DOE Office of Scientific and Technical Information (OSTI.GOV)
Lei, Yinkai; Cheng, Tian -Le; Wen, You -Hai
Microstructure evolution plays an important role in the performance degradation of SOFC electrodes. In this work, we propose a much improved phase field model to simulate the microstructure evolution in the electrodes of solid oxide fuel cell. We demonstrate that the tunability of the interfacial energy in this model has been significantly enhanced. Parameters are set to fit for the interfacial energies of a typical Ni-YSZ anode, an LSM-YSZ cathode and an artificial reference electrode, respectively. The contact angles at various triple junctions and the microstructure evolutions in two dimensions are calibrated to verify the model. As a demonstration ofmore » the capabilities of the model, three dimensional microstructure evolutions are simulated applying the model to the three different electrodes. The time evolutions of grain size and triple phase boundary density are analyzed. In addition, a recently proposed bound charge successive approximation algorithm is employed to calculate the effective conductivity of the electrodes during microstructure evolution. Furthermore, the effective conductivity of all electrodes are found to decrease during the microstructure evolution, which is attributed to the increased tortuosity and the loss of percolated volume fraction of the electrode phase.« less
Lei, Yinkai; Cheng, Tian -Le; Wen, You -Hai
2017-02-13
Microstructure evolution plays an important role in the performance degradation of SOFC electrodes. In this work, we propose a much improved phase field model to simulate the microstructure evolution in the electrodes of solid oxide fuel cell. We demonstrate that the tunability of the interfacial energy in this model has been significantly enhanced. Parameters are set to fit for the interfacial energies of a typical Ni-YSZ anode, an LSM-YSZ cathode and an artificial reference electrode, respectively. The contact angles at various triple junctions and the microstructure evolutions in two dimensions are calibrated to verify the model. As a demonstration ofmore » the capabilities of the model, three dimensional microstructure evolutions are simulated applying the model to the three different electrodes. The time evolutions of grain size and triple phase boundary density are analyzed. In addition, a recently proposed bound charge successive approximation algorithm is employed to calculate the effective conductivity of the electrodes during microstructure evolution. Furthermore, the effective conductivity of all electrodes are found to decrease during the microstructure evolution, which is attributed to the increased tortuosity and the loss of percolated volume fraction of the electrode phase.« less
The co-evolution of microstructure features in self-ion irradiated HT9 at very high damage levels
NASA Astrophysics Data System (ADS)
Getto, E.; Vancoevering, G.; Was, G. S.
2017-02-01
Understanding the void swelling and phase evolution of reactor structural materials at very high damage levels is essential to maintaining safety and longevity of components in Gen IV fast reactors. A combination of ion irradiation and modeling was utilized to understand the microstructure evolution of ferritic-martensitic alloy HT9 at high dpa. Self-ion irradiation experiments were performed on alloy HT9 to determine the co-evolution of voids, dislocations and precipitates up to 650 dpa at 460 °C. Modeling of microstructure evolution was conducted using the modified Radiation Induced Microstructure Evolution (RIME) model, which utilizes a mean field rate theory approach with grouped cluster dynamics. Irradiations were performed with 5 MeV raster-scanned Fe2+ ions on samples pre-implanted with 10 atom parts per million He. The swelling, dislocation and precipitate evolution at very high dpa was determined using Analytical Electron Microscopy in Scanning Transmission Electron Microscopy (STEM) mode. Experimental results were then interpreted using the RIME model. A microstructure consisting only of dislocations and voids is insufficient to account for the swelling evolution observed experimentally at high damage levels in a complicated microstructure such as irradiated alloy HT9. G phase was found to have a minimal effect on either void or dislocation evolution. M2X played two roles; a variable biased sink for defects, and as a vehicle for removal of carbon from solution, thus promoting void growth. When accounting for all microstructure interactions, swelling at high damage levels is a dynamic process that continues to respond to other changes in the microstructure as long as they occur.
Numerical Study of Microstructural Evolution During Homogenization of Al-Si-Mg-Fe-Mn Alloys
NASA Astrophysics Data System (ADS)
Priya, Pikee; Johnson, David R.; Krane, Matthew J. M.
2016-09-01
Microstructural evolution during homogenization of Al-Si-Mg-Fe-Mn alloys occurs in two stages at different length scales: while holding at the homogenization temperature (diffusion on the scale of the secondary dendrite arm spacing (SDAS) in micrometers) and during quenching to room temperature (dispersoid precipitation at the nanometer to submicron scale). Here a numerical study estimates microstructural changes during both stages. A diffusion-based model developed to simulate evolution at the SDAS length scale predicts homogenization times and microstructures matching experiments. That model is coupled with a Kampmann Wagner Neumann-based precipitate nucleation and growth model to study the effect of temperature, composition, as-cast microstructure, and cooling rates during posthomogenization quenching on microstructural evolution. A homogenization schedule of 853 K (580 °C) for 8 hours, followed by cooling at 250 K/h, is suggested to optimize microstructures for easier extrusion, consisting of minimal α-Al(FeMn)Si, no β-AlFeSi, and Mg2Si dispersoids <1 μm size.
Modeling of Microstructure Evolution During Alloy Solidification
NASA Astrophysics Data System (ADS)
Zhu, Mingfang; Pan, Shiyan; Sun, Dongke
In recent years, considerable advances have been achieved in the numerical modeling of microstructure evolution during solidification. This paper presents the models based on the cellular automaton (CA) technique and lattice Boltzmann method (LBM), which can reproduce a wide variety of solidification microstructure features observed experimentally with an acceptable computational efficiency. The capabilities of the models are addressed by presenting representative examples encompassing a broad variety of issues, such as the evolution of dendritic structure and microsegregation in two and three dimensions, dendritic growth in the presence of convection, divorced eutectic solidification of spheroidal graphite irons, and gas porosity formation. The simulations offer insights into the underlying physics of microstructure formation during alloy solidification.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yulan; Hu, Shenyang Y.; Sun, Xin
2011-06-15
Microstructure evolution kinetics in irradiated materials has strongly spatial correlation. For example, void and second phases prefer to nucleate and grow at pre-existing defects such as dislocations, grain boundaries, and cracks. Inhomogeneous microstructure evolution results in inhomogeneity of microstructure and thermo-mechanical properties. Therefore, the simulation capability for predicting three dimensional (3-D) microstructure evolution kinetics and its subsequent impact on material properties and performance is crucial for scientific design of advanced nuclear materials and optimal operation conditions in order to reduce uncertainty in operational and safety margins. Very recently the meso-scale phase-field (PF) method has been used to predict gas bubblemore » evolution, void swelling, void lattice formation and void migration in irradiated materials,. Although most results of phase-field simulations are qualitative due to the lake of accurate thermodynamic and kinetic properties of defects, possible missing of important kinetic properties and processes, and the capability of current codes and computers for large time and length scale modeling, the simulations demonstrate that PF method is a promising simulation tool for predicting 3-D heterogeneous microstructure and property evolution, and providing microstructure evolution kinetics for higher scale level simulations of microstructure and property evolution such as mean field methods. This report consists of two parts. In part I, we will present a new phase-field model for predicting interstitial loop growth kinetics in irradiated materials. The effect of defect (vacancy/interstitial) generation, diffusion and recombination, sink strength, long-range elastic interaction, inhomogeneous and anisotropic mobility on microstructure evolution kinetics is taken into account in the model. The model is used to study the effect of elastic interaction on interstitial loop growth kinetics, the interstitial flux, and sink strength of interstitial loop for interstitials. In part II, we present a generic phase field model and discuss the thermodynamic and kinetic properties in phase-field models including the reaction kinetics of radiation defects and local free energy of irradiated materials. In particular, a two-sublattice thermodynamic model is suggested to describe the local free energy of alloys with irradiated defects. Fe-Cr alloy is taken as an example to explain the required thermodynamic and kinetic properties for quantitative phase-field modeling. Finally the great challenges in phase-field modeling will be discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wirth, Brian; Morgan, Dane; Kaoumi, Djamel
2013-12-01
The in-service degradation of reactor core materials is related to underlying changes in the irradiated microstructure. During reactor operation, structural components and cladding experience displacement of atoms by collisions with neutrons at temperatures at which the radiation-induced defects are mobile, leading to microstructure evolution under irradiation that can degrade material properties. At the doses and temperatures relevant to fast reactor operation, the microstructure evolves by dislocation loop formation and growth, microchemistry changes due to radiation-induced segregation, radiation-induced precipitation, destabilization of the existing precipitate structure, and in some cases, void formation and growth. These processes do not occur independently; rather, theirmore » evolution is highly interlinked. Radiationinduced segregation of Cr and existing chromium carbide coverage in irradiated alloy T91 track each other closely. The radiation-induced precipitation of Ni-Si precipitates and RIS of Ni and Si in alloys T91 and HCM12A are likely related. Neither the evolution of these processes nor their coupling is understood under the conditions required for materials performance in fast reactors (temperature range 300-600°C and doses beyond 200 dpa). Further, predictive modeling is not yet possible as models for microstructure evolution must be developed along with experiments to characterize these key processes and provide tools for extrapolation. To extend the range of operation of nuclear fuel cladding and structural materials in advanced nuclear energy and transmutation systems to that required for the fast reactor, the irradiation-induced evolution of the microstructure, microchemistry, and the associated mechanical properties at relevant temperatures and doses must be understood. Predictive modeling relies on an understanding of the physical processes and also on the development of microstructure and microchemical models to describe their evolution under irradiation. This project will focus on modeling microstructural and microchemical evolution of irradiated alloys by performing detailed modeling of such microstructure evolution processes coupled with well-designed in situ experiments that can provide validation and benchmarking to the computer codes. The broad scientific and technical objectives of this proposal are to evaluate the microstructure and microchemical evolution in advanced ferritic/martensitic and oxide dispersion strengthened (ODS) alloys for cladding and duct reactor materials under long-term and elevated temperature irradiation, leading to improved ability to model structural materials performance and lifetime. Specifically, we propose four research thrusts, namely Thrust 1: Identify the formation mechanism and evolution for dislocation loops with Burgers vector of a<100> and determine whether the defect microstructure (predominately dislocation loop/dislocation density) saturates at high dose. Thrust 2: Identify whether a threshold irradiation temperature or dose exists for the nucleation of growing voids that mark the beginning of irradiation-induced swelling, and begin to probe the limits of thermal stability of the tempered Martensitic structure under irradiation. Thrust 3: Evaluate the stability of nanometer sized Y- Ti-O based oxide dispersion strengthened (ODS) particles at high fluence/temperature. Thrust 4: Evaluate the extent to which precipitates form and/or dissolve as a function of irradiation temperature and dose, and how these changes are driven by radiation induced segregation and microchemical evolutions and determined by the initial microstructure.« less
Crystal plasticity assisted prediction on the yield locus evolution and forming limit curves
NASA Astrophysics Data System (ADS)
Lian, Junhe; Liu, Wenqi; Shen, Fuhui; Münstermann, Sebastian
2017-10-01
The aim of this study is to predict the plastic anisotropy evolution and its associated forming limit curves of bcc steels purely based on their microstructural features by establishing an integrated multiscale modelling approach. Crystal plasticity models are employed to describe the micro deformation mechanism and correlate the microstructure with mechanical behaviour on micro and mesoscale. Virtual laboratory is performed considering the statistical information of the microstructure, which serves as the input for the phenomenological plasticity model on the macroscale. For both scales, the microstructure evolution induced evolving features, such as the anisotropic hardening, r-value and yield locus evolution are seamlessly integrated. The predicted plasticity behaviour by the numerical simulations are compared with experiments. These evolutionary features of the material deformation behaviour are eventually considered for the prediction of formability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tomar, Vikas
2017-03-06
DoE-NETL partnered with Purdue University to predict the creep and associated microstructure evolution of tungsten-based refractory alloys. Researchers use grain boundary (GB) diagrams, a new concept, to establish time-dependent creep resistance and associated microstructure evolution of grain boundaries/intergranular films GB/IGF controlled creep as a function of load, environment, and temperature. The goal was to conduct a systematic study that includes the development of a theoretical framework, multiscale modeling, and experimental validation using W-based body-centered-cubic alloys, doped/alloyed with one or two of the following elements: nickel, palladium, cobalt, iron, and copper—typical refractory alloys. Prior work has already established and validated amore » basic theory for W-based binary and ternary alloys; the study conducted under this project extended this proven work. Based on interface diagrams phase field models were developed to predict long term microstructural evolution. In order to validate the models nanoindentation creep data was used to elucidate the role played by the interface properties in predicting long term creep strength and microstructure evolution.« less
NASA Technical Reports Server (NTRS)
Gayda, J.; Srolovitz, D. J.
1989-01-01
This paper presents a specialized microstructural lattice model, MCFET (Monte Carlo finite element technique), which simulates microstructural evolution in materials in which strain energy has an important role in determining morphology. The model is capable of accounting for externally applied stress, surface tension, misfit, elastic inhomogeneity, elastic anisotropy, and arbitrary temperatures. The MCFET analysis was found to compare well with the results of analytical calculations of the equilibrium morphologies of isolated particles in an infinite matrix.
Microstructure Modeling of Third Generation Disk Alloys
NASA Technical Reports Server (NTRS)
Jou, Herng-Jeng
2010-01-01
The objective of this program was to model, validate, and predict the precipitation microstructure evolution, using PrecipiCalc (QuesTek Innovations LLC) software, for 3rd generation Ni-based gas turbine disc superalloys during processing and service, with a set of logical and consistent experiments and characterizations. Furthermore, within this program, the originally research-oriented microstructure simulation tool was to be further improved and implemented to be a useful and user-friendly engineering tool. In this report, the key accomplishments achieved during the third year (2009) of the program are summarized. The activities of this year included: Further development of multistep precipitation simulation framework for gamma prime microstructure evolution during heat treatment; Calibration and validation of gamma prime microstructure modeling with supersolvus heat treated LSHR; Modeling of the microstructure evolution of the minor phases, particularly carbides, during isothermal aging, representing the long term microstructure stability during thermal exposure; and the implementation of software tools. During the research and development efforts to extend the precipitation microstructure modeling and prediction capability in this 3-year program, we identified a hurdle, related to slow gamma prime coarsening rate, with no satisfactory scientific explanation currently available. It is desirable to raise this issue to the Ni-based superalloys research community, with hope that in future there will be a mechanistic understanding and physics-based treatment to overcome the hurdle. In the mean time, an empirical correction factor was developed in this modeling effort to capture the experimental observations.
Multi-Scale Modeling of Microstructural Evolution in Structural Metallic Systems
NASA Astrophysics Data System (ADS)
Zhao, Lei
Metallic alloys are a widely used class of structural materials, and the mechanical properties of these alloys are strongly dependent on the microstructure. Therefore, the scientific design of metallic materials with superior mechanical properties requires the understanding of the microstructural evolution. Computational models and simulations offer a number of advantages over experimental techniques in the prediction of microstructural evolution, because they can allow studies of microstructural evolution in situ, i.e., while the material is mechanically loaded (meso-scale simulations), and bring atomic-level insights into the microstructure (atomistic simulations). In this thesis, we applied a multi-scale modeling approach to study the microstructural evolution in several metallic systems, including polycrystalline materials and metallic glasses (MGs). Specifically, for polycrystalline materials, we developed a coupled finite element model that combines phase field method and crystal plasticity theory to study the plasticity effect on grain boundary (GB) migration. Our model is not only coupled strongly (i.e., we include plastic driving force on GB migration directly) and concurrently (i.e., coupled equations are solved simultaneously), but also it qualitatively captures such phenomena as the dislocation absorption by mobile GBs. The developed model provides a tool to study the microstructural evolution in plastically deformed metals and alloys. For MGs, we used molecular dynamics (MD) simulations to investigate the nucleation kinetics in the primary crystallization in Al-Sm system. We calculated the time-temperature-transformation curves for low Sm concentrations, from which the strong suppressing effect of Sm solute on Al nucleation and its influencing mechanism are revealed. Also, through the comparative analysis of both Al attachment and Al diffusion in MGs, it has been found that the nucleation kinetics is controlled by interfacial attachment of Al, and that the attachment behavior takes place collectively and heterogeneously, similarly to Al diffusion in MGs. Finally, we applied the MD technique to study the origin of five-fold twinning nucleation during the solidification of Al base alloys. We studied several model alloys and reported the observed nucleation pathway. We found that the key factors controlling the five-fold twinning are the twin boundary energy and the formation of pentagon structures, and the twin boundary energy plays the dominant role in the five-fold twinning in the model alloys studied.
Modelling of deformation and recrystallisation microstructures in rocks and ice
NASA Astrophysics Data System (ADS)
Bons, Paul D.; Evans, Lynn A.; Gomez-Rivas, Enrique; Griera, Albert; Jessell, Mark W.; Lebensohn, Ricardo; Llorens, Maria-Gema; Peternell, Mark; Piazolo, Sandra; Weikusat, Ilka; Wilson, Chris J. L.
2015-04-01
Microstructures both record the deformation history of a rock and strongly control its mechanical properties. As microstructures in natural rocks only show the final "post-mortem" state, geologists have attempted to simulate the development of microstructures with experiments and later numerical models. Especially in-situ experiments have given enormous insight, as time-lapse movies could reveal the full history of a microstructure. Numerical modelling is an alternative approach to simulate and follow the change in microstructure with time, unconstrained by experimental limitations. Numerical models have been applied to a range of microstructural processes, such as grain growth, dynamic recrystallisation, porphyroblast rotation, vein growth, formation of mylonitic fabrics, etc. The numerical platform "Elle" (www.elle.ws) in particular has brought progress in the simulation of microstructural development as it is specifically designed to include the competition between simultaneously operating processes. Three developments significantly improve our capability to simulate microstructural evolution: (1) model input from the mapping of crystallographic orientation with EBSD or the automatic fabric analyser, (2) measurement of grain size and crystallographic preferred orientation evolution using neutron diffraction experiments and (3) the implementation of the full-field Fast Fourier Transform (FFT) solver for modelling anisotropic crystal-plastic deformation. The latter enables the detailed modelling of stress and strain as a function of local crystallographic orientation, which has a strong effect on strain localisation such as, for example, the formation of shear bands. These models can now be compared with the temporal evolution of crystallographic orientation distributions in in-situ experiments. In the last decade, the possibility to combine experiments with numerical simulations has allowed not only verification and refinement of the numerical simulation technique but also increased significantly the ability to predict and/or interpret natural microstructures. This contribution will present the most recent developments in in-situ and numerical modelling of deformation and recrystallisation microstructures in rocks and in ice.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Lizhen; Stoller, Roger E.; Field, Kevin G.
Extension of light water reactors' useful life will expose austenitic internal core components to irradiation damage levels beyond 100 displacements per atom (dpa), which will lead to profound microstructural evolution and consequent degradation of macroscopic properties. Microstructural evolution, including Frank loops, cavities, precipitates, and segregation at boundaries and the resultant radiation hardening in type 304 and 316 stainless steel (SS) variants, were studied in this work via experimental characterization and multiple simulation methods. Experimental data for up to 40 heats of type 304SS and 316SS variants irradiated in different reactors to 0.6–120 dpa at 275–375°C were either generated from thismore » work or collected from literature reports. These experimental data were then combined with models of Frank loop and cavity evolution, computational thermodynamics and precipitation, and ab initio and rate theory integrated radiation-induced segregation models to provide insights into microstructural evolution and degradation at higher radiation doses.« less
Tan, Lizhen; Stoller, Roger E.; Field, Kevin G.; ...
2015-12-11
Extension of light water reactors' useful life will expose austenitic internal core components to irradiation damage levels beyond 100 displacements per atom (dpa), which will lead to profound microstructural evolution and consequent degradation of macroscopic properties. Microstructural evolution, including Frank loops, cavities, precipitates, and segregation at boundaries and the resultant radiation hardening in type 304 and 316 stainless steel (SS) variants, were studied in this work via experimental characterization and multiple simulation methods. Experimental data for up to 40 heats of type 304SS and 316SS variants irradiated in different reactors to 0.6–120 dpa at 275–375°C were either generated from thismore » work or collected from literature reports. These experimental data were then combined with models of Frank loop and cavity evolution, computational thermodynamics and precipitation, and ab initio and rate theory integrated radiation-induced segregation models to provide insights into microstructural evolution and degradation at higher radiation doses.« less
Modeling of the flow behavior of SAE 8620H combing microstructure evolution in hot forming
NASA Astrophysics Data System (ADS)
Fu, Xiaobin; Wang, Baoyu; Tang, Xuefeng
2017-10-01
With the development of net-shape forming technology, hot forming process is widely applied to manufacturing gear parts, during which, materials suffer severe plastic distortion and microstructure changes continually. In this paper, to understand and model the flow behavior and microstructure evolution, SAE 8620H, a widely used gear steel, is selected as the object and the flow behavior and microstructure evolution are observed by an isothermal hot compression tests at 1273-1373 K with a strain rate of 0.1-10 s-1. Depending on the results of the compression test, a set of internal-state-variable based unified constitutive equations is put forward to describe the flow behavior and microstructure evaluation of SAE 8620H. Moreover, the evaluation of the dislocation density and the fraction of dynamic recrystallization based on the theory of thermal activation is modeled and reincorporated into the constitutive law. The material parameters in the constitutive model are calculated based on the measured flow stress and dynamic recrystallization fraction. The predicted flow stress under different deformation conditions has a good agreement with the measured results.
NASA Astrophysics Data System (ADS)
Adam, Khaled; Zöllner, Dana; Field, David P.
2018-04-01
Modeling the microstructural evolution during recrystallization is a powerful tool for the profound understanding of alloy behavior and for use in optimizing engineering properties through annealing. In particular, the mechanical properties of metallic alloys are highly dependent upon evolved microstructure and texture from the softening process. In the present work, a Monte Carlo (MC) Potts model was used to model the primary recrystallization and grain growth in cold rolled single-phase Al alloy. The microstructural representation of two kinds of dislocation densities, statistically stored dislocations and geometrically necessary dislocations were quantified based on the ViscoPlastic Fast Fourier transform method. This representation was then introduced into the MC Potts model to identify the favorable sites for nucleation where orientation gradients and entanglements of dislocations are high. Additionally, in situ observations of non-isothermal microstructure evolution for single-phase aluminum alloy 1100 were made to validate the simulation. The influence of the texture inhomogeneity is analyzed from a theoretical point of view using an orientation distribution function for deformed and evolved texture.
NASA Astrophysics Data System (ADS)
Huang, Shiquan; Yi, Youping; Li, Pengchuan
2011-05-01
In recent years, multi-scale simulation technique of metal forming is gaining significant attention for prediction of the whole deformation process and microstructure evolution of product. The advances of numerical simulation at macro-scale level on metal forming are remarkable and the commercial FEM software, such as Deform2D/3D, has found a wide application in the fields of metal forming. However, the simulation method of multi-scale has little application due to the non-linearity of microstructure evolution during forming and the difficulty of modeling at the micro-scale level. This work deals with the modeling of microstructure evolution and a new method of multi-scale simulation in forging process. The aviation material 7050 aluminum alloy has been used as example for modeling of microstructure evolution. The corresponding thermal simulated experiment has been performed on Gleeble 1500 machine. The tested specimens have been analyzed for modeling of dislocation density, nucleation and growth of recrystallization(DRX). The source program using cellular automaton (CA) method has been developed to simulate the grain nucleation and growth, in which the change of grain topology structure caused by the metal deformation was considered. The physical fields at macro-scale level such as temperature field, stress and strain fields, which can be obtained by commercial software Deform 3D, are coupled with the deformed storage energy at micro-scale level by dislocation model to realize the multi-scale simulation. This method was explained by forging process simulation of the aircraft wheel hub forging. Coupled the results of Deform 3D with CA results, the forging deformation progress and the microstructure evolution at any point of forging could be simulated. For verifying the efficiency of simulation, experiments of aircraft wheel hub forging have been done in the laboratory and the comparison of simulation and experiment result has been discussed in details.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yulan; Hu, Shenyang; Sun, Xin
Here, complex microstructure changes occur in nuclear fuel and structural materials due to the extreme environments of intense irradiation and high temperature. This paper evaluates the role of the phase field method in predicting the microstructure evolution of irradiated nuclear materials and the impact on their mechanical, thermal, and magnetic properties. The paper starts with an overview of the important physical mechanisms of defect evolution and the significant gaps in simulating microstructure evolution in irradiated nuclear materials. Then, the phase field method is introduced as a powerful and predictive tool and its applications to microstructure and property evolution in irradiatedmore » nuclear materials are reviewed. The review shows that (1) Phase field models can correctly describe important phenomena such as spatial-dependent generation, migration, and recombination of defects, radiation-induced dissolution, the Soret effect, strong interfacial energy anisotropy, and elastic interaction; (2) The phase field method can qualitatively and quantitatively simulate two-dimensional and three-dimensional microstructure evolution, including radiation-induced segregation, second phase nucleation, void migration, void and gas bubble superlattice formation, interstitial loop evolution, hydrate formation, and grain growth, and (3) The Phase field method correctly predicts the relationships between microstructures and properties. The final section is dedicated to a discussion of the strengths and limitations of the phase field method, as applied to irradiation effects in nuclear materials.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yulan; Hu, Shenyang; Sun, Xin
Complex microstructure changes occur in nuclear fuel and structural materials due to the extreme environments of intense irradiation and high temperature. This paper evaluates the role of the phase field (PF) method in predicting the microstructure evolution of irradiated nuclear materials and the impact on their mechanical, thermal, and magnetic properties. The paper starts with an overview of the important physical mechanisms of defect evolution and the significant gaps in simulating microstructure evolution in irradiated nuclear materials. Then, the PF method is introduced as a powerful and predictive tool and its applications to microstructure and property evolution in irradiated nuclearmore » materials are reviewed. The review shows that 1) FP models can correctly describe important phenomena such as spatial dependent generation, migration, and recombination of defects, radiation-induced dissolution, the Soret effect, strong interfacial energy anisotropy, and elastic interaction; 2) The PF method can qualitatively and quantitatively simulate 2-D and 3-D microstructure evolution, including radiation-induced segregation, second phase nucleation, void migration, void and gas bubble superlattice formation, interstitial loop evolution, hydrate formation, and grain growth, and 3) The FP method correctly predicts the relationships between microstructures and properties. The final section is dedicated to a discussion of the strengths and limitations of the PF method, as applied to irradiation effects in nuclear materials.« less
Li, Yulan; Hu, Shenyang; Sun, Xin; ...
2017-04-14
Here, complex microstructure changes occur in nuclear fuel and structural materials due to the extreme environments of intense irradiation and high temperature. This paper evaluates the role of the phase field method in predicting the microstructure evolution of irradiated nuclear materials and the impact on their mechanical, thermal, and magnetic properties. The paper starts with an overview of the important physical mechanisms of defect evolution and the significant gaps in simulating microstructure evolution in irradiated nuclear materials. Then, the phase field method is introduced as a powerful and predictive tool and its applications to microstructure and property evolution in irradiatedmore » nuclear materials are reviewed. The review shows that (1) Phase field models can correctly describe important phenomena such as spatial-dependent generation, migration, and recombination of defects, radiation-induced dissolution, the Soret effect, strong interfacial energy anisotropy, and elastic interaction; (2) The phase field method can qualitatively and quantitatively simulate two-dimensional and three-dimensional microstructure evolution, including radiation-induced segregation, second phase nucleation, void migration, void and gas bubble superlattice formation, interstitial loop evolution, hydrate formation, and grain growth, and (3) The Phase field method correctly predicts the relationships between microstructures and properties. The final section is dedicated to a discussion of the strengths and limitations of the phase field method, as applied to irradiation effects in nuclear materials.« less
Greiner, Christian; Liu, Zhilong; Strassberger, Luis; Gumbsch, Peter
2016-06-22
Tailoring the surface properties of a material for low friction and little wear has long been a goal of tribological research. Since the microstructure of the material under the contact strongly influences tribological performance, the ability to control this microstructure is thereby of key importance. However, there is a significant lack of knowledge about the elementary mechanisms of microstructure evolution under tribological load. To cover different stages of this microstructure evolution, high-purity copper was investigated after increasing numbers of sliding cycles of a sapphire sphere in reciprocating motion. Scanning electron and focused ion beam (FIB) microscopy were applied to monitor the microstructure changes. A thin tribologically deformed layer which grew from tens of nanometers to several micrometers with increasing number of cycles was observed in cross-sections. By analyzing dislocation structures and local orientation changes in the cross-sectional areas, dislocation activity, the occurrence of a distinct dislocation trace line, and the emergence of new subgrain boundaries could be observed at different depths. These results strongly suggest that dislocation self-organization is a key elementary mechanism for the microstructure evolution under a tribological load. The distinct elementary processes at different stages of sliding identified here will be essential for the future modeling of the microstructure evolution in tribological contacts.
Wirth, Brian D.; Hu, Xunxiang; Kohnert, Aaron; ...
2015-03-02
Exposure of metallic structural materials to irradiation environments results in significant microstructural evolution, property changes, and performance degradation, which limits the extended operation of current generation light water reactors and restricts the design of advanced fission and fusion reactors. Further, it is well recognized that these irradiation effects are a classic example of inherently multiscale phenomena and that the mix of radiation-induced features formed and the corresponding property degradation depend on a wide range of material and irradiation variables. This inherently multiscale evolution emphasizes the importance of closely integrating models with high-resolution experimental characterization of the evolving radiation-damaged microstructure. Lastly,more » this article provides a review of recent models of the defect microstructure evolution in irradiated body-centered cubic materials, which provide good agreement with experimental measurements, and presents some outstanding challenges, which will require coordinated high-resolution characterization and modeling to resolve.« less
Three-dimensional microstructure simulation of Ni-based superalloy investment castings
NASA Astrophysics Data System (ADS)
Pan, Dong; Xu, Qingyan; Liu, Baicheng
2011-05-01
An integrated macro and micro multi-scale model for the three-dimensional microstructure simulation of Ni-based superalloy investment castings was developed, and applied to industrial castings to investigate grain evolution during solidification. A ray tracing method was used to deal with the complex heat radiation transfer. The microstructure evolution was simulated based on the Modified Cellular Automaton method, which was coupled with three-dimensional nested macro and micro grids. Experiments for Ni-based superalloy turbine wheel investment casting were carried out, which showed a good correspondence with the simulated results. It is indicated that the proposed model is able to predict the microstructure of the casting precisely, which provides a tool for the optimizing process.
Modeling property evolution of container materials used in nuclear waste storage
NASA Astrophysics Data System (ADS)
Li, Dongsheng; Garmestani, Hamid; Khaleel, Moe; Sun, Xin
2010-03-01
Container materials under irradiation for a long time will raise high energy in the structure to generate critical structural damage. This study investigated what kind of mesoscale microstructure will be more resistant to radiation damage. Mechanical properties evolution during irradiation was modeled using statistical continuum mechanics. Preliminary results also showed how to achieve the desired microstructure with higher resistance to radiation.
The Compositional Dependence of the Microstructure and Properties of CMSX-4 Superalloys
NASA Astrophysics Data System (ADS)
Yu, Hao; Xu, Wei; Van Der Zwaag, Sybrand
2018-01-01
The degradation of creep resistance in Ni-based single-crystal superalloys is essentially ascribed to their microstructural evolution. Yet there is a lack of work that manages to predict (even qualitatively) the effect of alloying element concentrations on the rate of microstructural degradation. In this research, a computational model is presented to connect the rafting kinetics of Ni superalloys to their chemical composition by combining thermodynamics calculation and a modified microstructural model. To simulate the evolution of key microstructural parameters during creep, the isotropic coarsening rate and γ/ γ' misfit stress are defined as composition-related parameters, and the effect of service temperature, time, and applied stress are taken into consideration. Two commercial superalloys, for which the kinetics of the rafting process are selected as the reference alloys, and the corresponding microstructural parameters are simulated and compared with experimental observations reported in the literature. The results confirm that our physical model not requiring any fitting parameters manages to predict (semiquantitatively) the microstructural parameters for different service conditions, as well as the effects of alloying element concentrations. The model can contribute to the computational design of new Ni-based superalloys.
Mathematical modeling of microstructural development in hypoeutectic cast iron
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maijer, D.; Cockcroft, S.L.; Patt, W.
A mathematical heat-transfer/microstructural model has been developed to predict the evolution of proeutectic austenite, white iron eutectic, and gray iron eutectic during solidification of hypoeutectic cast iron, based on the commercial finite-element code ABAQUS. Specialized routines which employ relationships describing nucleation and growth of equiaxed primary austenite, gray iron eutectic, and white iron eutectic have been formulated and incorporated into ABAQUS through user-specified subroutines. The relationships used in the model to describe microstructural evolution have been adapted from relationships describing equiaxed growth in the literature. The model has been validated/fine tuned against temperature data collected from a QuiK-Cup sample, whichmore » contained a thermocouple embedded approximately in the center of the casting. The phase distribution predicted with the model has been compared to the measured phase distribution inferred from the variation in hardness within the QuiK-Cup sample and from image analysis of photomicrographs of the polished and etched microstructure. Overall, the model results were found to agree well with the measured distribution of the microstructure.« less
Modeling of microstructure evolution in direct metal laser sintering: A phase field approach
NASA Astrophysics Data System (ADS)
Nandy, Jyotirmoy; Sarangi, Hrushikesh; Sahoo, Seshadev
2017-02-01
Direct Metal Laser Sintering (DMLS) is a new technology in the field of additive manufacturing, which builds metal parts in a layer by layer fashion directly from the powder bed. The process occurs within a very short time period with rapid solidification rate. Slight variations in the process parameters may cause enormous change in the final build parts. The physical and mechanical properties of the final build parts are dependent on the solidification rate which directly affects the microstructure of the material. Thus, the evolving of microstructure plays a vital role in the process parameters optimization. Nowadays, the increase in computational power allows for direct simulations of microstructures during materials processing for specific manufacturing conditions. In this study, modeling of microstructure evolution of Al-Si-10Mg powder in DMLS process was carried out by using a phase field approach. A MATLAB code was developed to solve the set of phase field equations, where simulation parameters include temperature gradient, laser scan speed and laser power. The effects of temperature gradient on microstructure evolution were studied and found that with increase in temperature gradient, the dendritic tip grows at a faster rate.
New mesoscopic constitutive model for deformation of pearlitic steels up to moderate strains
NASA Astrophysics Data System (ADS)
Alkorta, J.; Martínez-Esnaola, J. M.; de Jaeger, P.; Gil Sevillano, J.
2017-07-01
A new constitutive model for deformation of pearlitic steels has been developed that describes the mechanical behaviour and microstructural evolution of lamellar multi-colony pearlite. The model, a two-phase continuum model, considers the plastic anisotropy of ferrite derived from its lamellar structure but ignores any anisotropy associated with cementite and does not consider the crystal structure of either constituent. The resulting plastic constitutive equation takes into account a dependence on both the pearlitic spacing (arising from the confined slip of dislocations in the lamellae) and on strengthening from the evolving intra-lamellar dislocation density. A Kocks-Mecking strain hardening/recovery model is used for the lamellar ferrite, whereas perfect-plastic behaviour is assumed for cementite. The model naturally captures the microstructural evolution and the internal micro-stresses developed due to the different mechanical behaviour of both phases. The model is also able to describe the lamellar evolution (orientation and interlamellar spacing) with good accuracy. The role of plastic anisotropy in the ferritic phase has also been studied, and the results show that anisotropy has an important impact on both microstructural evolution and strengthening of heavily drawn wires.
NASA Astrophysics Data System (ADS)
Mohan, Nisha
Modeling the evolution of microstructure during sintering is a persistent challenge in ceramics science, although needed as the microstructure impacts properties of an engineered material. Bridging the gap between microscopic and continuum models, kinetic Monte Carlo (kMC) methods provide a stochastic approach towards sintering and microstructure evolution. These kMC models work at the mesoscale, with length and time-scales between those of atomistic and continuum approaches. We develop a sintering/compacting model for the two-phase sintering of boron nitride ceramics and allotropes alike. Our formulation includes mechanisms for phase transformation between h-BN and c-BN and takes into account thermodynamics of pressure and temperature on interaction energies and mechanism rates. In addition to replicating the micro-structure evolution observed in experiments, it also captures the phase diagram of Boron Nitride materials. Results have been analyzed in terms of phase diagrams and crystal growth. It also serves with insights to guide the choice of additives and conditions for the sintering process.While detailed time and spatial resolutions are lost in any MC, the progression of stochastic events still captures plausible local energy minima and long-time temporal developments. DARPA.
The Prediction of Microstructure Evolution of 6005A Aluminum Alloy in a P-ECAP Extrusion Study
NASA Astrophysics Data System (ADS)
Lei, Shi; Jiu-Ba, Wen; Chang, Ren
2018-05-01
Finite element modeling (FEM) was applied for predicting the recrystallized structure in extruded 6005 aluminum alloy, and simulated results were experimentally validated. First, microstructure evolution of 6005 aluminum alloy during deformation was studied by means of isothermal compression test, where the processing parameters were chosen to reproduce the typical industrial conditions. Second, microstructure evolution was analyzed, and the obtained information was used to fit a dynamic recrystallization model implementing inside the DEFORM-3D FEM code environment. FEM of deformation of 6005 aluminum has been established and validated by microstructure comparison. Finally, the obtained dynamic recrystallization model was applied to tube extrusion by using a portholes-equal channel angular pressing die. The finite element analysis results showed that coarse DRX grains occur in the extruded tube at higher temperature and in the extruded tube at the faster speed of the stem. The test results showed material from the front end of the extruded tube has coarse grains (60 μm) and other extruded tube has finer grains (20 μm).
The Prediction of Microstructure Evolution of 6005A Aluminum Alloy in a P-ECAP Extrusion Study
NASA Astrophysics Data System (ADS)
Lei, Shi; Jiu-Ba, Wen; Chang, Ren
2018-04-01
Finite element modeling (FEM) was applied for predicting the recrystallized structure in extruded 6005 aluminum alloy, and simulated results were experimentally validated. First, microstructure evolution of 6005 aluminum alloy during deformation was studied by means of isothermal compression test, where the processing parameters were chosen to reproduce the typical industrial conditions. Second, microstructure evolution was analyzed, and the obtained information was used to fit a dynamic recrystallization model implementing inside the DEFORM-3D FEM code environment. FEM of deformation of 6005 aluminum has been established and validated by microstructure comparison. Finally, the obtained dynamic recrystallization model was applied to tube extrusion by using a portholes-equal channel angular pressing die. The finite element analysis results showed that coarse DRX grains occur in the extruded tube at higher temperature and in the extruded tube at the faster speed of the stem. The test results showed material from the front end of the extruded tube has coarse grains (60 μm) and other extruded tube has finer grains (20 μm).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwarm, Samuel C.; Mburu, Sarah N.; Kolli, Ratna P.
Cast duplex stainless steel piping in light water nuclear reactors expe- rience thermal aging embrittlement during operational service. Interest in extending the operational life to 80 years requires an increased understanding of the microstructural evolution and corresponding changes in mechanical behavior. We analyze the evolution of the microstructure during thermal aging of cast CF-3 and CF-8 stainless steels using electron microscopy and atom probe tomography. The evolution of the mechanical properties is measured concurrently by mechanical methods such as tensile tests, Charpy V-notch tests, and instrumented nanoinden- tation. A microstructure-based finite element method model is developed and uti- lized inmore » conjunction with the characterization results in order to correlate the local stress-strain effects in the microstructure with the bulk measurements. This work is supported by the DOE Nuclear Energy University Programs (NEUP), contract number DE-NE0000724.« less
NASA Astrophysics Data System (ADS)
Matsumoto, Hiroaki; Naito, Daiki; Miyoshi, Kento; Yamanaka, Kenta; Chiba, Akihiko; Yamabe-Mitarai, Yoko
2017-12-01
This work identifies microstructural conversion mechanisms during hot deformation (at temperatures ranging from 750 °C to 1050 °C and strain rates ranging from 10-3 s-1 to 1 s-1) of a Ti-5Al-2Sn-2Zr-4Mo-4Cr (Ti-17) alloy with a lamellar starting microstructure and establishes constitutive formulae for predicting the microstructural evolution using finite-element analysis. In the α phase, lamellae kinking is the dominant mode in the higher strain rate region and dynamic globularization frequently occurs at higher temperatures. In the β phase, continuous dynamic recrystallization is the dominant mode below the transition temperature, Tβ (880 890 °C). Dynamic recovery tends to be more active at conditions of lower strain rates and higher temperatures. At temperatures above Tβ, continuous dynamic recrystallization of the β phase frequently occurs, especially in the lower strain rate region. A set of constitutive equations modeling the microstructural evolution and processing map characteristic are established by optimizing the experimental data and were later implemented in the DEFORM-3D software package. There is a satisfactory agreement between the experimental and simulated results, indicating that the established series of constitutive models can be used to reliably predict the properties of a Ti-17 alloy after forging in the (α+β) region.
Matsumoto, Hiroaki; Naito, Daiki; Miyoshi, Kento; Yamanaka, Kenta; Chiba, Akihiko; Yamabe-Mitarai, Yoko
2017-01-01
Abstract This work identifies microstructural conversion mechanisms during hot deformation (at temperatures ranging from 750 °C to 1050 °C and strain rates ranging from 10−3 s−1 to 1 s−1) of a Ti-5Al-2Sn-2Zr-4Mo-4Cr (Ti-17) alloy with a lamellar starting microstructure and establishes constitutive formulae for predicting the microstructural evolution using finite-element analysis. In the α phase, lamellae kinking is the dominant mode in the higher strain rate region and dynamic globularization frequently occurs at higher temperatures. In the β phase, continuous dynamic recrystallization is the dominant mode below the transition temperature, T β (880~890 °C). Dynamic recovery tends to be more active at conditions of lower strain rates and higher temperatures. At temperatures above T β, continuous dynamic recrystallization of the β phase frequently occurs, especially in the lower strain rate region. A set of constitutive equations modeling the microstructural evolution and processing map characteristic are established by optimizing the experimental data and were later implemented in the DEFORM-3D software package. There is a satisfactory agreement between the experimental and simulated results, indicating that the established series of constitutive models can be used to reliably predict the properties of a Ti-17 alloy after forging in the (α+β) region. PMID:29152021
Matsumoto, Hiroaki; Naito, Daiki; Miyoshi, Kento; Yamanaka, Kenta; Chiba, Akihiko; Yamabe-Mitarai, Yoko
2017-01-01
This work identifies microstructural conversion mechanisms during hot deformation (at temperatures ranging from 750 °C to 1050 °C and strain rates ranging from 10 -3 s -1 to 1 s -1 ) of a Ti-5Al-2Sn-2Zr-4Mo-4Cr (Ti-17) alloy with a lamellar starting microstructure and establishes constitutive formulae for predicting the microstructural evolution using finite-element analysis. In the α phase, lamellae kinking is the dominant mode in the higher strain rate region and dynamic globularization frequently occurs at higher temperatures. In the β phase, continuous dynamic recrystallization is the dominant mode below the transition temperature, T β (880~890 °C). Dynamic recovery tends to be more active at conditions of lower strain rates and higher temperatures. At temperatures above T β , continuous dynamic recrystallization of the β phase frequently occurs, especially in the lower strain rate region. A set of constitutive equations modeling the microstructural evolution and processing map characteristic are established by optimizing the experimental data and were later implemented in the DEFORM-3D software package. There is a satisfactory agreement between the experimental and simulated results, indicating that the established series of constitutive models can be used to reliably predict the properties of a Ti-17 alloy after forging in the (α+ β ) region.
Evolution of microstructure, strain and physical properties in oxide nanocomposite films
Chen, Aiping; Weigand, Marcus; Bi, Zhenxing; ...
2014-06-24
Using LSMO:ZnO nanocomposite films as a model system, we have researched the effect of film thickness on the physical properties of nanocomposites. It shows that strain, microstructure, as well as magnetoresistance strongly rely on film thickness. The magnetotransport properties have been fitted by a modified parallel connection channel model, which is in agreement with the microstructure evolution as a function of film thickness in nanocomposite films on sapphire substrates. The strain analysis indicates that the variation of physical properties in nanocomposite films on LAO is dominated by strain effect. These results confirm the critical role of film thickness on microstructures,more » strain states, and functionalities. Furthermore, it shows that one can use film thickness as a key parameter to design nanocomposites with optimum functionalities.« less
Model for texture evolution in cold rolling of 2.4 wt.-% Si non-oriented electrical steel
NASA Astrophysics Data System (ADS)
Wei, X.; Hojda, S.; Dierdorf, J.; Lohmar, J.; Hirt, G.
2017-10-01
Iron loss and limited magnetic flux density are constraints for NGO electrical steel used in highly efficient electrical machinery cores. The most important factors that affect these properties are the final microstructure and the texture of the NGO steel. Reviewing the whole process chain, cold rolling plays an important role because the recrystallization and grain growth during the final heat treatment can be strongly affected by the stored energy and microstructure of cold rolling, and some texture characteristics can be inherited as well. Therefore, texture evolution during cold rolling of NGO steel is worth a detailed investigation. In this paper, texture evolution in cold rolling of non-oriented (NGO) electrical steel is simulated with a crystal plasticity finite element method (CPFEM) model. In previous work, a CPFEM model has been implemented for simulating the texture evolution with periodic boundary conditions and a phenomenological constitutive law. In a first step the microstructure in the core of the workpiece was investigated and mapped to a representative volume element to predict the texture evolution. In this work an improved version of the CPFEM model is described that better reflects the texture evolution in cold rolling of NGO electrical steel containing 2.4 wt.-% Si. This is achieved by applying the deformation gradient and calibrating the flow curve within the CPFEM model. Moreover, the evolution of dislocation density is calculated and visualized in this model. An in depth comparison of the numerical and experimental results reveals, that the improved CPFEM model is able to represent the important characteristics of texture evolution in the core of the workpiece during cold rolling with high precision.
NASA Astrophysics Data System (ADS)
Donnini, Riccardo; Fabrizi, Alberto; Bonollo, Franco; Zanardi, Franco; Angella, Giuliano
2017-09-01
The aim of this investigation was to determine a procedure based on tensile testing to assess the critical range of austempering times for having the best ausferrite produced through austempering. The austempered ductile iron (ADI) 1050 was quenched at different times during austempering and the quenched samples were tested in tension. The dislocation-density-related constitutive equation proposed by Estrin for materials having high density of geometrical obstacles to dislocation motion, was used to model the flow curves of the tensile tested samples. On the basis of strain hardening theory, the equation parameters were related to the microstructure of the quenched samples and were used to assess the ADI microstructure evolution during austempering. The microstructure evolution was also analysed through conventional optical microscopy, electron back-scattered diffraction technique and transmission electron microscopy. The microstructure observations resulted to be consistent with the assessment based on tensile testing, so the dislocation-density-related constitutive equation was found to be a powerful tool to characterise the evolution of the solid state transformations of austempering.
A finite-strain homogenization model for viscoplastic porous single crystals: I - Theory
NASA Astrophysics Data System (ADS)
Song, Dawei; Ponte Castañeda, P.
2017-10-01
This paper presents a homogenization-based constitutive model for the finite-strain, macroscopic response of porous viscoplastic single crystals. The model accounts explicitly for the evolution of the average lattice orientation, as well as the porosity, average shape and orientation of the voids (and their distribution), by means of appropriate microstructural variables playing the role of internal variables and serving to characterize the evolution of both the "crystallographic" and "morphological" anisotropy of the porous single crystals. The model makes use of the fully optimized second-order variational method of Ponte Castañeda (2015), together with the iterated homogenization approach of Agoras and Ponte Castañeda (2013), to characterize the instantaneous effective response of the porous single crystals with fixed values of the microstructural variables. Consistent homogenization estimates for the average strain rate and vorticity fields in the phases are then used to derive evolution equations for the associated microstructural variables. The model is 100% predictive, requiring no fitting parameters, and applies for porous viscoplastic single crystals with general crystal anisotropy and average void shape and orientation, which are subjected to general loading conditions. In Part II of this work (Song and Ponte Castañeda, 2017a), results for both the instantaneous response and the evolution of the microstructure will be presented for porous FCC and HCP single crystals under a wide range of loading conditions, and good agreement with available FEM results will be shown.
Evolution of microstructure and residual stress during annealing of austenitic and ferritic steels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wawszczak, R.; Baczmański, A., E-mail: Andrzej.Baczmanski@fis.agh.edu.pl; Marciszko, M.
2016-02-15
In this work the recovery and recrystallization processes occurring in ferritic and austenitic steels were studied. To determine the evolution of residual stresses during material annealing the nonlinear sin{sup 2}ψ diffraction method was used and an important relaxation of the macrostresses as well as the microstresses was found in the cold rolled samples subjected to heat treatment. Such relaxation occurs at the beginning of recovery, when any changes of microstructure cannot be detected using other experimental techniques. Stress evolution in the annealed steel samples was correlated with the progress of recovery process, which significantly depends on the value of stackingmore » fault energy. - Highlights: • X-ray diffraction was used to determine the first order and second order stresses. • Diffraction data were analyzed using scale transition elastoplastic models model. • Stress relaxation in annealed ferritic and austenitic steels was correlated with evolution of microstructure. • Influence of stacking fault energy on thermally induced processes was discussed.« less
Microstructural evolution during the homogenization heat treatment of 6XXX and 7XXX aluminum alloys
NASA Astrophysics Data System (ADS)
Priya, Pikee
Homogenization heat treatment of as-cast billets is an important step in the processing of aluminum extrusions. Microstructural evolution during homogenization involves elimination of the eutectic morphology by spheroidisation of the interdendritic phases, minimization of the microsegregation across the grains through diffusion, dissolution of the low-melting phases, which enhances the surface finish of the extrusions, and precipitation of nano-sized dispersoids (for Cr-, Zr-, Mn-, Sc-containing alloys), which inhibit grain boundary motion to prevent recrystallization. Post-homogenization cooling reprecipitates some of the phases, changing the flow stress required for subsequent extrusion. These precipitates, however, are deleterious for the mechanical properties of the alloy and also hamper the age-hardenability and are hence dissolved during solution heat treatment. Microstructural development during homogenization and subsequent cooling occurs both at the length scale of the Secondary Dendrite Arm Spacing (SDAS) in micrometers and dispersoids in nanometers. Numerical tools to simulate microstructural development at both the length scales have been developed and validated against experiments. These tools provide easy and convenient means to study the process. A Cellular Automaton-Finite Volume-based model for evolution of interdendritic phases is coupled with a Particle Size Distribution-based model for precipitation of dispersoids across the grain. This comprehensive model has been used to study the effect of temperature, composition, as-cast microstructure, and cooling rates during post-homogenization quenching on microstructural evolution. The numerical study has been complimented with experiments involving Scanning Electron Microscopy, Energy Dispersive Spectroscopy, X-Ray Diffraction and Differential Scanning Calorimetry and a good agreement has with numerical results has been found. The current work aims to study the microstructural evolution during homogenization heat treatment at both length scales which include the (i) dissolution and transformation of the as-cast secondary phases; (ii) precipitation of dispersoids; and (iii) reprecipitation of some of the secondary phases during post-homogenization cooling. The kinetics of the phase transformations are mostly diffusion controlled except for the eta to S phase transformation in 7XXX alloys which is interface reaction rate controlled which has been implemented using a novel approach. Recommendations for homogenization temperature, time, cooling rates and compositions are made for Al-Si-Mg-Fe-Mn and Al-Zn-Cu-Mg-Zr alloys. The numerical model developed has been applied for a through process solidification-homogenization modeling of a Direct-Chill cast AA7050 cylindrical billet to study the radial variation of microstructure after solidification, homogenization and post-homogenization cooling.
A Monte Carlo model for 3D grain evolution during welding
NASA Astrophysics Data System (ADS)
Rodgers, Theron M.; Mitchell, John A.; Tikare, Veena
2017-09-01
Welding is one of the most wide-spread processes used in metal joining. However, there are currently no open-source software implementations for the simulation of microstructural evolution during a weld pass. Here we describe a Potts Monte Carlo based model implemented in the SPPARKS kinetic Monte Carlo computational framework. The model simulates melting, solidification and solid-state microstructural evolution of material in the fusion and heat-affected zones of a weld. The model does not simulate thermal behavior, but rather utilizes user input parameters to specify weld pool and heat-affect zone properties. Weld pool shapes are specified by Bézier curves, which allow for the specification of a wide range of pool shapes. Pool shapes can range from narrow and deep to wide and shallow representing different fluid flow conditions within the pool. Surrounding temperature gradients are calculated with the aide of a closest point projection algorithm. The model also allows simulation of pulsed power welding through time-dependent variation of the weld pool size. Example simulation results and comparisons with laboratory weld observations demonstrate microstructural variation with weld speed, pool shape, and pulsed-power.
Molecular modeling of the microstructure evolution during carbon fiber processing
NASA Astrophysics Data System (ADS)
Desai, Saaketh; Li, Chunyu; Shen, Tongtong; Strachan, Alejandro
2017-12-01
The rational design of carbon fibers with desired properties requires quantitative relationships between the processing conditions, microstructure, and resulting properties. We developed a molecular model that combines kinetic Monte Carlo and molecular dynamics techniques to predict the microstructure evolution during the processes of carbonization and graphitization of polyacrylonitrile (PAN)-based carbon fibers. The model accurately predicts the cross-sectional microstructure of the fibers with the molecular structure of the stabilized PAN fibers and physics-based chemical reaction rates as the only inputs. The resulting structures exhibit key features observed in electron microcopy studies such as curved graphitic sheets and hairpin structures. In addition, computed X-ray diffraction patterns are in good agreement with experiments. We predict the transverse moduli of the resulting fibers between 1 GPa and 5 GPa, in good agreement with experimental results for high modulus fibers and slightly lower than those of high-strength fibers. The transverse modulus is governed by sliding between graphitic sheets, and the relatively low value for the predicted microstructures can be attributed to their perfect longitudinal texture. Finally, the simulations provide insight into the relationships between chemical kinetics and the final microstructure; we observe that high reaction rates result in porous structures with lower moduli.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lei, Y.; Cheng, T. -L.; Wen, Y. H.
Microstructure evolution driven by thermal coarsening is an important factor for the loss of oxygen reduction reaction rates in SOFC cathode. In this work, the effect of an initial microstructure on the microstructure evolution in SOFC cathode is investigated using a recently developed phase field model. Specifically, we tune the phase fraction, the average grain size, the standard deviation of the grain size and the grain shape in the initial microstructure, and explore their effect on the evolution of the grain size, the density of triple phase boundary, the specific surface area and the effective conductivity in LSM-YSZ cathodes. Itmore » is found that the degradation rate of TPB density and SSA of LSM is lower with less LSM phase fraction (with constant porosity assumed) and greater average grain size, while the degradation rate of effective conductivity can also be tuned by adjusting the standard deviation of grain size distribution and grain aspect ratio. The implication of this study on the designing of an optimal initial microstructure of SOFC cathodes is discussed.« less
Lei, Y.; Cheng, T. -L.; Wen, Y. H.
2017-07-05
Microstructure evolution driven by thermal coarsening is an important factor for the loss of oxygen reduction reaction rates in SOFC cathode. In this work, the effect of an initial microstructure on the microstructure evolution in SOFC cathode is investigated using a recently developed phase field model. Specifically, we tune the phase fraction, the average grain size, the standard deviation of the grain size and the grain shape in the initial microstructure, and explore their effect on the evolution of the grain size, the density of triple phase boundary, the specific surface area and the effective conductivity in LSM-YSZ cathodes. Itmore » is found that the degradation rate of TPB density and SSA of LSM is lower with less LSM phase fraction (with constant porosity assumed) and greater average grain size, while the degradation rate of effective conductivity can also be tuned by adjusting the standard deviation of grain size distribution and grain aspect ratio. The implication of this study on the designing of an optimal initial microstructure of SOFC cathodes is discussed.« less
Lower Length Scale Model Development for Embrittlement of Reactor Presure Vessel Steel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yongfeng; Schwen, Daniel; Chakraborty, Pritam
2016-09-01
This report summarizes the lower-length-scale effort during FY 2016 in developing mesoscale capabilities for microstructure evolution, plasticity and fracture in reactor pressure vessel steels. During operation, reactor pressure vessels are subject to hardening and embrittlement caused by irradiation induced defect accumulation and irradiation enhanced solute precipitation. Both defect production and solute precipitation start from the atomic scale, and manifest their eventual effects as degradation in engineering scale properties. To predict the property degradation, multiscale modeling and simulation are needed to deal with the microstructure evolution, and to link the microstructure feature to material properties. In this report, the development ofmore » mesoscale capabilities for defect accumulation and solute precipitation are summarized. A crystal plasticity model to capture defect-dislocation interaction and a damage model for cleavage micro-crack propagation is also provided.« less
NASA Astrophysics Data System (ADS)
Hu, Dianyin; Gao, Ye; Meng, Fanchao; Song, Jun; Wang, Rongqiao
2018-04-01
Combining experiments and finite element analysis (FEA), a systematic study was performed to analyze the microstructural evolution and stress states of shot-peened GH4169 superalloy over a variety of peening intensities and coverages. A dislocation density evolution model was integrated into the representative volume FEA model to quantitatively predict microstructural evolution in the surface layers and compared with experimental results. It was found that surface roughness and through-depth residual stress profile are more sensitive to shot-peening intensity compared to coverage due to the high kinetic energy involved. Moreover, a surface nanocrystallization layer was discovered in the top surface region of GH4169 for all shot-peening conditions. However, the grain refinement was more intensified under high shot-peening coverage, under which enough time was permitted for grain refinement. The grain size gradient predicted by the numerical framework showed good agreement with experimental observations.
NASA Astrophysics Data System (ADS)
Schneider, Daniel; Schoof, Ephraim; Tschukin, Oleg; Reiter, Andreas; Herrmann, Christoph; Schwab, Felix; Selzer, Michael; Nestler, Britta
2018-03-01
Computational models based on the phase-field method have become an essential tool in material science and physics in order to investigate materials with complex microstructures. The models typically operate on a mesoscopic length scale resolving structural changes of the material and provide valuable information about the evolution of microstructures and mechanical property relations. For many interesting and important phenomena, such as martensitic phase transformation, mechanical driving forces play an important role in the evolution of microstructures. In order to investigate such physical processes, an accurate calculation of the stresses and the strain energy in the transition region is indispensable. We recall a multiphase-field elasticity model based on the force balance and the Hadamard jump condition at the interface. We show the quantitative characteristics of the model by comparing the stresses, strains and configurational forces with theoretical predictions in two-phase cases and with results from sharp interface calculations in a multiphase case. As an application, we choose the martensitic phase transformation process in multigrain systems and demonstrate the influence of the local homogenization scheme within the transition regions on the resulting microstructures.
NASA Astrophysics Data System (ADS)
Wells, M. A.; Samarasekera, I. V.; Brimacombe, J. K.; Hawbolt, E. B.; Lloyd, D. J.
1998-06-01
A comprehensive mathematical model of the hot tandem rolling process for aluminum alloys has been developed. Reflecting the complex thermomechanical and microstructural changes effected in the alloys during rolling, the model incorporated heat flow, plastic deformation, kinetics of static recrystallization, final recrystallized grain size, and texture evolution. The results of this microstructural engineering study, combining computer modeling, laboratory tests, and industrial measurements, are presented in three parts. In this Part I, laboratory measurements of static recrystallization kinetics and final recrystallized grain size are described for AA5182 and AA5052 aluminum alloys and expressed quantitatively by semiempirical equations. In Part II, laboratory measurements of the texture evolution during static recrystallization are described for each of the alloys and expressed mathematically using a modified form of the Avrami equation. Finally, Part III of this article describes the development of an overall mathematical model for an industrial aluminum hot tandem rolling process which incorporates the microstructure and texture equations developed and the model validation using industrial data. The laboratory measurements for the microstructural evolution were carried out using industrially rolled material and a state-of-the-art plane strain compression tester at Alcan International. Each sample was given a single deformation and heat treated in a salt bath at 400 °C for various lengths of time to effect different levels of recrystallization in the samples. The range of hot-working conditions used for the laboratory study was chosen to represent conditions typically seen in industrial aluminum hot tandem rolling processes, i.e., deformation temperatures of 350 °C to 500 °C, strain rates of 0.5 to 100 seconds and total strains of 0.5 to 2.0. The semiempirical equations developed indicated that both the recrystallization kinetics and the final recrystallized grain size were dependent on the deformation history of the material i.e., total strain and Zener-Hollomon parameter ( Z), where Z = dot \\varepsilon exp left( {{Q_{def} }/{RT_{def }}} right) and time at the recrystallization temperature.
A damage analysis for brittle materials using stochastic micro-structural information
NASA Astrophysics Data System (ADS)
Lin, Shih-Po; Chen, Jiun-Shyan; Liang, Shixue
2016-03-01
In this work, a micro-crack informed stochastic damage analysis is performed to consider the failures of material with stochastic microstructure. The derivation of the damage evolution law is based on the Helmholtz free energy equivalence between cracked microstructure and homogenized continuum. The damage model is constructed under the stochastic representative volume element (SRVE) framework. The characteristics of SRVE used in the construction of the stochastic damage model have been investigated based on the principle of the minimum potential energy. The mesh dependency issue has been addressed by introducing a scaling law into the damage evolution equation. The proposed methods are then validated through the comparison between numerical simulations and experimental observations of a high strength concrete. It is observed that the standard deviation of porosity in the microstructures has stronger effect on the damage states and the peak stresses than its effect on the Young's and shear moduli in the macro-scale responses.
Microstructural evolution in fast-neutron-irradiated austenitic stainless steels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoller, R.E.
1987-12-01
The present work has focused on the specific problem of fast-neutron-induced radiation damage to austenitic stainless steels. These steels are used as structural materials in current fast fission reactors and are proposed for use in future fusion reactors. Two primary components of the radiation damage are atomic displacements (in units of displacements per atom, or dpa) and the generation of helium by nuclear transmutation reactions. The radiation environment can be characterized by the ratio of helium to displacement production, the so-called He/dpa ratio. Radiation damage is evidenced microscopically by a complex microstructural evolution and macroscopically by density changes and alteredmore » mechanical properties. The purpose of this work was to provide additional understanding about mechanisms that determine microstructural evolution in current fast reactor environments and to identify the sensitivity of this evolution to changes in the He/dpa ratio. This latter sensitivity is of interest because the He/dpa ratio in a fusion reactor first wall will be about 30 times that in fast reactor fuel cladding. The approach followed in the present work was to use a combination of theoretical and experimental analysis. The experimental component of the work primarily involved the examination by transmission electron microscopy of specimens of a model austenitic alloy that had been irradiated in the Oak Ridge Research Reactor. A major aspect of the theoretical work was the development of a comprehensive model of microstructural evolution. This included explicit models for the evolution of the major extended defects observed in neutron irradiated steels: cavities, Frank faulted loops and the dislocation network. 340 refs., 95 figs., 18 tabs.« less
Mesoscale modeling of solute precipitation and radiation damage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yongfeng; Schwen, Daniel; Ke, Huibin
2015-09-01
This report summarizes the low length scale effort during FY 2014 in developing mesoscale capabilities for microstructure evolution in reactor pressure vessels. During operation, reactor pressure vessels are subject to hardening and embrittlement caused by irradiation-induced defect accumulation and irradiation-enhanced solute precipitation. Both defect production and solute precipitation start from the atomic scale, and manifest their eventual effects as degradation in engineering-scale properties. To predict the property degradation, multiscale modeling and simulation are needed to deal with the microstructure evolution, and to link the microstructure feature to material properties. In this report, the development of mesoscale capabilities for defect accumulationmore » and solute precipitation are summarized. Atomic-scale efforts that supply information for the mesoscale capabilities are also included.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Dongyong; Liu, Wenquan; Ying, Liang, E-mail: pinghu@dlut.edu.cn
The hot stamping of boron steels is widely used to produce ultra high strength automobile components without any spring back. The ultra high strength of final products is attributed to the fully martensitic microstructure that is obtained through the simultaneous forming and quenching of the hot blanks after austenization. In the present study, a mathematical model incorporating both heat transfer and the transformation of austenite is presented. A FORTRAN program based on finite element technique has been developed which permits the temperature distribution and microstructure evolution of high strength steel during hot stamping process. Two empirical diffusion-dependent transformation models undermore » isothermal conditions were employed respectively, and the prediction capability on mechanical properties of the models were compared with the hot stamping experiment of an automobile B-pillar part.« less
Use of EBSD Data in Numerical Analyses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Becker, R; Wiland, H
2000-01-14
Experimentation, theory and modeling have all played vital roles in defining what is known about microstructural evolution and the effects of microstructure on material properties. Recently, technology has become an enabling factor, allowing significant advances to be made on several fronts. Experimental evidence of crystallographic slip and the basic theory of crystal plasticity were established in the early 20th Century, and the theory and models evolved incrementally over the next 60 years. (Asaro provides a comprehensive review of the mechanisms and basic plasticity models.) During this time modeling was primarily concerned with the average response of polycrystalline aggregates. While somemore » detailed finite element modeling (FEM) with crystal plasticity constitutive relations was done in the early 1980s, such simulations over taxed the capabilities of the available computer hardware. Advances in computer capability led to a flurry of activity in finite element modeling in the next 10 years, increasing understanding of microstructure evolution and pushing the limits of theories and material characterization. Automated Electron Back Scatter Diffraction (EBSD) has produced a similar revolution in material characterization. The data collected is extensive and many questions about the evolution of microstructure and its role in determining mechanic properties can now be addressed. It is also now possible to obtain sufficient information about lattice orientations on a fine enough scale to allow detailed quantitative comparisons of experiments and newly emerging large scale numerical simulations. The insight gained from the coupling of EBSD and FEM studies will provide impetus for further development of microstructure models and theories of microstructure evolution. Early studies connecting EBSD data to finite element models used manual measurements to define initial orientations for the simulation. In one study, manual measurements of the deformed structure were also obtained for comparison with the model predictions. More recent work has taken advantage of automated data collection on deformed specimens as a means of collecting detailed and spatially correlated data for model validation. Although it will not be discussed in detail here, another area in which EBSD data is having a great impact is on recrystallization modeling. EBSD techniques can be used to collect data for quantitative microstructural analysis. This data can be used to infer growth kinetics of specific orientations, and this information can be synthesized into more accurate grain growth or recrystallization models. Another role which EBSD techniques may play is in determining initial structures for recrystallization models. A realistic starting structure is vital for evaluating the models, and attempts at predicting realistic structures with finite element simulations are not yet successful. As methodologies and equipment resolution continue to improve, it is possible that measured structures will serve as input for recrystallization models. Simulations have already been run using information obtained manually from a TEM.« less
A Monte Carlo model for 3D grain evolution during welding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodgers, Theron M.; Mitchell, John A.; Tikare, Veena
Welding is one of the most wide-spread processes used in metal joining. However, there are currently no open-source software implementations for the simulation of microstructural evolution during a weld pass. Here we describe a Potts Monte Carlo based model implemented in the SPPARKS kinetic Monte Carlo computational framework. The model simulates melting, solidification and solid-state microstructural evolution of material in the fusion and heat-affected zones of a weld. The model does not simulate thermal behavior, but rather utilizes user input parameters to specify weld pool and heat-affect zone properties. Weld pool shapes are specified by Bezier curves, which allow formore » the specification of a wide range of pool shapes. Pool shapes can range from narrow and deep to wide and shallow representing different fluid flow conditions within the pool. Surrounding temperature gradients are calculated with the aide of a closest point projection algorithm. Furthermore, the model also allows simulation of pulsed power welding through time-dependent variation of the weld pool size. Example simulation results and comparisons with laboratory weld observations demonstrate microstructural variation with weld speed, pool shape, and pulsed-power.« less
A Monte Carlo model for 3D grain evolution during welding
Rodgers, Theron M.; Mitchell, John A.; Tikare, Veena
2017-08-04
Welding is one of the most wide-spread processes used in metal joining. However, there are currently no open-source software implementations for the simulation of microstructural evolution during a weld pass. Here we describe a Potts Monte Carlo based model implemented in the SPPARKS kinetic Monte Carlo computational framework. The model simulates melting, solidification and solid-state microstructural evolution of material in the fusion and heat-affected zones of a weld. The model does not simulate thermal behavior, but rather utilizes user input parameters to specify weld pool and heat-affect zone properties. Weld pool shapes are specified by Bezier curves, which allow formore » the specification of a wide range of pool shapes. Pool shapes can range from narrow and deep to wide and shallow representing different fluid flow conditions within the pool. Surrounding temperature gradients are calculated with the aide of a closest point projection algorithm. Furthermore, the model also allows simulation of pulsed power welding through time-dependent variation of the weld pool size. Example simulation results and comparisons with laboratory weld observations demonstrate microstructural variation with weld speed, pool shape, and pulsed-power.« less
NASA Astrophysics Data System (ADS)
Hemmer, H.; Grong, Ø.
1999-11-01
The present investigation is concerned with modeling of the microstructure evolution in duplex stainless steels under thermal conditions applicable to welding. The important reactions that have been modeled are the dissolution of austenite during heating, subsequent grain growth in the delta ferrite regime, and finally, the decomposition of the delta ferrite to austenite during cooling. As a starting point, a differential formulation of the underlying diffusion problem is presented, based on the internal-state variable approach. These solutions are later manipulated and expressed in terms of the Scheil integral in the cases where the evolution equation is separable or can be made separable by a simple change of variables. The models have then been applied to describe the heat-affected zone microstructure evolution during both thick-plate and thin-plate welding of three commercial duplex stainless steel grades: 2205, 2304, and 2507. The results may conveniently be presented in the form of novel process diagrams, which display contours of constant delta ferrite grain size along with information about dissolution and reprecipitation of austenite for different combinations of weld input energy and peak temperature. These diagrams are well suited for quantitative readings and illustrate, in a condensed manner, the competition between the different variables that lead to structural changes during welding of duplex stainless steels.
Multi-Phase Field Models and Microstructural Evolution with Applications in Fuel Cell Technology
NASA Astrophysics Data System (ADS)
Davis, Ryan Scott
The solid oxide fuel cell (SOFC) has shown tremendous potential as an efficient energy conversion device that may be instrumental in the transition to renewable resources. However, commercialization is hindered by many degradation mechanisms that plague long term stability. In this dissertation, computation methods are used to explore the relationship between the microstructure of the fuel cell anode and performance critical metrics. The phase field method and standard modeling procedures are introduced using a classic model of spinodal decomposition. This is further developed into a complete, multi-phase modeling framework designed for the complex microstructural evolution of SOFC anode systems. High-temperature coarsening of the metallic phase in the state-of-the-art SOFC cermet anode is investigated using our phase field model. A systematic study into the effects of interface properties on microstructural evolution is accomplished by altering the contact angle between constituent phases. It is found that metrics of catalytic activity and conductivity display undesirable minima near the contact angle of conventional SOFC materials. These results suggest that tailoring the interface properties of the constituent phases could lead to a significant increase in the performance and lifetime of SOFCs. Supported-metal catalyst systems are investigated in the first detailed study of their long-term stability and application to SOFC anode design. Porous support structures are numerically sintered to mimic specific fabrication techniques, and these structures are then infiltrated with a nanoscale catalyst phase ranging from 2% to 21% loading. Initially, these systems exhibit enhanced potential for catalytic activity relative to conventional cells. However, extended evolution results in severe degradation, and we show that Ostwald ripening and particle migration are key kinetic processes. Strong geometric heterogeneity in the support structure via a novel approach to nanopore formation is proposed as a potential solution for catalyst stabilization.
