ADS)
Ohsaki, H.; Matsushita, N.; Koseki, T.; Tomita, M.
2014-05-01
The application of superconducting power cables to DC electric railway systems has been studied. It could leads to an effective use of regenerative brake, improved energy efficiency, effective load sharing among the substations, etc. In this study, an electric circuit model of a DC feeding system is built and numerical simulation is carried out using MATLAB-Simulink software. A modified electric circuit model with an AC power grid connection taken into account is also created to simulate the influence of the grid connection. The analyses have proved that a certain amount of energy can be conserved by introducing superconducting cables, and that electric load distribution and concentration among the substations depend on the substation output voltage distribution.
NASA Astrophysics Data System (ADS)
Li, Jun; Ji, Min; Schwarz, Tobias; Ke, Xiaoxing; van Tendeloo, Gustaaf; Yuan, Jie; Pereira, Paulo J.; Huang, Ya; Zhang, Gufei; Feng, Hai-Luke; Yuan, Ya-Hua; Hatano, Takeshi; Kleiner, Reinhold; Koelle, Dieter; Chibotaru, Liviu F.; Yamaura, Kazunari; Wang, Hua-Bing; Wu, Pei-Heng; Takayama-Muromachi, Eiji; Vanacken, Johan; Moshchalkov, Victor V.
2015-07-01
The determination of the pairing symmetry is one of the most crucial issues for the iron-based superconductors, for which various scenarios are discussed controversially. Non-magnetic impurity substitution is one of the most promising approaches to address the issue, because the pair-breaking mechanism from the non-magnetic impurities should be different for various models. Previous substitution experiments demonstrated that the non-magnetic zinc can suppress the superconductivity of various iron-based superconductors. Here we demonstrate the local destruction of superconductivity by non-magnetic zinc impurities in Ba0.5K0.5Fe2As2 by exploring phase-slip phenomena in a mesoscopic structure with 119 × 102 nm2 cross-section. The impurities suppress superconductivity in a three-dimensional `Swiss cheese'-like pattern with in-plane and out-of-plane characteristic lengths slightly below ~1.34 nm. This causes the superconducting order parameter to vary along abundant narrow channels with effective cross-section of a few square nanometres. The local destruction of superconductivity can be related to Cooper pair breaking by non-magnetic impurities.
Identifying the chiral d-wave superconductivity by Josephson φ0-states.
Liu, Jun-Feng; Xu, Yong; Wang, Jun
2017-03-07
We propose the Josephson junctions linked by a normal metal between a d + id superconductor and another d + id superconductor, a d-wave superconductor, or a s-wave superconductor for identifying the chiral d + id superconductivity. The time-reversal breaking in the chiral d-wave superconducting state is shown to result in a Josephson φ 0 -junction state where the current-phase relation is shifted by a phase φ 0 from the sinusoidal relation, other than 0 and π. The ground-state phase difference φ 0 and the critical current can be used to definitely confirm and read the information about the d + id superconductivity. A smooth evolution from conventional 0-π transitions to tunable φ 0 -states can be observed by changing the relative magnitude of two types of d-wave components in the d + id pairing. On the other hand, the Josephson junction involving the d + id superconductor is also the simplest model to realize a φ 0 - junction, which is useful in superconducting electronics and superconducting quantum computation.
Domain-wall superconductivity in superconductor-ferromagnet hybrids.
Yang, Zhaorong; Lange, Martin; Volodin, Alexander; Szymczak, Ritta; Moshchalkov, Victor V
2004-11-01
Superconductivity and magnetism are two antagonistic cooperative phenomena, and the intriguing problem of their coexistence has been studied for several decades. Recently, artificial hybrid superconductor-ferromagnet systems have been commonly used as model systems to reveal the interplay between competing superconducting and magnetic order parameters, and to verify the existence of new physical phenomena, including the predicted domain-wall superconductivity (DWS). Here we report the experimental observation of DWS in superconductor-ferromagnet hybrids using a niobium film on a BaFe(12)O(19) single crystal. We found that the critical temperature T(c) of the superconductivity nucleation in niobium increases with increasing field until it reaches the saturation field of BaFe(12)O(19). In accordance with the field-shift of the maximum value of T(c), pronounced hysteresis effects have been found in resistive transitions. We argue that the compensation of the applied field by the stray fields of the magnetic domains as well as the change in the domain structure is responsible for the appearance of the DWS and the coexistence of superconductivity and magnetism in the superconductor-ferromagnet hybrids.
