Ion-acoustic and electron-acoustic type nonlinear waves in dusty plasmas
NASA Astrophysics Data System (ADS)
Volosevich, A.-V.; Meister, C.-V.
2003-04-01
In the present work, two three-dimensional nonlinear theoretical models of electrostatic solitary waves are investigated within the frame of magnetohydrodynamics. Both times, a multi-component plasma is considered, which consists of hot electrons with a rather flexible distribution function, hot ions with Boltzmann-type distribution, and (negatively as well as positively charged) dust. Additionally, cold ion beams are taken into account in the model to study ion-acoustic structures (IAS), and cold electron beams are included into the model to investigate electron-acoustic structures (EAS). The numerical results of the considered theoretical models allow to make the following conclusions: 1) Electrostatic structures with negative potential (of rarefaction type) are formed both in the IAS model and in the EAS model, but structures with negative potential (of compressional type) are formed in the IAS model only. 2) The intervals of various plasma parameters (velocities of ion and electron beams, temperatures, densities of the plasma components, ions' masses), for which the existence of IAS and EAS solitary waves and structures is possible, are calculated. 3) Further, the parameters of the electrostatic structures (wave amplitudes, scales along and perpendicular to the magnetic field, velocities) are estimated. 4) The application of the present numerical simulation for multi-component plasmas to various astrophysical systems under different physical conditions is discussed.
NASA Astrophysics Data System (ADS)
Kuttner, Benjamin George
Natural fire return intervals are relatively long in eastern Canadian boreal forests and often allow for the development of stands with multiple, successive cohorts of trees. Multi-cohort forest management (MCM) provides a strategy to maintain such multi-cohort stands that focuses on three broad phases of increasingly complex, post-fire stand development, termed "cohorts", and recommends different silvicultural approaches be applied to emulate different cohort types. Previous research on structural cohort typing has relied upon primarily subjective classification methods; in this thesis, I develop more comprehensive and objective methods for three common boreal mixedwood and black spruce forest types in northeastern Ontario. Additionally, I examine relationships between cohort types and stand age, productivity, and disturbance history and the utility of airborne LiDAR to retrieve ground-based classifications and to extend structural cohort typing from plot- to stand-levels. In both mixedwood and black spruce forest types, stand age and age-related deadwood features varied systematically with cohort classes in support of an age-based interpretation of increasing cohort complexity. However, correlations of stand age with cohort classes were surprisingly weak. Differences in site productivity had a significant effect on the accrual of increasingly complex multi-cohort stand structure in both forest types, especially in black spruce stands. The effects of past harvesting in predictive models of class membership were only significant when considered in isolation of age. As an age-emulation strategy, the three cohort model appeared to be poorly suited to black spruce forests where the accrual of structural complexity appeared to be more a function of site productivity than age. Airborne LiDAR data appear to be particularly useful in recovering plot-based cohort types and extending them to the stand-level. The main gradients of structural variability detected using LiDAR were similar between boreal mixedwood and black spruce forest types; the best LiDAR-based models of cohort type relied upon combinations of tree size, size heterogeneity, and tree density related variables. The methods described here to measure, classify, and predict cohort-related structural complexity assist in translating the conceptual three cohort model to a more precise, measurement-based management system. In addition, the approaches presented here to measure and classify stand structural complexity promise to significantly enhance the detail of structural information in operational forest inventories in support of a wide array of forest management and conservation applications.
Evaluating Multi-Input/Multi-Output Digital Control Systems
NASA Technical Reports Server (NTRS)
Pototzky, Anthony S.; Wieseman, Carol D.; Hoadley, Sherwood T.; Mukhopadhyay, Vivek
1994-01-01
Controller-performance-evaluation (CPE) methodology for multi-input/multi-output (MIMO) digital control systems developed. Procedures identify potentially destabilizing controllers and confirm satisfactory performance of stabilizing ones. Methodology generic and used in many types of multi-loop digital-controller applications, including digital flight-control systems, digitally controlled spacecraft structures, and actively controlled wind-tunnel models. Also applicable to other complex, highly dynamic digital controllers, such as those in high-performance robot systems.
NASA Technical Reports Server (NTRS)
Pototzky, Anthony; Wieseman, Carol; Hoadley, Sherwood Tiffany; Mukhopadhyay, Vivek
1991-01-01
Described here is the development and implementation of on-line, near real time controller performance evaluation (CPE) methods capability. Briefly discussed are the structure of data flow, the signal processing methods used to process the data, and the software developed to generate the transfer functions. This methodology is generic in nature and can be used in any type of multi-input/multi-output (MIMO) digital controller application, including digital flight control systems, digitally controlled spacecraft structures, and actively controlled wind tunnel models. Results of applying the CPE methodology to evaluate (in near real time) MIMO digital flutter suppression systems being tested on the Rockwell Active Flexible Wing (AFW) wind tunnel model are presented to demonstrate the CPE capability.
Structural damage detection-oriented multi-type sensor placement with multi-objective optimization
NASA Astrophysics Data System (ADS)
Lin, Jian-Fu; Xu, You-Lin; Law, Siu-Seong
2018-05-01
A structural damage detection-oriented multi-type sensor placement method with multi-objective optimization is developed in this study. The multi-type response covariance sensitivity-based damage detection method is first introduced. Two objective functions for optimal sensor placement are then introduced in terms of the response covariance sensitivity and the response independence. The multi-objective optimization problem is formed by using the two objective functions, and the non-dominated sorting genetic algorithm (NSGA)-II is adopted to find the solution for the optimal multi-type sensor placement to achieve the best structural damage detection. The proposed method is finally applied to a nine-bay three-dimensional frame structure. Numerical results show that the optimal multi-type sensor placement determined by the proposed method can avoid redundant sensors and provide satisfactory results for structural damage detection. The restriction on the number of each type of sensors in the optimization can reduce the searching space in the optimization to make the proposed method more effective. Moreover, how to select a most optimal sensor placement from the Pareto solutions via the utility function and the knee point method is demonstrated in the case study.
A review of direct numerical simulations of astrophysical detonations and their implications
Parete-Koon, Suzanne T.; Smith, Christopher R.; Papatheodore, Thomas L.; ...
2013-04-11
Multi-dimensional direct numerical simulations (DNS) of astrophysical detonations in degenerate matter have revealed that the nuclear burning is typically characterized by cellular structure caused by transverse instabilities in the detonation front. Type Ia supernova modelers often use one- dimensional DNS of detonations as inputs or constraints for their whole star simulations. While these one-dimensional studies are useful tools, the true nature of the detonation is multi-dimensional. The multi-dimensional structure of the burning influences the speed, stability, and the composition of the detonation and its burning products, and therefore, could have an impact on the spectra of Type Ia supernovae. Considerablemore » effort has been expended modeling Type Ia supernovae at densities above 1x10 7 g∙cm -3 where the complexities of turbulent burning dominate the flame propagation. However, most full star models turn the nuclear burning schemes off when the density falls below 1x10 7 g∙cm -3 and distributed burning begins. The deflagration to detonation transition (DDT) is believed to occur at just these densities and consequently they are the densities important for studying the properties of the subsequent detonation. In conclusion, this work reviews the status of DNS studies of detonations and their possible implications for Type Ia supernova models. It will cover the development of Detonation theory from the first simple Chapman-Jouguet (CJ) detonation models to the current models based on the time-dependent, compressible, reactive flow Euler equations of fluid dynamics.« less
Uncertainty analysis of multi-rate kinetics of uranium desorption from sediments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Xiaoying; Liu, Chongxuan; Hu, Bill X.
2014-01-01
A multi-rate expression for uranyl [U(VI)] surface complexation reactions has been proposed to describe diffusion-limited U(VI) sorption/desorption in heterogeneous subsurface sediments. An important assumption in the rate expression is that its rate constants follow a certain type probability distribution. In this paper, a Bayes-based, Differential Evolution Markov Chain method was used to assess the distribution assumption and to analyze parameter and model structure uncertainties. U(VI) desorption from a contaminated sediment at the US Hanford 300 Area, Washington was used as an example for detail analysis. The results indicated that: 1) the rate constants in the multi-rate expression contain uneven uncertaintiesmore » with slower rate constants having relative larger uncertainties; 2) the lognormal distribution is an effective assumption for the rate constants in the multi-rate model to simualte U(VI) desorption; 3) however, long-term prediction and its uncertainty may be significantly biased by the lognormal assumption for the smaller rate constants; and 4) both parameter and model structure uncertainties can affect the extrapolation of the multi-rate model with a larger uncertainty from the model structure. The results provide important insights into the factors contributing to the uncertainties of the multi-rate expression commonly used to describe the diffusion or mixing-limited sorption/desorption of both organic and inorganic contaminants in subsurface sediments.« less
NASA Astrophysics Data System (ADS)
Luo, Yangjun; Niu, Yanzhuang; Li, Ming; Kang, Zhan
2017-06-01
In order to eliminate stress-related wrinkles in cable-suspended membrane structures and to provide simple and reliable deployment, this study presents a multi-material topology optimization model and an effective solution procedure for generating optimal connected layouts for membranes and cables. On the basis of the principal stress criterion of membrane wrinkling behavior and the density-based interpolation of multi-phase materials, the optimization objective is to maximize the total structural stiffness while satisfying principal stress constraints and specified material volume requirements. By adopting the cosine-type relaxation scheme to avoid the stress singularity phenomenon, the optimization model is successfully solved through a standard gradient-based algorithm. Four-corner tensioned membrane structures with different loading cases were investigated to demonstrate the effectiveness of the proposed method in automatically finding the optimal design composed of curved boundary cables and wrinkle-free membranes.
NASA Astrophysics Data System (ADS)
Moura, Y. M.; Hilker, T.; Galvão, L. S.; Santos, J. R.; Lyapustin, A.; Sousa, C. H. R. D.; McAdam, E.
2014-12-01
The sensitivity of the Amazon rainforests to climate change has received great attention by the scientific community due to the important role that this vegetation plays in the global carbon, water and energy cycle. The spatial and temporal variability of tropical forests across Amazonia, and their phenological, ecological and edaphic cycles are still poorly understood. The objective of this work was to infer seasonal and spatial variability of forest structure in the Brazilian Amazon based on anisotropy of multi-angle satellite observations. We used observations from the Moderate Resolution Imaging Spectroradiometer (MODIS/Terra and Aqua) processed by a new Multi-Angle Implementation Atmospheric Correction Algorithm (MAIAC) to investigate how multi-angular spectral response from satellite imagery can be used to analyze structural variability of Amazon rainforests. We calculated differences acquired from forward and backscatter reflectance by modeling the bi-directional reflectance distribution function to infer seasonal and spatial changes in vegetation structure. Changes in anisotropy were larger during the dry season than during the wet season, suggesting intra-annual changes in vegetation structure and density. However, there were marked differences in timing and amplitude depending on forest type. For instance differences between reflectance hotspot and darkspot showed more anisotropy in the open Ombrophilous forest than in the dense Ombrophilous forest. Our results show that multi-angle data can be useful for analyzing structural differences in various forest types and for discriminating different seasonal effects within the Amazon basin. Also, multi-angle data could help solve uncertainties about sensitivity of different tropical forest types to light versus rainfall. In conclusion, multi-angular information, as expressed by the anisotropy of spectral reflectance, may complement conventional studies and provide significant improvements over approaches that are based on vegetation indices alone.
Small-scale multi-axial hybrid simulation of a shear-critical reinforced concrete frame
NASA Astrophysics Data System (ADS)
Sadeghian, Vahid; Kwon, Oh-Sung; Vecchio, Frank
2017-10-01
This study presents a numerical multi-scale simulation framework which is extended to accommodate hybrid simulation (numerical-experimental integration). The framework is enhanced with a standardized data exchange format and connected to a generalized controller interface program which facilitates communication with various types of laboratory equipment and testing configurations. A small-scale experimental program was conducted using a six degree-of-freedom hydraulic testing equipment to verify the proposed framework and provide additional data for small-scale testing of shearcritical reinforced concrete structures. The specimens were tested in a multi-axial hybrid simulation manner under a reversed cyclic loading condition simulating earthquake forces. The physical models were 1/3.23-scale representations of a beam and two columns. A mixed-type modelling technique was employed to analyze the remainder of the structures. The hybrid simulation results were compared against those obtained from a large-scale test and finite element analyses. The study found that if precautions are taken in preparing model materials and if the shear-related mechanisms are accurately considered in the numerical model, small-scale hybrid simulations can adequately simulate the behaviour of shear-critical structures. Although the findings of the study are promising, to draw general conclusions additional test data are required.
NASA Astrophysics Data System (ADS)
Chen, Yiying; Ryder, James; Bastrikov, Vladislav; McGrath, Matthew J.; Naudts, Kim; Otto, Juliane; Ottlé, Catherine; Peylin, Philippe; Polcher, Jan; Valade, Aude; Black, Andrew; Elbers, Jan A.; Moors, Eddy; Foken, Thomas; van Gorsel, Eva; Haverd, Vanessa; Heinesch, Bernard; Tiedemann, Frank; Knohl, Alexander; Launiainen, Samuli; Loustau, Denis; Ogée, Jérôme; Vessala, Timo; Luyssaert, Sebastiaan
2016-09-01
Canopy structure is one of the most important vegetation characteristics for land-atmosphere interactions, as it determines the energy and scalar exchanges between the land surface and the overlying air mass. In this study we evaluated the performance of a newly developed multi-layer energy budget in the ORCHIDEE-CAN v1.0 land surface model (Organising Carbon and Hydrology In Dynamic Ecosystems - CANopy), which simulates canopy structure and can be coupled to an atmospheric model using an implicit coupling procedure. We aim to provide a set of acceptable parameter values for a range of forest types. Top-canopy and sub-canopy flux observations from eight sites were collected in order to conduct this evaluation. The sites crossed climate zones from temperate to boreal and the vegetation types included deciduous, evergreen broad-leaved and evergreen needle-leaved forest with a maximum leaf area index (LAI; all-sided) ranging from 3.5 to 7.0. The parametrization approach proposed in this study was based on three selected physical processes - namely the diffusion, advection, and turbulent mixing within the canopy. Short-term sub-canopy observations and long-term surface fluxes were used to calibrate the parameters in the sub-canopy radiation, turbulence, and resistance modules with an automatic tuning process. The multi-layer model was found to capture the dynamics of sub-canopy turbulence, temperature, and energy fluxes. The performance of the new multi-layer model was further compared against the existing single-layer model. Although the multi-layer model simulation results showed few or no improvements to both the nighttime energy balance and energy partitioning during winter compared with a single-layer model simulation, the increased model complexity does provide a more detailed description of the canopy micrometeorology of various forest types. The multi-layer model links to potential future environmental and ecological studies such as the assessment of in-canopy species vulnerability to climate change, the climate effects of disturbance intensities and frequencies, and the consequences of biogenic volatile organic compound (BVOC) emissions from the terrestrial ecosystem.
Two Models of Raters in a Structured Oral Examination: Does It Make a Difference?
ERIC Educational Resources Information Center
Touchie, Claire; Humphrey-Murto, Susan; Ainslie, Martha; Myers, Kathryn; Wood, Timothy J.
2010-01-01
Oral examinations have become more standardized over recent years. Traditionally a small number of raters were used for this type of examination. Past studies suggested that more raters should improve reliability. We compared the results of a multi-station structured oral examination using two different rater models, those based in a station,…
NASA Astrophysics Data System (ADS)
Abdeljabbar Kharrat, Nourhene; Plateaux, Régis; Miladi Chaabane, Mariem; Choley, Jean-Yves; Karra, Chafik; Haddar, Mohamed
2018-05-01
The present work tackles the modeling of multi-physics systems applying a topological approach while proceeding with a new methodology using a topological modification to the structure of systems. Then the comparison with the Magos' methodology is made. Their common ground is the use of connectivity within systems. The comparison and analysis of the different types of modeling show the importance of the topological methodology through the integration of the topological modification to the topological structure of a multi-physics system. In order to validate this methodology, the case of Pogo-stick is studied. The first step consists in generating a topological graph of the system. Then the connectivity step takes into account the contact with the ground. During the last step of this research; the MGS language (Modeling of General System) is used to model the system through equations. Finally, the results are compared to those obtained by MODELICA. Therefore, this proposed methodology may be generalized to model multi-physics systems that can be considered as a set of local elements.
Optical and structural characterization of Ge clusters embedded in ZrO2
NASA Astrophysics Data System (ADS)
Agocs, E.; Zolnai, Z.; Rossall, A. K.; van den Berg, J. A.; Fodor, B.; Lehninger, D.; Khomenkova, L.; Ponomaryov, S.; Gudymenko, O.; Yukhymchuk, V.; Kalas, B.; Heitmann, J.; Petrik, P.
2017-11-01
The change of optical and structural properties of Ge nanoclusters in ZrO2 matrix have been investigated by spectroscopic ellipsometry versus annealing temperatures. Radio-frequency top-down magnetron sputtering approach was used to produce the samples of different types, i.e. single-layers of pure Ge, pure ZrO2 and Ge-rich-ZrO2 as well as multi-layers stacked of 40 periods of 5-nm-Ge-rich-ZrO2 layers alternated by 5-nm-ZrO2 ones. Germanium nanoclusters in ZrO2 host were formed by rapid-thermal annealing at 600-800 °C during 30 s in nitrogen atmosphere. Reference optical properties for pure ZrO2 and pure Ge have been extracted using single-layer samples. As-deposited multi-layer structures can be perfectly modeled using the effective medium theory. However, annealed multi-layers demonstrated a significant diffusion of elements that was confirmed by medium energy ion scattering measurements. This fact prevents fitting of such annealed structure either by homogeneous or by periodic multi-layer models.
NASA Technical Reports Server (NTRS)
Chamis, Christos C.; Abumeri, Galib H.
2000-01-01
Aircraft engines are assemblies of dynamically interacting components. Engine updates to keep present aircraft flying safely and engines for new aircraft are progressively required to operate in more demanding technological and environmental requirements. Designs to effectively meet those requirements are necessarily collections of multi-scale, multi-level, multi-disciplinary analysis and optimization methods and probabilistic methods are necessary to quantify respective uncertainties. These types of methods are the only ones that can formally evaluate advanced composite designs which satisfy those progressively demanding requirements while assuring minimum cost, maximum reliability and maximum durability. Recent research activities at NASA Glenn Research Center have focused on developing multi-scale, multi-level, multidisciplinary analysis and optimization methods. Multi-scale refers to formal methods which describe complex material behavior metal or composite; multi-level refers to integration of participating disciplines to describe a structural response at the scale of interest; multidisciplinary refers to open-ended for various existing and yet to be developed discipline constructs required to formally predict/describe a structural response in engine operating environments. For example, these include but are not limited to: multi-factor models for material behavior, multi-scale composite mechanics, general purpose structural analysis, progressive structural fracture for evaluating durability and integrity, noise and acoustic fatigue, emission requirements, hot fluid mechanics, heat-transfer and probabilistic simulations. Many of these, as well as others, are encompassed in an integrated computer code identified as Engine Structures Technology Benefits Estimator (EST/BEST) or Multi-faceted/Engine Structures Optimization (MP/ESTOP). The discipline modules integrated in MP/ESTOP include: engine cycle (thermodynamics), engine weights, internal fluid mechanics, cost, mission and coupled structural/thermal, various composite property simulators and probabilistic methods to evaluate uncertainty effects (scatter ranges) in all the design parameters. The objective of the proposed paper is to briefly describe a multi-faceted design analysis and optimization capability for coupled multi-discipline engine structures optimization. Results are presented for engine and aircraft type metrics to illustrate the versatility of that capability. Results are also presented for reliability, noise and fatigue to illustrate its inclusiveness. For example, replacing metal rotors with composites reduces the engine weight by 20 percent, 15 percent noise reduction, and an order of magnitude improvement in reliability. Composite designs exist to increase fatigue life by at least two orders of magnitude compared to state-of-the-art metals.
A dynamic ecosystem growth model for forests at high complexity structure
NASA Astrophysics Data System (ADS)
Collalti, A.; Perugini, L.; Chiti, T.; Matteucci, G.; Oriani, A.; Santini, M.; Papale, D.; Valentini, R.