Stress Rupture Fracture Model and Microstructure Evolution for Waspaloy
NASA Astrophysics Data System (ADS)
Yao, Zhihao; Zhang, Maicang; Dong, Jianxin
2013-07-01
Stress rupture behavior and microstructure evolution of nickel-based superalloy Waspaloy specimens from tenon teeth of an as-received 60,000-hour service-exposed gas turbine disk were studied between 923 K and 1088 K (650 °C and 815 °C) under initial applied stresses varying from 150 to 840 MPa. Good microstructure stability and performance were verified for this turbine disk prior to stress rupture testing. Microstructure instability, such as the coarsening and dissolution of γ' precipitates at the varying test conditions, was observed to be increased with temperature and reduced stress. Little microstructure variation was observed at 923 K (650 °C). Only secondary γ' instability occurred at 973 K (700 °C). Four fracture mechanisms were obtained. Transgranular creep fracture was exhibited up to 923 K (650 °C) and at high stress. A mixed mode of transgranular and intergranular creep fracture occurred with reduced stress as a transition to intergranular creep fracture (ICF) at low stress. ICF was dominated by grain boundary sliding at low temperature and by the nucleation and growth of grain boundary cavities due to microstructure instability at high temperature. The fracture mechanism map and microstructure-related fracture model were constructed. Residual lifetime was also evaluated by the Larson-Miller parameter method.
Investigation of the laser engineered net shaping process for nanostructured cermets
NASA Astrophysics Data System (ADS)
Xiong, Yuhong
Laser Engineered Net Shaping (LENSRTM) is a solid freeform fabrication (SFF) technology that combines high power laser deposition and powder metallurgy technologies. The LENSRTM technology has been used to fabricate a number of metallic alloys with improved physical and mechanical material properties. The successful application provides a motivation to also apply this method to fabricate non-metallic alloys, such as tungsten carbide-cobalt (WC-Co) cermets in a timely and easy way. However, reports on this topic are very limited. In this work, the LENSRTM technology was used to investigate its application to nanostructured WC-Co cermets, including processing conditions, microstructural evolution, thermal behavior, mechanical properties, and environmental and economic benefits. Details of the approaches are described as follows. A comprehensive analysis of the relationships between process parameters, microstructural evolution and mechanical properties was conducted through various analytical techniques. Effects of process parameters on sample profiles and microstructures were analyzed. Dissolution, shape change and coarsening of WC particles were investigated to study the mechanisms of microstructural evolution. The thermal features were correlated with the microstructure and mechanical properties. The special thermal behavior during this process and its relevant effects on the microstructure have been experimentally studied and numerically simulated. A high-speed digital camera was applied to study the temperature profile, temperature gradient and cooling rate in and near the molten pool. Numerical modeling was employed for 3D samples using finite element method with ADINA software for the first time. The validated modeling results were used to interpret microstructural evolution and thermal history. In order to fully evaluate the capability of the LENSRTM technology for the fabrication of cermets, material properties of WC-Co cermets produced by different powder metallurgy technologies were compared. In addition, another cermet system, nanostructured titanium/tungsten carbide-nickel ((Ti,W)C-Ni) powder, prepared using high-energy ball milling process, was also deposited by the LENSRTM technology. Because of the near net shape feature of the LENSRTM process, special emphasis was also placed on its potential environmental and economic benefits by applying life cycle assessment (LCA) and technical cost modeling (TCM). Comparisons were conducted between the conventional powder metallurgy processes and the LENSRTM process.
Study of grain structure evolution during annealing of a twin-roll-cast Mg alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tripathi, A.; Department of Metallurgical Engineering and Materials Science, IIT Bombay; Department of Materials Engineering, Monash University
2016-04-15
The evolution of microstructure under static annealing was studied for mid-thickness section of a twin-roll-cast (TRC) magnesium alloy. Annealing was performed at 300 °C and 500 °C for different times. Microstructural evolution was quantitatively analyzed, from optical micrographs, using grain path envelope analysis. Additional information from electron backscatter diffraction (EBSD) was used for addressing the possible mechanism(s). It was found that the TRC structure had a bimodal grain size, which was preserved even after annealing at 300 °C. However, the annealing at 500 °C led to a unimodal grain size. This difference in the grain size distribution created a contrastingmore » behavior in the normalized standard deviations. This was primarily attributed to a competition between recovery and recrystallization, and their respective dominance at 300° and 500 °C. A deformation induced recrystallization recovery (DIRR) model was proposed. The proposed model could successfully address the experimental microstructural evolution. - Highlights: • Annealing of twin roll cast (TRC) magnesium alloy was done at temperatures of 300 °C and 500 °C. • TRC had bimodal structure. Bimodality preserved for annealing at 300 °C. Annealing at 500 °C led to unimodal structure. • Grain evolution was described based on the competition between recovery and recrystallization. • Deformation induced recrystallization recovery (DIRR) mechanistic model was developed.« less
A 4-D dataset for validation of crystal growth in a complex three-phase material, ice cream
NASA Astrophysics Data System (ADS)
Rockett, P.; Karagadde, S.; Guo, E.; Bent, J.; Hazekamp, J.; Kingsley, M.; Vila-Comamala, J.; Lee, P. D.
2015-06-01
Four dimensional (4D, or 3D plus time) X-ray tomographic imaging of phase changes in materials is quickly becoming an accepted tool for quantifying the development of microstructures to both inform and validate models. However, most of the systems studied have been relatively simple binary compositions with only two phases. In this study we present a quantitative dataset of the phase evolution in a complex three-phase material, ice cream. The microstructure of ice cream is an important parameter in terms of sensorial perception, and therefore quantification and modelling of the evolution of the microstructure with time and temperature is key to understanding its fabrication and storage. The microstructure consists of three phases, air cells, ice crystals, and unfrozen matrix. We perform in situ synchrotron X-ray imaging of ice cream samples using in-line phase contrast tomography, housed within a purpose built cold-stage (-40 to +20oC) with finely controlled variation in specimen temperature. The size and distribution of ice crystals and air cells during programmed temperature cycling are determined using 3D quantification. The microstructural evolution of three-phase materials has many other important applications ranging from biological to structural and functional material, hence this dataset can act as a validation case for numerical investigations on faceted and non-faceted crystal growth in a range of materials.
Deformation mechanisms and grain size evolution in the Bohemian granulites - a computational study
NASA Astrophysics Data System (ADS)
Maierova, Petra; Lexa, Ondrej; Jeřábek, Petr; Franěk, Jan; Schulmann, Karel
2015-04-01
A dominant deformation mechanism in crustal rocks (e.g., dislocation and diffusion creep, grain boundary sliding, solution-precipitation) depends on many parameters such as temperature, major minerals, differential stress, strain rate and grain size. An exemplary sequence of deformation mechanisms was identified in the largest felsic granulite massifs in the southern Moldanubian domain (Bohemian Massif, central European Variscides). These massifs were interpreted to result from collision-related forced diapiric ascent of lower crust and its subsequent lateral spreading at mid-crustal levels. Three types of microstructures were distinguished. The oldest relict microstructure (S1) with large grains (>1000 μm) of feldspar deformed probably by dislocation creep at peak HT eclogite facies conditions. Subsequently at HP granulite-facies conditions, chemically- and deformation- induced recrystallization of feldspar porphyroclasts led to development of a fine-grained microstructure (S2, ~50 μm grain size) indicating deformation via diffusion creep, probably assisted by melt-enhanced grain-boundary sliding. This microstructure was associated with flow in the lower crust and/or its diapiric ascent. The latest microstructure (S3, ~100 μm grain size) is related to the final lateral spreading of retrograde granulites, and shows deformation by dislocation creep at amphibolite-facies conditions. The S2-S3 switch and coarsening was interpreted to be related with a significant decrease in strain rate. From this microstructural sequence it appears that it is the grain size that is critically linked with specific mechanical behavior of these rocks. Thus in this study, we focused on the interplay between grain size and deformation with the aim to numerically simulate and reinterpret the observed microstructural sequence. We tested several different mathematical descriptions of the grain size evolution, each of which gave qualitatively different results. We selected the two most elaborated and at the same time the most promising descriptions: thermodynamics-based models with and without Zener pinning. For conditions compatible with the S1 and S2 microstructures (~800 °C and strain rate ~10-13 s-1), the calculated stable grain sizes are ~30 μm and >300 μm in the models with and without Zener pinning, respectively. This is in agreement with the contrasting grain sizes associated with S1 and S2 microstructures implying that mainly chemically induced recrystallization of S1 feldspar porphyroclasts must had played a fundamental role in the transition into the diffusion creep. The model with pinning also explains only minor changes of mean grain size associated with S2 microstructure. The S2-S3 switch from the diffusion to dislocation creep is difficult to explain when assuming reasonable temperature and strain rate (or stress). However, a simple incorporation of the effect of melt solidification into the model with pinning can mimic this observed switch. Besides the above mentioned simple models with prescribed temperature and strain rate, we implemented the grain size evolution laws into in a 2D thermo-mechanical model setup, where stress, strain rate and temperature evolve in a more natural manner. This setup simulates a collisional evolution of an orogenic root with anomalous lower crust. The lower-crustal material is a source region for diapirs and it deforms via a combination of dislocation and grain-size-sensitive creeps. We tested the influence of selected parameters in the flow laws and in the grain-size evolution laws on the shape and other characteristics of the growing diapirs. The outputs of our simulations were then compared with the geological record from the Moldanubian granulite massifs.
NASA Astrophysics Data System (ADS)
Jamali, Safa; McKinley, Gareth H.; Armstrong, Robert C.
2017-01-01
We identify the sequence of microstructural changes that characterize the evolution of an attractive particulate gel under flow and discuss their implications on macroscopic rheology. Dissipative particle dynamics is used to monitor shear-driven evolution of a fabric tensor constructed from the ensemble spatial configuration of individual attractive constituents within the gel. By decomposing this tensor into isotropic and nonisotropic components we show that the average coordination number correlates directly with the flow curve of the shear stress versus shear rate, consistent with theoretical predictions for attractive systems. We show that the evolution in nonisotropic local particle rearrangements are primarily responsible for stress overshoots (strain-hardening) at the inception of steady shear flow and also lead, at larger times and longer scales, to microstructural localization phenomena such as shear banding flow-induced structure formation in the vorticity direction.
Damage Evolution in Complex-Phase and Dual-Phase Steels during Edge Stretching.
Pathak, Nikky; Butcher, Cliff; Worswick, Michael James; Bellhouse, Erika; Gao, Jeff
2017-03-27
The role of microstructural damage in controlling the edge stretchability of Complex-Phase (CP) and Dual-Phase (DP) steels was evaluated using hole tension experiments. The experiments considered a tensile specimen with a hole at the center of specimen that is either sheared (sheared edge condition) or drilled and then reamed (reamed edge condition). The damage mechanism and accumulation in the CP and DP steels were systematically characterized by interrupting the hole tension tests at different strain levels using scanning electron microscope (SEM) analysis and optical microscopy. Martensite cracking and decohesion of ferrite-martensite interfaces are the dominant nucleation mechanisms in the DP780. The primary source of void nucleation in the CP800 is nucleation at TiN particles, with secondary void formation at martensite/bainite interfaces near the failure strain. The rate of damage evolution is considerably higher for the sheared edge in contrast with the reamed edge since the shearing process alters the microstructure in the shear affected zone (SAZ) by introducing work-hardening and initial damage behind the sheared edge. The CP microstructures were shown to be less prone to shear-induced damage than the DP materials resulting in much higher sheared edge formability. Microstructural damage in the CP and DP steels was characterized to understand the interaction between microstructure, damage evolution and edge formability during edge stretching. An analytical model for void evolution and coalescence was developed and applied to predict the damage rate in these rather diverse microstructures.
Damage Evolution in Complex-Phase and Dual-Phase Steels during Edge Stretching
Pathak, Nikky; Butcher, Cliff; Worswick, Michael James; Bellhouse, Erika; Gao, Jeff
2017-01-01
The role of microstructural damage in controlling the edge stretchability of Complex-Phase (CP) and Dual-Phase (DP) steels was evaluated using hole tension experiments. The experiments considered a tensile specimen with a hole at the center of specimen that is either sheared (sheared edge condition) or drilled and then reamed (reamed edge condition). The damage mechanism and accumulation in the CP and DP steels were systematically characterized by interrupting the hole tension tests at different strain levels using scanning electron microscope (SEM) analysis and optical microscopy. Martensite cracking and decohesion of ferrite-martensite interfaces are the dominant nucleation mechanisms in the DP780. The primary source of void nucleation in the CP800 is nucleation at TiN particles, with secondary void formation at martensite/bainite interfaces near the failure strain. The rate of damage evolution is considerably higher for the sheared edge in contrast with the reamed edge since the shearing process alters the microstructure in the shear affected zone (SAZ) by introducing work-hardening and initial damage behind the sheared edge. The CP microstructures were shown to be less prone to shear-induced damage than the DP materials resulting in much higher sheared edge formability. Microstructural damage in the CP and DP steels was characterized to understand the interaction between microstructure, damage evolution and edge formability during edge stretching. An analytical model for void evolution and coalescence was developed and applied to predict the damage rate in these rather diverse microstructures. PMID:28772707
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lissenden, Cliff; Hassan, Tasnin; Rangari, Vijaya
The research built upon a prior investigation to develop a unified constitutive model for design-by-analysis of the intermediate heat exchanger (IHX) for a very high temperature reactor (VHTR) design of next generation nuclear plants (NGNPs). Model development requires a set of failure data from complex mechanical experiments to characterize the material behavior. Therefore uniaxial and multiaxial creep-fatigue and creep-ratcheting tests were conducted on the nickel-base Alloy 617 at 850 and 950°C. The time dependence of material behavior, and the interaction of time dependent behavior (e.g., creep) with ratcheting, which is an increase in the cyclic mean strain under load-controlled cycling,more » are major concerns for NGNP design. This research project aimed at characterizing the microstructure evolution mechanisms activated in Alloy 617 by mechanical loading and dwell times at elevated temperature. The acoustic harmonic generation method was researched for microstructural characterization. It is a nonlinear acoustics method with excellent potential for nondestructive evaluation, and even online continuous monitoring once high temperature sensors become available. It is unique because it has the ability to quantitatively characterize microstructural features well before macroscale defects (e.g., cracks) form. The nonlinear acoustics beta parameter was shown to correlate with microstructural evolution using a systematic approach to handle the complexity of multiaxial creep-fatigue and creep-ratcheting deformation. Mechanical testing was conducted to provide a full spectrum of data for: thermal aging, tensile creep, uniaxial fatigue, uniaxial creep-fatigue, uniaxial creep-ratcheting, multiaxial creep-fatigue, and multiaxial creep-ratcheting. Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), and Optical Microscopy were conducted to correlate the beta parameter with individual microstructure mechanisms. We researched application of the harmonic generation method to tubular mechanical test specimens and pipes for nondestructive evaluation. Tubular specimens and pipes act as waveguides, thus we applied the acoustic harmonic generation method to guided waves in both plates and shells. Magnetostrictive transducers were used to generate and receive guided wave modes in the shell sample and the received signals were processed to show the sensitivity of higher harmonic generation to microstructure evolution. Modeling was initiated to correlate higher harmonic generation with the microstructure that will lead to development of a life prediction model that is informed by the nonlinear acoustics measurements.« less
NASA Astrophysics Data System (ADS)
Mukherjee, S.; Chauhan, P.; Osterman, M.; Dasgupta, A.; Pecht, M.
2016-07-01
Mechanistic microstructural models have been developed to capture the effect of isothermal aging on time dependent viscoplastic response of Sn3.0Ag0.5Cu (SAC305) solders. SnAgCu (SAC) solders undergo continuous microstructural coarsening during both storage and service because of their high homologous temperature. The microstructures of these low melting point alloys continuously evolve during service. This results in evolution of creep properties of the joint over time, thereby influencing the long term reliability of microelectronic packages. It is well documented that isothermal aging degrades the creep resistance of SAC solder. SAC305 alloy is aged for (24-1000) h at (25-100)°C (~0.6-0.8 × T melt). Cross-sectioning and image processing techniques were used to periodically quantify the effect of isothermal aging on phase coarsening and evolution. The parameters monitored during isothermal aging include size, area fraction, and inter-particle spacing of nanoscale Ag3Sn intermetallic compounds (IMCs) and the volume fraction of micronscale Cu6Sn5 IMCs, as well as the area fraction of pure tin dendrites. Effects of microstructural evolution on secondary creep constitutive response of SAC305 solder joints were then modeled using a mechanistic multiscale creep model. The mechanistic phenomena modeled include: (1) dispersion strengthening by coarsened nanoscale Ag3Sn IMCs in the eutectic phase; and (2) load sharing between pro-eutectic Sn dendrites and the surrounding coarsened eutectic Sn-Ag phase and microscale Cu6Sn5 IMCs. The coarse-grained polycrystalline Sn microstructure in SAC305 solder was not captured in the above model because isothermal aging does not cause any significant change in the initial grain size and orientation of SAC305 solder joints. The above mechanistic model can successfully capture the drop in creep resistance due to the influence of isothermal aging on SAC305 single crystals. Contribution of grain boundary sliding to the creep strain of coarse grained joints has not been modeled in this study.
3D Microstructures for Materials and Damage Models
Livescu, Veronica; Bronkhorst, Curt Allan; Vander Wiel, Scott Alan
2017-02-01
Many challenges exist with regard to understanding and representing complex physical processes involved with ductile damage and failure in polycrystalline metallic materials. Currently, the ability to accurately predict the macroscale ductile damage and failure response of metallic materials is lacking. Research at Los Alamos National Laboratory (LANL) is aimed at building a coupled experimental and computational methodology that supports the development of predictive damage capabilities by: capturing real distributions of microstructural features from real material and implementing them as digitally generated microstructures in damage model development; and, distilling structure-property information to link microstructural details to damage evolution under a multitudemore » of loading states.« less
Modeling of the static recrystallization for 7055 aluminum alloy by cellular automaton
NASA Astrophysics Data System (ADS)
Zhang, Tao; Lu, Shi-hong; Zhang, Jia-bin; Li, Zheng-fang; Chen, Peng; Gong, Hai; Wu, Yun-xin
2017-09-01
In order to simulate the flow behavior and microstructure evolution during the pass interval period of the multi-pass deformation process, models of static recovery (SR) and static recrystallization (SRX) by the cellular automaton (CA) method for the 7055 aluminum alloy were established. Double-pass hot compression tests were conducted to acquire flow stress and microstructure variation during the pass interval period. With the basis of the material constants obtained from the compression tests, models of the SR, incubation period, nucleation rate and grain growth were fitted by least square method. A model of the grain topology and a statistical computation of the CA results were also introduced. The effects of the pass interval time, temperature, strain, strain rate and initial grain size on the microstructure variation for the SRX of the 7055 aluminum alloy were studied. The results show that a long pass interval time, large strain, high temperature and large strain rate are beneficial for finer grains during the pass interval period. The stable size of the static recrystallized grain is not concerned with the initial grain size, but mainly depends on the strain rate and temperature. The SRX plays a vital role in grain refinement, while the SR has no effect on the variation of microstructure morphology. Using flow stress and microstructure comparisons of the simulated and experimental CA results, the established CA models can accurately predict the flow stress and microstructure evolution during the pass interval period, and provide guidance for the selection of optimized parameters for the multi-pass deformation process.
Coarsening Kinetics and Morphological Evolution in a Two-Phase Titanium Alloy During Heat Treatment
NASA Astrophysics Data System (ADS)
Xu, Jianwei; Zeng, Weidong; Jia, Zhiqiang; Sun, Xin; Zhao, Yawei
2016-03-01
The effects of alpha/beta heat treatment on microstructure evolution of Ti-17 alloy with a lamellar colony structure are established. Heat treatment experiments are conducted at 1103 or 1063 K for times ranging from 10 min to 8 h. The main features of microstructure evolution during heat treatment comprise static globularization and coarsening of primary alpha phase. Such behaviors can be accelerated by higher heat treatment temperature. Furthermore, globularization and coarsening behaviors show a faster rate at higher prestrain. In order to better understand the microstructure evolution of Ti-17 alloy during alpha/beta heat treatment, static globularization and coarsening behaviors are modeled in the theoretical frame of the Johnson-Mehl-Avarmi-Kolmogorov (JMAK) and Lifshitz-Slyozov-Wagner (LSW) theories, respectively. The JMAK and LSW kinetics parameters are derived under different experimental conditions. Agreements between measurements and predictions are found, indicating that the JMAK and LSW theories can be used to predict and trace static globularization and coarsening processes of Ti-17 alloy during alpha/beta heat treatment.
Microstructural evolution of neutron irradiated 3C-SiC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sprouster, David J.; Koyanagi, Takaaki; Dooryhee, Eric
The microstructural response of neutron irradiated 3C-SiC have been investigated over a wide irradiation temperature and fluence range via qualitative and quantitative synchrotron-based X-ray diffraction characterization. Here, we identify several neutron fluence- and irradiation temperature-dependent changes in the microstructure, and directly highlight the specific defects introduced through the course of irradiation. By quantifying the microstructure, we aim to develop a more detailed understanding of the radiation response of SiC. Such studies are important to build mechanistic models of material performance and to understand the susceptibility of various microstructures to radiation damage for advanced energy applications.
Microstructural evolution of neutron irradiated 3C-SiC
Sprouster, David J.; Koyanagi, Takaaki; Dooryhee, Eric; ...
2017-03-18
The microstructural response of neutron irradiated 3C-SiC have been investigated over a wide irradiation temperature and fluence range via qualitative and quantitative synchrotron-based X-ray diffraction characterization. Here, we identify several neutron fluence- and irradiation temperature-dependent changes in the microstructure, and directly highlight the specific defects introduced through the course of irradiation. By quantifying the microstructure, we aim to develop a more detailed understanding of the radiation response of SiC. Such studies are important to build mechanistic models of material performance and to understand the susceptibility of various microstructures to radiation damage for advanced energy applications.
Microstructural characterization and simulation of damage for geared sheet components
NASA Astrophysics Data System (ADS)
Gerstein, G.; Isik, K.; Gutknecht, F.; Sieczkarek, P.; Ewert, J.; Tekkaya, A. E.; Clausmeyer, T.; Nürnberger, F.
2017-09-01
The evolution of damage in geared components manufactured from steel sheets was investigated, to analyse the influence of damage caused by the sheet-bulk-metal forming. Due to the inhomogeneous and multi-axial deformation in the investigated parts, different aspects such as the location-dependent shape and size of voids are analysed by means of various microscopic methods. In particular, a method to characterize the state of damage evolution, i. e. void nucleation, growth and coalescence using scanning electron microscopy (SEM) is applied. The investigations reveal a strong dependence of the void area fraction, shape of voids and thus damage evolution on the loading mode. The microstructural analysis is complemented with FEM simulations using material models which consider the characteristics of the void evolution.
Stewart, James A.; Kohnert, Aaron A.; Capolungo, Laurent; ...
2018-03-06
The complexity of radiation effects in a material’s microstructure makes developing predictive models a difficult task. In principle, a complete list of all possible reactions between defect species being considered can be used to elucidate damage evolution mechanisms and its associated impact on microstructure evolution. However, a central limitation is that many models use a limited and incomplete catalog of defect energetics and associated reactions. Even for a given model, estimating its input parameters remains a challenge, especially for complex material systems. Here, we present a computational analysis to identify the extent to which defect accumulation, energetics, and irradiation conditionsmore » can be determined via forward and reverse regression models constructed and trained from large data sets produced by cluster dynamics simulations. A global sensitivity analysis, via Sobol’ indices, concisely characterizes parameter sensitivity and demonstrates how this can be connected to variability in defect evolution. Based on this analysis and depending on the definition of what constitutes the input and output spaces, forward and reverse regression models are constructed and allow for the direct calculation of defect accumulation, defect energetics, and irradiation conditions. Here, this computational analysis, exercised on a simplified cluster dynamics model, demonstrates the ability to design predictive surrogate and reduced-order models, and provides guidelines for improving model predictions within the context of forward and reverse engineering of mathematical models for radiation effects in a materials’ microstructure.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stewart, James A.; Kohnert, Aaron A.; Capolungo, Laurent
The complexity of radiation effects in a material’s microstructure makes developing predictive models a difficult task. In principle, a complete list of all possible reactions between defect species being considered can be used to elucidate damage evolution mechanisms and its associated impact on microstructure evolution. However, a central limitation is that many models use a limited and incomplete catalog of defect energetics and associated reactions. Even for a given model, estimating its input parameters remains a challenge, especially for complex material systems. Here, we present a computational analysis to identify the extent to which defect accumulation, energetics, and irradiation conditionsmore » can be determined via forward and reverse regression models constructed and trained from large data sets produced by cluster dynamics simulations. A global sensitivity analysis, via Sobol’ indices, concisely characterizes parameter sensitivity and demonstrates how this can be connected to variability in defect evolution. Based on this analysis and depending on the definition of what constitutes the input and output spaces, forward and reverse regression models are constructed and allow for the direct calculation of defect accumulation, defect energetics, and irradiation conditions. Here, this computational analysis, exercised on a simplified cluster dynamics model, demonstrates the ability to design predictive surrogate and reduced-order models, and provides guidelines for improving model predictions within the context of forward and reverse engineering of mathematical models for radiation effects in a materials’ microstructure.« less
Probing heat transfer, fluid flow and microstructural evolution during fusion welding of alloys
NASA Astrophysics Data System (ADS)
Zhang, Wei
The composition, geometry, structure and properties of the welded joints are affected by the various physical processes that take place during fusion welding. Understanding these processes has been an important goal in the contemporary welding research to achieve structurally sound and reliable welds. In the present thesis research, several important physical processes including the heat transfer, fluid flow and microstructural evolution in fusion welding were modeled based on the fundamentals of transport phenomena and phase transformation theory. The heat transfer and fluid flow calculation is focused on the predictions of the liquid metal convection in the weld pool, the temperature distribution in the entire weldment, and the shape and size of the fusion zone (FZ) and heat affected zone (HAZ). The modeling of microstructural evolution is focused on the quantitative understanding of phase transformation kinetics during welding of several important alloys under both low and high heating and cooling conditions. Three numerical models were developed in the present thesis work: (1) a three-dimensional heat transfer and free surface flow model for the gas metal arc (GMA) fillet welding considering the complex weld joint geometry, (2) a phase transformation model based on the Johnson-Mehl-Avrami (JMA) theory, and (3) a one-dimensional numerical diffusion model considering multiple moving interfaces. To check the capabilities of the developed models, several cases were investigated, in which the predictions from the models were compared with the experimental results. The cases studied are the follows. For the modeling of heat transfer and fluid flow, the welding processes studied included gas tungsten arc (GTA) linear welding, GTA transient spot welding, and GMA fillet welding. The calculated weldment geometry and thermal cycles was validated against the experimental data under various welding conditions. For the modeling of microstructural evolution, the welded materials investigated included AISI 1005 low-carbon steel, 1045 medium-carbon steel, 2205 duplex stainless steel (DSS) and Ti-6Al-4V alloy. The calculated phase transformation kinetics were compared with the experimental results obtained using an x-ray diffraction technique by Dr. John W. Elmer of Lawrence Livermore National Laboratory. (Abstract shortened by UMI.)
Direct handling of sharp interfacial energy for microstructural evolution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hernández–Rivera, Efraín; Tikare, Veena; Noirot, Laurence
In this study, we introduce a simplification to the previously demonstrated hybrid Potts–phase field (hPPF), which relates interfacial energies to microstructural sharp interfaces. The model defines interfacial energy by a Potts-like discrete interface approach of counting unlike neighbors, which we use to compute local curvature. The model is compared to the hPPF by studying interfacial characteristics and grain growth behavior. The models give virtually identical results, while the new model allows the simulator more direct control of interfacial energy.
Direct handling of sharp interfacial energy for microstructural evolution
Hernández–Rivera, Efraín; Tikare, Veena; Noirot, Laurence; ...
2014-08-24
In this study, we introduce a simplification to the previously demonstrated hybrid Potts–phase field (hPPF), which relates interfacial energies to microstructural sharp interfaces. The model defines interfacial energy by a Potts-like discrete interface approach of counting unlike neighbors, which we use to compute local curvature. The model is compared to the hPPF by studying interfacial characteristics and grain growth behavior. The models give virtually identical results, while the new model allows the simulator more direct control of interfacial energy.
Simulations of Precipitate Microstructure Evolution during Heat Treatment
NASA Astrophysics Data System (ADS)
Wu, Kaisheng; Sterner, Gustaf; Chen, Qing; Jou, Herng-Jeng; Jeppsson, Johan; Bratberg, Johan; Engström, Anders; Mason, Paul
Precipitation, a major solid state phase transformation during heat treatment processes, has for more than one century been intensively employed to improve the strength and toughness of various high performance alloys. Recently, sophisticated precipitation reaction models, in assistance with well-developed CALPHAD databases, provide an efficient and cost-effective way to tailor precipitate microstructures that maximize the strengthening effect via the optimization of alloy chemistries and heat treatment schedules. In this presentation, we focus on simulating precipitate microstructure evolution in Nickel-base superalloys under arbitrary heat treatment conditions. The newly-developed TC-PRISMA program has been used for these simulations, with models refined especially for non-isothermal conditions. The effect of different cooling profiles on the formation of multimodal microstructures has been thoroughly examined in order to understand the underlying thermodynamics and kinetics. Meanwhile, validations against several experimental results have been carried out. Practical issues that are critical to the accuracy and applicability of the current simulations, such as modifications that overcome mean-field approximations, compatibility between CALPHAD databases, selection of key parameters (particularly interfacial energy and nucleation site densities), etc., are also addressed.
The co-evolution of microstructure features in self-ion irradiated HT9 at very high damage levels
NASA Astrophysics Data System (ADS)
Getto, Elizabeth Margaret
The objective of this study was to understand the co-evolution of microstructure features in self-ion irradiated HT9 at very high damage levels. HT9 (heat 84425) was pre-implanted with 10 atom parts per million helium and then irradiated with 5 MeV Fe++ in the temperature range of 440-480°C to 188 dpa. A damage dependence study from 75 to 650 dpa was performed at the peak swelling temperature of 460°C. The swelling, dislocation and precipitate evolution was determined using Analytic Electron Microscopes in both Conventional Transmission electron microscopy (CTEM) and Scanning Transmission Electron Microscopy (STEM) modes. Void swelling reached a nominally linear rate of 0.03%/dpa from 188 to 650 dpa at 460°C. G phase precipitates were observed by 75 dpa and grew linearly up to 650 dpa. M 2X was observed by 250 dpa and peaked in volume fraction at 450 dpa. Dislocation loop evolution was observed up to 650 dpa including a step change in diameter between 375 and 450 dpa; which correlated with nucleation and growth of M2X. The experimental results were interpreted using a rate theory model, the Radiation Induced Microstructure Evolution (RIME), in the damage range from 188 to 650 dpa. A simple system of voids and dislocations was modeled in which the dislocations measured from experiment were used as input, or the dislocations were allowed to evolve dynamically, resulting in swelling that was overestimated by 63% relative to that observed experimentally. G phase had limited effect on the void or dislocation behavior. The behavior of M2X within the microstructure was characterized as a direct effect as a coherent sink, and as an indirect effect in consuming carbon from the matrix, which had the largest impact on both void and dislocation behavior. A slowly monotonically increasing swelling rate was observed both experimentally and computationally, with swelling rates of ˜0.025%/dpa and ˜0.036%/dpa before and after 450 dpa. The agreement in void behavior between experiment and model when all effects (loops, network, G phase, M2X formation and growth, and removal of carbon) are accounted for demonstrates the importance of characterizing the evolution of the full microstructure over a large dpa range.
Modeling of microstructure evolution of magnesium alloy during the high pressure die casting process
NASA Astrophysics Data System (ADS)
Wu, Mengwu; Xiong, Shoumei
2012-07-01
Two important microstructure characteristics of high pressure die cast magnesium alloy are the externally solidified crystals (ESCs) and the fully divorced eutectic which form at the filling stage of the shot sleeve and at the last stage of solidification in the die cavity, respectively. Both of them have a significant influence on the mechanical properties and performance of magnesium alloy die castings. In the present paper, a numerical model based on the cellular automaton (CA) method was developed to simulate the microstructure evolution of magnesium alloy during cold-chamber high pressure die casting (HPDC) process. Modeling of dendritic growth of magnesium alloy with six-fold symmetry was achieved by defining a special neighbourhood configuration and calculating of the growth kinetics from complete solution of the transport equations. Special attention was paid to establish a nucleation model considering both of the nucleation of externally solidified crystals in the shot sleeve and the massive nucleation in the die cavity. Meanwhile, simulation of the formation of fully divorced eutectic was also taken into account in the present CA model. Validation was performed and the capability of the present model was addressed by comparing the simulated results with those obtained by experiments.
Atomic scale modeling of defect production and microstructure evolution in irradiated metals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diaz de la Rubia, T.; Soneda, N.; Shimomura, Y.
1997-04-01
Irradiation effects in materials depend in a complex way on the form of the as-produced primary damage state and its spatial and temporal evolution. Thus, while collision cascades produce defects on a time scale of tens of picosecond, diffusion occurs over much longer time scales, of the order of seconds, and microstructure evolution over even longer time scales. In this report the authors present work aimed at describing damage production and evolution in metals across all the relevant time and length scales. They discuss results of molecular dynamics simulations of displacement cascades in Fe and V. They show that interstitialmore » clusters are produced in cascades above 5 keV, but not vacancy clusters. Next, they discuss the development of a kinetic Monte Carlo model that enables calculations of damage evolution over much longer time scales (1000`s of s) than the picosecond lifetime of the cascade. They demonstrate the applicability of the method by presenting predictions on the fraction of freely migrating defects in {alpha}Fe during irradiation at 600 K.« less
Modeling of AA5083 Material-Microstructure Evolution During Butt Friction-Stir Welding
NASA Astrophysics Data System (ADS)
Grujicic, M.; Arakere, G.; Yalavarthy, H. V.; He, T.; Yen, C.-F.; Cheeseman, B. A.
2010-07-01
A concise yet a fairly comprehensive overview of the friction stir welding (FSW) process is provided. This is followed by a computational investigation in which FSW behavior of a prototypical solution-strengthened and strain-hardened aluminum alloy, AA5083-H131, is modeled using a fully coupled thermo-mechanical finite-element procedure developed in our prior study. Particular attention is given to proper modeling of the welding work-piece material behavior during the FSW process. Specifically, competition and interactions between plastic-deformation and dynamic-recrystallization processes are considered to properly account for the material-microstructure evolution in the weld nugget zone. The results showed that with proper modeling of the material behavior under high-temperature/severe-plastic-deformation conditions, significantly improved agreement can be attained between the computed and measured post-FSW residual-stress and material-strength distribution results.
Jeong, G. Y.; Kim, Yeon Soo; Jamison, L. M.; ...
2017-02-20
U-Mo/Al dispersion fuel irradiated to high burnup at high power (high fission rate) exhibited microstructural changes such as deformation of the fuel particles, pore growth, and rupture of the Al matrix. The driving force for these microstructural changes was meat swelling caused by a combination of fuel particle swelling and interaction layer growth. Five miniplates with well-recorded fabrication data and irradiation conditions were selected, and their PIE data was analyzed. ABAQUS finite element analysis (FEA) was utilized to simulate the microstructural evolution of the plates. Using the simulation results shear stress, effective stress and hydrostatic stress exerted on both themore » fuel particles and the Al matrix were determined. The effects of fabrication and irradiation variables on stress-induced microstructural evolutions, such as pore growth in the interaction layers and Al matrix rupture, were investigated. The observed microstructural changes were consistent with the calculated stress distribution in the meat.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeong, G. Y.; Kim, Yeon Soo; Jamison, L. M.
U-Mo/Al dispersion fuel irradiated to high burnup at high power (high fission rate) exhibited microstructural changes such as deformation of the fuel particles, pore growth, and rupture of the Al matrix. The driving force for these microstructural changes was meat swelling caused by a combination of fuel particle swelling and interaction layer growth. Five miniplates with well-recorded fabrication data and irradiation conditions were selected, and their PIE data was analyzed. ABAQUS finite element analysis (FEA) was utilized to simulate the microstructural evolution of the plates. Using the simulation results shear stress, effective stress and hydrostatic stress exerted on both themore » fuel particles and the Al matrix were determined. The effects of fabrication and irradiation variables on stress-induced microstructural evolutions, such as pore growth in the interaction layers and Al matrix rupture, were investigated. The observed microstructural changes were consistent with the calculated stress distribution in the meat.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neu, Richard W.
The aim of this project is to develop a microstructure-sensitive crystal viscoplasticity (CVP) model for single-crystal Ni-base superalloys to model the behavior of the material and components in the hot gas path sections of industrial gas turbines (IGT). Microstructure degradation associated with aging critical to predicting long-term creep-fatigue interactions will be embedded into the model through the γ' precipitate morphology evolution by coupling the coarsening drivers and kinetics into the constitutive equations of the CVP model. Model parameters will be determined using new experimental protocols that involve systematically artificially aging the alloy under different stress conditions to determine the relationshipmore » between the size and morphology g' precipitates on the creep and thermomechanical fatigue response.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neu, Richard W
The aim of this project is to develop a microstructure-sensitive crystal viscoplasticity (CVP) model for single-crystal Ni-base superalloys to model the behavior of the material and components in the hot gas path sections of industrial gas turbines (IGT). Microstructure degradation associated with aging critical to predicting long-term creep-fatigue interactions will be embedded into the model through the γ' precipitate morphology evolution by coupling the coarsening drivers and kinetics into the constitutive equations of the CVP model. Model parameters will be determined using new experimental protocols that involve systematically artificially aging the alloy under different stress conditions to determine the relationshipmore » between the size and morphology g' precipitates on the creep and thermomechanical fatigue response.« less
A Review of Texture Evolution Mechanisms During Deformation by Rolling in Aluminum Alloys
NASA Astrophysics Data System (ADS)
Li, Shasha; Zhao, Qi; Liu, Zhiyi; Li, Fudong
2018-06-01
The current understanding of texture evolution during deformation by rolling in aluminum alloys was summarized. This included understanding the evolution mechanisms and several key factors of initial texture, microstructure, alloy composition, deformation temperature, stress-strain condition, and rolling geometry. Related models on predicting texture evolution during rolling were also discussed. Finally, for this research field, the recommendations for controlling the formation of rolling textures were proposed.
Intergrannular strain evolution in a zircaloy-4 alloy with Widmanstatten microstructure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clausen, Bjorn; Vogel, Sven C; Garlea, Eena
2009-01-01
A Zircaloy-4 alloy with Widmanstatten-Basketweave microstructure and random texture has been used to study the deformation systems responsible for the polycrystalline plasticity at the grain level. The evolution of internal strain and bulk texture is investigated using neutron diffraction and an elasto-plastic self-consistent (EPSC) modeling scheme. The macroscopic stress-strain behavior and intergranular (hkil-specific) strain development, parallel and perpendicular to the loading direction, were measured in-situ during uniaxial tensile loading. Then, the EPSC model was employed to simulate the experimental results. This modeling scheme accounts for the thermal anisotropy; elastic-plastic properties of the constituent grains; and activation, reorientation, and stress relaxationmore » associated with twinning. The agreement between the experiment and the model will be discussed as well as the critical resolved shear stresses (CRSS) and the hardening coefficients obtained from the model.« less
NASA Astrophysics Data System (ADS)
Tanigawa, Hiroyasu; Katoh, Yutai; Kohyama, Akira
1995-08-01
Effects of applied stress on early stages of interstitial type Frank loop evolution were investigated by both numerical calculation and irradiation experiments. The final objective of this research is to propose a comprehensive model of complex stress effects on microstructural evolution under various conditions. In the experimental part of this work, the microstructural analysis revealed that the differences in resolved normal stress caused those in the nucleation rates of Frank loops on {111} crystallographic family planes, and that with increasing external applied stress the total nucleation rate of Frank loops was increased. A numerical calculation was carried out primarily to evaluate the validity of models of stress effects on nucleation processes of Frank loop evolution. The calculation stands on rate equuations which describe evolution of point defects, small points defect clusters and Frank loops. The rate equations of Frank loop evolution were formulated for {111} planes, considering effects of resolved normal stress to clustering processes of small point defects and growth processes of Frank loops, separately. The experimental results and the predictions from the numerical calculation qualitatively coincided well with each other.
NASA Astrophysics Data System (ADS)
Mahin Shirazi, Sam
Accelerated thermal cycling (ATC) tests are the most commonly used tests for the thermo-mechanical performance assessment of microelectronics assemblies. Currently used reliability models have failed to incorporate the microstructural dependency of lead free solder joint behavior and its microstructure evolution during cycling. Thus, it is essential to have a mechanistic understanding of the effect of cycling parameters on damage evolution and failure of lead free solder joints in ATC. Recrystallization has been identified as the damage rate controlling mechanism in ATC. Usually it takes 1/3 of life for completion of recrystallization regardless of cycling parameters. Thus, the life of the solder joints can be predicted by estimating global recrystallization. The objective of the first part of the study was to examine whether the damage scenario applies in service is the same as the harsh thermal cycling tests (i.e. 0/100 °C and -40/125 °C) commonly used in industry. Microstructure analysis results on a variety of lead free solder SnAgCu assemblies subjected to the both harsh (0/100 °C) and mild (20/80 °C) ATC confirmed similar failure mechanism under the both testing conditions. Sn grain morphology (interlaced versus beach ball) has a significant effect on the thermo-mechanical performance (and thus the model) of the lead free solder joints. The longer thermal cycling lifetime observed in the interlaced solder joints subjected to the ATC compared to the beach ball structure was correlated to the different initial microstructure and the microstructure evolution during cycling. For the modeling proposes, the present study was focused on Sn-Ag-Cu solder joints with either a single Sn grain or beach ball structure. Microstructural analysis results of the simulated thermal cycling experiment revealed that, the life can be approximated as determined by the accumulation of a certain amount of work during the high temperature dwells. Finally the effect of precipitates spacing on acceleration factor was investigated. Results indicated that a smaller initial precipitate spacing would tend to result in a longer life in mild thermal cycling/service (where there is lower stresses). Accordingly, it is essential to incorporate the dependence of damage rate (i.e. recrystallization) on precipitate coarsening in any predictions.
Phase-field model of domain structures in ferroelectric thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Y. L.; Hu, S. Y.; Liu, Z. K.
A phase-field model for predicting the coherent microstructure evolution in constrained thin films is developed. It employs an analytical elastic solution derived for a constrained film with arbitrary eigenstrain distributions. The domain structure evolution during a cubic{r_arrow}tetragonal proper ferroelectric phase transition is studied. It is shown that the model is able to simultaneously predict the effects of substrate constraint and temperature on the volume fractions of domain variants, domain-wall orientations, domain shapes, and their temporal evolution. {copyright} 2001 American Institute of Physics.
Computer simulation of solder joint failure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burchett, S.N.; Frear, D.R.; Rashid, M.M.
The thermomechanical fatigue failure of solder joints is increasingly becoming an important reliability issue for electronic packages. The purpose of this Laboratory Directed Research and Development (LDRD) project was to develop computational tools for simulating the behavior of solder joints under strain and temperature cycling, taking into account the microstructural heterogeneities that exist in as-solidified near eutectic Sn-Pb joints, as well as subsequent microstructural evolution. The authors present two computational constitutive models, a two-phase model and a single-phase model, that were developed to predict the behavior of near eutectic Sn-Pb solder joints under fatigue conditions. Unique metallurgical tests provide themore » fundamental input for the constitutive relations. The two-phase model mathematically predicts the heterogeneous coarsening behavior of near eutectic Sn-Pb solder. The finite element simulations with this model agree qualitatively with experimental thermomechanical fatigue tests. The simulations show that the presence of an initial heterogeneity in the solder microstructure could significantly degrade the fatigue lifetime. The single-phase model was developed to predict solder joint behavior using materials data for constitutive relation constants that could be determined through straightforward metallurgical experiments. Special thermomechanical fatigue tests were developed to give fundamental materials input to the models, and an in situ SEM thermomechanical fatigue test system was developed to characterize microstructural evolution and the mechanical behavior of solder joints during the test. A shear/torsion test sample was developed to impose strain in two different orientations. Materials constants were derived from these tests. The simulation results from the two-phase model showed good fit to the experimental test results.« less
Microstructural evolution of ion-irradiated sol–gel-derived thin films
Shojaee, S. A.; Qi, Y.; Wang, Y. Q.; ...
2017-07-17
In this paper, the effects of ion irradiation on the microstructural evolution of sol–gel-derived silica-based thin films were examined by combining the results from Fourier transform infrared, Raman, and X-ray photoelectron spectroscopy, Rutherford backscattering spectrometry, and elastic recoil detection. Variations in the chemical composition, density, and structure of the constituent phases and interfaces were studied, and the results were used to propose a microstructural model for the irradiated films. It was discovered that the microstructure of the films after ion irradiation and decomposition of the starting organic materials consisted of isolated hydrogenated amorphous carbon clusters within an amorphous and carbon-incorporatedmore » silica network. A decrease in the bond angle of Si–O–Si bonds in amorphous silica network along with an increase in the concentration of carbon-rich SiO x C y tetrahedra were the major structural changes caused by ion irradiation. Finally, in addition, hydrogen release from free carbon clusters was observed with increasing ion energy and fluence.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Argibay, Nicolas; Cheng, Shengfeng; Sawyer, W. G.
2015-09-01
The prediction of macro-scale friction and wear behavior based on first principles and material properties has remained an elusive but highly desirable target for tribologists and material scientists alike. Stochastic processes (e.g. wear), statistically described parameters (e.g. surface topography) and their evolution tend to defeat attempts to establish practical general correlations between fundamental nanoscale processes and macro-scale behaviors. We present a model based on microstructural stability and evolution for the prediction of metal friction regimes, founded on recently established microstructural deformation mechanisms of nanocrystalline metals, that relies exclusively on material properties and contact stress models. We show through complementary experimentalmore » and simulation results that this model overcomes longstanding practical challenges and successfully makes accurate and consistent predictions of friction transitions for a wide range of contact conditions. This framework not only challenges the assumptions of conventional causal relationships between hardness and friction, and between friction and wear, but also suggests a pathway for the design of higher performance metal alloys.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Popova, Evdokia; Rodgers, Theron M.; Gong, Xinyi
A novel data science workflow is developed and demonstrated to extract process-structure linkages (i.e., reduced-order model) for microstructure evolution problems when the final microstructure depends on (simulation or experimental) processing parameters. Our workflow consists of four main steps: data pre-processing, microstructure quantification, dimensionality reduction, and extraction/validation of process-structure linkages. These methods that can be employed within each step vary based on the type and amount of available data. In this paper, this data-driven workflow is applied to a set of synthetic additive manufacturing microstructures obtained using the Potts-kinetic Monte Carlo (kMC) approach. Additive manufacturing techniques inherently produce complex microstructures thatmore » can vary significantly with processing conditions. Using the developed workflow, a low-dimensional data-driven model was established to correlate process parameters with the predicted final microstructure. In addition, the modular workflows developed and presented in this work facilitate easy dissemination and curation by the broader community.« less
Popova, Evdokia; Rodgers, Theron M.; Gong, Xinyi; ...
2017-03-13
A novel data science workflow is developed and demonstrated to extract process-structure linkages (i.e., reduced-order model) for microstructure evolution problems when the final microstructure depends on (simulation or experimental) processing parameters. Our workflow consists of four main steps: data pre-processing, microstructure quantification, dimensionality reduction, and extraction/validation of process-structure linkages. These methods that can be employed within each step vary based on the type and amount of available data. In this paper, this data-driven workflow is applied to a set of synthetic additive manufacturing microstructures obtained using the Potts-kinetic Monte Carlo (kMC) approach. Additive manufacturing techniques inherently produce complex microstructures thatmore » can vary significantly with processing conditions. Using the developed workflow, a low-dimensional data-driven model was established to correlate process parameters with the predicted final microstructure. In addition, the modular workflows developed and presented in this work facilitate easy dissemination and curation by the broader community.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Chen; Gupta, Vipul; Huang, Shenyan
The goal of this project is to model long-term creep performance for nickel-base superalloy weldments in high temperature power generation systems. The project uses physics-based modeling methodologies and algorithms for predicting alloy properties in heterogeneous material structures. The modeling methodology will be demonstrated on a gas turbine combustor liner weldment of Haynes 282 precipitate-strengthened nickel-base superalloy. The major developments are: (1) microstructure-property relationships under creep conditions and microstructure characterization (2) modeling inhomogeneous microstructure in superalloy weld (3) modeling mesoscale plastic deformation in superalloy weld and (4) a constitutive creep model that accounts for weld and base metal microstructure and theirmore » long term evolution. The developed modeling technology is aimed to provide a more efficient and accurate assessment of a material’s long-term performance compared with current testing and extrapolation methods. This modeling technology will also accelerate development and qualification of new materials in advanced power generation systems. This document is a final technical report for the project, covering efforts conducted from October 2014 to December 2016.« less
OBJECT KINETIC MONTE CARLO SIMULATIONS OF MICROSTRUCTURE EVOLUTION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nandipati, Giridhar; Setyawan, Wahyu; Heinisch, Howard L.
2013-09-30
The objective is to report the development of the flexible object kinetic Monte Carlo (OKMC) simulation code KSOME (kinetic simulation of microstructure evolution) which can be used to simulate microstructure evolution of complex systems under irradiation. In this report we briefly describe the capabilities of KSOME and present preliminary results for short term annealing of single cascades in tungsten at various primary-knock-on atom (PKA) energies and temperatures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
J.K. Brimacombe; I.V. Samarasekera; E.B. Hawbolt
1999-07-31
This report describes the work of developing an integrated model used to predict the thermal history, deformation, roll forces, microstructural evolution and mechanical properties of steel strip in a hot-strip mill. This achievement results from a joint research effort that is part of the American Iron and Steel Institute's (AIS) Advanced Process Control Program, a collaboration between the U.S. DOE and fifteen North American Steelmakers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Micah Johnson, Andrew Slaughter
PIKA is a MOOSE-based application for modeling micro-structure evolution of seasonal snow. The model will be useful for environmental, atmospheric, and climate scientists. Possible applications include application to energy balance models, ice sheet modeling, and avalanche forecasting. The model implements physics from published, peer-reviewed articles. The main purpose is to foster university and laboratory collaboration to build a larger multi-scale snow model using MOOSE. The main feature of the code is that it is implemented using the MOOSE framework, thus making features such as multiphysics coupling, adaptive mesh refinement, and parallel scalability native to the application. PIKA implements three equations:more » the phase-field equation for tracking the evolution of the ice-air interface within seasonal snow at the grain-scale; the heat equation for computing the temperature of both the ice and air within the snow; and the mass transport equation for monitoring the diffusion of water vapor in the pore space of the snow.« less
NASA Astrophysics Data System (ADS)
Ulmer, Christopher J.; Motta, Arthur T.
2017-11-01
The development of TEM-visible damage in materials under irradiation at cryogenic temperatures cannot be explained using classical rate theory modeling with thermally activated reactions since at low temperatures thermal reaction rates are too low. Although point defect mobility approaches zero at low temperature, the thermal spikes induced by displacement cascades enable some atom mobility as it cools. In this work a model is developed to calculate "athermal" reaction rates from the atomic mobility within the irradiation-induced thermal spikes, including both displacement cascades and electronic stopping. The athermal reaction rates are added to a simple rate theory cluster dynamics model to allow for the simulation of microstructure evolution during irradiation at cryogenic temperatures. The rate theory model is applied to in-situ irradiation of ZrC and compares well at cryogenic temperatures. The results show that the addition of the thermal spike model makes it possible to rationalize microstructure evolution in the low temperature regime.
Modeling the evolution of lithium-ion particle contact distributions using a fabric tensor approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stershic, A. J.; Simunovic, S.; Nanda, J.
2015-08-25
Electrode microstructure and processing can strongly influence lithium-ion battery performance such as capacity retention, power, and rate. Battery electrodes are multi-phase composite structures wherein conductive diluents and binder bond active material to a current collector. The structure and response of this composite network during repeated electrochemical cycling directly affects battery performance characteristics. We propose the fabric tensor formalism for describing the structure and evolution of the electrode microstructure. Fabric tensors are directional measures of particulate assemblies based on inter-particle connectivity, relating to the structural and transport properties of the electrode. Fabric tensor analysis is applied to experimental data-sets for positivemore » electrode made of lithium nickel manganese cobalt oxide, captured by X-ray tomography for several compositions and consolidation pressures. We show that fabric tensors capture the evolution of inter-particle contact distribution and are therefore good measures for the internal state of and electronic transport within the electrode. The fabric tensor analysis is also applied to Discrete Element Method (DEM) simulations of electrode microstructures using spherical particles with size distributions from the tomography. Furthermore, these results do not follow the experimental trends, which indicates that the particle size distribution alone is not a sufficient measure for the electrode microstructures in DEM simulations.« less
NASA Astrophysics Data System (ADS)
Lohmar, Johannes; Bambach, Markus; Karhausen, Kai F.
2013-01-01
Integrated computational materials engineering is an up to date method for developing new materials and optimizing complete process chains. In the simulation of a process chain, material models play a central role as they capture the response of the material to external process conditions. While much effort is put into their development and improvement, less attention is paid to their implementation, which is problematic because the representation of microstructure in the model has a decisive influence on modeling accuracy and calculation speed. The aim of this article is to analyze the influence of different microstructure representation concepts on the prediction of flow stress and microstructure evolution when using the same set of material equations. Scalar, tree-based and cluster-based concepts are compared for a multi-stage rolling process of an AA5182 alloy. It was found that implementation influences the predicted flow stress and grain size, in particular in the regime of coupled hardening and softening.
Linguistic Ambiguity in a Connectionist Model for Grammatical Studies.
ERIC Educational Resources Information Center
Angelica, Julia; Ney, James W.
1995-01-01
Discusses the evolution of the connectionist model of language processing, focusing on the parallel distributed processing (PDP) model proposed by Rumelhart and others (1986) that explains the microstructure of cognition in terms of interactive activation between elementary input, output, and intermediate processing units linked by weighted…
2008-07-01
Tailoring the Properties of Aluminum and Titanium Alloys", Deformation, Processing, and Structure , G. Krauss, ed., ASM International, Materials Park, OH...1984, pp. 279-354. 51. G.W. Kuhlman, "A Critical Appraisal of Thermomechanical Processing of Structural Titanium Alloys", Microstructure/ Property ... titanium alloys is heavily dependent on the allotropic transformation from a hexagonal-close-packed crystal structure (denoted as alpha phase) found at
1991-05-30
alloys and composites Solidification experiments with Succinonitrile-acetone system Experimerts with Salol I Directional Solidification of Mg-Li alloys ...Directional Solidification of Mg-Li Composites Microstructural Analysis and Modeling Combustion Synthesis Principles ( theory ) Nb-AI alloys made by...Combustion Synthesis Nb-AI - NbB composites made by Combustion Synthesis Directional Solidification of Nb-AI Alloys Directional Solidification of Nb- Al
The Microstructural Evolution of Fatigue Cracks in FCC Metals
NASA Astrophysics Data System (ADS)
Gross, David William
The microstructural evolution during fatigue crack propagation was investigated in a variety of planar and wavy slip FCC metals. The planar materials included Haynes 230, Nitronic 40, and 316 stainless steel, and the wavy materials included pure nickel and pure copper. Three different sets of experiments were performed to fully characterize the microstructural evolution. The first, performed on Haynes 230, mapped the strain field ahead a crack tip using digital image correlation and electron backscatter diffraction techniques. Focused ion beam (FIB) lift-out techniques were then utilized to extract transmission electron microscopy (TEM) samples at specific distances from the crack tip. TEM investigations compared the measured strain to the microstructure. Overall, the strain measured via DIC and EBSD was only weakly correlated to the density of planar slip bands in the microstructure. The second set of experiments concerned the dislocation structure around crack tips. This set of experiments was performed on all the materials. The microstructure at arrested fatigue cracks on the free surface was compared to the microstructure found beneath striations on the fracture surfaces by utilizing FIB micromachining to create site-specific TEM samples. The evolved microstructure depended on the slip type. Strong agreement was found between the crack tip microstructure at the free surface and the fracture surface. In the planar materials, the microstructure in the plastic zone consisted of bands of dislocations or deformation twins, before transitioning to a refined sub-grain microstructure near the crack flank. The sub-grain structure extended 300-500 nm away from the crack flank in all the planar slip materials studied. In contrast, the bulk structure in the wavy slip material consisted of dislocation cells and did not transition to a different microstructure as the crack tip was approached. The strain in wavy slip was highest near the crack tip, as the misorientations between the dislocation cells increased and the cell size decreased as the crack flank was approached. The final set of experiments involved reloading the arrested crack tips in monotonic tension. This was performed on both the Haynes 230 and 316 stainless steel. This technique exposed the fracture surface and location of the arrested crack tip away from the free surface, allowing for a sample to be extracted via FIB micromachining and TEM evaluation of the microstructure. This permitted the crack tip microstructure to be investigated without exposing the microstructure to crack closure or free surface effects. These experiments confirmed what was inferred from the earlier experiments, namely that the banded structure was a product of the crack tip plastic zone and the refined structure was a product of the strain associated with crack advance. Overall the microstructural complexity presented in this work was much higher than would be predicted by current models of fatigue crack propagation. It is recommended that future models attempt to simulate interactions between the dislocations emitted during fatigue crack growth and the pre-existing microstructure to more accurately simulate the processes occurring at the crack tip during crack growth.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lim, Hojun; Abdeljawad, Fadi; Owen, Steven J.
Here, the mechanical properties of materials systems are highly influenced by various features at the microstructural level. The ability to capture these heterogeneities and incorporate them into continuum-scale frameworks of the deformation behavior is considered a key step in the development of complex non-local models of failure. In this study, we present a modeling framework that incorporates physically-based realizations of polycrystalline aggregates from a phase field (PF) model into a crystal plasticity finite element (CP-FE) framework. Simulated annealing via the PF model yields ensembles of materials microstructures with various grain sizes and shapes. With the aid of a novel FEmore » meshing technique, FE discretizations of these microstructures are generated, where several key features, such as conformity to interfaces, and triple junction angles, are preserved. The discretizations are then used in the CP-FE framework to simulate the mechanical response of polycrystalline α-iron. It is shown that the conformal discretization across interfaces reduces artificial stress localization commonly observed in non-conformal FE discretizations. The work presented herein is a first step towards incorporating physically-based microstructures in lieu of the overly simplified representations that are commonly used. In broader terms, the proposed framework provides future avenues to explore bridging models of materials processes, e.g. additive manufacturing and microstructure evolution of multi-phase multi-component systems, into continuum-scale frameworks of the mechanical properties.« less
Lim, Hojun; Abdeljawad, Fadi; Owen, Steven J.; ...
2016-04-25
Here, the mechanical properties of materials systems are highly influenced by various features at the microstructural level. The ability to capture these heterogeneities and incorporate them into continuum-scale frameworks of the deformation behavior is considered a key step in the development of complex non-local models of failure. In this study, we present a modeling framework that incorporates physically-based realizations of polycrystalline aggregates from a phase field (PF) model into a crystal plasticity finite element (CP-FE) framework. Simulated annealing via the PF model yields ensembles of materials microstructures with various grain sizes and shapes. With the aid of a novel FEmore » meshing technique, FE discretizations of these microstructures are generated, where several key features, such as conformity to interfaces, and triple junction angles, are preserved. The discretizations are then used in the CP-FE framework to simulate the mechanical response of polycrystalline α-iron. It is shown that the conformal discretization across interfaces reduces artificial stress localization commonly observed in non-conformal FE discretizations. The work presented herein is a first step towards incorporating physically-based microstructures in lieu of the overly simplified representations that are commonly used. In broader terms, the proposed framework provides future avenues to explore bridging models of materials processes, e.g. additive manufacturing and microstructure evolution of multi-phase multi-component systems, into continuum-scale frameworks of the mechanical properties.« less
Microstructure simulation of rapidly solidified ASP30 high-speed steel particles by gas atomization
NASA Astrophysics Data System (ADS)
Ma, Jie; Wang, Bo; Yang, Zhi-liang; Wu, Guang-xin; Zhang, Jie-yu; Zhao, Shun-li
2016-03-01
In this study, the microstructure evolution of rapidly solidified ASP30 high-speed steel particles was predicted using a simulation method based on the cellular automaton-finite element (CAFE) model. The dendritic growth kinetics, in view of the characteristics of ASP30 steel, were calculated and combined with macro heat transfer calculations by user-defined functions (UDFs) to simulate the microstructure of gas-atomized particles. The relationship among particle diameter, undercooling, and the convection heat transfer coefficient was also investigated to provide cooling conditions for simulations. The simulated results indicated that a columnar grain microstructure was observed in small particles, whereas an equiaxed microstructure was observed in large particles. In addition, the morphologies and microstructures of gas-atomized ASP30 steel particles were also investigated experimentally using scanning electron microscopy (SEM). The experimental results showed that four major types of microstructures were formed: dendritic, equiaxed, mixed, and multi-droplet microstructures. The simulated results and the available experimental data are in good agreement.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sames, William J.; Unocic, Kinga A.; Dehoff, Ryan R.
2014-07-28
Additive manufacturing (AM) technologies, also known as 3D printing, have demonstrated the potential to fabricate complex geometrical components, but the resulting microstructures and mechanical properties of these materials are not well understood due to unique and complex thermal cycles observed during processing. The electron beam melting (EBM) process is unique because the powder bed temperature can be elevated and maintained at temperatures over 1000 °C for the duration of the process. This results in three specific stages of microstructural phase evolution: (a) rapid cool down from the melting temperature to the process temperature, (b) extended hold at the process temperature,more » and (c) slow cool down to the room temperature. In this work, the mechanisms for reported microstructural differences in EBM are rationalized for Inconel 718 based on measured thermal cycles, preliminary thermal modeling, and computational thermodynamics models. The relationship between processing parameters, solidification microstructure, interdendritic segregation, and phase precipitation (δ, γ´, and γ´´) are discussed.« less
NASA Technical Reports Server (NTRS)
Gayda, J.; Srolovitz, D. J.
1987-01-01
A specialized, microstructural lattice model, termed MCFET for combined Monte Carlo Finite Element Technique, was developed which simulates microstructural evolution in material systems where modulated phases occur and the directionality of the modulation is influenced by internal and external stresses. In this approach, the microstructure is discretized onto a fine lattice. Each element in the lattice is labelled in accordance with its microstructural identity. Diffusion of material at elevated temperatures is simulated by allowing exchanges of neighboring elements if the exchange lowers the total energy of the system. A Monte Carlo approach is used to select the exchange site while the change in energy associated with stress fields is computed using a finite element technique. The MCFET analysis was validated by comparing this approach with a closed form, analytical method for stress assisted, shape changes of a single particle in an infinite matrix. Sample MCFET analytical for multiparticle problems were also run and in general the resulting microstructural changes associated with the application of an external stress are similar to that observed in Ni-Al-Cr alloys at elevated temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Livescu, Veronica; Bronkhorst, Curt Allan; Vander Wiel, Scott Alan
Many challenges exist with regard to understanding and representing complex physical processes involved with ductile damage and failure in polycrystalline metallic materials. Currently, the ability to accurately predict the macroscale ductile damage and failure response of metallic materials is lacking. Research at Los Alamos National Laboratory (LANL) is aimed at building a coupled experimental and computational methodology that supports the development of predictive damage capabilities by: capturing real distributions of microstructural features from real material and implementing them as digitally generated microstructures in damage model development; and, distilling structure-property information to link microstructural details to damage evolution under a multitudemore » of loading states.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Shenyang; Lavender, Curt A.; Joshi, Vineet V.
Recrystallization plays an important role in swelling kinetics of irradiated metallic nuclear fuels. This talk will present a three-dimensional microstructure-dependent swelling model by integrating the evolution of intra-and inter- granular gas bubbles, dislocation loop density, and recrystallization.
Examining the microtexture evolution in a hole-edge punched into 780 MPa grade hot-rolled steel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shin, J.H.; Kim, M.S.
The deformation behavior in the hole-edge of 780 MPa grade hot-rolled steel during the punching process was investigated via microstructure characterization and computational simulation. Microstructure characterization was conducted to observe the edges of punched holes through the thickness direction, and electron back-scattered diffraction (EBSD) was used to analyze the heterogeneity of the deformation. Finite element analysis (FEA) that could account for a ductile fracture criterion was conducted to simulate the deformation and fracture behaviors of 780 MPa grade hot-rolled steel during the punching process. Calculation of rotation rate fields at the edges of the punched holes during the punching processmore » revealed that metastable orientations in Euler space were confined to specific orientation groups. Rotation-rate fields effectively explained the stability of the initial texture components in the hole-edge region during the punching process. A visco-plastic self-consistent (VPSC) polycrystal model was used to calculate the microtexture evolution in the hole-edge region during the punching process. FEA revealed that the heterogeneous effective strain was closely related to the heterogeneity of the Kernel average misorientation (KAM) distribution in the hole-edge region. A simulation of the deformation microtexture evolution in the hole-edge region using a VPSC model was in good agreement with the experimental results. - Highlights: •We analyzed the microstructure in a hole-edge punched in HR 780HB steel. •Rotation rate fields revealed the stability of the initial texture components. •Heterogeneous effective stain was closely related to the KAM distribution. •VPSC model successfully simulated the deformation microtexture evolution.« less
NASA Astrophysics Data System (ADS)
Lyu, Dandan; Li, Shaofan
2017-10-01
Crystal defects have microstructure, and this microstructure should be related to the microstructure of the original crystal. Hence each type of crystals may have similar defects due to the same failure mechanism originated from the same microstructure, if they are under the same loading conditions. In this work, we propose a multiscale crystal defect dynamics (MCDD) model that models defects by considering its intrinsic microstructure derived from the microstructure or material genome of the original perfect crystal. The main novelties of present work are: (1) the discrete exterior calculus and algebraic topology theory are used to construct a scale-up (coarse-grained) dual lattice model for crystal defects, which may represent all possible defect modes inside a crystal; (2) a higher order Cauchy-Born rule (up to the fourth order) is adopted to construct atomistic-informed constitutive relations for various defect process zones, and (3) an hierarchical strain gradient theory based finite element formulation is developed to support an hierarchical multiscale cohesive (process) zone model for various defects in a unified formulation. The efficiency of MCDD computational algorithm allows us to simulate dynamic defect evolution at large scale while taking into account atomistic interaction. The MCDD model has been validated by comparing of the results of MCDD simulations with that of molecular dynamics (MD) in the cases of nanoindentation and uniaxial tension. Numerical simulations have shown that MCDD model can predict dislocation nucleation induced instability and inelastic deformation, and thus it may provide an alternative solution to study crystal plasticity.
Kinetic model for dependence of thin film stress on growth rate, temperature, and microstructure
NASA Astrophysics Data System (ADS)
Chason, E.; Shin, J. W.; Hearne, S. J.; Freund, L. B.
2012-04-01
During deposition, many thin films go through a range of stress states, changing from compressive to tensile and back again. In addition, the stress depends strongly on the processing and material parameters. We have developed a simple analytical model to describe the stress evolution in terms of a kinetic competition between different mechanisms of stress generation and relaxation at the triple junction where the surface and grain boundary intersect. The model describes how the steady state stress scales with the dimensionless parameter D/LR where D is the diffusivity, R is the growth rate, and L is the grain size. It also explains the transition from tensile to compressive stress as the microstructure evolves from isolated islands to a continuous film. We compare calculations from the model with measurements of the stress dependence on grain size and growth rate in the steady state regime and of the evolution of stress with thickness for different temperatures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Shenyang; Joshi, Vineet; Lavender, Curt A.
Experiments showed that recrystallization dramatically speeds up the gas bubble swelling kinetics in metallic UMo fuels. In this work a recrystallization model is developed to study the effect of microstructures and radiation conditions on recrystallization kinetics. The model integrates the rate theory of intra-granular gas bubble and interstitial loop evolution and a phase field model of recrystallization zone evolution. A fast passage method is employed to describe one dimensional diffusion of interstitials which have diffusivity several order magnitude larger than that of the fission gas Xe. With the model, the effect of grain sizes on recrystallization kinetics is simulated.
NASA Astrophysics Data System (ADS)
Jokisaari, Andrea M.
Hydride precipitation in zirconium is a significant factor limiting the lifetime of nuclear fuel cladding, because hydride microstructures play a key role in the degradation of fuel cladding. However, the behavior of hydrogen in zirconium has typically been modeled using mean field approaches, which do not consider microstructural evolution. This thesis describes a quantitative microstructural evolution model for the alpha-zirconium/delta-hydride system and the associated numerical methods and algorithms that were developed. The multiphysics, phase field-based model incorporates CALPHAD free energy descriptions, linear elastic solid mechanics, and classical nucleation theory. A flexible simulation software implementing the model, Hyrax, is built on the Multiphysics Object Oriented Simulation Environment (MOOSE) finite element framework. Hyrax is open-source and freely available; moreover, the numerical methods and algorithms that have been developed are generalizable to other systems. The algorithms are described in detail, and verification studies for each are discussed. In addition, analyses of the sensitivity of the simulation results to the choice of numerical parameters are presented. For example, threshold values for the CALPHAD free energy algorithm and the use of mesh and time adaptivity when employing the nucleation algorithm are studied. Furthermore, preliminary insights into the nucleation behavior of delta-hydrides are described. These include a) the sensitivities of the nucleation rate to temperature, interfacial energy, composition and elastic energy, b) the spatial variation of the nucleation rate around a single precipitate, and c) the effect of interfacial energy and nucleation rate on the precipitate microstructure. Finally, several avenues for future work are discussed. Topics encompass the terminal solid solubility hysteresis of hydrogen in zirconium and the effects of the alpha/delta interfacial energy, as well as thermodiffusion, plasticity, and irradiation, which are not yet accounted for in the model.
Structure of anodized Al-Zr sputter deposited coatings and effect on optical appearance
NASA Astrophysics Data System (ADS)
Gudla, Visweswara Chakravarthy; Canulescu, Stela; Shabadi, Rajashekhara; Rechendorff, Kristian; Dirscherl, Kai; Ambat, Rajan
2014-10-01
The mechanism of interaction of light with the microstructure of anodized layer giving specific optical appearance is investigated using Al-Zr sputter deposited coating as a model system on an AA6060 substrate. Differences in the oxidative nature of various microstructural components result in the evolution of typical features in the anodized layer, which are investigated as a function of microstructure and correlated with its optical appearance. The Zr concentration in the coating was varied from 6 wt.% to 23 wt.%. Heat treatment of the coated samples was carried out at 550 °C for 4 h in order to evolve Al-Zr based second phase precipitates in the microstructure. Anodizing was performed using 20 wt.% sulphuric acid at 18 °C with an intention to study the effect of anodizing on the Al-Zr based precipitates in the coating. Detailed microstructural characterization of the coating and anodized layer was carried out using high resolution scanning and transmission electron microscopy, grazing incidence X-ray diffraction analysis, glow discharge optical emission spectroscopy, and optical appearance using spectrophotometry. The evolution of microstructure in the anodized layer as a function of anodizing parameters and their influence on the interaction of light is investigated and the results in general are applicable to discolouration of anodized layer on recycled aluminium alloys due to intermetallics.