Identifying the chiral d-wave superconductivity by Josephson φ0-states
Liu, Jun-Feng; Xu, Yong; Wang, Jun
2017-01-01
We propose the Josephson junctions linked by a normal metal between a d + id superconductor and another d + id superconductor, a d-wave superconductor, or a s-wave superconductor for identifying the chiral d + id superconductivity. The time-reversal breaking in the chiral d-wave superconducting state is shown to result in a Josephson φ0-junction state where the current-phase relation is shifted by a phase φ0 from the sinusoidal relation, other than 0 and π. The ground-state phase difference φ0 and the critical current can be used to definitely confirm and read the information about the d + id superconductivity. A smooth evolution from conventional 0-π transitions to tunable φ0-states can be observed by changing the relative magnitude of two types of d-wave components in the d + id pairing. On the other hand, the Josephson junction involving the d + id superconductor is also the simplest model to realize a φ0- junction, which is useful in superconducting electronics and superconducting quantum computation. PMID:28266582
Li, Jun; Ji, Min; Schwarz, Tobias; Ke, Xiaoxing; Van Tendeloo, Gustaaf; Yuan, Jie; Pereira, Paulo J.; Huang, Ya; Zhang, Gufei; Feng, Hai-Luke; Yuan, Ya-Hua; Hatano, Takeshi; Kleiner, Reinhold; Koelle, Dieter; Chibotaru, Liviu F.; Yamaura, Kazunari; Wang, Hua-Bing; Wu, Pei-Heng; Takayama-Muromachi, Eiji; Vanacken, Johan; Moshchalkov, Victor V.
2015-01-01
The determination of the pairing symmetry is one of the most crucial issues for the iron-based superconductors, for which various scenarios are discussed controversially. Non-magnetic impurity substitution is one of the most promising approaches to address the issue, because the pair-breaking mechanism from the non-magnetic impurities should be different for various models. Previous substitution experiments demonstrated that the non-magnetic zinc can suppress the superconductivity of various iron-based superconductors. Here we demonstrate the local destruction of superconductivity by non-magnetic zinc impurities in Ba0.5K0.5Fe2As2 by exploring phase-slip phenomena in a mesoscopic structure with 119 × 102 nm2 cross-section. The impurities suppress superconductivity in a three-dimensional ‘Swiss cheese'-like pattern with in-plane and out-of-plane characteristic lengths slightly below ∼1.34 nm. This causes the superconducting order parameter to vary along abundant narrow channels with effective cross-section of a few square nanometres. The local destruction of superconductivity can be related to Cooper pair breaking by non-magnetic impurities. PMID:26139568
Li, Jun; Ji, Min; Schwarz, Tobias; Ke, Xiaoxing; Van Tendeloo, Gustaaf; Yuan, Jie; Pereira, Paulo J; Huang, Ya; Zhang, Gufei; Feng, Hai-Luke; Yuan, Ya-Hua; Hatano, Takeshi; Kleiner, Reinhold; Koelle, Dieter; Chibotaru, Liviu F; Yamaura, Kazunari; Wang, Hua-Bing; Wu, Pei-Heng; Takayama-Muromachi, Eiji; Vanacken, Johan; Moshchalkov, Victor V
2015-07-03
The determination of the pairing symmetry is one of the most crucial issues for the iron-based superconductors, for which various scenarios are discussed controversially. Non-magnetic impurity substitution is one of the most promising approaches to address the issue, because the pair-breaking mechanism from the non-magnetic impurities should be different for various models. Previous substitution experiments demonstrated that the non-magnetic zinc can suppress the superconductivity of various iron-based superconductors. Here we demonstrate the local destruction of superconductivity by non-magnetic zinc impurities in Ba0.5K0.5Fe2As2 by exploring phase-slip phenomena in a mesoscopic structure with 119 × 102 nm(2) cross-section. The impurities suppress superconductivity in a three-dimensional 'Swiss cheese'-like pattern with in-plane and out-of-plane characteristic lengths slightly below ∼1.34 nm. This causes the superconducting order parameter to vary along abundant narrow channels with effective cross-section of a few square nanometres. The local destruction of superconductivity can be related to Cooper pair breaking by non-magnetic impurities.