2012-04-01
Forests ecosystem play an important role in carbon cycle, biodiversity conservation and for other ecosystem services and changes in their structure and status perturb a delicate equilibrium that involves not only vegetation components but also biogeochemical cycles and global climate. The approaches to determine the magnitude of these effects are nowadays various and one of those include the use of models able to simulate structural changes and the variations in forests yield The present work shows the development of a forest dynamic model, on ecosystem spatial scale using the well known light use efficiency to determine Gross Primary Production. The model is predictive and permits to simulate processes that determine forest growth, its dynamic and the effects of forest management using eco-physiological parameters easy to be assessed and to be measured. The model has been designed to consider a tri-dimensional cell structure composed by different vertical layers depending on the forest type that has to be simulated. These features enable the model to work on multi-layer and multi-species forest types, typical of Mediterranean environment, at the resolution of one hectare and at monthly time-step. The model simulates, for each layer, a value of available Photosynthetic Active Radiation (PAR) through Leaf Area Index, Light Extinction Coefficient and cell coverage, the transpiration rate that is closely linked to the intercepted light and the evaporation from soil. Using this model it is possible to evaluate the possible impacts of climate change on forests that may result in decrease or increase of productivity as well as the feedback of one or more dominated layers in terms of CO2 uptake in a forest stand and the effects of forest management activities during the forest harvesting cycle. The model has been parameterised, validated and applied in a multi-layer, multi-age and multi-species Italian turkey oak forest (Q. cerris L., C. betulus L. and C. avellana L.) where the medium-term (10 years) development of forest parameters were simulated. The results obtained for net primary production and for stem, root and foliage compartments as well as for forest structure i.e. Diameter at Breast Height, height and canopy cover are in good accordance with field data (R2>0.95). These results show how the model is able to predict forest yield as well as forest dynamic with good accuracy and encourage testing the model capability on other sites with a more complex forest structure and for long-time period with an higher spatial resolution.
Designing Microstructures/Structures for Desired Functional Material and Local Fields
2015-12-02
utilized to engineer multifunctional soft materials for multi-sensing, multi- actuating , human-machine interfaces. [3] Establish a theoretical framework...model for surface elasticity, (ii) derived a new type of Maxwell stress in soft materials due to quantum mechanical-elasticity coupling and...elucidated its ramification in engineering multifunctional soft materials, and (iii) demonstrated the possibility of concurrent magnetoelectricity and
Dynamic modeling and parameter estimation of a radial and loop type distribution system network
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jun Qui; Heng Chen; Girgis, A.A.
1993-05-01
This paper presents a new identification approach to three-phase power system modeling and model reduction taking power system network as multi-input, multi-output (MIMO) processes. The model estimate can be obtained in discrete-time input-output form, discrete- or continuous-time state-space variable form, or frequency-domain impedance transfer function matrix form. An algorithm for determining the model structure of this MIMO process is described. The effect of measurement noise on the approach is also discussed. This approach has been applied on a sample system and simulation results are also presented in this paper.
A multi-agent safety response model in the construction industry.
Meliá, José L
2015-01-01
The construction industry is one of the sectors with the highest accident rates and the most serious accidents. A multi-agent safety response approach allows a useful diagnostic tool in order to understand factors affecting risk and accidents. The special features of the construction sector can influence the relationships among safety responses along the model of safety influences. The purpose of this paper is to test a model explaining risk and work-related accidents in the construction industry as a result of the safety responses of the organization, the supervisors, the co-workers and the worker. 374 construction employees belonging to 64 small Spanish construction companies working for two main companies participated in the study. Safety responses were measured using a 45-item Likert-type questionnaire. The structure of the measure was analyzed using factor analysis and the model of effects was tested using a structural equation model. Factor analysis clearly identifies the multi-agent safety dimensions hypothesized. The proposed safety response model of work-related accidents, involving construction specific results, showed a good fit. The multi-agent safety response approach to safety climate is a useful framework for the assessment of organizational and behavioral risks in construction.
Modeling of a production system using the multi-agent approach
NASA Astrophysics Data System (ADS)
Gwiazda, A.; Sękala, A.; Banaś, W.
2017-08-01
The method that allows for the analysis of complex systems is a multi-agent simulation. The multi-agent simulation (Agent-based modeling and simulation - ABMS) is modeling of complex systems consisting of independent agents. In the case of the model of the production system agents may be manufactured pieces set apart from other types of agents like machine tools, conveyors or replacements stands. Agents are magazines and buffers. More generally speaking, the agents in the model can be single individuals, but you can also be defined as agents of collective entities. They are allowed hierarchical structures. It means that a single agent could belong to a certain class. Depending on the needs of the agent may also be a natural or physical resource. From a technical point of view, the agent is a bundle of data and rules describing its behavior in different situations. Agents can be autonomous or non-autonomous in making the decision about the types of classes of agents, class sizes and types of connections between elements of the system. Multi-agent modeling is a very flexible technique for modeling and model creating in the convention that could be adapted to any research problem analyzed from different points of views. One of the major problems associated with the organization of production is the spatial organization of the production process. Secondly, it is important to include the optimal scheduling. For this purpose use can approach multi-purposeful. In this regard, the model of the production process will refer to the design and scheduling of production space for four different elements. The program system was developed in the environment NetLogo. It was also used elements of artificial intelligence. The main agent represents the manufactured pieces that, according to previously assumed rules, generate the technological route and allow preprint the schedule of that line. Machine lines, reorientation stands, conveyors and transport devices also represent the other type of agent that are utilized in the described simulation. The article presents the idea of an integrated program approach and shows the resulting production layout as a virtual model. This model was developed in the NetLogo multi-agent program environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lian, Xiaojuan, E-mail: xjlian2005@gmail.com; Cartoixà, Xavier; Miranda, Enrique
2014-06-28
We depart from first-principle simulations of electron transport along paths of oxygen vacancies in HfO{sub 2} to reformulate the Quantum Point Contact (QPC) model in terms of a bundle of such vacancy paths. By doing this, the number of model parameters is reduced and a much clearer link between the microscopic structure of the conductive filament (CF) and its electrical properties can be provided. The new multi-scale QPC model is applied to two different HfO{sub 2}-based devices operated in the unipolar and bipolar resistive switching (RS) modes. Extraction of the QPC model parameters from a statistically significant number of CFsmore » allows revealing significant structural differences in the CF of these two types of devices and RS modes.« less
A closed-loop multi-level model of glucose homeostasis
Uluseker, Cansu; Simoni, Giulia; Dauriz, Marco; Matone, Alice
2018-01-01
Background The pathophysiologic processes underlying the regulation of glucose homeostasis are considerably complex at both cellular and systemic level. A comprehensive and structured specification for the several layers of abstraction of glucose metabolism is often elusive, an issue currently solvable with the hierarchical description provided by multi-level models. In this study we propose a multi-level closed-loop model of whole-body glucose homeostasis, coupled with the molecular specifications of the insulin signaling cascade in adipocytes, under the experimental conditions of normal glucose regulation and type 2 diabetes. Methodology/Principal findings The ordinary differential equations of the model, describing the dynamics of glucose and key regulatory hormones and their reciprocal interactions among gut, liver, muscle and adipose tissue, were designed for being embedded in a modular, hierarchical structure. The closed-loop model structure allowed self-sustained simulations to represent an ideal in silico subject that adjusts its own metabolism to the fasting and feeding states, depending on the hormonal context and invariant to circadian fluctuations. The cellular level of the model provided a seamless dynamic description of the molecular mechanisms downstream the insulin receptor in the adipocytes by accounting for variations in the surrounding metabolic context. Conclusions/Significance The combination of a multi-level and closed-loop modeling approach provided a fair dynamic description of the core determinants of glucose homeostasis at both cellular and systemic scales. This model architecture is intrinsically open to incorporate supplementary layers of specifications describing further individual components influencing glucose metabolism. PMID:29420588
NASA Astrophysics Data System (ADS)
Hu, Rong-Pan; Xu, You-Lin; Zhan, Sheng
2018-01-01
Estimation of lateral displacement and acceleration responses is essential to assess safety and serviceability of high-rise buildings under dynamic loadings including earthquake excitations. However, the measurement information from the limited number of sensors installed in a building structure is often insufficient for the complete structural performance assessment. An integrated multi-type sensor placement and response reconstruction method has thus been proposed by the authors to tackle this problem. To validate the feasibility and effectiveness of the proposed method, an experimental investigation using a cantilever beam with multi-type sensors is performed and reported in this paper. The experimental setup is first introduced. The finite element modelling and model updating of the cantilever beam are then performed. The optimal sensor placement for the best response reconstruction is determined by the proposed method based on the updated FE model of the beam. After the sensors are installed on the physical cantilever beam, a number of experiments are carried out. The responses at key locations are reconstructed and compared with the measured ones. The reconstructed responses achieve a good match with the measured ones, manifesting the feasibility and effectiveness of the proposed method. Besides, the proposed method is also examined for the cases of different excitations and unknown excitation, and the results prove the proposed method to be robust and effective. The superiority of the optimized sensor placement scheme is finally demonstrated through comparison with two other different sensor placement schemes: the accelerometer-only scheme and non-optimal sensor placement scheme. The proposed method can be applied to high-rise buildings for seismic performance assessment.
Linguistic multi-criteria decision-making with representing semantics by programming
NASA Astrophysics Data System (ADS)
Yang, Wu-E.; Ma, Chao-Qun; Han, Zhi-Qiu
2017-01-01
A linguistic multi-criteria decision-making method is introduced. In this method, a maximising discrimination programming assigns the semanteme values to linguistic variables to represent their semantics. Incomplete preferences from using linguistic information are expressed by the constraints of the model. Such assignment can amplify the difference between alternatives. Thus, the discrimination of the decision model is increased, which facilitates the decision-maker to rank or order the alternatives for making a decision. We also discuss the parameter setting and its influence, and use an application example to illustrate the proposed method. Further, the results with three types of semantic structure highlight the ability of the method in handling different semantic structures.
The optimal design of UAV wing structure
NASA Astrophysics Data System (ADS)
Długosz, Adam; Klimek, Wiktor
2018-01-01
The paper presents an optimal design of UAV wing, made of composite materials. The aim of the optimization is to improve strength and stiffness together with reduction of the weight of the structure. Three different types of functionals, which depend on stress, stiffness and the total mass are defined. The paper presents an application of the in-house implementation of the evolutionary multi-objective algorithm in optimization of the UAV wing structure. Values of the functionals are calculated on the basis of results obtained from numerical simulations. Numerical FEM model, consisting of different composite materials is created. Adequacy of the numerical model is verified by results obtained from the experiment, performed on a tensile testing machine. Examples of multi-objective optimization by means of Pareto-optimal set of solutions are presented.
Mathematical model of snake-type multi-directional wave generation
NASA Astrophysics Data System (ADS)
Muarif; Halfiani, Vera; Rusdiana, Siti; Munzir, Said; Ramli, Marwan
2018-01-01
Research on extreme wave generation is one intensive research on water wave study because the fact that the occurrence of this wave in the ocean can cause serious damage to the ships and offshore structures. One method to be used to generate the wave is self-correcting. This method controls the signal on the wavemakers in a wave tank. Some studies also consider the nonlinear wave generation in a wave tank by using numerical approach. Study on wave generation is essential in the effectiveness and efficiency of offshore structure model testing before it can be operated in the ocean. Generally, there are two types of wavemakers implemented in the hydrodynamic laboratory, piston-type and flap-type. The flap-type is preferred to conduct a testing to a ship in deep water. Single flap wavemaker has been explained in many studies yet snake-type wavemaker (has more than one flap) is still a case needed to be examined. Hence, the formulation in controlling the wavemaker need to be precisely analyzed such that the given input can generate the desired wave in the space-limited wave tank. By applying the same analogy and methodhology as the previous study, this article represents multi-directional wave generation by implementing snake-type wavemakers.
NASA Astrophysics Data System (ADS)
Wang, Meihua; Li, Rongshuai; Zhang, Wenze
2017-11-01
Multi-function construction platforms (MCPs) as an “old construction technology, new application” of the building facade construction equipment, its efforts to reduce labour intensity, improve labour productivity, ensure construction safety, shorten the duration of construction and other aspects of the effect are significant. In this study, the functional analysis of the multi-function construction platforms is carried out in the construction of the assembly building. Based on the general finite element software ANSYS, the static calculation and dynamic characteristics analysis of the MCPs structure are analysed, the simplified finite element model is constructed, and the selection of the unit, the processing and solution of boundary are under discussion and research. The maximum deformation value, the maximum stress value and the structural dynamic characteristic model are obtained. The dangerous parts of the platform structure are analysed, too. Multiple types of MCPs under engineering construction conditions are calculated, so as to put forward the rationalization suggestions for engineering application of the MCPs.
Compound Structure-Independent Activity Prediction in High-Dimensional Target Space.
Balfer, Jenny; Hu, Ye; Bajorath, Jürgen
2014-08-01
Profiling of compound libraries against arrays of targets has become an important approach in pharmaceutical research. The prediction of multi-target compound activities also represents an attractive task for machine learning with potential for drug discovery applications. Herein, we have explored activity prediction in high-dimensional target space. Different types of models were derived to predict multi-target activities. The models included naïve Bayesian (NB) and support vector machine (SVM) classifiers based upon compound structure information and NB models derived on the basis of activity profiles, without considering compound structure. Because the latter approach can be applied to incomplete training data and principally depends on the feature independence assumption, SVM modeling was not applicable in this case. Furthermore, iterative hybrid NB models making use of both activity profiles and compound structure information were built. In high-dimensional target space, NB models utilizing activity profile data were found to yield more accurate activity predictions than structure-based NB and SVM models or hybrid models. An in-depth analysis of activity profile-based models revealed the presence of correlation effects across different targets and rationalized prediction accuracy. Taken together, the results indicate that activity profile information can be effectively used to predict the activity of test compounds against novel targets. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Luo, Yantao; Zhang, Long; Teng, Zhidong; DeAngelis, Donald L.
2018-01-01
In this paper, a parasitism-mutualism-predation model is proposed to investigate the dynamics of multi-interactions among cuckoos, crows and cats with stage-structure and maturation time delays on cuckoos and crows. The crows permit the cuckoos to parasitize their nestlings (eggs) on the crow chicks (eggs). In return, the cuckoo nestlings produce a malodorous cloacal secretion to protect the crow chicks from predation by the cats, which is apparently beneficial to both the crow and cuckoo population. The multi-interactions, i.e., parasitism and mutualism between the cuckoos (nestlings) and crows (chicks), predation between the cats and crow chicks are modeled both by Holling-type II and Beddington-DeAngelis-type functional responses. The existence of positive equilibria of three subsystems of the model are discussed. The criteria for the global stability of the trivial equilibrium are established by the Krein-Rutman Theorem and other analysis methods. Moreover, the threshold dynamics for the coexistence and weak persistence of the model are obtained, and we show, both analytically and numerically, that the stabilities of the interior equilibria may change with the increasing maturation time delays. We find there exists an evident difference in the dynamical properties of the parasitism-mutualism-predation model based on whether or not we consider the effects of stage-structure and maturation time delays on cuckoos and crows. Inclusion of stage structure results in many varied dynamical complexities which are difficult to encompass without this inclusion.
Watkins, Marquita; Sizochenko, Natalia; Moore, Quentarius; Golebiowski, Marek; Leszczynska, Danuta; Leszczynski, Jerzy
2017-02-01
The presence of chlorophenols in drinking water can be hazardous to human health. Understanding the mechanisms of adsorption under specific experimental conditions would be beneficial when developing methods to remove toxic substances from drinking water during water treatment in order to limit human exposure to these contaminants. In this study, we investigated the sorption of chlorophenols on multi-walled carbon nanotubes using a density functional theory (DFT) approach. This was applied to study selected interactions between six solvents, five types of nanotubes, and six chlorophenols. Experimental data were used to construct structure-adsorption relationship (SAR) models that describe the recovery process. Specific interactions between solvents and chlorophenols were taken into account in the calculations by using novel specific mixture descriptors.
Kirsch, Joseph; Peterson, James T.
2014-01-01
There is considerable uncertainty about the relative roles of stream habitat and landscape characteristics in structuring stream-fish assemblages. We evaluated the relative importance of environmental characteristics on fish occupancy at the local and landscape scales within the upper Little Tennessee River basin of Georgia and North Carolina. Fishes were sampled using a quadrat sample design at 525 channel units within 48 study reaches during two consecutive years. We evaluated species–habitat relationships (local and landscape factors) by developing hierarchical, multispecies occupancy models. Modeling results suggested that fish occupancy within the Little Tennessee River basin was primarily influenced by stream topology and topography, urban land coverage, and channel unit types. Landscape scale factors (e.g., urban land coverage and elevation) largely controlled the fish assemblage structure at a stream-reach level, and local-scale factors (i.e., channel unit types) influenced fish distribution within stream reaches. Our study demonstrates the utility of a multi-scaled approach and the need to account for hierarchy and the interscale interactions of factors influencing assemblage structure prior to monitoring fish assemblages, developing biological management plans, or allocating management resources throughout a stream system.
A study of the dynamics of multi-player games on small networks using territorial interactions.
Broom, Mark; Lafaye, Charlotte; Pattni, Karan; Rychtář, Jan
2015-12-01
Recently, the study of structured populations using models of evolutionary processes on graphs has begun to incorporate a more general type of interaction between individuals, allowing multi-player games to be played among the population. In this paper, we develop a birth-death dynamics for use in such models and consider the evolution of populations for special cases of very small graphs where we can easily identify all of the population states and carry out exact analyses. To do so, we study two multi-player games, a Hawk-Dove game and a public goods game. Our focus is on finding the fixation probability of an individual from one type, cooperator or defector in the case of the public goods game, within a population of the other type. We compare this value for both games on several graphs under different parameter values and assumptions, and identify some interesting general features of our model. In particular there is a very close relationship between the fixation probability and the mean temperature, with high temperatures helping fitter individuals and punishing unfit ones and so enhancing selection, whereas low temperatures give a levelling effect which suppresses selection.
The application of the multi-alternative approach in active neural network models
NASA Astrophysics Data System (ADS)
Podvalny, S.; Vasiljev, E.
2017-02-01
The article refers to the construction of intelligent systems based artificial neuron networks are used. We discuss the basic properties of the non-compliance of artificial neuron networks and their biological prototypes. It is shown here that the main reason for these discrepancies is the structural immutability of the neuron network models in the learning process, that is, their passivity. Based on the modern understanding of the biological nervous system as a structured ensemble of nerve cells, it is proposed to abandon the attempts to simulate its work at the level of the elementary neurons functioning processes and proceed to the reproduction of the information structure of data storage and processing on the basis of the general enough evolutionary principles of multialternativity, i.e. the multi-level structural model, diversity and modularity. The implementation method of these principles is offered, using the faceted memory organization in the neuron network with the rearranging active structure. An example of the implementation of the active facet-type neuron network in the intellectual decision-making system in the conditions of critical events development in the electrical distribution system.
Identification of damage in composite structures using Gaussian mixture model-processed Lamb waves
NASA Astrophysics Data System (ADS)
Wang, Qiang; Ma, Shuxian; Yue, Dong
2018-04-01
Composite materials have comprehensively better properties than traditional materials, and therefore have been more and more widely used, especially because of its higher strength-weight ratio. However, the damage of composite structures is usually varied and complicated. In order to ensure the security of these structures, it is necessary to monitor and distinguish the structural damage in a timely manner. Lamb wave-based structural health monitoring (SHM) has been proved to be effective in online structural damage detection and evaluation; furthermore, the characteristic parameters of the multi-mode Lamb wave varies in response to different types of damage in the composite material. This paper studies the damage identification approach for composite structures using the Lamb wave and the Gaussian mixture model (GMM). The algorithm and principle of the GMM, and the parameter estimation, is introduced. Multi-statistical characteristic parameters of the excited Lamb waves are extracted, and the parameter space with reduced dimensions is adopted by principal component analysis (PCA). The damage identification system using the GMM is then established through training. Experiments on a glass fiber-reinforced epoxy composite laminate plate are conducted to verify the feasibility of the proposed approach in terms of damage classification. The experimental results show that different types of damage can be identified according to the value of the likelihood function of the GMM.