Effect of solidification rate on microstructure evolution in dual phase microalloyed steel
Kostryzhev, A. G.; Slater, C. D.; Marenych, O. O.; Davis, C. L.
2016-01-01
In steels the dependence of ambient temperature microstructure and mechanical properties on solidification rate is not well reported. In this work we investigate the microstructure and hardness evolution for a low C low Mn NbTi-microalloyed steel solidified in the cooling rate range of 1–50 Cs−1. The maximum strength was obtained at the intermediate solidification rate of 30 Cs−1. This result has been correlated to the microstructure variation with solidification rate. PMID:27759109
Glazoff, Michael V.; Dufek, Eric J.; Shalashnikov, Egor V.
2016-09-15
Morphological analysis and synthesis operations were employed for analysis of electrode microstructure transformations and evolution accompanying the application of charge/discharge cycles to electrochemical storage systems (batteries). Using state-of-the-art morphological algorithms, it was possible to predict microstructure evolution in porous Si electrodes for Li-ion batteries with sufficient accuracy. Algorithms for image analyses (segmentation, feature extraction, and 3D-reconstructions using 2D-images) were also developed. Altogether, these techniques could be considered supplementary to phase-field mesoscopic approach to microstructure evolution that is based upon clear and definitive changes in the appearance of microstructure. However, unlike in phase-field, the governing equations for morphological approach are geometry-,more » not physics-based. Similar non-physics based approach to understanding different phenomena was attempted with the introduction of cellular automata. It is anticipated that morphological synthesis and analysis will represent a useful supplementary tool to phase-field and will render assistance to unraveling the underlying microstructure-property relationships. The paper contains data on electrochemical characterization of different electrode materials that was conducted in parallel to morphological study.« less
NASA Astrophysics Data System (ADS)
Wang, X. F.; Guo, M. X.; Chen, Y.; Zhu, J.; Zhang, J. S.; Zhuang, L. Z.
2017-07-01
The effect of thermomechanical processing on microstructure, texture evolution, and mechanical properties of Al-Mg-Si-Cu alloys with different Zn contents was studied by mechanical properties, microstructure, and texture characterization in the present study. The results show that thermomechanical processing has a significant influence on the evolution of microstructure and texture and on the final mechanical properties, independently of Zn contents. Compared with the T4P-treated (first preaged at 353 K (80 °C) for 12 hours and then naturally aged for 14 days) sheets with high final cold rolling reduction, the T4P-treated sheets with low final cold rolling reduction possess almost identical strength and elongation and higher average r values. Compared with the intermediate annealed sheets with high final cold rolling reduction, the intermediate annealed sheets with low final cold rolling reduction contain a higher number of particles with a smaller size. After solution treatment, in contrast to the sheets with high final cold rolling reduction, the sheets with low final cold rolling reduction possess finer grain structure and tend to form a weaker recrystallization texture. The recrystallization texture may be affected by particle distribution, grain size, and final cold rolling texture. Finally, the visco-plastic self-consistent (VPSC) model was used to predict r values.
NASA Astrophysics Data System (ADS)
Breton, Daniel; Baker, Ian; Cole, David
2013-04-01
Understanding and predicting the flow of polycrystalline ice is crucial to ice sheet modeling and paleoclimate reconstruction from ice cores. Ice flow rates depend strongly on the fabric (i.e. the distribution of grain sizes and crystallographic orientations) which evolves over time and enhances the flow rate in the direction of applied stress. The mechanisms for fabric evolution in ice have been extensively studied at atmospheric pressures, but little work has been done to observe these processes at the high pressures experienced deep within ice sheets where long-term changes in ice rheology are expected to have significance. We conducted compressive creep tests to ~10% strain on 917 kg m-3, initially randomly-oriented polycrystalline ice specimens at 0.1 (atmospheric) and 20 MPa (simulating ~2,000 m depth) hydrostatic pressures, performing microstructural analyses on the resulting deformed specimens to characterize the evolution and strength of crystal fabric. Our microstructural analysis technique simultaneously collects grain shape and size data from Scanning Electron Microscope (SEM) micrographs and obtains crystallographic orientation data via Electron BackScatter Diffraction (EBSD). Combining these measurements allows rapid analysis of the ice fabric over large numbers of grains, yielding statistically useful numbers of grain size and orientation data. We present creep and microstructural data to demonstrate pressure-dependent effects on the mechanical and microstructural evolution of polycrystalline ice and discuss possible mechanisms for the observed differences.
An experimental and computational investigation of dynamic ductile fracture in stainless steel welds
NASA Astrophysics Data System (ADS)
Kothnur, Vasanth Srinivasa
The high strain rate viscoplastic flow and fracture behavior of NITRONIC-50 and AL6XN stainless steel weldments are studied under dynamic loading conditions. The study is primarily motivated by interest in modeling the micromechanics of dynamic ductile failure in heterogeneous weldments. The high strain rate response of specimens machined from the parent, weld and heat-affected zones of NITRONIC-50 and AL6XN weldments is reported here on the basis of experiments conducted in a compression Kolsky bar configuration. The failure response of specimens prepared from the various material zones is investigated under high rate loading conditions in a tension Kolsky bar set-up. The microstructure of voided fracture process zones in these weldments is studied using X-ray Computed Microtomography. To model the preferential evolution of damage near the heat-affected zone, a finite deformation elastic-viscoplastic constitutive model for porous materials is developed. The evolution of the macroscopic flow response and the porous microstructure have been analysed in two distinctive regimes: pre-coalescence and post-coalescence. The onset of void coalescence is analyzed on the basis of upper-bound models to obtain the limit-loads needed to sustain a localized mode of plastic flow in the inter-void ligament. A finite element framework for the integration of the porous material response under high rate loading conditions is implemented as a user-subroutine in ABAQUS/Explicit. To address the effect of mesh sensitivity of numerical simulations of ductile fracture, a microstructural length scale is used to discretize finite element models of test specimens. Results from a detailed finite element study of the deformation and damage evolution in AL6XN weldments are compared with experimental observations.
A finite-strain homogenization model for viscoplastic porous single crystals: II - Applications
NASA Astrophysics Data System (ADS)
Song, Dawei; Ponte Castañeda, P.
2017-10-01
In part I of this work (Song and Ponte Castañeda, 2017a), a new homogenization-based constitutive model was developed for the finite-strain, macroscopic response of porous viscoplastic single crystals. In this second part, the new model is first used to investigate the instantaneous response and the evolution of the microstructure for porous FCC single crystals for a wide range of loading conditions. The loading orientation, Lode angle and stress triaxiality are found to have significant effects on the evolution of porosity and average void shape, which play crucial roles in determining the overall hardening/softening behavior of porous single crystals. The predictions of the model are found to be in fairly good agreement with numerical simulations available from the literature for all loadings considered, especially for low triaxiality conditions. The model is then used to investigate the strong effect of crystal anisotropy on the instantaneous response and the evolution of the microstructure for porous HCP single crystals. For uniaxial tension and compression, the overall hardening/softening behavior of porous HCP crystals is found to be controlled mostly by the evolution of void shape, and not so much by the evolution of porosity. In particular, porous HCP crystals exhibit overall hardening behavior with increasing porosity, while they exhibit overall softening behavior with decreasing porosity. This interesting behavior is consistent with corresponding results for porous FCC crystals, but is found to be more significant for porous HCP crystals with large anisotropy, such as porous ice, where the non-basal slip systems are much harder than the basal systems.
Microstructural Evolution and Tensile Properties of SnAgCu Mixed with Sn-Pb Solder Alloys (Preprint)
2009-03-01
AFRL-RX-WP-TP-2009-4132 MICROSTRUCTURAL EVOLUTION AND TENSILE PROPERTIES OF SnAgCu MIXED WITH Sn-Pb SOLDER ALLOYS (PREPRINT...PROPERTIES OF SnAgCu MIXED WITH Sn-Pb SOLDER ALLOYS (PREPRINT) 5a. CONTRACT NUMBER FA8650-04-C-5704 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...ANSI Std. Z39-18 Microstructural evolution and tensile properties of SnAgCu mixed with Sn-Pb solder alloys Fengjiang Wang,1 Matthew O’Keefe,1,2 and
NASA Astrophysics Data System (ADS)
Jung, Jaimyun; Yoon, Jae Ik; Kim, Jung Gi; Latypov, Marat I.; Kim, Jin You; Kim, Hyoung Seop
2017-12-01
Deformation twinning from grain boundaries is often observed in face-centered cubic metals with low stacking fault energy. One of the possible factors that contribute to twinning origination from grain boundaries is the intergranular interactions during deformation. Nonetheless, the influence of mechanical interaction among grains on twin evolution has not been fully understood. In spite of extensive experimental and modeling efforts on correlating microstructural features with their twinning behavior, a clear relation among the large aggregate of grains is still lacking. In this work, we characterize the micromechanics of grain-to-grain interactions that contribute to twin evolution by investigating the mechanical twins near grain boundaries using a full-field crystal plasticity simulation of a twinning-induced plasticity steel deformed in uniaxial tension at room temperature. Microstructures are first observed through electron backscatter diffraction technique to obtain data to reconstruct a statistically equivalent microstructure through synthetic microstructure building. Grain-to-grain micromechanical response is analyzed to assess the collective twinning behavior of the microstructural volume element under tensile deformation. Examination of the simulated results reveal that grain interactions are capable of changing the local mechanical behavior near grain boundaries by transferring strain across grain boundary or localizing strain near grain boundary.
4D nano-tomography of electrochemical energy devices using lab-based X-ray imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heenan, T. M. M.; Finegan, D. P.; Tjaden, B.
Electrochemical energy devices offer a variety of alternate means for low-carbon, multi-scale energy conversion and storage. Reactions in these devices are supported by electrodes with characteristically complex microstructures. To meet the increasing capacity and lifetime demands across a range of applications, it is essential to understand microstructural evolutions at a cell and electrode level which are thought to be critical aspects influencing material and device lifetime and performance. X-ray computed tomography (CT) has become a highly employed method for non-destructive characterisation of such microstructures with high spatial resolution. However, sub-micron resolutions present significant challenges for sample preparation and handling particularlymore » in 4D studies, (three spatial dimensions plus time). Here, microstructural information is collected from the same region of interest within two electrode materials: a solid oxide fuel cell and the positive electrode from a lithium-ion battery. Using a lab-based X-ray instrument, tomograms with sub-micron resolutions were obtained between thermal cycling. The intricate microstructural evolutions captured within these two materials provide model examples of 4D X-ray nano-CT capabilities in tracking challenging degradation mechanisms. This technique is valuable in the advancement of electrochemical research as well as broader applications for materials characterisation.« less
NASA Astrophysics Data System (ADS)
Wu, C.; Han, S.
2018-05-01
In order to obtain an optimal heat treatment for a low alloy high strength Ni-Cr-Mo-V steel, the microstructural evolution and mechanical properties of the material were studied. For this purpose, a series of quenching and temper experiments were carried out. The results showed that the effects of tempering temperature, time, original microstructure on the microstructural evolution and final properties were significant. The martensite can be completely transformed into the tempered lath structure. The width and length of the lath became wider and shorter, respectively with increasing temperature and time. The amount and size of the precipitates increased with temperature and time. The yield strength (YS), ultimate tensile strength (UTS) and hardness decreased with temperature and time, but the reduction in area (Z), elongation (E) and impact toughness displayed an opposite trend, which was related to the morphological evolution of the lath tempered structure.
Strain Characterization and Microstructure Evolution Under Deformation in 2060 Alloy
NASA Astrophysics Data System (ADS)
Jin, X.; Zhang, G. D.; Zhao, Y. F.; Xue, F.
2018-05-01
A new method of DIC combined with EBSD is developed for the characterization of strain and microstructure evolution during bending. The traditional microhardness point and DIC methods are used to study the microstructure evolution in 2060 alloy during bending; the interested area suffers under tensile stress, the microstructure evolution is collected by SEM, EBSD, digital image correlation (DIC) method during bending. The results shows that the DIC method can both realize the strain tensor characterization of the interested area, and can also express the local strain tensor in the micro-area even more. The degree of grain division in the process of deformation is related to the strain in this region; the grains have larger strain of small angle grain boundary (SLGBs), which results in a new micro-organizational structure. The misorientation is smaller with larger strain degree while the misorientation is larger with smaller strain.
Advances in the Development of Processing - Microstructure Relations for Titanium Alloys (Postprint)
2016-05-06
10.1002/9781119296126.ch29 14. ABSTRACT (Maximum 200 words) Advances in the fundamental understanding of microstructure evolution and plastic flow during...Abstract Advances in the fundamental understanding of microstructure evolution and plastic flow during primary and secondary processing of titanium...generation of rolling-direction secondary tension stresses. Important factors in such failures have been deduced to include the plastic properties and the
NEAMS SOFTWARE V&V PLAN FOR THE MARMOT SOFTWARE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michael R Tonks
2014-03-01
In order to ensure the accuracy and quality of the microstructure based materials models being developed in conjunction with MARMOT simulations, MARMOT must undergo exhaustive verification and validation. Only after this process can we confidently rely on the MARMOT code to predict the microstructure evolution within the fuel. Therefore, in this report we lay out a V&V plan for the MARMOT code, highlighting where existing data could be used and where new data is required.
Predicting Hot Deformation of AA5182 Sheet
NASA Astrophysics Data System (ADS)
Lee, John T.; Carpenter, Alexander J.; Jodlowski, Jakub P.; Taleff, Eric M.
Aluminum 5000-series alloy sheet materials exhibit substantial ductilities at hot and warm temperatures, even when grain size is not particularly fine. The relatively high strain-rate sensitivity exhibited by these non-superplastic materials, when deforming under solute-drag creep, is a primary contributor to large tensile ductilities. This active deformation mechanism influences both plastic flow and microstructure evolution across conditions of interest for hot- and warm-forming. Data are presented from uniaxial tensile and biaxial bulge tests of AA5182 sheet material at elevated temperatures. These data are used to construct a material constitutive model for plastic flow, which is applied in finite-element-method (FEM) simulations of plastic deformation under multiaxial stress states. Simulation results are directly compared against experimental data to explore the usefulness of this constitutive model. The effects of temperature and stress state on plastic response and microstructure evolution are discussed.
Microstructural Evolution and Phase Formation in 2nd-Generation Refractory-Based High Entropy Alloys
Eshed, Eyal; Larianovsky, Natalya; Kovalevsky, Alexey; Popov, Vladimir; Gorbachev, Igor; Popov, Vladimir; Katz-Demyanetz, Alexander
2018-01-01
Refractory-based high entropy alloys (HEAs) of the 2nd-generation type are new intensively-studied materials with a high potential for structural high-temperature applications. This paper presents investigation results on microstructural evolution and phase formation in as-cast and subsequently heat-treated HEAs at various temperature-time regimes. Microstructural examination was performed by means of scanning electron microscopy (SEM) combined with the energy dispersive spectroscopy (EDS) mode of electron probe microanalysis (EPMA) and qualitative X-ray diffraction (XRD). The primary evolutionary trend observed was the tendency of Zr to gradually segregate as the temperature rises, while all the other elements eventually dissolve in the BCC solid solution phase once the onset of Laves phase complex decomposition is reached. The performed thermodynamic modelling was based on the Calculation of Phase Diagrams method (CALPHAD). The BCC A2 solid solution phase is predicted by the model to contain increasing amounts of Cr as the temperature rises, which is in perfect agreement with the actual results obtained by SEM. However, the model was not able to predict the existence of the Zr-rich phase or the tendency of Zr to segregate and form its own solid solution—most likely as a result of the Zr segregation trend not being an equilibrium phenomenon. PMID:29360763
NASA Astrophysics Data System (ADS)
Zhao, Yu; Xu, Songsong; Zou, Yun; Li, Jinhui; Zhang, Z. W.
High strength low alloy (HSLA) steels with high strength, high toughness, good corrosion resistance and weldability, can be widely used in shipbuilding, automobile, construction, bridging industry, etc. The microstructure evolution and mechanical properties can be influenced by thermomechanical processing. In this study, themomechanical processing is optimized to control the matrix microstructure and nano-scale precipitates in the matrix simultaneously. It is found that the low-temperature toughness and ductility of the steels are significantly the matrix microstructure during enhancing the strength by introducing the nano-scale precipitates. The effects of alloying elements on the microstructure evolution and nano-scale precipitation are also discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Foulk, James W.; Alleman, Coleman N.; Mota, Alejandro
The heterogeneity in mechanical fields introduced by microstructure plays a critical role in the localization of deformation. To resolve this incipient stage of failure, it is therefore necessary to incorporate microstructure with sufficient resolution. On the other hand, computational limitations make it infeasible to represent the microstructure in the entire domain at the component scale. In this study, the authors demonstrate the use of concurrent multi- scale modeling to incorporate explicit, finely resolved microstructure in a critical region while resolving the smoother mechanical fields outside this region with a coarser discretization to limit computational cost. The microstructural physics is modeledmore » with a high-fidelity model that incorporates anisotropic crystal elasticity and rate-dependent crystal plasticity to simulate the behavior of a stainless steel alloy. The component-scale material behavior is treated with a lower fidelity model incorporating isotropic linear elasticity and rate-independent J 2 plas- ticity. The microstructural and component scale subdomains are modeled concurrently, with coupling via the Schwarz alternating method, which solves boundary-value problems in each subdomain separately and transfers solution information between subdomains via Dirichlet boundary conditions. Beyond cases studies in concurrent multiscale, we explore progress in crystal plastic- ity through modular designs, solution methodologies, model verification, and extensions to Sierra/SM and manycore applications. Advances in conformal microstructures having both hexahedral and tetrahedral workflows in Sculpt and Cubit are highlighted. A structure-property case study in two-phase metallic composites applies the Materials Knowledge System to local metrics for void evolution. Discussion includes lessons learned, future work, and a summary of funded efforts and proposed work. Finally, an appendix illustrates the need for two-way coupling through a single degree of freedom.« less
Imaging brain microstructure with diffusion MRI: practicality and applications.
Alexander, Daniel C; Dyrby, Tim B; Nilsson, Markus; Zhang, Hui
2017-11-29
This article gives an overview of microstructure imaging of the brain with diffusion MRI and reviews the state of the art. The microstructure-imaging paradigm aims to estimate and map microscopic properties of tissue using a model that links these properties to the voxel scale MR signal. Imaging techniques of this type are just starting to make the transition from the technical research domain to wide application in biomedical studies. We focus here on the practicalities of both implementing such techniques and using them in applications. Specifically, the article summarizes the relevant aspects of brain microanatomy and the range of diffusion-weighted MR measurements that provide sensitivity to them. It then reviews the evolution of mathematical and computational models that relate the diffusion MR signal to brain tissue microstructure, as well as the expanding areas of application. Next we focus on practicalities of designing a working microstructure imaging technique: model selection, experiment design, parameter estimation, validation, and the pipeline of development of this class of technique. The article concludes with some future perspectives on opportunities in this topic and expectations on how the field will evolve in the short-to-medium term. Copyright © 2017 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Hemmer, H.; Grong, Ø.; Klokkehaug, S.
2000-03-01
In the present investigation, a process model for electron beam (EB) welding of different grades of duplex stainless steels (i.e. SAF 2205 and 2507) has been developed. A number of attractive features are built into the original finite element code, including (1) a separate module for prediction of the penetration depth and distribution of the heat source into the plate, (2) adaptive refinement of the three-dimensional (3-D) element mesh for quick and reliable solution of the differential heat flow equation, and (3) special subroutines for calculation of the heat-affected zone (HAZ) microstructure evolution. The process model has been validated by comparison with experimental data obtained from in situ thermocouple measurements and optical microscope examinations. Subsequently, its aptness to alloy design and optimization of welding conditions for duplex stainless steels is illustrated in different numerical examples and case studies pertaining to EB welding of tubular joints.
NASA Astrophysics Data System (ADS)
Springer, H. Keo; Tarver, Craig; Bastea, Sorin
2015-06-01
We perform reactive mesoscale simulations to study shock initiation in HMX over a range of pore morphologies and sizes, porosities, and loading conditions in order to improve our understanding of structure-performance relationships. These relationships are important because they guide the development of advanced macroscale models incorporating hot spot mechanisms and the optimization of novel energetic material microstructures. Mesoscale simulations are performed using the multiphysics hydrocode, ALE3D. Spherical, elliptical, polygonal, and crack-like pore geometries 0.1, 1, 10, and 100 microns in size and 2, 5, 10, and 14% porosity are explored. Loading conditions are realized with shock pressures of 6, 10, 20, 38, and 50 GPa. A Cheetah-based tabular model, including temperature-dependent heat capacity, is used for the unreacted and the product equation-of-state. Also, in-line Cheetah is used to probe chemical species evolution. The influence of microstructure and shock loading on shock-to-detonation-transition run distance, reaction rate and product gas species evolution are discussed. This work performed under the auspices of the U.S. DOE by LLNL under Contract DE-AC52-07NA27344. This work is funded by the Joint DoD-DOE Munitions Program.
NASA Astrophysics Data System (ADS)
Jin, Yongmei
In recent years, theoretical modeling and computational simulation of microstructure evolution and materials property has been attracting much attention. While significant advances have been made, two major challenges remain. One is the integration of multiple physical phenomena for simulation of complex materials behavior, the other is the bridging over multiple length and time scales in materials modeling and simulation. The research presented in this Thesis is focused mainly on tackling the first major challenge. In this Thesis, a unified Phase Field Microelasticity (PFM) approach is developed. This approach is an advanced version of the phase field method that takes into account the exact elasticity of arbitrarily anisotropic, elastically and structurally inhomogeneous systems. The proposed theory and models are applicable to infinite solids, elastic half-space, and finite bodies with arbitrary-shaped free surfaces, which may undergo various concomitant physical processes. The Phase Field Microelasticity approach is employed to formulate the theories and models of martensitic transformation, dislocation dynamics, and crack evolution in single crystal and polycrystalline solids. It is also used to study strain relaxation in heteroepitaxial thin films through misfit dislocation and surface roughening. Magnetic domain evolution in nanocrystalline thin films is also investigated. Numerous simulation studies are performed. Comparison with analytical predictions and experimental observations are presented. Agreement verities the theory and models as realistic simulation tools for computational materials science and engineering. The same Phase Field Microelasticity formalism of individual models of different physical phenomena makes it easy to integrate multiple physical processes into one unified simulation model, where multiple phenomena are treated as various relaxation modes that together act as one common cooperative phenomenon. The model does not impose a priori constraints on possible microstructure evolution paths. This gives the model predicting power, where material system itself "chooses" the optimal path for multiple processes. The advances made in this Thesis present a significant step forward to overcome the first challenge, mesoscale multi-physics modeling and simulation of materials. At the end of this Thesis, the way to tackle the second challenge, bridging over multiple length and time scales in materials modeling and simulation, is discussed based on connection between the mesoscale Phase Field Microelasticity modeling and microscopic atomistic calculation as well as macroscopic continuum theory.
Effect of Interface Structure on the Microstructural Evolution of Ceramics
2007-11-06
because almost all the material properties are de - pendent upon their internal microstructures. Therefore, the microstructural evolution during the...growing interface de - pends upon the density of kinks on that interface. It fol- lows that the atomically smooth interface, which is char- acterized by...grain, and its de - tailed coarsening process has been treated elsewhere.139 During liquid-phase sintering, the formation of grain boundaries between
Phase-field modeling of the beta to omega phase transformation in Zr–Nb alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yeddu, Hemantha Kumar; Lookman, Turab
A three-dimensional elastoplastic phase-field model is developed, using the Finite Element Method (FEM), for modeling the athermal beta to omega phase transformation in Zr–Nb alloys by including plastic deformation and strain hardening of the material. The microstructure evolution during athermal transformation as well as under different stress states, e.g. uni-axial tensile and compressive, bi-axial tensile and compressive, shear and tri-axial loadings, is studied. The effects of plasticity, stress states and the stress loading direction on the microstructure evolution as well as on the mechanical properties are studied. The input data corresponding to a Zr – 8 at.% Nb alloy aremore » acquired from experimental studies as well as by using the CALPHAD method. Our simulations show that the four different omega variants grow as ellipsoidal shaped particles. Our results show that due to stress relaxation, the athermal phase transformation occurs slightly more readily in the presence of plasticity compared to that in its absence. The evolution of omega phase is different under different stress states, which leads to the differences in the mechanical properties of the material. The variant selection mechanism, i.e. formation of different variants under different stress loading directions, is also nicely captured by our model.« less
Microstructural evolution associated with martensitic transformation in Ni-Mn-Ga alloy
NASA Astrophysics Data System (ADS)
Li, Z.; Zhang, Y.; Esling, C.; Zhao, X.; Zuo, L.
2015-04-01
Based on the spatially resolved electron backscatter diffraction technique, the microstructural evolution accompanying the martensitic transformation (austenite to 7M martensite) and the intermartensitic transformation (7M martensite to NM martensite) was studied on a polycrystalline Ni53Mn22Ga25 alloy. Results show that the 7M martensite plate groups transformed from initial austenite have a diamond-shape with four twin-related variants. The 7M to NM intermartensitic transformation was accompanied by the thickening of martensite plates. With the experimental results, the characteristics of microstructural evolution during the phase transformations were further analyzed.
Dynamic Analysis of Recalescence Process and Interface Growth of Eutectic Fe82B17Si1 Alloy
NASA Astrophysics Data System (ADS)
Fan, Y.; Liu, A. M.; Chen, Z.; Li, P. Z.; Zhang, C. H.
2018-03-01
By employing the glass fluxing technique in combination with cyclical superheating, the microstructural evolution of the undercooled Fe82B17Si1 alloy in the obtained undercooling range was studied. With increase in undercooling, a transition of cooling curves was detected from one recalescence to two recalescences, followed by one recalescence. The two types of cooling curves were fitted by the break equation and the Johnson-Mehl-Avrami-Kolmogorov model. Based on the cooling curves at different undercoolings, the recalescence rate was calculated by the multi-logistic growth model and the Boettinger-Coriel-Trivedi model. Both the recalescence features and the interface growth kinetics of the eutectic Fe82B17Si1 alloy were explored. The fitting results that were obtained using TEM (SAED), SEM and XRD were consistent with the changing rule of microstructures. Finally, the relationship between the microstructure and hardness was also investigated.
NASA Astrophysics Data System (ADS)
Reschka, S.; Munk, L.; Wriggers, P.; Maier, H. J.
2017-12-01
Nimonic 101 is one of the early nickel-based superalloys developed for the use in gas turbines. In such environments, the material is exposed to a combination of both high temperatures and mechanical loads for a long duration. Hence, thermal creep is of the utmost concern as it often limits service life. This study focuses on creep tests, carried out on Nimonic 101 at different temperatures under a constant tensile load of 735 MPa. To characterize the microstructural evolution, electron backscatter diffraction (EBSD) measurements were employed before and after loading. At higher temperatures, a significant change of the microstructure was observed. The grains elongated and aligned their orientation along the load axis. In parallel, a crystal plasticity material model has been set up in the classical large deformation framework. Modeling results are compared to the acquired EBSD data.
Microstructure and Property Modifications of Cold Rolled IF Steel by Local Laser Annealing
NASA Astrophysics Data System (ADS)
Hallberg, Håkan; Adamski, Frédéric; Baïz, Sarah; Castelnau, Olivier
2017-10-01
Laser annealing experiments are performed on cold rolled IF steel whereby highly localized microstructure and property modification are achieved. The microstructure is seen to develop by strongly heterogeneous recrystallization to provide steep gradients, across the submillimeter scale, of grain size and crystallographic texture. Hardness mapping by microindentation is used to reveal the corresponding gradients in macroscopic properties. A 2D level set model of the microstructure development is established as a tool to further optimize the method and to investigate, for example, the development of grain size variations due to the strong and transient thermal gradient. Particular focus is given to the evolution of the beneficial γ-fiber texture during laser annealing. The simulations indicate that the influence of selective growth based on anisotropic grain boundary properties only has a minor effect on texture evolution compared to heterogeneous stored energy, temperature variations, and nucleation conditions. It is also shown that although the α-fiber has an initial frequency advantage, the higher probability of γ-nucleation, in combination with a higher stored energy driving force in this fiber, promotes a stronger presence of the γ-fiber as also observed in experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lach, Timothy G.; Byun, Thak Sang; Leonard, Keith J.
Mechanical testing and microstructural characterization were performed on short-term thermally aged cast austenitic stainless steels (CASS) to understand the severity and mechanisms of thermal-aging degradation experienced during extended operation of light water reactor (LWR) coolant systems. Four CASS materials – CF3, CF3M, CF8, and CF8M – were thermally aged for 1500 hours at 290 °C, 330 °C, 360 °C, and 400 °C. All four alloys experienced insignificant change in strength and ductility properties but a significant reduction in absorbed impact energy. The primary microstructural and compositional changes during thermal aging were spinodal decomposition of the δ-ferrite into α/ α`, precipitationmore » of G-phase in the δ-ferrite, segregation of solute to the austenite/ ferrite interphase boundary, and growth of M23C6 carbides on the austenite/ferrite interphase boundary. These changes were shown to be highly dependent on chemical composition, particularly the concentration of C and Mo, and aging temperature. A comprehensive model is being developed to correlate the microstructural evolution with mechanical behavior and simulation for predictive evaluations of LWR coolant system components.« less
Slurry erosion induced surface nanocrystallization of bulk metallic glass
NASA Astrophysics Data System (ADS)
Ji, Xiulin; Wu, Jili; Pi, Jinghong; Cheng, Jiangbo; Shan, Yiping; Zhang, Yingtao
2018-05-01
Microstructure evolution and phase transformation of metallic glasses (MGs) could occur under heating condition or mechanical deformation. The cross-section of as-cast Zr55Cu30Ni5Al10 MG rod was impacted by the solid particles when subjected to erosion in slurry flow. The surface microstructure was observed by XRD before and after slurry erosion. And the stress-driven de-vitrification increases with the increase of erosion time. A microstructure evolution layer with 1-2 μm thickness was formed on the topmost eroded surface. And a short range atomic ordering prevails in the microstructure evolution layer with crystalline size around 2-3 nm embedded in the amorphous matrix. The XPS analysis reveals that most of the metal elements in the MG surface, except for Cu, were oxidized. And a composite layer with ZrO2 and Al2O3 phases were formed in the topmost surface after slurry erosion. The cooling rate during solidification of MG has a strong influence on the slurry erosion induced nanocrystallization. And a lower cooling rate favors the surface nanocrystallization because of lower activation energy and thermo-stability. Finally, the slurry erosion induced surface nanocrystallization and microstructure evolution result in surface hardening and strengthening. Moreover, the microstructure evolution mechanisms were discussed and it is related to the cooling rate of solidification and the impact-induced temperature rise, as well as the combined effects of the impact-induced plastic flow, inter-diffusion and oxidation of the metal elements.
Accelerated Irradiations for High Dose Microstructures in Fast Reactor Alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiao, Zhijie
The objective of this project is to determine the extent to which high dose rate, self-ion irradiation can be used as an accelerated irradiation tool to understand microstructure evolution at high doses and temperatures relevant to advanced fast reactors. We will accomplish the goal by evaluating phase stability and swelling of F-M alloys relevant to SFR systems at very high dose by combining experiment and modeling in an effort to obtain a quantitative description of the processes at high and low damage rates.
2015-01-01
still necessary. One such model that could bridge this gap is discrete dis- location dynamics ( DDD ) simulations, in which both the time- and length-scale...limitations from atomic simulations are greatly reduced. Over the past two decades, two-dimen- sional (2D) and three-dimensional (3D) DDD methods have...dislocation ensem- bles according to physics-based rules [27–34]. The physics that can be incorporated in DDD simulations can range http://dx.doi.org
NASA Astrophysics Data System (ADS)
Zhang, J. Y.; Li, J.; Wu, K.; Liu, G.; Sun, J.
2017-03-01
Due to their interface and nanoscale effects associated with structural peculiarities of nanostructured, face-centered-cubic (FCC) ultrafine-grained/nanocrystalline (UFG/NC) metals, in particular nanotwinned (NT) metals exhibit unexpected deformation behaviours fundamentally different from their coarse-grained (CG) counterparts. These internal boundaries, including grain boundaries and twin boundaries in UFG/NC metals, strongly interact with dislocations as deformation barriers to enhance the strength and strain rate sensitivity (SRS) of materials on the one hand, and play critical roles in their microstructural evolution as dislocation sources/sinks to sustain plastic deformation on the other. In this work, building on the findings of twin softening and (de)twinning-mediated grain growth/refinement in stretched free-standing NT-Ni foils, a constitutive model based on the thermally activated depinning process of dislocations residing in boundaries has been proposed to predict the steady-state grain size and simulate the plastic flow of NT-Ni, by considering the blocking effects of nanotwins on the absorption of dislocations emitted from boundaries. It is uncovered that the stress ratio (ηstress) of effective-to-internal stress can be taken as a signature to estimate the stability of microstructures during plastic deformation. This model not only reproduces well the plastic flow of the stretched NT-Ni foils as well as reported NT-Cu and the steady-state grain size, but also sheds light on the size-dependent SRS and failure of FCC UFG/NC metals. This theoretical framework offers the opportunity to tune the microstructures in the polycrystalline materials to synthesise high performance engineering materials with high strength and great ductility.
Microstructural Evolution of Ti-6Al-4V during High Strain Rate Conditions of Metal Cutting
NASA Technical Reports Server (NTRS)
Dong, Lei; Schneider, Judy
2009-01-01
The microstructural evolution following metal cutting was investigated within the metal chips of Ti-6Al-4V. Metal cutting was used to impose a high strain rate on the order of approx.10(exp 5)/s within the primary shear zone as the metal was removed from the workpiece. The initial microstructure of the parent material (PM) was composed of a bi-modal microstructure with coarse prior grains and equiaxed primary located at the boundaries. After metal cutting, the microstructure of the metal chips showed coarsening of the equiaxed primary grains and lamellar. These metallographic findings suggest that the metal chips experienced high temperatures which remained below the transus temperature.
Microstructure Evolution in Cut Metal Chips of Ti-6Al-4V
NASA Technical Reports Server (NTRS)
Dong, L.; Schneider, J. A.
2008-01-01
The microstructural evolution following metal cutting was investigated within metal chips of Ti-6Al-4V. Metal cutting was used to impose a high strain rate on the order of approx.10(exp 5)/s within the primary shear zone as the metal was removed from the workpiece. The initial microstructure of the parent material (PM) was composed of a bi-modal microstructure with coarse prior beta grains and equiaxed primary alpha located at the boundaries. After metal cutting, the microstructure of the metal chips showed coarsening of the equiaxed primary alpha grains and beta lamellar. These metallographic findings suggest that the metal chips experienced high temperatures which remained below the beta transus temperature.
TOPICAL REVIEW: Sintering and microstructure of ice: a review
NASA Astrophysics Data System (ADS)
Blackford, Jane R.
2007-11-01
Sintering of ice is driven by the thermodynamic requirement to decrease surface energy. The structural morphology of ice in nature has many forms—from snowflakes to glaciers. These forms and their evolution depend critically on the balance between the thermodynamic and kinetic factors involved. Ice is a crystalline material so scientific understanding and approaches from more conventional materials can be applied to ice. The early models of solid state ice sintering are based on power law models originally developed in metallurgy. For pressure sintering of ice, these are based on work on hot isostatic pressing of metals and ceramics. Recent advances in recognizing the grain boundary groove geometry between sintering ice particles require models that use new approaches in materials science. The newer models of sintering in materials science are beginning to incorporate more realistic processing conditions and microstructural complexity, and so there is much to be gained from applying these to ice in the future. The vapour pressure of ice is high, which causes it to sublime readily. The main mechanism for isothermal sintering of ice particles is by vapour diffusion; however other transport mechanisms certainly contribute. Plastic deformation with power law creep combined with recrystallization become important mechanisms in sintering with external pressure. Modern experimental techniques, low temperature scanning electron microscopy and x-ray tomography, are providing new insights into the evolution of microstructures in ice. Sintering in the presence of a small volume fraction of the liquid phase causes much higher bond growth rates. This may be important in natural snow which contains impurities that form a liquid phase. Knowledge of ice microstructure and sintering is beneficial in understanding mechanical behaviour in ice friction and the stability of snow slopes prone to avalanches.
NASA Astrophysics Data System (ADS)
Yang, Kun Vanna; Lim, Chao Voon Samuel; Zhang, Kai; Sun, Jifeng; Yang, Xiaoguang; Huang, Aijun; Wu, Xinhua; Davies, Christopher H.
2015-12-01
Heat-treated Ti-6Al-4V forged bar with colony microstructure was machined into double-cone-shaped samples for a series of isothermal uniaxial compression test at 1223 K (950 °C) with varying constant crosshead speeds of 12.5, 1.25, and 0.125 mms-1 to a height reduction of 70 pct. Another set of samples deformed under the same conditions were heat treated at 1173 K (900 °C) for an hour followed by water quench. Finite element modeling was used to provide the strains, strain rates, and temperature profiles of the hot compression samples, and the microstructure and texture evolution was examined at four positions on each sample, representative of different strain ranges. Lamellae fragmentation and kinking are the dominant microstructural features at lower strain range up to a maximum of 2.0, whereas globularization dominates at strains above 2.0 for the as-deformed samples. The globularization fraction generally increases with strain, or by post-deformation heat treatment, but fluctuates at lower strain. The grain size of the globular α is almost constant with strain and maximizes for samples with the lowest crosshead speed due to the longer deformation time. The globular α grain also coarsens because of post-deformation heat treatment, with its size increasing with strain level. With respect to texture evolution, a basal transverse ring and another component 30 deg from ND is determined for samples deformed at 12.5 mms-1, which is consistent with the temperature increase to close to β-transus from simulation results. The texture type remains unchanged with its intensity increased and spreads with increasing strain.
NASA Astrophysics Data System (ADS)
Schmidtchen, M.; Rimnac, A.; Warczok, P.; Kozeschnik, E.; Bernhard, C.; Bragin, S.; Kawalla, R.; Linzer, B.
2016-03-01
The newly developed LaySiMS simulation tool provides new insight for inhomogeneous material flow and microstructure evolution in an endless strip production (ESP) plant. A deepened understanding of the influence of inhomogeneities in initial material state, temperature profile and material flow and their impact on the finished product can be reached e.g. by allowing for variable layer thickness distributions in the roll gap. Coupling temperature, deformation work and work hardening/recrystallization phenomena accounts for covering important effects in the roll gap. The underlying concept of the LaySiMS approach will be outlined and new insight gained regarding microstructural evolution, shear and inhomogeneous stress and strain states in the roll gap as well as local residual stresses will be presented. For the case of thin slab casting and direct rolling (TSDR) the interrelation of inhomogeneous initial state, micro structure evolution and dissolution state of micro alloying elements within the roughing section of an ESP line will be discussed. Special emphasis is put on the influence of the local chemical composition arising from direct charging on throughthickness homogeneity of the final product. It is concluded that, due to the specific combination of large reductions in the high reduction mills (HRM) and the highly inhomogeneous inverse temperature profile, the ESP-concept provides great opportunities for homogenizing the microstructure across the strip thickness.
Chakraborty, Pritam; Sabharwall, Piyush; Carroll, Mark C.
2016-04-07
The fracture behavior of nuclear grade graphites is strongly influenced by underlying microstructural features such as the character of filler particles, and the distribution of pores and voids. These microstructural features influence the crack nucleation and propagation behavior, resulting in quasi-brittle fracture with a tortuous crack path and significant scatter in measured bulk strength. This paper uses a phase-field method to model the microstructural and multi-axial fracture in H-451, a historic variant of nuclear graphite that provides the basis for an idealized study on a legacy grade. The representative volume elements are constructed from randomly located pores with random sizemore » obtained from experimentally determined log-normal distribution. The representative volume elements are then subjected to simulated multi-axial loading, and a reasonable agreement of the resulting fracture stress with experiments is obtained. Finally, quasi-brittle stress-strain evolution with a tortuous crack path is also observed from the simulations and is consistent with experimental results.« less
NASA Astrophysics Data System (ADS)
Yan, Zilin; Kim, Yongtae; Hara, Shotaro; Shikazono, Naoki
2017-04-01
The Potts Kinetic Monte Carlo (KMC) model, proven to be a robust tool to study all stages of sintering process, is an ideal tool to analyze the microstructure evolution of electrodes in solid oxide fuel cells (SOFCs). Due to the nature of this model, the input parameters of KMC simulations such as simulation temperatures and attempt frequencies are difficult to identify. We propose a rigorous and efficient approach to facilitate the input parameter calibration process using artificial neural networks (ANNs). The trained ANN reduces drastically the number of trial-and-error of KMC simulations. The KMC simulation using the calibrated input parameters predicts the microstructures of a La0.6Sr0.4Co0.2Fe0.8O3 cathode material during sintering, showing both qualitative and quantitative congruence with real 3D microstructures obtained by focused ion beam scanning electron microscopy (FIB-SEM) reconstruction.
Stochastic modelling of microstructure formation in solidification processes
NASA Astrophysics Data System (ADS)
Nastac, Laurentiu; Stefanescu, Doru M.
1997-07-01
To relax many of the assumptions used in continuum approaches, a general stochastic model has been developed. The stochastic model can be used not only for an accurate description of the fraction of solid evolution, and therefore accurate cooling curves, but also for simulation of microstructure formation in castings. The advantage of using the stochastic approach is to give a time- and space-dependent description of solidification processes. Time- and space-dependent processes can also be described by partial differential equations. Unlike a differential formulation which, in most cases, has to be transformed into a difference equation and solved numerically, the stochastic approach is essentially a direct numerical algorithm. The stochastic model is comprehensive, since the competition between various phases is considered. Furthermore, grain impingement is directly included through the structure of the model. In the present research, all grain morphologies are simulated with this procedure. The relevance of the stochastic approach is that the simulated microstructures can be directly compared with microstructures obtained from experiments. The computer becomes a `dynamic metallographic microscope'. A comparison between deterministic and stochastic approaches has been performed. An important objective of this research was to answer the following general questions: (1) `Would fully deterministic approaches continue to be useful in solidification modelling?' and (2) `Would stochastic algorithms be capable of entirely replacing purely deterministic models?'
Pu, Chao; Gao, Yanfei
2015-01-23
Two-phase advanced steels contain an optimized combination of high yield strength and large elongation strain at failure, as a result of stress partitioning between a hard phase (martensite) and a ductile phase (ferrite or austenite). Provided with strong interfaces between the constituent phases, the failure in the brittle martensite phase will be delayed by the surrounding geometric constraints, while the rule of mixture will dictate a large strength of the composite. To this end, the microstructural design of these composites is imperative especially in terms of the stress partitioning mechanisms among the constituent phases. Based on the characteristic microstructures ofmore » dual phase and multilayered steels, two polycrystalline aggregate models are constructed to simulate the microscopic lattice strain evolution of these materials during uniaxial tensile tests. By comparing the lattice strain evolution from crystal plasticity finite element simulations with advanced in situ diffraction measurements in literature, this study investigates the correlations between the material microstructure and the micromechanical interactions on the intergranular and interphase levels. Finally, it is found that although the applied stress will be ultimately accommodated by the hard phase and hard grain families, the sequence of the stress partitioning on grain and phase levels can be altered by microstructural designs. Implications of these findings on delaying localized failure are also discussed.« less
NASA Astrophysics Data System (ADS)
Vanorio, T.
2016-12-01
Monitoring chemo-mechanical processes geophysically — e.g., fluid disposal or storage, thermal and chemical stimulation of reservoirs, or natural fluids simply entering a new system in the subsurface— raises numerous concerns because of the likelihood of fluid-rock chemical interactions and our limited ability to decipher the geophysical signature of coupled processes. One of the missing links is coupling the evolution of porosity, permeability, and velocity of rocks together with reactive transport, since rocks deform and their microstructure evolves, as a result of chemical reactions under stress. This study describes recent advances in rock-physics experiments to understand the effects of dissolution-induced compaction on acoustic velocity, porosity, and permeability. Data observation includes time-lapse experiments and imaging tracking transport and elastic properties, the rock microstructure, and the pH and chemical composition of the fluid permeating the rock. Results show that the removal of high surface area, mineral phases such as microcrystalline calcite and clay appears to be mostly responsible for dissolution-induced compaction. Nevertheless, it is the original rock microstructure and its response to stress that ultimately defines how solution-transfer and rock compaction feed back upon each other. This work has a dual aim: understanding the mechanisms underlying permanent modifications to the rock microstructure and providing a richer set of experimental information to inform the formulation of new simulations and rock modeling.
TEMHD Effects on Solidification Under Microgravity Conditions
NASA Technical Reports Server (NTRS)
Kao, Andrew; Pericleous, Koulis
2012-01-01
An unexplored potential exists to control microstructure evolution through the use of external DC magnetic fields. Thermoelectric currents form during solidification and interact with this external field to drive microscopic fluid dynamics within the inter-dendritic region. The convective heat and mass transport can lead to profound changes on the dendritic structure. In this paper the effect of high magnetic fields is demonstrated through the use of both 3-dimensional and 2-dimensional numerical models. The results show that the application of a magnetic field causes significant disruption to the dendritic morphology. Investigation into the underlying mechanism gives initial indicators of how external magnetic fields can either lead to unexpected growth behaviour, or alternatively can be used to control the evolution of microstructure in undercooled melts as encountered in levitated droplet solidification.
Toward a virtual platform for materials processing
NASA Astrophysics Data System (ADS)
Schmitz, G. J.; Prahl, U.
2009-05-01
Any production is based on materials eventually becoming components of a final product. Material properties being determined by the microstructure of the material thus are of utmost importance both for productivity and reliability of processing during production and for application and reliability of the product components. A sound prediction of materials properties therefore is highly important. Such a prediction requires tracking of microstructure and properties evolution along the entire component life cycle starting from a homogeneous, isotropic and stress-free melt and eventually ending in failure under operational load. This article will outline ongoing activities at the RWTH Aachen University aiming at establishing a virtual platform for materials processing comprising a virtual, integrative numerical description of processes and of the microstructure evolution along the entire production chain and even extending further toward microstructure and properties evolution under operational conditions.
NASA Astrophysics Data System (ADS)
Virgo, Simon; Ankit, Kumar; Nestler, Britta; Urai, Janos L.
2016-04-01
Crack-seal veins form in a complex interplay of coupled thermal, hydraulic, mechanical and chemical processes. Their formation and cyclic growth involves brittle fracturing and dilatancy, phases of increased fluid flow and the growth of crystals that fill the voids and reestablish the mechanical strength. Existing numerical models of vein formation focus on selected aspects of the coupled process. Until today, no model exists that is able to use a realistic representation of the fracturing AND sealing processes, simultaneously. To address this challenge, we propose the bidirectional coupling of two numerical methods that have proven themselves as very powerful to model the fundamental processes acting in crack-seal systems: Phase-field and the Discrete Element Method (DEM). The phase-field Method was recently successfully extended to model the precipitation of quartz crystals from an aqueous solution and applied to model the sealing of a vein over multiple opening events (Ankit et al., 2013; Ankit et al., 2015a; Ankit et al., 2015b). The advantage over former, purely kinematic approaches is that in phase-field, the crystal growth is modeled based on thermodynamic and kinetic principles. Different driving forces for microstructure evolution, such as chemical bulk free energy, interfacial energy, elastic strain energy and different transport processes, such as mass diffusion and advection, can be coupled and the effect on the evolution process can be studied in 3D. The Discrete Element Method was already used in several studies to model the fracturing of rocks and the incremental growth of veins by repeated fracturing (Virgo et al., 2013; Virgo et al., 2014). Materials in DEM are represented by volumes of packed spherical particles and the response to the material to stress is modeled by interaction of the particles with their nearest neighbours. For rocks, in 3D, the method provides a realistic brittle failure behaviour. Exchange Routines are being developed that translate the spatial domain of the model from DEM to the phase-field and vice versa. This will allow the fracturing process to be modeled with DEM and the sealing processes to be modeled with phase-field approach. With this bidirectional coupling, the strengths of these two numerical methods will be combined into a unified model of iterative crack-seal that will be able to model the complex feedback mechanisms between fracturing and sealing processes and assess the influence of thermal, mechanical, chemical and hydraulic parameters on the evolution of vein microstructures. References: Ankit, K., Nestler, B., Selzer, M., and Reichardt, M., 2013, Phase-field study of grain boundary tracking behavior in crack-seal microstructures: Contributions to Mineralogy and Petrology, v. 166, no. 6, p. 1709-1723 Ankit, K., Selzer, M., Hilgers, C., and Nestler, B., 2015a, Phase-field modeling of fracture cementation processes in 3-D: Journal of Petroleum Science Research, v. 4, no. 2, p. 79-96 Ankit, K., Urai, J.L., and Nestler, B., 2015b, Microstructural evolution in bitaxial crack-seal veins: A phase-field study: Journal of Geophysical Research: Solid Earth, v. 120, no. 5, p. 3096-3118. Virgo, S., Abe, S., and Urai, J.L., 2013, Extension fracture propagation in rocks with veins: Insight into the crack-seal process using Discrete Element Method modeling: Journal of Geophysical Research: Solid Earth, v. 118, no. 10 Virgo, S., Abe, S., and Urai, J.L., 2014, The evolution of crack seal vein and fracture networks in an evolving stress field: Insights from Discrete Element Models of fracture sealing: Journal of Geophysical Research: Solid Earth, p. 2014JB011520
Mechanistic materials modeling for nuclear fuel performance
Tonks, Michael R.; Andersson, David; Phillpot, Simon R.; ...
2017-03-15
Fuel performance codes are critical tools for the design, certification, and safety analysis of nuclear reactors. However, their ability to predict fuel behavior under abnormal conditions is severely limited by their considerable reliance on empirical materials models correlated to burn-up (a measure of the number of fission events that have occurred, but not a unique measure of the history of the material). In this paper, we propose a different paradigm for fuel performance codes to employ mechanistic materials models that are based on the current state of the evolving microstructure rather than burn-up. In this approach, a series of statemore » variables are stored at material points and define the current state of the microstructure. The evolution of these state variables is defined by mechanistic models that are functions of fuel conditions and other state variables. The material properties of the fuel and cladding are determined from microstructure/property relationships that are functions of the state variables and the current fuel conditions. Multiscale modeling and simulation is being used in conjunction with experimental data to inform the development of these models. Finally, this mechanistic, microstructure-based approach has the potential to provide a more predictive fuel performance capability, but will require a team of researchers to complete the required development and to validate the approach.« less
Pore and grain boundary migration under a temperature gradient: A phase-field model study
Biner, S. B.
2016-03-16
In this study, the collective migration behavior of pores and grain boundaries under a temperature gradient is studied for simple single crystal, bi-crystal and polycrystal configurations with a phase-field model formulism. For simulation of the microstructure of solids, composed of pores and grain boundaries, the results indicate that not only the volume fraction of pores, but also its spatial partitioning between the grain boundary junctions and the grain boundary segments appears to be important. In addition to various physical properties, the evolution kinetics, under given temperature gradients, will be strongly influenced with the initial morphology of a poly-crystalline microstructure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Bite; Muralidharan, Govindarajan; Kurumaddali, Nalini Kanth
2014-01-01
Understanding the reliability of eutectic Sn-3.5Ag lead-free solders in high temperature packaging applications is of significant interest in power electronics for the next generation electric grid. Large area (2.5mm 2.5mm) Sn-3.5Ag solder joints between silicon dies and direct bonded copper substrates were thermally cycled between 5 C and 200 C. Sn crystal orientation and microstructure evolution during thermal cycling were characterized by electron backscatter diffraction (EBSD) in scanning electron microscope (SEM). Comparisons are made between observed initial texture and microstructure and its evolution during thermal cycling. Gradual lattice rotation and grain boundary misorientation evolution suggested the continuous recrystallization mechanism. Recrystallizationmore » behavior was correlated with dislocation slip activities.« less
Yohannes, B; Gonzalez, M; Abebe, A; Sprockel, O; Nikfar, F; Kiang, S; Cuitiño, A M
2016-04-30
The evolution of microstructure during powder compaction process was investigated using a discrete particle modeling, which accounts for particle size distribution and material properties, such as plasticity, elasticity, and inter-particle bonding. The material properties were calibrated based on powder compaction experiments and validated based on tensile strength test experiments for lactose monohydrate and microcrystalline cellulose, which are commonly used excipient in pharmaceutical industry. The probability distribution function and the orientation of contact forces were used to study the evolution of the microstructure during the application of compaction pressure, unloading, and ejection of the compact from the die. The probability distribution function reveals that the compression contact forces increase as the compaction force increases (or the relative density increases), while the maximum value of the tensile contact forces remains the same. During unloading of the compaction pressure, the distribution approaches a normal distribution with a mean value of zero. As the contact forces evolve, the anisotropy of the powder bed also changes. Particularly, during loading, the compression contact forces are aligned along the direction of the compaction pressure, whereas the tensile contact forces are oriented perpendicular to direction of the compaction pressure. After ejection, the contact forces become isotropic. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Song, R.; Li, J.; Shao, J. Z.; Bai, L. L.; Chen, J. L.; Qu, C. C.
2015-11-01
The Ti2Ni/α(Ti) dual-phase coating reinforced by TiB and TiC was fabricated on the Ti6Al4V substrate by laser cladding. Phase constituents were confirmed by a theoretical prediction combined with X-ray diffraction (XRD) analyses. From the surface to the bottom of the coating, a regular evolution of the reinforcements' microstructure, namely TiCp+(TiB+TiC)e, (TiB+TiC)e and TiBp+(TiB+TiC)e (p and e were the abbreviations of primary and eutectic, respectively), was investigated by scanning electron microscopy (SEM). The coating possessed the higher microhardness than that of the substrate. An in situ dynamic method (in situ continuing tests at different time intervals) was designed to reveal wear behaviors at different wear stages. A quantitative calculation formula was established by a mathematic model to predict wear losses under different sliding time and applied loads in a definite precision. The wear mechanism was transformed from brittle debonding (at 10 N) to the joint action of brittle debonding and micro-cutting (at 20 N and 30 N) due to the microstructural evolution across the depth from the surface of the coating.
NASA Astrophysics Data System (ADS)
Wang, Wei; Zeng, Weidong; Liu, Yantao; Xie, Guoxin; Liang, Xiaobo
2018-01-01
Microstructural evolution, tensile and creep behavior of Ti-22Al-25Nb (at.%) orthorhombic alloy with three typical microstructures were investigated. The three typical microstructures were obtained by different solution and age treatment temperatures and analyzed by the BSE technique. The tensile strengths of the alloy at room temperature and 650 °C were investigated. The creep behaviors of the three typical microstructures were also studied at 650 °C/150 MPa for 100 h in air. The phase transformation mechanisms in creep deformation were also found. The experimental results showed that the formations of the three typical microstructures were decided by the isothermal forging and heat treatment. It was supposed that the high-temperature solution treatment might be dominant for the volume fraction and diameter of the equiaxed particles. While the double age treatment would lead to lamellar O phases. Due to grain refinement strengthening, the equiaxed microstructure presented the best tensile strength and ductility. The fully lamellar microstructure had the best creep resistance than that of other microstructures. In this paper, the phenomenon of creep-induced α 2 phase decomposition was occurred during creep deformation of the equiaxed microstructure.
Gamma Prime Precipitate Evolution During Aging of a Model Nickel-Based Superalloy
NASA Astrophysics Data System (ADS)
Goodfellow, A. J.; Galindo-Nava, E. I.; Christofidou, K. A.; Jones, N. G.; Martin, T.; Bagot, P. A. J.; Boyer, C. D.; Hardy, M. C.; Stone, H. J.
2018-03-01
The microstructural stability of nickel-based superalloys is critical for maintaining alloy performance during service in gas turbine engines. In this study, the precipitate evolution in a model polycrystalline Ni-based superalloy during aging to 1000 hours has been studied via transmission electron microscopy, atom probe tomography, and neutron diffraction. Variations in phase composition and precipitate morphology, size, and volume fraction were observed during aging, while the constrained lattice misfit remained constant at approximately zero. The experimental composition of the γ matrix phase was consistent with thermodynamic equilibrium predictions, while significant differences were identified between the experimental and predicted results from the γ' phase. These results have implications for the evolution of mechanical properties in service and their prediction using modeling methods.
Grain Nucleation and Growth in Deformed NiTi Shape Memory Alloys: An In Situ TEM Study
NASA Astrophysics Data System (ADS)
Burow, J.; Frenzel, J.; Somsen, C.; Prokofiev, E.; Valiev, R.; Eggeler, G.
2017-12-01
The present study investigates the evolution of nanocrystalline (NC) and ultrafine-grained (UFG) microstructures in plastically deformed NiTi. Two deformed NiTi alloys were subjected to in situ annealing in a transmission electron microscope (TEM) at 400 and 550 °C: an amorphous material state produced by high-pressure torsion (HPT) and a mostly martensitic partly amorphous alloy produced by wire drawing. In situ annealing experiments were performed to characterize the microstructural evolution from the initial nonequilibrium states toward energetically more favorable microstructures. In general, the formation and evolution of nanocrystalline microstructures are governed by the nucleation of new grains and their subsequent growth. Austenite nuclei which form in HPT and wire-drawn microstructures have sizes close to 10 nm. Grain coarsening occurs in a sporadic, nonuniform manner and depends on the physical and chemical features of the local environment. The mobility of grain boundaries in NiTi is governed by the local interaction of each grain with its microstructural environment. Nanograin growth in thin TEM foils seems to follow similar kinetic laws to those in bulk microstructures. The present study demonstrates the strength of in situ TEM analysis and also highlights aspects which need to be considered when interpreting the results.
Microstructure Modeling of 3rd Generation Disk Alloys
NASA Technical Reports Server (NTRS)
Jou, Herng-Jeng
2010-01-01
The objective of this program is to model, validate, and predict the precipitation microstructure evolution, using PrecipiCalc (QuesTek Innovations LLC) software, for 3rd generation Ni-based gas turbine disc superalloys during processing and service, with a set of logical and consistent experiments and characterizations. Furthermore, within this program, the originally research-oriented microstructure simulation tool will be further improved and implemented to be a useful and user-friendly engineering tool. In this report, the key accomplishment achieved during the second year (2008) of the program is summarized. The activities of this year include final selection of multicomponent thermodynamics and mobility databases, precipitate surface energy determination from nucleation experiment, multiscale comparison of predicted versus measured intragrain precipitation microstructure in quench samples showing good agreement, isothermal coarsening experiment and interaction of grain boundary and intergrain precipitates, primary microstructure of subsolvus treatment, and finally the software implementation plan for the third year of the project. In the following year, the calibrated models and simulation tools will be validated against an independently developed experimental data set, with actual disc heat treatment process conditions. Furthermore, software integration and implementation will be developed to provide material engineers valuable information in order to optimize the processing of the 3rd generation gas turbine disc alloys.
A non-linear dimension reduction methodology for generating data-driven stochastic input models
NASA Astrophysics Data System (ADS)
Ganapathysubramanian, Baskar; Zabaras, Nicholas
2008-06-01
Stochastic analysis of random heterogeneous media (polycrystalline materials, porous media, functionally graded materials) provides information of significance only if realistic input models of the topology and property variations are used. This paper proposes a framework to construct such input stochastic models for the topology and thermal diffusivity variations in heterogeneous media using a data-driven strategy. Given a set of microstructure realizations (input samples) generated from given statistical information about the medium topology, the framework constructs a reduced-order stochastic representation of the thermal diffusivity. This problem of constructing a low-dimensional stochastic representation of property variations is analogous to the problem of manifold learning and parametric fitting of hyper-surfaces encountered in image processing and psychology. Denote by M the set of microstructures that satisfy the given experimental statistics. A non-linear dimension reduction strategy is utilized to map M to a low-dimensional region, A. We first show that M is a compact manifold embedded in a high-dimensional input space Rn. An isometric mapping F from M to a low-dimensional, compact, connected set A⊂Rd(d≪n) is constructed. Given only a finite set of samples of the data, the methodology uses arguments from graph theory and differential geometry to construct the isometric transformation F:M→A. Asymptotic convergence of the representation of M by A is shown. This mapping F serves as an accurate, low-dimensional, data-driven representation of the property variations. The reduced-order model of the material topology and thermal diffusivity variations is subsequently used as an input in the solution of stochastic partial differential equations that describe the evolution of dependant variables. A sparse grid collocation strategy (Smolyak algorithm) is utilized to solve these stochastic equations efficiently. We showcase the methodology by constructing low-dimensional input stochastic models to represent thermal diffusivity in two-phase microstructures. This model is used in analyzing the effect of topological variations of two-phase microstructures on the evolution of temperature in heat conduction processes.
Deep Drawing Simulations With Different Polycrystalline Models
NASA Astrophysics Data System (ADS)
Duchêne, Laurent; de Montleau, Pierre; Bouvier, Salima; Habraken, Anne Marie
2004-06-01
The goal of this research is to study the anisotropic material behavior during forming processes, represented by both complex yield loci and kinematic-isotropic hardening models. A first part of this paper describes the main concepts of the `Stress-strain interpolation' model that has been implemented in the non-linear finite element code Lagamine. This model consists of a local description of the yield locus based on the texture of the material through the full constraints Taylor's model. The texture evolution due to plastic deformations is computed throughout the FEM simulations. This `local yield locus' approach was initially linked to the classical isotropic Swift hardening law. Recently, a more complex hardening model was implemented: the physically-based microstructural model of Teodosiu. It takes into account intergranular heterogeneity due to the evolution of dislocation structures, that affects isotropic and kinematic hardening. The influence of the hardening model is compared to the influence of the texture evolution thanks to deep drawing simulations.
Argibay, N.; Chandross, M.; Cheng, S.; ...
2016-11-21
A correlation is established between the macro-scale friction regimes of metals and a transition between two dominant atomistic mechanisms of deformation. Metals tend to exhibit bi-stable friction behavior—low and converging or high and diverging. These general trends in behavior are shown to be largely explained using a simplified model based on grain size evolution, as a function of contact stress and temperature, and are demonstrated for self-mated pure copper and gold sliding contacts. Specifically, the low-friction regime (where µ < 0.5) is linked to the formation of ultra-nanocrystalline surface films (10–20 nm), driving toward shear accommodation by grain boundary sliding.more » Above a critical combination of stress and temperature—demonstrated to be a material property—shear accommodation transitions to dislocation dominated plasticity and high friction, with µ > 0.5. We utilize a combination of experimental and computational methods to develop and validate the proposed structure–property relationship. As a result, this quantitative framework provides a shift from phenomenological to mechanistic and predictive fundamental understanding of friction for crystalline materials, including engineering alloys.« less
Microstructural Evolution during DPRM Process of Semisolid Ledeburitic D2 Tool Steel
Mohammed, M. N.; Omar, M. Z.; Syarif, J.; Sajuri, Z.; Salleh, M. S.; Alhawari, K. S.
2013-01-01
Semisolid metal processing is a relatively new technology that offers several advantages over liquid processing and solid processing because of the unique behaviour and characteristic microstructure of metals in this state. With the aim of finding a minimum process chain for the manufacture of high-quality production at minimal cost for forming, the microstructural evolution of the ledeburitic AISI D2 tool steel in the semisolid state was studied experimentally. The potential of the direct partial remelting (DPRM) process for the production of AISI D2 with a uniform globular microstructure was revealed. The liquid fraction was determined using differential scanning calorimetry. The microstructures of the samples were investigated using an optical microscope and a scanning electron microscope equipped with an energy dispersive spectroscopy analyser, while X-ray phase analysis was performed to identify the phase evolution and the type of carbides. Mechanical characterisation was completed by hardness measurements. The typical microstructure after DPRM consists of metastable austenite which was located particularly in the globular grains (average grain size about 50 μm), while the remaining interspaces were filled by precipitated eutectic carbides on the grain boundaries and lamellar network. PMID:24223510
Microstructural evolution during DPRM process of semisolid ledeburitic D2 tool steel.
Mohammed, M N; Omar, M Z; Syarif, J; Sajuri, Z; Salleh, M S; Alhawari, K S
2013-01-01
Semisolid metal processing is a relatively new technology that offers several advantages over liquid processing and solid processing because of the unique behaviour and characteristic microstructure of metals in this state. With the aim of finding a minimum process chain for the manufacture of high-quality production at minimal cost for forming, the microstructural evolution of the ledeburitic AISI D2 tool steel in the semisolid state was studied experimentally. The potential of the direct partial remelting (DPRM) process for the production of AISI D2 with a uniform globular microstructure was revealed. The liquid fraction was determined using differential scanning calorimetry. The microstructures of the samples were investigated using an optical microscope and a scanning electron microscope equipped with an energy dispersive spectroscopy analyser, while X-ray phase analysis was performed to identify the phase evolution and the type of carbides. Mechanical characterisation was completed by hardness measurements. The typical microstructure after DPRM consists of metastable austenite which was located particularly in the globular grains (average grain size about 50 μ m), while the remaining interspaces were filled by precipitated eutectic carbides on the grain boundaries and lamellar network.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gong, Jian; Stewart, Mark L.; Zelenyuk, Alla
The state-of-the-art multiscale modeling of GPFs including channel scale, wall scale, and pore scale is described. The microstructures of two GPFs were experimentally characterized. The pore size distributions of the GPFs were determined by mercury porosimetry. The porosity was measured by X-ray computed tomography (CT) and found to be inhomogeneous across the substrate wall. The significance of pore size distribution with respect to filtration performance was analyzed. The predictions of filtration efficiency were improved by including the pore size distribution in the filtration model. A dynamic heterogeneous multiscale filtration (HMF) model was utilized to simulate particulate filtration on a singlemore » channel particulate filter with realistic particulate emissions from a spark-ignition direct-injection (SIDI) gasoline engine. The dynamic evolution of filter’s microstructure and macroscopic filtration characteristics including mass- and number-based filtration efficiencies and pressure drop were predicted and discussed. The microstructure of the GPF substrate including inhomogeneous porosity and pore size distribution is found to significantly influence local particulate deposition inside the substrate and macroscopic filtration performance and is recommended to be resolved in the filtration model to simulate and evaluate the filtration performance of GPFs.« less
Gong, Jian; Stewart, Mark L.; Zelenyuk, Alla; ...
2018-01-03
The state-of-the-art multiscale modeling of gasoline particulate filter (GPF) including channel scale, wall scale, and pore scale is described. The microstructures of two GPFs were experimentally characterized. The pore size distributions of the GPFs were determined by mercury porosimetry. The porosity was measured by X-ray computed tomography (CT) and found to be inhomogeneous across the substrate wall. The significance of pore size distribution with respect to filtration performance was analyzed. The predictions of filtration efficiency were improved by including the pore size distribution in the filtration model. A dynamic heterogeneous multiscale filtration (HMF) model was utilized to simulate particulate filtrationmore » on a single channel particulate filter with realistic particulate emissions from a spark-ignition direct-injection (SIDI) gasoline engine. The dynamic evolution of filter’s microstructure and macroscopic filtration characteristics including mass- and number-based filtration efficiencies and pressure drop were predicted and discussed. In conclusion, the microstructure of the GPF substrate including inhomogeneous porosity and pore size distribution is found to significantly influence local particulate deposition inside the substrate and macroscopic filtration performance and is recommended to be resolved in the filtration model to simulate and evaluate the filtration performance of GPFs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gong, Jian; Stewart, Mark L.; Zelenyuk, Alla
The state-of-the-art multiscale modeling of gasoline particulate filter (GPF) including channel scale, wall scale, and pore scale is described. The microstructures of two GPFs were experimentally characterized. The pore size distributions of the GPFs were determined by mercury porosimetry. The porosity was measured by X-ray computed tomography (CT) and found to be inhomogeneous across the substrate wall. The significance of pore size distribution with respect to filtration performance was analyzed. The predictions of filtration efficiency were improved by including the pore size distribution in the filtration model. A dynamic heterogeneous multiscale filtration (HMF) model was utilized to simulate particulate filtrationmore » on a single channel particulate filter with realistic particulate emissions from a spark-ignition direct-injection (SIDI) gasoline engine. The dynamic evolution of filter’s microstructure and macroscopic filtration characteristics including mass- and number-based filtration efficiencies and pressure drop were predicted and discussed. In conclusion, the microstructure of the GPF substrate including inhomogeneous porosity and pore size distribution is found to significantly influence local particulate deposition inside the substrate and macroscopic filtration performance and is recommended to be resolved in the filtration model to simulate and evaluate the filtration performance of GPFs.« less
Microstructural evolution of pure tungsten neutron irradiated with a mixed energy spectrum
NASA Astrophysics Data System (ADS)
Koyanagi, Takaaki; Kumar, N. A. P. Kiran; Hwang, Taehyun; Garrison, Lauren M.; Hu, Xunxiang; Snead, Lance L.; Katoh, Yutai
2017-07-01
Microstructures of single-crystal bulk tungsten (W) and polycrystalline W foil with a strong grain texture were investigated using transmission electron microscopy following neutron irradiation at ∼90-800 °C to 0.03-4.6 displacements per atom (dpa) in the High Flux Isotope Reactor with a mixed energy spectrum. The dominant irradiation defects were dislocation loops and small clusters at ∼90 °C. Additional voids were formed in W irradiated at above 460 °C. Voids and precipitates involving transmutation rhenium and osmium were the dominant defects at more than ∼1 dpa. We found a new phenomenon of microstructural evolution in irradiated polycrystalline W: Re- and Os-rich precipitation along grain boundaries. Comparison of results between this study and previous studies using different irradiation facilities revealed that the microstructural evolution of pure W is highly dependent on the neutron energy spectrum in addition to the irradiation temperature and dose.
Predicting the morphologies of γ' precipitates in cobalt-based superalloys
Jokisaari, Andrea M.; Naghavi, S. S.; Wolverton, C.; ...