Electron—phonon Coupling and the Superconducting Phase Diagram of the LaAlO3—SrTiO3 Interface
Boschker, Hans; Richter, Christoph; Fillis-Tsirakis, Evangelos; Schneider, Christof W.; Mannhart, Jochen
2015-01-01
The superconductor at the LaAlO3—SrTiO3 interface provides a model system for the study of two-dimensional superconductivity in the dilute carrier density limit. Here we experimentally address the pairing mechanism in this superconductor. We extract the electron—phonon spectral function from tunneling spectra and conclude, without ruling out contributions of further pairing channels, that electron—phonon mediated pairing is strong enough to account for the superconducting critical temperatures. Furthermore, we discuss the electron—phonon coupling in relation to the superconducting phase diagram. The electron—phonon spectral function is independent of the carrier density, except for a small part of the phase diagram in the underdoped region. The tunneling measurements reveal that the increase of the chemical potential with increasing carrier density levels off and is zero in the overdoped region of the phase diagram. This indicates that the additionally induced carriers do not populate the band that hosts the superconducting state and that the superconducting order parameter therefore is weakened by the presence of charge carriers in another band. PMID:26169351
Finite-element analysis of transverse compressive and thermal loads on Nb 3Sn wires with voids
Zhai, Y.; D'Hauthuille, L.; Barth, C.; ...
2016-02-29
High-field superconducting magnets play a very important role in many large-scale physics experiments, particularly particle colliders and fusion confinement devices such as Large Hadron Collider (LHC) and International Thermonuclear Experimental Reactor (ITER). The two most common superconductors used in these applications are NbTi and Nb 3Sn. Nb 3Sn wires are favored because of their significantly higher J c (critical current density) for higher field applications. The main disadvantage of Nb 3Sn is that the superconducting performance of the wire is highly strain sensitive and it is very brittle. This strain sensitivity is strongly influenced by two factors: plasticity and crackedmore » filaments. Cracks are induced by large stress concentrators that can be traced to the presence of voids in the wire. We develop detailed 2-D and 3-D finite-element models containing wire filaments and different possible distributions of voids in a bronze-route Nb 3Sn wire. We apply compressive transverse loads for various cases of void distributions to simulate the stress and strain response of a Nb 3Sn wire under the Lorentz force. Furthermore, this paper improves our understanding of the effect voids have on the Nb 3Sn wire's mechanical properties, and in so, the connection between the distribution of voids and performance degradation such as the correlation between irreversible strain limit and the void-induced local stress concentrations.« less
NASA Astrophysics Data System (ADS)
Avci, Sevda
The distinguishing features of high-temperature superconducting materials are the dynamics of vortex matter in the mixed state which are greatly affected by the high anisotropy and the Josephson coupling between layers. Experiments have focused on investigating melting and dynamic phases of vortex matter with random pinning. However, the advancements in sample preparation techniques have made it possible to investigate the vortex matter with periodic pinnings, since it can serve as a model system to study periodic elastic media such as electron crystals driven on substrates with arrays of defects. It also offers the possibility to increase the critical current of a superconductor through a matching effect which represents itself as peaks (dips) in the field dependences of the critical current (magnetoresisance). This effect is due to the enhanced pinning strength at matching fields where the density of the flux quanta is equal to or multiple times that of the pins. This dissertation reports investigation on the dynamics of vortex matter with periodic pinning array by utilizing BSCCO-2212 crystalline nanoribbons containing periodic arrays of nanoscale holes. Systematic transport measurements reveal the existence of possible intermediate phases of a soft solid and/or a mixture of solid and liquid during melting for the melting transition from solid to a pure liquid. The results of this research demonstrate that the matching effect can be an effective tool in revealing the nature of various vortex phases during melting transition. In addition, anomalous resistive peaks below Tc and the effect of magnetic field orientation on superconductivity of BSCCO-2212 nanoribbons with array of nanoscale holes are also investigated. Angle-dependent magnetoresistances are scaled as H=Hthetacostheta. Therefore, only the perpendicular component of the magnetic field affects the superconductivity. Moreover, layers in BSCCO nanoribbons are lying in the a-b plane parallel to each other. Moreover, at large currents and fields, the resistance shows a non-monotonic dependence on temperature, even showing values that are higher than the normal state resistance for certain ranges of parameters. Observed behavior is attributed to the brick-wall morphology of the nanoribbons leading to a competition between normal and superconductive tunneling that is known to take place in granular superconductive systems.