Design of shared unit-dose drug distribution network using multi-level particle swarm optimization.
Chen, Linjie; Monteiro, Thibaud; Wang, Tao; Marcon, Eric
2018-03-01
Unit-dose drug distribution systems provide optimal choices in terms of medication security and efficiency for organizing the drug-use process in large hospitals. As small hospitals have to share such automatic systems for economic reasons, the structure of their logistic organization becomes a very sensitive issue. In the research reported here, we develop a generalized multi-level optimization method - multi-level particle swarm optimization (MLPSO) - to design a shared unit-dose drug distribution network. Structurally, the problem studied can be considered as a type of capacitated location-routing problem (CLRP) with new constraints related to specific production planning. This kind of problem implies that a multi-level optimization should be performed in order to minimize logistic operating costs. Our results show that with the proposed algorithm, a more suitable modeling framework, as well as computational time savings and better optimization performance are obtained than that reported in the literature on this subject.
Mota, L F M; Martins, P G M A; Littiere, T O; Abreu, L R A; Silva, M A; Bonafé, C M
2018-04-01
The objective was to estimate (co)variance functions using random regression models (RRM) with Legendre polynomials, B-spline function and multi-trait models aimed at evaluating genetic parameters of growth traits in meat-type quail. A database containing the complete pedigree information of 7000 meat-type quail was utilized. The models included the fixed effects of contemporary group and generation. Direct additive genetic and permanent environmental effects, considered as random, were modeled using B-spline functions considering quadratic and cubic polynomials for each individual segment, and Legendre polynomials for age. Residual variances were grouped in four age classes. Direct additive genetic and permanent environmental effects were modeled using 2 to 4 segments and were modeled by Legendre polynomial with orders of fit ranging from 2 to 4. The model with quadratic B-spline adjustment, using four segments for direct additive genetic and permanent environmental effects, was the most appropriate and parsimonious to describe the covariance structure of the data. The RRM using Legendre polynomials presented an underestimation of the residual variance. Lesser heritability estimates were observed for multi-trait models in comparison with RRM for the evaluated ages. In general, the genetic correlations between measures of BW from hatching to 35 days of age decreased as the range between the evaluated ages increased. Genetic trend for BW was positive and significant along the selection generations. The genetic response to selection for BW in the evaluated ages presented greater values for RRM compared with multi-trait models. In summary, RRM using B-spline functions with four residual variance classes and segments were the best fit for genetic evaluation of growth traits in meat-type quail. In conclusion, RRM should be considered in genetic evaluation of breeding programs.
Optimal Multi-Type Sensor Placement for Structural Identification by Static-Load Testing
Papadopoulou, Maria; Vernay, Didier; Smith, Ian F. C.
2017-01-01
Assessing ageing infrastructure is a critical challenge for civil engineers due to the difficulty in the estimation and integration of uncertainties in structural models. Field measurements are increasingly used to improve knowledge of the real behavior of a structure; this activity is called structural identification. Error-domain model falsification (EDMF) is an easy-to-use model-based structural-identification methodology which robustly accommodates systematic uncertainties originating from sources such as boundary conditions, numerical modelling and model fidelity, as well as aleatory uncertainties from sources such as measurement error and material parameter-value estimations. In most practical applications of structural identification, sensors are placed using engineering judgment and experience. However, since sensor placement is fundamental to the success of structural identification, a more rational and systematic method is justified. This study presents a measurement system design methodology to identify the best sensor locations and sensor types using information from static-load tests. More specifically, three static-load tests were studied for the sensor system design using three types of sensors for a performance evaluation of a full-scale bridge in Singapore. Several sensor placement strategies are compared using joint entropy as an information-gain metric. A modified version of the hierarchical algorithm for sensor placement is proposed to take into account mutual information between load tests. It is shown that a carefully-configured measurement strategy that includes multiple sensor types and several load tests maximizes information gain. PMID:29240684
Action detection by double hierarchical multi-structure space-time statistical matching model
NASA Astrophysics Data System (ADS)
Han, Jing; Zhu, Junwei; Cui, Yiyin; Bai, Lianfa; Yue, Jiang
2018-03-01
Aimed at the complex information in videos and low detection efficiency, an actions detection model based on neighboring Gaussian structure and 3D LARK features is put forward. We exploit a double hierarchical multi-structure space-time statistical matching model (DMSM) in temporal action localization. First, a neighboring Gaussian structure is presented to describe the multi-scale structural relationship. Then, a space-time statistical matching method is proposed to achieve two similarity matrices on both large and small scales, which combines double hierarchical structural constraints in model by both the neighboring Gaussian structure and the 3D LARK local structure. Finally, the double hierarchical similarity is fused and analyzed to detect actions. Besides, the multi-scale composite template extends the model application into multi-view. Experimental results of DMSM on the complex visual tracker benchmark data sets and THUMOS 2014 data sets show the promising performance. Compared with other state-of-the-art algorithm, DMSM achieves superior performances.
Action detection by double hierarchical multi-structure space–time statistical matching model
NASA Astrophysics Data System (ADS)
Han, Jing; Zhu, Junwei; Cui, Yiyin; Bai, Lianfa; Yue, Jiang
2018-06-01
Aimed at the complex information in videos and low detection efficiency, an actions detection model based on neighboring Gaussian structure and 3D LARK features is put forward. We exploit a double hierarchical multi-structure space-time statistical matching model (DMSM) in temporal action localization. First, a neighboring Gaussian structure is presented to describe the multi-scale structural relationship. Then, a space-time statistical matching method is proposed to achieve two similarity matrices on both large and small scales, which combines double hierarchical structural constraints in model by both the neighboring Gaussian structure and the 3D LARK local structure. Finally, the double hierarchical similarity is fused and analyzed to detect actions. Besides, the multi-scale composite template extends the model application into multi-view. Experimental results of DMSM on the complex visual tracker benchmark data sets and THUMOS 2014 data sets show the promising performance. Compared with other state-of-the-art algorithm, DMSM achieves superior performances.
An Agent-Based Data Mining System for Ontology Evolution
NASA Astrophysics Data System (ADS)
Hadzic, Maja; Dillon, Darshan
We have developed an evidence-based mental health ontological model that represents mental health in multiple dimensions. The ongoing addition of new mental health knowledge requires a continual update of the Mental Health Ontology. In this paper, we describe how the ontology evolution can be realized using a multi-agent system in combination with data mining algorithms. We use the TICSA methodology to design this multi-agent system which is composed of four different types of agents: Information agent, Data Warehouse agent, Data Mining agents and Ontology agent. We use UML 2.1 sequence diagrams to model the collaborative nature of the agents and a UML 2.1 composite structure diagram to model the structure of individual agents. The Mental Heath Ontology has the potential to underpin various mental health research experiments of a collaborative nature which are greatly needed in times of increasing mental distress and illness.
Multi-Scale Analyses of Three Dimensional Woven Composite 3D Shell With a Cut Out Circle
NASA Astrophysics Data System (ADS)
Nguyen, Duc Hai; Wang, Hu
2018-06-01
A composite material are made by combining two or more constituent materials to obtain the desired material properties of each product type. The matrix material which can be polymer and fiber is used as reinforcing material. Currently, the polymer matrix is widely used in many different fields with differently designed structures such as automotive structures and aviation, aerospace, marine, etc. because of their excellent mechanical properties; in addition, they possess the high level of hardness and durability together with a significant reduction in weight compared to traditional materials. However, during design process of structure, there will be many interruptions created for the purpose of assembling the structures together or for many other design purposes. Therefore, when this structure is subject to load-bearing, its failure occurs at these interruptions due to stress concentration. This paper proposes multi-scale modeling and optimization strategies in evaluation of the effectiveness of fiber orientation in an E-glass/Epoxy woven composite 3D shell with circular holes at the center investigated by FEA results. A multi-scale model approach was developed to predict the mechanical behavior of woven composite 3D shell with circular holes at the center with different designs of material and structural parameters. Based on the analysis result of laminae, we have found that the 3D shell with fiber direction of 450 shows the best stress and strain bearing capacity. Thus combining several layers of 450 fiber direction in a multi-layer composite 3D shell reduces the stresses concentrated on the cuts of the structures.
NASA Astrophysics Data System (ADS)
McGowan, L. E.; Dahlke, H. E.; Paw U, K. T.
2015-12-01
Snow cover is a critical driver of the Earth's surface energy budget, climate change, and water resources. Variations in snow cover not only affect the energy budget of the land surface but also represent a major water supply source. In California, US estimates of snow depth, extent, and melt in the Sierra Nevada are critical to estimating the amount of water available for both California agriculture and urban users. However, accurate estimates of snow cover and snow melt processes in forested area still remain a challenge. Canopy structure influences the vertical and spatiotemporal distribution of snow, and therefore ultimately determines the degree and extent by which snow alters both the surface energy balance and water availability in forested regions. In this study we use the Advanced Canopy-Atmosphere-Soil algorithm (ACASA), a multi-layer soil-vegetation-atmosphere numerical model, to simulate the effect of different snow-covered canopy structures on the energy budget, and temperature and other scalar profiles within different forest types in the Sierra Nevada, California. ACASA incorporates a higher order turbulence closure scheme which allows the detailed simulation of turbulent fluxes of heat and water vapor as well as the CO2 exchange of several layers within the canopy. As such ACASA can capture the counter gradient fluxes within canopies that may occur frequently, but are typically unaccounted for, in most snow hydrology models. Six different canopy types were modeled ranging from coniferous forests (e.g. most biomass near the ground) to top-heavy (e.g. most biomass near the top of the crown) deciduous forests to multi-layered forest canopies (e.g. mixture of young and mature trees). Preliminary results indicate that the canopy shape and structure associated with different canopy types fundamentally influence the vertical scalar profiles (including those of temperature, moisture, and wind speed) in the canopy and thus alter the interception and snow melt dynamics in forested land surfaces. The turbulent transport dynamics, including counter-gradient fluxes, and radiation features including land surface albedo, are discussed in the context of the snow energy balance.
Large Angle Transient Dynamics (LATDYN) user's manual
NASA Technical Reports Server (NTRS)
Abrahamson, A. Louis; Chang, Che-Wei; Powell, Michael G.; Wu, Shih-Chin; Bingel, Bradford D.; Theophilos, Paula M.
1991-01-01
A computer code for modeling the large angle transient dynamics (LATDYN) of structures was developed to investigate techniques for analyzing flexible deformation and control/structure interaction problems associated with large angular motions of spacecraft. This type of analysis is beyond the routine capability of conventional analytical tools without simplifying assumptions. In some instances, the motion may be sufficiently slow and the spacecraft (or component) sufficiently rigid to simplify analyses of dynamics and controls by making pseudo-static and/or rigid body assumptions. The LATDYN introduces a new approach to the problem by combining finite element structural analysis, multi-body dynamics, and control system analysis in a single tool. It includes a type of finite element that can deform and rotate through large angles at the same time, and which can be connected to other finite elements either rigidly or through mechanical joints. The LATDYN also provides symbolic capabilities for modeling control systems which are interfaced directly with the finite element structural model. Thus, the nonlinear equations representing the structural model are integrated along with the equations representing sensors, processing, and controls as a coupled system.
Murray, Anita; Dunlop, Rebecca A; Noad, Michael J; Goldizen, Anne W
2018-02-01
Male humpback whales produce a mating display called "song." Behavioral studies indicate song has inter- and/or intra-sexual functionality, suggesting song may be a multi-message display. Multi-message displays often include stereotypic components that convey group membership for mate attraction and/or male-male interactions, and complex components that convey individual quality for courtship. Humpback whale song contains sounds ("units") arranged into sequences ("phrases"). Repetitions of a specific phrase create a "theme." Within a theme, imperfect phrase repetitions ("phrase variants") create variability among phrases of the same type ("phrase type"). The hypothesis that song contains stereotypic and complex phrase types, structural characteristics consistent with a multi-message display, is investigated using recordings of 17 east Australian males (8:2004, 9:2011). Phrase types are categorized as stereotypic or complex using number of unit types, number of phrase variants, and the proportion of phrases that is unique to an individual versus shared amongst males. Unit types are determined using self-organizing maps. Phrase variants are determined by Levenshtein distances between phrases. Stereotypic phrase types have smaller numbers of unit types and shared phrase variants. Complex phrase types have larger numbers of unit types and unique phrase variants. This study supports the hypothesis that song could be a multi-message display.
3D-printing and mechanics of bio-inspired articulated and multi-material structures.
Porter, Michael M; Ravikumar, Nakul; Barthelat, Francois; Martini, Roberto
2017-09-01
3D-printing technologies allow researchers to build simplified physical models of complex biological systems to more easily investigate their mechanics. In recent years, a number of 3D-printed structures inspired by the dermal armors of various fishes have been developed to study their multiple mechanical functionalities, including flexible protection, improved hydrodynamics, body support, or tail prehensility. Natural fish armors are generally classified according to their shape, material and structural properties as elasmoid scales, ganoid scales, placoid scales, carapace scutes, or bony plates. Each type of dermal armor forms distinct articulation patterns that facilitate different functional advantages. In this paper, we highlight recent studies that developed 3D-printed structures not only to inform the design and application of some articulated and multi-material structures, but also to explain the mechanics of the natural biological systems they mimic. Copyright © 2017 Elsevier Ltd. All rights reserved.
Statistical modeling of SRAM yield performance and circuit variability
NASA Astrophysics Data System (ADS)
Cheng, Qi; Chen, Yijian
2015-03-01
In this paper, we develop statistical models to investigate SRAM yield performance and circuit variability in the presence of self-aligned multiple patterning (SAMP) process. It is assumed that SRAM fins are fabricated by a positivetone (spacer is line) self-aligned sextuple patterning (SASP) process which accommodates two types of spacers, while gates are fabricated by a more pitch-relaxed self-aligned quadruple patterning (SAQP) process which only allows one type of spacer. A number of possible inverter and SRAM structures are identified and the related circuit multi-modality is studied using the developed failure-probability and yield models. It is shown that SRAM circuit yield is significantly impacted by the multi-modality of fins' spatial variations in a SRAM cell. The sensitivity of 6-transistor SRAM read/write failure probability to SASP process variations is calculated and the specific circuit type with the highest probability to fail in the reading/writing operation is identified. Our study suggests that the 6-transistor SRAM configuration may not be scalable to 7-nm half pitch and more robust SRAM circuit design needs to be researched.
NASA Astrophysics Data System (ADS)
Hussain, Shadman; Bulusu, Kartik V.; Plesniak, Michael W.
2013-11-01
A common treatment for atherosclerosis is the opening of narrowed arteries resulting from obstructive lesions by angioplasty and stent implantation to restore unrestricted blood flow. ``Type-IV'' stent fractures involve complete transverse, linear fracture of stent struts, along with displacement of the stent fragments. Experimental data pertaining to secondary flows in the presence of stents that underwent ``Type-IV'' fractures in a bent artery model under physiological inflow conditions were obtained through a two-component, two-dimensional (2C-2D) PIV technique. Concomitant stent-induced flow perturbations result in secondary flow structures with complex, multi-scale morphologies and varying size-strength characteristics. Ultimately, these flow structures may have a role to play in restenosis and progression of atherosclerotic plaque. Vortex circulation thresholds were established with the goal of resolving and tracking iso-circulation secondary flow vortical structures and their morphological changes. This allowed for a parametric evaluation and quantitative representation of secondary flow structures undergoing deformation and spatial reorganization. Supported by NSF Grant No. CBET- 0828903 and GW Center for Biomimetics and Bioinspired Engineering.
Facial animation on an anatomy-based hierarchical face model
NASA Astrophysics Data System (ADS)
Zhang, Yu; Prakash, Edmond C.; Sung, Eric
2003-04-01
In this paper we propose a new hierarchical 3D facial model based on anatomical knowledge that provides high fidelity for realistic facial expression animation. Like real human face, the facial model has a hierarchical biomechanical structure, incorporating a physically-based approximation to facial skin tissue, a set of anatomically-motivated facial muscle actuators and underlying skull structure. The deformable skin model has multi-layer structure to approximate different types of soft tissue. It takes into account the nonlinear stress-strain relationship of the skin and the fact that soft tissue is almost incompressible. Different types of muscle models have been developed to simulate distribution of the muscle force on the skin due to muscle contraction. By the presence of the skull model, our facial model takes advantage of both more accurate facial deformation and the consideration of facial anatomy during the interactive definition of facial muscles. Under the muscular force, the deformation of the facial skin is evaluated using numerical integration of the governing dynamic equations. The dynamic facial animation algorithm runs at interactive rate with flexible and realistic facial expressions to be generated.
Heterogeneous flow in multi-layer joint networks and its influence on incipient karst generation
NASA Astrophysics Data System (ADS)
Wang, X.; Jourde, H.
2017-12-01
Various dissolution types (e.g. pipe, stripe and sheet karstic features) have been observed in fractured layered limestones. Yet, due to a large range of structural and hydraulic parameters play a role in the karstification process, the dissolution mechanism, occurring either along fractures or bedding planes, is difficult to quantify. In this study, we use numerical models to investigate the influence of these parameters on the generation of different types of incipient karst. Specifically, we focus on two parameters: the fracture intensity contrast between adjacent layers and the aperture ratio between bedding planes and joints (abed/ajoint). The DFN models were generated using a pseudo-genetic code that considers the stress shadow zone. Flow simulations were performed using a combined finite-volume finite-element simulator under practical boundary conditions. The flow channeling within the fracture networks was characterized by applying a multi-fractal technique. The rock block equivalent permeability (keff) was also calculated to quantify the change in bulk hydraulic properties when changing the selected structural and hydraulic parameters. The flow simulation results show that the abed/ajoint ratio has a first-order control on the heterogeneous distribution of flow in the multi-layer system and on the magnitude of equivalent permeability. When abed/ajoint < 0.1, flow in the system is highly localized and controlled by joints, and the keff is low; while, when abed/ajoint > 0.1, the bedding plane has more control and flow becomes more pervasive and uniform, and the keff is accordingly high. A simple model, accounting for the calculation of the heterogeneous distributions of Damköhler number associated with different aperture ratios, is proposed to predict what type of incipient karst tends to develop under the studied flow conditions.
Reverse-time migration for subsurface imaging using single- and multi- frequency components
NASA Astrophysics Data System (ADS)
Ha, J.; Kim, Y.; Kim, S.; Chung, W.; Shin, S.; Lee, D.