2017-09-06
Cobalt-based alloys with γ/γ' microstructures have the potential to become the next generation of superalloys, but alloy compositions and processing steps must be optimized to improve coarsening, creep, and rafting behavior. While these behaviors are different than in nickel-based superalloys, alloy development can be accelerated by understanding the thermodynamic factors influencing microstructure evolution. In this work, we develop a phase field model informed by first-principles density functional theory and experimental data to predict the equilibrium shapes of Co-Al-W γ' precipitates. Three-dimensional simulations of single and multiple precipitates are performed to understand the effect of elastic and interfacial energy on coarsenedmore » and rafted microstructures; the elastic energy is dependent on the elastic stiffnesses, misfit strain, precipitate size, applied stress, and precipitate spatial distribution. We observe characteristic microstructures dependent on the type of applied stress that have the same γ' morphology and orientation seen in experiments, indicating that the elastic stresses arising from coherent γ/γ' interfaces are important for morphological evolution during creep. Here, the results also indicate that the narrow γ channels between γ' precipitates are energetically favored, and provide an explanation for the experimentally observed directional coarsening that occurs without any applied stress.« less
NASA Astrophysics Data System (ADS)
Hrutkay, Kyle
Haynes 230 and Inconel 617 are austenitic nickel based superalloys, which are candidate structural materials for next generation high temperature nuclear reactors. High temperature deformation behavior of Haynes 230 and Inconel 617 have been investigated at the microstructural level in order to gain a better understanding of mechanical properties. Tensile tests were performed at strain rates ranging from 10-3-10-5 s -1 at room temperature, 600 °C, 800 °C and 950 °C. Subsequent microstructural analysis, including Scanning Electron Microscopy, Transmission Electron Microscopy, Energy-Dispersive X-ray Spectroscopy, and X-Ray Diffraction were used to relate the microstructural evolution at high temperatures to that of room temperature samples. Grain sizes and precipitate morphologies were used to determine high temperature behavior and fracture mechanics. Serrated flow was observed at intermediate and high temperatures as a result of discontinuous slip and dynamic recrystallization. The amplitude of serration increased with a decrease in the strain rate and increase in the temperature. Dynamic strain ageing was responsible for serrations at intermediate temperatures by means of a locking and unlocking phenomenon between dislocations and solute atoms. Dynamic recrystallization nucleated by grain and twin bulging resulting in a refinement of grain size. Existing models found in the literature were discussed to explain both of these phenomena.
The origins of Asteroidal rock disaggregation: Interplay of thermal fatigue and microstructure
NASA Astrophysics Data System (ADS)
Hazeli, Kavan; El Mir, Charles; Papanikolaou, Stefanos; Delbo, Marco; Ramesh, K. T.
2018-04-01
The distributions of size and chemical composition in regolith on airless bodies provide clues to the evolution of the solar system. Recently, the regolith on asteroid (25143) Itokawa, visited by the JAXA Hayabusa spacecraft, was observed to contain millimeter to centimeter sized particles. Itokawa boulders commonly display well-rounded profiles and surface textures that appear inconsistent with mechanical fragmentation during meteorite impact; the rounded profiles have been hypothesized to arise from rolling and movement on the surface as a consequence of seismic shaking. This investigation provides a possible explanation of these observations by exploring the primary crack propagation mechanism during thermal fatigue of a chondrite. Herein, we present the evolution of the full-field strains on the surface as a function of temperature and microstructure, and examine the crack growth during thermal cycling. Our experimental results demonstrate that thermal-fatigue-driven fracture occurs under these conditions. The results suggest that the primary fatigue crack path preferentially follows the interfaces between monominerals, leaving the minerals themselves intact after fragmentation. These observations are explained through a microstructure-based finite element model that is quantitatively compared with our experimental results. These results on the interactions of thermal fatigue cracking with the microstructure may ultimately allow us to distinguish between thermally induced fragments and impact products.
NASA Astrophysics Data System (ADS)
Breton, D. J.; Baker, I.; Cole, D. M.
2012-12-01
Understanding and predicting the flow of polycrystalline ice is crucial to ice sheet modeling and paleoclimate reconstruction from ice cores. Ice flow rates depend strongly on the fabric (i.e. the distribution of grain sizes and crystallographic orientations) which evolves over time and enhances the flow rate in the direction of applied stress. The mechanisms for fabric evolution in ice have been extensively studied at atmospheric pressures, but little work has been done to observe these processes at the high pressures experienced deep within ice sheets where long-term changes in ice rheology are expected to have significance. We conducted compressive creep tests on a 917 kg m-3 polycrystalline ice specimen at 20 MPa hydrostatic pressure, thus simulating ~2,000 m depth. Initial specimen grain orientations were random, typical grain diameters were 1.2 mm, and the applied creep stress was 0.3 MPa. Subsequent microstructural analyses on the deformed specimen and a similarly prepared, undeformed specimen allowed characterization of crystal fabric evolution under pressure. Our microstructural analysis technique simultaneously collected grain shape and size data from Scanning Electron Microscope (SEM) micrographs and obtained crystallographic orientation data via Electron BackScatter Diffraction (EBSD). Combining these measurements allows rapid analysis of the ice fabric over large numbers of grains, yielding statistically useful numbers of grain size and full c- and a-axis grain orientation data. The combined creep and microstructural data demonstrate pressure-dependent effects on the mechanical and microstructural evolution of polycrystalline ice. We discuss possible mechanisms for the observed phenomena, and future directions for hydrostatic creep testing.
NASA Astrophysics Data System (ADS)
Tian, Jianqiu; Liu, Enlong; Jiang, Lian; Jiang, Xiaoqiong; Sun, Yi; Xu, Ran
2018-06-01
In order to study the influence of particle shape on the microstructure evolution and the mechanical properties of granular materials, a two-dimensional DEM analysis of samples with three particle shapes, including circular particles, triangular particles, and elongated particles, is proposed here to simulate the direct shear tests of coarse-grained soils. For the numerical test results, analyses are conducted in terms of particle rotations, fabric evolution, and average path length evolution. A modified Rowe's stress-dilatancy equation is also proposed and successfully fitted onto simulation data.
NASA Astrophysics Data System (ADS)
Rodriguez, A. K.; Kridli, G.; Ayoub, G.; Zbib, H.
2013-10-01
This article investigates the effects of the strain rate and temperature on the microstructural evolution of twin-rolled cast wrought AZ31B sheets. This was achieved through static heating and through tensile test performed at strain rates from 10-4 to 10-1 s-1 and temperatures between room temperature (RT) and 300 °C. While brittle fracture with high stresses and limited elongation was observed at the RT, ductile behavior was obtained at higher temperatures with low strain rates. The strain rate sensitivity and activation energy calculations indicate that grain boundary diffusion and lattice diffusion are the two rate-controlling mechanisms at warm and high temperatures, respectively. An analysis of the evolution of the microstructure provided some indications of the most probable deformation mechanisms in the material: twinning operates at lower temperatures, and dynamic recrystallization dominates at higher temperatures. The static evolution of the microstructure was also studied, proving a gradual static grain growth of the AZ31B with annealing temperature and time.
Macrosegregation and Microstructural Evolution in a Pressure-Vessel Steel
NASA Astrophysics Data System (ADS)
Pickering, E. J.; Bhadeshia, H. K. D. H.
2014-06-01
This work assesses the consequences of macrosegregation on microstructural evolution during solid-state transformations in a continuously cooled pressure-vessel steel (SA508 Grade 3). Stark spatial variations in microstructure are observed following a simulated quench from the austenitization temperature, which are found to deliver significant variations in hardness. Partial-transformation experiments are used to show the development of microstructure in segregated material. Evidence is presented which indicates the bulk microstructure is not one of upper bainite, as it has been described in the past, but one comprised of Widmanstätten ferrite and pockets of lower bainite. Segregation is observed on three different length scales, and the origins of each type are proposed. Suggestions are put forward for how the segregation might be minimized, and its detrimental effects suppressed by heat treatments.
A microstructurally based model of solder joints under conditions of thermomechanical fatigue
NASA Astrophysics Data System (ADS)
Frear, D. R.; Burchett, S. N.; Rashid, M. M.
The thermomechanical fatigue failure of solder joints is increasingly becoming an important reliability issue. We present two computational methodologies that have been developed to predict the behavior of near eutectic Sn-Pb solder joints under fatigue conditions that are based on metallurgical tests as fundamental input for constitutive relations. The two-phase model mathematically predicts the heterogeneous coarsening behavior of near eutectic Sn-Pb solder. The finite element simulations from this model agree well with experimental thermomechanical fatigue tests. The simulations show that the presence of an initial heterogeneity in the solder microstructure could significantly degrade the fatigue lifetime. The single phase model is a computational technique that was developed to predict solder joint behavior using materials data for constitutive relation constants that could be determined through straightforward metallurgical experiments. A shear/torsion test sample was developed to impose strain in two different orientations. Materials constants were derived from these tests and the results showed an adequate fit to experimental results. The single-phase model could be very useful for conditions where microstructural evolution is not a dominant factor in fatigue.
Evolution of microstructural disorder in annealed bismuth telluride nanowires
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erickson, Kristopher J.; Limmer, Steven J.; Yelton, W. Graham
Controlling the distribution of structural defects in nanostructures is important since such defects can strongly affect critical properties, including thermal and electronic transport. However, characterizing the defect arrangements in individual nanostructures is difficult because of the small length scales involved. Here, we investigate the evolution of microstructural disorder with annealing in electrochemically deposited Bi2Te3 nanowires, which are of interest for thermoelectrics. We combine Convergent Beam Electron Diffraction (CBED) and Scanning Transmission Electron Microscopy (STEM) to provide the necessary spatial and orientational resolution. We find that despite their large initial grain sizes and strong Formula crystallographic texturing, the as-deposited nanowires stillmore » exhibit significant intragranular orientational disorder. Annealing drives both grain growth and a significant reduction in the intragranular disorder. The results are discussed in the context of the existing understanding of the initial microstructure of electrodeposited materials and the understanding of annealing microstructures in both electrochemically deposited and bulk-deformed materials. Finally, this analysis highlights the importance of assessing both the grain size and intragranular disorder in understanding the microstructural evolution of individual nanostructures.« less
Evolution of microstructural disorder in annealed bismuth telluride nanowires
Erickson, Kristopher J.; Limmer, Steven J.; Yelton, W. Graham; ...
2017-03-01
Controlling the distribution of structural defects in nanostructures is important since such defects can strongly affect critical properties, including thermal and electronic transport. However, characterizing the defect arrangements in individual nanostructures is difficult because of the small length scales involved. Here, we investigate the evolution of microstructural disorder with annealing in electrochemically deposited Bi2Te3 nanowires, which are of interest for thermoelectrics. We combine Convergent Beam Electron Diffraction (CBED) and Scanning Transmission Electron Microscopy (STEM) to provide the necessary spatial and orientational resolution. We find that despite their large initial grain sizes and strong Formula crystallographic texturing, the as-deposited nanowires stillmore » exhibit significant intragranular orientational disorder. Annealing drives both grain growth and a significant reduction in the intragranular disorder. The results are discussed in the context of the existing understanding of the initial microstructure of electrodeposited materials and the understanding of annealing microstructures in both electrochemically deposited and bulk-deformed materials. Finally, this analysis highlights the importance of assessing both the grain size and intragranular disorder in understanding the microstructural evolution of individual nanostructures.« less
Microstructural evolution in the HAZ of Inconel 718 and correlation with the hot ductility test
NASA Technical Reports Server (NTRS)
Thompson, R. G.; Genculu, S.
1983-01-01
The nickel-base alloy 718 was evaluated to study the role of preweld heat treatment in reducing or eliminating heat-affected zone hot cracking. Three heat treatments were studied using the Gleeble hot ductility test. A modified hot ductility test was also used to follow the evolution of microstructure during simulated welding thermal cycles. The microstructural evolution was correlated with the hot ductility data in order to evaluate the mechanism of hot cracking in alloy 718. The correlation of hot ductility with microstructure showed that recrystallization, grain growth, and dissolution of precipitates did not in themselves cause any loss of ductility during cooling. Ductility loss during cooling was not initiated until the constitutional liquation of NbC particles was observed in the microstructure. Laves-type phases were found precipitated in the solidified grain boundaries but were not found to correlate with any ductility loss parameter. Mechanisms are reviewed which help to explain how heat treatment controls the hot crack susceptibility of alloy 718 as measured in the hot ductility test.
Microstructural evolution of NF709 (20Cr–25Ni–1.5MoNbTiN) under neutron irradiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Byoungkoo; Tan, Lizhen; Xu, C.
In this study, because of its superior creep and corrosion resistance as compared with general austenitic stainless steels, NF709 has emerged as a candidate structural material for advanced nuclear reactors. To obtain fundamental information about the radiation resistance of this material, this study examined the microstructural evolution of NF709 subjected to neutron irradiation to 3 displacements per atom at 500 °C. Transmission electron microscopy, scanning electron microscopy, and high-energy x-ray diffraction were employed to characterize radiation-induced segregation, Frank loops, voids, as well as the formation and reduction of precipitates. Radiation hardening of ~76% was estimated by nanoindentation, approximately consistent withmore » the calculation according to the dispersed barrier-hardening model, suggesting Frank loops as the primary hardening source.« less
Microstructural evolution of NF709 (20Cr–25Ni–1.5MoNbTiN) under neutron irradiation
Kim, Byoungkoo; Tan, Lizhen; Xu, C.; ...
2015-12-30
In this study, because of its superior creep and corrosion resistance as compared with general austenitic stainless steels, NF709 has emerged as a candidate structural material for advanced nuclear reactors. To obtain fundamental information about the radiation resistance of this material, this study examined the microstructural evolution of NF709 subjected to neutron irradiation to 3 displacements per atom at 500 °C. Transmission electron microscopy, scanning electron microscopy, and high-energy x-ray diffraction were employed to characterize radiation-induced segregation, Frank loops, voids, as well as the formation and reduction of precipitates. Radiation hardening of ~76% was estimated by nanoindentation, approximately consistent withmore » the calculation according to the dispersed barrier-hardening model, suggesting Frank loops as the primary hardening source.« less
NASA Astrophysics Data System (ADS)
Kennouche, David O.
This thesis focuses on Solid Oxide Fuel Cells (SOFCs). The 21st century will see major changes in the way energy is produced, stored, and used around the world. SOFCs, which provide an efficient, scalable, and low-pollution alternative method for electricity generation, are expected to play an important role. SOFCs can also be operated in electrolysis mode for energy storage, important since health and economic reasons are causing a shift towards intermittent renewable energy resources. However, multiple limitations mainly linked to cost and durability have prevented the expansion of this technology to mass markets. This work focuses on the Nickel - Yttria Stabilized Zirconia (Ni-YSZ) anode that is widely used in SOFCs. Coarsening of Ni in the Ni-YSZ anode has been widely cited as a primary cause of long-term SOFC degradation. While there have been numerous studies of Ni coarsening reported, these have typically only tracked the evolution of Ni particle size, not the entire microstructure, and have typically not been correlated directly with electrochemical performance. In this thesis, the advanced tomography techniques Focused Ion Beam - Scanning Electron Microscopy (FIB-SEM) tomography and Trans- mission X-ray Microscopy (TXM) have been utilized to enable insight into the evolution of Ni-YSZ structure and how it relates to performance degradation. Extensive anode aging studies were done for relatively short times using temperatures higher than in normal SOFC operation in order to accelerate microstructural evolution. In addition the microstructure changes were correlated with changes in anode polarization resistance. While most of the measurements were done by comparing different anodes aged under different conditions, the first example of a "pseudo in situ" measurement where the same anode was 3D imaged repeatedly with intervening aging steps, was also demonstrated. A microstructural evolution model that focuses on the active three-phase boundary density was fitted to the experimental data, and subsequently used to predict the change in anode three-phase boundary density and average particle size for extended times under normal SOFC conditions. Characterization of other anodes (pulsed-laser deposited and micro-tubular geometries) produced by international collaborators is also presented. Finally, a testing setup and protocol for anode life testing with current density and overpotential has been developed and implemented. Early test results are presented.
Modeling the Role of Dislocation Substructure During Class M and Exponential Creep. Revised
NASA Technical Reports Server (NTRS)
Raj, S. V.; Iskovitz, Ilana Seiden; Freed, A. D.
1995-01-01
The different substructures that form in the power-law and exponential creep regimes for single phase crystalline materials under various conditions of stress, temperature and strain are reviewed. The microstructure is correlated both qualitatively and quantitatively with power-law and exponential creep as well as with steady state and non-steady state deformation behavior. These observations suggest that creep is influenced by a complex interaction between several elements of the microstructure, such as dislocations, cells and subgrains. The stability of the creep substructure is examined in both of these creep regimes during stress and temperature change experiments. These observations are rationalized on the basis of a phenomenological model, where normal primary creep is interpreted as a series of constant structure exponential creep rate-stress relationships. The implications of this viewpoint on the magnitude of the stress exponent and steady state behavior are discussed. A theory is developed to predict the macroscopic creep behavior of a single phase material using quantitative microstructural data. In this technique the thermally activated deformation mechanisms proposed by dislocation physics are interlinked with a previously developed multiphase, three-dimensional. dislocation substructure creep model. This procedure leads to several coupled differential equations interrelating macroscopic creep plasticity with microstructural evolution.
2013-05-01
of ferrite possessing an acicular/ lenticular -plate morphology which grows into the untrans- formed austenite from the austenite/austenite grain...ferrite and lenticular -shaped Wid- manstatten plates advancing from the allotriomorphic ferrite/ austenite interfaces toward the grain centers is depicted
Zhang, Tao; Li, Lei; Lu, Shi-Hong; Gong, Hai; Wu, Yun-Xin
2018-01-01
Asymmetrical shear rolling with velocity asymmetry and geometry asymmetry is beneficial to enlarge deformation and refine grain size at the center of the thick plate compared to conventional symmetrical rolling. Dynamic recrystallization (DRX) plays a vital role in grain refinement during hot deformation. Finite element models (FEM) coupled with microstructure evolution models and cellular automata models (CA) are established to study the microstructure evolution of plate during asymmetrical shear rolling. The results show that a larger DRX fraction and a smaller average grain size can be obtained at the lower layer of the plate. The DRX fraction at the lower part increases with the ascending speed ratio, while that at upper part decreases. With the increase of the offset distance, the DRX fraction slightly decreases for the whole thickness of the plate. The differences in the DRX fraction and average grain size between the upper and lower surfaces increase with the ascending speed ratio; however, it varies little with the change of the speed ratio. Experiments are conducted and the CA models have a higher accuracy than FEM models as the grain morphology, DRX nuclei, and grain growth are taken into consideration in CA models, which are more similar to the actual DRX process during hot deformation. PMID:29342080
Zhang, Tao; Li, Lei; Lu, Shi-Hong; Gong, Hai; Wu, Yun-Xin
2018-01-17
Asymmetrical shear rolling with velocity asymmetry and geometry asymmetry is beneficial to enlarge deformation and refine grain size at the center of the thick plate compared to conventional symmetrical rolling. Dynamic recrystallization (DRX) plays a vital role in grain refinement during hot deformation. Finite element models (FEM) coupled with microstructure evolution models and cellular automata models (CA) are established to study the microstructure evolution of plate during asymmetrical shear rolling. The results show that a larger DRX fraction and a smaller average grain size can be obtained at the lower layer of the plate. The DRX fraction at the lower part increases with the ascending speed ratio, while that at upper part decreases. With the increase of the offset distance, the DRX fraction slightly decreases for the whole thickness of the plate. The differences in the DRX fraction and average grain size between the upper and lower surfaces increase with the ascending speed ratio; however, it varies little with the change of the speed ratio. Experiments are conducted and the CA models have a higher accuracy than FEM models as the grain morphology, DRX nuclei, and grain growth are taken into consideration in CA models, which are more similar to the actual DRX process during hot deformation.
High Fidelity Ion Beam Simulation of High Dose Neutron Irradiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Was, Gary; Wirth, Brian; Motta, Athur
The objective of this proposal is to demonstrate the capability to predict the evolution of microstructure and properties of structural materials in-reactor and at high doses, using ion irradiation as a surrogate for reactor irradiations. “Properties” includes both physical properties (irradiated microstructure) and the mechanical properties of the material. Demonstration of the capability to predict properties has two components. One is ion irradiation of a set of alloys to yield an irradiated microstructure and corresponding mechanical behavior that are substantially the same as results from neutron exposure in the appropriate reactor environment. Second is the capability to predict the irradiatedmore » microstructure and corresponding mechanical behavior on the basis of improved models, validated against both ion and reactor irradiations and verified against ion irradiations. Taken together, achievement of these objectives will yield an enhanced capability for simulating the behavior of materials in reactor irradiations.« less
Jiang, Shuyong; Zhou, Tao; Tu, Jian; Shi, Laixin; Chen, Qiang; Yang, Mingbo
2017-01-01
Numerical modeling of microstructure evolution in various regions during uniaxial compression and canning compression of NiTi shape memory alloy (SMA) are studied through combined macroscopic and microscopic finite element simulation in order to investigate plastic deformation of NiTi SMA at 400 °C. In this approach, the macroscale material behavior is modeled with a relatively coarse finite element mesh, and then the corresponding deformation history in some selected regions in this mesh is extracted by the sub-model technique of finite element code ABAQUS and subsequently used as boundary conditions for the microscale simulation by means of crystal plasticity finite element method (CPFEM). Simulation results show that NiTi SMA exhibits an inhomogeneous plastic deformation at the microscale. Moreover, regions that suffered canning compression sustain more homogeneous plastic deformation by comparison with the corresponding regions subjected to uniaxial compression. The mitigation of inhomogeneous plastic deformation contributes to reducing the statistically stored dislocation (SSD) density in polycrystalline aggregation and also to reducing the difference of stress level in various regions of deformed NiTi SMA sample, and therefore sustaining large plastic deformation in the canning compression process. PMID:29027925
Hu, Li; Jiang, Shuyong; Zhou, Tao; Tu, Jian; Shi, Laixin; Chen, Qiang; Yang, Mingbo
2017-10-13
Numerical modeling of microstructure evolution in various regions during uniaxial compression and canning compression of NiTi shape memory alloy (SMA) are studied through combined macroscopic and microscopic finite element simulation in order to investigate plastic deformation of NiTi SMA at 400 °C. In this approach, the macroscale material behavior is modeled with a relatively coarse finite element mesh, and then the corresponding deformation history in some selected regions in this mesh is extracted by the sub-model technique of finite element code ABAQUS and subsequently used as boundary conditions for the microscale simulation by means of crystal plasticity finite element method (CPFEM). Simulation results show that NiTi SMA exhibits an inhomogeneous plastic deformation at the microscale. Moreover, regions that suffered canning compression sustain more homogeneous plastic deformation by comparison with the corresponding regions subjected to uniaxial compression. The mitigation of inhomogeneous plastic deformation contributes to reducing the statistically stored dislocation (SSD) density in polycrystalline aggregation and also to reducing the difference of stress level in various regions of deformed NiTi SMA sample, and therefore sustaining large plastic deformation in the canning compression process.
Nonequilibrium synthesis of NbAl3 and Nb-Al-V alloys by laser cladding. I - Microstructure evolution
NASA Technical Reports Server (NTRS)
Sircar, S.; Chattopadhyay, K.; Mazumder, J.
1992-01-01
The evolution of the microstructure in NbAl3 synthesized by a laser cladding technique (a rapid solidification process, with cooling rates up to 10 exp 6 C/sec) is investigated, and the phases are identified using convergent beam electron diffraction. Two new metastable phases were identified and characterized in detail. The effect of adding V on the final microstructure was also investigated, and the various phase chemistries and the partitioning of different elements into different phases were studied.
Microstructural Evolution in Intensively Melt Sheared Direct Chill Cast Al-Alloys
NASA Astrophysics Data System (ADS)
Jones, S.; Rao, A. K. Prasada; Patel, J. B.; Scamans, G. M.; Fan, Z.
The work presented here introduces the novel melt conditioned direct chill casting (MC-DC) technology, where intensive melt shearing is applied to the conventional direct-chill casting process. MC-DC casting can successfully produce high quality Al-alloy billets. The results obtained from 80 mm diameter billets cast at speed of 200 mm/min show that MC-DC casting of Al-alloys, substantially refines the microstructure and reduces macro-segregation. In this paper, we present the preliminary results and discuss microstructural evolution during MC-DC casting of Al-alloys.
Phase Transformations and Microstructural Evolution: Part II
Clarke, Amy Jean
2015-10-30
The activities of the Phase Transformations Committee of the Materials Processing & Manufacturing Division (MPMD) of The Minerals, Metals & Materials Society (TMS) are oriented toward understanding the fundamental aspects of phase transformations. Emphasis is placed on the thermodynamic driving forces for phase transformations, the kinetics of nucleation and growth, interfacial structures and energies, transformation crystallography, surface reliefs, and, above all, the atomic mechanisms of phase transformations. Phase transformations and microstructural evolution are directly linked to materials processing, properties, and performance. In this issue, aspects of liquid–solid and solid-state phase transformations and microstructural evolution are highlighted. Many papers in thismore » issue are highlighted by this paper, giving a brief summary of what they bring to the scientific community.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwong, S.; Jivkov, A.P.
2012-07-01
Deep geologic disposal of high activity and long-lived radioactive waste is gaining increasing support in many countries, where suitable low permeability geological formation in combination with engineered barriers are used to provide long term waste contaminant and minimise the impacts to the environment and risk to the biosphere. This modelling study examines the solute transport in fractured media under low flow velocities that are relevant to a deep geological environment. In particular, reactive solute transport through fractured media is studied using a 2-D model, that considers advection and diffusion, to explore the coupled effects of kinetic and equilibrium chemical processes.more » The effects of water velocity in the fracture, matrix porosity and diffusion on solute transport are investigated and discussed. Some illustrative modelled results are presented to demonstrate the use of the model to examine the effects of media degradation on solute transport, under the influences of hydrogeological (diffusion dominant) and microbially mediated chemical processes. The challenges facing the prediction of long term degradation such as cracks evolution, interaction and coalescence are highlighted. The potential of a novel microstructure informed modelling approach to account for these effects is discussed, particularly with respect to investigating multiple phenomena impact on material performance. The GRM code is used to examine the effects of media degradation for a geological waste disposal package, under the combined hydrogeological (diffusion dominant) and chemical effects in low groundwater flow conditions that are typical of deep geological disposal systems. An illustrative reactive transport modelling application demonstrates the use of the code to examine the interplay of kinetic controlled biogeochemical reactive processes with advective and diffusive transport, under the influence of media degradation. The initial model results are encouraging which show the disposal system to evolve in a physically realistic manner. In the example presented the reactive-transport coupling develops chemically reducing zones, which limit the transport of uranium. This illustrates the potential significance of media degradation and chemical effect on the transport of radionuclides which would need to be taken into account when examining the long-term behaviour and containment properties of the geological disposal system. Microstructure-informed modelling and its potential linkage with continuum flow modelling is a subject of ongoing studies. The approach of microstructure-informed modelling is discussed to provide insight and a mechanistic understanding of macroscopic parameters and their evolution. The proposed theoretical and methodological basis for microstructure-informed modelling of porous quasi-brittle media has the potential to develop into an explanatory and predictive tool for deriving mechanism-based, as opposed to phenomenological, evolution laws for macroscopic properties. These concepts in micro-scale modelling are likely to be applicable to the diffusion process, in addition to advective transport illustrated here for porous media. (authors)« less
NASA Astrophysics Data System (ADS)
Feng, Xiangyi; Dong, Shiyun; Yan, Shixing; Liu, Xiaoting; Xu, Binshi; Pan, Fusheng
2018-03-01
In this article, by using orthogonal test the technological test was conducted and the optimum processing of the remanufacturing35CrMoA axle were obtained. The evolution of microstructure and mechanical property of HAZ were investigated. The microstructure of HAZ was characterized by means of OM and SEM. Meanwhile hardness distribution in HAZ and tensile property of cladding-HAZ-substrate samples were measured. The microstructure of cladding and HAZ were observed. The microsturcture evoltion and the mechanism of harden in the HAZ was discussed and revealed. The results indicated that the remanufacturing part has excellent strength due to grain refining and dispersive distribution of nanoscale cementite. The remanufacturing part will have uniform microstructure and hardness matching with that of 35CrMoA axle by using stress-relieving annealing at 580°.
Simulating Thermal Cycling and Isothermal Deformation Response of Polycrystalline NiTi
NASA Technical Reports Server (NTRS)
Manchiraju, Sivom; Gaydosh, Darrell J.; Noebe, Ronald D.; Anderson, Peter M.
2011-01-01
A microstructure-based FEM model that couples crystal plasticity, crystallographic descriptions of the B2-B19' martensitic phase transformation, and anisotropic elasticity is used to simulate thermal cycling and isothermal deformation in polycrystalline NiTi (49.9at% Ni). The model inputs include anisotropic elastic properties, polycrystalline texture, DSC data, and a subset of isothermal deformation and load-biased thermal cycling data. A key experimental trend is captured.namely, the transformation strain during thermal cycling is predicted to reach a peak with increasing bias stress, due to the onset of plasticity at larger bias stress. Plasticity induces internal stress that affects both thermal cycling and isothermal deformation responses. Affected thermal cycling features include hysteretic width, two-way shape memory effect, and evolution of texture with increasing bias stress. Affected isothermal deformation features include increased hardening during loading and retained martensite after unloading. These trends are not captured by microstructural models that lack plasticity, nor are they all captured in a robust manner by phenomenological approaches. Despite this advance in microstructural modeling, quantitative differences exist, such as underprediction of open loop strain during thermal cycling.
A parallel reaction-transport model applied to cement hydration and microstructure development
NASA Astrophysics Data System (ADS)
Bullard, Jeffrey W.; Enjolras, Edith; George, William L.; Satterfield, Steven G.; Terrill, Judith E.
2010-03-01
A recently described stochastic reaction-transport model on three-dimensional lattices is parallelized and is used to simulate the time-dependent structural and chemical evolution in multicomponent reactive systems. The model, called HydratiCA, uses probabilistic rules to simulate the kinetics of diffusion, homogeneous reactions and heterogeneous phenomena such as solid nucleation, growth and dissolution in complex three-dimensional systems. The algorithms require information only from each lattice site and its immediate neighbors, and this localization enables the parallelized model to exhibit near-linear scaling up to several hundred processors. Although applicable to a wide range of material systems, including sedimentary rock beds, reacting colloids and biochemical systems, validation is performed here on two minerals that are commonly found in Portland cement paste, calcium hydroxide and ettringite, by comparing their simulated dissolution or precipitation rates far from equilibrium to standard rate equations, and also by comparing simulated equilibrium states to thermodynamic calculations, as a function of temperature and pH. Finally, we demonstrate how HydratiCA can be used to investigate microstructure characteristics, such as spatial correlations between different condensed phases, in more complex microstructures.
NASA Astrophysics Data System (ADS)
Klusemann, Benjamin; Bambach, Markus
2018-05-01
Processing conditions play a crucial role for the resulting microstructure and properties of the material. In particular, processing materials under non-equilibrium conditions can lead to a remarkable improvement of the final properties [1]. Additive manufacturing represents a specific process example considered in this study. Models for the prediction of residual stresses and microstructure in additive manufacturing processes, such as laser metal deposition, are being developed with huge efforts to support the development of materials and processes as well as to support process design [2-4]. Since the microstructure predicted after each heating and cooling cycle induced by the moving laser source enters the phase transformation kinetics and microstucture evolution of the subsequent heating and cooling cycle, a feed-back loop for the microstructure calculation is created. This calculation loop may become unstable so that the computed microstructure and related properties become very sensitive to small variations in the input parameters, e.g. thermal conductivity. In this paper, a model for phase transformation in Ti-6Al-4V, originally proposed by Charles Murgau et al. [5], is adopted and minimal adjusted concerning the decomposition of the martensite phase are made. This model is subsequently used to study the changes in the predictions of the different phase volume fractions during heating and cooling under the conditions of laser metal deposition with respect to slight variations in the thermal process history.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sorour, A.A., E-mail: ahmad.sorour@mail.mcgill.ca; Chromik, R.R., E-mail: richard.chromik@mcgill.ca; Gauvin, R., E-mail: raynald.gauvin@mcgill.ca
2013-12-15
The present is a study of the solidification and microstructure of Fe–28.2%Cr–3.8%B–1.5%Si–1.5%Mn (wt.%) alloy deposited onto a 1020 plain carbon steel substrate using the controlled short-circuit metal inert gas welding process. The as-solidified alloy was a metal matrix composite with a hypereutectic microstructure. Thermodynamic calculation based on the Scheil–Gulliver model showed that a primary (Cr,Fe){sub 2}B phase formed first during solidification, followed by an eutectic formation of the (Cr,Fe){sub 2}B phase and a body-centered cubic Fe-based solid solution matrix, which contained Cr, Mn and Si. Microstructure analysis confirmed the formation of these phases and showed that the shape of themore » (Cr,Fe){sub 2}B phase was irregular plate. As the welding heat input increased, the weld dilution increased and thus the volume fraction of the (Cr,Fe){sub 2}B plates decreased while other microstructural characteristics were similar. - Highlights: • We deposit Fe–Cr–B-based alloy onto plain carbon steel using the CSC-MIG process. • We model the solidification behavior using thermodynamic calculation. • As deposited alloy consists of (Cr,Fe){sub 2}B plates embedded in Fe-based matrix. • We study the effect of the welding heat input on the microstructure.« less
Dielectric Characteristics of Microstructural Changes and Property Evolution in Engineered Materials
NASA Astrophysics Data System (ADS)
Clifford, Jallisa Janet
Heterogeneous materials are increasingly used in a wide range of applications such as aerospace, civil infrastructure, fuel cells and many others. The ability to take properties from two or more materials to create a material with properties engineered to needs is always very attractive. Hence heterogeneous materials are evolving into more complex formulations in multiple disciplines. Design of microstructure at multiple scales control the global functional properties of these materials and their structures. However, local microstructural changes do not directly cause a proportional change to the global properties (such as strength and stiffness). Instead, local changes follow an evolution process including significant interactions. Therefore, in order to understand property evolution of engineered materials, microstructural changes need to be effectively captured. Characterizing these changes and representing them by material variables will enable us to further improve our material level understanding. In this work, we will demonstrate how microstructural features of heterogeneous materials can be described quantitatively using broadband dielectric spectroscopy (BbDS). The frequency dependent dielectric properties can capture the change in material microstructure and represent these changes in terms of material variables, such as complex permittivity. These changes in terms of material properties can then be linked to a number of different conditions, such as increasing damage due to impact or fatigue. Two different broadband dielectric spectroscopy scanning modes are presented: bulk measurements and continuous scanning to measure dielectric property change as a function of position across the specimen. In this study, we will focus on ceramic materials and fiber reinforced polymer matrix composites as test bed material systems. In the first part of the thesis, we will present how different micro-structural design of porous ceramic materials can be captured quantitatively using BbDS. These materials are typically used in solid oxide fuel cells (SOFC). Results show significant effect of microstructural design on material properties at multiple temperatures (up to 800 °C). In the later part of the thesis, we will focus on microstructural changes of fiber reinforced composite materials due to impact and static loading. The changes in dielectric response can then be linked to the bulk mechanical properties of the material and various damage modes. Observing trends in dielectric response enables us to further determine local mechanisms and distribution of properties throughout the damaged specimens. A 3D X-ray microscope and a digital microscope have been used to visualize these changes in material microstructure and validate experimental observations. The increase in damage observed in the material microstructure can then also be linked to the changes in dielectric response. Results show that BbDS is an extremely useful tool for identifying microstructural changes within a heterogeneous material and particularly useful in relating remaining properties. Dielectric material variables can be used directly in property degradation laws and help develop a framework for future predictive modeling methodologies.
Microstructural evolution of pure tungsten neutron irradiated with a mixed energy spectrum
Koyanagi, Takaaki; Kumar, N. A. P. Kiran; Hwang, Taehyun; ...
2017-04-13
Here, microstructures of single-crystal bulk tungsten (W) and polycrystalline W foil with a strong grain texture were investigated using transmission electron microscopy following neutron irradiation at ~90–800 °C to 0.03–4.6 displacements per atom (dpa) in the High Flux Isotope Reactor with a mixed energy spectrum. The dominant irradiation defects were dislocation loops and small clusters at ~90 °C. Additional voids were formed in W irradiated at above 460 °C. Voids and precipitates involving transmutation rhenium and osmium were the dominant defects at more than ~1 dpa. We found a new phenomenon of microstructural evolution in irradiated polycrystalline W: Re- andmore » Os-rich precipitation along grain boundaries. Comparison of results between this study and previous studies using different irradiation facilities revealed that the microstructural evolution of pure W is highly dependent on the neutron energy spectrum in addition to the irradiation temperature and dose.« less
Microstructural evolution of pure tungsten neutron irradiated with a mixed energy spectrum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koyanagi, Takaaki; Kumar, N. A. P. Kiran; Hwang, Taehyun
Here, microstructures of single-crystal bulk tungsten (W) and polycrystalline W foil with a strong grain texture were investigated using transmission electron microscopy following neutron irradiation at ~90–800 °C to 0.03–4.6 displacements per atom (dpa) in the High Flux Isotope Reactor with a mixed energy spectrum. The dominant irradiation defects were dislocation loops and small clusters at ~90 °C. Additional voids were formed in W irradiated at above 460 °C. Voids and precipitates involving transmutation rhenium and osmium were the dominant defects at more than ~1 dpa. We found a new phenomenon of microstructural evolution in irradiated polycrystalline W: Re- andmore » Os-rich precipitation along grain boundaries. Comparison of results between this study and previous studies using different irradiation facilities revealed that the microstructural evolution of pure W is highly dependent on the neutron energy spectrum in addition to the irradiation temperature and dose.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koutsokeras, L. E.; Department of Materials Science and Engineering, University of Ioannina, GR-45100 Ioannina; Abadias, G.
2011-08-15
The mechanisms controlling the structural and morphological features (texture and microstructure) of ternary transition metal nitride thin films of the Ti{sub x}Ta{sub 1-x}N system, grown by various physical vapor deposition techniques, are reported. Films deposited by pulsed laser deposition, dual cathode magnetron sputtering, and dual ion beam sputtering have been investigated by means of x-ray diffraction in various geometries and scanning electron microscopy. We studied the effects of composition, energetic, and kinetics in the evolution of the microstructure and texture of the films. We obtain films with single and mixed texture as well as films with columnar ''zone-T'' and globularmore » type morphology. The results have shown that the texture evolution of ternary transition metal nitrides as well as the microstructural features of such films can be well understood in the framework of the kinetic mechanisms proposed for their binary counterparts, thus giving these mechanisms a global application.« less
NASA Astrophysics Data System (ADS)
Kawasaki, Megumi; Lee, Han-Joo; Choi, In-Chul; Jang, Jae-il; Ahn, Byungmin; Langdon, Terence G.
2014-08-01
Severe plastic deformation (SPD) is an attractive processing method for refining microstructures of metallic materials to give ultrafine grain sizes within the submicrometer to even the nanometer levels. Experiments were conducted to discuss the evolution of hardness, microstructure and strain rate sensitivity, m, in a Zn-22% Al eutectoid alloy processed by high- pressure torsion (HPT). The data from microhardness and nanoindentation hardness measurements revealed that there is a significant weakening in the Zn-Al alloy during HPT despite extensive grain refinement. Excellent room-temperature (RT) plasticity was observed in the alloy after HPT from nanoindentation creep in terms of an increased value of m. The microstructural changes with increasing numbers of HPT turns show a strong correlation with the change in the m value. Moerover, the excellent RT plasticity in the alloy is discussed in terms of the enhanced level of grain boundary sliding and the evolution of microsturucture.
Multiscale modeling of ductile failure in metallic alloys
NASA Astrophysics Data System (ADS)
Pardoen, Thomas; Scheyvaerts, Florence; Simar, Aude; Tekoğlu, Cihan; Onck, Patrick R.
2010-04-01
Micromechanical models for ductile failure have been developed in the 1970s and 1980s essentially to address cracking in structural applications and complement the fracture mechanics approach. Later, this approach has become attractive for physical metallurgists interested by the prediction of failure during forming operations and as a guide for the design of more ductile and/or high-toughness microstructures. Nowadays, a realistic treatment of damage evolution in complex metallic microstructures is becoming feasible when sufficiently sophisticated constitutive laws are used within the context of a multilevel modelling strategy. The current understanding and the state of the art models for the nucleation, growth and coalescence of voids are reviewed with a focus on the underlying physics. Considerations are made about the introduction of the different length scales associated with the microstructure and damage process. Two applications of the methodology are then described to illustrate the potential of the current models. The first application concerns the competition between intergranular and transgranular ductile fracture in aluminum alloys involving soft precipitate free zones along the grain boundaries. The second application concerns the modeling of ductile failure in friction stir welded joints, a problem which also involves soft and hard zones, albeit at a larger scale.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shah, Pooja Nitin; Shin, Yung C.; Sun, Tao
Synchrotron X-rays are integrated with a modified Kolsky tension bar to conduct in situ tracking of the grain refinement mechanism operating during the dynamic deformation of metals. Copper with an initial average grain size of 36 μm is refined to 6.3 μm when loaded at a constant high strain rate of 1200 s -1. The synchrotron measurements revealed the temporal evolution of the grain refinement mechanism in terms of the initiation and rate of refinement throughout the loading test. A multiscale coupled probabilistic cellular automata based recrystallization model has been developed to predict the microstructural evolution occurring during dynamic deformationmore » processes. The model accurately predicts the initiation of the grain refinement mechanism with a predicted final average grain size of 2.4 μm. As a result, the model also accurately predicts the temporal evolution in terms of the initiation and extent of refinement when compared with the experimental results.« less
Shah, Pooja Nitin; Shin, Yung C.; Sun, Tao
2017-10-03
Synchrotron X-rays are integrated with a modified Kolsky tension bar to conduct in situ tracking of the grain refinement mechanism operating during the dynamic deformation of metals. Copper with an initial average grain size of 36 μm is refined to 6.3 μm when loaded at a constant high strain rate of 1200 s -1. The synchrotron measurements revealed the temporal evolution of the grain refinement mechanism in terms of the initiation and rate of refinement throughout the loading test. A multiscale coupled probabilistic cellular automata based recrystallization model has been developed to predict the microstructural evolution occurring during dynamic deformationmore » processes. The model accurately predicts the initiation of the grain refinement mechanism with a predicted final average grain size of 2.4 μm. As a result, the model also accurately predicts the temporal evolution in terms of the initiation and extent of refinement when compared with the experimental results.« less
NASA Astrophysics Data System (ADS)
Okuniewski, Maria Ann
Ferritic-martensitic steels have been identified as candidate structural materials for Generation IV reactors, fusion systems, and accelerator driven systems (ADS). These steels have been selected because of their superior radiation resistance to void swelling, irradiation creep, and helium (He) and hydrogen (H) embrittlement at higher temperatures (T/Tm > 0.4). In fusion and ADS reactors the structural materials will be subjected to irradiation damage, as well as the introduction of He and H. The He and H can be introduced via (n,alpha) and (n,p) threshold reactions, respectively. Also protons can be directly implanted from the beam in an ADS. In fusion and ADS environments the He generation is approximately 10 appm/dpa and 150 appm/dpa. The H generation is approximately three to ten times higher than He production in ADS environments. The impact of these large generation rates of He and H impurities on microstructural evolution during irradiation is not well understood. The irradiation-induced microstructural evolution and its relationship to mechanical properties in body-centered cubic (bcc) iron (Fe) with and without He was systematically investigated. The bcc Fe was selected as a simplified material to serve as a basis for a reactor structural material that was exposed to varying He-to-damage ratios to simulate fusion (10 appm/dpa) and ADS (150 appm/dpa) environments. Through utilizing relatively pure, single crystal, bcc Fe, microstructural and mechanical properties effects from alloying elements can be reduced, if not eliminated. Ion irradiations were carried out at two temperature regimes (300 and 450°C). A coordinated group of experiments and simulations were carried out. Following specimen irradiations, the resultant microstructure and mechanical properties were evaluated with both non-destructive and destructive experimental techniques. The experimental techniques included positron annihilation spectroscopy (PAS), specifically, Doppler broadening spectroscopy (DBS) and positron annihilation lifetime spectroscopy (PALS); in-situ and ex-situ transmission electron microscopy (TEM), nanoindentation, and atomic force microscopy (AFM). Kinetic lattice Monte Carlo (KLMC) was selected as the modeling technique since it has the capability of producing mesoscale results that can be directly compared to the length and time scales of the experimental work. ATomic SUPerposition (ATSUP) was utilized to calculate positron lifetimes and W parameters in Fe as a function of vacancy concentration. The results of the experiments and simulations were directly compared and related. The major findings included: (1) A link was established between the irradiated microstructure and its impact on mechanical properties. This was achieved through the quantitative evaluation of the ex-situ TEM defect analyses and the relationship of nanohardness to yield strength. The microstructural results from KMC modeling were also related to the mechanical properties through the Dispersed Barrier Model. (2) KMC was identified as a complementary technique for microstructural evaluation since it resulted in a distribution of defects that were not visible via TEM, however they are known to be present based on the PAS results. (3) PAS results and KMC simulations were compared with ATSUP calculations to quantify defect size versus positron lifetime.
Microstructural Evolution of HSLA ISO 3183 X80M (API 5L X80) Friction Stir Welded Joints
NASA Astrophysics Data System (ADS)
Hermenegildo, Tahiana F. C.; Santos, Tiago F. A.; Torres, Edwar A.; Afonso, Conrado R. M.; Ramirez, Antonio J.
2018-03-01
Evaluation was made of friction stir welded joints, identifying conditions that resulted in satisfactory welded joints free from defects and with microstructural characteristics that provided good mechanical properties. Microstructural characterization and cooling curve analysis of the joints with lower and higher heat inputs evidenced deformation below and above the non-recrystallization temperature (Tnr) and dynamic recrystallization during microstructural evolution. Microscopy analyses showed acicular ferrite, bainitic ferrite, and coalesced bainite microstructures in the stir zone of the cold weld (lower heat input), while the stir zone of the hot weld (higher heat input) contained bainitic ferrite, acicular ferrite, coalesced bainite, martensite, and dispersed carbides. Granular bainite and dispersed carbides were observed in all the heat affected zones. Analysis of the microstructural transformations, together with the thermal history of the joints, showed that the variable that had the greatest influence on the morphology of the bainite (granular bainite/bainitic ferrite) was the deformation temperature.
Microstructure and inclusion of Ti-6Al-4V fabricated by selective laser melting
NASA Astrophysics Data System (ADS)
Huang, Qianli; Hu, Ningmin; Yang, Xing; Zhang, Ranran; Feng, Qingling
2016-12-01
Selective laser melting (SLM) was used in fabricating the dense part from pre-alloyed Ti-6Al-4V powder. The microstructural evolution and inclusion formation of as-fabricated part were characterized in depth. The microstructure was characterized by features of columnar prior β grains and acicular martensite α'. High density defects such as dislocations and twins can be produced in SLM process. Investigations on the inclusions find out that hard alpha inclusion, amorphous CaO and microcrystalline Al2O3 are three main inclusions formed in SLM. The inclusions formed at some specific sites on melt pool surface. The microstructural evolution and inclusion formation of as-fabricated material are closely related to the SLM process.
NASA Astrophysics Data System (ADS)
Wang, Zhongwei; Yan, Yu; Su, Yanjing; Qiao, Lijie
2017-06-01
The subsurface microstructures of metallic implants play a key role in bio-tribocorrosion. Due to wear or change of local environment, the implant surface can have inhomogeneous electrochemical corrosion properties. In this work, the effect of electrochemical corrosion conditions on the subsurface microstructure evolution of CoCrMo alloys for artificial joints was investigated. Transmission electron microscope (TEM) was employed to observe the subsurface microstructures of worn areas at different applied potentials in a simulated physiological solution. The results showed that applied potentials could affect the severity of the subsurface deformation not only by changing the surface passivation but also affecting the adsorption of protein on the alloy surface.
NASA Astrophysics Data System (ADS)
Tengattini, Alessandro; Das, Arghya; Nguyen, Giang D.; Viggiani, Gioacchino; Hall, Stephen A.; Einav, Itai
2014-10-01
This is the first of two papers introducing a novel thermomechanical continuum constitutive model for cemented granular materials. Here, we establish the theoretical foundations of the model, and highlight its novelties. At the limit of no cement, the model is fully consistent with the original Breakage Mechanics model. An essential ingredient of the model is the use of measurable and micro-mechanics based internal variables, describing the evolution of the dominant inelastic processes. This imposes a link between the macroscopic mechanical behavior and the statistically averaged evolution of the microstructure. As a consequence this model requires only a few physically identifiable parameters, including those of the original breakage model and new ones describing the cement: its volume fraction, its critical damage energy and bulk stiffness, and the cohesion.
2010-01-01
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 3s1 ÿ s2 2b s x: ð8Þ Note that Eqs. (7) and (8) are nonlinear diffusion equations, and as such possess solitonic ...ðDGh ¼ 0Þ is approached, an Mÿ—Mþ interface splits into Mÿ—A and A—Mþ diffuse interfaces sepa- rated by a layer of A ( soliton splitting – Falk, 1983...in the bottom figure for g1, the dark blue field corresponds to g2 ¼ 1, i.e., with the variant M2. After passing through a complex microstructure
Microstructural comparison of the kinematics of discrete and continuum dislocations models
NASA Astrophysics Data System (ADS)
Sandfeld, Stefan; Po, Giacomo
2015-12-01
The Continuum Dislocation Dynamics (CDD) theory and the Discrete Dislocation Dynamics (DDD) method are compared based on concise mathematical formulations of the coarse graining of discrete data. A numerical tool for converting from a discrete to a continuum representation of a given dislocation configuration is developed, which allows to directly compare both simulation approaches based on continuum quantities (e.g. scalar density, geometrically necessary densities, mean curvature). Investigating the evolution of selected dislocation configurations within analytically given velocity fields for both DDD and CDD reveals that CDD contains a surprising number of important microstructural details.
NASA Astrophysics Data System (ADS)
Hamlin, Robert J.; DuPont, John N.
2017-01-01
Cast precipitation-hardened (PH) stainless steels 17-4 and 13-8+Mo are used in applications that require a combination of high strength and moderate corrosion resistance. Many such applications require fabrication and/or casting repair by fusion welding. The purpose of this work is to develop an understanding of microstructural evolution and resultant mechanical properties of these materials when subjected to weld thermal cycles. Samples of each material were subjected to heat-affected zone (HAZ) thermal cycles in the solution-treated and aged condition (S-A-W condition) and solution-treated condition with a postweld thermal cycle age (S-W-A condition). Dilatometry was used to establish the onset of various phase transformation temperatures. Light optical microscopy (LOM), scanning electron microscopy (SEM), and energy dispersive spectrometry (EDS) were used to characterize the microstructures, and comparisons were made to gas metal arc welds that were heat treated in the same conditions. Tensile testing was also performed. MatCalc thermodynamic and kinetic modeling software was used to predict the evolution of copper (Cu)-rich body center cubic precipitates in 17-4 and β-NiAl precipitates in 13-8+Mo. The yield strength was lower in the simulated HAZ samples of both materials prepared in the S-A-W condition when compared to their respective base metals. Samples prepared in the S-W-A condition had higher and more uniform yield strengths for both materials. Significant changes were observed in the matrix microstructure of various HAZ regions depending on the peak temperature, and these microstructural changes were interpreted with the aid of dilatometry results, LOM, SEM, and EDS. Despite these significant changes to the matrix microstructure, the changes in mechanical properties appear to be governed primarily by the precipitation behavior. The decrease in strength in the HAZ samples prepared in the S-A-W condition was attributed to the dissolution of precipitates, which was supported by the MatCalc modeling results. MatCalc modeling results for samples in the S-W-A condition predicted uniform size of precipitates across all regions of the HAZ, and these predictions were supported by the observed trends in mechanical properties. Cross-weld tensile tests performed on GMA welds showed the same trends in mechanical behavior as the simulated HAZ samples. Welding in the S-W-A condition resulted in over 90 pct retention in yield strength when compared to base metal strengths. These findings indicate that welding these PH stainless steels in the solution-treated condition and using a postweld age will provide better and more uniform mechanical properties in the HAZ that are more consistent with the base metal properties.
NASA Astrophysics Data System (ADS)
Johnson, Kyle L.; Rodgers, Theron M.; Underwood, Olivia D.; Madison, Jonathan D.; Ford, Kurtis R.; Whetten, Shaun R.; Dagel, Daryl J.; Bishop, Joseph E.
2018-05-01
Additive manufacturing enables the production of previously unachievable designs in conjunction with time and cost savings. However, spatially and temporally fluctuating thermal histories can lead to residual stress states and microstructural variations that challenge conventional assumptions used to predict part performance. Numerical simulations offer a viable way to explore the root causes of these characteristics, and can provide insight into methods of controlling them. Here, the thermal history of a 304L stainless steel cylinder produced using the Laser Engineered Net Shape process is simulated using finite element analysis (FEA). The resultant thermal history is coupled to both a solid mechanics FEA simulation to predict residual stress and a kinetic Monte Carlo model to predict the three-dimensional grain structure evolution. Experimental EBSD measurements of grain structure and in-process infrared thermal data are compared to the predictions.
NASA Astrophysics Data System (ADS)
Johnson, Kyle L.; Rodgers, Theron M.; Underwood, Olivia D.; Madison, Jonathan D.; Ford, Kurtis R.; Whetten, Shaun R.; Dagel, Daryl J.; Bishop, Joseph E.
2017-12-01
Additive manufacturing enables the production of previously unachievable designs in conjunction with time and cost savings. However, spatially and temporally fluctuating thermal histories can lead to residual stress states and microstructural variations that challenge conventional assumptions used to predict part performance. Numerical simulations offer a viable way to explore the root causes of these characteristics, and can provide insight into methods of controlling them. Here, the thermal history of a 304L stainless steel cylinder produced using the Laser Engineered Net Shape process is simulated using finite element analysis (FEA). The resultant thermal history is coupled to both a solid mechanics FEA simulation to predict residual stress and a kinetic Monte Carlo model to predict the three-dimensional grain structure evolution. Experimental EBSD measurements of grain structure and in-process infrared thermal data are compared to the predictions.
Effect of heavy ion irradiation on microstructural evolution in CF8 cast austenitic stainless steel
Chen, Wei-Ying; Li, Meimei; Kirk, Marquis A.; ...
2015-08-21
The microstructural evolution in ferrite and austenitic in cast austenitic stainless steel (CASS) CF8, as received or thermally aged at 400 °C for 10,000 h, was followed under TEM with in situ irradiation of 1 MeV Kr ions at 300 and 350 °C to a fluence of 1.9 × 10 15 ions/cm 2 (~3 dpa) at the IVEM-Tandem Facility. For the unaged CF8, the irradiation-induced dislocation loops appeared at a much lower dose in the austenite than in the ferrite. At the end dose, the austenite formed a well-developed dislocation network microstructure, while the ferrite exhibited an extended dislocation structuremore » as line segments. Compared to the unaged CF8, the aged specimen appeared to have lower rate of damage accumulation. The rate of microstructural evolution under irradiation in the ferrite was significantly lower in the aged specimen than in the unaged. Finally, we attributed this difference to the different initial microstructures in the unaged and aged specimens, which implies that thermal aging and irradiation are not independent but interconnected damage processes.« less
NASA Astrophysics Data System (ADS)
Zhang, Hai-Tao; Mo, Yun-Fei; Liu, Rang-Su; Tian, Ze-An; Liu, Hai-Rong; Hou, Zhao-Yang; Zhou, Li-Li; Liang, Yong-Chao; Peng, Ping
2018-03-01
To deeply understand the effects of high pressure on microstructural evolutions and crystallization mechanisms of liquid metal Ni during solidification process, MD simulation studies have been performed under 7 pressures of 0 ˜ 30 GPa, at cooling rate of 1.0 × 1011 K s-1. Adopting several microstructural analyzing methods, especially the cluster-type index method (CTIM-2) to analyze the local microstructures in the system. It is found that the pressure has important influence on the formation and evolution of microstructures, especially of the main basic clusters in the system. All the simulation systems are directly solidified into crystal structures, and the 1421, 1422, 1441 and 1661 bond-types, as well the FCC (12 0 0 0 12 0), HCP (12 0 0 0 6 6) and BCC (14 6 0 8 0 0) clusters play a key role in the microstructure transitions from liquid to crystal structures. The crystallization temperature T c is enhanced almost linearly with the increase of pressure. Highly interesting, it is found for the first time that there is an important phase transformation point from FCC to BCC structures between 20 ˜ 22.5 GPa during the solidification processes from the same initial liquid system at the same cooling rate. And the effect of increasing pressure is similar to that of decreasing cooling rate for the phase transformation of microstructures during solidification process of liquid metal Ni system, though they have different concrete effecting mechanisms.
López-Barrón, Carlos R; Gurnon, A Kate; Eberle, Aaron P R; Porcar, Lionel; Wagner, Norman J
2014-04-01
We present direct measurements of the evolution of the segmental-level microstructure of a stable shear-banding polymerlike micelle solution during flow startup and cessation in the plane of flow. These measurements provide a definitive, quantitative microstructural understanding of the stages observed during flow startup: an initial elastic response with limited alignment that yields with a large stress overshoot to a homogeneous flow with associated micellar alignment that persists for approximately three relaxation times. This transient is followed by a shear (kink) band formation with a flow-aligned low-viscosity band that exhibits shear-induced concentration fluctuations and coexists with a nearly isotropic band of homogenous, highly viscoelastic micellar solution. Stable, steady banding flow is achieved only after approximately two reptation times. Flow cessation from this shear-banded state is also found to be nontrivial, exhibiting an initial fast relaxation with only minor structural relaxation, followed by a slower relaxation of the aligned micellar fluid with the equilibrium fluid's characteristic relaxation time. These measurements resolve a controversy in the literature surrounding the mechanism of shear banding in entangled wormlike micelles and, by means of comparison to existing literature, provide further insights into the mechanisms driving shear-banding instabilities in related systems. The methods and instrumentation described should find broad use in exploring complex fluid rheology and testing microstructure-based constitutive equations.
Phase Transformations and Microstructural Evolution: Part I
Clarke, Amy Jean
2015-08-29
The activities of the Phase Transformations Committee of the Materials Processing & Manufacturing Division (MPMD) of The Minerals, Metals & Materials Society (TMS) are oriented toward understanding the fundamental aspects of phase transformations. Emphasis is placed on the thermodynamic driving forces for phase transformations, the kinetics of nucleation and growth, interfacial structures and energies, transformation crystallography, surface reliefs, and, above all, the atomic mechanisms of phase transformations. Phase transformations and microstructural evolution are directly linked to materials processing, properties, and performance, including in extreme environments, of structural metal alloys. In this paper, aspects of phase transformations and microstructural evolution aremore » highlighted from the atomic to the microscopic scale for ferrous and non-ferrous alloys. Many papers from this issue are highlighted with small summaries of their scientific achievements given.« less
NASA Astrophysics Data System (ADS)
Cai, Song
Zr-2.5Nb is currently used for pressure tubes in the CANDU (CANada Deuterium Uranium) reactor. A complete understanding of the deformation mechanism of Zr-2.5Nb is important if we are to accurately predict the in-reactor performance of pressure tubes and guarantee normal operation of the reactors. This thesis is a first step in gaining such an understanding; the deformation mechanism of ZrNb alloys at room temperature has been evaluated through studying the effect of texture and microstructure on deformation. In-situ neutron diffraction was used to monitor the evolution of the lattice strain of individual grain families along both the loading and Poisson's directions and to track the development of interphase and intergranular strains during deformation. The following experiments were carried out with data interpreted using elasto-plastic modeling techniques: (1) Compression tests of a 100%betaZr material at room temperature. (2) Tension and compression tests of hot rolled Zr-2.5Nb plate material. (3) Compression of annealed Zr-2.5Nb. (4) Cyclic loading of the hot rolled Zr-2.5Nb. (5) Compression tests of ZrNb alloys with different Nb and oxygen contents. The experimental results were interpreted using a combination of finite element (FE) and elasto-plastic self-consistent (EPSC) models. The phase properties and phase interactions well represented by the FE model, the EPSC model successfully captured the evolution of intergranular constraint during deformation and provided reasonable estimates of the critical resolved shear stress and hardening parameters of different slip systems under different conditions. The consistency of the material parameters obtained by the EPSC model allows the deformation mechanism at room temperature and the effect of textures and microstructures of ZrNb alloys to be understood. This work provides useful information towards manufacturing of Zr-2.5Nb components and helps in producing ideal microstructures and material properties for pressure tubes. Also it is helpful in guiding the development of new materials for the next generation of nuclear reactors. Furthermore, the large data set obtained from this study can be used in evaluation and improving current and future polycrystalline deformation models.
Microstructural Evolution of Thor™ 115 Creep-Strength Enhanced Ferritic Steel
NASA Astrophysics Data System (ADS)
Ortolani, Matteo; D'Incau, Mirco; Ciancio, Regina; Scardi, Paolo
2017-12-01
A new ferritic steel branded as Thor™ 115 has been developed to enhance high-temperature resistance. The steel design combines an improved oxidation resistance with long-term microstructural stability. The new alloy, cast to different product forms such as plates and tubes, was extensively tested to assess the high-temperature time-dependent mechanical behavior (creep). The main strengthening mechanism is precipitation hardening by finely dispersed carbide and nitride phases. Information on the evolution of secondary phases and time-temperature-precipitation behavior of the alloy, essential to ensure long-term property stability, was obtained by scanning transmission electron microscopy with energy dispersive spectroscopy, and by X-ray Powder Diffraction on specimens aged up to 50,000 hours. A thermodynamic modeling supports presentation and evaluation of the experimental results. The evolution of precipitates in the new alloy confirms the retention of the strengthening by secondary phases, even after long-term exposure at high temperature. The deleterious conversion of nitrides into Z phase is shown to be in line with, or even slower than that of the comparable ASME grade 91 steel.
NASA Astrophysics Data System (ADS)
Barati, M.; Arbab Chirani, S.; Kadkhodaei, M.; Saint-Sulpice, L.; Calloch, S.
2017-02-01
The behaviors of shape memory alloys (SMAs) strongly depend on the presence of different phases: austenite, thermally-induced martensite and stress-induced martensite. Consequently, it is important to know the phase volume fraction of each phases and their evolution during thermomechanical loadings. In this work, a three-phase proportioning method based on electric resistivity variation of a CuAlBe SMA is proposed. Simple thermomechanical loadings (i. e. pseudoplasticity and pseudoelasticity), one-way shape memory effect, recovery stress, assisted two-way memory effect at different level of stress and cyclic pseudoelasticity tests are investigated. Based on the electric resistivity results, during each loading path, evolution of the microstructure is determined. The origin of residual strain observed during the considered thermomechanical loadings is discussed. A special attention is paid to two-way shape memory effect generated after considered cyclic loadings and its relation with the developed residual strain. These results permit to identify and to validate the macroscopic models of SMAs behaviors.
Unity and diversity in mixing: Stretching, diffusion, breakup, and aggregation in chaotic flows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ottino, J.M.
1991-05-01
Experiments and theory have produced a reasonably good qualitative understanding of the evolution of chaotic mixing of passive tracers, especially in two-dimensional time-periodic flow fields. Such an understanding forms a fabric for the evolution of breakup, aggregation, and diffusion-controlled reactions in more complex flows. These systems can be viewed as a population of microstructures'' whose behavior is dictated by iterations of a chaotic flow; microstructures break, diffuse, and aggregate, causing the population to evolve in space and time. This paper presents simple physical models for such processes. Self-similarity is common to all the problems; examples arise in the context ofmore » the distribution of stretchings within chaotic flows, in the asymptotic evolution of diffusion-reaction processes at striation thickness scales, in the equilibrium distribution of drop sizes generated upon mixing of immiscible fluids, in the equations describing mean-field kinetics of coagulation, in the sequence of actions necessary for the destruction of islands in two-dimensional flow, and in the fractal structure of clusters produced upon aggregation in chaotic flows.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Azarniya, Abolfazl, E-mail: abolfazl_azarniya@mehr.sharif.ir; Azarniya, Amir, E-mail: a.azarnia91@gmail.com; Hosseini, Hamid Reza Madaah, E-mail: madaah@sharif.ir
In this study, aluminium titanate (AT) particles and nanofibers were synthesized through citrate sol gel and sol gel-assisted electrospinning methods in both nanostructured powder and nanofiber forms. The results of X-ray diffraction analysis, field-emission scanning electron microscopy and differential thermal analysis showed that the synthetic products benefit a nanostructured nature with a grain size less than 70 nm. The optimal values for time and temperature at which a roughly pure AT is attained were determined as 2 h and 900 °C, respectively. It was found that the sol gel precursor bears an amorphous structure till 700 °C and begins tomore » be crystallized to alumina, anatase and AT at higher temperatures. Moreover, AT tends to decompose into rutile and alumina at temperatures higher than 900 °C and its degradation rate reaches a maximum at temperatures near to 1100 °C. In this synthesis, citric acid was used as a chelating agent for Al{sup 3} {sup +} and Ti{sup 4} {sup +} ions and it was shown that a low citric acid-to-metal cation ratio leads to larger numbers of nuclei during crystallization and smaller grain size. Finally, a model was suggested to describe the microstructural evolution of AT compound based on a nucleation and growth regime. - Graphical abstract: Display Omitted - Highlights: • We synthesized aluminium titanate ceramic in both powder and nanofiber forms. • The methods in use were citrate sol gel and sol gel-assisted electrospinning. • Powders and nanofibers bear a nanostructured nature with a grain size less than 70 nm. • A model is suggested to describe microstructural evolution of synthetic products.« less
On the multi-scale description of micro-structured fluids composed of aggregating rods
NASA Astrophysics Data System (ADS)
Perez, Marta; Scheuer, Adrien; Abisset-Chavanne, Emmanuelle; Ammar, Amine; Chinesta, Francisco; Keunings, Roland
2018-05-01
When addressing the flow of concentrated suspensions composed of rods, dense clusters are observed. Thus, the adequate modelling and simulation of such a flow requires addressing the kinematics of these dense clusters and their impact on the flow in which they are immersed. In a former work, we addressed a first modelling framework of these clusters, assumed so dense that they were considered rigid and their kinematics (flow-induced rotation) were totally defined by a symmetric tensor c with unit trace representing the cluster conformation. Then, the rigid nature of the clusters was relaxed, assuming them deformable, and a model giving the evolution of both the cluster shape and its microstructural orientation descriptor (the so-called shape and orientation tensors) was proposed. This paper compares the predictions coming from those models with finer-scale discrete simulations inspired from molecular dynamics modelling.
NASA Astrophysics Data System (ADS)
Hansen, Lars N.
Many features of plate tectonics cannot be explained with standard rheological models of the upper mantle. In particular, the localization of deformation at plate boundaries requires the viscosity of the constituent rocks to evolve spatially and temporally. Such rheological complexity may arise from changing microstructural state variables (e.g., grain size and crystallographic-fabric strength), but the degree to which microstructure contributes to the evolution of viscosity is unclear given our current understanding of deformation mechanisms in mantle minerals. Dislocation-accommodated grain-boundary sliding (GBS) is a potentially critical mechanism for localizing deformation in olivine because it imparts a sensitivity of the viscosity to the state of the microstructure while simultaneously providing mechanisms for changing the microstructure. However, many details of GBS in olivine are currently unknown including 1) the magnitude of the sensitivity of strain rate to crystallographic fabric and grain size, 2) the strength of the crystallographic fabrics produced, and 3) the anisotropy in viscosity of polycrystalline aggregates. Detailed knowledge of these unknowns is necessary to assess the importance of microstructural evolution in the operation of plate tectonics. This dissertation investigates the details of GBS in olivine through four sets of laboratory-based experiments. In Chapter 2, triaxial compressive creep experiments on aggregates of San Carlos olivine are used to develop a flow law for olivine deforming by GBS. Extrapolations of strain rate to geological conditions using the derived flow law indicate that GBS is the dominant deformation mechanism throughout the uppermost mantle. Crystallographic fabrics observed in deformed samples are consistent with upper-mantle seismic anisotropy. In Chapter 3, torsion experiments on iron-rich olivine are used to determine the rheological behavior of olivine deforming by GBS at large strains. The sensitivity of the strain rate to grain size and stress is demonstrated to be consistent with low-strain experiments. Additionally, the sensitivity of strain rate to the development of a crystallographic fabric is determined. Constitutive relationships including microstructural evolution are developed that accurately predict the observed stress as a function of strain. The results of Chapter 3 confirm that significant weakening is associated with both grain-size reduction and crystallographic-fabric development. In Chapter 4, torsion experiments on iron-rich olivine are used to determine if microstructural evolution can lead to strain localization. Experiments were conducted with either constant-strain-rate or constant-stress boundary conditions. Localization is only observed in samples deformed at constant-stress, which suggests boundary conditions affect the critical size of strength perturbation necessary for localization to occur. Strain localization is correlated with fine-grained regions, and a feedback mechanism between grain-size reduction and strain rate is proposed. In Chapter 5, both torsion and tension experiments are used to assess the mechanical anisotropy of previously deformed samples. Based on the direction of the applied stress relative to the orientation of a pre-existing crystallographic fabric, the viscosity is demonstrated to vary by over an order of magnitude. This observation suggests deformation can localize in regions that were previously deformed and retained a strong crystallographic fabric. The results of this dissertation elucidate the interplay between microstructure and deformation of olivine in the GBS regime. Because the viscosity of olivine-rich rocks deforming by GBS is dependent on both grain size and crystallographic fabric, heterogeneities in these microstructural parameters can lead to spatial and temporal variations in viscosity, possibly explaining the large-scale patterns of deformation in the upper mantle. Future numerical simulations can test the importance of microstructure in geodynamic processes by incorporating the constitutive relationships outlined in this dissertation.
NASA Astrophysics Data System (ADS)
Jiang, Yunpeng; Qiu, Kun; Sun, Longgang; Wu, Qingqing
2018-01-01
The relationship among processing, microstructure, and mechanical performance is the most important for metallic glass matrix composites (MGCs). Numerical modeling was performed on the shear banding in MGCs, and the impacts of particle concentration, morphology, agglomerate, size, and thermal residual stress were revealed. Based on the shear damage criterion, the equivalent plastic strain acted as an internal state variable to depict the nucleation, growth, and coalescence of shear bands. The element deletion technique was employed to describe the process of transformation from shear band to micro-crack. The impedance effect of particle morphology on the propagation of shear bands was discussed, whereby the toughening mechanism was clearly interpreted. The present work contributes to the subsequent strengthening and toughening design of MGCs.
Patra, Anirban; McDowell, David L.
2016-03-25
We use a continuum crystal plasticity framework to study the effect of microstructure and mesoscopic factors on dislocation channeling and flow localization in an irradiated model bcc alloy. For simulated dislocation channeling characteristics we correlate the dislocation and defect densities in the substructure, local Schmid factor, and stress triaxiality, in terms of their temporal and spatial evolution. A metric is introduced to assess the propensity for localization and is correlated to the grain-level Schmid factor. We also found that localization generally takes place in grains with a local Schmid factor in the range 0.42 or higher. Surface slip step heightsmore » are computed at free surfaces and compared to relevant experiments.« less
A microstructurally based model of solder joints under conditions of thermomechanical fatigue
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frear, D.R.; Burchett, S.N.; Rashid, M.M.