Optical probes of symmetry breaking in magnetic and superconducting BaFe2(As1-xPx)2
NASA Astrophysics Data System (ADS)
Orenstein, Joseph
The discovery of iron pnictide superconductors has opened promising new directions in the effort to fully understand the phenomenon of high-Tc, with a focus on the connections between superconductivity, magnetism, and electronic nematicity. The BaFe2(As1-xPx)2 (P:Ba122) system in particular has received attention because isovalent substitution of As for P generates less disorder than doping on the Fe site. The phase diagram of P:Ba122 is characterized by a line of simultaneous antiferromagnetic (AF) and tetragonal-to-orthorhombic transitions, Ts (x) , that penetrates the superconducting dome at x =0.28, just below optimal doping (xopt = 0.30). In this work, we use spatially-resolved optical polarimetry and photomodulated reflectance to detect linear birefringence and therefore breaking of 4-fold rotational (C4) symmetry. In underdoped (x<0.28) samples, birefringence appears at T>Tsand grows continuously with decreasing T . The birefringence is unidirectional in a large (300 μm x300 μm) field of view, suggesting that C4 breaking in this range of T is caused by residual strain that couples to a diverging nematic susceptibility. Birefringence maps just below Ts (x) show the appearance of domains, indicating the onset of spontaneous symmetry breaking to an AF ground state. Surprisingly, in samples with x>0.28, in which the low T phase is superconducting/ tetragonal rather than AF/orthorhombic, C4 breaking is observed as well, with an abrupt onset and domain formation at 55 K. We tentatively associate these features with a transition to an AF phase induced by residual strain, as previously proposed [H.-H. Kuo et al. Phys. Rev. B86, 134507 (2012)] to account for structure in resistivity vs. T. Time-resolved photomodulation allow us to follow the amplitude of the AF order with time following pulsed photoexcitation. Below Tc the AF order at first weakens , but then strengthens in response to the photoinduced weakening of superconductivity. This complex time evolution is accounted for quantitatively by a model based on the coexistence and competition of AF and superconducting order. We gratefully acknowledge support by the U.S. Department of Energy, Office of Science, Materials Sciences and Engineering Division, and the Gordon and Betty Moore Foundation's EPiQS Initiative through Grant GBMF4537.
Deformation mechanisms, defects, heat treatment, and thermal conductivity in large grain niobium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bieler, Thomas R., E-mail: bieler@egr.msu.edu; Kang, Di, E-mail: kangdi@msu.edu; Baars, Derek C., E-mail: baarsder@gmail.com
2015-12-04
The physical and mechanical metallurgy underlying fabrication of large grain cavities for superconducting radio frequency accelerators is summarized, based on research of 1) grain orientations in ingots, 2) a metallurgical assessment of processing a large grain single cell cavity and a tube, 3) assessment of slip behavior of single crystal tensile samples extracted from a high purity ingot slice before and after annealing at 800 °C / 2 h, 4) development of crystal plasticity models based upon the single crystal experiments, and 5) assessment of how thermal conductivity is affected by strain, heat treatment, and exposure to hydrogen. Because of themore » large grains, the plastic anisotropy of deformation is exaggerated, and heterogeneous strains and localized defects are present to a much greater degree than expected in polycrystalline material, making it highly desirable to computationally anticipate potential forming problems before manufacturing cavities.« less