2017-12-01
Reverse-time migration is a seismic data processing method for obtaining accurate subsurface structure images from seismic data. This method has been applied to obtain more precise complex geological structure information, including steep dips, by considering wave propagation characteristics based on two-way traveltime. Recently, various studies have reported the characteristics of acquired datasets from different types of media. In particular, because real subsurface media is comprised of various types of structures, seismic data represent various responses. Among them, frequency characteristics can be used as an important indicator for analyzing wave propagation in subsurface structures. All frequency components are utilized in conventional reverse-time migration, but analyzing each component is required because they contain inherent seismic response characteristics. In this study, we propose a reverse-time migration method that utilizes single- and multi- frequency components for analyzing subsurface imaging. We performed a spectral decomposition to utilize the characteristics of non-stationary seismic data. We propose two types of imaging conditions, in which decomposed signals are applied in complex and envelope traces. The SEG/EAGE Overthrust model was used to demonstrate the proposed method, and the 1st derivative Gaussian function with a 10 Hz cutoff was used as the source signature. The results were more accurate and stable when relatively lower frequency components in the effective frequency range were used. By combining the gradient obtained from various frequency components, we confirmed that the results are clearer than the conventional method using all frequency components. Also, further study is required to effectively combine the multi-frequency components.
de Moura, Yhasmin Mendes; Hilker, Thomas; Goncalves, Fabio Guimarães; Galvão, Lênio Soares; dos Santos, João Roberto; Lyapustin, Alexei; Maeda, Eduardo Eiji; de Jesus Silva, Camila Valéria
2018-01-01
Detailed knowledge of vegetation structure is required for accurate modelling of terrestrial ecosystems, but direct measurements of the three dimensional distribution of canopy elements, for instance from LiDAR, are not widely available. We investigate the potential for modelling vegetation roughness, a key parameter for climatological models, from directional scattering of visible and near-infrared (NIR) reflectance acquired from NASA’s Moderate Resolution Imaging Spectroradiometer (MODIS). We compare our estimates across different tropical forest types to independent measures obtained from: (1) airborne laser scanning (ALS), (2) spaceborne Geoscience Laser Altimeter System (GLAS)/ICESat, and (3) the spaceborne SeaWinds/QSCAT. Our results showed linear correlation between MODIS-derived anisotropy to ALS-derived entropy (r2= 0.54, RMSE=0.11), even in high biomass regions. Significant relationships were also obtained between MODIS-derived anisotropy and GLAS-derived entropy (0.52≤ r2≤ 0.61; p<0.05), with similar slopes and offsets found throughout the season, and RMSE between 0.26 and 0.30 (units of entropy). The relationships between the MODIS-derived anisotropy and backscattering measurements (σ0) from SeaWinds/QuikSCAT presented an r2 of 0.59 and a RMSE of 0.11. We conclude that multi-angular MODIS observations are suitable to extrapolate measures of canopy entropy across different forest types, providing additional estimates of vegetation structure in the Amazon. PMID:29618964
A Mixtures-of-Trees Framework for Multi-Label Classification
Hong, Charmgil; Batal, Iyad; Hauskrecht, Milos
2015-01-01
We propose a new probabilistic approach for multi-label classification that aims to represent the class posterior distribution P(Y|X). Our approach uses a mixture of tree-structured Bayesian networks, which can leverage the computational advantages of conditional tree-structured models and the abilities of mixtures to compensate for tree-structured restrictions. We develop algorithms for learning the model from data and for performing multi-label predictions using the learned model. Experiments on multiple datasets demonstrate that our approach outperforms several state-of-the-art multi-label classification methods. PMID:25927011
Development of Multi-Layered Floating Floor for Cabin Noise Reduction
NASA Astrophysics Data System (ADS)
Song, Jee-Hun; Hong, Suk-Yoon; Kwon, Hyun-Wung
2017-12-01
Recently, regulations pertaining to the noise and vibration environment of ship cabins have been strengthened. In this paper, a numerical model is developed for multi-layered floating floor to predict the structure-borne noise in ship cabins. The theoretical model consists of multi-panel structures lined with high-density mineral wool. The predicted results for structure-borne noise when multi-layered floating floor is used are compared to the measure-ments made of a mock-up. A comparison of the predicted results and the experimental one shows that the developed model could be an effective tool for predicting structure-borne noise in ship cabins.
Reulen, Holger; Kneib, Thomas
2016-04-01
One important goal in multi-state modelling is to explore information about conditional transition-type-specific hazard rate functions by estimating influencing effects of explanatory variables. This may be performed using single transition-type-specific models if these covariate effects are assumed to be different across transition-types. To investigate whether this assumption holds or whether one of the effects is equal across several transition-types (cross-transition-type effect), a combined model has to be applied, for instance with the use of a stratified partial likelihood formulation. Here, prior knowledge about the underlying covariate effect mechanisms is often sparse, especially about ineffectivenesses of transition-type-specific or cross-transition-type effects. As a consequence, data-driven variable selection is an important task: a large number of estimable effects has to be taken into account if joint modelling of all transition-types is performed. A related but subsequent task is model choice: is an effect satisfactory estimated assuming linearity, or is the true underlying nature strongly deviating from linearity? This article introduces component-wise Functional Gradient Descent Boosting (short boosting) for multi-state models, an approach performing unsupervised variable selection and model choice simultaneously within a single estimation run. We demonstrate that features and advantages in the application of boosting introduced and illustrated in classical regression scenarios remain present in the transfer to multi-state models. As a consequence, boosting provides an effective means to answer questions about ineffectiveness and non-linearity of single transition-type-specific or cross-transition-type effects.
A brief introduction to mixed effects modelling and multi-model inference in ecology
Donaldson, Lynda; Correa-Cano, Maria Eugenia; Goodwin, Cecily E.D.
2018-01-01
The use of linear mixed effects models (LMMs) is increasingly common in the analysis of biological data. Whilst LMMs offer a flexible approach to modelling a broad range of data types, ecological data are often complex and require complex model structures, and the fitting and interpretation of such models is not always straightforward. The ability to achieve robust biological inference requires that practitioners know how and when to apply these tools. Here, we provide a general overview of current methods for the application of LMMs to biological data, and highlight the typical pitfalls that can be encountered in the statistical modelling process. We tackle several issues regarding methods of model selection, with particular reference to the use of information theory and multi-model inference in ecology. We offer practical solutions and direct the reader to key references that provide further technical detail for those seeking a deeper understanding. This overview should serve as a widely accessible code of best practice for applying LMMs to complex biological problems and model structures, and in doing so improve the robustness of conclusions drawn from studies investigating ecological and evolutionary questions. PMID:29844961
A brief introduction to mixed effects modelling and multi-model inference in ecology.
Harrison, Xavier A; Donaldson, Lynda; Correa-Cano, Maria Eugenia; Evans, Julian; Fisher, David N; Goodwin, Cecily E D; Robinson, Beth S; Hodgson, David J; Inger, Richard
2018-01-01
The use of linear mixed effects models (LMMs) is increasingly common in the analysis of biological data. Whilst LMMs offer a flexible approach to modelling a broad range of data types, ecological data are often complex and require complex model structures, and the fitting and interpretation of such models is not always straightforward. The ability to achieve robust biological inference requires that practitioners know how and when to apply these tools. Here, we provide a general overview of current methods for the application of LMMs to biological data, and highlight the typical pitfalls that can be encountered in the statistical modelling process. We tackle several issues regarding methods of model selection, with particular reference to the use of information theory and multi-model inference in ecology. We offer practical solutions and direct the reader to key references that provide further technical detail for those seeking a deeper understanding. This overview should serve as a widely accessible code of best practice for applying LMMs to complex biological problems and model structures, and in doing so improve the robustness of conclusions drawn from studies investigating ecological and evolutionary questions.
NASA Astrophysics Data System (ADS)
Isono, Hiroshi; Hirata, Shinnosuke; Hachiya, Hiroyuki
2015-07-01
In medical ultrasonic images of liver disease, a texture with a speckle pattern indicates a microscopic structure such as nodules surrounded by fibrous tissues in hepatitis or cirrhosis. We have been applying texture analysis based on a co-occurrence matrix to ultrasonic images of fibrotic liver for quantitative tissue characterization. A co-occurrence matrix consists of the probability distribution of brightness of pixel pairs specified with spatial parameters and gives new information on liver disease. Ultrasonic images of different types of fibrotic liver were simulated and the texture-feature contrast was calculated to quantify the co-occurrence matrices generated from the images. The results show that the contrast converges with a value that can be theoretically estimated using a multi-Rayleigh model of echo signal amplitude distribution. We also found that the contrast value increases as liver fibrosis progresses and fluctuates depending on the size of fibrotic structure.
Abma, Femke I; Bültmann, Ute; Amick Iii, Benjamin C; Arends, Iris; Dorland, Heleen F; Flach, Peter A; van der Klink, Jac J L; van de Ven, Hardy A; Bjørner, Jakob Bue
2017-09-09
Objective The Work Role Functioning Questionnaire v2.0 (WRFQ) is an outcome measure linking a persons' health to the ability to meet work demands in the twenty-first century. We aimed to examine the construct validity of the WRFQ in a heterogeneous set of working samples in the Netherlands with mixed clinical conditions and job types to evaluate the comparability of the scale structure. Methods Confirmatory factor and multi-group analyses were conducted in six cross-sectional working samples (total N = 2433) to evaluate and compare a five-factor model structure of the WRFQ (work scheduling demands, output demands, physical demands, mental and social demands, and flexibility demands). Model fit indices were calculated based on RMSEA ≤ 0.08 and CFI ≥ 0.95. After fitting the five-factor model, the multidimensional structure of the instrument was evaluated across samples using a second order factor model. Results The factor structure was robust across samples and a multi-group model had adequate fit (RMSEA = 0.63, CFI = 0.972). In sample specific analyses, minor modifications were necessary in three samples (final RMSEA 0.055-0.080, final CFI between 0.955 and 0.989). Applying the previous first order specifications, a second order factor model had adequate fit in all samples. Conclusion A five-factor model of the WRFQ showed consistent structural validity across samples. A second order factor model showed adequate fit, but the second order factor loadings varied across samples. Therefore subscale scores are recommended to compare across different clinical and working samples.
Bart, Zachary R; Hammond, Max A; Wallace, Joseph M
2014-08-01
Osteogenesis imperfecta is a congenital disease commonly characterized by brittle bones and caused by mutations in the genes encoding Type I collagen, the single most abundant protein produced by the body. The oim model has a natural collagen mutation, converting its heterotrimeric structure (two α1 and one α2 chains) into α1 homotrimers. This mutation in collagen may impact formation of the mineral, creating a brittle bone phenotype in animals. Femurs from male wild type (WT) and homozygous (oim/oim) mice, all at 12 weeks of age, were assessed using assays at multiple length scales with minimal sample processing to ensure a near-physiological state. Atomic force microscopy (AFM) demonstrated detectable differences in the organization of collagen at the nanoscale that may partially contribute to alterations in material and structural behavior obtained through mechanical testing and reference point indentation (RPI). Changes in geometric and chemical structure obtained from µ-Computed Tomography and Raman spectroscopy indicate a smaller bone with reduced trabecular architecture and altered chemical composition. Decreased tissue material properties in oim/oim mice are likely driven by changes in collagen fibril structure, decreasing space available for mineral nucleation and growth, as supported by a reduction in mineral crystallinity. Multi-scale analyses of this nature offer much in assessing how molecular changes compound to create a degraded, brittle bone phenotype.
Zhang, Yu; Teng, Poching; Shimizu, Yo; Hosoi, Fumiki; Omasa, Kenji
2016-01-01
For plant breeding and growth monitoring, accurate measurements of plant structure parameters are very crucial. We have, therefore, developed a high efficiency Multi-Camera Photography (MCP) system combining Multi-View Stereovision (MVS) with the Structure from Motion (SfM) algorithm. In this paper, we measured six variables of nursery paprika plants and investigated the accuracy of 3D models reconstructed from photos taken by four lens types at four different positions. The results demonstrated that error between the estimated and measured values was small, and the root-mean-square errors (RMSE) for leaf width/length and stem height/diameter were 1.65 mm (R2 = 0.98) and 0.57 mm (R2 = 0.99), respectively. The accuracies of the 3D model reconstruction of leaf and stem by a 28-mm lens at the first and third camera positions were the highest, and the number of reconstructed fine-scale 3D model shape surfaces of leaf and stem is the most. The results confirmed the practicability of our new method for the reconstruction of fine-scale plant model and accurate estimation of the plant parameters. They also displayed that our system is a good system for capturing high-resolution 3D images of nursery plants with high efficiency. PMID:27314348
Granja-Travez, Rommel Santiago; Wilkinson, Rachael C; Persinoti, Gabriela Felix; Squina, Fabio M; Fülöp, Vilmos; Bugg, Timothy D H
2018-05-01
The identification of enzymes responsible for oxidation of lignin in lignin-degrading bacteria is of interest for biotechnological valorization of lignin to renewable chemical products. The genome sequences of two lignin-degrading bacteria, Ochrobactrum sp., and Paenibacillus sp., contain no B-type DyP peroxidases implicated in lignin degradation in other bacteria, but contain putative multicopper oxidase genes. Multi-copper oxidase CueO from Ochrobactrum sp. was expressed and reconstituted as a recombinant laccase-like enzyme, and kinetically characterized. Ochrobactrum CueO shows activity for oxidation of β-aryl ether and biphenyl lignin dimer model compounds, generating oxidized dimeric products, and shows activity for oxidation of Ca-lignosulfonate, generating vanillic acid as a low molecular weight product. The crystal structure of Ochrobactrum CueO (OcCueO) has been determined at 1.1 Å resolution (PDB: 6EVG), showing a four-coordinate mononuclear type I copper center with ligands His495, His434 and Cys490 with Met500 as an axial ligand, similar to that of Escherichia coli CueO and bacterial azurin proteins, whereas fungal laccase enzymes contain a three-coordinate type I copper metal center. A trinuclear type 2/3 copper cluster was modeled into the active site, showing similar structure to E. coli CueO and fungal laccases, and three solvent channels leading to the active site. Site-directed mutagenesis was carried out on amino acid residues found in the solvent channels, indicating the importance for residues Asp102, Gly103, Arg221, Arg223, and Asp462 for catalytic activity. The work identifies a new bacterial multicopper enzyme with activity for lignin oxidation, and implicates a role for bacterial laccase-like multicopper oxidases in some lignin-degrading bacteria. Structural data are available in the PDB under the accession number 6EVG. © 2018 Federation of European Biochemical Societies.
Control system design for flexible structures using data models
NASA Technical Reports Server (NTRS)
Irwin, R. Dennis; Frazier, W. Garth; Mitchell, Jerrel R.; Medina, Enrique A.; Bukley, Angelia P.
1993-01-01
The dynamics and control of flexible aerospace structures exercises many of the engineering disciplines. In recent years there has been considerable research in the developing and tailoring of control system design techniques for these structures. This problem involves designing a control system for a multi-input, multi-output (MIMO) system that satisfies various performance criteria, such as vibration suppression, disturbance and noise rejection, attitude control and slewing control. Considerable progress has been made and demonstrated in control system design techniques for these structures. The key to designing control systems for these structures that meet stringent performance requirements is an accurate model. It has become apparent that theoretically and finite-element generated models do not provide the needed accuracy; almost all successful demonstrations of control system design techniques have involved using test results for fine-tuning a model or for extracting a model using system ID techniques. This paper describes past and ongoing efforts at Ohio University and NASA MSFC to design controllers using 'data models.' The basic philosophy of this approach is to start with a stabilizing controller and frequency response data that describes the plant; then, iteratively vary the free parameters of the controller so that performance measures become closer to satisfying design specifications. The frequency response data can be either experimentally derived or analytically derived. One 'design-with-data' algorithm presented in this paper is called the Compensator Improvement Program (CIP). The current CIP designs controllers for MIMO systems so that classical gain, phase, and attenuation margins are achieved. The center-piece of the CIP algorithm is the constraint improvement technique which is used to calculate a parameter change vector that guarantees an improvement in all unsatisfied, feasible performance metrics from iteration to iteration. The paper also presents a recently demonstrated CIP-type algorithm, called the Model and Data Oriented Computer-Aided Design System (MADCADS), developed for achieving H(sub infinity) type design specifications using data models. Control system design for the NASA/MSFC Single Structure Control Facility are demonstrated for both CIP and MADCADS. Advantages of design-with-data algorithms over techniques that require analytical plant models are also presented.
Parallel LC circuit model for multi-band absorption and preliminary design of radiative cooling.
Feng, Rui; Qiu, Jun; Liu, Linhua; Ding, Weiqiang; Chen, Lixue
2014-12-15
We perform a comprehensive analysis of multi-band absorption by exciting magnetic polaritons in the infrared region. According to the independent properties of the magnetic polaritons, we propose a parallel inductance and capacitance(PLC) circuit model to explain and predict the multi-band resonant absorption peaks, which is fully validated by using the multi-sized structure with identical dielectric spacing layer and the multilayer structure with the same strip width. More importantly, we present the application of the PLC circuit model to preliminarily design a radiative cooling structure realized by merging several close peaks together. This omnidirectional and polarization insensitive structure is a good candidate for radiative cooling application.
Ultrafast exciton migration in an HJ-aggregate: Potential surfaces and quantum dynamics
NASA Astrophysics Data System (ADS)
Binder, Robert; Polkehn, Matthias; Ma, Tianji; Burghardt, Irene
2017-01-01
Quantum dynamical and electronic structure calculations are combined to investigate the mechanism of exciton migration in an oligothiophene HJ aggregate, i.e., a combination of oligomer chains (J-type aggregates) and stacked aggregates of such chains (H-type aggregates). To this end, a Frenkel exciton model is parametrized by a recently introduced procedure [Binder et al., J. Chem. Phys. 141, 014101 (2014)] which uses oligomer excited-state calculations to perform an exact, point-wise mapping of coupled potential energy surfaces to an effective Frenkel model. Based upon this parametrization, the Multi-Layer Multi-Configuration Time-Dependent Hartree (ML-MCTDH) method is employed to investigate ultrafast dynamics of exciton transfer in a small, asymmetric HJ aggregate model composed of 30 sites and 30 active modes. For a partially delocalized initial condition, it is shown that a torsional defect confines the trapped initial exciton, and planarization induces an ultrafast resonant transition between an HJ-aggregated segment and a covalently bound "dangling chain" end. This model is a minimal realization of experimentally investigated mixed systems exhibiting ultrafast exciton transfer between aggregated, highly planarized chains and neighboring disordered segments.
Optimal multi-type sensor placement for response and excitation reconstruction
NASA Astrophysics Data System (ADS)
Zhang, C. D.; Xu, Y. L.
2016-01-01
The need to perform dynamic response reconstruction always arises as the measurement of structural response is often limited to a few locations, especially for a large civil structure. Besides, it is usually very difficult, if not impossible, to measure external excitations under the operation condition of a structure. This study presents an algorithm for optimal placement of multi-type sensors, including strain gauges, displacement transducers and accelerometers, for the best reconstruction of responses of key structural components where there are no sensors installed and the best estimation of external excitations acting on the structure at the same time. The algorithm is developed in the framework of Kalman filter with unknown excitation, in which minimum-variance unbiased estimates of the generalized state of the structure and the external excitations are obtained by virtue of limited sensor measurements. The structural responses of key locations without sensors can then be reconstructed with the estimated generalized state and excitation. The asymptotic stability feature of the filter is utilized for optimal sensor placement. The number and spatial location of the multi-type sensors are determined by adding the optimal sensor which gains the maximal reduction of the estimation error of reconstructed responses. For the given mode number in response reconstruction and the given locations of external excitations, the optimal multi-sensor placement achieved by the proposed method is independent of the type and time evolution of external excitation. A simply-supported overhanging steel beam under multiple types of excitation is numerically studied to demonstrate the feasibility and superiority of the proposed method, and the experimental work is then carried out to testify the effectiveness of the proposed method.
Croll, Tristan I; Smith, Brian J; Margetts, Mai B; Whittaker, Jonathan; Weiss, Michael A; Ward, Colin W; Lawrence, Michael C
2016-03-01
Insulin receptor (IR) signaling is critical to controlling nutrient uptake and metabolism. However, only a low-resolution (3.8 Å) structure currently exists for the IR ectodomain, with some segments ill-defined or unmodeled due to disorder. Here, we revise this structure using new diffraction data to 3.3 Å resolution that allow improved modeling of the N-linked glycans, the first and third fibronectin type III domains, and the insert domain. A novel haptic interactive molecular dynamics strategy was used to aid fitting to low-resolution electron density maps. The resulting model provides a foundation for investigation of structural transitions in IR upon ligand binding. Copyright © 2016 Elsevier Ltd. All rights reserved.
Mogali, Sreenivasulu Reddy; Yeong, Wai Yee; Tan, Heang Kuan Joel; Tan, Gerald Jit Shen; Abrahams, Peter H; Zary, Nabil; Low-Beer, Naomi; Ferenczi, Michael Alan
2018-01-01
For centuries, cadaveric material has been the cornerstone of anatomical education. For reasons of changes in curriculum emphasis, cost, availability, expertise, and ethical concerns, several medical schools have replaced wet cadaveric specimens with plastinated prosections, plastic models, imaging, and digital models. Discussions about the qualities and limitations of these alternative teaching resources are on-going. We hypothesize that three-dimensional printed (3DP) models can replace or indeed enhance existing resources for anatomical education. A novel multi-colored and multi-material 3DP model of the upper limb was developed based on a plastinated upper limb prosection, capturing muscles, nerves, arteries and bones with a spatial resolution of ∼1 mm. This study aims to examine the educational value of the 3DP model from the learner's point of view. Students (n = 15) compared the developed 3DP models with the plastinated prosections, and provided their views on their learning experience using 3DP models using a survey and focus group discussion. Anatomical features in 3DP models were rated as accurate by all students. Several positive aspects of 3DP models were highlighted, such as the color coding by tissue type, flexibility and that less care was needed in the handling and examination of the specimen than plastinated specimens which facilitated the appreciation of relations between the anatomical structures. However, students reported that anatomical features in 3DP models are less realistic compared to the plastinated specimens. Multi-colored, multi-material 3DP models are a valuable resource for anatomical education and an excellent adjunct to wet cadaveric or plastinated prosections. Anat Sci Educ 11: 54-64. © 2017 American Association of Anatomists. © 2017 American Association of Anatomists.