The thermomechanical fatigue failure of solder joints in increasingly becoming an important reliability issue. In this paper we present two computational methodologies that have been developed to predict the behavior of near eutectic Sn-Pb solder joints under fatigue conditions that are based on metallurgical tests as fundamental input for constitutive relations. The two-phase model mathematically predicts the heterogeneous coarsening behavior of near eutectic Sn-Pb solder. The finite element simulations from this model agree well with experimental thermomechanical fatigue tests. The simulations show that the presence of an initial heterogeneity in the solder microstructure could significantly degrade the fatigue lifetime. Themore » single phase model is a computational technique that was developed to predict solder joint behavior using materials data for constitutive relation constants that could be determined through straightforward metallurgical experiments. A shear/torsion test sample was developed to impose strain in two different orientations. Materials constants were derived from these tests and the results showed an adequate fit to experimental results. The single-phase model could be very useful for conditions where microstructural evolution is not a dominant factor in fatigue.« less
A non-linear dimension reduction methodology for generating data-driven stochastic input models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ganapathysubramanian, Baskar; Zabaras, Nicholas
Stochastic analysis of random heterogeneous media (polycrystalline materials, porous media, functionally graded materials) provides information of significance only if realistic input models of the topology and property variations are used. This paper proposes a framework to construct such input stochastic models for the topology and thermal diffusivity variations in heterogeneous media using a data-driven strategy. Given a set of microstructure realizations (input samples) generated from given statistical information about the medium topology, the framework constructs a reduced-order stochastic representation of the thermal diffusivity. This problem of constructing a low-dimensional stochastic representation of property variations is analogous to the problem ofmore » manifold learning and parametric fitting of hyper-surfaces encountered in image processing and psychology. Denote by M the set of microstructures that satisfy the given experimental statistics. A non-linear dimension reduction strategy is utilized to map M to a low-dimensional region, A. We first show that M is a compact manifold embedded in a high-dimensional input space R{sup n}. An isometric mapping F from M to a low-dimensional, compact, connected set A is contained in R{sup d}(d<
NASA Astrophysics Data System (ADS)
Yang, Y.; Bruns, S.; Stipp, S. L. S.; Sørensen, H. O.
2018-05-01
The coupling between flow and mineral dissolution drives the evolution of many natural and engineered flow systems. Pore surface changes as microstructure evolves but this transient behaviour has traditionally been difficult to model. We combined a reactor network model with experimental, greyscale tomography data to establish the morphological grounds for differences among geometric, reactive and apparent surface areas in dissolving chalk. This approach allowed us to study the effects of initial geometry and macroscopic flow rate independently. The simulations showed that geometric surface, which represents a form of local transport heterogeneity, increases in an imposed flow field, even when the porous structure is chemically homogeneous. Hence, the fluid-reaction coupling leads to solid channelisation, which further results in fluid focusing and an increase in geometric surface area. Fluid focusing decreases the area of reactive surface and the residence time of reactant, both contribute to the over-normalisation of reaction rate. In addition, the growing and merging of microchannels, near the fluid entrance, contribute to the macroscopic, fast initial dissolution rate of rocks.
Coherent photoluminescence excitation spectroscopy of semicrystalline polymeric semiconductors
NASA Astrophysics Data System (ADS)
Silva, Carlos; Grégoire, Pascal; Thouin, Félix
In polymeric semiconductors, the competition between through-bond (intrachain) and through-space (interchain) electronic coupling determines two-dimensional spatial coherence of excitons. The balance of intra- and interchain excitonic coupling depends very sensitively on solid-state microstructure of the polymer film (polycrystalline, semicrystalline with amorphous domains, etc.). Regioregular poly(3-hexylthiophene) has emerged as a model material because its photoluminescence (PL) spectral lineshape reveals intricate information on the magnitude of excitonic coupling, the extent of energetic disorder, and on the extent to which the disordered energy landscape is correlated. I discuss implementation of coherent two-dimensional electronic spectroscopy. We identify cross peaks between 0-0 and 0-1 excitation peaks, and we measure their time evolution, which we interpret within the context of a hybrid HJ aggregate model. By measurement of the homogeneous linewidth in diverse polymer microstructures, we address the nature of optical transitions within such hynbrid aggregate model. These depend strongly on sample processing, and I discuss the relationship between microstructure, steady-state absorption and PL spectral lineshape, and 2D coherent PL excitation spectral lineshapes.
Microstructure Evolution and Flow Stress Model of a 20Mn5 Hollow Steel Ingot during Hot Compression.
Liu, Min; Ma, Qing-Xian; Luo, Jian-Bin
2018-03-21
20Mn5 steel is widely used in the manufacture of heavy hydro-generator shaft due to its good performance of strength, toughness and wear resistance. However, the hot deformation and recrystallization behaviors of 20Mn5 steel compressed under high temperature were not studied. In this study, the hot compression experiments under temperatures of 850-1200 °C and strain rates of 0.01/s-1/s are conducted using Gleeble thermal and mechanical simulation machine. And the flow stress curves and microstructure after hot compression are obtained. Effects of temperature and strain rate on microstructure are analyzed. Based on the classical stress-dislocation relation and the kinetics of dynamic recrystallization, a two-stage constitutive model is developed to predict the flow stress of 20Mn5 steel. Comparisons between experimental flow stress and predicted flow stress show that the predicted flow stress values are in good agreement with the experimental flow stress values, which indicates that the proposed constitutive model is reliable and can be used for numerical simulation of hot forging of 20Mn5 hollow steel ingot.
Evolution of Constitution, Structure, and Morphology in FeCo-Based Multicomponent Alloys
NASA Astrophysics Data System (ADS)
Li, R.; Stoica, M.; Liu, G.; Eckert, J.
2010-07-01
Constituent phases, melting behaviors, and microstructure of multicomponent (Fe0.5Co0.5) x (Mo0.1C0.2B0.5Si0.2)100- x alloys ( x = 95, 90, 85, 80, and 70) produced by copper mold casting were evaluated by various analysis techniques, i.e., X-ray diffractometry, scanning electronic microscopy with energy dispersive X-ray spectrometry, and differential scanning calorimetry. Metastable Fe3C- and Cr23C6-type phases were identified in the chill-cast alloys. A schematic illustration was proposed to explain the evolution of constituent phases and microstructure for the alloys with x = 95, 90, and 85 during the solidification process, which could be applicable to controlling microstructural formation of other multicomponent alloys with similar microstructures by artificially adjusting the composition.
Finite element simulation of texture evolution and Swift effect in NiAl under torsion
NASA Astrophysics Data System (ADS)
Böhlke, Thomas; Glüge, Rainer; Klöden, Burghardt; Skrotzki, Werner; Bertram, Albrecht
2007-09-01
The texture evolution and the Swift effect in NiAl under torsion at 727 °C are studied by finite element simulations for two different initial textures. The material behaviour is modelled by an elastic-viscoplastic Taylor model. In order to overcome the well-known shortcomings of Taylor's approach, the texture evolution is also investigated by a representative volume element (RVE) with periodic boundary conditions and a compatible microstructure at the opposite faces of the RVE. Such a representative volume element takes into account the grain morphology and the grain interaction. The numerical results are compared with experimental data. It is shown that the modelling of a finite element based RVE leads to a better prediction of the final textures. However, the texture evolution path is not accounted for correctly. The simulated Swift effect depends much more on the initial orientation distribution than observed in experiment. Deviations between simulation and experiment may be due to continuous dynamic recrystallization.
NASA Astrophysics Data System (ADS)
Nacif el Alaoui, Reda
Mechanical structure-property relations have been quantified for AISI 4140 steel. under different strain rates and temperatures. The structure-property relations were used. to calibrate a microstructure-based internal state variable plasticity-damage model for. monotonic tension, compression and torsion plasticity, as well as damage evolution. Strong stress state and temperature dependences were observed for the AISI 4140 steel. Tension tests on three different notched Bridgman specimens were undertaken to study. the damage-triaxiality dependence for model validation purposes. Fracture surface. analysis was performed using Scanning Electron Microscopy (SEM) to quantify the void. nucleation and void sizes in the different specimens. The stress-strain behavior exhibited. a fairly large applied stress state (tension, compression dependence, and torsion), a. moderate temperature dependence, and a relatively small strain rate dependence.
Direct observation of grain rotations during coarsening of a semisolid Al–Cu alloy
Dake, Jules M.; Oddershede, Jette; Sørensen, Henning O.; Werz, Thomas; Shatto, J. Cole; Uesugi, Kentaro; Schmidt, Søren; Krill, Carl E.
2016-01-01
Sintering is a key technology for processing ceramic and metallic powders into solid objects of complex geometry, particularly in the burgeoning field of energy storage materials. The modeling of sintering processes, however, has not kept pace with applications. Conventional models, which assume ideal arrangements of constituent powders while ignoring their underlying crystallinity, achieve at best a qualitative description of the rearrangement, densification, and coarsening of powder compacts during thermal processing. Treating a semisolid Al–Cu alloy as a model system for late-stage sintering—during which densification plays a subordinate role to coarsening—we have used 3D X-ray diffraction microscopy to track the changes in sample microstructure induced by annealing. The results establish the occurrence of significant particle rotations, driven in part by the dependence of boundary energy on crystallographic misorientation. Evidently, a comprehensive model for sintering must incorporate crystallographic parameters into the thermodynamic driving forces governing microstructural evolution. PMID:27671639
NASA Astrophysics Data System (ADS)
Feng, Hongliang; Huang, Jihua; Peng, Xianwen; Lv, Zhiwei; Wang, Yue; Yang, Jian; Chen, Shuhai; Zhao, Xingke
2018-05-01
For high-temperature-resistant packaging of new generation power chip, a chip packaging simulation structure of Ni/Ni-Sn/Ni was bonded by a transient liquid-phase sintering process. High-temperature aging experiments were carried out to investigate joint heat stability. The microstructural evolution and mechanism during aging, and mechanical properties after aging were analyzed. The results show that the 30Ni-70Sn bonding layer as-bonded at 340°C for 240 min is mainly composed of Ni3Sn4 and residual Ni particles. When aged at 350°C, because of the difficulty of nucleation for Ni3Sn and quite slow growth of Ni3Sn2, the bonding layer is stable and the strength of that doesn't change obviously with aging time. When aging temperature increased to 500°C, however, the residual Ni particles were gradually dissolved and the bonding layer formed a stable structure with dominated Ni3Sn2 after 36 h. Meanwhile, due to the volume shrinkage (4.43%) from Ni3Sn2 formation, a number of voids were formed. The shear strength shows an increase, resulting from Ni3Sn2 formation, but then it decreases slightly caused by voids. After aging at 500°C for 100 h, shear strength is still maintained at 29.6 MPa. In addition, the mechanism of void formation was analyzed and microstructural evolution model was also established.
Sahu, Bibhuti Bhusan; Han, Jeon Geon; Kersten, Holger
2017-02-15
Understanding the science and engineering of thin films using plasma assisted deposition methods with controlled growth and microstructure is a key issue in modern nanotechnology, impacting both fundamental research and technological applications. Different plasma parameters like electrons, ions, radical species and neutrals play a critical role in nucleation and growth and the corresponding film microstructure as well as plasma-induced surface chemistry. The film microstructure is also closely associated with deposition energy which is controlled by electrons, ions, radical species and activated neutrals. The integrated studies on the fundamental physical properties that govern the plasmas seek to determine their structure and modification capabilities under specific experimental conditions. There is a requirement for identification, determination, and quantification of the surface activity of the species in the plasma. Here, we report a detailed study of hydrogenated amorphous and crystalline silicon (c-Si:H) processes to investigate the evolution of plasma parameters using a theoretical model. The deposition processes undertaken using a plasma enhanced chemical vapor deposition method are characterized by a reactive mixture of hydrogen and silane. Later, various contributions of energy fluxes on the substrate are considered and modeled to investigate their role in the growth of the microstructure of the deposited film. Numerous plasma diagnostic tools are used to compare the experimental data with the theoretical results. The film growth and microstructure are evaluated in light of deposition energy flux under different operating conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kruzic, Jamie J.; Evans, T. Matthew; Greaney, P. Alex
The report describes the development of a discrete element method (DEM) based modeling approach to quantitatively predict deformation and failure of typical nickel based superalloys. A series of experimental data, including microstructure and mechanical property characterization at 600°C, was collected for a relatively simple, model solid solution Ni-20Cr alloy (Nimonic 75) to determine inputs for the model and provide data for model validation. Nimonic 75 was considered ideal for this study because it is a certified tensile and creep reference material. A series of new DEM modeling approaches were developed to capture the complexity of metal deformation, including cubic elasticmore » anisotropy and plastic deformation both with and without strain hardening. Our model approaches were implemented into a commercially available DEM code, PFC3D, that is commonly used by engineers. It is envisioned that once further developed, this new DEM modeling approach can be adapted to a wide range of engineering applications.« less
Numerical Simulation of Austempering Heat Treatment of a Ductile Cast Iron
NASA Astrophysics Data System (ADS)
Boccardo, Adrián D.; Dardati, Patricia M.; Celentano, Diego J.; Godoy, Luis A.; Górny, Marcin; Tyrała, Edward
2016-02-01
This paper presents a coupled thermo-mechanical-metallurgical formulation to predict the dimensional changes and microstructure of a ductile cast iron part as a consequence of an austempering heat process. To take into account the different complex phenomena which are present in the process, the stress-strain law and plastic evolution equations are defined within the context of the associate rate-independent thermo-plasticity theory. The metallurgical model considers the reverse eutectoid, ausferritic, and martensitic transformations using macro- and micro-models. The resulting model is solved using the finite element method. The performance of this model is evaluated by comparison with experimental results of a dilatometric test. The results indicate that both the experimental evolution of deformation and temperature are well represented by the numerical model.
Observation of asphalt binder microstructure with ESEM.
Mikhailenko, P; Kadhim, H; Baaj, H; Tighe, S
2017-09-01
The observation of asphalt binder with the environmental scanning electron microscope (ESEM) has shown the potential to observe asphalt binder microstructure and its evolution with binder aging. A procedure for the induction and identification of the microstructure in asphalt binder was established in this study and included sample preparation and observation parameters. A suitable heat-sampling asphalt binder sample preparation method was determined for the test and several stainless steel and Teflon sample moulds developed, finding that stainless steel was the preferable material. The magnification and ESEM settings conducive to observing the 3D microstructure were determined through a number of observations to be 1000×, although other magnifications could be considered. Both straight run binder (PG 58-28) and an air blown oxidised binder were analysed; their structures being compared for their relative size, abundance and other characteristics, showing a clear evolution in the fibril microstructure. The microstructure took longer to appear for the oxidised binder. It was confirmed that the fibril microstructure corresponded to actual characteristics in the asphalt binder. Additionally, a 'bee' micelle structure was found as a transitional structure in ESEM observation. The test methods in this study will be used for more comprehensive analysis of asphalt binder microstructure. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.
Microstructure evolution in dissimilar AA6060/copper friction stir welded joints
NASA Astrophysics Data System (ADS)
Kalashnikova, T. A.; Shvedov, M. A.; Vasilyev, P. A.
2017-12-01
Friction stir welding process has been applied for making a dissimilar copper/aluminum alloy joint. The grain microstructure and mechanical properties of the obtained joint were studied. The structure of the cross-section of the FSW compound was analyzed. The microstructural evolution of the joint was examined using optical microscopy. The mechanical properties of the intermetallic particles were evaluated by measuring the microhardness according to the Vickers method. The microhardness of the intermetallic particles was by a factor of 4 lower than that of the particles obtained by fusion welding. The results of the investigations enable using friction stir welding for making dissimilar joints.
Thermal and temporal evolution of microstructure in polycrystalline ZnO
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kondal, Neha; Tiwari, Sanjiv Kumar, E-mail: sanjivkumar.tiwari@juit.ac.in
2016-05-06
Tug between electronics and spintronics has opened up new area of research named as dilute magnetic semiconductors (DMS), ZnO is one of the most reliable candidates for spintronic devices and DMS. Since, pure and transition metal doped polycrystalline ZnO shows room temperature ferromagnetism, therefore it is very important to gain insight into its microstructure (MS) evolution. We report thermal evolution of MS of pure ZnO on sintering it at 200 °C, 400 °C, 600 °C, and 800 °C in ambient atmosphere for two hours. Temporal evolution at fixed temperature was analyzed using mean field model of internal energy and entropy.more » Grain size of ZnO MS were analyzed using integral breadth method of X-ray diffraction (XRD) lines using Voigt profile fit,. XRD line corresponding to [101] plane shifts from 36.17° to 36.28° whereas grain size increases from 67.5 nm to 93.7 nm with increase of temperature from 23°C to 800°C respectively. Grain growth with increase of temperature show Arrhenius type behavior with activation energy of 30.77 kJ-mol{sup −1} and temporal growth shows diffusive behavior with exponent 0.5.« less
NASA Astrophysics Data System (ADS)
Louna, Zineeddine; Goda, Ibrahim; Ganghoffer, Jean-François
2018-01-01
We construct in the present paper constitutive models for bone remodeling based on micromechanical analyses at the scale of a representative unit cell (RUC) including a porous trabecular microstructure. The time evolution of the microstructure is simulated as a surface remodeling process by relating the surface growth remodeling velocity to a surface driving force incorporating a (surface) Eshelby tensor. Adopting the framework of irreversible thermodynamics, a 2D constitutive model based on the setting up of the free energy density and a dissipation potential is identified from FE simulations performed over a unit cell representative of the trabecular architecture obtained from real bone microstructures. The static and evolutive effective properties of bone at the scale of the RUC are obtained by combining a methodology for the evaluation of the average kinematic and static variables over a prototype unit cell and numerical simulations with controlled imposed first gradient rates. The formulated effective growth constitutive law at the scale of the homogenized set of trabeculae within the RUC is of viscoplastic type and relates the average growth strain rate to the homogenized stress tensor. The postulated model includes a power law function of an effective stress chosen to depend on the first and second stress invariants. The model coefficients are calibrated from a set of virtual testing performed over the RUC subjected to a sequence of loadings. Numerical simulations show that overall bone growth does not show any growth kinematic hardening. The obtained results quantify the strength and importance of different types of external loads (uniaxial tension, simple shear, and biaxial loading) on the overall remodeling process and the development of elastic deformations within the RUC.
Solid oxide fuel cell anode image segmentation based on a novel quantum-inspired fuzzy clustering
NASA Astrophysics Data System (ADS)
Fu, Xiaowei; Xiang, Yuhan; Chen, Li; Xu, Xin; Li, Xi
2015-12-01
High quality microstructure modeling can optimize the design of fuel cells. For three-phase accurate identification of Solid Oxide Fuel Cell (SOFC) microstructure, this paper proposes a novel image segmentation method on YSZ/Ni anode Optical Microscopic (OM) images. According to Quantum Signal Processing (QSP), the proposed approach exploits a quantum-inspired adaptive fuzziness factor to adaptively estimate the energy function in the fuzzy system based on Markov Random Filed (MRF). Before defuzzification, a quantum-inspired probability distribution based on distance and gray correction is proposed, which can adaptively adjust the inaccurate probability estimation of uncertain points caused by noises and edge points. In this study, the proposed method improves accuracy and effectiveness of three-phase identification on the micro-investigation. It provides firm foundation to investigate the microstructural evolution and its related properties.
NASA Astrophysics Data System (ADS)
Zhang, Chi; Shen, Wenfei; Zhang, Liwen; Xia, Yingnan; Li, Ruiqin
2017-04-01
A gamma prime ( γ') precipitation ( 35% in volume)-hardened powder metallurgy (P/M) superalloy FGH96 was welded using inertia friction welding (IFW). The microstructure and γ' distributions in the joints in two conditions, hot isostatic pressed state and solution-treated and aged state, were characterized. The recrystallization of grains, the dissolution and re-precipitation of γ' in the joints were discussed in terms of the temperature evolutions which were calculated by finite element model analysis. Regardless of the initial states, fully recrystallized fine grain structure formed at welded zone. Meanwhile, very fine γ' precipitations were re-precipitated at the welded zone. These recrystallized grain structure and fine re-precipitated γ' resulted in increasing hardness of IFW joint while making the hardness dependent on the microstructure and γ' precipitation.
NASA Astrophysics Data System (ADS)
Mohanty, Bhaskar Chandra; Bector, Keerti; Laha, Ranjit
2018-03-01
Doping driven remarkable microstructural evolution of PbS thin films grown by a single-step chemical bath deposition process at 60 °C is reported. The undoped films were discontinuous with octahedral-shaped crystallites after 30 min of deposition, whereas Cu doping led to a distinctly different surface microstructure characterized by densely packed elongated crystallites. A mechanism, based on the time sequence study of microstructural evolution of the films, and detailed XRD and Raman measurements, has been proposed to explain the contrasting microstructure of the doped films. The incorporation of Cu forms an interface layer, which is devoid of Pb. The excess Cu ions in this interface layer at the initial stages of film growth strongly interact and selectively stabilize the charged {111} faces containing either Pb or S compared to the uncharged {100} faces that contain both Pb and S. This interaction interferes with the natural growth habit resulting in the observed surface features of the doped films. Concurrently, the Cu-doping potentially changed the optical properties of the films: A significant widening of the bandgap from 1.52 eV to 1.74 eV for increase in Cu concentration from 0 to 20% was observed, making it a highly potential absorber layer in thin film solar cells.
Microstructure Modeling of 3rd Generation Disk Alloy
NASA Technical Reports Server (NTRS)
Jou, Herng-Jeng
2008-01-01
The objective of this initiative, funded by NASA's Aviation Safety Program, is to model, validate, and predict, with high fidelity, the microstructural evolution of third-generation high-refractory Ni-based disc superalloys during heat treating and service conditions. This initiative is a natural extension of the DARPA-AIM (Accelerated Insertion of Materials) initiative with GE/Pratt-Whitney and with other process simulation tools. Strong collaboration with the NASA Glenn Research Center (GRC) is a key component of this initiative and the focus of this program is on industrially relevant disk alloys and heat treatment processes identified by GRC. Employing QuesTek s Computational Materials Dynamics technology and PrecipiCalc precipitation simulator, physics-based models are being used to achieve high predictive accuracy and precision. Combining these models with experimental data and probabilistic analysis, "virtual alloy design" can be performed. The predicted microstructures can be optimized to promote desirable features and concurrently eliminate nondesirable phases that can limit the reliability and durability of the alloys. The well-calibrated and well-integrated software tools that are being applied under the proposed program will help gas turbine disk alloy manufacturers, processing facilities, and NASA, to efficiently and effectively improve the performance of current and future disk materials.
NASA Astrophysics Data System (ADS)
Messina, Luca; Castin, Nicolas; Domain, Christophe; Olsson, Pär
2017-02-01
The quality of kinetic Monte Carlo (KMC) simulations of microstructure evolution in alloys relies on the parametrization of point-defect migration rates, which are complex functions of the local chemical composition and can be calculated accurately with ab initio methods. However, constructing reliable models that ensure the best possible transfer of physical information from ab initio to KMC is a challenging task. This work presents an innovative approach, where the transition rates are predicted by artificial neural networks trained on a database of 2000 migration barriers, obtained with density functional theory (DFT) in place of interatomic potentials. The method is tested on copper precipitation in thermally aged iron alloys, by means of a hybrid atomistic-object KMC model. For the object part of the model, the stability and mobility properties of copper-vacancy clusters are analyzed by means of independent atomistic KMC simulations, driven by the same neural networks. The cluster diffusion coefficients and mean free paths are found to increase with size, confirming the dominant role of coarsening of medium- and large-sized clusters in the precipitation kinetics. The evolution under thermal aging is in better agreement with experiments with respect to a previous interatomic-potential model, especially concerning the experiment time scales. However, the model underestimates the solubility of copper in iron due to the excessively high solution energy predicted by the chosen DFT method. Nevertheless, this work proves the capability of neural networks to transfer complex ab initio physical properties to higher-scale models, and facilitates the extension to systems with increasing chemical complexity, setting the ground for reliable microstructure evolution simulations in a wide range of alloys and applications.
Oxidation-Assisted Crack Growth in Single-Crystal Superalloys during Fatigue with Compressive Holds
NASA Astrophysics Data System (ADS)
Lafata, M. A.; Rettberg, L. H.; He, M. Y.; Pollock, T. M.
2018-01-01
The mechanism of oxidation-assisted growth of surface cracks during fatigue with compressive holds has been studied experimentally and via a model that describes the role of oxide and substrate properties. The creep-based finite element model has been employed to examine the role of material parameters in the damage evolution in a Ni-base single-crystal superalloy René N5. Low-cycle fatigue experiments with compressive holds were conducted at 1255 K and 1366 K (982 °C and 1093 °C). Interrupted and failed specimens were characterized for crack depth and spacing, oxide thickness, and microstructural evolution. Comparison of experimental to modeled hysteresis loops indicates that transient creep drives the macroscopic stress-strain response. Crack penetration rates are strongly influenced by growth stresses in the oxide, structural evolution in the substrate, and the development of γ ^' } denuded zones. Implications for design of alloys resistant to this mode of degradation are discussed.
NASA Astrophysics Data System (ADS)
Chen, Dong; Wang, Ruiqiang; Huang, Zhiquan; Wu, Yekang; Zhang, Yi; Wu, Guorui; Li, Dalong; Guo, Changhong; Jiang, Guirong; Yu, Shengxue; Shen, Dejiu; Nash, Philip
2018-03-01
Evolution processes of the corrosion behavior and structural characteristics of the plasma electrolytic oxidation (PEO) coated AZ31 magnesium alloy were investigated by using scanning electron microscope (SEM) equipped with energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), potentio-dynamic polarization curves and electrochemical impedance spectroscopy (EIS) measurements. Detached coating samples were fabricated by an electrochemical method and more details of the internal micro-structure of coatings were clearly observed on the fractured cross-section morphologies of the samples compared to general polished cross-section morphologies. Evolution mechanisms of the coating corrosion behavior in relation to the evolution of micro-structural characteristics were discussed in detail.
Search for New Highly Energetic Phases under Compression and Shear
2015-05-01
bar barn British thermal unit (thermochemical) calorie (thermochemical) cal (thermochemical/cm ) curie degree (angle) degree Fahrenheit...corresponding finite element algorithms and subroutines are developed. (c) Problems on compression and shear of a sample in rotational diamond anvil...element algorithms and subroutines are developed. Model problems on martensitic microstructure evolution are solved. (f) Experimental approaches to study
2008-10-01
provide adequate means for thermal heat dissipation and cooling. Thus electronic packaging has four main functions [1]: • Signal distribution which... dissipation , involving structural and materials consideration. • Mechanical, chemical and electromagnetic protection of components and... nature when compared to phenomenological models. Microelectronic packaging industry spends typically several months building and reliability
Microstructural Aspects of Localized Corrosion Behavior of Mg Alloys
NASA Astrophysics Data System (ADS)
Chu, Peng-Wei
Combining high specific strength and unique electrochemical properties, magnesium (Mg) alloys are promising lightweight materials for various applications from automotive, consumer electronics, biomedical body implant, to battery electrodes. Engineering solutions such as coatings have enabled the use of Mg alloys, despite their intrinsic low corrosion resistance. Consequently, the fundamental mechanisms responsible for the unique localized corrosion behavior of bare Mg alloys, the associated abnormal hydrogen evolution response, and the relationships between corrosion behavior and alloy microstructure are still unsolved. This thesis aims to uncover the specificities of Mg corrosion and the roles of alloy chemistry and microstructure. To this end, multiscale site-specific microstructure characterization techniques, including in situ optical microscopy, scanning electron microscopy with focused ion beam milling, and transmission electron microscopy, combined with electrochemical analysis and hydrogen evolution rate monitoring, were performed on pure Mg and selected Mg alloys under free corrosion and anodic polarization, revealing key new information on the propagation mode of localized corrosion and the role of alloy microstructures, thereby confirming or disproving the validity of previously proposed corrosion models. Uniform surface corrosion film on Mg alloys immersed in NaCl solution consisted a bi-layered structure, with a porous Mg(OH)2 outer layer on top of a MgO inner layer. Presence of fine scale precipitates in Mg alloys interacted with the corrosion reaction front, reducing the corrosion rate and surface corrosion film thickness. Protruding hemispherical dome-like corrosion products, accompanied by growing hydrogen bubbles, formed on top of the impurity particles in Mg alloys by deposition of Mg(OH)2 via a microgalvanic effect. Localized corrosion on Mg alloys under both free immersion and anodic polarization was found to be governed by a common mechanism, with the corrosion front propagating laterally a few mum inside the alloy and underneath the surface corrosion film, with finger-like features aligned with (0001) Mg basal planes at the localized corrosion/alloy interface. Rising streams of hydrogen bubbles were found to follow the anodic dissolution of Mg and formation of Mg(OH)2 corrosion products at the propagating localized corrosion fronts. Alloying elements segregation to the grain boundaries showed the ability to stop localized corrosion propagation momentarily. By revealing the microstructure of corrosion features on Mg alloys, a descriptive model was proposed. Relationships between the corrosion behavior and alloy microstructures were also identified. This microscopic information can serve as a guideline for future development of Mg alloys by tailoring the microstructure to achieve proper corrosion responses for applications under different environments.
Hooper, R. J.; Adams, D. P.; Hirschfeld, D.; ...
2015-08-05
The rapid release of energy from reactive multilayer foils can create extreme local temperature gradients near substrate materials. To fully exploit the potential of these materials, a better understanding of the interaction between the substrate or filler material and the foil is needed. In particular, this work investigates how variations in local properties within the substrate (i.e. differences between properties in constituent phases) can affect heat transport into the substrate. Furthermore, this can affect the microstructural evolution observed within the substrate, which may affect the final joint properties. The effect of the initial substrate microstructure on microstructural evolution within themore » heat-affected zone is evaluated experimentally in two Sn-Zn alloys and numerical techniques are utilized to inform the analysis.« less
Microstructural evolution and mechanical properties of SnAgCu alloys
NASA Astrophysics Data System (ADS)
Fouassier, O.; Heintz, J.-M.; Chazelas, J.; Geffroy, P.-M.; Silvain, J.-F.
2006-08-01
Lead containing solder paste is now considered as an environmental threat. In order to eliminate this undesirable environmental impact associated to their production, a family of lead-free solder joint, Sn-3.8Ag-0.7Cu, is proposed. Microstructural and mechanical data of this solder joint have been acquired and compared with the most common used SnPb solder paste. The evolution of the microstructure as well as the failure mode and the mechanical properties of SnAgCu solder joint are discussed as a function of strain rate, annealing treatments, and testing temperature. Tensile tests have been performed, at temperatures ranging from -50to+150°C, on bulk samples. Changes of the mechanical properties of bulk tested samples are actually correlated with microstructural changes, as shown by transmission electronic microscopy investigations.
NASA Astrophysics Data System (ADS)
Naghizadeh, Meysam; Mirzadeh, Hamed
2018-03-01
Microstructural evolutions during reversion annealing of a plastically deformed AISI 316 stainless steel were investigated and three distinct stages were identified: the reversion of strain-induced martensite to austenite, the primary recrystallization of the retained austenite, and the grain growth process. It was found that the slow kinetics of recrystallization at lower annealing temperatures inhibit the formation of an equiaxed microstructure and might effectively impair the usefulness of this thermomechanical treatment for the objective of grain refinement. By comparing the behavior of AISI 316 and 304 alloys, it was found that the mentioned slow kinetics is related to the retardation effect of solute Mo in the former alloy. At high reversion annealing temperature, however, an equiaxed austenitic microstructure was achieved quickly in AISI 316 stainless steel due to the temperature dependency of retardation effect of molybdenum, which allowed the process of recrystallization to happen easily. Conclusively, this work can shed some light on the issues of this efficient grain refining approach for microstructural control of austenitic stainless steels.
NASA Astrophysics Data System (ADS)
Naghizadeh, Meysam; Mirzadeh, Hamed
2018-06-01
Microstructural evolutions during reversion annealing of a plastically deformed AISI 316 stainless steel were investigated and three distinct stages were identified: the reversion of strain-induced martensite to austenite, the primary recrystallization of the retained austenite, and the grain growth process. It was found that the slow kinetics of recrystallization at lower annealing temperatures inhibit the formation of an equiaxed microstructure and might effectively impair the usefulness of this thermomechanical treatment for the objective of grain refinement. By comparing the behavior of AISI 316 and 304 alloys, it was found that the mentioned slow kinetics is related to the retardation effect of solute Mo in the former alloy. At high reversion annealing temperature, however, an equiaxed austenitic microstructure was achieved quickly in AISI 316 stainless steel due to the temperature dependency of retardation effect of molybdenum, which allowed the process of recrystallization to happen easily. Conclusively, this work can shed some light on the issues of this efficient grain refining approach for microstructural control of austenitic stainless steels.
NASA Astrophysics Data System (ADS)
Deepu, M. J.; Farivar, H.; Prahl, U.; Phanikumar, G.
2017-04-01
Dual phase steels are versatile advanced high strength steels that are being used for sheet metal applications in automotive industry. It also has the potential for application in bulk components like gear. The inter-critical annealing in dual phase steels is one of the crucial steps that determine the mechanical properties of the material. Selection of the process parameters for inter-critical annealing, in particular, the inter-critical annealing temperature and time is important as it plays a major role in determining the volume fractions of ferrite and martensite, which in turn determines the mechanical properties. Selection of these process parameters to obtain a particular required mechanical property requires large number of experimental trials. Simulation of microstructure evolution and virtual compression/tensile testing can help in reducing the number of such experimental trials. In the present work, phase field modeling implemented in the commercial software Micress® is used to predict the microstructure evolution during inter-critical annealing. Virtual compression tests are performed on the simulated microstructure using finite element method implemented in the commercial software, to obtain the effective flow curve of the macroscopic material. The flow curves obtained by simulation are experimentally validated with physical simulation in Gleeble® and compared with that obtained using linear rule of mixture. The methodology could be used in determining the inter-critical annealing process parameters required for achieving a particular flow curve.
NASA Astrophysics Data System (ADS)
Pandkar, Anup Surendra
Bearings are an integral part of machine components that transmit rotary power such as cars, motors, engines etc. Safe bearing operation is essential to avoid serious failures and accidents, which necessitates their timely replacement. This calls for an accurate bearing life prediction methods. Based on the Lundberg-Palmgen (LP) model, current life models consistently under predict bearings lives. Improvement in life prediction requires understanding of the bearing failure mechanism i.e. Rolling Contact Fatigue (RCF). The goal of this research is to develop a mechanistic framework required for an improved bearing life prediction model. Such model should account for metal plasticity, influence of microstructural features and cyclically evolving stressstrain fields induced during RCF. To achieve this, elastic-plastic finite element (FE) study is undertaken to investigate the response of M50-NiL bearing steel during RCF. Specifically, a microstructure sensitive study of the influence of non-metallic inclusions on RCF response of bearings is presented. M50-NiL microstructure consists of carbides which are orders of magnitude smaller than bearing dimensions. To account for this size difference, a multi-scale FE modeling approach is employed. The FE results reveal that hard carbide particles act as local stress risers, alter surrounding stressstrain fields and cause micro-scale yielding of steel matrix. Moreover, they introduce a shear stress cycle with non-zero mean stress, which promotes micro-plastic strain accumulation via ratcheting mechanism. Localized ratcheting is primarily responsible for cyclic hardening within the RCF affected region. Such evolution of subsurface hardness can be used to quantify RCF induced damage. To investigate this further, cyclic hardening response of the RCF affected region is simulated. The results show good agreement with the experimental observations. The cyclic stress-strain fields obtained from these simulations and the knowledge of hardness evolution can prove useful for future improvements to life models. The material parameters required for FE simulations are not available for many bearing steels. A novel method is presented to estimate these parameters for M50-NiL using the experimental results. Based on logical assumptions, this method provides meaningful estimates of material parameters. Modeling techniques and conclusions drawn from this research are helpful for improvements in life models.
NASA Astrophysics Data System (ADS)
Skemer, P. A.; Cross, A. J.; Bercovici, D.
2016-12-01
(Ultra)mylonites from plate boundary shear zones are characterized by severe grain-size reduction and well-mixed mineral phases. The evolution from relatively undeformed tectonite protoliths to highly deformed (ultra)mylonites via the formation of new grain and phase boundaries is described as microstructural `damage.' Microstructural damage is important for two reasons: grain-size reduction is thought to result in significant rheological weakening, while phase mixing inhibits mechanical recovery and preserves the zone of weakness to be reactivated repeatedly throughout the tectonic cycle. Grain-size reduction by dynamic recrystallization has been studied extensively in both geologic and engineered materials, yet the progressive mixing of mineral phases during high pressure/temperature shear - the other essential element of damage or mylonitization - is not well understood. In this contribution we present new experimental results and theory related to two distinct phase mixing processes. First, we describe high strain torsion experiments on calcite and anhydrite mixtures and a simple geometric mixing model related to the stretching and thinning of monophase domains. Second, we describe a grain-switching mechanism that is driven by the surface-tension driven migration of newly formed interphase triple junctions. Unlike dynamic recrystallization, which occurs at relatively small strains, both phase mixing mechanisms described here appear to require extremely large strains, a prediction that is consistent with geologic observations. These data suggest that ductile shear zones experience long, transient intervals of microstructural evolution during which rheology is not at steady state. Microstructural damage may be interpreted as the product of several interconnected physical processes, which are collectively essential to the preservation of long-lived, Earth-like plate tectonics.
Evolution of Microstructure in a Nickel-based Superalloy as a Function of Ageing Time
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Wei-Ren; Smith, Gregory Scott; Porcar, L.
2011-01-01
An experimental investigation, combining synchrotron X-ray powder diffraction, small-angle neutron-scattering, and transmission electron microscopy, has been undertaken to study the microstructure of nanoprecipitates in a nickel-based superalloy. Upon increasing the ageing time during a heat-treatment process, the average size of the precipitates first decreases before changing to a monotonical growth stage. Possible reasons for this observed structural evolution, which is predicted thermodynamically, are suggested.
NASA Astrophysics Data System (ADS)
Raju, K.; Sonber, J. K.; Murthy, T. S. R. Ch.; Sairam, K.; Majumdar, S.; Kain, V.; Nageswar Rao, G. V. S.
2018-05-01
This paper reports the results of investigation on densification, microstructural evolution, mechanical properties and oxidation study of CrB2 + EuB6 composite. CrB2 + EuB6 (10 and 20 wt.%) composites have been fabricated by hot pressing at a temperature of 1700 °C and 35 MPa pressure. The hardness and flexural strength were measured in the range of 21.25-24.48 GPa and 171-199 MPa, respectively. The fracture toughness increased from 3.3 to 4.01 MPa m1/2 by the addition of 20% EuB6. Microstructural evolution revealed the uniform distribution of EuB6 and absence of any reaction product. Fracture surface analysis confirmed the presence of transgranular mode of fracture. Oxidation study at 1200 °C revealed that the developed composites have good oxidation resistance and followed the parabolic rate of oxidation.
2011-11-01
elastic range, and with some simple forms of progressing damage . However, a general physics-based methodology to assess the initial and lifetime... damage evolution in the RVE for all possible load histories. Microstructural data on initial configuration and damage progression in CMCs were...the damaged elements will have changed, hence, a progressive damage model. The crack opening for each crack type in each element is stored as a
NASA Astrophysics Data System (ADS)
Abbod, M. F.; Sellars, C. M.; Cizek, P.; Linkens, D. A.; Mahfouf, M.
2007-10-01
The present work describes a hybrid modeling approach developed for predicting the flow behavior, recrystallization characteristics, and crystallographic texture evolution in a Fe-30 wt pct Ni austenitic model alloy subjected to hot plane strain compression. A series of compression tests were performed at temperatures between 850 °C and 1050 °C and strain rates between 0.1 and 10 s-1. The evolution of grain structure, crystallographic texture, and dislocation substructure was characterized in detail for a deformation temperature of 950 °C and strain rates of 0.1 and 10 s-1, using electron backscatter diffraction and transmission electron microscopy. The hybrid modeling method utilizes a combination of empirical, physically-based, and neuro-fuzzy models. The flow stress is described as a function of the applied variables of strain rate and temperature using an empirical model. The recrystallization behavior is predicted from the measured microstructural state variables of internal dislocation density, subgrain size, and misorientation between subgrains using a physically-based model. The texture evolution is modeled using artificial neural networks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hooper, R. J.; Adams, D. P.; Hirschfeld, D.
The rapid release of energy from reactive multilayer foils can create extreme local temperature gradients near substrate materials. To fully exploit the potential of these materials, a better understanding of the interaction between the substrate or filler material and the foil is needed. In particular, this work investigates how variations in local properties within the substrate (i.e. differences between properties in constituent phases) can affect heat transport into the substrate. Furthermore, this can affect the microstructural evolution observed within the substrate, which may affect the final joint properties. The effect of the initial substrate microstructure on microstructural evolution within themore » heat-affected zone is evaluated experimentally in two Sn-Zn alloys and numerical techniques are utilized to inform the analysis.« less
A highly efficient 3D level-set grain growth algorithm tailored for ccNUMA architecture
NASA Astrophysics Data System (ADS)
Mießen, C.; Velinov, N.; Gottstein, G.; Barrales-Mora, L. A.
2017-12-01
A highly efficient simulation model for 2D and 3D grain growth was developed based on the level-set method. The model introduces modern computational concepts to achieve excellent performance on parallel computer architectures. Strong scalability was measured on cache-coherent non-uniform memory access (ccNUMA) architectures. To achieve this, the proposed approach considers the application of local level-set functions at the grain level. Ideal and non-ideal grain growth was simulated in 3D with the objective to study the evolution of statistical representative volume elements in polycrystals. In addition, microstructure evolution in an anisotropic magnetic material affected by an external magnetic field was simulated.
Phase Field Modeling of Microstructure Development in Microgravity
NASA Technical Reports Server (NTRS)
Dantzig, Jonathan A.; Goldenfeld, Nigel
2001-01-01
This newly funded project seeks to extend our NASA-sponsored project on modeling of dendritic microstructures to facilitate collaboration between our research group and those of other NASA investigators. In our ongoing program, we have applied advanced computational techniques to study microstructural evolution in dendritic solidification, for both pure isolated dendrites and directionally solidified alloys. This work has enabled us to compute dendritic microstructures using both realistic material parameters and experimentally relevant processing conditions, thus allowing for the first time direct comparison of phase field computations with laboratory observations. This work has been well received by the materials science and physics communities, and has led to several opportunities for collaboration with scientists working on experimental investigations of pattern selection and segregation in solidification. While we have been able to pursue these collaborations to a limited extent, with some important findings, this project focuses specifically on those collaborations. We have two target collaborations: with Prof. Glicksman's group working on the Isothermal Dendritic Growth Experiment (IDGE), and with Prof. Poirier's group studying directional solidification in Pb-Sb alloys. These two space experiments match well with our two thrusts in modeling, one for pure materials, as in the IDGE, and the other directional solidification. Such collaboration will benefit all of the research groups involved, and will provide for rapid dissemination of the results of our work where it will have significant impact.
NASA Astrophysics Data System (ADS)
An, J.; Xuan, X. H.; Zhao, J.; Sun, W.; Liang, C.
2016-12-01
The wear properties of Mg97Zn1Y2 alloy were investigated using the pin-on-disk wear machine within a load range of 20-380 N and a sliding speed range of 0.2-4.0 m/s. Analysis of worn surfaces using scanning electron microscope and energy-dispersive x-ray spectrometer revealed that wear mechanisms including abrasion + oxidation, delamination accompanied by heavy surface oxidation and delamination operated in mild wear regime, while wear mechanisms such as severe plastic deformation, severe plastic deformation accompanied by spallation of oxidation layer and surface melting prevailed in severe wear regime. The microstructural evolution and hardness change in subsurfaces were examined by optical microscopy and hardness tester. The transformation of surface material from the deformed into dynamic recrystallization (DRX) microstructure was observed before and after mild-to-severe transition. The reason for mild-to-severe wear transition was identified as the transformation of strain hardening to DRX softening in subsurface. Mg97Zn1Y2 alloy has a superior mild-to-severe wear transition resistance to AZ alloys because of its higher recrystallization temperature. A novel model for evaluating the critical surface temperature of mild-to-severe wear transition was established using DRX kinetics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cakmak, Ercan; Choo, Hahn; Kang, Jun-Yun
2015-02-11
The relationships between the martensitic phase transformation kinetics, texture evolution, and the microstructure development in the parent austenite phase were studied for a 304L stainless steel that exhibits the transformation-induced plasticity effect under biaxial loading conditions at ambient temperature. The applied loading paths included: pure torsion, simultaneous biaxial torsion/tension, simultaneous biaxial torsion/compression, and stepwise loading of tension followed by torsion (i.e., first loading by uniaxial tension and then by pure torsion in sequence). Synchrotron X-ray and electron backscatter diffraction techniques were used to measure the evolution of the phase fractions, textures, and microstructures as a function of the applied strains.more » The influence of loading character and path on the changes in martensitic phase transformation kinetics is discussed in the context of (1) texture-transformation relationship and the preferred transformation of grains belonging to certain texture components over the others, (2) effects of axial strains on shear band evolutions, and (3) volume changes associated with martensitic transformation.« less
Role of weakest links and system-size scaling in multiscale modeling of stochastic plasticity
NASA Astrophysics Data System (ADS)
Ispánovity, Péter Dusán; Tüzes, Dániel; Szabó, Péter; Zaiser, Michael; Groma, István
2017-02-01
Plastic deformation of crystalline and amorphous matter often involves intermittent local strain burst events. To understand the physical background of the phenomenon a minimal stochastic mesoscopic model was introduced, where details of the microstructure evolution are statistically represented in terms of a fluctuating local yield threshold. In the present paper we propose a method for determining the corresponding yield stress distribution for the case of crystal plasticity from lower scale discrete dislocation dynamics simulations which we combine with weakest link arguments. The success of scale linking is demonstrated by comparing stress-strain curves obtained from the resulting mesoscopic and the underlying discrete dislocation models in the microplastic regime. As shown by various scaling relations they are statistically equivalent and behave identically in the thermodynamic limit. The proposed technique is expected to be applicable to different microstructures and also to amorphous materials.
Role of Grain Boundaries under Long-Time Radiation
NASA Astrophysics Data System (ADS)
Zhu, Yichao; Luo, Jing; Guo, Xu; Xiang, Yang; Chapman, Stephen Jonathan
2018-06-01
Materials containing a high proportion of grain boundaries offer significant potential for the development of radiation-resistant structural materials. However, a proper understanding of the connection between the radiation-induced microstructural behavior of a grain boundary and its impact at long natural time scales is still missing. In this Letter, point defect absorption at interfaces is summarized by a jump Robin-type condition at a coarse-grained level, wherein the role of interface microstructure is effectively taken into account. Then a concise formula linking the sink strength of a polycrystalline aggregate with its grain size is introduced and is well compared with experimental observation. Based on the derived model, a coarse-grained formulation incorporating the coupled evolution of grain boundaries and point defects is proposed, so as to underpin the study of long-time morphological evolution of grains induced by irradiation. Our simulation results suggest that the presence of point defect sources within a grain further accelerates its shrinking process, and radiation tends to trigger the extension of twin boundary sections.
NASA Astrophysics Data System (ADS)
McKeown, Joseph T.; Zweiacker, Kai; Liu, Can; Coughlin, Daniel R.; Clarke, Amy J.; Baldwin, J. Kevin; Gibbs, John W.; Roehling, John D.; Imhoff, Seth D.; Gibbs, Paul J.; Tourret, Damien; Wiezorek, Jörg M. K.; Campbell, Geoffrey H.
2016-03-01
Additive manufacturing (AM) of metals and alloys is becoming a pervasive technology in both research and industrial environments, though significant challenges remain before widespread implementation of AM can be realized. In situ investigations of rapid alloy solidification with high spatial and temporal resolutions can provide unique experimental insight into microstructure evolution and kinetics that are relevant for AM processing. Hypoeutectic thin-film Al-Cu and Al-Si alloys were investigated using dynamic transmission electron microscopy to monitor pulsed-laser-induced rapid solidification across microsecond timescales. Solid-liquid interface velocities measured from time-resolved images revealed accelerating solidification fronts in both alloys. The observed microstructure evolution, solidification product, and presence of a morphological instability at the solid-liquid interface in the Al-4 at.%Cu alloy are related to the measured interface velocities and small differences in composition that affect the thermophysical properties of the alloys. These time-resolved in situ measurements can inform and validate predictive modeling efforts for AM.
McKeown, Joseph T.; Zweiacker, Kai; Liu, Can; ...
2016-01-27
In research and industrial environments, additive manufacturing (AM) of metals and alloys is becoming a pervasive technology, though significant challenges remain before widespread implementation of AM can be realized. In situ investigations of rapid alloy solidification with high spatial and temporal resolutions can provide unique experimental insight into microstructure evolution and kinetics that are relevant for AM processing. Hypoeutectic thin-film Al–Cu and Al–Si alloys were investigated using dynamic transmission electron microscopy to monitor pulsed-laser-induced rapid solidification across microsecond timescales. Solid–liquid interface velocities measured from time-resolved images revealed accelerating solidification fronts in both alloys. We observed microstructure evolution, solidification product, andmore » presence of a morphological instability at the solid–liquid interface in the Al–4 at.%Cu alloy are related to the measured interface velocities and small differences in composition that affect the thermophysical properties of the alloys. These time-resolved in situ measurements can inform and validate predictive modeling efforts for AM.« less
Microstructural Evolution of Inverse Bainite in a Hypereutectoid Low-Alloy Steel
NASA Astrophysics Data System (ADS)
Kannan, Rangasayee; Wang, Yiyu; Li, Leijun
2017-12-01
Microstructural evolution of inverse bainite during isothermal bainite transformation of a hypereutectoid low-alloy steel at 773 K (500 °C) was investigated through a series of interrupted isothermal experiments using a quench dilatometer. Microstructural characterization revealed that the inverse bainitic transformation starts by the nucleation of cementite (Fe3C) from parent austenite as a midrib in the bainitic microstructure. The inverse bainite becomes "degenerated" to typical upper bainite at prolonged transformation times. Crystallographic orientation relationships between the individual phases of inverse bainite microstructure were found to obey { < 110 > _{γ } || < 1\\overline{1} 0 > _{θ } } { < 111 > _{α } || < 1\\overline{1} 0 > _{θ } } { < 110 > _{γ } || < 111 > _{α } } 111_{γ } || { \\overline{2} 21} _{θ } } { 110} _{α } || { \\overline{2} 21} _{θ } } { 111} _{γ } || { 110 } _{α } {111} _{γ } || {211} _{θ } {110} _{α } || {211} _{θ } Furthermore, the crystallographic orientation deviations between the individual phases of inverse bainite microstructure suggest that the secondary carbide nucleation occurs from the inverse bainitic ferrite. Thermodynamic driving force calculations provide an explanation for the observed nucleation sequence in inverse bainite. The degeneracy of inverse bainite microstructure to upper bainite at prolonged transformation times is likely due to the effects of cementite midrib dissolution at the early stage and secondary carbide coarsening at the later stage.
NASA Astrophysics Data System (ADS)
Perron, Aurelien; Roehling, John D.; Turchi, Patrice E. A.; Fattebert, Jean-Luc; McKeown, Joseph T.
2018-01-01
A combination of dynamic transmission electron microscopy (DTEM) experiments and CALPHAD-informed phase-field simulations was used to study rapid solidification in Cu-Ni thin-film alloys. Experiments—conducted in the DTEM—consisted of in situ laser melting and determination of the solidification kinetics by monitoring the solid-liquid interface and the overall microstructure evolution (time-resolved measurements) during the solidification process. Modelling of the Cu-Ni alloy microstructure evolution was based on a phase-field model that included realistic Gibbs energies and diffusion coefficients from the CALPHAD framework (thermodynamic and mobility databases). DTEM and post mortem experiments highlighted the formation of microsegregation-free columnar grains with interface velocities varying from ˜0.1 to ˜0.6 m s-1. After an ‘incubation’ time, the velocity of the planar solid-liquid interface accelerated until solidification was complete. In addition, a decrease of the temperature gradient induced a decrease in the interface velocity. The modelling strategy permitted the simulation (in 1D and 2D) of the solidification process from the initially diffusion-controlled to the nearly partitionless regimes. Finally, results of DTEM experiments and phase-field simulations (grain morphology, solute distribution, and solid-liquid interface velocity) were consistent at similar time (μs) and spatial scales (μm).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perron, Aurelien; Roehling, John D.; Turchi, Patrice E. A.
A combination of dynamic transmission electron microscopy (DTEM) experiments and CALPHAD-informed phase-field simulations was used to study rapid solidification in Cu–Ni thin-film alloys. Experiments—conducted in the DTEM—consisted of in situ laser melting and determination of the solidification kinetics by monitoring the solid–liquid interface and the overall microstructure evolution (time-resolved measurements) during the solidification process. Modelling of the Cu–Ni alloy microstructure evolution was based on a phase-field model that included realistic Gibbs energies and diffusion coefficients from the CALPHAD framework (thermodynamic and mobility databases). DTEM and post mortem experiments highlighted the formation of microsegregation-free columnar grains with interface velocities varying frommore » ~0.1 to ~0.6 m s –1. After an 'incubation' time, the velocity of the planar solid–liquid interface accelerated until solidification was complete. In addition, a decrease of the temperature gradient induced a decrease in the interface velocity. The modelling strategy permitted the simulation (in 1D and 2D) of the solidification process from the initially diffusion-controlled to the nearly partitionless regimes. Lastly, results of DTEM experiments and phase-field simulations (grain morphology, solute distribution, and solid–liquid interface velocity) were consistent at similar time (μs) and spatial scales (μm).« less
Perron, Aurelien; Roehling, John D.; Turchi, Patrice E. A.; ...
2017-12-05
A combination of dynamic transmission electron microscopy (DTEM) experiments and CALPHAD-informed phase-field simulations was used to study rapid solidification in Cu–Ni thin-film alloys. Experiments—conducted in the DTEM—consisted of in situ laser melting and determination of the solidification kinetics by monitoring the solid–liquid interface and the overall microstructure evolution (time-resolved measurements) during the solidification process. Modelling of the Cu–Ni alloy microstructure evolution was based on a phase-field model that included realistic Gibbs energies and diffusion coefficients from the CALPHAD framework (thermodynamic and mobility databases). DTEM and post mortem experiments highlighted the formation of microsegregation-free columnar grains with interface velocities varying frommore » ~0.1 to ~0.6 m s –1. After an 'incubation' time, the velocity of the planar solid–liquid interface accelerated until solidification was complete. In addition, a decrease of the temperature gradient induced a decrease in the interface velocity. The modelling strategy permitted the simulation (in 1D and 2D) of the solidification process from the initially diffusion-controlled to the nearly partitionless regimes. Lastly, results of DTEM experiments and phase-field simulations (grain morphology, solute distribution, and solid–liquid interface velocity) were consistent at similar time (μs) and spatial scales (μm).« less
Quantitative characterization of microstructure of asphalt mixtures
DOT National Transportation Integrated Search
2010-10-01
The microstructure of the fine aggregate matrix has a significant influence on the : mechanical properties and evolution of damage in an asphalt mixture. However, very little : work has been done to define and quantitatively characterize the microstr...
NASA Astrophysics Data System (ADS)
Zhao, Jianfeng; Zhang, Xu; Konstantinidis, Avraam A.; Kang, Guozheng
2015-06-01
The internal length is the governing parameter in strain gradient theories which among other things have been used successfully to interpret size effects at the microscale. Physically, the internal length is supposed to be related with the microstructure of the material and evolves during the deformation. Based on Taylor hardening law, we propose a power-law relationship to describe the evolution of the variable internal length with strain. Then, the classical Fleck-Hutchinson strain gradient theory is extended with a strain-dependent internal length, and the generalized Fleck-Hutchinson theory is confirmed here, by comparing our model predictions to recent experimental data on tension and torsion of thin wires with varying diameter and grain size. Our work suggests that the internal length is a configuration-dependent parameter, closely related to dislocation characteristics and grain size, as well as sample geometry when this affects either the underlying microstructure or the ductility of the material.
Microbes and Microstructure: Dust's Role in the Snowpack Evolution
NASA Astrophysics Data System (ADS)
Lieblappen, R.; Courville, Z.; Fegyveresi, J. M.; Barbato, R.; Thurston, A.
2017-12-01
Dust is a primary vehicle for transporting microbial communities to polar and alpine snowpacks both through wind distribution (dry deposition) and snowfall events (wet deposition). The resulting microbial community diversity in the snowpack may then resemble the source material properties rather than its new habitat. Dust also has a strong influence on the microstructural properties of snow, resulting in changes to radiative and mechanical properties. As local reductions in snowpack albedo lead to enhanced melting and a heterogeneous snow surface, the microbial communities are also impacted. Here we study the impact of the changing microstructure in the snowpack, its influence on microbial function, and the fate of dust particles within the snow matrix. We seek to quantify the changes in respiration and water availability with the onset of melt. Polar samples were collected from the McMurdo Ice Shelf, Antarctica in February, 2017, while alpine samples were collected from Silverton, CO from October to May, 2017 as part of the Colorado Dust on Snow (CDOS) network. At each site, coincident meteorological data provides temperature, wind, and radiative measurements. Samples were collected immediately following dust deposition events and after subsequent snowpack evolution. We used x-ray micro-computed tomography to quantify the microstructural evolution of the snow, while also imaging the microstructural distribution of the dust within the snow. The dust was then collected and analyzed for chemical and microbial activity.
Microstructure, texture, and mechanical properties of friction stir welded commercial brass alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heidarzadeh, A., E-mail: ak.hz62@gmail.com
Microstructural evolution during friction stir welding of single-phase brass and corresponding mechanical properties were investigated. For this purpose, 2 mm thick brass plate was friction stir welded at a rotational speed of 450 rpm and traverse speed of 100 mm/min. The microstructure of the joint was studied using optical microscopy, scanning electron microscopy equipped with electron back scattered diffraction system, and scanning transmission electron microscopy. The mechanical properties were measured using hardness and tensile tests. The formation of subgrains and their transformation into new grains in conjunction with existence of A{sub 1}{sup ⁎}, A{sub 2}{sup ⁎} and C texture componentsmore » revealed that the continuous dynamic recrystallization plays a dominant role in the microstructural evolution. However, grain boundary bulging, along with the formation of twin boundaries, and presence of the G texture component showed that the discontinues dynamic recrystallization may participate in the new grain formation. Furthermore, the different strengthening mechanisms, which caused the higher strength of the joint, were discussed. - Highlights: •Microstructural evolution during FSW of a single phase brass was investigated. •CDRX and DDRX were the main mechanisms of the grain structure formation during FSW. •GDRX and SRX were not contributed in grain structure formation. •The lamellas TBs were formed in the SZ of the joints. •Grain boundary, dislocation, and texture effects resulted in higher strength.« less
NASA Astrophysics Data System (ADS)
Wang, Xiaowo; Xu, Zhijie; Soulami, Ayoub; Hu, Xiaohua; Lavender, Curt; Joshi, Vineet
2017-12-01
Low-enriched uranium alloyed with 10 wt.% molybdenum (U-10Mo) has been identified as a promising alternative to high-enriched uranium. Manufacturing U-10Mo alloy involves multiple complex thermomechanical processes that pose challenges for computational modeling. This paper describes the application of integrated computational materials engineering (ICME) concepts to integrate three individual modeling components, viz. homogenization, microstructure-based finite element method for hot rolling, and carbide particle distribution, to simulate the early-stage processes of U-10Mo alloy manufacture. The resulting integrated model enables information to be passed between different model components and leads to improved understanding of the evolution of the microstructure. This ICME approach is then used to predict the variation in the thickness of the Zircaloy-2 barrier as a function of the degree of homogenization and to analyze the carbide distribution, which can affect the recrystallization, hardness, and fracture properties of U-10Mo in subsequent processes.
Mechanical Properties of AM Stainless Steel Parts and Repair Welds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vogel, Sven C.; Carpenter, John S.
2015-02-22
Goals: Advance certification of AM materials and compare microstructure and its evolution during processing and deformation between AM fabricated and conventional steels. Deliverables achieved: Measured texture data for 17 steel samples on HIPPO, including material planned to be shocked in pRAD in FY16; quantified texture and austenite/ferrite phase fractions; and provide input data for deformation modeling.
The Evolution of Dendrite Morphology during Isothermal Coarsening
NASA Technical Reports Server (NTRS)
Alkemper, Jens; Mendoza, Roberto; Kammer, Dimitris; Voorhees, Peter W.
2003-01-01
Dendrite coarsening is a common phenomenon in casting processes. From the time dendrites are formed until the inter-dendritic liquid is completely solidified dendrites are changing shape driven by variations in interfacial curvature along the dendrite and resulting in a reduction of total interfacial area. During this process the typical length-scale of the dendrite can change by orders of magnitude and the final microstructure is in large part determined by the coarsening parameters. Dendrite coarsening is thus crucial in setting the materials parameters of ingots and of great commercial interest. This coarsening process is being studied in the Pb-Sn system with Sn-dendrites undergoing isothermal coarsening in a Pb-Sn liquid. Results are presented for samples of approximately 60% dendritic phase, which have been coarsened for different lengths of times. Presented are three-dimensional microstructures obtained by serial-sectioning and an analysis of these microstructures with regard to interface orientation and interfacial curvatures. These graphs reflect the evolution of not only the microstructure itself, but also of the underlying driving forces of the coarsening process. As a visualization of the link between the microstructure and the driving forces a three-dimensional microstructure with the interfaces colored according to the local interfacial mean curvature is shown.
Xu, Jie; Li, Jianwei; Zhu, Xiaocheng; Fan, Guohua; Shan, Debin; Guo, Bin
2015-11-04
Micro-forming with ultrafine-grained (UFG) materials is a promising direction for the fabrication of micro-electro-mechanical systems (MEMS) components due to the improved formability, good surface quality, and excellent mechanical properties it provides. In this paper, micro-compression tests were performed using UFG pure aluminum processed by equal-channel angular pressing (ECAP) with subsequent annealing treatment. Microstructural evolution was investigated by electron back-scattered diffraction (EBSD) and transmission electron microscopy (TEM). The results show that microstructural evolutions during compression tests at the micro/meso-scale in UFG pure Al are absolutely different from the coarse-grained (CG) materials. A lot of low-angle grain boundaries (LAGBs) and recrystallized fine grains are formed inside of the original large grains in CG pure aluminum after micro-compression. By contrast, ultrafine grains are kept with few sub-grain boundaries inside the grains in UFG pure aluminum, which are similar to the original microstructure before micro-compression. The surface roughness and coordinated deformation ability can be signmicrostructure; micro/meso-forming; ultrafine grains; ECAP; aluminumificantly improved with UFG pure aluminum, which demonstrates that the UFG materials have a strong potential application in micro/meso-forming.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nesterova, E.V.; Bouvier, S.; Bacroix, B.
Transmission electron microscopy (TEM) microstructures of a high-strength dual-phase steel DP800 have been examined after moderate plastic deformations in simple shear and uniaxial tension. Special attention has been paid to the effect of the intergranular hard phase (martensite) on the microstructure evolution in the near-grain boundary regions. Quantitative parameters of dislocation patterning have been determined and compared with the similar characteristics of previously examined single-phase steels. The dislocation patterning in the interiors of the ferrite grains in DP800 steel is found to be similar to that already observed in the single-phase IF (Interstitial Free) steel whereas the martensite-affected zones presentmore » a delay in patterning and display very high gradients of continuous (gradual) disorientations associated with local internal stresses. The above stresses are shown to control the work-hardening of dual-phase materials at moderate strains for monotonic loading and are assumed to influence their microstructure evolution and mechanical behavior under strain-path changes. - Highlights: • The microstructure evolution has been studied by TEM in a DP800 steel. • It is influenced by both martensite and dislocations in the initial state. • The DP800 steel presents a high work-hardening rate due to internal stresses.« less
Microstructure Evolution and Flow Stress Model of a 20Mn5 Hollow Steel Ingot during Hot Compression
Liu, Min; Ma, Qing-Xian; Luo, Jian-Bin
2018-01-01
20Mn5 steel is widely used in the manufacture of heavy hydro-generator shaft due to its good performance of strength, toughness and wear resistance. However, the hot deformation and recrystallization behaviors of 20Mn5 steel compressed under high temperature were not studied. In this study, the hot compression experiments under temperatures of 850–1200 °C and strain rates of 0.01/s–1/s are conducted using Gleeble thermal and mechanical simulation machine. And the flow stress curves and microstructure after hot compression are obtained. Effects of temperature and strain rate on microstructure are analyzed. Based on the classical stress-dislocation relation and the kinetics of dynamic recrystallization, a two-stage constitutive model is developed to predict the flow stress of 20Mn5 steel. Comparisons between experimental flow stress and predicted flow stress show that the predicted flow stress values are in good agreement with the experimental flow stress values, which indicates that the proposed constitutive model is reliable and can be used for numerical simulation of hot forging of 20Mn5 hollow steel ingot. PMID:29561826
Containerless processing of undercooled melts
NASA Technical Reports Server (NTRS)
Perepezko, J. H.
1993-01-01
The investigation focused on the control of microstructural evolution in Mn-Al, Fe-Ni, Ni-V, and Au-Pb-Sb alloys through the high undercooling levels provided by containerless processing, and provided fundamental new information on the control of nucleation. Solidification analysis was conducted by means of thermal analysis, x-ray diffraction, and metallographic characterization on samples processed in a laboratory scale drop tube system. The Mn-Al alloy system offers a useful model system with the capability of phase separation on an individual particle basis, thus permitting a more complete understanding of the operative kinetics and the key containerless processing variables. This system provided the opportunity of analyzing the nucleation rate as a function of processing conditions and allowed for the quantitative assessment of the relevant processing parameters. These factors are essential in the development of a containerless processing model which has a predictive capability. Similarly, Ni-V is a model system that was used to study duplex partitionless solidification, which is a structure possible only in high under cooling solidification processes. Nucleation kinetics for the competing bcc and fcc phases were studied to determine how this structure can develop and the conditions under which it may occur. The Fe-Ni alloy system was studied to identify microstructural transitions with controlled variations in sample size and composition during containerless solidification. This work was forwarded to develop a microstructure map which delineates regimes of structural evolution and provides a unified analysis of experimental observations. The Au-Pb-Sb system was investigated to characterize the thermodynamic properties of the undercooled liquid phase and to characterize the glass transition under a variety of processing conditions. By analyzing key containerless processing parameters in a ground based drop tube study, a carefully designed flight experiment may be planned to utilize the extended duration microgravity conditions of orbiting spacecraft.
NASA Astrophysics Data System (ADS)
Zhao, Jingyi; Wang, G.-X.; Dong, Yalin; Ye, Chang
2017-08-01
Many electrically assisted processes have been reported to induce changes in microstructure and metal plasticity. To understand the physics-based mechanisms behind these interesting phenomena, however, requires an understanding of the interaction between the electric current and heterogeneous microstructure. In this work, multiscale modeling of the electric current flow in a nanocrystalline material is reported. The cellular automata method was used to track the nanoscale grain boundaries in the matrix. Maxwell's electromagnetic equations were solved to obtain the electrical potential distribution at the macro scale. Kirchhoff's circuit equation was solved to obtain the electric current flow at the micro/nano scale. The electric current distribution at two representative locations was investigated. A significant electric current concentration was observed near the grain boundaries, particularly near the triple junctions. This higher localized electric current leads to localized resistive heating near the grain boundaries. The electric current distribution could be used to obtain critical information such as localized resistive heating rate and extra system free energy, which are critical for explaining many interesting phenomena, including microstructure evolution and plasticity enhancement in many electrically assisted processes.
NASA Astrophysics Data System (ADS)
Yang, X. G.; Xu, Q. T.; Wu, C. L.; Chen, Y. S.
2017-12-01
The relationship between the microstructure of the continuous casting slab (CCS) and quality defects of the steel products, as well as evolution and characteristics of the fine equiaxed, columnar, equiaxed zones and crossed dendrites of CCS were systematically investigated in this study. Different microstructures of various CCS samples were revealed. The dendrite etching method was proved to be quite efficient for the analysis of solidified morphologies, which are essential to estimate the material characteristics, especially the CCS microstructure defects.
Simulating condensation on microstructured surfaces using Lattice Boltzmann Method
NASA Astrophysics Data System (ADS)
Alexeev, Alexander; Vasyliv, Yaroslav
2017-11-01
We simulate a single component fluid condensing on 2D structured surfaces with different wettability. To simulate the two phase fluid, we use the athermal Lattice Boltzmann Method (LBM) driven by a pseudopotential force. The pseudopotential force results in a non-ideal equation of state (EOS) which permits liquid-vapor phase change. To account for thermal effects, the athermal LBM is coupled to a finite volume discretization of the temperature evolution equation obtained using a thermal energy rate balance for the specific internal energy. We use the developed model to probe the effect of surface structure and surface wettability on the condensation rate in order to identify microstructure topographies promoting condensation. Financial support is acknowledged from Kimberly-Clark.
NASA Astrophysics Data System (ADS)
Maleki, Milad; Cugnoni, Joë; Botsis, John
2014-04-01
Due to the high homologous temperature and fast cooling rates, the microstructures of SnAgCu (SAC) solders are in a meta-stable state in most applications, which is the cause of significant microstructural evolution and continuous variation in the mechanical behavior of the joints during service. The link between microstructures evolution and deformation behavior of Sn-4.0Ag-0.5Cu solder during isothermal ageing is investigated. The evolution of the microstructures in SAC solders are visualized at different scales in 3D by using a combination of synchrotron x-ray and focused ion beam/scanning electron microscopy tomography techniques at different states of ageing. The results show that, although the grain structure, morphology of dendrites, and overall volume fraction of intermetallics remain almost constant during ageing, considerable coarsening occurs in the Ag3Sn and Cu6Sn5 phases to lower the interfacial energy. The change in the morphometrics of sub-micron intermetallics is quantified by 3D statistical analyses and the kinetic of coarsening is discussed. The mechanical behavior of SAC solders is experimentally measured and shows a continuous reduction in the yield resistance of solder during ageing. For comparison, the mechanical properties and grain structure of β-tin are evaluated at different annealing conditions. Finally, the strengthening effect due to the intermetallics at different ageing states is evaluated by comparing the deformation behaviors of SAC solder and β-tin with similar grain size and composition. The relationship between the morphology and the strengthening effect due to intermetallics particles is discussed and the causes for the strength degradation in SAC solder during ageing are identified.
Modeling liquid crystal polymeric devices
NASA Astrophysics Data System (ADS)
Gimenez Pinto, Vianney Karina
The main focus of this work is the theoretical and numerical study of materials that combine liquid crystal and polymer. Liquid crystal elastomers are polymeric materials that exhibit both the ordered properties of the liquid crystals and the elastic properties of rubbers. Changing the order of the liquid crystal molecules within the polymer network can induce shape change. These materials are very valuable for applications such as actuators, sensors, artificial muscles, haptic displays, etc. In this work we apply finite element elastodynamics simulations to study the temperature induced shape deformation in nematic elastomers with complex director microstructure. In another topic, we propose a novel numerical method to model the director dynamics and microstructural evolution of three dimensional nematic and cholesteric liquid crystals. Numerical studies presented in this work are in agreement with experimental observations and provide insight into the design of application devices.
Kang, Minjung; Han, Heung Nam; Kim, Cheolhee
2018-04-23
Oscillating laser beam welding for Al 6014 alloy was performed using a single mode fiber laser and two-axis scanner system. Its effect on the microstructural evolution of the fusion zone was investigated. To evaluate the influence of oscillation parameters, self-restraint test specimens were fabricated with different beam patterns, widths, and frequencies. The behavior of hot cracking propagation was analyzed by high-speed camera and electron backscatter diffraction. The behavior of crack propagation was observed to be highly correlated with the microstructural evolution of the fusion zone. For most oscillation conditions, the microstructure resembled that of linear welds. A columnar structure was formed near the fusion line and an equiaxed structure was generated at its center. The wide equiaxed zone of oscillation welding increased solidification crack susceptibility. For an oscillation with an infinite-shaped scanning pattern at 100 Hz and 3.5 m/min welding speed, the bead width, solidification microstructure, and the width of the equiaxed zone at the center of fusion fluctuated. Furthermore, the equiaxed and columnar regions alternated periodically, which could reduce solidification cracking susceptibility.
Kang, Minjung; Han, Heung Nam
2018-01-01
Oscillating laser beam welding for Al 6014 alloy was performed using a single mode fiber laser and two-axis scanner system. Its effect on the microstructural evolution of the fusion zone was investigated. To evaluate the influence of oscillation parameters, self-restraint test specimens were fabricated with different beam patterns, widths, and frequencies. The behavior of hot cracking propagation was analyzed by high-speed camera and electron backscatter diffraction. The behavior of crack propagation was observed to be highly correlated with the microstructural evolution of the fusion zone. For most oscillation conditions, the microstructure resembled that of linear welds. A columnar structure was formed near the fusion line and an equiaxed structure was generated at its center. The wide equiaxed zone of oscillation welding increased solidification crack susceptibility. For an oscillation with an infinite-shaped scanning pattern at 100 Hz and 3.5 m/min welding speed, the bead width, solidification microstructure, and the width of the equiaxed zone at the center of fusion fluctuated. Furthermore, the equiaxed and columnar regions alternated periodically, which could reduce solidification cracking susceptibility. PMID:29690630
NASA Astrophysics Data System (ADS)
Zhou, Xiao; Liu, Qiang; Liu, Ruirui; Zhou, Haitao
2018-06-01
The mechanical properties and microstructure evolution of Mg-8Li-3Al-1Y alloy undergoing different rolling processes were systematically investigated. X-ray diffraction, optical microscope, scanning electron microscopy, transmission electron microscopy as well as electron backscattered diffraction were used for tracking the microstructure evolution. Tensile testing was employed to characterize the mechanical properties. After hot rolling, the MgLi2Al precipitated in β-Li matrix due to the transformation reaction: β-Li → β-Li + MgLi2Al + α-Mg. As for the alloy subjected to annealed hot rolling, β-Li phase was clearly recrystallized while recrystallization rarely occurred in α-Mg phase. With regard to the microstructure undergoing cold rolling, plenty of dislocations and dislocation walls were easily observed. In addition, the microstructure of alloys subjected to annealed cold rolling revealed the formation of new fresh α-Mg grains in β-Li phase due to the precipitation reaction. The mechanical properties and fracture modes of Mg-8Li-3Al-1Y alloys can be effectively tuned by different rolling processes.
Crystal plasticity finite element analysis of deformation behaviour in SAC305 solder joint
NASA Astrophysics Data System (ADS)
Darbandi, Payam
Due to the awareness of the potential health hazards associated with the toxicity of lead (Pb), actions have been taken to eliminate or reduce the use of Pb in consumer products. Among those, tin (Sn) solders have been used for the assembly of electronic systems. Anisotropy is of significant importance in all structural metals, but this characteristic is unusually strong in Sn, making Sn based solder joints one of the best examples of the influence of anisotropy. The effect of anisotropy arising from the crystal structure of tin and large grain microstructure on the microstructure and the evolution of constitutive responses of microscale SAC305 solder joints is investigated. Insights into the effects of key microstructural features and dominant plastic deformation mechanisms influencing the measured relative activity of slip systems in SAC305 are obtained from a combination of optical microscopy, orientation imaging microscopy (OIM), slip plane trace analysis and crystal plasticity finite element (CPFE) modeling. Package level SAC305 specimens were subjected to shear deformation in sequential steps and characterized using optical microscopy and OIM to identify the activity of slip systems. X-ray micro Laue diffraction and high energy monochromatic X-ray beam were employed to characterize the joint scale tensile samples to provide necessary information to be able to compare and validate the CPFE model. A CPFE model was developed that can account for relative ease of activating slip systems in SAC305 solder based upon the statistical estimation based on correlation between the critical resolved shear stress and the probability of activating various slip systems. The results from simulations show that the CPFE model developed using the statistical analysis of activity of slip system not only can satisfy the requirements associated with kinematic of plastic deformation in crystal coordinate systems (activity of slip systems) and global coordinate system (shape changes) but also this model is able to predict the evolution of stress in joint level SAC305 sample.
NASA Astrophysics Data System (ADS)
Fonda, R. W.; Spanos, G.
2000-09-01
The transformation behavior and microstructural evolution of the as-deposited weld metal from an ultra-low-carbon (ULC) weldment were characterized by dilatometry, optical microscopy, transmission electron microscopy, and microhardness measurements. These results were used to construct a continuous cooling transformation (CCT) diagram for this weld metal. The major microconstituents observed in this ULC weldment were (in order of decreasing cooling rate) coarse autotempered martensite, fine lath martensite, lath ferrite, and degenerate lath ferrite. No polygonal ferrite was observed. These results were also used to develop criteria to differentiate between the two predominant microstructures in these ULC steels, lath martensite, and lath ferrite, which can look quite similar but have very different properties.
Computational study of dislocation based mechanisms in FCC materials
NASA Astrophysics Data System (ADS)
Yellakara, Ranga Nikhil
Understanding the relationships between microstructures and properties of materials is a key to developing new materials with more suitable qualities or employing the appropriate materials in special uses. In the present world of material research, the main focus is on microstructural control to cost-effectively enhance properties and meet performance specifications. This present work is directed towards improving the fundamental understanding of the microscale deformation mechanisms and mechanical behavior of metallic alloys, particularly focusing on face centered cubic (FCC) structured metals through a unique computational methodology called three-dimensional dislocation dynamics (3D-DD). In these simulations, the equations of motion for dislocations are mathematically solved to determine the evolution and interaction of dislocations. Microstructure details and stress-strain curves are a direct observation in the simulation and can be used to validate experimental results. The effect of initial dislocation microstructure on the yield strength has been studied. It has been shown that dislocation density based crystal plasticity formulations only work when dislocation densities/numbers are sufficiently large so that a statistically accurate description of the microstructure can be obtainable. The evolution of the flow stress for grain sizes ranging from 0.5 to 10 mum under uniaxial tension was simulated using an improvised model by integrating dislocation pile-up mechanism at grain boundaries has been performed. This study showed that for a same initial dislocation density, the Hall--Petch relationship holds well at small grain sizes (0.5--2 mum), beyond which the yield strength remains constant as the grain size increases. Various dislocation-particle interaction mechanisms have been introduced and investigations were made on their effect on the uniaxial tensile properties. These studies suggested that increase in particle volume fraction and decrease in particle size has contributed to the strength of these alloys. This work has been successful of capturing complex dislocation mechanisms that involves interactions with particles during the deformation of particle hardened FCC alloys. Finally, the DD model has been extended into studying the cyclic behavior of FCC metallic alloys. This study showed that the strength as well as the cyclic hardening increases due to grain refinement and increase in particle volume fraction. It also showed that the cyclic deformation of ultra-fine grained (UFG) material have undergone cyclic softening at all plastic strain amplitudes. The results provided very useful quantitative information for developing future fatigue models.
Microstructural Evolution and Creep-Rupture Behavior of A-USC Alloy Fusion Welds
NASA Astrophysics Data System (ADS)
Bechetti, Daniel H.; DuPont, John N.; Siefert, John A.; Shingledecker, John P.
2016-09-01
Characterization of the microstructural evolution of fusion welds in alloys slated for use in advanced ultrasupercritical (A-USC) boilers during creep has been performed. Creep-rupture specimens involving INCONEL® 740, NIMONIC® 263 (INCONEL and NIMONIC are registered trademarks of Special Metals Corporation), and Haynes® 282® (Haynes and 282 are registered trademarks of Haynes International) have been analyzed via light optical microscopy, scanning electron microscopy, X-ray diffraction, and thermodynamic and kinetic modeling. Focus has been given to the microstructures that develop along the grain boundaries in these alloys during creep at temperatures relevant to the A-USC process cycle, and particular attention has been paid to any evidence of the formation of local γ'-denuded or γ'-free zones. This work has been performed in an effort to understand the microstructural changes that lead to a weld strength reduction factor (WSRF) in these alloys as compared to solution annealed and aged alloy 740 base metal. γ' precipitate-free zones have been identified in alloy 740 base metal, solution annealed alloy 740 weld metal, and alloy 263 weld metal after creep. Their development during long-term thermal exposure is correlated with the stabilization of phases that are rich in γ'-forming elements ( e.g., η and G) and is suppressed by precipitation of phases that do not contain the γ' formers ( e.g., M23C6 and μ). The location of failure and creep performance in terms of rupture life and WSRF for each welded joint is presented and discussed.
NASA Astrophysics Data System (ADS)
Li, Hui; Zhang, Jiansheng
2017-12-01
The evolution of microstructures, corrosion resistance and mechanical properties of AZ80 joints using an ultrasonic vibration assisted welding process is investigated. The results show that, with ultrasonic vibration treatment, a reliable AZ80 joint without defects is obtained. The coarsening α-Mg grains are refined to about 83.5 ± 3.3 µm and the continuous β-Mg17Al12 phases are broken to granular morphology, owing to the acoustic streaming effect and the cavitation effect evoked by ultrasonic vibration. Both immersion and electrochemical test results indicate that the corrosion resistance of the AZ80 joint welded with ultrasonic vibration is improved, attributed to microstructure evolution. With ultrasonic power of 900 W, the maximum tensile strength of an AZ80 specimen is 261 ± 7.5 MPa and fracture occurs near the heat affected zone of the joint.
Effect of Microstructural Evolution and Hardening in Subsurface on Wear Behavior of Mg-3Al-1Zn Alloy
NASA Astrophysics Data System (ADS)
Liang, C.; Li, C.; An, J.; Yu, M.; Hu, Y. C.; Lin, W. H.; Liu, F.; Ding, Y. H.
2013-12-01
Dry sliding tests were performed on as-cast AZ31 alloy using a pin-on-disc configuration. Coefficient of friction and wear rate were measured within a load range of 5-360 N at a sliding velocity of 0.785 m/s. Worn surface morphologies were examined using scanning electron microscopy. Five wear mechanisms, namely abrasion, oxidation, delamination, thermal softening, and melting, have been observed. Surface hardness, subsurface plastic strain, worn surface temperature, and cross-sectional optical microscopy were used to characterize hardness change, plastic deformation, and the microstructure evolution in subsurface. The results illustrate the correlation between the wear behavior and evolution of microstructure and hardness in subsurface, and reveal that in the load range of 5-120 N, surface oxidation and hardening originating from large plastic deformation play an important role in maintaining the mild wear, and softening originating from dynamic recrystallization in subsurface and surface melting are responsible for the severe wear in the load range of 120-360 N.
NASA Astrophysics Data System (ADS)
De Angelis, Salvatore; Jørgensen, Peter Stanley; Tsai, Esther Hsiao Rho; Holler, Mirko; Kreka, Kosova; Bowen, Jacob R.
2018-04-01
Nickel coarsening is considered a significant cause of solid oxide cell (SOC) performance degradation. Therefore, understanding the morphological changes in the nickel-yttria stabilized zirconia (Ni-YSZ) fuel electrode is crucial for the wide spread usage of SOC technology. This paper reports a study of the initial 3D microstructure evolution of a SOC analyzed in the pristine state and after 3 and 8 h of annealing at 850 °C, in dry hydrogen. The analysis of the evolution of the same location of the electrode shows a substantial change of the nickel and pore network during the first 3 h of treatment, while only negligible changes are observed after 8 h. The nickel coarsening results in loss of connectivity in the nickel network, reduced nickel specific surface area and decreased total triple phase boundary density. For the condition of this experiment, nickel coarsening is shown to be predominantly curvature driven, and changes in the electrode microstructure parameters are discussed in terms of local microstructural evolution.
Early Stages of Microstructure and Texture Evolution during Beta Annealing of Ti-6Al-4V
NASA Astrophysics Data System (ADS)
Pilchak, A. L.; Sargent, G. A.; Semiatin, S. L.
2018-03-01
The early stages of microstructure evolution during annealing of Ti-6Al-4V in the beta phase field were established. For this purpose, a series of short-time heat treatments was performed using sheet samples that had a noticeable degree of alpha-phase microtexture in the as-received condition. Reconstruction of the beta-grain structure from electron-backscatter-diffraction measurements of the room-temperature alpha-phase texture revealed that microstructure evolution at short times was controlled not by general grain growth, but rather by nucleation-and-growth events analogous to discontinuous recrystallization. The nuclei comprised a small subset of beta grains that were highly misoriented relative to those comprising the principal texture component of the beta matrix. From a quantitative standpoint, the transformation kinetics were characterized by an Avrami exponent of approximately unity, thus suggestive of metadynamic recrystallization. The recrystallization process led to the weakening and eventual elimination of the initial beta texture through the growth of a population of highly misoriented grains.
Mechanical Behavior and Microstructure Evolution of Bearing Steel 52100 During Warm Compression
NASA Astrophysics Data System (ADS)
Huo, Yuanming; He, Tao; Chen, Shoushuang; Wu, Riming
2018-05-01
High-performance bearing steel requires a fine and homogeneous structure of carbide particles. Direct deformation spheroidizing of bearing steel in a dual-phase zone can contribute to achieving this important structure. In this work, warm compression testing of 52100 bearing steel was performed at temperatures in the range of 650-850°C and at strain rates of 0.1-10.0 s-1. The effect of deformation temperatures on mechanical behavior and microstructure evolution was investigated to determine the warm deformation temperature window. The effect of deformation rates on microstructure evolution and metal flow softening behavior of the warm compression was analyzed and discussed. Experimental results showed that the temperature range from 750°C to 800°C should be regarded as the critical range separating warm and hot deformation. Warm deformation at temperatures in the range of 650-750°C promoted carbide spheroidization, and this was determined to be the warm deformation temperature window. Metal flow softening during the warm deformation was caused by carbide spheroidization.
A Rate-Theory-Phase-Field Model of Irradiation-Induced Recrystallization in UMo Nuclear Fuels
NASA Astrophysics Data System (ADS)
Hu, Shenyang; Joshi, Vineet; Lavender, Curt A.
2017-12-01
In this work, we developed a recrystallization model to study the effect of microstructures and radiation conditions on recrystallization kinetics in UMo fuels. The model integrates the rate theory of intragranular gas bubble and interstitial loop evolutions and a phase-field model of recrystallization zone evolution. A first passage method is employed to describe one-dimensional diffusion of interstitials with a diffusivity value several orders of magnitude larger than that of fission gas xenons. With the model, the effect of grain sizes on recrystallization kinetics is simulated. The results show that (1) recrystallization in large grains starts earlier than that in small grains, (2) the recrystallization kinetics (recrystallization volume fraction) decrease as the grain size increases, (3) the predicted recrystallization kinetics are consistent with the experimental results, and (4) the recrystallization kinetics can be described by the modified Avrami equation, but the parameters of the Avrami equation strongly depend on the grain size.
NASA Astrophysics Data System (ADS)
McCullough, R. R.; Jordon, J. B.; Brammer, A. T.; Manigandan, K.; Srivatsan, T. S.; Allison, P. G.; Rushing, T. W.
2014-01-01
In this paper, the use of a microstructure-sensitive fatigue model is put forth for the analysis of discontinuously reinforced aluminum alloy metal matrix composite. The fatigue model was used for a ceramic particle-reinforced aluminum alloy deformed under conditions of fully reversed strain control. Experimental results revealed the aluminum alloy to be strongly influenced by volume fraction of the particulate reinforcement phase under conditions of strain-controlled fatigue. The model safely characterizes the evolution of fatigue damage in this aluminum alloy composite into the distinct stages of crack initiation and crack growth culminating in failure. The model is able to capture the specific influence of particle volume fraction, particle size, and nearest neighbor distance in quantifying fatigue life. The model yields good results for correlation of the predicted results with the experimental test results on the fatigue behavior of the chosen aluminum alloy for two different percentages of the ceramic particle reinforcement. Further, the model illustrates that both particle size and volume fraction are key factors that govern fatigue lifetime. This conclusion is well supported by fractographic observations of the cyclically deformed and failed specimens.
Microstructural analysis of the thermal annealing of ice-Ih using EBSD
NASA Astrophysics Data System (ADS)
Hidas, Károly; Tommasi, Andréa; Mainprice, David; Chauve, Thomas; Barou, Fabrice; Montagnat, Maurine
2017-04-01
Rocks deformed in the middle crust and deeper in the Earth typically remain at high temperature for extended time spans after the cessation of deformation. This results in annealing of the deformation microstructure by a series of thermally activated, diffusion-based processes, namely: recovery and static recrystallization, which may also modify the crystal preferred orientation (CPO) or texture. Understanding the effects of annealing on the microstructure and CPO is therefore of utmost importance for the interpretation of the microstructures and for the estimation of the anisotropy of physical properties of lower crustal and mantle rocks. Ice-Ih -the typical form of water ice on the Earth's surface, with hexagonal crystal symmetry- deforms essentially by glide of dislocations on the basal plane [1], thus it has high viscoplastic anisotropy, which induces strong heterogeneity of stresses and strains at both the intra- and intergranular scales [2-3]. This behavior makes ice-Ih an excellent analog material for silicate minerals that compose the Earth. In situ observations of the evolution of the microstructures and CPO during annealing enable the study of the interplay between the various physical processes involved in annealing (recovery, nucleation, grain growth). They also allow the analysis of the impact of the preexisting deformation microstructures on the microstructural and CPO evolution during annealing. Here we studied the evolution of the microstructure of ice-Ih during static recrystallization by stepwise annealing experiments. We alternated thermal annealing and electron backscatter diffraction (EBSD) analyses on polycrystalline columnar ice-Ih pre-deformed in uniaxial compression at temperature of -7 °C to strains of 3.0-5.2. Annealing experiments were carried out at -5 °C and -2 °C up to a maximum of 3.25 days, typically in 5-6 steps. EBSD crystal orientation maps obtained after each annealing step permit the description of microstructural changes. Decrease in average intragranular misorientation at the sample scale and modification of the misorientation across subgrain boundaries provide evidence for recovery from the earliest stages of annealing. This evolution is similar for all studied samples irrespective of their initial strain or annealing temperature. After an incubation period up to 2 hours, recovery is accompanied by recrystallization (nucleation and grain boundary migration). Grain growth proceeds at the expense of domains with high intra-granular misorientations and its kinetics fits the parabolic growth law. Deformation-induced microstructures (tilt boundaries and kink bands) are stable features during early stages of static recrystallization and locally slow down grain boundary migration, pinning grain growth. REFERENCES 1. Duval, P., Ashby, M.F., Anderman, I., 1983. Rate-controlling processes in the creep of polycrystalline ice. Journal of Physical Chemistry 87, 4066-4074. 2. Grennerat, F., Montagnat, M., Castelnau, O., Vacher, P., Moulinec, H., Suquet, P., Duval, P., 2012. Experimental characterization of the intragranular strain field in columnar ice during transient creep. Acta Materialia 60, 3655-3666. 3. Chauve, T., Montagnat, M., Vacher, P., 2015. Strain field evolution during dynamic recrystallization nucleation: A case study on ice. Acta Materialia 101, 116-124. Funding: Research leading to these results was funded by the EU-FP7 Marie Curie postdoctoral grant PIEF-GA-2012-327226 to K.H.
NASA Astrophysics Data System (ADS)
Mobasher Moghaddam, Sina
Rolling Contact Fatigue (RCF) is one the most common failure modes in bearings. RCF is usually associated with particular microstructural alterations. Such alterations (i.e. white etching cracks, butterflies, etc.) which lead to RCF failure are known to be among the most concerning matters to bearing industry. In the current work, an analytical as well as experimental approaches are used to investigate "butterfly wing" formation, crack initiation and propagation from inclusions. A new damage evolution equation coupled with a FE model is employed to account for the effect of mean stresses and alternating stresses simultaneously to investigate butterfly formation. The proposed damage evolution law matches experimentally observed butterfly orientation, shape, and size successfully. The model is used to obtain S-N results for butterfly formation at different Hertzian load levels. The results corroborate well with the experimental data available in the open literature. The model is used to predict debonding at the inclusion/matrix interface and the most vulnerable regions for crack initiation on butterfly/matrix interface. A new variable called butterfly formation index (BFI) is introduced to manifest the dependence of wing formation on depth. The value of critical damage inside the butterfly wings was obtained experimentally and was then used to simulate damage evolution. Voronoi tessellation was used to develop the FEM domains to capture the effect of microstructural randomness on butterfly wing formation, crack initiation and propagation. Then, the effects of different inclusion characteristics such as size, depth, and stiffness on RCF life are studied. The results show that stiffness of an inclusion and its location has a significant effect on the RCF life: stiffer inclusions and inclusions located at the depth of maximum shear stress reversal are more detrimental to the RCF life. Stress concentrations are not significantly affected by inclusion size for the cases investigated; however, a stereology study showed that larger inclusions have a higher chance to be located at the critical depth and cause failure. Crack maps were recorded and compared to spall geometries observed experimentally. The results show that crack initiation locations and final spall shapes are similar to what has been observed in failed bearings.
NASA Astrophysics Data System (ADS)
Chen, Yanjuan; Gao, Jianming; Shen, Daman
2017-08-01
Inthis research, microstructure evolution forconcrete/mortar under multi-actions of composite salts dry-wet cycles and loading was investigated through X-CT measurements. The evolution process of pores and micro-cracking with the erosion time were tracked. Compared the different erosion actions, it was found that dry-wet cycles promoted the pores become connected gradually. Besides, the dry-wet cycles accelerated the damage seriously on interface area between concrete and aggregate, whistle, loading contributes to the cracking propagation toward the internal. Moreover, fly ash played a positive role in the increasing of the number of harmless holes again and contributed to the durability of concrete.
Cakmak, Ercan; Choo, Hahn; Kang, Jun-Yun; ...
2015-02-11
Here we report that the relationships between the martensitic phase transformation kinetics, texture evolution, and the microstructure development in the parent austenite phase were studied for a 304L stainless steel that exhibits the transformation-induced plasticity effect under biaxial loading conditions at ambient temperature. The applied loading paths included: pure torsion, simultaneous biaxial torsion/tension, simultaneous biaxial torsion/compression, and stepwise loading of tension followed by torsion (i.e., first loading by uniaxial tension and then by pure torsion in sequence). Synchrotron X-ray and electron backscatter diffraction techniques were used to measure the evolution of the phase fractions, textures, and microstructures as a functionmore » of the applied strains. The influence of loading character and path on the changes in martensitic phase transformation kinetics is discussed in the context of (1) texture-transformation relationship and the preferred transformation of grains belonging to certain texture components over the others, (2) effects of axial strains on shear band evolutions, and (3) volume changes associated with martensitic transformation.« less
Initial stage of nucleation-mediated crystallization of a supercooled melt
NASA Astrophysics Data System (ADS)
Chernov, A. A.; Pil'nik, A. A.; Islamov, D. R.
2016-09-01
The kinetic model of nucleation-mediated crystallization of a supercooled melt is presented in this work. It correctly takes into account the change in supercooling of the initial phase in the process of formation and evolution of a new phase. The model makes it possible to find the characteristic time of the process, time course of the crystal phase volume, solidified material microstructure. The distinctive feature of the model is the use of the "forbidden" zones in the volume where the formation of new nucleation centers is suppressed.
NASA Astrophysics Data System (ADS)
Tůma, K.; Stupkiewicz, S.; Petryk, H.
2016-10-01
A finite-strain phase field model for martensitic phase transformation and twinning in shape memory alloys is developed and confronted with the corresponding sharp-interface approach extended to interfacial energy effects. The model is set in the energy framework so that the kinetic equations and conditions of mechanical equilibrium are fully defined by specifying the free energy and dissipation potentials. The free energy density involves the bulk and interfacial energy contributions, the latter describing the energy of diffuse interfaces in a manner typical for phase-field approaches. To ensure volume preservation during martensite reorientation at finite deformation within a diffuse interface, it is proposed to apply linear mixing of the logarithmic transformation strains. The physically different nature of phase interfaces and twin boundaries in the martensitic phase is reflected by introducing two order-parameters in a hierarchical manner, one as the reference volume fraction of austenite, and thus of the whole martensite, and the second as the volume fraction of one variant of martensite in the martensitic phase only. The microstructure evolution problem is given a variational formulation in terms of incremental fields of displacement and order parameters, with unilateral constraints on volume fractions explicitly enforced by applying the augmented Lagrangian method. As an application, size-dependent microstructures with diffuse interfaces are calculated for the cubic-to-orthorhombic transformation in a CuAlNi shape memory alloy and compared with the sharp-interface microstructures with interfacial energy effects.
Ortega, José Marcos; Sánchez, Isidro; Climent, Miguel Ángel
2017-09-25
Today, the characterisation of the microstructure of cement-based materials using non-destructive techniques has become an important topic of study, and among them, the impedance spectroscopy has recently experienced great progress. In this research, mortars with two different contents of fly ash were exposed to four different constant temperature and relative humidity environments during a 180-day period. The evolution of their microstructure was studied using impedance spectroscopy, whose results were contrasted with mercury intrusion porosimetry. The hardening environment has an influence on the microstructure of fly ash cement mortars. On one hand, the impedance resistances R₁ and R₂ are more influenced by the drying of the materials than by microstructure development, so they are not suitable for following the evolution of the porous network under non-optimum conditions. On the other hand, the impedance spectroscopy capacitances C₁ and C₂ allow studying the microstructure development of fly ash cement mortars exposed to those conditions, and their results are in accordance with mercury intrusion porosimetry ones. Finally, it has been observed that the combined analysis of the abovementioned capacitances could be very useful for studying shrinkage processes in cement-based materials kept in low relative humidity environments.
Effect of heat treatment on microstructure and hardness of Grade 91 steel
Shrestha, Triratna; Alsagabi, Sultan; Charit, Indrajit; ...
2015-01-21
The modified 9Cr-1Mo steel (Grade 91) is a material of choice in fossil-fuel-fired power plants with increased efficiency, service life, and reduction in emission of greenhouse gases. It is also considered a prospective material for the Next Generation Nuclear Power Plant for application in reactor pressure vessels at temperatures up to 650°C. In this paper, heat treatment of the modified 9Cr-1Mo steel was studied by normalizing and tempering the steel at various temperatures and times, with the ultimate goal of improving its creep resistance and optimizing material hardness. The microstructural evolution of the heat treated steels was correlated with themore » differential scanning calorimetric results. Optical microscopy, scanning and transmission electron microscopy in conjunction with microhardness profiles and calorimetric plots were used to understand the evolution of microstructure including precipitate structures in modified 9Cr-1Mo steel and relate it to the mechanical behavior of the steel. Thermo-CalcTM calculations were used to support experimental work and provide guidance in terms of the precipitate stability and microstructural evolution. Furthermore, the carbon isopleth and temperature dependencies of the volume fraction of different precipitates were constructed. The predicted and experimentally observed results were found to be in good agreement.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
HOLM,ELIZABETH A.; BATTAILE,CORBETT C.; BUCHHEIT,THOMAS E.
2000-04-01
Computational materials simulations have traditionally focused on individual phenomena: grain growth, crack propagation, plastic flow, etc. However, real materials behavior results from a complex interplay between phenomena. In this project, the authors explored methods for coupling mesoscale simulations of microstructural evolution and micromechanical response. In one case, massively parallel (MP) simulations for grain evolution and microcracking in alumina stronglink materials were dynamically coupled. In the other, codes for domain coarsening and plastic deformation in CuSi braze alloys were iteratively linked. this program provided the first comparison of two promising ways to integrate mesoscale computer codes. Coupled microstructural/micromechanical codes were appliedmore » to experimentally observed microstructures for the first time. In addition to the coupled codes, this project developed a suite of new computational capabilities (PARGRAIN, GLAD, OOF, MPM, polycrystal plasticity, front tracking). The problem of plasticity length scale in continuum calculations was recognized and a solution strategy was developed. The simulations were experimentally validated on stockpile materials.« less
NASA Astrophysics Data System (ADS)
Kong, H.; Chao, Q.; Cai, M. H.; Pavlina, E. J.; Rolfe, B.; Hodgson, P. D.; Beladi, H.
2018-02-01
The present study investigated the microstructure evolution and mechanical behavior in a low carbon CMnSiAl transformation-induced plasticity (TRIP) steel, which was subjected to a partial austenitization at 1183 K (910 °C) followed by one-step quenching and partitioning (Q&P) treatment at different isothermal holding temperatures of [533 K to 593 K (260 °C to 320 °C)]. This thermal treatment led to the formation of a multi-phase microstructure consisting of ferrite, tempered martensite, bainitic ferrite, fresh martensite, and retained austenite, offering a superior work-hardening behavior compared with the dual-phase microstructure (i.e., ferrite and martensite) formed after partial austenitization followed by water quenching. The carbon enrichment in retained austenite was related to not only the carbon partitioning during the isothermal holding process, but also the carbon enrichment during the partial austenitization and rapid cooling processes, which has broadened our knowledge of carbon partitioning mechanism in conventional Q&P process.
Microstructural evolution and rheology of quartz in a mid-crustal shear zone
NASA Astrophysics Data System (ADS)
Rahl, Jeffrey M.; Skemer, Philip
2016-06-01
We present microstructural and crystallographic preferred orientation (CPO) data on quartz deformed in the middle crust to explore the interaction and feedback between dynamic recrystallization, deformation processes, and CPO evolution. The sample investigated here is a moderately deformed quartz-rich mylonite from the Blue Ridge in Virginia. We have created high-resolution crystallographic orientation maps using electron backscatter diffraction (EBSD) of 51 isolated quartz porphyroclasts with recrystallized grain fractions ranging from 10 to 100%. Recrystallized grains are internally undeformed and display crystallographic orientations dispersed around the orientation of the associated parent porphyroclast. We document a systematic decrease in fabric intensity with recrystallization, suggesting that progressive deformation of the recrystallized domains involves processes that can weaken a pre-existing CPO. Relationships between recrystallization fraction and shear strain suggest that complete microstructural re-equilibration requires strains in excess of γ = 5. Variation in the degree of recrystallization implies that strain was accumulated heterogeneously, and that a steady-state microstructure and rheology were not achieved.
NASA Technical Reports Server (NTRS)
Spanos, G.; Ayers, J. D.; Vold, C. L.; Locci, I. E.
1993-01-01
A study is presented to determine if fine microstructures could be achieved using rapid solidification to produce a fine-grained fully austenitic starting structure and then using thermal processing cycles to produce an even finer ferrite-cementite structure. The evolution, mechanisms of grain refinement, and crystallography of the resultant microstructures were examined by TEM. A thermal processing cycle consisted of quenching the ribbon in liquid nitrogen, tempering at 600 C for 10 sec, 'upquenching' to 750 C for 10 sec, and subsequently quenching again in liquid nitrogen. The heat-treatment resulted in martensite grains with sizes of about 1 micron or less in both length and thickness and cementite particles of 0.4 micron or less. It is concluded that these microstructures could be used for producing fine-grained ultrahigh carbon steels of very high strength without the brittleness associated with the formation of coarse carbide particles of the loss of strength due to graphite formation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pareige, P.; Russell, K.F.; Stoller, R.E.
1998-03-01
Atom probe field ion microscopy (APFIM) investigations of the microstructure of unaged (as-fabricated) and long-term thermally aged ({approximately} 100,000 h at 280 C) surveillance materials from commercial reactor pressure vessel steels were performed. This combination of materials and conditions permitted the investigation of potential thermal-aging effects. This microstructural study focused on the quantification of the compositions of the matrix and carbides. The APFIM results indicate that there was no significant microstructural evolution after a long-term thermal exposure in weld, plate, or forging materials. The matrix depletion of copper that was observed in weld materials was consistent with the copper concentrationmore » in the matrix after the stress-relief heat treatment. The compositions of cementite carbides aged for 100,000 h were compared with the Thermocalc{trademark} prediction. The APFIM comparisons of materials under these conditions are consistent with the measured change in mechanical properties such as the Charpy transition temperature.« less
NASA Astrophysics Data System (ADS)
Yang, Li; Zhu, Lu; Zhang, Yaocheng; Zhou, Shiyuan; Xiong, Yifeng; Wu, Pengcheng
2018-02-01
The microstructural evolution and IMCs growth behavior of Sn-58Bi and Sn-58Bi-0.25Mo solder joints were investigated. The results showed that the microstructure is coarsened, the IMCs layer thickness is increased and the tensile strength of Sn-58Bi and Sn-58Bi-0.25Mo solder joints is decreased with increasing aging time and temperature. Aging temperature is the key factor that causes the excessive IMCs growth of the solder joint compared with aging time, and the activation energy of IMCs layer growth of Sn-58Bi and Sn-58Bi-0.25Mo solder joints is 48.94 kJ mol-1 and 53.79 kJ mol-1, respectively. During the aging treatment, the microstructure of Sn-58Bi solder joint is refined by adding Mo nanoparticles, and the appropriate IMCs layer thickness and improved mechanical properties are obtained by Sn-58Bi-0.25Mo solder joint.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Hai-Tao, E-mail: liuht@ral.neu.edu.cn; Institute of Research of Iron and Steel, Shasteel, Zhangjiagang 215625, Jiangsu; Yao, Sheng-Jie
2015-08-15
In the present work, a regular grade GO sheet was produced successively by strip casting, hot rolling, normalizing annealing, two-stage cold rolling with intermediate annealing, primary recrystallization annealing, secondary recrystallization annealing and purification. The aim of this paper was to characterize the evolution of microstructure, texture and inhibitor along the new processing route by comprehensive utilization of optical microscopy, X-ray diffraction and transmission electron microscopy. It was found that a fine microstructure with the ferrite grain size range of 7–12 μm could be obtained in the primary recrystallization annealed sheet though a very coarse microstructure was produced in the initialmore » as-cast strip. The main finding was that the “texture memory” effect on Goss texture started on the through-thickness intermediate annealed strip after first cold rolling, which was not similar to the “texture memory” effect on Goss texture starting on the surface layers of the hot rolled strip in the conventional production route. As a result, the origin of Goss nuclei capable of secondary recrystallization lied in the grains already presented in Goss orientation in the intermediate annealed strip after first cold rolling. Another finding was that fine and dispersive inhibitors (mainly AlN) were easy to be produced in the primary recrystallization microstructure due to the initial rapid solidification during strip casting and the subsequent rapid cooling, and the very high temperature reheating usually used before hot rolling in the conventional production route could be avoided. - Highlights: • A regular grade grain-oriented electrical steel was produced. • Evolution of microstructure, texture and inhibitor was characterized. • Origin of Goss nuclei lied in the intermediate annealed strip. • A fine primary recrystallization microstructure could be produced. • Effective inhibitors were easy to be obtained in the new processing route.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mirakhorli, F., E-mail: Fatemeh.mirakhorli.1@ens.e
The post-weld tempered microstructure of hybrid laser-arc welded CA6NM, a cast low carbon martensitic stainless steel, was investigated. The microstructural evolutions from the fusion zone to the base metal were characterized in detail using optical microscopy, scanning electron microscopy (SEM), electron backscatter diffraction (EBSD), X-ray diffraction (XRD) and microhardness techniques. The fusion zone, in its post-weld tempered condition, consisted of tempered lath martensite, residual delta-ferrite with various morphologies, reversed austenite and chromium carbides. The reversed austenite, which can be detected through both EBSD and XRD techniques, was found to be finely dispersed along the martensite lath boundaries, particularly at triplemore » junctions. Based on the EBSD analysis, the orientation relationship between the reversed austenite and the adjacent martensite laths seemed to follow the Kurdjumov-Sachs (K-S) model. The results also revealed the presence of the reversed austenite in the different regions of the heat affected zone after post-weld tempering. The microindentation hardness distribution was measured, and correlated to the evolution of the corresponding microstructure across the welds. - Highlights: •The EBSD analysis was performed on hybrid laser-arc welded CA6NM. •The FZ consisted of tempered lath martensite, reversed austenite, carbides and δ ferrite after tempering. •The reversed γ was formed along the α′ lath boundaries, particularly at triple junctions.« less
NASA Astrophysics Data System (ADS)
Chakravarthi, K. V. A.; Koundinya, N. T. B. N.; Narayana Murty, S. V. S.; Nageswara Rao, B.
2017-03-01
Maraging steels exhibit extraordinary strength coupled with toughness and are therefore materials of choice for critical structural applications in defense, aerospace and nuclear engineering. Thermo-mechanical processing is an important step in the manufacture of these structural components. This process assumes significance as these materials are expensive and the mechanical properties obtained depend on the microstructure evolved during thermo-mechanical processing. In the present study, M350 grade maraging steel specimens were hot isothermally compressed in the temperature range of 900-1200 °C and in the strain rate range of 0.001-100 s-1, and true stress-true strain curves were generated. The microstructural evolution as a function of strain rate and temperature in the deformed compression specimens was studied. The effect of friction between sample and compression dies was evaluated, and the same was found to be low. The measured flow stress data was used for the development of a constitutive model to represent the hot deformation behavior of this alloy. The proposed equation can be used as an input in the finite element analysis to obtain the flow stress at any given strain, strain rate, and temperature useful for predicting the flow localization or fracture during thermo-mechanical simulation. The activation energy for hot deformation was calculated and is found to be 370.88 kJ/mol, which is similar to that of M250 grade maraging steel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vasudevan, Vijay K.; Jackson, John; Teysseyre, Sebastien
The objective of this project, which includes close collaboration with scientists from INL and ANL, is to investigate and demonstrate the use of advanced mechanical surface treatments like laser shock peening (LSP) and ultrasonic nanocrystal surface modification (UNSM) and establish baseline parameters for enhancing the fatigue properties and SCC resistance of nuclear materials like nickel-based alloy 600 and 304 stainless steel. The research program includes the following key elements/tasks: 1) Procurement of Alloy 600 and 304 SS, heat treatment studies; 2) LSP and UNSM processing of base metal and welds/HAZ of alloys 600 and 304; (3) measurement and mapping ofmore » surface and sub-surface residual strains/stresses and microstructural changes as a function of process parameters using novel methods; (4) determination of thermal relaxation of residual stresses (macro and micro) and microstructure evolution with time at high temperatures typical of service conditions and modeling of the kinetics of relaxation; (5) evaluation of the effects of residual stress, near surface microstructure and temperature on SCC and fatigue resistance and associated microstructural mechanisms; and (6) studies of the effects of bulk and surface grain boundary engineering on improvements in the SCC resistance and associated microstructural and cracking mechanisms« less
Evolution of Mechanical and Electrical Properties During Annealing of the Copper Wire Drawn
NASA Astrophysics Data System (ADS)
Zidani, M.; Messaoudi, S.; Baudin, T.; Derfouf, C.; Boulagroun, A.; Mathon, M. H.
2011-12-01
In this work, the evolution of mechanical and electrical properties and microstructure of industrial copper wire used for electrical cabling was characterized. This work is not limited to the interpretation of the microstructural characteristics of the wire-drawn state but also after different annealing treatments. For the lowest temperatures (160 °C and 200 °C), significant changes are not observed in the microstructure (grain size) in the weak deformed wire (28.5%). Instead, variations of some properties of the metal were observed (hardness and electrical resistivity). For strong deformation (61.4% and 84.59%), annealing, leads to recrystallization with a softening material. Let us note that the resistivity increases with deformation level and becomes higher after annealing at low temperature (200 °C).
Qajar, Jafar; Arns, Christoph H
2017-09-01
Percolation of reactive fluids in carbonate rocks affects the rock microstructure and hence changes the rock macroscopic properties. In Part 1 paper, we examined the voxel-wise evolution of microstructure of the rock in terms of mineral dissolution/detachment, mineral deposition, and unchanged regions. In the present work, we investigate the relationships between changes in two characteristic transport properties, i.e. permeability and electrical conductivity and two critical parameters of the pore phase, i.e. the fraction of the pore space connecting the inlet and outlet faces of the core sample and the critical pore-throat diameter. We calculate the aforementioned properties on the images of the sample, wherein a homogeneous modification of pore structure occurred in order to ensure the representativeness of the calculated transport properties at the core scale. From images, the evolution of pore connectivity and the potential role of micropores on the connectivity are quantified. It is found that the changing permeability and electrical conductivity distributions along the core length are generally in good agreement with the longitudinal evolution of macro-connected macroporosity and the critical pore-throat diameter. We incorporate microporosity into critical length and permeability calculations and show how microporosity locally plays a role in permeability. It is shown that the Katz-Thompson model reasonably predicts the post-alteration permeability in terms of pre-alteration simulated parameters. This suggests that the evolution of permeability and electrical conductivity of the studied complex carbonate core are controlled by the changes in the macro-connected macroporosity as well as the smallest pore-throats between the connected macropores. Copyright © 2017 Elsevier B.V. All rights reserved.
Mechanical Properties and Microstructural Evolution of Welded Eglin Steel
NASA Astrophysics Data System (ADS)
Leister, Brett M.
Eglin steel is a new ultra-high strength steel that has been developed at Eglin Air Force Base in the early 2000s. This steel could be subjected to a variety of processing steps during fabrication, each with its own thermal history. This article presents a continuous cooling transformation diagram developed for Eglin steel to be used as a guideline during processing. Dilatometry techniques performed on a Gleeble thermo-mechanical simulator were combined with microhardness results and microstructural characterization to develop the diagram. The results show that four distinct microstructures form within Eglin steel depending on the cooling rate. At cooling rates above about 1 °C/s, a predominately martensitic microstructure is formed with hardness of ˜520 HV. Intermediate cooling rates of 1 °C/s to 0.2 °C/s produce a mixed martensitic/bainitic microstructure with a hardness that ranges from 520 - 420 HV. Slower cooling rates of 0.1 °C/s to 0.03 °C/s lead to the formation of a bainitic microstructure with a hardness of ˜420 HV. The slowest cooling rate of 0.01 °C/s formed a bainitic microstructure with pearlite at the prior austenite grain boundaries. A comprehensive study was performed to correlate the mechanical properties and the microstructural evolution in the heat affected zone of thermally simulated Eglin steel. A Gleeble 3500 thermo-mechanical simulator was used to resistively heat samples of wrought Eglin steel according to calculated thermal cycles with different peak temperatures at a heat input of 1500 J/mm. These samples underwent mechanical testing to determine strength and toughness, in both the `as-simulated' condition and also following post-weld heat treatments. Mechanical testing has shown that the inter-critical heat affected zone (HAZ) has the lowest strength following thermal simulation, and the fine-grain and coarse-grain heat affected zone having an increased strength when compared to the inter-critical HAZ. The toughness of the heat affected zone in the as-simulated condition is lower than that of the base metal. Post-weld heat treatments (PWHT) have been shown to increase the toughness of the HAZ, but at the expense of strength. In addition, certain combinations of PWHTs within specific HAZ regions have exhibited low toughness caused by tempered martensite embrittlement or intergranular failure. Synchrotron X-ray diffraction data has shown that Eglin steel has retained austenite in the fine-grain HAZ in the as-simulated condition. In addition, alloy carbides (M23C 6, M2C, M7C3) have been observed in the diffraction spectra for the fine-grain and coarse-grain HAZ following a PWHT of 700 °C / 4 hours. A first attempt at thermodynamic modeling has been undertaken using MatCalc to try to predict the evolution of carbides in the HAZ following thermal cycling and PWHT.
Thermomechanical behavior of tin-rich (lead-free) solders
NASA Astrophysics Data System (ADS)
Sidhu, Rajen Singh
In order to adequately characterize the behavior of ball-grid-array (BGA) Pb-free solder spheres in electronic devices, the microstructure and thermomechanical behavior need to be studied. Microstructure characterization of pure Sn, Sn-0.7Cu, Sn-3.5Ag, and Sn-3.9Ag-0.7Cu alloys was conducted using optical microscopy, scanning electron microscopy, transmission electron microscopy, image analysis, and a novel serial sectioning 3D reconstruction process. Microstructure-based finite-element method (FEM) modeling of deformation in Sn-3.5Ag alloy was conducted, and it will be shown that this technique is more accurate when compared to traditional unit cell models for simulating and understanding material behavior. The effect of cooling rate on microstructure and creep behavior of bulk Sn-rich solders was studied. The creep behavior was evaluated at 25, 95, and 120°C. Faster cooling rates were found to increase the creep strength of the solders due to refinement of the solder microstructure. The creep behavior of Sn-rich single solder spheres reflowed on Cu substrates was studied at 25, 60, 95, and 130°C. Testing was conducted using a microforce testing system, with lap-shear geometry samples. The solder joints displayed two distinct creep behaviors: (a) precipitation-strengthening (Sn-3.5Ag and Sn-3.9Ag-0.7Cu) and (b) power law creep accommodated by grain boundary sliding (GBS) (Sn and Sn-0.7Cu). The relationship between microstructural features (i.e. intermetallic particle size and spacing), stress exponents, threshold stress, and activation energies are discussed. The relationship between small-length scale creep behavior and bulk behavior is also addressed. To better understand the damage evolution in Sn-rich solder joints during thermal fatigue, the local damage will be correlated to the cyclic hysteresis behavior and crystal orientations present in the Sn phase of solder joints. FEM modeling will also be utilized to better understand the macroscopic and local strain response of the lap shear geometry.
Jia, Xiaolong; Tang, Tianhong; Cheng, Dan; Zhang, Cuihua; Zhang, Ran; Cai, Qing; Yang, Xiaoping
2015-12-01
Bioactive glass (BG)-containing carbon nanofibers (CNFs) are promising orthopaedic biomaterials. Herein, CNF composites were produced from electrospinning of polyacrylonitrile (PAN)/BG sol-gel precursor solution, followed by carbonization. Choosing 58S-type BG (mol%: 58.0% SiO2-26.3% CaO-15.7% P2O5) as the model, micro-structural evolution of CNF/BG composites was systematically evaluated in relating to aging times of BG precursor solution. With aging time prolonging, BG precursors underwent morphological changes from small sol clusters with loosely and randomly branched structure to highly crosslinked Si-network structure, showing continuous increase in solution viscosity. BG precursor solution with low viscosity could mix well with PAN solution, resulting in CNF composite with homogeneously distributed BG component. Whereas, BG precursor gel with densely crosslinked Si-network structure led to uneven distribution of BG component along final CNFs due to its significant phase separation from PAN component. Meanwhile, BG nanoparticles in CNFs demonstrated micro-structural evolution that they transited from weak to strong crystal state along with longer aging time. Biomineralization in simulated body fluid and in vitro osteoblasts proliferation were then applied to determine the bioactivity of CNF/BG composites. CNF/BG composites prepared from shorter aging time could induce both faster apatite deposition and cell proliferation rate. It was suggested weakly crystallized BG nanoparticles along CNFs dissolved fast and was able to provide numerous nucleation sites for apatite deposition, which also favored the proliferation of osteoblasts cells. Aging time could thus be a useful tool to regulate the biological features of CNF/BG composites. Copyright © 2015 Elsevier B.V. All rights reserved.
Grain-scale investigations of deformation heterogeneities in aluminum alloys
NASA Astrophysics Data System (ADS)
Güler, Baran; Şimşek, Ülke; Yalçınkaya, Tuncay; Efe, Mert
2018-05-01
The anisotropic deformation of Aluminum alloys at micron scale exhibits localized deformation, which has negative implications on the macroscale mechanical and forming behavior. The scope of this work is twofold. Firstly, micro-scale deformation heterogeneities affecting forming behavior of aluminum alloys is investigated through experimental microstructure analysis at large strains and various strain paths. The effects of initial texture, local grain misorientation, and strain paths on the strain localizations are established. In addition to uniaxial tension condition, deformation heterogeneities are also investigated under equibiaxial tension condition to determine the strain path effects on the localization behavior. Secondly, the morphology and the crystallographic data obtained from the experiments is transferred to Abaqus software, in order to predict both macroscopic response and the microstructure evolution though crystal plasticity finite element simulations. The model parameters are identified through the comparison with experiments and the capability of the model to capture real material response is discussed as well.
Computation material science of structural-phase transformation in casting aluminium alloys
NASA Astrophysics Data System (ADS)
Golod, V. M.; Dobosh, L. Yu
2017-04-01
Successive stages of computer simulation the formation of the casting microstructure under non-equilibrium conditions of crystallization of multicomponent aluminum alloys are presented. On the basis of computer thermodynamics and heat transfer during solidification of macroscale shaped castings are specified the boundary conditions of local heat exchange at mesoscale modeling of non-equilibrium formation the solid phase and of the component redistribution between phases during coalescence of secondary dendrite branches. Computer analysis of structural - phase transitions based on the principle of additive physico-chemical effect of the alloy components in the process of diffusional - capillary morphological evolution of the dendrite structure and the o of local dendrite heterogeneity which stochastic nature and extent are revealed under metallographic study and modeling by the Monte Carlo method. The integrated computational materials science tools at researches of alloys are focused and implemented on analysis the multiple-factor system of casting processes and prediction of casting microstructure.
Relaxation of photoexcitations in polaron-induced magnetic microstructures
NASA Astrophysics Data System (ADS)
Köhler, Thomas; Rajpurohit, Sangeeta; Schumann, Ole; Paeckel, Sebastian; Biebl, Fabian R. A.; Sotoudeh, Mohsen; Kramer, Stephan C.; Blöchl, Peter E.; Kehrein, Stefan; Manmana, Salvatore R.
2018-06-01
We investigate the evolution of a photoexcitation in correlated materials over a wide range of time scales. The system studied is a one-dimensional model of a manganite with correlated electron, spin, orbital, and lattice degrees of freedom, which we relate to the three-dimensional material Pr1 -xCaxMnO3 . The ground-state phases for the entire composition range are determined and rationalized by a coarse-grained polaron model. At half doping a pattern of antiferromagnetically coupled Zener polarons is realized. Using time-dependent density-matrix renormalization group (tDMRG), we treat the electronic quantum dynamics following the excitation. The emergence of quasiparticles is addressed, and the relaxation of the nonequilibrium quasiparticle distribution is investigated via a linearized quantum-Boltzmann equation. Our approach shows that the magnetic microstructure caused by the Zener polarons leads to an increase of the relaxation times of the excitation.
A Cosserat crystal plasticity and phase field theory for grain boundary migration
NASA Astrophysics Data System (ADS)
Ask, Anna; Forest, Samuel; Appolaire, Benoit; Ammar, Kais; Salman, Oguz Umut
2018-06-01
The microstructure evolution due to thermomechanical treatment of metals can largely be described by viscoplastic deformation, nucleation and grain growth. These processes take place over different length and time scales which present significant challenges when formulating simulation models. In particular, no overall unified field framework exists to model concurrent viscoplastic deformation and recrystallization and grain growth in metal polycrystals. In this work a thermodynamically consistent diffuse interface framework incorporating crystal viscoplasticity and grain boundary migration is elaborated. The Kobayashi-Warren-Carter (KWC) phase field model is extended to incorporate the full mechanical coupling with material and lattice rotations and evolution of dislocation densities. The Cosserat crystal plasticity theory is shown to be the appropriate framework to formulate the coupling between phase field and mechanics with proper distinction between bulk and grain boundary behaviour.
NASA Astrophysics Data System (ADS)
Grujicic, M.; Ramaswami, S.; Snipes, J. S.; Yen, C.-F.; Cheeseman, B. A.; Montgomery, J. S.
2013-10-01
A multiphysics computational model has been developed for the conventional Gas Metal Arc Welding (GMAW) joining process and used to analyze butt-welding of MIL A46100, a prototypical high-hardness armor martensitic steel. The model consists of five distinct modules, each covering a specific aspect of the GMAW process, i.e., (a) dynamics of welding-gun behavior; (b) heat transfer from the electric arc and mass transfer from the electrode to the weld; (c) development of thermal and mechanical fields during the GMAW process; (d) the associated evolution and spatial distribution of the material microstructure throughout the weld region; and (e) the final spatial distribution of the as-welded material properties. To make the newly developed GMAW process model applicable to MIL A46100, the basic physical-metallurgy concepts and principles for this material have to be investigated and properly accounted for/modeled. The newly developed GMAW process model enables establishment of the relationship between the GMAW process parameters (e.g., open circuit voltage, welding current, electrode diameter, electrode-tip/weld distance, filler-metal feed speed, and gun travel speed), workpiece material chemistry, and the spatial distribution of as-welded material microstructure and properties. The predictions of the present GMAW model pertaining to the spatial distribution of the material microstructure and properties within the MIL A46100 weld region are found to be consistent with general expectations and prior observations.
NASA Astrophysics Data System (ADS)
Iannitti, Gianluca; Bonora, Nicola; Ruggiero, Andrew; Dichiaro, Simone
2012-03-01
In this work, a constitutive modeling that couples plasticity, grain size evolution (due to plastic deformation and dynamic recrystallization) and ductile damage has been developed. The effect of grain size on the material yield stress (Hall-Petch) and on the melting temperature has been considered. The model has been used to investigate computationally the behavior of high purity copper in dynamic tensile extrusion test (DTE). An extensive numerical simulation work, using implicit finite element code with direct integration, has been performed and the results have been compared with available experimental data. The major finding is that the proposed model is capable to predict most of the observed features such as the increase of material ductility with the decreasing average grain size, the overall number and size of fragments and the average grain size distribution in the fragment trapped into the dime.
NASA Astrophysics Data System (ADS)
Iannitti, Gianluca; Bonora, Nicola; Ruggiero, Andrew; Dichiaro, Simone
2011-06-01
In this work, a constitutive modeling that couples plasticity, grain size evolution (due to plastic deformation and dynamic recrystallization) and ductile damage has been developed. The effect of grain size on the material yield stress (Hall-Petch) and on the melting temperature has been considered. The model has been used to investigate computationally the behaviour of high purity copper in dynamic tensile extrusion test (DTE). An extensive numerical simulation work, using implicit finite element code with direct integration, has been performed and the results have been compared with available experimental data. The major finding is that the proposed model is capable to predict most of the observed features such as the increase of material ductility with the decreasing average grain size, the overall number and size of fragments and the average grain size distribution in the fragment trapped into the dime.
NASA Astrophysics Data System (ADS)
Borah, Utpal; Aashranth, B.; Samantaray, Dipti; Kumar, Santosh; Davinci, M. Arvinth; Albert, Shaju K.; Bhaduri, A. K.
2017-10-01
Work hardening, dynamic recovery and dynamic recrystallization (DRX) occurring during hot working of austenitic steel have been extensively studied. Various empirical models describe the nature and effects of these phenomena in a typical framework. However, the typical model is sometimes violated following atypical transitions in deformation mechanisms of the material. To ascertain the nature of these atypical transitions, researchers have intentionally introduced discontinuities in the deformation process, such as interrupting the deformation as in multi-step rolling and abruptly changing the rate of deformation. In this work, we demonstrate that atypical transitions are possible even in conventional single-step, constant strain rate deformation of austenitic steel. Towards this aim, isothermal, constant true strain rate deformation of austenitic steel has been carried out in a temperature range of 1173-1473 K and strain rate range of 0.01-100 s-1. The microstructural response corresponding to each deformation condition is thoroughly investigated. The conventional power-law variation of deformation grain size (D) with peak stress (σp) during DRX is taken as a typical model and experimental data is tested against it. It is shown that σp-D relations exhibit an atypical two-slope linear behaviour rather than a continuous power law relation. Similarly, the reduction in σp with temperature (T) is found to consist of two discrete linear segments. In practical terms, the two linear segments denote two distinct microstructural responses to deformation. As a consequence of this distinction, the typical model breaks down and is unable to completely relate microstructural evolution to flow behaviour. The present work highlights the microstructural mechanisms responsible for this atypical behavior and suggests strategies to incorporate the two-slope behaviour in the DRX model.
Characterization of ultra-fine grained aluminum produced by accumulative back extrusion (ABE)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alihosseini, H., E-mail: hamid.alihossieni@gmail.com; Materials Science and Engineering Department, Engineering School, Amirkabir University, Tehran; Faraji, G.
2012-06-15
In the present work, the microstructural evolutions and microhardness of AA1050 subjected to one, two and three passes of accumulative back extrusion (ABE) were investigated. The microstructural evolutions were characterized using transmission electron microscopy. The results revealed that applying three passes of accumulative back extrusion led to significant grain refinement. The initial grain size of 47 {mu}m was refined to the grains of 500 nm after three passes of ABE. Increasing the number of passes resulted in more decrease in grain size, better microstructure homogeneity and increase in the microhardness. The cross-section of ABEed specimen consisted of two different zones:more » (i) shear deformation zone, and (ii) normal deformation zone. The microhardness measurements indicated that the hardness increased from the initial value of 31 Hv to 67 Hv, verifying the significant microstructural refinement via accumulative back extrusion. - Highlights: Black-Right-Pointing-Pointer A significant grain refinement can be achieved in AA1050, Al alloy by applying ABE. Black-Right-Pointing-Pointer Microstructural homogeneity of ABEed samples increased by increasing the number of ABE cycles. Black-Right-Pointing-Pointer A substantial increase in the hardness, from 31 Hv to 67 Hv, was recorded.« less
Effect of milling time on microstructure and mechanical properties of Cu-Ni-graphite composites
NASA Astrophysics Data System (ADS)
Wang, Yiran; Gao, Yimin; Li, Yefei; Zhang, Chao; Huang, Xiaoyu; Zhai, Wenyan
2017-09-01
Cu-Ni-graphite composites are intended for application in switch slide baseplate materials. The microstructure of the composites depends strongly on the ball milling time, and a suitable time can significantly improve the properties of the Cu-Ni-graphite composites. In this study, a two-step milling method was employed. The morphology evolution and microstructural features of the powder was characterized at different milling times. Afterwards, the Cu-Ni-graphite composites were prepared in the process of cold pressing, sintering, re-pressing and re-sintering as a function of the different milling times. Finally, both the microstructure and mechanical properties of the Cu-Ni-graphite composites are discussed. The results show that no new phase was generated during the milling process. The morphology evolution of the mixture of Cu/Ni powder changed from spherical-like to cubic-like, plate-like and flake-like with an increasing milling time. The microstructure of the composites consisted of α-phase and graphite. The boundary area and quantity of pores changed as the milling time increased. The relative density, hardness and flexural strength reached maximum values at 15 h of milling time.
Kaira, C. Shashank; De Andrade, V.; Singh, Sudhanshu S.; ...
2017-09-14
Dispersions of nanoscale precipitates in metallic alloys have been known to play a key role in strengthening, by increasing their strain hardenability and providing resistance to deformation. Although these phenomena have been extensively investigated in the last century, the traditional approaches employed in the past have not rendered an authoritative microstructural understanding in such materials. The effect of the precipitates’ inherent complex morphology and their 3D spatial distribution on evolution and deformation behavior have often been precluded. This study reports, for the first time, implementation of synchrotron-based hard X-ray nanotomography in Al–Cu alloys to measure kinetics of different nanoscale phasesmore » in 3D, and reveals insights behind some of the observed novel phase transformation reactions. The experimental results of the present study reconcile with coarsening models from the Lifshitz–Slyozov–Wagner theory to an unprecedented extent, thereby establishing a new paradigm for thermodynamic analysis of precipitate assemblies. Lastly, this study sheds light on the possibilities for establishing new theories for dislocation–particle interactions, based on the limitations of using the Orowan equation in estimating precipitation strengthening.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaira, C. Shashank; De Andrade, V.; Singh, Sudhanshu S.
Dispersions of nanoscale precipitates in metallic alloys have been known to play a key role in strengthening, by increasing their strain hardenability and providing resistance to deformation. Although these phenomena have been extensively investigated in the last century, the traditional approaches employed in the past have not rendered an authoritative microstructural understanding in such materials. The effect of the precipitates’ inherent complex morphology and their 3D spatial distribution on evolution and deformation behavior have often been precluded. This study reports, for the first time, implementation of synchrotron-based hard X-ray nanotomography in Al–Cu alloys to measure kinetics of different nanoscale phasesmore » in 3D, and reveals insights behind some of the observed novel phase transformation reactions. The experimental results of the present study reconcile with coarsening models from the Lifshitz–Slyozov–Wagner theory to an unprecedented extent, thereby establishing a new paradigm for thermodynamic analysis of precipitate assemblies. Lastly, this study sheds light on the possibilities for establishing new theories for dislocation–particle interactions, based on the limitations of using the Orowan equation in estimating precipitation strengthening.« less
In-situ 3D visualization of composite microstructure during polymer-to-ceramic conversion
Larson, Natalie M.; Zok, Frank W.
2017-10-31
One route for producing fiber-reinforced ceramic-matrix composites entails repeated impregnation and pyrolysis of a preceramic polymer in a fiber preform. The process relies crucially on the development of networks of contiguous cracks during pyrolysis, thereby allowing further impregnation to attain nearly-full densification. The present study employs in-situ x-ray computed tomography (XCT) to reveal in three dimensions the evolution of matrix structure during pyrolysis of a SiC-based preceramic polymer to 1200 °C. Observations are used to guide the development of a taxonomy of crack geometries and crack structures and to identify the temporal sequence of their formation. A quantitative analysis ismore » employed to characterize effects of local microstructural dimensions on the conditions required to form cracks of various types. Complementary measurements of gas evolution and mass loss of the preceramic polymer during pyrolysis as well as changes in mass density and Young's modulus provide context for the physical changes revealed by XCT. Furthermore, the findings provide a foundation for future development of physics-based models to guide composite fabrication processes.« less
Chen, Kaihui; Wang, Yu; Xuan, Shouhu; Gong, Xinglong
2017-07-01
To investigate the microstructural evolution dependency on the apparent viscosity in shear-thickening fluids (STFs), a hybrid mesoscale model combined with stochastic rotation dynamics (SRD) and molecular dynamics (MD) is used. Muller-Plathe reverse perturbation method is adopted to analyze the viscosities of STFs in a two-dimensional model. The characteristic of microstructural evolution of the colloidal suspensions under different shear rate is studied. The effect of diameter of colloidal particles and the phase volume fraction on the shear thickening behavior is investigated. Under low shear rate, the two-atom structure is formed, because of the strong particle attractions in adjacent layers. At higher shear rate, the synergetic pair structure extends to layered structure along flow direction because of the increasing hydrodynamics action. As the shear rate rises continuously, the layered structure rotates and collides with other particles, then turned to be individual particles under extension or curve string structure under compression. Finally, at the highest shear rate, the strings curve more severely and get into two-dimensional cluster. The apparent viscosity of the system changes from shear-thinning behavior to the shear-thickening behavior. This work presents valuable information for further understanding the shear thickening mechanism. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Yalavarthy, Harshavardhan
Interactions between the rotating and advancing pin-shaped tool (terminated at one end with a circular-cylindrical shoulder) with the clamped welding-plates and the associated material and heat transport during a Friction Stir Welding (FSW) process are studied computationally using a fully-coupled thermo-mechanical finite-element analysis. To surmount potential numerical problems associated with extensive mesh distortions/entanglement, an Arbitrary Lagrangian Eulerian (ALE) formulation was used which enabled adaptive re-meshing (to ensure the continuing presence of a high-quality mesh) while allowing full tracking of the material free surfaces. To demonstrate the utility of the present computational approach, the analysis is applied to the cases of same-alloy FSW of two Aluminum-alloy grades: (a) AA5083 (a solid-solution strengthened and strain-hardened/stabilized Al-Mg-Mn alloy); and (b) AA2139 (a precipitation hardened quaternary Al-Cu-Mg-Ag alloy). Both of these alloys are currently being used in military-vehicle hull structural and armor systems. In the case of non-age-hardenable AA5083, the dominant microstructure evolution processes taking place during FSW are extensive plastic deformation and dynamic recrystallization of highly-deformed material subjected to elevated temperatures approaching the melting temperature. To account for the competition between plastic-deformation controlled strengthening and dynamic-recrystallization induced softening phenomena during the FSW process, the original Johnson-Cook strain- and strain-rate hardening and temperature-softening material strength model is modified in the present work using the available recrystallization-kinetics experimental data. In the case of AA2139, in addition to plastic deformation and dynamic recrystallization, precipitates coarsening, over-aging, dissolution and re-precipitation had to be also considered. Limited data available in the open literature pertaining to the kinetics of the aforementioned microstructure-evolution processes are used to predict variation in the material hardness and the residual stresses throughout the various FSW zones of the two alloys. The results showed that with proper modeling of the material behavior under high-temperature/severe-plastic-deformation conditions, significantly improved agreement can be attained between the computed and measured post-FSW residual-stress and material-strength distribution results. Keywords: Friction Stir Welding; AA5083; AA2139; Johnson-Cook Strength Model; Finite Element Analysis; Hardness Prediction.
NASA Astrophysics Data System (ADS)
Castin, N.; Bakaev, A.; Bonny, G.; Sand, A. E.; Malerba, L.; Terentyev, D.
2017-09-01
We propose an object kinetic Monte Carlo (OKMC) model for describing the microstructural evolution in pure tungsten under neutron irradiation. We here focus on low doses (under 1 dpa), and we neglect transmutation in first approximation. The emphasis is mainly centred on an adequate description of neutron irradiation, the subsequent introduction of primary defects, and their thermal diffusion properties. Besides grain boundaries and the dislocation network, our model includes the contribution of carbon impurities, which are shown to have a strong influence on the onset of void swelling. Our parametric study analyses the quality of our model in detail, and confronts its predictions with experimental microstructural observations with satisfactory agreement. We highlight the importance for an accurate determination of the dissolved carbon content in the tungsten matrix, and we advocate for an accurate description of atomic collision cascades, in light of the sensitivity of our results with respect to correlated recombination.
NASA Astrophysics Data System (ADS)
Sharma, Dinesh Kumar; Sharma, Anurag; Tripathi, Saurabh Mani
2017-11-01
The excellent propagation properties of square-lattice microstructured optical fibers (MOFs) have been widely recognized. We generalized our recently developed analytical field model (Sharma and Sharma, 2016), for index-guiding MOFs with square-lattice of circular air-holes in the photonic crystal cladding. Using the field model, we have studied the propagation properties of the fundamental mode of index-guiding square-lattice MOFs with different hole-to-hole spacing and the air-hole diameter. Results for the modal effective index, near and the far-field patterns and the group-velocity dispersion have been included. The evolution of the mode shape has been investigated in transition from the near to the far-field domain. We have also studied the splice losses between two identical square-lattice MOFs and also between an MOF and a traditional step-index single-mode fiber. Comparisons with available numerical simulation results, e.g., those based on the full-vector finite element method have also been included.
Continuum damage modeling and simulation of hierarchical dental enamel
NASA Astrophysics Data System (ADS)
Ma, Songyun; Scheider, Ingo; Bargmann, Swantje
2016-05-01
Dental enamel exhibits high fracture toughness and stiffness due to a complex hierarchical and graded microstructure, optimally organized from nano- to macro-scale. In this study, a 3D representative volume element (RVE) model is adopted to study the deformation and damage behavior of the fibrous microstructure. A continuum damage mechanics model coupled to hyperelasticity is developed for modeling the initiation and evolution of damage in the mineral fibers as well as protein matrix. Moreover, debonding of the interface between mineral fiber and protein is captured by employing a cohesive zone model. The dependence of the failure mechanism on the aspect ratio of the mineral fibers is investigated. In addition, the effect of the interface strength on the damage behavior is studied with respect to geometric features of enamel. Further, the effect of an initial flaw on the overall mechanical properties is analyzed to understand the superior damage tolerance of dental enamel. The simulation results are validated by comparison to experimental data from micro-cantilever beam testing at two hierarchical levels. The transition of the failure mechanism at different hierarchical levels is also well reproduced in the simulations.
Constitutive modelling of composite biopolymer networks.
Fallqvist, B; Kroon, M
2016-04-21
The mechanical behaviour of biopolymer networks is to a large extent determined at a microstructural level where the characteristics of individual filaments and the interactions between them determine the response at a macroscopic level. Phenomena such as viscoelasticity and strain-hardening followed by strain-softening are observed experimentally in these networks, often due to microstructural changes (such as filament sliding, rupture and cross-link debonding). Further, composite structures can also be formed with vastly different mechanical properties as compared to the individual networks. In this present paper, we present a constitutive model presented in a continuum framework aimed at capturing these effects. Special care is taken to formulate thermodynamically consistent evolution laws for dissipative effects. This model, incorporating possible anisotropic network properties, is based on a strain energy function, split into an isochoric and a volumetric part. Generalisation to three dimensions is performed by numerical integration over the unit sphere. Model predictions indicate that the constitutive model is well able to predict the elastic and viscoelastic response of biological networks, and to an extent also composite structures. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shojaee, S. A.; Qi, Y.; Wang, Y. Q.