Concurrent Probabilistic Simulation of High Temperature Composite Structural Response
NASA Technical Reports Server (NTRS)
Abdi, Frank
1996-01-01
A computational structural/material analysis and design tool which would meet industry's future demand for expedience and reduced cost is presented. This unique software 'GENOA' is dedicated to parallel and high speed analysis to perform probabilistic evaluation of high temperature composite response of aerospace systems. The development is based on detailed integration and modification of diverse fields of specialized analysis techniques and mathematical models to combine their latest innovative capabilities into a commercially viable software package. The technique is specifically designed to exploit the availability of processors to perform computationally intense probabilistic analysis assessing uncertainties in structural reliability analysis and composite micromechanics. The primary objectives which were achieved in performing the development were: (1) Utilization of the power of parallel processing and static/dynamic load balancing optimization to make the complex simulation of structure, material and processing of high temperature composite affordable; (2) Computational integration and synchronization of probabilistic mathematics, structural/material mechanics and parallel computing; (3) Implementation of an innovative multi-level domain decomposition technique to identify the inherent parallelism, and increasing convergence rates through high- and low-level processor assignment; (4) Creating the framework for Portable Paralleled architecture for the machine independent Multi Instruction Multi Data, (MIMD), Single Instruction Multi Data (SIMD), hybrid and distributed workstation type of computers; and (5) Market evaluation. The results of Phase-2 effort provides a good basis for continuation and warrants Phase-3 government, and industry partnership.
Tuncer, Necibe; Gulbudak, Hayriye; Cannataro, Vincent L; Martcheva, Maia
2016-09-01
In this article, we discuss the structural and practical identifiability of a nested immuno-epidemiological model of arbovirus diseases, where host-vector transmission rate, host recovery, and disease-induced death rates are governed by the within-host immune system. We incorporate the newest ideas and the most up-to-date features of numerical methods to fit multi-scale models to multi-scale data. For an immunological model, we use Rift Valley Fever Virus (RVFV) time-series data obtained from livestock under laboratory experiments, and for an epidemiological model we incorporate a human compartment to the nested model and use the number of human RVFV cases reported by the CDC during the 2006-2007 Kenya outbreak. We show that the immunological model is not structurally identifiable for the measurements of time-series viremia concentrations in the host. Thus, we study the non-dimensionalized and scaled versions of the immunological model and prove that both are structurally globally identifiable. After fixing estimated parameter values for the immunological model derived from the scaled model, we develop a numerical method to fit observable RVFV epidemiological data to the nested model for the remaining parameter values of the multi-scale system. For the given (CDC) data set, Monte Carlo simulations indicate that only three parameters of the epidemiological model are practically identifiable when the immune model parameters are fixed. Alternatively, we fit the multi-scale data to the multi-scale model simultaneously. Monte Carlo simulations for the simultaneous fitting suggest that the parameters of the immunological model and the parameters of the immuno-epidemiological model are practically identifiable. We suggest that analytic approaches for studying the structural identifiability of nested models are a necessity, so that identifiable parameter combinations can be derived to reparameterize the nested model to obtain an identifiable one. This is a crucial step in developing multi-scale models which explain multi-scale data.
Radiation response of multi-quantum well solar cells: Electron-beam-induced current analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maximenko, S. I., E-mail: sergey.maximenko@nrl.navy.mil; Scheiman, D. A.; Jenkins, P. P.
Solar cells utilizing multi-quantum well (MQW) structures are considered promising candidate materials for space applications. An open question is how well these structures can resist the impact of particle irradiation. The aim of this work is to provide feedback about the radiation response of In{sub 0.01}Ga{sub 0.99}As solar cells grown on Ge with MQWs incorporated within the i-region of the device. In particular, the local electronic transport properties of the MQW i-regions of solar cells subjected to electron and proton irradiation were evaluated experimentally using the electron beam induced current (EBIC) technique. The change in carrier collection distribution across themore » MQW i-region was analyzed using a 2D EBIC diffusion model in conjunction with numerical modeling of the electrical field distribution. Both experimental and simulated findings show carrier removal and type conversion from n- to p-type in MQW i-region at a displacement damage dose as low as ∼6.06–9.88 × 10{sup 9} MeV/g. This leads to a redistribution of the electric field and significant degradation in charge carrier collection.« less
Adaptive multi-resolution Modularity for detecting communities in networks
NASA Astrophysics Data System (ADS)
Chen, Shi; Wang, Zhi-Zhong; Bao, Mei-Hua; Tang, Liang; Zhou, Ji; Xiang, Ju; Li, Jian-Ming; Yi, Chen-He
2018-02-01
Community structure is a common topological property of complex networks, which attracted much attention from various fields. Optimizing quality functions for community structures is a kind of popular strategy for community detection, such as Modularity optimization. Here, we introduce a general definition of Modularity, by which several classical (multi-resolution) Modularity can be derived, and then propose a kind of adaptive (multi-resolution) Modularity that can combine the advantages of different Modularity. By applying the Modularity to various synthetic and real-world networks, we study the behaviors of the methods, showing the validity and advantages of the multi-resolution Modularity in community detection. The adaptive Modularity, as a kind of multi-resolution method, can naturally solve the first-type limit of Modularity and detect communities at different scales; it can quicken the disconnecting of communities and delay the breakup of communities in heterogeneous networks; and thus it is expected to generate the stable community structures in networks more effectively and have stronger tolerance against the second-type limit of Modularity.
Dong, Fan; Zhao, Weirong; Wu, Zhongbiao; Guo, Sen
2009-03-15
Multi-type nitrogen doped TiO(2) nanoparticles were prepared by thermal decomposition of the mixture of titanium hydroxide and urea at 400 degrees C for 2h. The as-prepared photocatalysts were characterized by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectra (UV-vis DRS), and photoluminescence (PL). The results showed that the as-prepared samples exhibited strong visible light absorption due to multi-type nitrogen doped in the form of substitutional (N-Ti-O and Ti-O-N) and interstitial (pi* character NO) states, which were 0.14 and 0.73 eV above the top of the valence band, respectively. A physical model of band structure was established to clarify the visible light photocatalytic process over the as-prepared samples. The photocatalytic activity was evaluated for the photodegradation of gaseous toluene under visible light irradiation. The activity of the sample prepared from wet titanium hydroxide and urea (TiO(2)-Nw, apparent reaction rate constant k = 0.045 min(-1)) was much higher than other samples including P25 (k = 0.0013 min(-1)). The high activity can be attributed to the results of the synergetic effects of strong visible light absorption, good crystallization, large surface hydroxyl groups, and enhanced separation of photoinduced carriers.
Shi, Qi; Abdel-Aty, Mohamed; Yu, Rongjie
2016-03-01
In traffic safety studies, crash frequency modeling of total crashes is the cornerstone before proceeding to more detailed safety evaluation. The relationship between crash occurrence and factors such as traffic flow and roadway geometric characteristics has been extensively explored for a better understanding of crash mechanisms. In this study, a multi-level Bayesian framework has been developed in an effort to identify the crash contributing factors on an urban expressway in the Central Florida area. Two types of traffic data from the Automatic Vehicle Identification system, which are the processed data capped at speed limit and the unprocessed data retaining the original speed were incorporated in the analysis along with road geometric information. The model framework was proposed to account for the hierarchical data structure and the heterogeneity among the traffic and roadway geometric data. Multi-level and random parameters models were constructed and compared with the Negative Binomial model under the Bayesian inference framework. Results showed that the unprocessed traffic data was superior. Both multi-level models and random parameters models outperformed the Negative Binomial model and the models with random parameters achieved the best model fitting. The contributing factors identified imply that on the urban expressway lower speed and higher speed variation could significantly increase the crash likelihood. Other geometric factors were significant including auxiliary lanes and horizontal curvature. Copyright © 2015 Elsevier Ltd. All rights reserved.
Schuster, Richard; Römer, Heinrich; Germain, Ryan R
2013-01-01
Roads are a major cause of habitat fragmentation that can negatively affect many mammal populations. Mitigation measures such as crossing structures are a proposed method to reduce the negative effects of roads on wildlife, but the best methods for determining where such structures should be implemented, and how their effects might differ between species in mammal communities is largely unknown. We investigated the effects of a major highway through south-eastern British Columbia, Canada on several mammal species to determine how the highway may act as a barrier to animal movement, and how species may differ in their crossing-area preferences. We collected track data of eight mammal species across two winters, along both the highway and pre-marked transects, and used a multi-scale modeling approach to determine the scale at which habitat characteristics best predicted preferred crossing sites for each species. We found evidence for a severe barrier effect on all investigated species. Freely-available remotely-sensed habitat landscape data were better than more costly, manually-digitized microhabitat maps in supporting models that identified preferred crossing sites; however, models using both types of data were better yet. Further, in 6 of 8 cases models which incorporated multiple spatial scales were better at predicting preferred crossing sites than models utilizing any single scale. While each species differed in terms of the landscape variables associated with preferred/avoided crossing sites, we used a multi-model inference approach to identify locations along the highway where crossing structures may benefit all of the species considered. By specifically incorporating both highway and off-highway data and predictions we were able to show that landscape context plays an important role for maximizing mitigation measurement efficiency. Our results further highlight the need for mitigation measures along major highways to improve connectivity between mammal populations, and illustrate how multi-scale data can be used to identify preferred crossing sites for different species within a mammal community.
NASA Technical Reports Server (NTRS)
Mendes De Moura, Yhasmin; Hilker, Thomas; Goncalves, Fabio Guimaraes; Galvao, Lenio Soares; Roberto dos Santos, Joao; Lyapustin, Alexei; Maeda, Eduardo Eiji; de Jesus Silva, Camila Valeria
2016-01-01
Detailed knowledge of vegetation structure is required for accurate modelling of terrestrial ecosystems, but direct measurements of the three dimensional distribution of canopy elements, for instance from LiDAR, are not widely available. We investigate the potential for modelling vegetation roughness, a key parameter for climatological models, from directional scattering of visible and near-infrared (NIR) reflectance acquired from NASA's Moderate Resolution Imaging Spectroradiometer (MODIS). We compare our estimates across different tropical forest types to independent measures obtained from: (1) airborne laser scanning (ALS), (2) spaceborne Geoscience Laser Altimeter System (GLAS)/ICESat, and (3) the spaceborne SeaWinds/QSCAT. Our results showed linear correlation between MODIS-derived anisotropy to ALS-derived entropy (r(exp 2)= 0.54, RMSE= 0.11), even in high biomass regions. Significant relationships were also obtained between MODIS-derived anisotropy and GLAS-derived entropy(0.52 less than or equal to r(exp 2) less than or equal to 0.61; p less than 0.05), with similar slopes and offsets found throughout the season, and RMSE between 0.26 and 0.30 (units of entropy). The relationships between the MODIS-derived anisotropy and backscattering measurements (sigma(sup 0)) from SeaWinds/QuikSCAT presented an r(exp 2) of 0.59 and a RMSE of 0.11. We conclude that multi-angular MODIS observations are suitable to extrapolate measures of canopy entropy across different forest types, providing additional estimates of vegetation structure in the Amazon.
Visualizing Distributions from Multi-Return Lidar Data to Understand Forest Structure
NASA Technical Reports Server (NTRS)
Kao, David L.; Kramer, Marc; Luo, Alison; Dungan, Jennifer; Pang, Alex
2004-01-01
Spatially distributed probability density functions (pdfs) are becoming relevant to the Earth scientists and ecologists because of stochastic models and new sensors that provide numerous realizations or data points per unit area. One source of these data is from multi-return airborne lidar, a type of laser that records multiple returns for each pulse of light sent towards the ground. Data from multi-return lidar is a vital tool in helping us understand the structure of forest canopies over large extents. This paper presents several new visualization tools that allow scientists to rapidly explore, interpret and discover characteristic distributions within the entire spatial field. The major contribution from-this work is a paradigm shift which allows ecologists to think of and analyze their data in terms of the distribution. This provides a way to reveal information on the modality and shape of the distribution previously not possible. The tools allow the scientists to depart from traditional parametric statistical analyses and to associate multimodal distribution characteristics to forest structures. Examples are given using data from High Island, southeast Alaska.
NASA Astrophysics Data System (ADS)
Siade, A. J.; Prommer, H.; Welter, D.
2014-12-01
Groundwater management and remediation requires the implementation of numerical models in order to evaluate the potential anthropogenic impacts on aquifer systems. In many situations, the numerical model must, not only be able to simulate groundwater flow and transport, but also geochemical and biological processes. Each process being simulated carries with it a set of parameters that must be identified, along with differing potential sources of model-structure error. Various data types are often collected in the field and then used to calibrate the numerical model; however, these data types can represent very different processes and can subsequently be sensitive to the model parameters in extremely complex ways. Therefore, developing an appropriate weighting strategy to address the contributions of each data type to the overall least-squares objective function is not straightforward. This is further compounded by the presence of potential sources of model-structure errors that manifest themselves differently for each observation data type. Finally, reactive transport models are highly nonlinear, which can lead to convergence failure for algorithms operating on the assumption of local linearity. In this study, we propose a variation of the popular, particle swarm optimization algorithm to address trade-offs associated with the calibration of one data type over another. This method removes the need to specify weights between observation groups and instead, produces a multi-dimensional Pareto front that illustrates the trade-offs between data types. We use the PEST++ run manager, along with the standard PEST input/output structure, to implement parallel programming across multiple desktop computers using TCP/IP communications. This allows for very large swarms of particles without the need of a supercomputing facility. The method was applied to a case study in which modeling was used to gain insight into the mobilization of arsenic at a deepwell injection site. Multiple data types (e.g., hydrochemical, geophysical, tracer, temperature, etc.) were collected prior to, and during an injection trial. Visualizing the trade-off between the calibration of each data type has provided the means of identifying some model-structure deficiencies.
Configurable product design considering the transition of multi-hierarchical models
NASA Astrophysics Data System (ADS)
Ren, Bin; Qiu, Lemiao; Zhang, Shuyou; Tan, Jianrong; Cheng, Jin
2013-03-01
The current research of configurable product design mainly focuses on how to convert a predefined set of components into a valid set of product structures. With the scale and complexity of configurable products increasing, the interdependencies between customer demands and product structures grow up as well. The result is that existing product structures fails to satisfy the individual customer requirements and hence product variants are needed. This paper is aimed to build a bridge between customer demands and product structures in order to make demand-driven fast response design feasible. First of all, multi-hierarchical models of configurable product design are established with customer demand model, technical requirement model and product structure model. Then, the transition of multi-hierarchical models among customer demand model, technical requirement model and product structure model is solved with fuzzy analytic hierarchy process (FAHP) and the algorithm of multi-level matching. Finally, optimal structure according to the customer demands is obtained with the calculation of Euclidean distance and similarity of some cases. In practice, the configuration design of a clamping unit of injection molding machine successfully performs an optimal search strategy for the product variants with reasonable satisfaction to individual customer demands. The proposed method can automatically generate a configuration design with better alternatives for each product structures, and shorten the time of finding the configuration of a product.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Hongyi; Li, Yang; Zeng, Danielle
Process integration and optimization is the key enabler of the Integrated Computational Materials Engineering (ICME) of carbon fiber composites. In this paper, automated workflows are developed for two types of composites: Sheet Molding Compounds (SMC) short fiber composites, and multi-layer unidirectional (UD) composites. For SMC, the proposed workflow integrates material processing simulation, microstructure representation volume element (RVE) models, material property prediction and structure preformation simulation to enable multiscale, multidisciplinary analysis and design. Processing parameters, microstructure parameters and vehicle subframe geometry parameters are defined as the design variables; the stiffness and weight of the structure are defined as the responses. Formore » multi-layer UD structure, this work focuses on the discussion of different design representation methods and their impacts on the optimization performance. Challenges in ICME process integration and optimization are also summarized and highlighted. Two case studies are conducted to demonstrate the integrated process and its application in optimization.« less
Multi-cut solutions in Chern-Simons matrix models
NASA Astrophysics Data System (ADS)
Morita, Takeshi; Sugiyama, Kento
2018-04-01
We elaborate the Chern-Simons (CS) matrix models at large N. The saddle point equations of these matrix models have a curious structure which cannot be seen in the ordinary one matrix models. Thanks to this structure, an infinite number of multi-cut solutions exist in the CS matrix models. Particularly we exactly derive the two-cut solutions at finite 't Hooft coupling in the pure CS matrix model. In the ABJM matrix model, we argue that some of multi-cut solutions might be interpreted as a condensation of the D2-brane instantons.
Data Model for Multi Hazard Risk Assessment Spatial Support Decision System
NASA Astrophysics Data System (ADS)
Andrejchenko, Vera; Bakker, Wim; van Westen, Cees
2014-05-01
The goal of the CHANGES Spatial Decision Support System is to support end-users in making decisions related to risk reduction measures for areas at risk from multiple hydro-meteorological hazards. The crucial parts in the design of the system are the user requirements, the data model, the data storage and management, and the relationships between the objects in the system. The implementation of the data model is carried out entirely with an open source database management system with a spatial extension. The web application is implemented using open source geospatial technologies with PostGIS as the database, Python for scripting, and Geoserver and javascript libraries for visualization and the client-side user-interface. The model can handle information from different study areas (currently, study areas from France, Romania, Italia and Poland are considered). Furthermore, the data model handles information about administrative units, projects accessible by different types of users, user-defined hazard types (floods, snow avalanches, debris flows, etc.), hazard intensity maps of different return periods, spatial probability maps, elements at risk maps (buildings, land parcels, linear features etc.), economic and population vulnerability information dependent on the hazard type and the type of the element at risk, in the form of vulnerability curves. The system has an inbuilt database of vulnerability curves, but users can also add their own ones. Included in the model is the management of a combination of different scenarios (e.g. related to climate change, land use change or population change) and alternatives (possible risk-reduction measures), as well as data-structures for saving the calculated economic or population loss or exposure per element at risk, aggregation of the loss and exposure using the administrative unit maps, and finally, producing the risk maps. The risk data can be used for cost-benefit analysis (CBA) and multi-criteria evaluation (SMCE). The data model includes data-structures for CBA and SMCE. The model is at the stage where risk and cost-benefit calculations can be stored but the remaining part is currently under development. Multi-criteria information, user management and the relation of these with the rest of the model is our next step. Having a carefully designed data model plays a crucial role in the development of the whole system for rapid development, keeping the data consistent, and in the end, support the end-user in making good decisions in risk-reduction measures related to multiple natural hazards. This work is part of the EU FP7 Marie Curie ITN "CHANGES"project (www.changes-itn.edu)
Buckling Analysis of Single and Multi Delamination In Composite Beam Using Finite Element Method
NASA Astrophysics Data System (ADS)
Simanjorang, Hans Charles; Syamsudin, Hendri; Giri Suada, Muhammad
2018-04-01
Delamination is one type of imperfection in structure which found usually in the composite structure. Delamination may exist due to some factors namely in-service condition where the foreign objects hit the composite structure and creates inner defect and poor manufacturing that causes the initial imperfections. Composite structure is susceptible to the compressive loading. Compressive loading leads the instability phenomenon in the composite structure called buckling. The existence of delamination inside of the structure will cause reduction in buckling strength. This paper will explain the effect of delamination location to the buckling strength. The analysis will use the one-dimensional modelling approach using two- dimensional finite element method.