In this paper, the effects of ion irradiation on the microstructural evolution of sol–gel-derived silica-based thin films were examined by combining the results from Fourier transform infrared, Raman, and X-ray photoelectron spectroscopy, Rutherford backscattering spectrometry, and elastic recoil detection. Variations in the chemical composition, density, and structure of the constituent phases and interfaces were studied, and the results were used to propose a microstructural model for the irradiated films. It was discovered that the microstructure of the films after ion irradiation and decomposition of the starting organic materials consisted of isolated hydrogenated amorphous carbon clusters within an amorphous and carbon-incorporatedmore » silica network. A decrease in the bond angle of Si–O–Si bonds in amorphous silica network along with an increase in the concentration of carbon-rich SiO x C y tetrahedra were the major structural changes caused by ion irradiation. Finally, in addition, hydrogen release from free carbon clusters was observed with increasing ion energy and fluence.« less
Ring rolling process simulation for microstructure optimization
NASA Astrophysics Data System (ADS)
Franchi, Rodolfo; Del Prete, Antonio; Donatiello, Iolanda; Calabrese, Maurizio
2017-10-01
Metal undergoes complicated microstructural evolution during Hot Ring Rolling (HRR), which determines the quality, mechanical properties and life of the ring formed. One of the principal microstructure properties which mostly influences the structural performances of forged components, is the value of the average grain size. In the present paper a ring rolling process has been studied and optimized in order to obtain anular components to be used in aerospace applications. In particular, the influence of process input parameters (feed rate of the mandrel and angular velocity of driver roll) on microstructural and on geometrical features of the final ring has been evaluated. For this purpose, a three-dimensional finite element model for HRR has been developed in SFTC DEFORM V11, taking into account also microstructural development of the material used (the nickel superalloy Waspalloy). The Finite Element (FE) model has been used to formulate a proper optimization problem. The optimization procedure has been developed in order to find the combination of process parameters which allows to minimize the average grain size. The Response Surface Methodology (RSM) has been used to find the relationship between input and output parameters, by using the exact values of output parameters in the control points of a design space explored through FEM simulation. Once this relationship is known, the values of the output parameters can be calculated for each combination of the input parameters. Then, an optimization procedure based on Genetic Algorithms has been applied. At the end, the minimum value of average grain size with respect to the input parameters has been found.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kozawa, Takahiro, E-mail: t-kozawa@jwri.osaka-u.ac.jp; Yanagisawa, Kazumichi; Murakami, Takeshi
Morphology control of particles formed during conventional solid-state reactions without any additives is a challenging task. Here, we propose a new strategy to control the morphology of LiMn{sub 2}O{sub 4} particles based on water vapor-induced growth of particles during solid-state reactions. We have investigated the synthesis and microstructural evolution of LiMn{sub 2}O{sub 4} particles in air and water vapor atmospheres as model reactions; LiMn{sub 2}O{sub 4} is used as a low-cost cathode material for lithium-ion batteries. By using spherical MnCO{sub 3} precursor impregnated with LiOH, LiMn{sub 2}O{sub 4} spheres with a hollow structure were obtained in air, while angulated particlesmore » with micrometer sizes were formed in water vapor. The pore structure of the particles synthesized in water vapor was found to be affected at temperatures below 700 °C. We also show that the solid-state reaction in water vapor is a simple and valuable method for the large-scale production of particles, where the shape, size, and microstructure can be controlled. - Graphical abstract: This study has demonstrated a new strategy towards achieving morphology control without the use of additives during conventional solid-state reactions by exploiting water vapor-induced particle growth. - Highlights: • A new strategy to control the morphology of LiMn{sub 2}O{sub 4} particles is proposed. • Water vapor-induced particle growth is exploited in solid-state reactions. • The microstructural evolution of LiMn{sub 2}O{sub 4} particles is investigated. • The shape, size and microstructure can be controlled by solid-state reactions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qu, Jianmin
Understanding of reactor material behavior in extreme environments is vital not only to the development of new materials for the next generation nuclear reactors, but also to the extension of the operating lifetimes of the current fleet of nuclear reactors. To this end, this project conducted a suite of unique experimental techniques, augmented by a mesoscale computational framework, to understand and predict the long-term effects of irradiation, temperature, and stress on material microstructures and their macroscopic behavior. The experimental techniques and computational tools were demonstrated on two distinctive types of reactor materials, namely, Zr alloys and high-Cr martensitic steels. Thesemore » materials are chosen as the test beds because they are the archetypes of high-performance reactor materials (cladding, wrappers, ducts, pressure vessel, piping, etc.). To fill the knowledge gaps, and to meet the technology needs, a suite of innovative in situ transmission electron microscopy (TEM) characterization techniques (heating, heavy ion irradiation, He implantation, quantitative small-scale mechanical testing, and various combinations thereof) were developed and used to elucidate and map the fundamental mechanisms of microstructure evolution in both Zr and Cr alloys for a wide range environmental boundary conditions in the thermal-mechanical-irradiation input space. Knowledge gained from the experimental observations of the active mechanisms and the role of local microstructural defects on the response of the material has been incorporated into a mathematically rigorous and comprehensive three-dimensional mesoscale framework capable of accounting for the compositional variation, microstructural evolution and localized deformation (radiation damage) to predict aging and degradation of key reactor materials operating in extreme environments. Predictions from this mesoscale framework were compared with the in situ TEM observations to validate the model.« less
NASA Astrophysics Data System (ADS)
Blanco, E.; Domínguez, M.; González-Leal, J. M.; Márquez, E.; Outón, J.; Ramírez-del-Solar, M.
2018-05-01
The microstructure and optical properties of TiO2 thin films, prepared by the sol-gel dip coating technique on glass substrates, were inspected. After deposition, the films were annealed at several temperatures in the 400-850 °C range and the resulting nanostructured films were studied by different techniques showing that their structural and optical characteristics evolved significantly with the increased annealing temperature. The analysis of these results by the assumption of the Tauc Lorenz model and the use of Wemple-DiDomenico equation leads to a correlation between microstructural aspects and optical characteristics of the films. Thus, crystallization processes (nucleation, growth and phase transformation) and the evolution of films texture and thickness with increasing annealing temperatures are related with the variation of the refractive index, average gap and extinction coefficient during annealing. Finally, the free-carrier concentration in the films, estimated from the Spitzer-Fan model, ranged from 1.44 × 1019 cm-3 to 3.07 × 1019 cm-3 with the changing annealing temperature, which is in agreement with those obtained in similar anatase thin films from electrical measurement techniques.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ankem, Sreeramamurthy; Perea, Daniel E.; Kolli, R. Prakash
This report details the research activities carried out under DOE-NEUP award number DE-NE0000724 concerning the evolution of structural and mechanical properties during thermal aging of CF–3 and CF–8 cast duplex stainless steels (CDSS). The overall objective of this project was to use state-of-the-art characterization techniques to elucidate trends and phenomena in the mechanical and structural evolution of cast duplex stainless steels (CDSS) during thermal aging. These steels are commonly used as structural materials in commercial light water nuclear power plants, undergoing aging for decades in operation as cooling water pipes, pump casings, valve bodies, etc. During extended exposure to thesemore » conditions, CDSS are known to undergo a change in mechanical properties resulting in a loss of ductility, i.e. embrittlement. While it is generally accepted that structural changes within the ferrite phase, such as decomposition into iron (Fe)-rich and chromium (Cr)-rich domains, lead to the bulk embrittlement of the steels, many questions remain as to the mechanisms of embrittlement at multiple length scales. This work is intended to shed insight into the atomic level composition changes, associated kinetic mechanisms, and effects of changing phase structure on micro- and nano-scale deformation that lead to loss of impact toughness and tensile ductility in these steels. In general, this project provides a route to answer some of these major questions using techniques such as 3-dimensional (3-D) atom probe tomography (APT) and real-microstructure finite element method (FEM) modeling, which were not readily available when these steels were originally selected for service in light water reactors. Mechanical properties evaluated by Charpy V-notch impact testing (CVN), tensile testing, and microhardness and nanohardness measurements were obtained for each condition and compared with the initial baseline properties to view trends in deformation behavior during aging. Concurrent analysis of the microstructure and nanostructure by atom probe tomography (APT) and transmission electron microscopy (TEM) provide mechanistic insight into the kinetic and mechanical behavior occurring on the nano-scale. The presence and morphology of the ferrite, austenite, and carbide phases have been characterized, and formation of new phases during aging, including spinodal decomposition products (α- and α'-ferrite) and G-phase, have been observed. The mechanical and structural characterization have been used to create accurate FEM models based on the real micro- and nano-structures of the systems. These models provide new insight into the local deformation behavior of these steels and the effects of each individual phase (including ferrite, austenite, carbides, and spinodal decomposition products) on the evolving bulk mechanical behavior of the system. The project was divided into three major tasks: 1. Initial Microstructure and Mechanical Property Survey and Initiate Heat Treatment; 2. Microstructural Characterization and Mechanical Property Testing During Aging; and 3. Microstructure-based Finite Element Modeling. Each of these tasks was successfully executed, resulting in reliable data and analysis that add to the overall body of work on the CDSS materials. Baseline properties and aging trends in mechanical data confirm prior observations and add new insights into the mechanical behavior of the steels. Structural characterization on multiple length scales provides new information on phase changes occurring during aging and sheds light on the kinetic processes occurring at the atomic scale. Furthermore, a combination of mechanical testing and microstructural characterization techniques was utilized to design FEM models of local deformation behavior of the ferrite and austenite phases, providing valuable new information regarding the effects of each of the microstructural components on the hardening and embrittlement processes. The data and analysis presented in this report and the publication associated with this project (§V) increase the understanding of aging and deformation in CF–3 and CF–8 steels. These results provide valuable information that can be utilized to aid in making informed decisions regarding the ongoing use of these steels in commercial nuclear infrastructure.« less
Microstructural Evolution During Friction Stir Welding of Near-Alpha Titanium
2009-02-01
completion of the weld and the weld end was quenched with cold water. This process was intended to preserve the microstructure surrounding the...limited the statistics supporting this result. 16 Mironov et al. [31] also measured the texture developed from friction stir processing of pure iron
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Li; Ungár, Tamás; Toth, Laszlo S.
The evolution of texture, grain size, grain shape, dislocation and twin density has been determined by synchrotron X-ray diffraction and line profile analysis in a nanocrystalline Ni- Fe alloy after cold rolling along different directions related to the initial fiber and the long axis of grains. The texture evolution has been simulated by the Taylor-type relaxed constraints viscoplastic polycrystal model. The simulations were based on the activity of partial dislocations in correlation with the experimental results of dislocation density determination. The concept of stress-induced shear-coupling is supported and strengthened by both the texture simulations and the experimentally determined evolution ofmore » the microstructure parameters. Grain-growth and texture evolution are shown to proceed by the shear-coupling mechanism supported by dislocation activity as long as the grain size is not smaller than about 20 nm.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamad, Kotiba; Chung, Bong Kwon; Ko, Young Gun, E-mail: younggun@ynu.ac.kr
2014-08-15
This paper reports the effect of the deformation path on the microstructure, microhardness, and texture evolution of interstitial free (IF) steel processed by differential speed rolling (DSR) method. For this purpose, total height reductions of 50% and 75% were imposed on the samples by a series of differential speed rolling operations with various height reductions per pass (deformation levels) ranging from 10 to 50% under a fixed roll speed ratio of 1:4 for the upper and lower rolls, respectively. Microstructural observations using transmission electron microscopy and electron backscattered diffraction measurements showed that the samples rolled at deformation level of 50%more » had the finest mean grain size (∼ 0.5 μm) compared to the other counterparts; also the samples rolled at deformation level of 50% showed a more uniform microstructure. Based on the microhardness measurements along the thickness direction of the deformed samples, gradual evolution of the microhardness value and its homogeneity was observed with the increase of the deformation level per pass. Texture analysis showed that, as the deformation level per pass increased, the fraction of alpha fiber and gamma fiber in the deformed samples increased. The textures obtained by the differential speed rolling process under the lubricated condition would be equivalent to those obtained by the conventional rolling. - Highlights: • Effect of DSR deformation path on microstructure of IF steel is significant. • IF steel rolled at deformation level of 50% has the ultrafine grains of ∼ 0.5 μm. • Rolling texture components are pronounced with increasing deformation level.« less
NASA Astrophysics Data System (ADS)
Pietrzyk, Maciej; Kuziak, Roman; Pidvysots'kyy, Valeriy; Nowak, Jarosław; Węglarczyk, Stanisław; Drozdowski, Krzysztof
2013-07-01
Two copper-based alloys were considered, Cu-1 pct Cr and Cu-0.7 pct Cr-1 pct Si-2 pct Ni. The thermal, electrical, and mechanical properties of these alloys are given in the paper and compared to pure copper and steel. The role of aging and precipitation kinetics in hardening of the alloys is discussed based upon the developed model. Results of plastometric tests performed at various temperatures and various strain rates are presented. The effect of the initial microstructure on the flow stress was investigated. Rheologic models for the alloys were developed. A finite element (FE) model based on the Norton-Hoff visco-plastic flow rule was applied to the simulation of forging of the alloys. Analysis of the die wear for various processes of hot and cold forging is presented as well. A microstructure evolution model was implemented into the FE code, and the microstructure and mechanical properties of final products were predicted. Various variants of the manufacturing cycles were considered. These include different preheating schedules, hot forging, cold forging, and aging. All variants were simulated using the FE method and loads, die filling, tool wear, and mechanical properties of products were predicted. Three variants giving the best combination of forging parameters were selected and industrial trials were performed. The best manufacturing technology for the copper-based alloys is proposed.
NASA Technical Reports Server (NTRS)
Singh, J.; Jerman, G.; Bhat, B.; Poorman, R.
1993-01-01
Microstructure of wrought, laser, and electron-beam glazed NARloy-Z(Cu-3 wt.% Ag-0.5 wt.% Zr) was investigated for thermal stability at elevated temperatures (539 to 760 C (1,100 to 1,400 F)) up to 94 h. Optical and scanning electron microscopy and electron probe microanalysis were employed for studying microstructural evolution and kinetics of precipitation. Grain boundary precipitation and precipitate free zones (PFZ's) were observed in the wrought alloy after exposing to temperatures above 605 C (1,120 F). The fine-grained microstructure observed in the laser and electron-beam glazed NARloy-Z was much more stable at elevated temperatures. Microstructural changes correlated well with hardness measurements.
2013-01-01
Flower-like AgCl microstructures with enhanced visible light-driven photocatalysis are synthesized by a facile one-pot hydrothermal process for the first time. The evolution process of AgCl from dendritic structures to flower-like octagonal microstructures is investigated quantitatively. Furthermore, the flower-like AgCl microstructures exhibit enhanced ability of visible light-assisted photocatalytic degradation of methyl orange. The enhanced photocatalytic activity of the flower-like AgCl microstructure is attributed to its three-dimensional hierarchical structure exposing with [100] facets. This work provides a fresh view into the insight of electrochemical process and the application area of visible light photocatalysts. PMID:24153176
Anomalous Annealing Response of Directed Energy Deposited Type 304L Austenitic Stainless Steel
NASA Astrophysics Data System (ADS)
Smith, Thale R.; Sugar, Joshua D.; Schoenung, Julie M.; San Marchi, Chris
2018-03-01
Directed energy deposited (DED) and forged austenitic stainless steels possess dissimilar microstructures but can exhibit similar mechanical properties. In this study, annealing was used to evolve the microstructure of both conventional wrought and DED type 304L austenitic stainless steels, and significant differences were observed. In particular, the density of geometrically necessary dislocations and hardness were used to probe the evolution of the microstructure and properties. Forged type 304L exhibited the expected decrease in measured dislocation density and hardness as a function of annealing temperature. The more complex microstructure-property relationship observed in the DED type 304L material is attributed to compositional heterogeneities in the solidification microstructure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taheri, M; Teslich, N; Lu, J P
An in situ method for studying the role of laser energy on the microstructural evolution of polycrystalline Si is presented. By monitoring both laser energy and microstructural evolution simultaneously in the dynamic transmission electron microscope, information on grain size and defect concentration can be correlated directly with processing conditions. This proof of principle study provides fundamental scientific information on the crystallization process that has technological importance for the development of thin film transistors. In conclusion, we successfully developed a method for studying UV laser processing of Si films in situ on nanosecond time scales, with ultimate implications for TFT applicationmore » improvements. In addition to grain size distribution as a function of laser energy density, we found that grain size scaled with laser energy in general. We showed that nanosecond time resolution allowed us to see the nucleation and growth front during processing, which will help further the understanding of microstructural evolution of poly-Si films for electronic applications. Future studies, coupled with high resolution TEM, will be performed to study grain boundary migration, intergranular defects, and grain size distribution with respect to laser energy and adsorption depth.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Radchenko, I.; Tippabhotla, S. K.; Tamura, N.
2016-10-21
Synchrotron x-ray microdiffraction (μXRD) allows characterization of a crystalline material in small, localized volumes. Phase composition, crystal orientation and strain can all be probed in few-second time scales. Crystalline changes over a large areas can be also probed in a reasonable amount of time with submicron spatial resolution. However, despite all the listed capabilities, μXRD is mostly used to study pure materials but its application in actual device characterization is rather limited. This article will explore the recent developments of the μXRD technique illustrated with its advanced applications in microelectronic devices and solar photovoltaic systems. Application of μXRD in microelectronicsmore » will be illustrated by studying stress and microstructure evolution in Cu TSV (through silicon via) during and after annealing. Here, the approach allowing study of the microstructural evolution in the solder joint of crystalline Si solar cells due to thermal cycling will be also demonstrated.« less
Multi-modal porous microstructure for high temperature fuel cell application
NASA Astrophysics Data System (ADS)
Wejrzanowski, T.; Haj Ibrahim, S.; Cwieka, K.; Loeffler, M.; Milewski, J.; Zschech, E.; Lee, C.-G.
2018-01-01
In this study, the effect of microstructure of porous nickel electrode on the performance of high temperature fuel cell is investigated and presented based on a molten carbonate fuel cell (MCFC) cathode. The cathode materials are fabricated from slurry consisting of nickel powder and polymeric binder/solvent mixture, using the tape casting method. The final pore structure is shaped through modifying the slurry composition - with or without the addition of porogen(s). The manufactured materials are extensively characterized by various techniques involving: micro-computed tomography (micro-XCT), scanning electron microscopy (SEM), mercury porosimetry, BET and Archimedes method. Tomographic images are also analyzed and quantified to reveal the evolution of pore space due to nickel in situ oxidation to NiO, and infiltration by the electrolyte. Single-cell performance tests are carried out under MCFC operation conditions to estimate the performance of the manufactured materials. It is found that the multi-modal microstructure of MCFC cathode results in a significant enhancement of the power density generated by the reference cell. To give greater insight into the understanding of the effect of microstructure on the properties of the cathode, a model based on 3D tomography image transformation is proposed.
Kaira, C. Shashank; Kantzos, Christopher; Williams, Jason J.; ...
2017-11-07
In this paper, a unique approach to correlating an evolving 3D microstructure in an Al-Cu alloy and its micro-scale mechanical properties has been introduced. Using these nanoscale three-dimensional microstructures derived from Transmission X-ray Microscopy (TXM), individual contributions from different strengthening mechanisms were quantified. The spatial distribution and morphology of the individual θ' and θ phases were seen to play an important role in influencing dislocation storage. Uniaxial micro-compression experiments were used to quantify the stress-strain response of the alloy at different aging times. Transmission electron microscopy (TEM) aided in discerning dislocation activity at these precipitates. A model is proposed tomore » accurately predict the variation in yield stress by using appropriate morphological parameters from the 3D microstructure and its validity has been corroborated using experimental measurements. Distributions of 2D and 3D inter-precipitate spacing were seen to provide crucial insights on influencing deformation in such precipitation-strengthened alloys. In conclusion, the transition in deformation behavior and origin of numerous strain bursts were investigated using in situ micropillar compression testing.« less
Galarraga, Haize; Warren, Robert J.; Lados, Diana A.; ...
2017-01-06
Electron beam melting (EBM) is a metal powder bed fusion additive manufacturing (AM) technology that is used to fabricate three-dimensional near-net-shaped parts directly from computer models. Ti-6Al-4V is the most widely used and studied alloy for this technology and is the focus of this work in its ELI (Extra Low Interstitial) variation. The mechanisms of microstructure formation, evolution, and its subsequent influence on mechanical properties of the alloy in as-fabricated condition have been documented by various researchers. In the present work, the thermal history resulting in the formation of the as-fabricated microstructure was analyzed and studied by a thermal simulation.more » Subsequently different heat treatments were performed based on three approaches in order to study the effects of heat treatments on the singular and exclusive microstructure formed during the EBM fabrication process. In the first approach, the effect of cooling rate after the solutionizing process was studied. In the second approach, the variation of α lath thickness during annealing treatment and correlation with mechanical properties was established. In the last approach, several solutionizing and aging experiments were conducted.« less
Dong, X.-P.; Donoghue, P.C.J.; Repetski, J.E.
2005-01-01
The hypothesis that conodonts are vertebrates rests solely on evidence of soft tissue anatomy. This has been corroborated by microstructural, topological and developmental evidence of homology between conodont and vertebrate hard tissues. However, these conclusions have been reached on the basis of evidence from highly derived euconodont taxa and the degree to which they are representative of plesiomorphic euconodonts remains an open question. Furthermore, the range of variation in tissue types comprising the euconodont basal body has been used to establish a hypothesis of developmental plasticity early in the phylogeny of the clade, and a model of diminishing potentiality in the evolution of development systems. The microstructural fabrics of the basal tissues of the earliest euconodonts (presumed to be the most plesiomorphic) are examined to test these two hypotheses. It is found that the range of microstructural variation observed hitherto was already apparent among plesiomorphic euconodonts. Thus, established histological data are representative of the most plesiomorphic euconodonts. However, although there is evidence of a range in microstructural fabrics, these are compatible with the dentine tissue system alone, and the degree of variation is compatible with that seen in clades of comparable diversity. ?? The Palaeontological Association.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaira, C. Shashank; Kantzos, Christopher; Williams, Jason J.
In this paper, a unique approach to correlating an evolving 3D microstructure in an Al-Cu alloy and its micro-scale mechanical properties has been introduced. Using these nanoscale three-dimensional microstructures derived from Transmission X-ray Microscopy (TXM), individual contributions from different strengthening mechanisms were quantified. The spatial distribution and morphology of the individual θ' and θ phases were seen to play an important role in influencing dislocation storage. Uniaxial micro-compression experiments were used to quantify the stress-strain response of the alloy at different aging times. Transmission electron microscopy (TEM) aided in discerning dislocation activity at these precipitates. A model is proposed tomore » accurately predict the variation in yield stress by using appropriate morphological parameters from the 3D microstructure and its validity has been corroborated using experimental measurements. Distributions of 2D and 3D inter-precipitate spacing were seen to provide crucial insights on influencing deformation in such precipitation-strengthened alloys. In conclusion, the transition in deformation behavior and origin of numerous strain bursts were investigated using in situ micropillar compression testing.« less
Dissecting the mechanism of martensitic transformation via atomic-scale observations.
Yang, Xu-Sheng; Sun, Sheng; Wu, Xiao-Lei; Ma, Evan; Zhang, Tong-Yi
2014-08-21
Martensitic transformation plays a pivotal role in the microstructural evolution and plasticity of many engineering materials. However, so far the underlying atomic processes that accomplish the displacive transformation have been obscured by the difficulty in directly observing key microstructural signatures on atomic scale. To resolve this long-standing problem, here we examine an AISI 304 austenitic stainless steel that has a strain/microstructure-gradient induced by surface mechanical attrition, which allowed us to capture in one sample all the key interphase regions generated during the γ(fcc) → ε(hcp) → α'(bcc) transition, a prototypical case of deformation induced martensitic transformation (DIMT). High-resolution transmission electron microscopy (HRTEM) observations confirm the crucial role of partial dislocations, and reveal tell-tale features including the lattice rotation of the α' martensite inclusion, the transition lattices at the ε/α' interfaces that cater the shears, and the excess reverse shear-shuffling induced γ necks in the ε martensite plates. These direct observations verify for the first time the 50-year-old Bogers-Burgers-Olson-Cohen (BBOC) model, and enrich our understanding of DIMT mechanisms. Our findings have implications for improved microstructural control in metals and alloys.
Dissecting the Mechanism of Martensitic Transformation via Atomic-Scale Observations
Yang, Xu-Sheng; Sun, Sheng; Wu, Xiao-Lei; Ma, Evan; Zhang, Tong-Yi
2014-01-01
Martensitic transformation plays a pivotal role in the microstructural evolution and plasticity of many engineering materials. However, so far the underlying atomic processes that accomplish the displacive transformation have been obscured by the difficulty in directly observing key microstructural signatures on atomic scale. To resolve this long-standing problem, here we examine an AISI 304 austenitic stainless steel that has a strain/microstructure-gradient induced by surface mechanical attrition, which allowed us to capture in one sample all the key interphase regions generated during the γ(fcc) → ε(hcp) → α′(bcc) transition, a prototypical case of deformation induced martensitic transformation (DIMT). High-resolution transmission electron microscopy (HRTEM) observations confirm the crucial role of partial dislocations, and reveal tell-tale features including the lattice rotation of the α′ martensite inclusion, the transition lattices at the ε/α′ interfaces that cater the shears, and the excess reverse shear-shuffling induced γ necks in the ε martensite plates. These direct observations verify for the first time the 50-year-old Bogers-Burgers-Olson-Cohen (BBOC) model, and enrich our understanding of DIMT mechanisms. Our findings have implications for improved microstructural control in metals and alloys. PMID:25142283
The continuing battle against defects in nickel-base superalloys
NASA Technical Reports Server (NTRS)
Dreshfield, R. L.
1986-01-01
In the six decades since the identification of age hardenable nickel-base superalloys their compositions and microstructures have changed markedly. Current alloys are tailored for specific applications. Thus their microstructures are defined for that application. This paper briefly reviews the evolution of superalloy microstructures and comments on the appearance and implications of microstructural defects in high performance superalloys. It is seen that new alloys and proceses have generated new types of defects. Thus as the industry continues to develop new alloys and processes it must remain vigilant toward the identification and control of new types of defects.
NASA Astrophysics Data System (ADS)
Cai, Zhihui; Ding, Hua; Ying, Zhengyan; Misra, R. D. K.
2014-04-01
The microstructural evolution following tensile deformation of a hot-rolled and heat treated Fe-8Mn-4Al-0.2C steel was studied. Quenching in the range of 750-800 °C followed by tempering at 200 °C led to a ferrite-austenite mixed microstructure that was characterized by excellent combination of tensile strength of 800-1000 MPa and elongation of 30-40%, and a three-stage work hardening behavior. During the tensile deformation, the retained austenite transformed into martensite and delayed the onset of necking, thus leading to a higher ductility via the transformation-induced plasticity (TRIP) effect. The improvement of elongation is attributed to diffusion of carbon from δ-ferrite to austenite during tempering, which improves the stability of austenite, thus contributing to enhanced tensile ductility.
Nonlinear acoustics experimental characterization of microstructure evolution in Inconel 617
NASA Astrophysics Data System (ADS)
Yao, Xiaochu; Liu, Yang; Lissenden, Cliff J.
2014-02-01
Inconel 617 is a candidate material for the intermediate heat exchanger in a very high temperature reactor for the next generation nuclear power plant. This application will require the material to withstand fatigue-ratcheting interaction at temperatures up to 950°C. Therefore nondestructive evaluation and structural health monitoring are important capabilities. Acoustic nonlinearity (which is quantified in terms of a material parameter, the acoustic nonlinearity parameter, β) has been proven to be sensitive to microstructural changes in material. This research develops a robust experimental procedure to track the evolution of damage precursors in laboratory tested Inconel 617 specimens using ultrasonic bulk waves. The results from the acoustic non-linear tests are compared with stereoscope surface damage results. Therefore, the relationship between acoustic nonlinearity and microstructural evaluation can be clearly demonstrated for the specimens tested.
NASA Astrophysics Data System (ADS)
Syha, M.; Rheinheimer, W.; Loedermann, B.; Graff, A.; Trenkle, A.; Baeurer, M.; Weygand, D.; Ludwig, W.; Gumbsch, P.
The microstructural evolution of polycrystalline strontium titanate was investigated in three dimensions (3D) using X-ray diffraction contrast tomography (DCT) before and after ex-situ annealing at 1600°C. Post-annealing, the specimen was additionally subjected to phase contrast tomography (PCT) in order to finely resolve the porosities. The resulting microstructure reconstructions were studied with special emphasis on morphology and interface orientation during microstructure evolution. Subsequently, cross-sections of the specimen were studied using electron backscatter diffraction (EBSD). Corresponding cross-sections through the 3D reconstruction were identified and the quality of the reconstruction is validated with special emphasis on the spatial resolution at the grain boundaries, the size and location of pores contained in the material and the accuracy of the orientation determination.
Functionally graded Ti6Al4V and Inconel 625 by Laser Metal Deposition
NASA Astrophysics Data System (ADS)
Pulugurtha, Syamala R.
The objective of the current work was to fabricate a crack-free functionally graded Ti6Al4V and Inconel 625 thin wall structure by Laser Metal Deposition (LMD). One potential application for the current material system is the ability to fabricate a functionally graded alloy that can be used in a space heat exchanger. The two alloys, Inconel 625 and Ti6Al4V are currently used for aerospace applications. They were chosen as candidates for grading because functionally grading those combines the properties of high strength/weight ratio of Ti6Al4V and high temperature oxidation resistance of Inconel 625 into one multifunctional material for the end application. However, there were challenges associated with the presence of Ni-Ti intermetallic phases (IMPs). The study focused on several critical areas such as (1) understanding microstructural evolution, (2) reducing macroscopic cracking, and (3) reducing mixing between graded layers. Finite element analysis (FEA) was performed to understand the effect of process conditions on multilayer claddings for simplified material systems such as SS316L and Inconel 625 where complex microstructures did not form. The thermo-mechanical models were developed using Abaqus(TM) (and some of them experimentally verified) to predict temperature-gradients; remelt layer depths and residual stresses. Microstructure evolution along the functionally graded Ti6Al4V and Inconel 625 was studied under different processing and grading conditions. Thermodynamic modeling using Factsage (v 6.1) was used to construct phase diagrams and predict the possible equilibrium major/minor phases (verified experimentally by XRD) that may be present along the functionally graded Ti6Al4V and Inconel 625 thin wall structures.
2013-04-01
to maximize joint efficiency. 15. SUBJECT TERMS friction stir welding, strain rate, dynamic recrystallization , joint efficiency, stir zone (SZ...stir welding, Strain rate, Dynamic recrystallization , Joint efficiency, Stir Zone (SZ) Abstract The initial microstructure plays an important role in... eutectic Mg17Al12 phase. Park et al. [7] demonstrated the importance of texture and related it to the mechanical properties of an AZ61 alloy
Microstructural Evolution during the Dynamic Deformation of High Strength Navy Steels
2008-05-19
phase particles (Figures 23d,e). These include carbides as well as copper precipitates that are of the order of 10 nm or less in size. These particles ...Microstructure and kinetics of martensite transformations in splat-quenched Fe and Fe-Ni alloys - I pure Fe: Acta Metallurgica 30(1982)323. 22. Y. Inokuti...and B. Cantor, Microstructure and kinetics of martensite transformations in splat-quenched Fe and Fe-Ni alloys - II Fe-Ni alloys : Acta
Menapace, Ilaria; Masad, Eyad
2016-09-01
This paper presents findings on the evolution of the surface microstructure of two asphalt binders, one unmodified and one polymer modified, directly exposed to aging agents with increasing durations. The aging is performed using an accelerated weathering tester, where ultraviolet radiation, oxygen and an increased temperature are applied to the asphalt binder surface. Ultraviolet and dark cycles, which simulated the succession of day and night, alternated during the aging process, and also the temperature varied, which corresponded to typical summer day and night temperatures registered in the state of Qatar. Direct aging of an exposed binder surface is more effective in showing microstructural modifications than previously applied protocols, which involved the heat treatment of binders previously aged with standardized methods. With the new protocol, any molecular rearrangements in the binder surface after aging induced by the heat treatment is prevented. Optical photos show the rippling and degradation of the binder surface due to aging. Microstructure images obtained by means of atomic force microscopy show gradual alteration of the surface due to aging. The original relatively flat microstructure was substituted with a profoundly different microstructure, which significantly protrudes from the surface, and is characterized by various shapes, such as rods, round structures and finally 'flower' or 'leaf' structures. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.
Nanostructural Evolution of Hard Turning Layers in Carburized Steel
NASA Astrophysics Data System (ADS)
Bedekar, Vikram
The mechanisms of failure for components subjected to contact fatigue are sensitive to the structure and properties of the material surface. Although, the bulk material properties are determined by the steel making, forming and the heat treatment; the near surface material properties are altered during final material removal processes such as hard turning or grinding. Therefore, the ability to optimize, modulate and predict the near surface properties during final metal removal operations would be extremely useful in the enhancement of service life of a component. Hard machining is known to induce severely deformed layers causing dramatic microstructural transformations. These transformations occur via grain refinement or thermal phenomena depending upon cutting conditions. The aim of this work is to engineer the near surface nanoscale structure and properties during hard turning by altering strain, strain rate, temperature and incoming microstructure. The near surface material transformations due to hard turning were studied on carburized SAE 8620 bearing steel. Variations in parent material microstructures were introduced by altering the retained austenite content. The strain, strain rate and temperature achieved during final metal cutting were altered by varying insert geometry, insert wear and cutting speed. The subsurface evolution was quantified by a series of advanced characterization techniques such as transmission electron microscopy (TEM), glancing angle X-ray diffraction (GAXRD), X-ray stress evaluation and nanoindentation which were coupled with numerical modeling. Results showed that the grain size of the nanocrystalline near surface microstructure can be effectively controlled by altering the insert geometry, insert wear, cutting speed and the incoming microstructure. It was also evident that the near surface retained austenite decreased at lower cutting speed indicating transformation due to plastic deformation, while it increased at higher cutting speed indicated thermal transformation. Nanoindentation tests showed that the substructures produced by plastic deformation follow the Hall-Petch relationship while the structures produced by thermal transformation did not. This indicated a change in the hardness driver from dislocation hardening to phase transformation, both of which have a significant impact on fatigue life. Using hardness based flow stress numerical model, these relationships between the processing conditions and structural parameters were further explored. Results indicated that the hard turning process design space can be partitioned into three regions based on thermal phase transformations, plastic grain refinement, and a third regime where both mechanisms are active. It was found that the Zener-Holloman parameter can not only be used to predict post-turning grain size but also to partition the process space into regions of dominant microstructural mechanisms.
NASA Astrophysics Data System (ADS)
Jin, Shi; Wang, Xuelei
2003-04-01
Chemical vapor infiltration (CVI) process is an important technology to fabricate ceramic matrix composites (CMC's). In this paper, a three-dimension numerical model is presented to describe pore microstructure evolution during the CVI process. We extend the two-dimension model proposed in [S. Jin, X.L. Wang, T.L. Starr, J. Mater. Res. 14 (1999) 3829; S. Jin. X.L. Wang, T.L. Starr, X.F. Chen, J. Comp. Phys. 162 (2000) 467], where the fiber surface is modeled as an evolving interface, to the three space dimension. The 3D method keeps all the virtue of the 2D model: robust numerical capturing of topological changes of the interface such as the merging, and fast detection of the inaccessible pores. For models in the kinetic limit, where the moving speed of the interface is constant, some numerical examples are presented to show that this three-dimension model will effectively track the change of porosity, close-off time, location and shape of all pores.
NASA Technical Reports Server (NTRS)
Flemings, M. C.; Matson, D. M.; Loser, W.; Hyers, R. W.; Rogers, J. R.; Curreri, Peter A. (Technical Monitor)
2002-01-01
The paper is an overview of the status and science for the LODESTARS (Levitation Observation of Dendrite Evolution in Steel Ternary Alloy Rapid Solidification) research project. The program is aimed at understanding how melt convection influences phase selection and the evolution of rapid solidification microstructures.
NASA Astrophysics Data System (ADS)
Baek, Jong-Hyuk; Kim, Sung-Ho; Lee, Chan-Bock; Hahn, Do-Hee
2009-08-01
The mechanical properties and microstructural evolution of modified 9Cr-1Mo steel have been studied to investigate steel property changes after long-term isothermal aging at 600 °C for 50,000 h. The microhardness and strength were maintained constantly after aging but the impact energy was dramatically reduced by 62 % during the aging period. From the viewpoint of microstructural evolution after the aging process, Cr-enrichment and Fe-depletion took place within the M23C6-type precipitates in the as-aged steel and V-depletion also happened within the VX-type precipitates after aging. In addition, the precipitates of the M2Mo-type Laves phase and the segregation of the impurity atoms would be formed during the long-term aging period. It was considered that the sharp reduction of the impact energy could be related to the formation of the Laves phases and the impurity segregation after aging at 600 °C. The phase stability was also verified by the specific heat results up to 950 °C from a DSC test. It was concluded from this study that the modified 9Cr-1Mo steel would keep its microstructural stability at 600 °C during the long-term aging period of 50,000 h, which was equivalent to the in-service life of the SFR fuel cladding.
NASA Astrophysics Data System (ADS)
Sharma, Amit; Mohan, Sangeneni; Suwas, Satyam
2018-04-01
In this work, a detailed investigation has been performed on hetero-epitaxial growth and microstructural evolution in highly oriented Ni-Mn-Ga (1 0 0) films grown on MgO (1 0 0) substrate using high-resolution X-ray diffraction and orientation imaging microscopy. Mosaicity of the films has been analysed in terms of tilt angle, twist angle, lateral and vertical coherence length and threading dislocation densities by performing rocking curve measurements and reciprocal space mapping. Density of edge dislocations is found to be an order of magnitude higher than the density of screw dislocations, irrespective of film thickness. X-ray pole figure measurements have revealed an orientation relationship of ? || (1 0 0)MgO; ? || [0 0 1]MgO between the film and substrate. Microstructure predicted by X-ray diffraction is in agreement with that obtained from electron microscopy and atomic force microscopy. The evolution of microstructure in the film with increasing thickness has been explained vis-à-vis dislocation generation and growth mechanisms. Orientation imaging microscopy observations indicate evolutionary growth of film by overgrowth mechanism. Decrease in coercivity with film thickness has been explained as an interplay between stress field developed due to crystal defects and magnetic domain pinning due to surface roughness.
Song, Wenwen; Bleck, Wolfgang
2017-01-01
The quantitative characterization of the microstructure evolution in high-Mn steel during deformation is of great importance to understanding its strain-hardening behavior. In the current study, in situ high-energy synchrotron X-ray diffraction was employed to characterize the microstructure evolution in a Fe-17Mn-1.5Al-0.3C steel during a tensile test. The microstructure at different engineering strain levels—in terms of ε-martensite and α’-martensite volume fractions, the stacking fault probability, and the twin fault probability—was analyzed by the Rietveld refinement method. The Fe-17Mn-1.5Al-0.3C steel exhibits a high ultimate tensile strength with a superior uniform elongation and a high strain-hardening rate. The remaining high strain-hardening rate at the strain level about 0.025 to 0.35 results from ε-martensite dominant transformation-induced-plasticity (TRIP) effect. The increase in the strain-hardening rate at the strain level around 0.35 to 0.43 is attributed to the synergetic α’-martensite dominant TRIP and twinning-induced-plasticity (TWIP) effects. An evaluation of the stacking fault energy (SFE) of the Fe-17Mn-1.5Al-0.3C steel by the synchrotron measurements shows good agreement with the thermodynamic calculation of the SFE. PMID:28946692
Ma, Yan; Song, Wenwen; Bleck, Wolfgang
2017-09-25
The quantitative characterization of the microstructure evolution in high-Mn steel during deformation is of great importance to understanding its strain-hardening behavior. In the current study, in situ high-energy synchrotron X-ray diffraction was employed to characterize the microstructure evolution in a Fe-17Mn-1.5Al-0.3C steel during a tensile test. The microstructure at different engineering strain levels-in terms of ε-martensite and α'-martensite volume fractions, the stacking fault probability, and the twin fault probability-was analyzed by the Rietveld refinement method. The Fe-17Mn-1.5Al-0.3C steel exhibits a high ultimate tensile strength with a superior uniform elongation and a high strain-hardening rate. The remaining high strain-hardening rate at the strain level about 0.025 to 0.35 results from ε-martensite dominant transformation-induced-plasticity (TRIP) effect. The increase in the strain-hardening rate at the strain level around 0.35 to 0.43 is attributed to the synergetic α'-martensite dominant TRIP and twinning-induced-plasticity (TWIP) effects. An evaluation of the stacking fault energy (SFE) of the Fe-17Mn-1.5Al-0.3C steel by the synchrotron measurements shows good agreement with the thermodynamic calculation of the SFE.
The strength and dislocation microstructure evolution in superalloy microcrystals
NASA Astrophysics Data System (ADS)
Hussein, Ahmed M.; Rao, Satish I.; Uchic, Michael D.; Parthasarathay, Triplicane A.; El-Awady, Jaafar A.
2017-02-01
In this work, the evolution of the dislocations microstructure in single crystal two-phase superalloy microcrystals under monotonic loading has been studied using the three-dimensional discrete dislocation dynamics (DDD) method. The DDD framework has been extended to properly handle the collective behavior of dislocations and their interactions with large collections of arbitrary shaped precipitates. Few constraints are imposed on the initial distribution of the dislocations or the precipitates, and the extended DDD framework can support experimentally-obtained precipitate geometries. Full tracking of the creation and destruction of anti-phase boundaries (APB) is accounted for. The effects of the precipitate volume fraction, APB energy, precipitate size, and crystal size on the deformation of superalloy microcrystals have been quantified. Correlations between the precipitate microstructure and the dominant deformation features, such as dislocation looping versus precipitate shearing, are also discussed. It is shown that the mechanical strength is independent of the crystal size, increases linearly with increasing the volume fraction, follows a near square-root relationship with the APB energy and an inverse square-root relationship with the precipitate size. Finally, the flow strength in simulations having initial dislocation pair sources show a flow strength that is about one half of that predicted from simulations starting with single dislocation sources. The method developed can be used, with minimal extensions, to simulate dislocation microstructure evolution in general multiphase materials.
NASA Astrophysics Data System (ADS)
Liu, W. B.; Ji, Y. Z.; Tan, P. K.; Zhang, C.; He, C. H.; Yang, Z. G.
2016-10-01
Severe plastic deformation, intense single-beam He-ion irradiation and post-irradiation annealing were performed on a nanostructured reduced activation ferritic/martensitic (RAFM) steel to investigate the effect of grain boundaries (GBs) on its microstructure evolution during these processes. A surface layer with a depth-dependent nanocrystalline (NC) microstructure was prepared in the RAFM steel using surface mechanical attrition treatment (SMAT). Microstructure evolution after helium (He) irradiation (24.8 dpa) at room temperature and after post-irradiation annealing was investigated using Transmission Electron Microscopy (TEM). Experimental observation shows that GBs play an important role during both the irradiation and the post-irradiation annealing process. He bubbles are preferentially trapped at GBs/interfaces during irradiation and cavities with large sizes are also preferentially trapped at GBs/interfaces during post-irradiation annealing, but void denuded zones (VDZs) near GBs could not be unambiguously observed. Compared with cavities at GBs and within larger grains, cavities with smaller size and higher density are found in smaller grains. The average size of cavities increases rapidly with the increase of time during post-irradiation annealing at 823 K. Cavities with a large size are observed just after annealing for 5 min, although many of the cavities with small sizes also exist after annealing for 240 min. The potential mechanism of cavity growth behavior during post-irradiation annealing is also discussed.
Li, Nan; Demkowicz, Michael J.; Mara, Nathan A.
2017-09-12
In this paper, we summarize recent work on helium (He) interaction with various heterophase boundaries under high temperature irradiation. We categorize the ion-affected material beneath the He-implanted surface into three regions of depth, based on the He/vacancy ratio. The differing defect structures in these three regions lead to the distinct temperature sensitivity of He-induced microstructure evolution. The effect of He bubbles or voids on material mechanical performance is explored. Finally, overall design guidelines for developing materials where He-induced damage can be mitigated in materials are discussed.
NASA Astrophysics Data System (ADS)
Zhang, Jingyi
Ferroelectric (FE) and closely related antiferroelectric (AFE) materials have unique electromechanical properties that promote various applications in the area of capacitors, sensors, generators (FE) and high density energy storage (AFE). These smart materials with extensive applications have drawn wide interest in the industrial and scientific world because of their reliability and tunable property. However, reliability issues changes its paradigms and requires guidance from detailed mechanism theory as the materials applications are pushed for better performance. A host of modeling work were dedicated to study the macro-structural behavior and microstructural evolution in FE and AFE material under various conditions. This thesis is focused on direct observation of domain evolution under multiphysics loading for both FE and AFE material. Landau-Devonshire time-dependent phase field models were built for both materials, and were simulated in finite element software Comsol. In FE model, dagger-shape 90 degree switched domain was observed at preexisting crack tip under pure mechanical loading. Polycrystal structure was tested under same condition, and blocking effect of the growth of dagger-shape switched domain from grain orientation difference and/or grain boundary was directly observed. AFE ceramic model was developed using two sublattice theory, this model was used to investigate the mechanism of energy efficiency increase with self-confined loading in experimental tests. Consistent results was found in simulation and careful investigation of calculation results gave confirmation that origin of energy density increase is from three aspects: self-confinement induced inner compression field as the cause of increase of critical field, fringe leak as the source of elevated saturation polarization and uneven defects distribution as the reason for critical field shifting and phase transition speed. Another important affecting aspect in polycrystalline materials is the texture of material, textured materials have better alignment and the alignment reorganization is associated with inelastic strain. We developed a vector field of alignment to describe texture degree and introduced the alignment vector into our FE and AFE model. The model with alignment field gave quantatively results for the well-recognized irreversible strain in AFE virgin ceramics during the first poling process. The texture field also shows a shielding zone under mechanical loading around existing crack tip. In conclusion, this thesis developed working models of FE and AFE material and systematically studied their behavior under multiphysics loading in a finite element analysis approach. Materials structure of polycrystal materials including grain orientation, grain boundary, defects and materials texture were tested for their effect on hysteresis and switched domain growth. Detailed microstructure development in domain switching and alignment was directly observed in this simulation.
NASA Astrophysics Data System (ADS)
Nevitt, Johanna M.; Warren, Jessica M.; Kidder, Steven; Pollard, David D.
2017-03-01
Granitic plutons commonly preserve evidence for jointing, faulting, and ductile fabric development during cooling. Constraining the spatial variation and temporal evolution of temperature during this deformation could facilitate an integrated analysis of heterogeneous deformation over multiple length-scales through time. Here, we constrain the evolving temperature of the Lake Edison granodiorite within the Mount Abbot Quadrangle (central Sierra Nevada, CA) during late Cretaceous deformation by combining microstructural analysis, titanium-in-quartz thermobarometry (TitaniQ), and thermal modeling. Microstructural and TitaniQ analyses were applied to 12 samples collected throughout the pluton, representative of either the penetrative "regional" fabric or the locally strong "fault-related" fabric. Overprinting textures and mineral assemblages indicate the temperature decreased from 400-500°C to <350°C during faulting. TitaniQ reveals consistently lower Ti concentrations for partially reset fault-related fabrics (average: 12 ± 4 ppm) than for regional fabrics (average: 31 ± 12 ppm), suggesting fault-related fabrics developed later, following a period of pluton cooling. Uncertainties, particularly in TiO2 activity, significantly limit further quantitative thermal estimates using TitaniQ. In addition, we present a 1-D heat conduction model that suggests average pluton temperature decreased from 585°C at 85 Ma to 332°C at 79 Ma, consistent with radiometric age data for the field. Integrated with the model results, microstructural temperature constraints suggest faulting initiated by ˜83 Ma, when the temperature was nearly uniform across the pluton. Thus, spatially heterogeneous deformation cannot be attributed to a persistent temperature gradient, but may be related to regional structures that develop in cooling plutons.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Potirniche, Gabriel; Barlow, Fred D.; Charit, Indrajit
2013-11-26
A recent workshop on next-generation nuclear plant (NGNP) topics underscored the need for research studies on the creep fracture behavior of two materials under consideration for reactor pressure vessel (RPV) applications: 9Cr-1Mo and SA-5XX steels. This research project will provide a fundamental understanding of creep fracture behavior of modified 9Cr-1Mo steel welds for through modeling and experimentation and will recommend a design for an RPV structural health monitoring system. Following are the specific objectives of this research project: Characterize metallurgical degradation in welded modified 9Cr-1Mo steel resulting from aging processes and creep service conditions; Perform creep tests and characterize themore » mechanisms of creep fracture process; Quantify how the microstructure degradation controls the creep strength of welded steel specimens; Perform finite element (FE) simulations using polycrystal plasticity to understand how grain texture affects the creep fracture properties of welds; Develop a microstructure-based creep fracture model to estimate RPVs service life; Manufacture small, prototypic, cylindrical pressure vessels, subject them to degradation by aging, and measure their leak rates; Simulate damage evolution in creep specimens by FE analyses; Develop a model that correlates gas leak rates from welded pressure vessels with the amount of microstructural damage; Perform large-scale FE simulations with a realistic microstructure to evaluate RPV performance at elevated temperatures and creep strength; Develop a fracture model for the structural integrity of RPVs subjected to creep loads; and Develop a plan for a non-destructive structural health monitoring technique and damage detection device for RPVs.« less
Grain dissection as a grain size reducing mechanism during ice microdynamics
NASA Astrophysics Data System (ADS)
Steinbach, Florian; Kuiper, Ernst N.; Eichler, Jan; Bons, Paul D.; Drury, Martin R.; Griera, Albert; Pennock, Gill M.; Weikusat, Ilka
2017-04-01
Ice sheets are valuable paleo-climate archives, but can lose their integrity by ice flow. An understanding of the microdynamic mechanisms controlling the flow of ice is essential when assessing climatic and environmental developments related to ice sheets and glaciers. For instance, the development of a consistent mechanistic grain size law would support larger scale ice flow models. Recent research made significant progress in numerically modelling deformation and recrystallisation mechanisms in the polycrystalline ice and ice-air aggregate (Llorens et al., 2016a,b; Steinbach et al., 2016). The numerical setup assumed grain size reduction is achieved by the progressive transformation of subgrain boundaries into new high angle grain boundaries splitting an existing grain. This mechanism is usually termed polygonisation. Analogue experiments suggested, that strain induced grain boundary migration can cause bulges to migrate through the whole of a grain separating one region of the grain from another (Jessell, 1986; Urai, 1987). This mechanism of grain dissection could provide an alternative grain size reducing mechanism, but has not yet been observed during ice microdynamics. In this contribution, we present results using an updated numerical approach allowing for grain dissection. The approach is based on coupling the full field theory crystal visco-plasticity code (VPFFT) of Lebensohn (2001) to the multi-process modelling platform Elle (Bons et al., 2008). VPFFT predicts the mechanical fields resulting from short strain increments, dynamic recrystallisation process are implemented in Elle. The novel approach includes improvements to allow for grain dissection, which was topologically impossible during earlier simulations. The simulations are supported by microstructural observations from NEEM (North Greenland Eemian Ice Drilling) ice core. Mappings of c-axis orientations using the automatic fabric analyser and full crystallographic orientations using electron backscatter diffraction (EBSD) are presented. Numerical simulations predict and resolve the microstructural evolution over strain and time. The occurrence of processes such as grain dissection can only be proven using such time resolved movies of microstructure evolution. We will present movies that show grain dissection as a common process during the simulations. Microstructures obtained from NEEM ice core support the observations and we provide evidence for grain dissection in natural ice. Grain dissection is observed to be most efficient relative to polygonisation, when the microstructure approaches steady state grain sizes. This is consistent with analogue experiments observing grain dissection by Jessell (1986) and Urai (1987). Our research suggests a novel grain size reducing mechanisms in ice microdynamics that should be considered when developing a consistent grain size law.
NASA Astrophysics Data System (ADS)
Grujicic, M.; Ramaswami, S.; Snipes, J. S.; Yavari, R.; Arakere, A.; Yen, C.-F.; Cheeseman, B. A.
2013-05-01
A fully coupled (two-way), transient, thermal-mechanical finite-element procedure is developed to model conventional gas metal arc welding (GMAW) butt-joining process. Two-way thermal-mechanical coupling is achieved by making the mechanical material model of the workpiece and the weld temperature-dependent and by allowing the potential work of plastic deformation resulting from large thermal gradients to be dissipated in the form of heat. To account for the heat losses from the weld into the surroundings, heat transfer effects associated with natural convection and radiation to the environment and thermal-heat conduction to the adjacent workpiece material are considered. The procedure is next combined with the basic physical-metallurgy concepts and principles and applied to a prototypical (plain) low-carbon steel (AISI 1005) to predict the distribution of various crystalline phases within the as-welded material microstructure in different fusion zone and heat-affected zone locations, under given GMAW-process parameters. The results obtained are compared with available open-literature experimental data to provide validation/verification for the proposed GMAW modeling effort.
Gong, Jian; Viswanathan, Sandeep; Rothamer, David A; Foster, David E; Rutland, Christopher J
2017-10-03
Motivated by high filtration efficiency (mass- and number-based) and low pressure drop requirements for gasoline particulate filters (GPFs), a previously developed heterogeneous multiscale filtration (HMF) model is extended to simulate dynamic filtration characteristics of GPFs. This dynamic HMF model is based on a probability density function (PDF) description of the pore size distribution and classical filtration theory. The microstructure of the porous substrate in a GPF is resolved and included in the model. Fundamental particulate filtration experiments were conducted using an exhaust filtration analysis (EFA) system for model validation. The particulate in the filtration experiments was sampled from a spark-ignition direct-injection (SIDI) gasoline engine. With the dynamic HMF model, evolution of the microscopic characteristics of the substrate (pore size distribution, porosity, permeability, and deposited particulate inside the porous substrate) during filtration can be probed. Also, predicted macroscopic filtration characteristics including particle number concentration and normalized pressure drop show good agreement with the experimental data. The resulting dynamic HMF model can be used to study the dynamic particulate filtration process in GPFs with distinct microstructures, serving as a powerful tool for GPF design and optimization.
Strength of Rocks Affected by Deformation Enhanced Grain Growth
NASA Astrophysics Data System (ADS)
Kellermann Slotemaker, A.; de Bresser, H.; Spiers, C.
2005-12-01
One way of looking into the possibility of long-term strength changes in the lithosphere is to study transient effects resulting from modifications of the microstructure of rocks. It is generally accepted that mechanical weakening may occur due to progressive grain size refinement resulting from dynamic recrystallization. A decrease in grain size may induce a switch from creep controlled by grain size insensitive dislocation mechanisms to creep governed by grain size sensitive (GSS) mechanisms involving diffusion and grain boundary sliding processes. This switch forms a well-known scenario to explain localization in the lithosphere. However, fine-grained rocks in localized deformation zones are prone to grain coarsening due to surface energy driven grain boundary migration (SED-GBM). This might harden the rock, affecting its role in localizing strain in the long term. The question has arisen if grain growth by SED-GBM in a rock deforming in the GSS creep field can be significantly affected by strain. The broad aim of this study is to shed more light onto this. We have experimentally investigated the microstructural and strength evolution of fine-grained (~0.6 μm) synthetic forsterite and Fe-bearing olivine aggregates that coarsen in grain size while deforming by GSS creep at elevated pressure (600 MPa) and temperature (850-1000 °C). The materials were prepared by `sol-gel' method and contained 0.3-0.5 wt% water and 5-10 vol% enstatite. We performed i) static heat treatment tests of various time durations involving hot isostatic pressing (HIP), and ii) heat treatment tests starting with HIP and continuing with deformation up to 45% axial strain at strain rates in the range 4x10-7 - 1x10-4 s-1. Microstructures were characterized by analyzing full grain size distributions and textures using SEM/EBSD. In addition to the experiments, we studied microstructural evolution in simple two-dimensional numerical models, combining deformation and SED-GBM by means of the modeling package ELLE. Synthetic olivine samples that were heat treated without straining showed only minor grain growth. Presumably, the second phase (enstatite) and/or porosity remaining in the starting material after densification slowed down or inhibited SED-GBM in the static situation. In contrast, samples heat treated and deformed for time durations similar to those of the static tests demonstrated, at identical temperature, an increase in grain size with increasing strain up to a value twice that of the static counterpart. This grain coarsening was associated with continuous hardening of the material, witnessed by the stress-strain curves. A random lattice preferred orientation combined with a low stress sensitivity (n~2) suggested dominant GSS creep controlled by grain boundary sliding. A dynamic grain growth model involving an increase in the fraction of non-hexagonal grains, related to grain neighbor switching, appears applicable to the observed grain growth that is held responsible for the hardening. The ELLE numerical modeling demonstrated that a combination of SED-GBM and geometrical deformation of a 2D grain aggregate can indeed result in enhanced grain growth compared to static grain growth tests. The fraction of non-hexagonal grains was found to remain more or less constant during static grain growth but increased during deformation. We suggest that the application of the dynamic grain growth model to the long-term microstructural evolution of fine-grained lithospheric shear zones can further improve our understanding of the transient or permanent character of strain localizations and related rheological behavior.
NASA Astrophysics Data System (ADS)
Zhi, Jie; Zhao, Libin; Zhang, Jianyu; Liu, Zhanli
2016-06-01
In this paper, a new numerical method that combines a surface-based cohesive model and extended finite element method (XFEM) without predefining the crack paths is presented to simulate the microscopic damage evolution in composites under uniaxial transverse tension. The proposed method is verified to accurately capture the crack kinking into the matrix after fiber/matrix debonding. A statistical representative volume element (SRVE) under periodic boundary conditions is used to approximate the microstructure of the composites. The interface parameters of the cohesive models are investigated, in which the initial interface stiffness has a great effect on the predictions of the fiber/matrix debonding. The detailed debonding states of SRVE with strong and weak interfaces are compared based on the surface-based and element-based cohesive models. The mechanism of damage in composites under transverse tension is described as the appearance of the interface cracks and their induced matrix micro-cracking, both of which coalesce into transversal macro-cracks. Good agreement is found between the predictions of the model and the in situ experimental observations, demonstrating the efficiency of the presented model for simulating the microscopic damage evolution in composites.
Kinetic model for thin film stress including the effect of grain growth
NASA Astrophysics Data System (ADS)
Chason, Eric; Engwall, A. M.; Rao, Z.; Nishimura, T.
2018-05-01
Residual stress during thin film deposition is affected by the evolution of the microstructure. This can occur because subsurface grain growth directly induces stress in the film and because changing the grain size at the surface affects the stress in new layers as they are deposited. We describe a new model for stress evolution that includes both of these effects. It is used to explain stress in films that grow with extensive grain growth (referred to as zone II) so that the grain size changes throughout the thickness of the layer as the film grows. Equations are derived for different cases of high or low atomic mobility where different assumptions are used to describe the diffusion of atoms that are incorporated into the grain boundary. The model is applied to measurements of stress and grain growth in evaporated Ni films. A single set of model parameters is able to explain stress evolution in films grown at multiple temperatures and growth rates. The model explains why the slope of the curvature measurements changes continuously with thickness and attributes it to the effect of grain size on new layers deposited on the film.
Modelling and simulation of dynamic recrystallization (DRX) in OFHC copper at very high strain rates
NASA Astrophysics Data System (ADS)
Testa, G.; Bonora, N.; Ruggiero, A.; Iannitti, G.; Persechino, I.; Hörnqvist, M.; Mortazavi, N.
2017-01-01
At high strain rates, deformation processes are essentially adiabatic and if the plastic work is large enough dynamic recrystallization can occur. In this work, an examination on microstructure evolution of OFHC copper in Dynamic Tensile Extrusion (DTE) test, performed at 400 m/s, was carried out. EBSD investigations, along the center line of the fragment remaining in the extrusion die, showed a progressive elongation of the grains, and an accompanying development of a strong <001> + <111> dual fiber texture. Discontinuous dynamic recrystallization (DRX) occurred at larger strains, and it was showed that nucleation occurred during straining. A criterion for DRX to occur, based on the evolution of Zener-Hollomon parameter during the dynamic deformation process, is proposed. Finally, DTE test was simulated using the modified Rusinek-Klepaczko constitutive model incorporating a model for the prediction of DRX initiation.
NASA Astrophysics Data System (ADS)
Ogawa, Toshio; Dannoshita, Hiroyuki; Maruoka, Kuniaki; Ushioda, Kohsaku
2017-08-01
Microstructural evolution during cold rolling and subsequent annealing of low-carbon steel with different initial microstructures was investigated from the perspective of the competitive phenomenon between recrystallization of ferrite and reverse phase transformation from ferrite to austenite. Three kinds of hot-rolled sheet specimens were prepared. Specimen P consisted of ferrite and pearlite, specimen B consisted of bainite, and specimen M consisted of martensite. The progress of recovery and recrystallization of ferrite during annealing was more rapid in specimen M than that in specimens P and B. In particular, the recrystallized ferrite grains in specimen M were fine and equiaxed. The progress of ferrite-to-austenite phase transformation during intercritical annealing was more rapid in specimen M than in specimens P and B. In all specimens, the austenite nucleation sites were mainly at high-angle grain boundaries, such as those between recrystallized ferrite grains. The austenite distribution was the most uniform in specimen M. Thus, we concluded that fine equiaxed recrystallized ferrite grains were formed in specimen M, leading to a uniform distribution of austenite.
NASA Astrophysics Data System (ADS)
Lan, Liangyun; Kong, Xiangwei; Chang, Zhiyuan; Qiu, Chunlin; Zhao, Dewen
2017-09-01
This paper analyzed the evolution of microstructure, composition, and impact toughness across the fusion line of high-strength bainitic steel weldments with different heat inputs. The main purpose was to develop a convenient method to evaluate the HAZ toughness quickly. The compositions of HAZ were insensitive to higher contents of alloy elements ( e.g., Ni, Mo) in the weld metal because their diffusion distance is very short into the HAZ. The weld metal contained predominantly acicular ferrite at any a heat input, whereas the main microstructures in the HAZ changed from lath martensite/bainite to upper bainite with the increasing heat input. The evolution of HAZ toughness in relation to microstructural changes can be revealed clearly combined with the impact load curve and fracture morphology, although the results of impact tests do not show an obvious change with heat input because the position of Charpy V notch contains the weld metal, HAZ as well as a part of base metal. As a result, based on the bead-on-plate welding tests, the welding parameter affecting the HAZ toughness can be evaluated rapidly.
NASA Astrophysics Data System (ADS)
Pandey, Chandan; Mahapatra, M. M.; Kumar, Pradeep; Giri, A.
2017-09-01
The effect of weld groove design and heat treatment on microstructure evolution and Charpy toughness of P91 pipe weldments was studied. The P91 pipe weldments were subjected to subcritical post weld heat treatment (760 °C-2 h) and normalizing/tempering conditions (normalized-1040 °C/40 min, air cooled; tempered 760 °C/2 h, air cooled) were employed. The influence of subsequent PWHT and N&T treatment on the microstructure of various zone of P91 pipe weldments were also investigated. The present investigation also described the effect of PWHT and N&T treatment on hardness, grain size, precipitate size, inter-particle spacing and fraction area of precipitates present in each zone of P91 pipe weldments. The result indicated great impact of heat treatment on the Charpy toughness and microstructure evolution of P91 weldments. The N&T treatment was found to be more effective heat treatment compared to subsequent PWHT. Charpy toughness value was found to be higher for narrow-groove design as compared to conventional V-groove design.
NASA Technical Reports Server (NTRS)
Kattamis, T. Z.
1984-01-01
Bulk undercooling methods and procedures will first be reviewed. Measurement of various parameters which are necessary to understand the solidification mechanism during and after recalescence will be discussed. During recalescence of levitated, glass-encased large droplets (5 to 8 mm diam) high speed temperature sensing devices coupled with a rapid response oscilloscope are now being used at MIT to measure local thermal behavior in hypoeutectic and eutectic binary Ni-Sn alloys. Dendrite tip velocities were measured by various investigators using thermal sensors or high speed cinematography. The confirmation of the validity of solidification models of bulk-undercooled melts is made difficult by the fineness of the final microstructure, the ultra-rapid evolution of the solidifying system which makes measurements very awkward, and the continuous modification of the microstructure which formed during recalescence because of precipitation, remelting and rapid coarsening.
Microstructure engineering of Pt-Al alloy thin films through Monte Carlo simulations
NASA Astrophysics Data System (ADS)
Harris, R. A.; Terblans, J. J.; Swart, H. C.
2014-06-01
A kinetic algorithm, based on the regular solution model, was used in conjunction with the Monte Carlo method to simulate the evolution of a micro-scaled thin film system during exposure to a high temperature environment. Pt-Al thin films were prepared via electron beam physical vapor deposition (EB-PVD) with an atomic concentration ratio of Pt63:Al37. These films were heat treated at an annealing temperature of 400 °C for 16 and 49 minutes. Scanning Auger Microscopy (SAM) (PHI 700) was used to obtain elemental maps while sputtering through the thin films. Simulations were run for the same annealing temperatures and thin-film composition. From these simulations theoretical depth profiles and simulated microstructures were obtained. These were compared to the experimentally measured depth profiles and elemental maps.
A mechanics framework for a progressive failure methodology for laminated composites
NASA Technical Reports Server (NTRS)
Harris, Charles E.; Allen, David H.; Lo, David C.
1989-01-01
A laminate strength and life prediction methodology has been postulated for laminated composites which accounts for the progressive development of microstructural damage to structural failure. A damage dependent constitutive model predicts the stress redistribution in an average sense that accompanies damage development in laminates. Each mode of microstructural damage is represented by a second-order tensor valued internal state variable which is a strain like quantity. The mechanics framework together with the global-local strategy for predicting laminate strength and life is presented in the paper. The kinematic effects of damage are represented by effective engineering moduli in the global analysis and the results of the global analysis provide the boundary conditions for the local ply level stress analysis. Damage evolution laws are based on experimental results.
NASA Astrophysics Data System (ADS)
Nichols, C. I. O.; Krakow, R.; Herrero-Albillos, J.; Kronast, F.; Northwood-Smith, G.; Harrison, R. J.
2017-12-01
The IABs represent one of only two groups of iron meteorites that did not form by fractional crystallization of liquid Fe-Ni in the core of a differentiated planetesimal. Instead, they are believed to originate from a partially differentiated body that was severely disrupted by one or more impacts during its early history. Paleomagnetic signals from two IABs, Toluca and Odessa, were investigated using X-ray magnetic circular dichroism (XMCD) and X-ray photoemission electron microscopy (X-PEEM) to image the magnetisation of the cloudy zone. The IABs do not appear to have experienced a magnetic field, consistent with the lack of a metallic core on the parent body. We also present a detailed microstructural and magnetic study of the observed FeNi microstructures, characterising their properties using XMCD and X-PEEM. The crystallographic architecture of the microstructures was analysed using electron backscatter diffraction (EBSD). Odessa and Toluca both exhibit a complex series of microstructures, requiring an unusual evolution during slow cooling. A conventional Widmanstätten sequence of kamacite, tetrataenite rim and cloudy zone developed via slow cooling to temperatures below 400 ºC. Subsequent modification of the microstructures resulted in the formation of pearlitic plessite and spheroidized plessite. Compositional and crystallographic analysis suggests that pearlitic and spheroidized plessite formed by impact modification of the cloudy zone and martensite, respectively. This study highlights the importance of characterising microstructures in order to corroborate paleomagnetic observations, as well as improving our understanding of the processes effecting planetary formation and evolution.
Modeling & processing of ceramic and polymer precursor ceramic matrix composite materials
NASA Astrophysics Data System (ADS)
Wang, Xiaolin
Synthesis and processing of novel materials with various advanced approaches have attracted much attention of engineers and scientists for the past thirty years. Many advanced materials display a number of exceptional properties and can be produced with different novel processing techniques. For example, AlN is a promising candidate for electronic, optical and opto-electronic applications due to its high thermal conductivity, high electrical resistivity, high acoustic wave velocity and large band gap. Large bulk AlN crystal can be produced by sublimation of AlN powder. Novel nonostructured multicomponent refractory metal-based ceramics (carbides, borides and nitrides) show a lot of exceptional mechanical, thermal and chemical properties, and can be easily produced by pyrolysis of suitable preceramic precursors mixed with metal particles. The objective of this work is to study sublimation and synthesis of AlN powder, and synthesis of SiC-based metal ceramics. For AlN sublimation crystal growth, we will focus on modeling the processes in the powder source that affect significantly the sublimation growth as a whole. To understand the powder porosity evolution and vapor transport during powder sublimation, the interplay between vapor transport and powder sublimation will be studied. A physics-based computational model will be developed considering powder sublimation and porosity evolution. Based on the proposed model, the effect of a central hole in the powder on the sublimation rate is studied and the result is compared to the case of powder without a hole. The effect of hole size on the sublimation rate will be studied. The effects of initial porosity, particle size and driving force on the sublimation rate are also studied. Moreover, the optimal growth condition for large diameter crystal quality and high growth rate will be determined. For synthesis of SiC-based metal ceramics, we will focus on developing a multi-scale process model to describe the dynamic behavior of filler particle reaction, microstructure evolution, at the microscale as well as transient fluid flow, heat transfer, and species transport at the macroscale. The model comprises of (i) a microscale model and (ii) a macroscale transport model, and aims to provide optimal conditions for the fabrication process of the ceramics. The porous media macroscale model for SiC-based metal-ceramic materials processing will be developed to understand the thermal polymer pyrolysis, chemical reaction of active fillers and transport phenomena in the porous media. The macroscale model will include heat and mass transfer, curing, pyrolysis, chemical reaction and crystallization in a mixture of preceramic polymers and submicron/nano-sized metal particles of uranium, zirconium, niobium, or hafnium. The effects of heating rate, sample size, size and volume ratio of the metal particles on the reaction rate and product uniformity will be studied. The microscale model will be developed for modeling the synthesis of SiC matrix and metal particles. The macroscale model provides thermal boundary conditions to the microscale model. The microscale model applies to repetitive units in the porous structure and describes mass transport, composition changes and motion of metal particles. The unit-cell is the representation unit of the source material, and it consists of several metal particles, SiC matrix and other components produced from the synthesis process. The reactions between different components, the microstructure evolution of the product will be considered. The effects of heating rate and metal particle size on species uniformity and microstructure are investigated.
Sun, Kun; Cui, Shuwan; Zeng, Min; Yi, Jianglong; Shen, Xiaoqin; Yi, Yaoyong
2018-01-01
Q690E high strength low alloy (HSLA) steel plays an important role in offshore structures. In addition, underwater local cavity welding (ULCW) technique was widely used to repair important offshore constructions. However, the high cooling rate of ULCW joints results in bad welding quality compared with underwater dry welding (UDW) joints. Q690E high strength low alloy steels were welded by multi-pass UDW and ULCW techniques, to study the microstructural evolution and mechanical properties of underwater welded joints. The microstructure and fracture morphology of welded joints were observed by scanning electron microscope and optical microscope. The elemental distribution in the microstructure was determined with an Electron Probe Microanalyzer. The results indicated that the microstructure of both two welded joints was similar. However, martensite and martensite-austenite components were significantly different with different underwater welding methods such that the micro-hardness of the HAZ and FZ in the ULCW specimen was higher than that of the corresponding regions in UDW joint. The yield strength and ultimate tensile strength of the ULCW specimen are 109 MPa lower and 77 MPa lower, respectively, than those of the UDW joint. The impact toughness of the UDW joint was superior to those of the ULCW joint. PMID:29361743
NASA Astrophysics Data System (ADS)
Qin, Fangcheng; Li, Yongtang; Qi, Huiping; Lv, Zhenhua
2016-11-01
The isothermal and non-isothermal multi-pass compression tests of centrifugal casting 42CrMo steel were conducted on a Gleeble-3500 thermal simulation machine. The effects of compression passes and finishing temperatures on deformation behavior and microstructure evolution were investigated. It is found that the microstructure is homogeneous with equiaxed grains, and the flow stress does not show significant change with the increase in passes, while the peak softening coefficient increases first and then decreases during inter-pass. Moreover, the dominant mechanisms of controlled temperature and accumulated static recrystallization for grain refinement and its homogeneous distribution are found after 5 passes deformation. As the finishing temperature increases, the flow stress decreases gradually, but the dynamic recrystallization accelerates and softening effect increases, resulting in the larger grain size and homogeneous microstructure. The microhardness decreases sharply because the sufficient softening occurs in microstructure. When the finishing temperature is 890 °C, the carbide particles are precipitated in the vicinity of the grain boundaries, thus inhibiting the dislocation motion. Thus, the higher finishing temperature (≥970 °C) for centrifugal casting 42CrMo alloy should be avoided in non-isothermal multi-pass deformation, which is beneficial to grain refinement and properties improvement.
Shi, Yonghua; Sun, Kun; Cui, Shuwan; Zeng, Min; Yi, Jianglong; Shen, Xiaoqin; Yi, Yaoyong
2018-01-22
Q690E high strength low alloy (HSLA) steel plays an important role in offshore structures. In addition, underwater local cavity welding (ULCW) technique was widely used to repair important offshore constructions. However, the high cooling rate of ULCW joints results in bad welding quality compared with underwater dry welding (UDW) joints. Q690E high strength low alloy steels were welded by multi-pass UDW and ULCW techniques, to study the microstructural evolution and mechanical properties of underwater welded joints. The microstructure and fracture morphology of welded joints were observed by scanning electron microscope and optical microscope. The elemental distribution in the microstructure was determined with an Electron Probe Microanalyzer. The results indicated that the microstructure of both two welded joints was similar. However, martensite and martensite-austenite components were significantly different with different underwater welding methods such that the micro-hardness of the HAZ and FZ in the ULCW specimen was higher than that of the corresponding regions in UDW joint. The yield strength and ultimate tensile strength of the ULCW specimen are 109 MPa lower and 77 MPa lower, respectively, than those of the UDW joint. The impact toughness of the UDW joint was superior to those of the ULCW joint.
Sensitivity of Austempering Heat Treatment of Ductile Irons to Changes in Process Parameters
NASA Astrophysics Data System (ADS)
Boccardo, A. D.; Dardati, P. M.; Godoy, L. A.; Celentano, D. J.
2018-06-01
Austempered ductile iron (ADI) is frequently obtained by means of a three-step austempering heat treatment. The parameters of this process play a crucial role on the microstructure of the final product. This paper considers the influence of some process parameters ( i.e., the initial microstructure of ductile iron and the thermal cycle) on key features of the heat treatment (such as minimum required time for austenitization and austempering and microstructure of the final product). A computational simulation of the austempering heat treatment is reported in this work, which accounts for a coupled thermo-metallurgical behavior in terms of the evolution of temperature at the scale of the part being investigated (the macroscale) and the evolution of phases at the scale of microconstituents (the microscale). The paper focuses on the sensitivity of the process by looking at a sensitivity index and scatter plots. The sensitivity indices are determined by using a technique based on the variance of the output. The results of this study indicate that both the initial microstructure and the thermal cycle parameters play a key role in the production of ADI. This work also provides a guideline to help selecting values of the appropriate process parameters to obtain parts with a required microstructural characteristic.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tadayyon, Ghazal, E-mail: Ghazal.tadayyon@gmail.co
The main objective of this work was to investigate the thermomechanical behavior and microstructural changes of a Ti-rich NiTi shape memory alloy (SMA). The microstructural and texture evolution of aged NiTi alloy at different degrees of deformation were elicited by transmission electron microscopy (TEM). An effort was made to correlate results obtained from the tensile test with results from microstructure studies. The undeformed sample reveals a self-accommodated morphology with straight and well defined twin boundaries. At different stages of deformation, diverse mechanisms were involved. These mechanisms include marstraining, detwinning accompanied by dislocation movement, and finally, severe plastic deformation, subdivision andmore » amorphization of the matrix. Under increasing strains, high density lattice defects were generated and the morphology of B19’ became disordered. - Graphical abstract: The summary of microstructure changes of the martensite twins during tensile deformation in polycrystalline NiTi SMAs. - Highlights: • Initial elastic response, dislocation avalanche and deformation bands were studied. • < 011 > Type II twin accompanied by detwinned area after 2% cold work was observed. • Visible parallel fine stacking faults showed plastic flow of the material. • At higher strains, subgrains changed to recrystallized, finely amorphous structure.« less
Kongpatpanich, Kanokwan; Horike, Satoshi; Fujiwara, Yu-Ichi; Ogiwara, Naoki; Nishihara, Hirotomo; Kitagawa, Susumu
2015-09-14
Porous carbon material with a foam-like microstructure has been synthesized by direct carbonization of porous coordination polymer (PCP). In situ generation of foaming agents by chemical reactions of ligands in PCP during carbonization provides a simple way to create lightweight carbon material with a foam-like microstructure. Among several substituents investigated, the nitro group has been shown to be the key to obtain the unique foam-like microstructure, which is due to the fast kinetics of gas evolution during carbonization. Foam-like microstructural carbon materials showed higher pore volume and specific capacitance compared to a microporous carbon. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Micromechanical Fatigue Visco-Damage Model for Short Glass Fiber Reinforced Polyamide-66
NASA Astrophysics Data System (ADS)
Despringre, N.; Chemisky, Y.; Robert, G.; Meraghni, F.
This work presents a micromechanical fatigue damage model developed for short glass fiber reinforced PA66. It has been developed to predict the high cycle fatigue behavior of PA66/GF30. The model is based on an extended Mori-Tanaka method which includes coated inclusions, matrix viscoelasticity and the evolution of micro-scale damage. The developed model accounts for the nonlinear matrix viscoelasticity and the reinforcement orientation. The description of the damage processes is based on the experimental investigation of damage mechanisms previously performed through in-situ SEM tests and X-ray micro-computed tomography observations. Damage chronologies have been proposed involving three different processes: interface debonding/coating, matrix micro-cracking and fiber breakages. Their occurrence strongly depends on the microstructure and the relative humidity. Each damage mechanism is introduced through an evolution law coupled to local stress fields. The developed model is implemented using a UMAT subroutine. Its experimental validation is achieved under stress or strain controlled fatigue tests.
NASA Astrophysics Data System (ADS)
Yin, Deshun; Qu, Pengfei
2018-02-01
Protein lateral diffusion is considered anomalous in the plasma membrane. And this diffusion is related to membrane microstructure. In order to better describe the property of protein lateral diffusion and find out the inner relationship between protein lateral diffusion and membrane microstructure, this article applies variable-order fractional mean square displacement (f-MSD) function for characterizing the anomalous diffusion. It is found that the variable order can reflect the evolution of diffusion ability. The results of numerical simulation demonstrate variable-order f-MSD function can predict the tendency of anomalous diffusion during the process of confined diffusion. It is also noted that protein lateral diffusion ability during the processes of confined and hop diffusion can be split into three parts. In addition, the comparative analyses reveal that the variable order is related to the confinement-domain size and microstructure of compartment boundary too.
NASA Astrophysics Data System (ADS)
Li, Zhiguo; Cao, Hanxing; Zhou, Xiaolong; Zhou, Zhaobo; Cao, Jianchun
2018-04-01
The effects of CuO with different particle sizes on the microstructure evolution of AgCuO composite material during plastic deformation process were investigated by finite element (FE) analysis and experiment. The results are as follows: with the decrease of CuO particle size, the degree of radial compression and axial elongation of CuO particle cluster increase gradually, as well as the dispersion of CuO also increase. Meanwhile, the shape of CuO particles is constantly transformed from polygonal to fibrous, which makes the number of linear fibrous CuO increase continuously while bent fibrous CuO reduce gradually. By comparing the simulation and experiment results we find that there are four different typical microstructure regions, which caused by the interaction between monoclinic and cubic CuO during the extrusion process.
NASA Astrophysics Data System (ADS)
Hasnine, M.; Tolla, B.; Vahora, N.
2018-04-01
This paper explores the effects of aging on the mechanical behavior, microstructure evolution and IMC formation on different surface finishes of two high temperature solders, Sn-5 wt.% Ag and Sn-5 wt.% Sb. High temperature aging showed significant degradation of Sn-5 wt.% Ag solder hardness (34%) while aging has little effect on Sn-5 wt.% Sb solder. Sn-5 wt.% Ag experienced rapid grain growth as well as the coarsening of particles during aging. Sn-5 wt.% Sb showed a stable microstructure due to solid solution strengthening and the stable nature of SnSb precipitates. The increase of intermetallic compound (IMC) thickness during aging follows a parabolic relationship with time. Regression analysis (time exponent, n) indicated that IMC growth kinetics is controlled by a diffusion mechanism. The results have important implications in the selection of high temperature solders used in high temperature applications.
NASA Astrophysics Data System (ADS)
Wei, Yanni; Luo, Yongguang; Qu, Hongtao; Zou, Juntao; Liang, Shuhua
2017-12-01
In this paper, microstructure evolution and failure analysis of the aluminum-copper interface of cathode conductive heads during their use were studied. The interface morphologies, compositions, conductivity and mechanical properties were investigated and analyzed. Obvious corrosion was found on the surface of the contact interface, which was more prevalent on an Al matrix. The crack increased sharply in the local metallurgical bonding areas on the interface, with the compound volume having no significant change. The phase transformation occurred on the interface during use, which was investigated using the elemental composition and x-ray diffraction pattern. The microhardness near the interface increased accordingly. An obvious electrical conductivity decrease appeared on the Al/Cu interface of the cathode conductive head after use over a specific time interval. Therefore, the deterioration of the microstructures and corrosion are the primary factors that affect the electrical conductivity and effective bonding, which will lead to eventual failure.
Kim, Dong-Kyu; Park, Won-Woong; Lee, Ho Won; Kang, Seong-Hoon; Im, Yong-Taek
2013-12-01
In this study, a rigorous methodology for quantifying recrystallization kinetics by electron backscatter diffraction is proposed in order to reduce errors associated with the operator's skill. An adaptive criterion to determine adjustable grain orientation spread depending on the recrystallization stage is proposed to better identify the recrystallized grains in the partially recrystallized microstructure. The proposed method was applied in characterizing the microstructure evolution during annealing of interstitial-free steel cold rolled to low and high true strain levels of 0.7 and 1.6, respectively. The recrystallization kinetics determined by the proposed method was found to be consistent with the standard method of Vickers microhardness. The application of the proposed method to the overall recrystallization stages showed that it can be used for the rigorous characterization of progressive microstructure evolution, especially for the severely deformed material. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.
Microstructure evolution of heat treated NiTi alloys
NASA Astrophysics Data System (ADS)
Losertová, M.; Štencek, M.; Matýsek, D.; Štefek, O.; Drápala, J.
2017-11-01
Superelastic behavior of off-stoichiometric NiTi alloys is significantly affected by microstructure changes due to heat treatment. Applying appropriate thermal treatments important effects on microstructural changes, transformation temperatures and thermomechanical properties of final NiTi products can be achieved. The experimental samples of NiTi alloy with 55.8 wt.% Ni were submitted to heat treatment and the microstructures before and after the treatment were observed. The thermal regimes consisted of annealing treatment at 600 °C for 1 hour followed by water quenching and of ageing at eight different temperatures (250, 270, 290, 300, 350, 400, 450 and 500 °C) for 30 minutes. Microstructure features studied by means of optical and scanning electron microscopies, EDX microanalyses, X-ray diffraction analyses and microhardness measurement, have shown that higher ageing temperatures led to microstructure changes and corresponding increase in microhardness.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Hao-Ze, E-mail: lhzqq83@163.com; Liu, Hai-Tao; Liu, Zhen-Yu, E-mail: zyliu@mail.neu.edu.cn
A 0.3 mm thick non-oriented 6.5 wt.% Si electrical steel sheet doped with cerium is produced by twin-roll strip casting, hot rolling, warm rolling and annealing. A detailed study of the cerium precipitates in the as-cast strip, microstructure and texture evolution at different processing stages is carried out by electron probe micro-analysis, optical microscopy, X-ray diffraction and electron backscattered diffraction analysis. Grain interior distributing precipitates identified as Ce-oxides, Ce-oxysulfides and Ce-phosphides, and boundary distributing Ce-oxides and Ce-phosphides are observed in the as-cast strip. The initial as-cast strip is characterized by a much finer solidification microstructure and dominated by obvious
Han, Changjun; Wang, Qian; Song, Bo; Li, Wei; Wei, Qingsong; Wen, Shifeng; Liu, Jie; Shi, Yusheng
2017-07-01
Titanium (Ti)-hydroxyapatite (HA) composites have the potential for orthopedic applications due to their favorable mechanical properties, excellent biocompatibility and bioactivity. In this work, the pure Ti and nano-scale HA (Ti-nHA) composites were in-situ prepared by selective laser melting (SLM) for the first time. The phase, microstructure, surface characteristic and mechanical properties of the SLM-processed Ti-nHA composites were studied by X-ray diffraction, transmission electron microscope, atomic force microscope and tensile tests, respectively. Results show that SLM is a suitable method for fabricating the Ti-nHA composites with refined microstructure, low modulus and high strength. A novel microstructure evolution can be illustrated as: Relatively long lath-shaped grains of pure Ti evolved into short acicular-shaped and quasi-continuous circle-shaped grains with the varying contents of nHA. The elastic modulus of the Ti-nHA composites is 3.7% higher than that of pure Ti due to the effect of grain refinement. With the addition of 2% nHA, the ultimate tensile strength significantly reduces to 289MPa but still meets the application requirement of bone implants. The Ti-nHA composites exhibit a remarkable improvement of microhardness from 336.2 to 600.8 HV and nanohardness from 5.6 to 8.3GPa, compared to those of pure Ti. Moreover, the microstructure and property evolution mechanisms of the composites with the addition of HA were discussed and analyzed. It provides some new knowledge to the design and fabrication of biomedical material composites for bone implant applications. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Lan, Peng; Tang, Haiyan; Zhang, Jiaquan
2016-06-01
A 3D cellular automaton finite element model with full coupling of heat, flow, and solute transfer incorporating solidification grain nucleation and growth was developed for a multicomponent system. The predicted solidification process, shrinkage porosity, macrosegregation, grain orientation, and microstructure evolution of Fe-22Mn-0.7C twinning-induced plasticity (TWIP) steel match well with the experimental observation and measurement. Based on a new solute microsegregation model using the finite difference method, the thermophysical parameters including solid fraction, thermal conductivity, density, and enthalpy were predicted and compared with the results from thermodynamics and experiment. The effects of flow and solute transfer in the liquid phase on the solidification microstructure of Fe-22Mn-0.7C TWIP steel were compared numerically. Thermal convection decreases the temperature gradient in the liquid steel, leading to the enlargement of the equiaxed zone. Solute enrichment in front of the solid/liquid interface weakens the thermal convection, resulting in a little postponement of columnar-to-equiaxed transition (CET). The CET behavior of Fe-Mn-C TWIP steel during solidification was fully described and mathematically quantized by grain morphology statistics for the first time. A new methodology to figure out the CET location by linear regression of grain mean size with least-squares arithmetic was established, by which a composition design strategy for Fe-Mn-C TWIP steel according to solidification microstructure, matrix compactness, and homogeneity was developed.
NASA Astrophysics Data System (ADS)
Grujicic, M.; Snipes, J. S.; Galgalikar, R.; Ramaswami, S.; Yavari, R.; Yen, C.-F.; Cheeseman, B. A.
2014-09-01
In our recent work, a multi-physics computational model for the conventional gas metal arc welding (GMAW) joining process was introduced. The model is of a modular type and comprises five modules, each designed to handle a specific aspect of the GMAW process, i.e.: (i) electro-dynamics of the welding-gun; (ii) radiation-/convection-controlled heat transfer from the electric-arc to the workpiece and mass transfer from the filler-metal consumable electrode to the weld; (iii) prediction of the temporal evolution and the spatial distribution of thermal and mechanical fields within the weld region during the GMAW joining process; (iv) the resulting temporal evolution and spatial distribution of the material microstructure throughout the weld region; and (v) spatial distribution of the as-welded material mechanical properties. In the present work, the GMAW process model has been upgraded with respect to its predictive capabilities regarding the spatial distribution of the mechanical properties controlling the ballistic-limit (i.e., penetration-resistance) of the weld. The model is upgraded through the introduction of the sixth module in the present work in recognition of the fact that in thick steel GMAW weldments, the overall ballistic performance of the armor may become controlled by the (often inferior) ballistic limits of its weld (fusion and heat-affected) zones. To demonstrate the utility of the upgraded GMAW process model, it is next applied to the case of butt-welding of a prototypical high-hardness armor-grade martensitic steel, MIL A46100. The model predictions concerning the spatial distribution of the material microstructure and ballistic-limit-controlling mechanical properties within the MIL A46100 butt-weld are found to be consistent with prior observations and general expectations.
Damage Mechanisms and Mechanical Properties of High-Strength Multiphase Steels.
Heibel, Sebastian; Dettinger, Thomas; Nester, Winfried; Clausmeyer, Till; Tekkaya, A Erman
2018-05-09
The usage of high-strength steels for structural components and reinforcement parts is inevitable for modern car-body manufacture in reaching lightweight design as well as increasing passive safety. Depending on their microstructure these steels show differing damage mechanisms and various mechanical properties which cannot be classified comprehensively via classical uniaxial tensile testing. In this research, damage initiation, evolution and final material failure are characterized for commercially produced complex-phase (CP) and dual-phase (DP) steels in a strength range between 600 and 1000 MPa. Based on these investigations CP steels with their homogeneous microstructure are characterized as damage tolerant and hence less edge-crack sensitive than DP steels. As final fracture occurs after a combination of ductile damage evolution and local shear band localization in ferrite grains at a characteristic thickness strain, this strain measure is introduced as a new parameter for local formability. In terms of global formability DP steels display advantages because of their microstructural composition of soft ferrite matrix including hard martensite particles. Combining true uniform elongation as a measure for global formability with the true thickness strain at fracture for local formability the mechanical material response can be assessed on basis of uniaxial tensile testing incorporating all microstructural characteristics on a macroscopic scale. Based on these findings a new classification scheme for the recently developed high-strength multiphase steels with significantly better formability resulting of complex underlying microstructures is introduced. The scheme overcomes the steel designations using microstructural concepts, which provide no information about design and production properties.
NASA Astrophysics Data System (ADS)
Calonne, Neige; Schneebeli, Martin; Montagnat, Maurine; Matzl, Margret
2016-04-01
Temperature gradient metamorphism affects the Antarctic snowpack up to 5 meters depth, which lead to a recrystallization of the ice grains by sublimation of ice and deposition of water vapor. By this way, it is well known that the snow microstructure evolves (geometrical changes). Also, a recent study shows an evolution of the snow fabric, based on a cold laboratory experiment. Both fabric and microstructure are required to better understand mechanical behavior and densification of snow, firn and ice, given polar climatology. The fabric of firn and ice has been extensively investigated, but the publications by Stephenson (1967, 1968) are to our knowledge the only ones describing the snow fabric in Antarctica. In this context, our work focuses on snow microstructure and fabric in the first meters depth of the Antarctic ice sheet, where temperature gradients driven recrystallization occurs. Accurate details of the snow microstructure are observed using micro-computed tomography. Snow fabrics were measured at various depths from thin sections of impregnated snow with an Automatic Ice Texture Analyzer (AITA). A definite relationship between microstructure and fabric is found and highlights the influence of metamorphism on both properties. Our results also show that the metamorphism enhances the differences between the snow layers properties. Our work stresses the significant and complex evolution of snow properties in the upper meters of the ice sheet and opens the question of how these layer properties will evolve at depth and may influence the densification.
Zhang, Peilei; Li, Mingchuan; Yu, Zhishui
2018-05-23
Three Ni-Cr-Si coatings were synthesized on the surface of copper by laser cladding. The microstructures of the coatings were characterized by optical microscopy (OM), X-ray diffraction (XRD), and scanning electron microscopy (SEM) with an energy dispersive spectrometer (EDS). According to the analysis results of phase compositions, Gibbs free energy change and microstructures, the phases of three coatings appeared were Cr₃Si+γ-Ni+Cu ss (Coating 1, Ni-26Cr-29Si), Cr₆Ni 16 Si₇+Ni₂Si+Cu ss (Coating 2, Ni-10Cr-30Si) and Cr₃Ni₅Si₂+Cr₂Ni₃+Cu ss (Coating 3, Ni-29Cr-16Si). The crystal growth in the solidification process was analyzed with a modified model, which is a combination of Kurz-Giovanola-Trivedi (KGT) and Lipton-Kurz-Trivedi (LKT) models. The dendrite tip undercooling in Coating 2 was higher than those of Coating 1 and Coating 3. Well-developed dendrites were found in Coating 2. A modification of Hunt’s model was adopted to describe the morphological differences in the three coatings. The results show that Coating 1 was in the equiaxed dendrite region, while Coatings 2 and 3 were in the columnar dendrite region. The average friction coefficients of the three coatings were 0.45, 0.5 and 0.4, respectively. Obvious plastic deformation could be found in the subsurface zone of Coatings 2 and 3.
1999-04-01
The Equiaxed Dendritic Solidification Experiment (EDSE) is a material sciences investigation under the Formation of Microstructures/pattern formation discipline. The objective is to study the microstructural evolution of and thermal interactions between several equiaxed crystals growing dendritically in a supercooled melt of a pure and transparent substance under diffusion controlled conditions. This image shows the overview for the EDSE in the Microgravity Development Lab (MDL).
1999-04-01
The Equiaxed Dendritic Solidification Experiment (EDSE) is a material sciences investigation under the Formation of Microstructures/pattern formation discipline. The objective is to study the microstructural evolution of and thermal interactions between several equiaxed crystals growing dendritically in a supercooled melt of a pure and transparent substance under diffusion controlled conditions. Video and power rack for the EDSE in the Microgravity Development Lab (MDL).
1999-04-01
The Equiaxed Dendritic Solidification Experiment (EDSE) is a material sciences investigation under the Formation of Microstructures/pattern formation discipline. The objective is to study the microstructural evolution of and thermal interactions between several equiaxed crystals growing dendritically in a supercooled melt of a pure and transparent substance under diffusion controlled conditions. Dendrite irritator control for the EDSE in the Microgravity Development Lab (MDL).
The Microstructural Evolution of Haynes 282 Alloy During Long-Term Exposure Tests
NASA Astrophysics Data System (ADS)
Fu, Rui; Zhao, Shuangqun; Wang, Yanfeng; Li, Qiang; Ma, Yunhai; Lin, Fusheng; Chi, Chengyu
Haynes 282 alloy is a γ' precipitation strengthened nickel based superalloy designed by Haynes International Incorporation in 2005. This alloy is currently being evaluated for use as high temperature components at 700°C Advanced-Ultra Supercritical (A-USC)power plants, thus it is particularly important to have good creep property and microstructure stability.
1998-12-01
Test engineers, TK Pedergrass and Dave McIntosh, are growing multiple dendrites in an undercooled melt of ultra pure succinonitrile (SCN). Images and temperature measurements will give Dr. Christoph Beckerman, the EDSE Principal Investigator, information on the microstructural evolution of and thermal interactions between several equiaxed crystals growing dendritically. This benchmark data will be used to test and develop equiaxed dendritic solidification models. The monitors show both the 4 stinger and 2 stinger chambers that are placed in the isothermal bath for testing.
2007-08-01
the deposition process. This model is applied to Ti-6Al-4V. 1. Instruction Laser deposition is an extension of the laser cladding process...uses a focused laser beam as a heat source to create a melt pool on an underlying substrate. Powder material is then injected into the melt pool...melt pool Deposited layer Remelted zone Substrate Shielding gas Laser beam Powder The governing equations have been discretized using a
NASA Astrophysics Data System (ADS)
Liu, Meiduo; Zheng, Haipeng; Zhang, Tianlong; Wu, Ruizhi
2017-12-01
The superplastic mechanical properties and microstructure evolution of the duplex Mg-9Li-1Al alloy were investigated. The tensile testing results show that, the elongation of the as-extruded Mg-9Li-1Al alloy reaches 510% at 573 K with a strain rate of 2×10-4 s-1. During the deformation process, the strips of α phase break into equiaxed structure. This phenomenon can be attributed to a particular dynamic recrystallization, which suggests that the β phase can recrystallize in the α phase due to the small misfit degree between α phase and β phase.
NASA Astrophysics Data System (ADS)
Dele-Afolabi, T. T.; Azmah Hanim, M. A.; Norkhairunnisa, M.; Suraya, M. T.; Yusoff, H. M.
2017-09-01
In this study, the effects of multi-walled carbon nanotubes on the melting temperature and microstructural evolution of the Sn-5Sb/Cu joints are evaluated. Plain and carbon nanotubes (CNTs) reinforced Sn-5Sb solder systems with solder formulations Sn-5Sb, Sn-5Sb-0.01CNT, Sn-5Sb-0.05CNT and Sn-5Sb-0.1CNT were prepared through the powder metallurgy route and thereafter samples were subjected to thermal and microstructural evaluation. As retrieved from the DSC scans, a slight decline in the peak temperature was observed in the composite solders which is indicative of the CNTs role in exciting surface instability in the host Sn matrix. In order to prepare the solder joints and analyze the interfacial intermetallic compound (IMC) evolution, respective solder systems were placed on copper (Cu) substrate and subjected to both reflow soldering and isothermal aging (170°C) conditions. From the IMC thickness result, considerable retardation in the IMC layer growth was observed in the CNTs reinforced solder joints, especially the 0.05wt.% CNTs solder system owing to the inhibition of Sn atoms diffusion by reinforcement material.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shrestha, Triratna; Alsagabi, Sultan; Charit, Indrajit
The modified 9Cr-1Mo steel (Grade 91) is a material of choice in fossil-fuel-fired power plants with increased efficiency, service life, and reduction in emission of greenhouse gases. It is also considered a prospective material for the Next Generation Nuclear Power Plant for application in reactor pressure vessels at temperatures up to 650°C. In this paper, heat treatment of the modified 9Cr-1Mo steel was studied by normalizing and tempering the steel at various temperatures and times, with the ultimate goal of improving its creep resistance and optimizing material hardness. The microstructural evolution of the heat treated steels was correlated with themore » differential scanning calorimetric results. Optical microscopy, scanning and transmission electron microscopy in conjunction with microhardness profiles and calorimetric plots were used to understand the evolution of microstructure including precipitate structures in modified 9Cr-1Mo steel and relate it to the mechanical behavior of the steel. Thermo-CalcTM calculations were used to support experimental work and provide guidance in terms of the precipitate stability and microstructural evolution. Furthermore, the carbon isopleth and temperature dependencies of the volume fraction of different precipitates were constructed. The predicted and experimentally observed results were found to be in good agreement.« less
NASA Astrophysics Data System (ADS)
Vaseghi, M.; Karimi Taheri, A.; Kim, H. S.
2014-08-01
In this paper dynamic strain ageing behavior in an Al-Mg-Si alloy related to equal channel angular pressing (ECAP) was investigated. In order to examine the combined plastic deformation and ageing effects on microstructure evolutions and strengthening characteristics, the Al6061 alloy were subjected to phi=90° ECAP die for up to 4 passes via route Bc at high temperatures. For investigating the effects of ageing temperature and strain rate in ECAP, Vickers hardness tests were performed. The combination of the ECAP process with dynamic ageing at higher temperatures resulted in a significant increase in hardness. The microstructural evolution of the samples was studied using electron back-scattering diffraction (EBSD). The grains of Al6061 aluminum alloy were refined significantly at 100 and 150 °C with greater pass numbers and the distributions of grain size tended to be more uniform with pass number increasing. Frequency of sub-boundaries and low angle grain boundaries (LAGBs) increased at initial stage of deformation, and sub-boundaries and LAGBs evolved into highangle grain boundaries (HAGBs) with further deformation, which resulted in the high frequency of HAGBs in the alloy after ECAP 4 passes.
Feature Profile Evolution of SiO2 Trenches In Fluorocarbon Plasmas
NASA Technical Reports Server (NTRS)
Hwang, Helen; Govindan, T. R.; Meyyappan, M.; Arunachalam, Valli; Rauf, Shahid; Coronell, Dan; Carroll, Carol W. (Technical Monitor)
1999-01-01
Etching of silicon microstructures for semiconductor manufacturing in chlorine plasmas has been well characterized. The etching proceeds in a two-part process, where the chlorine neutrals passivate the Si surface and then the ions etch away SiClx. However, etching in more complicated gas mixtures and materials, such as etching of SiO2 in Ar/C4F8, requires knowledge of the ion and neutral distribution functions as a function of angle and velocity, in addition to modeling the gas surface reactions. In order to address these needs, we have developed and integrated a suite of models to simulate the etching process from the plasma reactor level to the feature profile evolution level. This arrangement allows for a better understanding, control, and prediction of the influence of equipment level process parameters on feature profile evolution. We are currently using the HPEM (Hybrid Plasma Equipment Model) and PCMCM (Plasma Chemistry Monte Carlo Model) to generate plasma properties and ion and neutral distribution functions for argon/fluorocarbon discharges in a GEC Reference Cell. These quantities are then input to the feature scale model, Simulation of Profile Evolution by Level Sets (SPELS). A surface chemistry model is used to determine the interaction of the incoming species with the substrate material and simulate the evolution of the trench profile. The impact of change of gas pressure and inductive power on the relative flux of CFx and F to the wafer, the etch and polymerization rates, and feature profiles will be examined. Comparisons to experimental profiles will also be presented.
Linking Microstructural Evolution and Tribology in Metallic Contacts
NASA Astrophysics Data System (ADS)
Chandross, Michael; Cheng, Shengfeng; Argibay, Nicolas
Tribologists rely on phenomenological models to describe the seemingly disjointed steady-state regimes of metal wear. Pure metals such as gold - frequently used in electrical contacts - exhibit high friction and wear. In contrast, nanocrystalline metals often show much lower friction and wear. The engineering community has generally used a phenomenological connection between hardness and friction/wear to explain this macroscale response and guide designs. We present results of recent simulations and experiments that demonstrate a general framework for connecting materials properties (i.e. microstructural evolution) to tribological response. We present evidence that competition between grain refinement (from cold working), grain coarsening (from stress-induced grain growth), and wear (delamination and plowing) can be used to describe transient and steady state tribological behavior of metals, alloys and composites. We explore the seemingly disjointed steady-state friction regimes of metals and alloys, with a goal of elucidating the structure-property relationships, allowing for the engineering of tribological materials and contacts based on the kinetics of grain boundary motion. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paranjape, Harshad M.; Paul, Partha P.; Amin-Ahmadi, Behnam
Microstructural elements in NiTi shape memory alloys (SMAs) – precipitates, phase boundaries, inclusions, grain boundaries – can be viewed as sources of multiscale constraint that influence their deformation response. In this paper, we characterized in situ, and in 3D, the deformation and the evolution of microstructure during a tension test in a superelastic NiTi specimen containing some of these sources of constraint. The method used was far-field high-energy X-ray diffraction microscopy (ff-HEDM), complemented by electron microscopy. We simulated the local stress state in the specimen using a microstructural model informed by the experimental data. Using these combined microstructure, deformation, andmore » stress data, we report three phenomena, and relate them to specific sources of constraint. During initial elastic loading, axial lattice strain in austenite increased monotonically. On partial stress-induced phase transformation to martensite, the stress redistributed to both phases leading to a stress relaxation in austenite. The specimen contained a dense distribution of inclusions, which led to the activation of martensite habit plane variants that produce less than theoretical maximum transformation strain. Large Ni 4Ti 3 precipitates potentially contributed to the poor transformation response. Under load, proportional gradients in local rotation and elastic stretch developed in the martensite phase, because of the constraint at phase interfaces. Finally, this combined ff-HEDM, electron microscopy, microstructural simulation toolbox provides a versatile method to understand the effect of constraint on inelastic deformation in other alloys with hierarchical microstructure.« less
Paranjape, Harshad M.; Paul, Partha P.; Amin-Ahmadi, Behnam; ...
2017-11-20
Microstructural elements in NiTi shape memory alloys (SMAs) – precipitates, phase boundaries, inclusions, grain boundaries – can be viewed as sources of multiscale constraint that influence their deformation response. In this paper, we characterized in situ, and in 3D, the deformation and the evolution of microstructure during a tension test in a superelastic NiTi specimen containing some of these sources of constraint. The method used was far-field high-energy X-ray diffraction microscopy (ff-HEDM), complemented by electron microscopy. We simulated the local stress state in the specimen using a microstructural model informed by the experimental data. Using these combined microstructure, deformation, andmore » stress data, we report three phenomena, and relate them to specific sources of constraint. During initial elastic loading, axial lattice strain in austenite increased monotonically. On partial stress-induced phase transformation to martensite, the stress redistributed to both phases leading to a stress relaxation in austenite. The specimen contained a dense distribution of inclusions, which led to the activation of martensite habit plane variants that produce less than theoretical maximum transformation strain. Large Ni 4Ti 3 precipitates potentially contributed to the poor transformation response. Under load, proportional gradients in local rotation and elastic stretch developed in the martensite phase, because of the constraint at phase interfaces. Finally, this combined ff-HEDM, electron microscopy, microstructural simulation toolbox provides a versatile method to understand the effect of constraint on inelastic deformation in other alloys with hierarchical microstructure.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beaudoin, A. J.; Shade, P. A.; Schuren, J. C.
The plastic deformation of crystalline materials is usually modeled as smoothly progressing in space and time, yet modern studies show intermittency in the deformation dynamics of single-crystals arising from avalanche behavior of dislocation ensembles under uniform applied loads. However, once the prism of the microstructure in polycrystalline materials disperses and redistributes the load on a grain-by-grain basis, additional length and time scales are involved. Thus, the question is open as to how deformation intermittency manifests for the nonuniform grain-scale internal driving forces interacting with the finer-scale dislocation ensemble behavior. In this work we track the evolution of elastic strain withinmore » individual grains of a creep-loaded titanium alloy, revealing widely varying internal strains that fluctuate over time. Here, the findings provide direct evidence of how flow intermittency proceeds for an aggregate of ~700 grains while showing the influences of multiscale ensemble interactions and opening new avenues for advancing plasticity modeling.« less
NASA Astrophysics Data System (ADS)
Ellis, Brett; Zhou, Min; McDowell, David
2011-06-01
As part of a hierarchy-based computational materials design program, a fully dynamic 3D mesoscale model is developed to quantify the effects of energy storage and dissipation mechanisms in Fiber-Reinforced Ultra-High Performance Concretes (FRUHPCs) subjected to blast loading. This model accounts for three constituent components: reinforcement fibers, cementitious matrix, and fiber-matrix interfaces. Microstructure instantiations encompass a range of fiber volume fraction (0-2%), fiber length (10-15 mm), and interfacial bonding strength (1-100 MPa). Blast loading with scaled distances between 5 and 10 m/kg1/3 are considered. Calculations have allowed the delineation and characterization of the evolutions of kinetic energy, strain energy, work expended on interfacial damage and failure, frictional dissipation along interfaces, and bulk dissipation through granular flow as functions of microstructure, loading and constituent attributes. The relations obtained point out avenues for designing FRUHPCs with properties tailored for specific load environments and reveal trade-offs between various design scenarios.
Beaudoin, A. J.; Shade, P. A.; Schuren, J. C.; ...
2017-11-30
The plastic deformation of crystalline materials is usually modeled as smoothly progressing in space and time, yet modern studies show intermittency in the deformation dynamics of single-crystals arising from avalanche behavior of dislocation ensembles under uniform applied loads. However, once the prism of the microstructure in polycrystalline materials disperses and redistributes the load on a grain-by-grain basis, additional length and time scales are involved. Thus, the question is open as to how deformation intermittency manifests for the nonuniform grain-scale internal driving forces interacting with the finer-scale dislocation ensemble behavior. In this work we track the evolution of elastic strain withinmore » individual grains of a creep-loaded titanium alloy, revealing widely varying internal strains that fluctuate over time. Here, the findings provide direct evidence of how flow intermittency proceeds for an aggregate of ~700 grains while showing the influences of multiscale ensemble interactions and opening new avenues for advancing plasticity modeling.« less
Dynamic colloidal assembly pathways via low dimensional models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Yuguang; Bevan, Michael A., E-mail: mabevan@jhu.edu; Thyagarajan, Raghuram
2016-05-28
Here we construct a low-dimensional Smoluchowski model for electric field mediated colloidal crystallization using Brownian dynamic simulations, which were previously matched to experiments. Diffusion mapping is used to infer dimensionality and confirm the use of two order parameters, one for degree of condensation and one for global crystallinity. Free energy and diffusivity landscapes are obtained as the coefficients of a low-dimensional Smoluchowski equation to capture the thermodynamics and kinetics of microstructure evolution. The resulting low-dimensional model quantitatively captures the dynamics of different assembly pathways between fluid, polycrystal, and single crystals states, in agreement with the full N-dimensional data as characterizedmore » by first passage time distributions. Numerical solution of the low-dimensional Smoluchowski equation reveals statistical properties of the dynamic evolution of states vs. applied field amplitude and system size. The low-dimensional Smoluchowski equation and associated landscapes calculated here can serve as models for predictive control of electric field mediated assembly of colloidal ensembles into two-dimensional crystalline objects.« less
NASA Astrophysics Data System (ADS)
Schubert, F.; Fleury, G.; Steinhaus, T.
2000-11-01
Turbine blades in gas turbine engines are subjected during operation to triaxial stress fields. For the description of the deformation behaviour of anisotropic single-crystal blades, constitutive equations are required which take account of modifications to the deformation processes caused by evolution of the γ/γ' microstructure during service (γ' rafting). A microstructure-dependent, orthotropic Hills potential, whose anisotropy coefficients are connected to the edge length of γ' particles, has been applied. The shape of γ' particles remains cubic below exposures at 700 °C. At high temperatures (above 850 °C) the γ' particles coalesce to rafts, and the viscoplastic response of the superalloy is continuously modified. This reduces the creep resistance of <001> orientated specimen. After tensile loading of the <001>-orientated specimens at 1000 °C, the rafting of γ' in the (100) plane was observed as expected, whereas the <111> specimens did not reveal γ' rafting. Torsionally loaded specimens exhibited rafting only in the near <100>-orientated surface regions of the specimen. The deformation in the <111> tensile and <001> torsion specimens occurred by octahedral slip of dislocations and not by cubic slip, as expected from theoretical considerations. Rafting did not occur in the <111>-orientated specimens. This anisotropy change is simulated successfully by the microstructure-dependent model.
Microstructure based procedure for process parameter control in rolling of aluminum thin foils
NASA Astrophysics Data System (ADS)
Johannes, Kronsteiner; Kabliman, Evgeniya; Klimek, Philipp-Christoph
2018-05-01
In present work, a microstructure based procedure is used for a numerical prediction of strength properties for Al-Mg-Sc thin foils during a hot rolling process. For this purpose, the following techniques were developed and implemented. At first, a toolkit for a numerical analysis of experimental stress-strain curves obtained during a hot compression testing by a deformation dilatometer was developed. The implemented techniques allow for the correction of a temperature increase in samples due to adiabatic heating and for the determination of a yield strength needed for the separation of the elastic and plastic deformation regimes during numerical simulation of multi-pass hot rolling. At the next step, an asymmetric Hot Rolling Simulator (adjustable table inlet/outlet height as well as separate roll infeed) was developed in order to match the exact processing conditions of a semi-industrial rolling procedure. At each element of a finite element mesh the total strength is calculated by in-house Flow Stress Model based on evolution of mean dislocation density. The strength values obtained by numerical modelling were found in a reasonable agreement with results of tensile tests for thin Al-Mg-Sc foils. Thus, the proposed simulation procedure might allow to optimize the processing parameters with respect to the microstructure development.
Investigation of Hot Deformation Behavior of Duplex Stainless Steel Grade 2507
NASA Astrophysics Data System (ADS)
Kingklang, Saranya; Uthaisangsuk, Vitoon
2017-01-01
Recently, duplex stainless steels (DSSs) are being increasingly employed in chemical, petro-chemical, nuclear, and energy industries due to the excellent combination of high strength and corrosion resistance. Better understanding of deformation behavior and microstructure evolution of the material under hot working process is significant for achieving desired mechanical properties. In this work, plastic flow curves and microstructure development of the DSS grade 2507 were investigated. Cylindrical specimens were subjected to hot compression tests for different elevated temperatures and strain rates by a deformation dilatometer. It was found that stress-strain responses of the examined steel strongly depended on the forming rate and temperature. The flow stresses increased with higher strain rates and lower temperatures. Subsequently, predictions of the obtained stress-strain curves were done according to the Zener-Hollomon equation. Determination of material parameters for the constitutive model was presented. It was shown that the calculated flow curves agreed well with the experimental results. Additionally, metallographic examinations of hot compressed samples were performed by optical microscope using color tint etching. Area based phase fractions of the existing phases were determined for each forming condition. Hardness of the specimens was measured and discussed with the resulted microstructures. The proposed flow stress model can be used to design and optimize manufacturing process at elevated temperatures for the DSS.
NASA Astrophysics Data System (ADS)
Martinez, E.; Murr, L. E.; Amato, K. N.; Hernandez, J.; Shindo, P. W.; Gaytan, S. M.; Ramirez, D. A.; Medina, F.; Wicker, R. B.
The layer-by-layer building of monolithic, 3D metal components from selectively melted powder layers using laser or electron beams is a novel form of 3D printing or additive manufacturing. Microstructures created in these 3D products can involve novel, directional solidification structures which can include crystallographically oriented grains containing columnar arrays of precipitates characteristic of a microstructural architecture. These microstructural architectures are advantageously rendered in 3D image constructions involving light optical microscopy and scanning and transmission electron microscopy observations. Microstructural evolution can also be effectively examined through 3D image sequences which, along with x-ray diffraction (XRD) analysis in the x-y and x-z planes, can effectively characterize related crystallographic/texture variances. This paper compares 3D microstructural architectures in Co-base and Ni-base superalloys, columnar martensitic grain structures in 17-4 PH alloy, and columnar copper oxides and dislocation arrays in copper.
NASA Technical Reports Server (NTRS)
Flemings, M. C.; Matson, D. M.; Loser, W.; Hyers, R. W.; Rogers, J. R.; Curreri, Peter A. (Technical Monitor)
2002-01-01
The paper is an overview of the status and science for the LODESTARS research project. The program is aimed at understanding how melt convection influences phase selection and the evolution of rapid solidification microstructures
Spear, Ashley D.; Hochhalter, Jacob D.; Cerrone, Albert R.; ...
2016-04-27
In an effort to reproduce computationally the observed evolution of microstructurally small fatigue cracks (MSFCs), a method is presented for generating conformal, finite-element (FE), volume meshes from 3D measurements of MSFC propagation. The resulting volume meshes contain traction-free surfaces that conform to incrementally measured 3D crack shapes. Grain morphologies measured using near-field high-energy X-ray diffraction microscopy are also represented within the FE volume meshes. Proof-of-concept simulations are performed to demonstrate the utility of the mesh-generation method. The proof-of-concept simulations employ a crystal-plasticity constitutive model and are performed using the conformal FE meshes corresponding to successive crack-growth increments. Although the simulationsmore » for each crack increment are currently independent of one another, they need not be, and transfer of material-state information among successive crack-increment meshes is discussed. The mesh-generation method was developed using post-mortem measurements, yet it is general enough that it can be applied to in-situ measurements of 3D MSFC propagation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spear, Ashley D.; Hochhalter, Jacob D.; Cerrone, Albert R.
In an effort to reproduce computationally the observed evolution of microstructurally small fatigue cracks (MSFCs), a method is presented for generating conformal, finite-element (FE), volume meshes from 3D measurements of MSFC propagation. The resulting volume meshes contain traction-free surfaces that conform to incrementally measured 3D crack shapes. Grain morphologies measured using near-field high-energy X-ray diffraction microscopy are also represented within the FE volume meshes. Proof-of-concept simulations are performed to demonstrate the utility of the mesh-generation method. The proof-of-concept simulations employ a crystal-plasticity constitutive model and are performed using the conformal FE meshes corresponding to successive crack-growth increments. Although the simulationsmore » for each crack increment are currently independent of one another, they need not be, and transfer of material-state information among successive crack-increment meshes is discussed. The mesh-generation method was developed using post-mortem measurements, yet it is general enough that it can be applied to in-situ measurements of 3D MSFC propagation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ouyang, J.H.; Li, X.; Lei, T.C.
The microstructure of a laser-clad TiC-Ni particle-reinforced coating on 1045 steel was studied by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and ion microprobe mass spectroscopy (IMMS). The microstructural constituents of the clad layers (CLs) were analyzed to be TiC particles, {gamma}-Ni primary dendrites, and interdendritic eutectics of {gamma}{sub E}-Ni plus M{sub 23}(CB){sub 6} and M{sub 6}(CB) carboborides. Three growth mechanisms of the original TiC particles were found: (1) stepped lateral growth at the edges, (2) radiated and cylindrically coupled growth at the edges, and (3) bridging growth of the clustered particles. Ordered and modulated structures were found inmore » the original TiC particles. In addition to the original TiC particles, fine TiC particles precipitated from the liquid phase and {gamma}-Ni solid solution during laser cladding. The microstructures of the bonding zones (BZs) were intimately associated with laser processing parameters. The BZs of the clad coatings can be categorized into three types according to the combination of the CL with heat-affected zone (HAZ): (1) straight interface combination, (2) zigzag connection, and (3) combination by partial melting of prior austenitic grain boundaries of the substrate. The microstructural evolution of the CLs was discussed. The formation and phase transformation models of the BZs were proposed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galarraga, Haize; Warren, Robert J.; Lados, Diana A.
Electron beam melting (EBM) is a metal powder bed fusion additive manufacturing (AM) technology that is used to fabricate three-dimensional near-net-shaped parts directly from computer models. Ti-6Al-4V is the most widely used and studied alloy for this technology and is the focus of this work in its ELI (Extra Low Interstitial) variation. The mechanisms of microstructure formation, evolution, and its subsequent influence on mechanical properties of the alloy in as-fabricated condition have been documented by various researchers. In the present work, the thermal history resulting in the formation of the as-fabricated microstructure was analyzed and studied by a thermal simulation.more » Subsequently different heat treatments were performed based on three approaches in order to study the effects of heat treatments on the singular and exclusive microstructure formed during the EBM fabrication process. In the first approach, the effect of cooling rate after the solutionizing process was studied. In the second approach, the variation of α lath thickness during annealing treatment and correlation with mechanical properties was established. In the last approach, several solutionizing and aging experiments were conducted.« less
TEM characterization of irradiated microstructure of Fe-9%Cr ODS and ferritic-martensitic alloys
NASA Astrophysics Data System (ADS)
Swenson, M. J.; Wharry, J. P.
2018-04-01
The objective of this study is to evaluate the effects of irradiation dose and dose rate on defect cluster (i.e. dislocation loops and voids) evolution in a model Fe-9%Cr oxide dispersion strengthened steel and commercial ferritic-martensitic steels HCM12A and HT9. Complimentary irradiations using Fe2+ ions, protons, or neutrons to doses ranging from 1 to 100 displacements per atom (dpa) at 500 °C are conducted on each alloy. The irradiated microstructures are characterized using transmission electron microscopy (TEM). Dislocation loops exhibit limited growth after 1 dpa upon Fe2+ and proton irradiation, while any voids observed are small and sparse. The average size and number density of loops are statistically invariant between Fe2+, proton, and neutron irradiated specimens at otherwise fixed irradiation conditions of ∼3 dpa, 500 °C. Therefore, we conclude that higher dose rate charged particle irradiations can reproduce the neutron irradiated loop microstructure with temperature shift governed by the invariance theory; this temperature shift is ∼0 °C for the high sink strength alloys studied herein.
NASA Astrophysics Data System (ADS)
Balducci, Eleonora; Ceschini, Lorella; Morri, Alessandro; Morri, Andrea
2017-08-01
This study aims to evaluate the effects of prolonged thermal exposure on both microstructural evolution and mechanical properties of the EN AW-4032 T6 piston alloy. For the purpose, the experimental activities have been carried out on samples machined from forged and heat-treated automotive pistons. The effects of overaging have been investigated in the temperature range of 140-290 °C, firstly by evaluating the time-temperature-hardness curves and then by carrying out room-temperature tensile tests on overaged samples. The material softening was substantial and extremely rapid when the soaking temperature exceeded 250 °C. During overaging, both the tensile strength and the residual hardness considerably decreased, and a relationship between these parameters has been established. The alloy behavior in the plastic field has been modeled according to the Hollomon's equation, showing that both the strain hardening exponent and the strength coefficient are a function of the residual hardness. The results were finally related to the corresponding microstructural changes: OM and FEG-SEM metallographic and fractographic analyses on overaged samples gave evidence of coarsened precipitates along the grain boundaries.
Microstructural examination of V-(3-6%)Cr-(3-5%)Ti irradiated in the ATR-A1 experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gelles, D.S.
Microstructural examination results are reported for four heats of V-(3-6%)Cr-(3-5%)Ti irradiated in the ATR-A1 experiment to {approximately}4 dpa at {approximately}200 and 300 C to provide an understanding of the microstructural evolution that may be associated with degradation of mechanical properties. Fine precipitates were observed in high density intermixed with small defect clusters for all conditions examined following the irradiation. The irradiation-induced precipitation does not appear to be affected by preirradiation heat treatment or composition.
NASA Astrophysics Data System (ADS)
Tian, Liang
This study investigated the processing-structure-properties relationships in an Al/Ca composites using both experiments and modeling/simulation. A particular focus of the project was understanding how the strength and electrical conductivity of the composite are related to its microstructure in the hope that a conducting material with light weight, high strength, and high electrical conductivity can be developed to produce overhead high-voltage power transmission cables. The current power transmission cables (e.g., Aluminum Conductor Steel Reinforced (ACSR)) have acceptable performance for high-voltage AC transmission, but are less well suited for high-voltage DC transmission due to the poorly conducting core materials that support the cable weight. This Al/Ca composite was produced by powder metallurgy and severe plastic deformation by extrusion and swaging. The fine Ca metal powders have been produced by centrifugal atomization with rotating liquid oil quench bath, and a detailed study about the atomization process and powder characteristics has been conducted. The microstructure of Al/Ca composite was characterized by electron microscopy. Microstructure changes at elevated temperature were characterized by thermal analysis and indirect resistivity tests. The strength and electrical conductivity were measured by tensile tests and four-point probe resistivity tests. Predicting the strength and electrical conductivity of the composite was done by micro-mechanics-based analytical modeling. Microstructure evolution was studied by mesoscale-thermodynamics-based phase field modeling and a preliminary atomistic molecular dynamics simulation. The application prospects of this composite was studied by an economic analysis. This study suggests that the Al/Ca (20 vol. %) composite shows promise for use as overhead power transmission cables. Further studies are needed to measure the corrosion resistance, fatigue properties and energized field performance of this composite.
NASA Astrophysics Data System (ADS)
Grujicic, M.; Ramaswami, S.; Snipes, J. S.; Yavari, R.; Yen, C.-F.; Cheeseman, B. A.
2015-01-01
Our recently developed multi-physics computational model for the conventional gas metal arc welding (GMAW) joining process has been upgraded with respect to its predictive capabilities regarding the process optimization for the attainment of maximum ballistic limit within the weld. The original model consists of six modules, each dedicated to handling a specific aspect of the GMAW process, i.e., (a) electro-dynamics of the welding gun; (b) radiation-/convection-controlled heat transfer from the electric arc to the workpiece and mass transfer from the filler metal consumable electrode to the weld; (c) prediction of the temporal evolution and the spatial distribution of thermal and mechanical fields within the weld region during the GMAW joining process; (d) the resulting temporal evolution and spatial distribution of the material microstructure throughout the weld region; (e) spatial distribution of the as-welded material mechanical properties; and (f) spatial distribution of the material ballistic limit. In the present work, the model is upgraded through the introduction of the seventh module in recognition of the fact that identification of the optimum GMAW process parameters relative to the attainment of the maximum ballistic limit within the weld region entails the use of advanced optimization and statistical sensitivity analysis methods and tools. The upgraded GMAW process model is next applied to the case of butt welding of MIL A46100 (a prototypical high-hardness armor-grade martensitic steel) workpieces using filler metal electrodes made of the same material. The predictions of the upgraded GMAW process model pertaining to the spatial distribution of the material microstructure and ballistic limit-controlling mechanical properties within the MIL A46100 butt weld are found to be consistent with general expectations and prior observations.
The layered evolution of fabric and microstructure of snow at Point Barnola, Central East Antarctica
NASA Astrophysics Data System (ADS)
Calonne, Neige; Montagnat, Maurine; Matzl, Margret; Schneebeli, Martin
2017-02-01
Snow fabric, defined as the distribution of the c-axis orientations of the ice crystals in snow, is poorly known. So far, only one study exits that measured snow fabric based on a statistically representative technique. This recent study has revealed the impact of temperature gradient metamorphism on the evolution of fabric in natural snow, based on cold laboratory experiments. On polar ice sheets, snow properties are currently investigated regarding their strong variability in time and space, notably because of their potential influence on firn processes and consequently on ice core analysis. Here, we present measurements of fabric and microstructure of snow from Point Barnola, East Antarctica (close to Dome C). We analyzed a snow profile from 0 to 3 m depth, where temperature gradients occur. The main contributions of the paper are (1) a detailed characterization of snow in the upper meters of the ice sheet, especially by providing data on snow fabric, and (2) the study of a fundamental snow process, never observed up to now in a natural snowpack, namely the role of temperature gradient metamorphism on the evolution of the snow fabric. Snow samples were scanned by micro-tomography to measure continuous profiles of microstructural properties (density, specific surface area and pore thickness). Fabric analysis was performed using an automatic ice texture analyzer on 77 representative thin sections cut out from the samples. Different types of snow fabric could be identified and persist at depth. Snow fabric is significantly correlated with snow microstructure, pointing to the simultaneous influence of temperature gradient metamorphism on both properties. We propose a mechanism based on preferential grain growth to explain the fabric evolution under temperature gradients. Our work opens the question of how such a layered profile of fabric and microstructure evolves at depth and further influences the physical and mechanical properties of snow and firn. More generally, it opens the way to further studies on the influence of the snow fabric in snow processes related to anisotropic properties of ice such as grain growth, mechanical response, electromagnetic behavior.
Evolution of microstructure and precipitates in 2xxx aluminum alloy after severe plastic deformation
NASA Astrophysics Data System (ADS)
Adamczyk-Cieslak, B.; Zdunek, J.; Mizera, J.
2016-04-01
This paper investigates the influence of precipitation on the microstructure development in a 2xxx aluminum alloy subjected to hydrostatic extrusion. A three step reduction of the diameter was performed using hydrostatic extrusion (HE) process: from 20mm (initial state) to 10 mm, 5 mm and 3 mm, which corresponds to the logarithmic deformations ɛ = 1.4, ɛ = 2.8 and ɛ = 3.8 respectively. The microstructure and precipitation analysis before and after deformation was performed using transmission electron microscope (TEM), and scanning electron microscopy (SEM). As a result of the tests, a very significant influence of precipitation on the degree of refinement and mechanism of microstructure transformation was stated.
1999-04-01
The Equiaxed Dendritic Solidification Experiment (EDSE) is a material sciences investigation under the Formation of Microstructures/pattern formation discipline. The objective is to study the microstructural evolution of and thermal interactions between several equiaxed crystals growing dendritically in a supercooled melt of a pure and transparent substance under diffusion controlled conditions. This image shows the isothermal bath and video system for the EDSE in the Microgravity Development Lab (MDL).
NASA Astrophysics Data System (ADS)
Haidemenopoulos, G. N.; Constantinou, M.; Kamoutsi, H.; Krizan, D.; Bellas, I.; Koutsokeras, L.; Constantinides, G.
2018-06-01
X-ray diffraction analysis, magnetic force microscopy, and the saturation magnetization method have been employed to study the evolution of the percentage and size of retained austenite (RA) particles during strain-induced transformation in a transformation-induced plasticity (TRIP) steel. A low-alloy TRIP-700 steel with nominal composition Fe-0.2C-0.34Si-1.99Mn-1Al (mass%) was subjected to interrupted tensile testing at strain levels of 0-22% and the microstructure subsequently studied. The results of the three experimental techniques were in very good agreement regarding the estimated austenite volume fraction and its evolution with strain. Furthermore, this multitechnique approach revealed that the average particle size of RA reduced as the applied strain was increased, suggesting that larger particles are less stable and more susceptible to strain-induced phase transformation. Such experimentally determined evolution of the austenite size with strain could serve as an input to kinetic models that aim to predict the strain-induced transformation in low-alloy TRIP steels.
Shi, Cangji; Lai, Jing; Chen, X.-Grant
2014-01-01
The hot deformation behavior and microstructural evolution of an Al-Zn-Mg-Cu (7150) alloy was studied during hot compression at various temperatures (300 to 450 °C) and strain rates (0.001 to 10 s−1). A decline ratio map of flow stresses was proposed and divided into five deformation domains, in which the flow stress behavior was correlated with different microstructures and dynamic softening mechanisms. The results reveal that the dynamic recovery is the sole softening mechanism at temperatures of 300 to 400 °C with various strain rates and at temperatures of 400 to 450 °C with strain rates between 1 and 10 s−1. The level of dynamic recovery increases with increasing temperature and with decreasing strain rate. At the high deformation temperature of 450 °C with strain rates of 0.001 to 0.1 s−1, a partially recrystallized microstructure was observed, and the dynamic recrystallization (DRX) provided an alternative softening mechanism. Two kinds of DRX might operate at the high temperature, in which discontinuous dynamic recrystallization was involved at higher strain rates and continuous dynamic recrystallization was implied at lower strain rates. PMID:28788454
Chen, Tao-Hsing; Tsai, Chih-Kai
2015-01-01
In this study, the high strain rate deformation behavior and the microstructure evolution of Zr-Cu-Al-Ni metallic glasses under various strain rates were investigated. The influence of strain and strain rate on the mechanical properties and fracture behavior, as well as microstructural properties was also investigated. Before mechanical testing, the structure and thermal stability of the Zr-Cu-Al-Ni metallic glasses were studied with X-ray diffraction (XRD) and differential scanning calorimeter. The mechanical property experiments and microstructural observations of Zr-Cu-Al-Ni metallic glasses under different strain rates ranging from 10−3 to 5.1 × 103 s−1 and at temperatures of 25 °C were investigated using compressive split-Hopkinson bar (SHPB) and an MTS tester. An in situ transmission electron microscope (TEM) nanoindenter was used to carry out compression tests and investigate the deformation behavior arising at nanopillars of the Zr-based metallic glass. The formation and interaction of shear band during the plastic deformation were investigated. Moreover, it was clearly apparent that the mechanical strength and ductility could be enhanced by impeding the penetration of shear bands with reinforced particles. PMID:28788034
NASA Astrophysics Data System (ADS)
Dash, Manmath Kumar; Karthikeyan, T.; Mythili, R.; Vijayanand, V. D.; Saroja, S.
2017-10-01
This paper presents the results of microstructural evolution and mechanical properties in 304H Cu grade austenite stainless (SS 304HCu) during long-term exposure at high temperatures. The predicted phase composition as a function of temperature obtained using JMatPro® software was confirmed in conjunction with the microstructural evolution characterized by scanning and transmission electron microscopy. Microstructures revealed primary Nb(C,N), M23C6 precipitates at γ-grain boundaries, fine secondary Nb(C,N) intragranular carbides, and a uniform precipitation of <40-nm-sized spherical Cu-rich phase after thermal aging for 10,000 hours at 903 K (630 °C). The impression creep rate at 300 MPa increased by a factor of 20 between 873 K and 923 K (600 °C and 650 °C). The creep rate at 903 K (630 °C) was found to moderately reduce with aging time, signifying the role of Cu-rich phase in improving the creep resistance. The deformation zones and the recrystallization behavior of the plastic zone in creep tested specimen was assessed using Electron backscatter diffraction technique.
Lim, Karkeng; Abdul Hamid, Muhammad Azmi; Shamsudin, Roslinda; Al-Hardan, N.H.; Mansor, Ishak; Chiu, Weesiong
2016-01-01
In this paper, we address the synthesis of nano-coalesced microstructured zinc oxide thin films via a simple thermal evaporation process. The role of synthesis temperature on the structural, morphological, and optical properties of the prepared zinc oxide samples was deeply investigated. The obtained photoluminescence and X-ray photoelectron spectroscopy outcomes will be used to discuss the surface structure defects of the prepared samples. The results indicated that the prepared samples are polycrystalline in nature, and the sample prepared at 700 °C revealed a tremendously c-axis oriented zinc oxide. The temperature-driven morphological evolution of the zinc oxide nano-coalesced microstructures was perceived, resulting in transformation of quasi-mountain chain-like to pyramidal textured zinc oxide with increasing the synthesis temperature. The results also impart that the sample prepared at 500 °C shows a higher percentage of the zinc interstitial and oxygen vacancies. Furthermore, the intensity of the photoluminescence emission in the ultraviolet region was enhanced as the heating temperature increased from 500 °C to 700 °C. Lastly, the growth mechanism of the zinc oxide nano-coalesced microstructures is discussed according to the reaction conditions. PMID:28773425
NASA Astrophysics Data System (ADS)
Gatti, J. R.; Bhattacharjee, P. P.
2014-12-01
Evolution of microstructure and texture during severe deformation and annealing was studied in Al-2.5%Mg alloy processed by two different routes, namely, monotonic Accumulative Roll Bonding (ARB) and a hybrid route combining ARB and conventional rolling (CR). For this purpose Al-2.5%Mg sheets were subjected to 5 cycles of monotonic ARB (equivalent strain (ɛeq) = 4.0) processing while in the hybrid route (ARB + CR) 3 cycle ARB-processed sheets were further deformed by conventional rolling to 75% reduction in thickness (ɛeq = 4.0). Although formation of ultrafine structure was observed in the two processing routes, the monotonic ARB—processed material showed finer microstructure but weak texture as compared to the ARB + CR—processed material. After complete recrystallization, the ARB + CR-processed material showed weak cube texture ({001}<100>) but the cube component was almost negligible in the monotonic ARB-processed material-processed material. However, the ND-rotated cube components were stronger in the monotonic ARB-processed material-processed material. The observed differences in the microstructure and texture evolution during deformation and annealing could be explained by the characteristic differences of the two processing routes.
Barashev, A. V.; Golubov, S. I.; Stoller, R. E.
2015-06-01
We studied the radiation growth of zirconium using a reaction–diffusion model which takes into account intra-cascade clustering of self-interstitial atoms and one-dimensional diffusion of interstitial clusters. The observed dose dependence of strain rates is accounted for by accumulation of sessile dislocation loops during irradiation. Moreover, the computational model developed and fitted to available experimental data is applied to study deformation of Zr single crystals under irradiation up to hundred dpa. Finally, the effect of cold work and the reasons for negative prismatic strains and co-existence of vacancy and interstitial loops are elucidated.
NASA Astrophysics Data System (ADS)
Nicholson, D. E.; Padula, S. A.; Benafan, O.; Vaidyanathan, R.
2017-06-01
In situ neutron diffraction was used to provide insights into martensite variant microstructures during isothermal, isobaric, and isostrain loading in shape memory NiTi. The results show that variant microstructures were equivalent for the corresponding strain, and more importantly, the reversibility and equivalency were immediately evident in variant microstructures that were first formed isobarically but then reoriented to near random self-accommodated microstructures following isothermal deformation. Variant microstructures formed isothermally were not significantly affected by a subsequent thermal cycle under constant strain. In all loading cases considered, the resulting variant microstructure correlated with strain and did not correlate with stress. Based on the ability to select a variant microstructure for a given strain despite thermomechanical loading history, the results demonstrated here can be obtained by following any sequence of thermomechanical loading paths over multiple cycles. Thus, for training shape memory alloys (repeating thermomechanical cycling to obtain the desired variant microstructure), optimal paths can be selected so as to minimize the number of training cycles required, thereby increasing the overall stability and fatigue life of these alloys in actuator or medical applications.
Cho, Yi-Gil; Kim, Jin-You; Cho, Hoon-Hwe; Cha, Pil-Ryung; Suh, Dong-Woo; Lee, Jae Kon; Han, Heung Nam
2012-01-01
An implicit finite element model was developed to analyze the deformation behavior of low carbon steel during phase transformation. The finite element model was coupled hierarchically with a phase field model that could simulate the kinetics and micro-structural evolution during the austenite-to-ferrite transformation of low carbon steel. Thermo-elastic-plastic constitutive equations for each phase were adopted to confirm the transformation plasticity due to the weaker phase yielding that was proposed by Greenwood and Johnson. From the simulations under various possible plastic properties of each phase, a more quantitative understanding of the origin of transformation plasticity was attempted by a comparison with the experimental observation. PMID:22558295
NASA Astrophysics Data System (ADS)
Bai, Xian-Ming; Ke, Huibin; Zhang, Yongfeng; Spencer, Benjamin W.
2017-11-01
Neutron irradiation in light water reactors can induce precipitation of nanometer sized Cu clusters in reactor pressure vessel steels. The Cu precipitates impede dislocation gliding, leading to an increase in yield strength (hardening) and an upward shift of ductile-to-brittle transition temperature (embrittlement). In this work, cluster dynamics modeling is used to model the entire Cu precipitation process (nucleation, growth, and coarsening) in a Fe-0.3at.%Cu alloy under neutron irradiation at 300°C based on the homogenous nucleation mechanism. The evolution of the Cu cluster number density and mean radius predicted by the modeling agrees well with experimental data reported in literature for the same alloy under the same irradiation conditions. The predicted precipitation kinetics is used as input for a dispersed barrier hardening model to correlate the microstructural evolution with the radiation hardening and embrittlement in this alloy. The predicted radiation hardening agrees well with the mechanical test results in the literature. Limitations of the model and areas for future improvement are also discussed in this work.
2010-09-01
effects of crystallographic texture on the high-rate shear response of a Ti - 6Al - 4V alloy. Schoenfeld and Kad (2002) found that lattice orientations affect...shear response in Ti - 6Al - 4V plates’, Int. J. Plasticity, Vol. 18, pp.461–486. Starink, M.J., Wang, P., Sinclair, I. and Gregson, P.J. (1999... porosity and ceramic inclusions. Rezvanian et al. (2006) studied evolution of dislocation cells in aluminium undergoing severe plastic deformation using
Modeling of AA5083 Material-Microstructure Evolution During Butt Friction-Stir Welding
2010-07-01
a rigid material. Its density and thermal properties are set to that of AISI- H13 , the hot-worked tool steel which is often used as a FSW- tool ...joining process (Ref 1-3). Within FSW, a (typically) cylindrical tool - pin (threaded at the bottom and terminated with a circular-plate shape shoulder...applied to the shoulder and owing to frictional sliding and plastic deforma- tion, substantial amount of heat is generated at the tool /work- piece
2006-10-30
acknowledges funding from the ‘‘ Programa Torres Quevedo’’ of the Spanish Ministerio de Educación y Ciencia. References [1] Nix WD. Metall Mater Trans A...University of Madrid E. T. S. de Ingenieros de Caminos Madrid 28040 Spain 8. PERFORMING ORGANIZATION REPORT NUMBER N/A 10. SPONSOR...Rodney * Génie Physique et Mécanique des Matériaux (UMR CNRS 5010), Institut National Polytechnique de Grenoble, 101 rue de la Physique, 38402
2006-10-30
acknowledges funding from the ‘‘ Programa Torres Quevedo’’ of the Spanish Ministerio de Educación y Ciencia. References [1] Nix WD. Metall Mater Trans A...University of Madrid E. T. S. de Ingenieros de Caminos Madrid 28040 Spain 8. PERFORMING ORGANIZATION REPORT NUMBER N/A 10. SPONSOR...Rodney * Génie Physique et Mécanique des Matériaux (UMR CNRS 5010), Institut National Polytechnique de Grenoble, 101 rue de la Physique, 38402
A multiphysics microstructure-resolved model for silicon anode lithium-ion batteries
NASA Astrophysics Data System (ADS)
Wang, Miao; Xiao, Xinran; Huang, Xiaosong
2017-04-01
Silicon (Si) is one of the most promising next generation anode materials for lithium-ion batteries (LIBs), but the use of Si in LIBs has been rather limited. The main challenge is its large volume change (up to 300%) during battery cycling. This can lead to the fracture of Si, failure at the interfaces between electrode components, and large dimensional change on the cell level. To optimize the Si electrode/battery design, a model that considers the interactions of different cell components is needed. This paper presents the development of a multiphysics microstructure-resolved model (MRM) for LIB cells with a-Si anode. The model considered the electrochemical reactions, Li transports in electrolyte and electrodes, dimensional changes and stresses, property evolution with the structure, and the coupling relationships. Important model parameters, such as the diffusivity, reaction rate constant, and apparent transfer coefficient, were determined by correlating the simulation results to experiments. The model was validated with experimental results in the literature. The use of this model was demonstrated in a parameter study of Si nanowall|Li cells. The specific and volumetric capacities of the cell as a function of the size, length/size ratio, spacing of the nanostructure, and Li+ concentration in electrolyte were investigated.
Damage Mechanisms and Mechanical Properties of High-Strength Multiphase Steels
Heibel, Sebastian; Dettinger, Thomas; Nester, Winfried; Tekkaya, A. Erman
2018-01-01
The usage of high-strength steels for structural components and reinforcement parts is inevitable for modern car-body manufacture in reaching lightweight design as well as increasing passive safety. Depending on their microstructure these steels show differing damage mechanisms and various mechanical properties which cannot be classified comprehensively via classical uniaxial tensile testing. In this research, damage initiation, evolution and final material failure are characterized for commercially produced complex-phase (CP) and dual-phase (DP) steels in a strength range between 600 and 1000 MPa. Based on these investigations CP steels with their homogeneous microstructure are characterized as damage tolerant and hence less edge-crack sensitive than DP steels. As final fracture occurs after a combination of ductile damage evolution and local shear band localization in ferrite grains at a characteristic thickness strain, this strain measure is introduced as a new parameter for local formability. In terms of global formability DP steels display advantages because of their microstructural composition of soft ferrite matrix including hard martensite particles. Combining true uniform elongation as a measure for global formability with the true thickness strain at fracture for local formability the mechanical material response can be assessed on basis of uniaxial tensile testing incorporating all microstructural characteristics on a macroscopic scale. Based on these findings a new classification scheme for the recently developed high-strength multiphase steels with significantly better formability resulting of complex underlying microstructures is introduced. The scheme overcomes the steel designations using microstructural concepts, which provide no information about design and production properties. PMID:29747417
A phase field model for segregation and precipitation induced by irradiation in alloys
NASA Astrophysics Data System (ADS)
Badillo, A.; Bellon, P.; Averback, R. S.
2015-04-01
A phase field model is introduced to model the evolution of multicomponent alloys under irradiation, including radiation-induced segregation and precipitation. The thermodynamic and kinetic components of this model are derived using a mean-field model. The mobility coefficient and the contribution of chemical heterogeneity to free energy are rescaled by the cell size used in the phase field model, yielding microstructural evolutions that are independent of the cell size. A new treatment is proposed for point defect clusters, using a mixed discrete-continuous approach to capture the stochastic character of defect cluster production in displacement cascades, while retaining the efficient modeling of the fate of these clusters using diffusion equations. The model is tested on unary and binary alloy systems using two-dimensional simulations. In a unary system, the evolution of point defects under irradiation is studied in the presence of defect clusters, either pre-existing ones or those created by irradiation, and compared with rate theory calculations. Binary alloys with zero and positive heats of mixing are then studied to investigate the effect of point defect clustering on radiation-induced segregation and precipitation in undersaturated solid solutions. Lastly, irradiation conditions and alloy parameters leading to irradiation-induced homogeneous precipitation are investigated. The results are discussed in the context of experimental results reported for Ni-Si and Al-Zn undersaturated solid solutions subjected to irradiation.