Dynamic analysis of space structures including elastic, multibody, and control behavior
NASA Technical Reports Server (NTRS)
Pinson, Larry; Soosaar, Keto
1989-01-01
The problem is to develop analysis methods, modeling stategies, and simulation tools to predict with assurance the on-orbit performance and integrity of large complex space structures that cannot be verified on the ground. The problem must incorporate large reliable structural models, multi-body flexible dynamics, multi-tier controller interaction, environmental models including 1g and atmosphere, various on-board disturbances, and linkage to mission-level performance codes. All areas are in serious need of work, but the weakest link is multi-body flexible dynamics.
Toward “optimal” integration of terrestrial biosphere models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwalm, Christopher R.; Huntingzger, Deborah; Fisher, Joshua B.
2015-06-10
Multi-model ensembles (MME) are commonplace in Earth system modeling. Here we perform MME integration using a 10-member ensemble of terrestrial biosphere models (TBMs) from the Multi-scale synthesis and Terrestrial Model Intercomparison Project (MsTMIP). We contrast optimal (skill-based for present-day carbon cycling) versus naïve (“one model – one vote”) integration. MsTMIP optimal and naïve mean land sink strength estimates (–1.16 vs. –1.15 Pg C per annum respectively) are statistically indistinguishable. This holds also for grid cell values and extends to gross uptake, biomass, and net ecosystem productivity. TBM skill is similarly indistinguishable. The added complexity of skill-based integration does not materiallymore » change MME values. This suggests that carbon metabolism has predictability limits and/or that all models and references are misspecified. Resolving this issue requires addressing specific uncertainty types (initial conditions, structure, references) and a change in model development paradigms currently dominant in the TBM community.« less
2011-03-01
Utility Theory . . . . . . . . . . . . . . . . . 21 2.2.4 ELECTRE Method . . . . . . . . . . . . . . . . . . . . . . . . 22 2.2.5 PROMETHEE Method...more complicated than the other ones because of its structure. 2.2.5 PROMETHEE Method. PROMETHEE (Preference Ranking Organization Method for...Enrichment Evaluations) method was proposed by Brans and Vincke (1985). Basically this method has two different types. PROMETHEE I has been designed for
Nonlinear damping model for flexible structures. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Zang, Weijian
1990-01-01
The study of nonlinear damping problem of flexible structures is addressed. Both passive and active damping, both finite dimensional and infinite dimensional models are studied. In the first part, the spectral density and the correlation function of a single DOF nonlinear damping model is investigated. A formula for the spectral density is established with O(Gamma(sub 2)) accuracy based upon Fokker-Planck technique and perturbation. The spectral density depends upon certain first order statistics which could be obtained if the stationary density is known. A method is proposed to find the approximate stationary density explicitly. In the second part, the spectral density of a multi-DOF nonlinear damping model is investigated. In the third part, energy type nonlinear damping model in an infinite dimensional setting is studied.
A Physiologically Based, Multi-Scale Model of Skeletal Muscle Structure and Function
Röhrle, O.; Davidson, J. B.; Pullan, A. J.
2012-01-01
Models of skeletal muscle can be classified as phenomenological or biophysical. Phenomenological models predict the muscle’s response to a specified input based on experimental measurements. Prominent phenomenological models are the Hill-type muscle models, which have been incorporated into rigid-body modeling frameworks, and three-dimensional continuum-mechanical models. Biophysically based models attempt to predict the muscle’s response as emerging from the underlying physiology of the system. In this contribution, the conventional biophysically based modeling methodology is extended to include several structural and functional characteristics of skeletal muscle. The result is a physiologically based, multi-scale skeletal muscle finite element model that is capable of representing detailed, geometrical descriptions of skeletal muscle fibers and their grouping. Together with a well-established model of motor-unit recruitment, the electro-physiological behavior of single muscle fibers within motor units is computed and linked to a continuum-mechanical constitutive law. The bridging between the cellular level and the organ level has been achieved via a multi-scale constitutive law and homogenization. The effect of homogenization has been investigated by varying the number of embedded skeletal muscle fibers and/or motor units and computing the resulting exerted muscle forces while applying the same excitatory input. All simulations were conducted using an anatomically realistic finite element model of the tibialis anterior muscle. Given the fact that the underlying electro-physiological cellular muscle model is capable of modeling metabolic fatigue effects such as potassium accumulation in the T-tubular space and inorganic phosphate build-up, the proposed framework provides a novel simulation-based way to investigate muscle behavior ranging from motor-unit recruitment to force generation and fatigue. PMID:22993509
An Eye Model for Computational Dosimetry Using A Multi-Scale Voxel Phantom
NASA Astrophysics Data System (ADS)
Caracappa, Peter F.; Rhodes, Ashley; Fiedler, Derek
2014-06-01
The lens of the eye is a radiosensitive tissue with cataract formation being the major concern. Recently reduced recommended dose limits to the lens of the eye have made understanding the dose to this tissue of increased importance. Due to memory limitations, the voxel resolution of computational phantoms used for radiation dose calculations is too large to accurately represent the dimensions of the eye. A revised eye model is constructed using physiological data for the dimensions of radiosensitive tissues, and is then transformed into a high-resolution voxel model. This eye model is combined with an existing set of whole body models to form a multi-scale voxel phantom, which is used with the MCNPX code to calculate radiation dose from various exposure types. This phantom provides an accurate representation of the radiation transport through the structures of the eye. Two alternate methods of including a high-resolution eye model within an existing whole body model are developed. The accuracy and performance of each method is compared against existing computational phantoms.
NASA Astrophysics Data System (ADS)
Sun, Yuan; Bhattacherjee, Anol
2011-11-01
Information technology (IT) usage within organisations is a multi-level phenomenon that is influenced by individual-level and organisational-level variables. Yet, current theories, such as the unified theory of acceptance and use of technology, describe IT usage as solely an individual-level phenomenon. This article postulates a model of organisational IT usage that integrates salient organisational-level variables such as user training, top management support and technical support within an individual-level model to postulate a multi-level model of IT usage. The multi-level model was then empirically validated using multi-level data collected from 128 end users and 26 managers in 26 firms in China regarding their use of enterprise resource planning systems and analysed using the multi-level structural equation modelling (MSEM) technique. We demonstrate the utility of MSEM analysis of multi-level data relative to the more common structural equation modelling analysis of single-level data and show how single-level data can be aggregated to approximate multi-level analysis when multi-level data collection is not possible. We hope that this article will motivate future scholars to employ multi-level data and multi-level analysis for understanding organisational phenomena that are truly multi-level in nature.
Li, Shuang; Su, Yewang; Li, Rui
2016-06-01
Multi-layer structures with soft (compliant) interlayers have been widely used in flexible electronics and photonics as an effective design for reducing interactions among the hard (stiff) layers and thus avoiding the premature failure of an entire device. The analytic model for bending of such a structure has not been well established due to its complex mechanical behaviour. Here, we present a rational analytic model, without any parameter fitting, to study the bending of a multi-layer structure on a cylinder, which is often regarded as an important approach to mechanical reliability testing of flexible electronics and photonics. For the first time, our model quantitatively reveals that, as the key for accurate strain control, the splitting of the neutral mechanical plane depends not only on the relative thickness of the middle layer, but also on the length-to-thickness ratio of the multi-layer structure. The model accurately captures the key quantities, including the axial strains in the top and bottom layers, the shear strain in the middle layer and the locations of the neutral mechanical planes of the top and bottom layers. The effects of the length of the multi-layer and the thickness of the middle layer are elaborated. This work is very useful for the design of multi-layer structure-based flexible electronics and photonics.
Li, Shuang; Li, Rui
2016-01-01
Multi-layer structures with soft (compliant) interlayers have been widely used in flexible electronics and photonics as an effective design for reducing interactions among the hard (stiff) layers and thus avoiding the premature failure of an entire device. The analytic model for bending of such a structure has not been well established due to its complex mechanical behaviour. Here, we present a rational analytic model, without any parameter fitting, to study the bending of a multi-layer structure on a cylinder, which is often regarded as an important approach to mechanical reliability testing of flexible electronics and photonics. For the first time, our model quantitatively reveals that, as the key for accurate strain control, the splitting of the neutral mechanical plane depends not only on the relative thickness of the middle layer, but also on the length-to-thickness ratio of the multi-layer structure. The model accurately captures the key quantities, including the axial strains in the top and bottom layers, the shear strain in the middle layer and the locations of the neutral mechanical planes of the top and bottom layers. The effects of the length of the multi-layer and the thickness of the middle layer are elaborated. This work is very useful for the design of multi-layer structure-based flexible electronics and photonics. PMID:27436977
Multi-Tissue Computational Modeling Analyzes Pathophysiology of Type 2 Diabetes in MKR Mice
Kumar, Amit; Harrelson, Thomas; Lewis, Nathan E.; Gallagher, Emily J.; LeRoith, Derek; Shiloach, Joseph; Betenbaugh, Michael J.
2014-01-01
Computational models using metabolic reconstructions for in silico simulation of metabolic disorders such as type 2 diabetes mellitus (T2DM) can provide a better understanding of disease pathophysiology and avoid high experimentation costs. There is a limited amount of computational work, using metabolic reconstructions, performed in this field for the better understanding of T2DM. In this study, a new algorithm for generating tissue-specific metabolic models is presented, along with the resulting multi-confidence level (MCL) multi-tissue model. The effect of T2DM on liver, muscle, and fat in MKR mice was first studied by microarray analysis and subsequently the changes in gene expression of frank T2DM MKR mice versus healthy mice were applied to the multi-tissue model to test the effect. Using the first multi-tissue genome-scale model of all metabolic pathways in T2DM, we found out that branched-chain amino acids' degradation and fatty acids oxidation pathway is downregulated in T2DM MKR mice. Microarray data showed low expression of genes in MKR mice versus healthy mice in the degradation of branched-chain amino acids and fatty-acid oxidation pathways. In addition, the flux balance analysis using the MCL multi-tissue model showed that the degradation pathways of branched-chain amino acid and fatty acid oxidation were significantly downregulated in MKR mice versus healthy mice. Validation of the model was performed using data derived from the literature regarding T2DM. Microarray data was used in conjunction with the model to predict fluxes of various other metabolic pathways in the T2DM mouse model and alterations in a number of pathways were detected. The Type 2 Diabetes MCL multi-tissue model may explain the high level of branched-chain amino acids and free fatty acids in plasma of Type 2 Diabetic subjects from a metabolic fluxes perspective. PMID:25029527
A novel partitioning method for block-structured adaptive meshes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fu, Lin, E-mail: lin.fu@tum.de; Litvinov, Sergej, E-mail: sergej.litvinov@aer.mw.tum.de; Hu, Xiangyu Y., E-mail: xiangyu.hu@tum.de
We propose a novel partitioning method for block-structured adaptive meshes utilizing the meshless Lagrangian particle concept. With the observation that an optimum partitioning has high analogy to the relaxation of a multi-phase fluid to steady state, physically motivated model equations are developed to characterize the background mesh topology and are solved by multi-phase smoothed-particle hydrodynamics. In contrast to well established partitioning approaches, all optimization objectives are implicitly incorporated and achieved during the particle relaxation to stationary state. Distinct partitioning sub-domains are represented by colored particles and separated by a sharp interface with a surface tension model. In order to obtainmore » the particle relaxation, special viscous and skin friction models, coupled with a tailored time integration algorithm are proposed. Numerical experiments show that the present method has several important properties: generation of approximately equal-sized partitions without dependence on the mesh-element type, optimized interface communication between distinct partitioning sub-domains, continuous domain decomposition which is physically localized and implicitly incremental. Therefore it is particularly suitable for load-balancing of high-performance CFD simulations.« less
A novel partitioning method for block-structured adaptive meshes
NASA Astrophysics Data System (ADS)
Fu, Lin; Litvinov, Sergej; Hu, Xiangyu Y.; Adams, Nikolaus A.
2017-07-01
We propose a novel partitioning method for block-structured adaptive meshes utilizing the meshless Lagrangian particle concept. With the observation that an optimum partitioning has high analogy to the relaxation of a multi-phase fluid to steady state, physically motivated model equations are developed to characterize the background mesh topology and are solved by multi-phase smoothed-particle hydrodynamics. In contrast to well established partitioning approaches, all optimization objectives are implicitly incorporated and achieved during the particle relaxation to stationary state. Distinct partitioning sub-domains are represented by colored particles and separated by a sharp interface with a surface tension model. In order to obtain the particle relaxation, special viscous and skin friction models, coupled with a tailored time integration algorithm are proposed. Numerical experiments show that the present method has several important properties: generation of approximately equal-sized partitions without dependence on the mesh-element type, optimized interface communication between distinct partitioning sub-domains, continuous domain decomposition which is physically localized and implicitly incremental. Therefore it is particularly suitable for load-balancing of high-performance CFD simulations.
Timsuksai, Pijika; Rambo, A Terry
2016-01-01
Different ethnic groups have evolved distinctive cultural models which guide their interactions with the environment, including their agroecosystems. Although it is probable that variations in the structures of homegardens among separate ethnic groups reflect differences in the cultural models of the farmers, empirical support for this assumption is limited. In this paper the modal horizontal structural patterns of the homegardens of 8 ethnic groups in Northeast Thailand and Vietnam are described. Six of these groups (5 speaking Tai languages and 1 speaking Vietnamese) live in close proximity to each other in separate villages in Northeast Thailand, and 2 of the groups (one Tai-speaking and one Vietnamese-speaking) live in different parts of Vietnam. Detailed information on the horizontal structure of homegardens was collected from samples of households belonging to each group. Although each ethnic group has a somewhat distinctive modal structure, the groups cluster into 2 different types. The Tai speaking Cao Lan, Kalaeng, Lao, Nyaw, and Yoy make up Type I while both of the Vietnamese groups, along with the Tai speaking Phu Thai, belong to Type II. Type I gardens have predominantly organic shapes, indeterminate boundaries, polycentric planting patterns, and multi-species composition within planting areas. Type II homegardens have geometric shapes, sharp boundaries, lineal planting patterns, and mono-species composition of planting areas. That the homegardens of most of the Tai ethnic groups share a relatively similar horizontal structural pattern that is quite different from the pattern shared by both of the Vietnamese groups suggests that the spatial layout of homegardens is strongly influenced by their different cultural models.
2016-01-01
Different ethnic groups have evolved distinctive cultural models which guide their interactions with the environment, including their agroecosystems. Although it is probable that variations in the structures of homegardens among separate ethnic groups reflect differences in the cultural models of the farmers, empirical support for this assumption is limited. In this paper the modal horizontal structural patterns of the homegardens of 8 ethnic groups in Northeast Thailand and Vietnam are described. Six of these groups (5 speaking Tai languages and 1 speaking Vietnamese) live in close proximity to each other in separate villages in Northeast Thailand, and 2 of the groups (one Tai-speaking and one Vietnamese-speaking) live in different parts of Vietnam. Detailed information on the horizontal structure of homegardens was collected from samples of households belonging to each group. Although each ethnic group has a somewhat distinctive modal structure, the groups cluster into 2 different types. The Tai speaking Cao Lan, Kalaeng, Lao, Nyaw, and Yoy make up Type I while both of the Vietnamese groups, along with the Tai speaking Phu Thai, belong to Type II. Type I gardens have predominantly organic shapes, indeterminate boundaries, polycentric planting patterns, and multi-species composition within planting areas. Type II homegardens have geometric shapes, sharp boundaries, lineal planting patterns, and mono-species composition of planting areas. That the homegardens of most of the Tai ethnic groups share a relatively similar horizontal structural pattern that is quite different from the pattern shared by both of the Vietnamese groups suggests that the spatial layout of homegardens is strongly influenced by their different cultural models. PMID:26752564
Cavanagh, Jorunn Pauline; Klingenberg, Claus; Hanssen, Anne-Merethe; Fredheim, Elizabeth Aarag; Francois, Patrice; Schrenzel, Jacques; Flægstad, Trond; Sollid, Johanna Ericson
2012-06-01
The notoriously multi-resistant Staphylococcus haemolyticus is an emerging pathogen causing serious infections in immunocompromised patients. Defining the population structure is important to detect outbreaks and spread of antimicrobial resistant clones. Currently, the standard typing technique is pulsed-field gel electrophoresis (PFGE). In this study we describe novel molecular typing schemes for S. haemolyticus using multi locus sequence typing (MLST) and multi locus variable number of tandem repeats (VNTR) analysis. Seven housekeeping genes (MLST) and five VNTR loci (MLVF) were selected for the novel typing schemes. A panel of 45 human and veterinary S. haemolyticus isolates was investigated. The collection had diverse PFGE patterns (38 PFGE types) and was sampled over a 20 year-period from eight countries. MLST resolved 17 sequence types (Simpsons index of diversity [SID]=0.877) and MLVF resolved 14 repeat types (SID=0.831). We found a low sequence diversity. Phylogenetic analysis clustered the isolates in three (MLST) and one (MLVF) clonal complexes, respectively. Taken together, neither the MLST nor the MLVF scheme was suitable to resolve the population structure of this S. haemolyticus collection. Future MLVF and MLST schemes will benefit from addition of more variable core genome sequences identified by comparing different fully sequenced S. haemolyticus genomes. Copyright © 2012 Elsevier B.V. All rights reserved.
D2 Delta Robot Structural Design and Kinematics Analysis
NASA Astrophysics Data System (ADS)
Yang, Xudong; wang, Song; Dong, Yu; Yang, Hai
2017-12-01
In this paper, a new type of Delta robot with only two degrees of freedom is proposed on the basis of multi - degree - of - freedom delta robot. In order to meet our application requirements, we have carried out structural design and analysis of the robot. Through SolidWorks modeling, combined with 3D printing technology to determine the final robot structure. In order to achieve the precise control of the robot, the kinematics analysis of the robot was carried out. The SimMechanics toolbox of MATLAB is used to establish the mechanism model, and the kinematics mathematical model is used to simulate the robot motion control in Matlab environment. Finally, according to the design mechanism, the working space of the robot is drawn by the graphic method, which lays the foundation for the motion control of the subsequent robot.
Modeling and Density Estimation of an Urban Freeway Network Based on Dynamic Graph Hybrid Automata
Chen, Yangzhou; Guo, Yuqi; Wang, Ying
2017-01-01
In this paper, in order to describe complex network systems, we firstly propose a general modeling framework by combining a dynamic graph with hybrid automata and thus name it Dynamic Graph Hybrid Automata (DGHA). Then we apply this framework to model traffic flow over an urban freeway network by embedding the Cell Transmission Model (CTM) into the DGHA. With a modeling procedure, we adopt a dual digraph of road network structure to describe the road topology, use linear hybrid automata to describe multi-modes of dynamic densities in road segments and transform the nonlinear expressions of the transmitted traffic flow between two road segments into piecewise linear functions in terms of multi-mode switchings. This modeling procedure is modularized and rule-based, and thus is easily-extensible with the help of a combination algorithm for the dynamics of traffic flow. It can describe the dynamics of traffic flow over an urban freeway network with arbitrary topology structures and sizes. Next we analyze mode types and number in the model of the whole freeway network, and deduce a Piecewise Affine Linear System (PWALS) model. Furthermore, based on the PWALS model, a multi-mode switched state observer is designed to estimate the traffic densities of the freeway network, where a set of observer gain matrices are computed by using the Lyapunov function approach. As an example, we utilize the PWALS model and the corresponding switched state observer to traffic flow over Beijing third ring road. In order to clearly interpret the principle of the proposed method and avoid computational complexity, we adopt a simplified version of Beijing third ring road. Practical application for a large-scale road network will be implemented by decentralized modeling approach and distributed observer designing in the future research. PMID:28353664
Modeling and Density Estimation of an Urban Freeway Network Based on Dynamic Graph Hybrid Automata.
Chen, Yangzhou; Guo, Yuqi; Wang, Ying
2017-03-29
In this paper, in order to describe complex network systems, we firstly propose a general modeling framework by combining a dynamic graph with hybrid automata and thus name it Dynamic Graph Hybrid Automata (DGHA). Then we apply this framework to model traffic flow over an urban freeway network by embedding the Cell Transmission Model (CTM) into the DGHA. With a modeling procedure, we adopt a dual digraph of road network structure to describe the road topology, use linear hybrid automata to describe multi-modes of dynamic densities in road segments and transform the nonlinear expressions of the transmitted traffic flow between two road segments into piecewise linear functions in terms of multi-mode switchings. This modeling procedure is modularized and rule-based, and thus is easily-extensible with the help of a combination algorithm for the dynamics of traffic flow. It can describe the dynamics of traffic flow over an urban freeway network with arbitrary topology structures and sizes. Next we analyze mode types and number in the model of the whole freeway network, and deduce a Piecewise Affine Linear System (PWALS) model. Furthermore, based on the PWALS model, a multi-mode switched state observer is designed to estimate the traffic densities of the freeway network, where a set of observer gain matrices are computed by using the Lyapunov function approach. As an example, we utilize the PWALS model and the corresponding switched state observer to traffic flow over Beijing third ring road. In order to clearly interpret the principle of the proposed method and avoid computational complexity, we adopt a simplified version of Beijing third ring road. Practical application for a large-scale road network will be implemented by decentralized modeling approach and distributed observer designing in the future research.
Maurer, Max; Lienert, Judit
2017-01-01
We compare the use of multi-criteria decision analysis (MCDA)–or more precisely, models used in multi-attribute value theory (MAVT)–to integrated assessment (IA) models for supporting long-term water supply planning in a small town case study in Switzerland. They are used to evaluate thirteen system scale water supply alternatives in four future scenarios regarding forty-four objectives, covering technical, social, environmental, and economic aspects. The alternatives encompass both conventional and unconventional solutions and differ regarding technical, spatial and organizational characteristics. This paper focuses on the impact assessment and final evaluation step of the structured MCDA decision support process. We analyze the performance of the alternatives for ten stakeholders. We demonstrate the implications of model assumptions by comparing two IA and three MAVT evaluation model layouts of different complexity. For this comparison, we focus on the validity (ranking stability), desirability (value), and distinguishability (value range) of the alternatives given the five model layouts. These layouts exclude or include stakeholder preferences and uncertainties. Even though all five led us to identify the same best alternatives, they did not produce identical rankings. We found that the MAVT-type models provide higher distinguishability and a more robust basis for discussion than the IA-type models. The needed complexity of the model, however, should be determined based on the intended use of the model within the decision support process. The best-performing alternatives had consistently strong performance for all stakeholders and future scenarios, whereas the current water supply system was outperformed in all evaluation layouts. The best-performing alternatives comprise proactive pipe rehabilitation, adapted firefighting provisions, and decentralized water storage and/or treatment. We present recommendations for possible ways of improving water supply planning in the case study and beyond. PMID:28481881
Robust multi-model control of an autonomous wind power system
NASA Astrophysics Data System (ADS)
Cutululis, Nicolas Antonio; Ceanga, Emil; Hansen, Anca Daniela; Sørensen, Poul
2006-09-01
This article presents a robust multi-model control structure for a wind power system that uses a variable speed wind turbine (VSWT) driving a permanent magnet synchronous generator (PMSG) connected to a local grid. The control problem consists in maximizing the energy captured from the wind for varying wind speeds. The VSWT-PMSG linearized model analysis reveals the resonant nature of its dynamic at points on the optimal regimes characteristic (ORC). The natural frequency of the system and the damping factor are strongly dependent on the operating point on the ORC. Under these circumstances a robust multi-model control structure is designed. The simulation results prove the viability of the proposed control structure. Copyright
Structural transitions in vortex systems with anisotropic interactions
Olszewski, Maciej W.; Eskildsen, M. R.; Reichhardt, Charles; ...
2017-12-29
We introduce a model of vortices in type-II superconductors with a four-fold anisotropy in the vortex–vortex interaction potential. Using numerical simulations we show that the vortex lattice undergoes structural transitions as the anisotropy is increased, with a triangular lattice at low anisotropy, a rhombic intermediate state, and a square lattice for high anisotropy. In some cases we observe a multi-q state consisting of an Archimedean tiling that combines square and triangular local ordering. At very high anisotropy, domains of vortex chain states appear. We discuss how this model can be generalized to higher order anisotropy as well as its applicabilitymore » to other particle-based systems with anisotropic particle–particle interactions.« less
Römer, Heinrich; Germain, Ryan R.
2013-01-01
Roads are a major cause of habitat fragmentation that can negatively affect many mammal populations. Mitigation measures such as crossing structures are a proposed method to reduce the negative effects of roads on wildlife, but the best methods for determining where such structures should be implemented, and how their effects might differ between species in mammal communities is largely unknown. We investigated the effects of a major highway through south-eastern British Columbia, Canada on several mammal species to determine how the highway may act as a barrier to animal movement, and how species may differ in their crossing-area preferences. We collected track data of eight mammal species across two winters, along both the highway and pre-marked transects, and used a multi-scale modeling approach to determine the scale at which habitat characteristics best predicted preferred crossing sites for each species. We found evidence for a severe barrier effect on all investigated species. Freely-available remotely-sensed habitat landscape data were better than more costly, manually-digitized microhabitat maps in supporting models that identified preferred crossing sites; however, models using both types of data were better yet. Further, in 6 of 8 cases models which incorporated multiple spatial scales were better at predicting preferred crossing sites than models utilizing any single scale. While each species differed in terms of the landscape variables associated with preferred/avoided crossing sites, we used a multi-model inference approach to identify locations along the highway where crossing structures may benefit all of the species considered. By specifically incorporating both highway and off-highway data and predictions we were able to show that landscape context plays an important role for maximizing mitigation measurement efficiency. Our results further highlight the need for mitigation measures along major highways to improve connectivity between mammal populations, and illustrate how multi-scale data can be used to identify preferred crossing sites for different species within a mammal community. PMID:24244912
Li, Tian-Jiao; Li, Sai; Yuan, Yuan; Liu, Yu-Dong; Xu, Chuan-Long; Shuai, Yong; Tan, He-Ping
2017-04-03
Plenoptic cameras are used for capturing flames in studies of high-temperature phenomena. However, simulations of plenoptic camera models can be used prior to the experiment improve experimental efficiency and reduce cost. In this work, microlens arrays, which are based on the established light field camera model, are optimized into a hexagonal structure with three types of microlenses. With this improved plenoptic camera model, light field imaging of static objects and flame are simulated using the calibrated parameters of the Raytrix camera (R29). The optimized models improve the image resolution, imaging screen utilization, and shooting range of depth of field.
A conflict model for the international hazardous waste disposal dispute.
Hu, Kaixian; Hipel, Keith W; Fang, Liping
2009-12-15
A multi-stage conflict model is developed to analyze international hazardous waste disposal disputes. More specifically, the ongoing toxic waste conflicts are divided into two stages consisting of the dumping prevention and dispute resolution stages. The modeling and analyses, based on the methodology of graph model for conflict resolution (GMCR), are used in both stages in order to grasp the structure and implications of a given conflict from a strategic viewpoint. Furthermore, a specific case study is investigated for the Ivory Coast hazardous waste conflict. In addition to the stability analysis, sensitivity and attitude analyses are conducted to capture various strategic features of this type of complicated dispute.
Xu, Hongyi; Li, Yang; Zeng, Danielle
2017-01-02
Process integration and optimization is the key enabler of the Integrated Computational Materials Engineering (ICME) of carbon fiber composites. In this paper, automated workflows are developed for two types of composites: Sheet Molding Compounds (SMC) short fiber composites, and multi-layer unidirectional (UD) composites. For SMC, the proposed workflow integrates material processing simulation, microstructure representation volume element (RVE) models, material property prediction and structure preformation simulation to enable multiscale, multidisciplinary analysis and design. Processing parameters, microstructure parameters and vehicle subframe geometry parameters are defined as the design variables; the stiffness and weight of the structure are defined as the responses. Formore » multi-layer UD structure, this work focuses on the discussion of different design representation methods and their impacts on the optimization performance. Challenges in ICME process integration and optimization are also summarized and highlighted. Two case studies are conducted to demonstrate the integrated process and its application in optimization.« less
A K-BKZ Formulation for Soft-Tissue Viscoelasticity
NASA Technical Reports Server (NTRS)
Freed, Alan D.; Diethelm, Kai
2005-01-01
A viscoelastic model of the K-BKZ (Kaye 1962; Bernstein et al. 1963) type is developed for isotropic biological tissues, and applied to the fat pad of the human heel. To facilitate this pursuit, a class of elastic solids is introduced through a novel strain-energy function whose elements possess strong ellipticity, and therefore lead to stable material models. The standard fractional-order viscoelastic (FOV) solid is used to arrive at the overall elastic/viscoelastic structure of the model, while the elastic potential via the K-BKZ hypothesis is used to arrive at the tensorial structure of the model. Candidate sets of functions are proposed for the elastic and viscoelastic material functions present in the model, including a regularized fractional derivative that was determined to be the best. The Akaike information criterion (AIC) is advocated for performing multi-model inference, enabling an objective selection of the best material function from within a candidate set.
2015-12-02
simplification of the equations but at the expense of introducing modeling errors. We have shown that the Wick solutions have accuracy comparable to...the system of equations for the coefficients of formal power series solutions . Moreover, the structure of this propagator is seemingly universal, i.e...the problem of computing the numerical solution to kinetic partial differential equa- tions involving many phase variables. These types of equations
A novel multi-item joint replenishment problem considering multiple type discounts.
Cui, Ligang; Zhang, Yajun; Deng, Jie; Xu, Maozeng
2018-01-01
In business replenishment, discount offers of multi-item may either provide different discount schedules with a single discount type, or provide schedules with multiple discount types. The paper investigates the joint effects of multiple discount schemes on the decisions of multi-item joint replenishment. In this paper, a joint replenishment problem (JRP) model, considering three discount (all-unit discount, incremental discount, total volume discount) offers simultaneously, is constructed to determine the basic cycle time and joint replenishment frequencies of multi-item. To solve the proposed problem, a heuristic algorithm is proposed to find the optimal solutions and the corresponding total cost of the JRP model. Numerical experiment is performed to test the algorithm and the computational results of JRPs under different discount combinations show different significance in the replenishment cost reduction.
NASA Astrophysics Data System (ADS)
Mansoor Gorgees, Hazim; Hilal, Mariam Mohammed
2018-05-01
Fatigue cracking is one of the common types of pavement distresses and is an indicator of structural failure; cracks allow moisture infiltration, roughness, may further deteriorate to a pothole. Some causes of pavement deterioration are: traffic loading; environment influences; drainage deficiencies; materials quality problems; construction deficiencies and external contributors. Many researchers have made models that contain many variables like asphalt content, asphalt viscosity, fatigue life, stiffness of asphalt mixture, temperature and other parameters that affect the fatigue life. For this situation, a fuzzy linear regression model was employed and analyzed by using the traditional methods and our proposed method in order to overcome the multi-collinearity problem. The total spread error was used as a criterion to compare the performance of the studied methods. Simulation program was used to obtain the required results.
Mehdizadeh, Hamidreza; Bayrak, Elif S; Lu, Chenlin; Somo, Sami I; Akar, Banu; Brey, Eric M; Cinar, Ali
2015-11-01
A multi-layer agent-based model (ABM) of biomaterial scaffold vascularization is extended to consider the effects of scaffold degradation kinetics on blood vessel formation. A degradation model describing the bulk disintegration of porous hydrogels is incorporated into the ABM. The combined degradation-angiogenesis model is used to investigate growing blood vessel networks in the presence of a degradable scaffold structure. Simulation results indicate that higher porosity, larger mean pore size, and rapid degradation allow faster vascularization when not considering the structural support of the scaffold. However, premature loss of structural support results in failure for the material. A strategy using multi-layer scaffold with different degradation rates in each layer was investigated as a way to address this issue. Vascularization was improved with the multi-layered scaffold model compared to the single-layer model. The ABM developed provides insight into the characteristics that influence the selection of optimal geometric parameters and degradation behavior of scaffolds, and enables easy refinement of the model as new knowledge about the underlying biological phenomena becomes available. This paper proposes a multi-layer agent-based model (ABM) of biomaterial scaffold vascularization integrated with a structural-kinetic model describing bulk degradation of porous hydrogels to consider the effects of scaffold degradation kinetics on blood vessel formation. This enables the assessment of scaffold characteristics and in particular the disintegration characteristics of the scaffold on angiogenesis. Simulation results indicate that higher porosity, larger mean pore size, and rapid degradation allow faster vascularization when not considering the structural support of the scaffold. However, premature loss of structural support by scaffold disintegration results in failure of the material and disruption of angiogenesis. A strategy using multi-layer scaffold with different degradation rates in each layer was investigated as away to address this issue. Vascularization was improved with the multi-layered scaffold model compared to the single-layer model. The ABM developed provides insight into the characteristics that influence the selection of optimal geometric and degradation characteristics of tissue engineering scaffolds. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Song, Gangbing; Gu, Haichang; Mo, Yi-Lung
2008-06-01
This paper summarizes the authors' recent pioneering research work in piezoceramic-based smart aggregates and their innovative applications in concrete civil structures. The basic operating principle of smart aggregates is first introduced. The proposed smart aggregate is formed by embedding a waterproof piezoelectric patch with lead wires into a small concrete block. The proposed smart aggregates are multi-functional and can perform three major tasks: early-age concrete strength monitoring, impact detection and structural health monitoring. The proposed smart aggregates are embedded into the desired location before the casting of the concrete structure. The concrete strength development is monitored by observing the high frequency harmonic wave response of the smart aggregate. Impact on the concrete structure is detected by observing the open-circuit voltage of the piezoceramic patch in the smart aggregate. For structural health monitoring purposes, a smart aggregate-based active sensing system is designed for the concrete structure. Wavelet packet analysis is used as a signal-processing tool to analyze the sensor signal. A damage index based on the wavelet packet analysis is used to determine the structural health status. To better describe the time-history and location information of damage, two types of damage index matrices are proposed: a sensor-history damage index matrix and an actuator-sensor damage index matrix. To demonstrate the multi-functionality of the proposed smart aggregates, different types of concrete structures have been used as test objects, including concrete bridge bent-caps, concrete cylinders and a concrete frame. Experimental results have verified the effectiveness and the multi-functionality of the proposed smart aggregates. The multi-functional smart aggregates have the potential to be applied to the comprehensive monitoring of concrete structures from their earliest stages and throughout their lifetime.
Spectral Analysis Tool 6.2 for Windows
NASA Technical Reports Server (NTRS)
Morgan, Feiming; Sue, Miles; Peng, Ted; Tan, Harry; Liang, Robert; Kinman, Peter
2006-01-01
Spectral Analysis Tool 6.2 is the latest version of a computer program that assists in analysis of interference between radio signals of the types most commonly used in Earth/spacecraft radio communications. [An earlier version was reported in Software for Analyzing Earth/Spacecraft Radio Interference (NPO-20422), NASA Tech Briefs, Vol. 25, No. 4 (April 2001), page 52.] SAT 6.2 calculates signal spectra, bandwidths, and interference effects for several families of modulation schemes. Several types of filters can be modeled, and the program calculates and displays signal spectra after filtering by any of the modeled filters. The program accommodates two simultaneous signals: a desired signal and an interferer. The interference-to-signal power ratio can be calculated for the filtered desired and interfering signals. Bandwidth-occupancy and link-budget calculators are included for the user s convenience. SAT 6.2 has a new software structure and provides a new user interface that is both intuitive and convenient. SAT 6.2 incorporates multi-tasking, multi-threaded execution, virtual memory management, and a dynamic link library. SAT 6.2 is designed for use on 32- bit computers employing Microsoft Windows operating systems.
24 CFR 3285.802 - Structural interconnection of multi-section homes.
Code of Federal Regulations, 2011 CFR
2011-04-01
...-section homes. 3285.802 Section 3285.802 Housing and Urban Development Regulations Relating to Housing and..., DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT MODEL MANUFACTURED HOME INSTALLATION STANDARDS Exterior and Interior Close-Up § 3285.802 Structural interconnection of multi-section homes. (a) For multi-section homes...
24 CFR 3285.802 - Structural interconnection of multi-section homes.
Code of Federal Regulations, 2010 CFR
2010-04-01
...-section homes. 3285.802 Section 3285.802 Housing and Urban Development Regulations Relating to Housing and..., DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT MODEL MANUFACTURED HOME INSTALLATION STANDARDS Exterior and Interior Close-Up § 3285.802 Structural interconnection of multi-section homes. (a) For multi-section homes...
24 CFR 3285.802 - Structural interconnection of multi-section homes.
Code of Federal Regulations, 2013 CFR
2013-04-01
...-section homes. 3285.802 Section 3285.802 Housing and Urban Development Regulations Relating to Housing and..., DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT MODEL MANUFACTURED HOME INSTALLATION STANDARDS Exterior and Interior Close-Up § 3285.802 Structural interconnection of multi-section homes. (a) For multi-section homes...
Multi-resolution voxel phantom modeling: a high-resolution eye model for computational dosimetry
NASA Astrophysics Data System (ADS)
Caracappa, Peter F.; Rhodes, Ashley; Fiedler, Derek
2014-09-01
Voxel models of the human body are commonly used for simulating radiation dose with a Monte Carlo radiation transport code. Due to memory limitations, the voxel resolution of these computational phantoms is typically too large to accurately represent the dimensions of small features such as the eye. Recently reduced recommended dose limits to the lens of the eye, which is a radiosensitive tissue with a significant concern for cataract formation, has lent increased importance to understanding the dose to this tissue. A high-resolution eye model is constructed using physiological data for the dimensions of radiosensitive tissues, and combined with an existing set of whole-body models to form a multi-resolution voxel phantom, which is used with the MCNPX code to calculate radiation dose from various exposure types. This phantom provides an accurate representation of the radiation transport through the structures of the eye. Two alternate methods of including a high-resolution eye model within an existing whole-body model are developed. The accuracy and performance of each method is compared against existing computational phantoms.
Exploitation of Self Organization in UAV Swarms for Optimization in Combat Environments
2008-03-01
behaviors and entangled hierarchy into Swarmfare [59] UAV simulation environment to include these models. • Validate this new model’s success through...Figure 4.3. The hierarchy of control emerges from the entangled hierarchy of the state relations at the simulation , swarm and rule/behaviors level...majors, major) Abstract Model Types (AMT) Figure A.1: SO Abstract Model Type Table 142 Appendix B. Simulators Comparision Name MATLAB Multi UAV MultiUAV
Zhang, Y; Melnikov, A; Mandelis, A; Halliop, B; Kherani, N P; Zhu, R
2015-03-01
A theoretical one-dimensional two-layer linear photocarrier radiometry (PCR) model including the presence of effective interface carrier traps was used to evaluate the transport parameters of p-type hydrogenated amorphous silicon (a-Si:H) and n-type crystalline silicon (c-Si) passivated by an intrinsic hydrogenated amorphous silicon (i-layer) nanolayer. Several crystalline Si heterojunction structures were examined to investigate the influence of the i-layer thickness and the doping concentration of the a-Si:H layer. The experimental data of a series of heterojunction structures with intrinsic thin layers were fitted to PCR theory to gain insight into the transport properties of these devices. The quantitative multi-parameter results were studied with regard to measurement reliability (uniqueness) and precision using two independent computational best-fit programs. The considerable influence on the transport properties of the entire structure of two key parameters that can limit the performance of amorphous thin film solar cells, namely, the doping concentration of the a-Si:H layer and the i-layer thickness was demonstrated. It was shown that PCR can be applied to the non-destructive characterization of a-Si:H/c-Si heterojunction solar cells yielding reliable measurements of the key parameters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Y.; Institute of Electronic Engineering and Optoelectronic Technology, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094; Melnikov, A.
2015-03-15
A theoretical one-dimensional two-layer linear photocarrier radiometry (PCR) model including the presence of effective interface carrier traps was used to evaluate the transport parameters of p-type hydrogenated amorphous silicon (a-Si:H) and n-type crystalline silicon (c-Si) passivated by an intrinsic hydrogenated amorphous silicon (i-layer) nanolayer. Several crystalline Si heterojunction structures were examined to investigate the influence of the i-layer thickness and the doping concentration of the a-Si:H layer. The experimental data of a series of heterojunction structures with intrinsic thin layers were fitted to PCR theory to gain insight into the transport properties of these devices. The quantitative multi-parameter results weremore » studied with regard to measurement reliability (uniqueness) and precision using two independent computational best-fit programs. The considerable influence on the transport properties of the entire structure of two key parameters that can limit the performance of amorphous thin film solar cells, namely, the doping concentration of the a-Si:H layer and the i-layer thickness was demonstrated. It was shown that PCR can be applied to the non-destructive characterization of a-Si:H/c-Si heterojunction solar cells yielding reliable measurements of the key parameters.« less
NASA Astrophysics Data System (ADS)
Fischer, Andreas; Keller, Denise; Liniger, Mark; Rajczak, Jan; Schär, Christoph; Appenzeller, Christof
2014-05-01
Fundamental changes in the hydrological cycle are expected in a future warmer climate. This is of particular relevance for the Alpine region, as a source and reservoir of several major rivers in Europe and being prone to extreme events such as floodings. For this region, climate change assessments based on the ENSEMBLES regional climate models (RCMs) project a significant decrease in summer mean precipitation under the A1B emission scenario by the mid-to-end of this century, while winter mean precipitation is expected to slightly rise. From an impact perspective, projected changes in seasonal means, however, are often insufficient to adequately address the multifaceted challenges of climate change adaptation. In this study, we revisit the full matrix of the ENSEMBLES RCM projections regarding changes in frequency and intensity, precipitation-type (convective versus stratiform) and temporal structure (wet/dry spells and transition probabilities) over Switzerland and surroundings. As proxies for raintype changes, we rely on the model parameterized convective and large-scale precipitation components. Part of the analysis involves a Bayesian multi-model combination algorithm to infer changes from the multi-model ensemble. The analysis suggests a summer drying that evolves altitude-specific: over low-land regions it is associated with wet-day frequency decreases of convective and large-scale precipitation, while over elevated regions it is primarily associated with a decline in large-scale precipitation only. As a consequence, almost all the models project an increase in the convective fraction at elevated Alpine altitudes. The decrease in the number of wet days during summer is accompanied by decreases (increases) in multi-day wet (dry) spells. This shift in multi-day episodes also lowers the likelihood of short dry spell occurrence in all of the models. For spring and autumn the combined multi-model projections indicate higher mean precipitation intensity north of the Alps, while a similar tendency is expected for the winter season over most of Switzerland.
NASA Astrophysics Data System (ADS)
McCune, Matthew; Kosztin, Ioan
2013-03-01
Cellular Particle Dynamics (CPD) is a theoretical-computational-experimental framework for describing and predicting the time evolution of biomechanical relaxation processes of multi-cellular systems, such as fusion, sorting and compression. In CPD, cells are modeled as an ensemble of cellular particles (CPs) that interact via short range contact interactions, characterized by an attractive (adhesive interaction) and a repulsive (excluded volume interaction) component. The time evolution of the spatial conformation of the multicellular system is determined by following the trajectories of all CPs through numerical integration of their equations of motion. Here we present CPD simulation results for the fusion of both spherical and cylindrical multi-cellular aggregates. First, we calibrate the relevant CPD model parameters for a given cell type by comparing the CPD simulation results for the fusion of two spherical aggregates to the corresponding experimental results. Next, CPD simulations are used to predict the time evolution of the fusion of cylindrical aggregates. The latter is relevant for the formation of tubular multi-cellular structures (i.e., primitive blood vessels) created by the novel bioprinting technology. Work supported by NSF [PHY-0957914]. Computer time provided by the University of Missouri Bioinformatics Consortium.
A Multi-Resolution Data Structure for Two-Dimensional Morse Functions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bremer, P-T; Edelsbrunner, H; Hamann, B
2003-07-30
The efficient construction of simplified models is a central problem in the field of visualization. We combine topological and geometric methods to construct a multi-resolution data structure for functions over two-dimensional domains. Starting with the Morse-Smale complex we build a hierarchy by progressively canceling critical points in pairs. The data structure supports mesh traversal operations similar to traditional multi-resolution representations.
Multi-thread parallel algorithm for reconstructing 3D large-scale porous structures
NASA Astrophysics Data System (ADS)
Ju, Yang; Huang, Yaohui; Zheng, Jiangtao; Qian, Xu; Xie, Heping; Zhao, Xi
2017-04-01
Geomaterials inherently contain many discontinuous, multi-scale, geometrically irregular pores, forming a complex porous structure that governs their mechanical and transport properties. The development of an efficient reconstruction method for representing porous structures can significantly contribute toward providing a better understanding of the governing effects of porous structures on the properties of porous materials. In order to improve the efficiency of reconstructing large-scale porous structures, a multi-thread parallel scheme was incorporated into the simulated annealing reconstruction method. In the method, four correlation functions, which include the two-point probability function, the linear-path functions for the pore phase and the solid phase, and the fractal system function for the solid phase, were employed for better reproduction of the complex well-connected porous structures. In addition, a random sphere packing method and a self-developed pre-conditioning method were incorporated to cast the initial reconstructed model and select independent interchanging pairs for parallel multi-thread calculation, respectively. The accuracy of the proposed algorithm was evaluated by examining the similarity between the reconstructed structure and a prototype in terms of their geometrical, topological, and mechanical properties. Comparisons of the reconstruction efficiency of porous models with various scales indicated that the parallel multi-thread scheme significantly shortened the execution time for reconstruction of a large-scale well-connected porous model compared to a sequential single-thread procedure.
Youn, Su Hyun; Sim, Taeyong; Choi, Ahnryul; Song, Jinsung; Shin, Ki Young; Lee, Il Kwon; Heo, Hyun Mu; Lee, Daeweon; Mun, Joung Hwan
2015-06-01
Ultrasonic surgical units (USUs) have the advantage of minimizing tissue damage during surgeries that require tissue dissection by reducing problems such as coagulation and unwanted carbonization, but the disadvantage of requiring manual adjustment of power output according to the target tissue. In order to overcome this limitation, it is necessary to determine the properties of in vivo tissues automatically. We propose a multi-classifier that can accurately classify tissues based on the unique impedance of each tissue. For this purpose, a multi-classifier was built based on single classifiers with high classification rates, and the classification accuracy of the proposed model was compared with that of single classifiers for various electrode types (Type-I: 6 mm invasive; Type-II: 3 mm invasive; Type-III: surface). The sensitivity and positive predictive value (PPV) of the multi-classifier by cross checks were determined. According to the 10-fold cross validation results, the classification accuracy of the proposed model was significantly higher (p<0.05 or <0.01) than that of existing single classifiers for all electrode types. In particular, the classification accuracy of the proposed model was highest when the 3mm invasive electrode (Type-II) was used (sensitivity=97.33-100.00%; PPV=96.71-100.00%). The results of this study are an important contribution to achieving automatic optimal output power adjustment of USUs according to the properties of individual tissues. Copyright © 2015 Elsevier Ltd. All rights reserved.
Effect of reflective p-type ohmic contact on thermal reliability of vertical InGaN/GaN LEDs
NASA Astrophysics Data System (ADS)
Son, Jun Ho; Song, Yang Hee; Kim, Buem Joon; Lee, Jong-Lam
2014-11-01
We report on the enhanced thermal reliability of vertical-LEDs (VLEDs) using novel reflective p-type ohmic contacts with good thermal stability. The reflective p-type ohmic contacts with Ni/Ag-Cu alloy multi-layer structure shows low contact resistivity, as low as 9.3 × 10-6 Ωcm2, and high reflectance of 86% after annealing at 450°C. The V-LEDs with Ni/Ag-Cu alloy multi-layer structure show good thermal reliability with stress time at 300°C in air ambient. The improved thermal stability of the reflective ohmic contacts to p-type GaN is believed to play a critical role in the thermal reliability of V-LEDs. [Figure not available: see fulltext.
Creation of 3D Multi-Body Orthodontic Models by Using Independent Imaging Sensors
Barone, Sandro; Paoli, Alessandro; Razionale, Armando Viviano
2013-01-01
In the field of dental health care, plaster models combined with 2D radiographs are widely used in clinical practice for orthodontic diagnoses. However, complex malocclusions can be better analyzed by exploiting 3D digital dental models, which allow virtual simulations and treatment planning processes. In this paper, dental data captured by independent imaging sensors are fused to create multi-body orthodontic models composed of teeth, oral soft tissues and alveolar bone structures. The methodology is based on integrating Cone-Beam Computed Tomography (CBCT) and surface structured light scanning. The optical scanner is used to reconstruct tooth crowns and soft tissues (visible surfaces) through the digitalization of both patients' mouth impressions and plaster casts. These data are also used to guide the segmentation of internal dental tissues by processing CBCT data sets. The 3D individual dental tissues obtained by the optical scanner and the CBCT sensor are fused within multi-body orthodontic models without human supervisions to identify target anatomical structures. The final multi-body models represent valuable virtual platforms to clinical diagnostic and treatment planning. PMID:23385416
Creation of 3D multi-body orthodontic models by using independent imaging sensors.
Barone, Sandro; Paoli, Alessandro; Razionale, Armando Viviano
2013-02-05
In the field of dental health care, plaster models combined with 2D radiographs are widely used in clinical practice for orthodontic diagnoses. However, complex malocclusions can be better analyzed by exploiting 3D digital dental models, which allow virtual simulations and treatment planning processes. In this paper, dental data captured by independent imaging sensors are fused to create multi-body orthodontic models composed of teeth, oral soft tissues and alveolar bone structures. The methodology is based on integrating Cone-Beam Computed Tomography (CBCT) and surface structured light scanning. The optical scanner is used to reconstruct tooth crowns and soft tissues (visible surfaces) through the digitalization of both patients' mouth impressions and plaster casts. These data are also used to guide the segmentation of internal dental tissues by processing CBCT data sets. The 3D individual dental tissues obtained by the optical scanner and the CBCT sensor are fused within multi-body orthodontic models without human supervisions to identify target anatomical structures. The final multi-body models represent valuable virtual platforms to clinical diagnostic and treatment planning.
On the intrinsic flexibility of the opioid receptor through multiscale modeling approaches
NASA Astrophysics Data System (ADS)
Vercauteren, Daniel; FosséPré, Mathieu; Leherte, Laurence; Laaksonen, Aatto
Numerous releases of G protein-coupled receptors crystalline structures created the opportunity for computational methods to widely explore their dynamics. Here, we study the biological implication of the intrinsic flexibility properties of opioid receptor OR. First, one performed classical all-atom (AA) Molecular Dynamics (MD) simulations of OR in its apo-form. We highlighted that the various degrees of bendability of the α-helices present important consequences on the plasticity of the binding site. Hence, this latter adopts a wide diversity of shape and volume, explaining why OR interacts with very diverse ligands. Then, one introduces a new strategy for parameterizing purely mechanical but precise coarse-grained (CG) elastic network models (ENMs). The CG ENMs reproduced in a high accurate way the flexibility properties of OR versus the AA simulations. At last, one uses network modularization to design multi-grained (MG) models. They represent a novel type of low resolution models, different in nature versus CG models as being true multi-resolution models, i . e ., each MG grouping a different number of residues. The three parts constitute hierarchical and multiscale approach for tackling the flexibility of OR.
Underground pipeline laying using the pipe-in-pipe system
NASA Astrophysics Data System (ADS)
Antropova, N.; Krets, V.; Pavlov, M.
2016-09-01
The problems of resource saving and environmental safety during the installation and operation of the underwater crossings are always relevant. The paper describes the existing methods of trenchless pipeline technology, the structure of multi-channel pipelines, the types of supporting and guiding systems. The rational design is suggested for the pipe-in-pipe system. The finite element model is presented for the most dangerous sections of the inner pipes, the optimum distance is detected between the roller supports.
Nilpotent singularities and dynamics in an SIR type of compartmental model with hospital resources
NASA Astrophysics Data System (ADS)
Shan, Chunhua; Yi, Yingfei; Zhu, Huaiping
2016-03-01
An SIR type of compartmental model with a standard incidence rate and a nonlinear recovery rate was formulated to study the impact of available resources of public health system especially the number of hospital beds. Cusp, focus and elliptic type of nilpotent singularities of codimension 3 are discovered and analyzed in this three dimensional model. Complex dynamics of disease transmission including multi-steady states and multi-periodicity are revealed by bifurcation analysis. Large-amplitude oscillations found in our model provide a more reasonable explanation for disease recurrence. With clinical data, our studies have practical implications for the prevention and control of infectious diseases.
Multi-equilibrium property of metabolic networks: SSI module.
Lei, Hong-Bo; Zhang, Ji-Feng; Chen, Luonan
2011-06-20
Revealing the multi-equilibrium property of a metabolic network is a fundamental and important topic in systems biology. Due to the complexity of the metabolic network, it is generally a difficult task to study the problem as a whole from both analytical and numerical viewpoint. On the other hand, the structure-oriented modularization idea is a good choice to overcome such a difficulty, i.e. decomposing the network into several basic building blocks and then studying the whole network through investigating the dynamical characteristics of the basic building blocks and their interactions. Single substrate and single product with inhibition (SSI) metabolic module is one type of the basic building blocks of metabolic networks, and its multi-equilibrium property has important influence on that of the whole metabolic networks. In this paper, we describe what the SSI metabolic module is, characterize the rates of the metabolic reactions by Hill kinetics and give a unified model for SSI modules by using a set of nonlinear ordinary differential equations with multi-variables. Specifically, a sufficient and necessary condition is first given to describe the injectivity of a class of nonlinear systems, and then, the sufficient condition is used to study the multi-equilibrium property of SSI modules. As a main theoretical result, for the SSI modules in which each reaction has no more than one inhibitor, a sufficient condition is derived to rule out multiple equilibria, i.e. the Jacobian matrix of its rate function is nonsingular everywhere. In summary, we describe SSI modules and give a general modeling framework based on Hill kinetics, and provide a sufficient condition for ruling out multiple equilibria of a key type of SSI module.
Multi-equilibrium property of metabolic networks: SSI module
2011-01-01
Background Revealing the multi-equilibrium property of a metabolic network is a fundamental and important topic in systems biology. Due to the complexity of the metabolic network, it is generally a difficult task to study the problem as a whole from both analytical and numerical viewpoint. On the other hand, the structure-oriented modularization idea is a good choice to overcome such a difficulty, i.e. decomposing the network into several basic building blocks and then studying the whole network through investigating the dynamical characteristics of the basic building blocks and their interactions. Single substrate and single product with inhibition (SSI) metabolic module is one type of the basic building blocks of metabolic networks, and its multi-equilibrium property has important influence on that of the whole metabolic networks. Results In this paper, we describe what the SSI metabolic module is, characterize the rates of the metabolic reactions by Hill kinetics and give a unified model for SSI modules by using a set of nonlinear ordinary differential equations with multi-variables. Specifically, a sufficient and necessary condition is first given to describe the injectivity of a class of nonlinear systems, and then, the sufficient condition is used to study the multi-equilibrium property of SSI modules. As a main theoretical result, for the SSI modules in which each reaction has no more than one inhibitor, a sufficient condition is derived to rule out multiple equilibria, i.e. the Jacobian matrix of its rate function is nonsingular everywhere. Conclusions In summary, we describe SSI modules and give a general modeling framework based on Hill kinetics, and provide a sufficient condition for ruling out multiple equilibria of a key type of SSI module. PMID:21689474
NASA Technical Reports Server (NTRS)
Pak, Chan-Gi
2013-01-01
Modern aircraft employ a significant fraction of their weight in composite materials to reduce weight and improve performance. Aircraft aeroservoelastic models are typically characterized by significant levels of model parameter uncertainty due to the composite manufacturing process. Small modeling errors in the finite element model will eventually induce errors in the structural flexibility and mass, thus propagating into unpredictable errors in the unsteady aerodynamics and the control law design. One of the primary objectives of Multi Utility Technology Test-bed (MUTT) aircraft is the flight demonstration of active flutter suppression, and therefore in this study, the identification of the primary and secondary modes for the structural model tuning based on the flutter analysis of MUTT aircraft. The ground vibration test-validated structural dynamic finite element model of the MUTT aircraft is created in this study. The structural dynamic finite element model of MUTT aircraft is improved using the in-house Multi-disciplinary Design, Analysis, and Optimization tool. In this study, two different weight configurations of MUTT aircraft have been improved simultaneously in a single model tuning procedure.
Significance of Shear Wall in Multi-Storey Structure With Seismic Analysis
NASA Astrophysics Data System (ADS)
Bongilwar, Rajat; Harne, V. R.; Chopade, Aditya
2018-03-01
In past decades, shear walls are one of the most appropriate and important structural component in multi-storied building. Therefore, it would be very interesting to study the structural response and their systems in multi-storied structure. Shear walls contribute the stiffness and strength during earthquakes which are often neglected during design of structure and construction. This study shows the effect of shear walls which significantly affect the vulnerability of structures. In order to test this hypothesis, G+8 storey building was considered with and without shear walls and analyzed for various parameters like base shear, storey drift ratio, lateral displacement, bending moment and shear force. Significance of shear wall has been studied with the help of two models. First model is without shear wall i.e. bare frame and other another model is with shear wall considering opening also in it. For modeling and analysis of both the models, FEM based software ETABS 2016 were used. The analysis of all models was done using Equivalent static method. The comparison of results has been done based on same parameters like base shear, storey drift ratio, lateral displacement, bending moment and shear force.
Characterizing Woody Vegetation Spectral and Structural Parameters with a 3-D Scene Model
NASA Astrophysics Data System (ADS)
Qin, W.; Yang, L.
2004-05-01
Quantification of structural and biophysical parameters of woody vegetation is of great significance in understanding vegetation condition, dynamics and functionality. Such information over a landscape scale is crucial for global and regional land cover characterization, global carbon-cycle research, forest resource inventories, and fire fuel estimation. While great efforts and progress have been made in mapping general land cover types over large area, at present, the ability to quantify regional woody vegetation structural and biophysical parameters is limited. One approach to address this research issue is through an integration of physically based 3-D scene model with multiangle and multispectral remote sensing data and in-situ measurements. The first step of this work is to model woody vegetation structure and its radiation regime using a physically based 3-D scene model and field data, before a robust operational algorithm can be developed for retrieval of important woody vegetation structural/biophysical parameters. In this study, we use an advanced 3-D scene model recently developed by Qin and Gerstl (2000), based on L-systems and radiosity theories. This 3-D scene model has been successfully applied to semi-arid shrubland to study structure and radiation regime at a regional scale. We apply this 3-D scene model to a more complicated and heterogeneous forest environment dominated by deciduous and coniferous trees. The data used in this study are from a field campaign conducted by NASA in a portion of the Superior National Forest (SNF) near Ely, Minnesota during the summers of 1983 and 1984, and supplement data collected during our revisit to the same area of SNF in summer of 2003. The model is first validated with reflectance measurements at different scales (ground observations, helicopter, aircraft, and satellite). Then its ability to characterize the structural and spectral parameters of the forest scene is evaluated. Based on the results from this study and the current multi-spectral and multi-angular satellite data (MODIS, MISR), a robust retrieval system to estimate woody vegetation structural/biophysical parameters is proposed.
NASA Technical Reports Server (NTRS)
Friedmann, P. P.
1984-01-01
An aeroelastic model suitable for the study of aeroelastic and structural dynamic effects in multirotor vehicles simulating a hybrid heavy lift vehicle was developed and applied to the study of a number of diverse problems. The analytical model developed proved capable of modeling a number of aeroelastic problems, namely: (1) isolated blade aeroelastic stability in hover and forward flight, (2) coupled rotor/fuselage aeromechanical problem in air or ground resonance, (3) tandem rotor coupled rotor/fuselage problems, and (4) the aeromechanical stability of a multirotor vehicle model representing a hybrid heavy lift airship (HHLA). The model was used to simulate the ground resonance boundaries of a three bladed hingeless rotor model, including the effect of aerodynamic loads, and the theoretical predictions compared well with experimental results. Subsequently the model was used to study the aeromechanical stability of a vehicle representing a hybrid heavy lift airship, and potential instabilities which could occur for this type of vehicle were identified. The coupling between various blade, supporting structure and rigid body modes was identified.
Fu, Jiaqi; Fernandez, Daniel; Ferrer, Marc; Titus, Steven A; Buehler, Eugen; Lal-Nag, Madhu A
2017-06-01
The widespread use of two-dimensional (2D) monolayer cultures for high-throughput screening (HTS) to identify targets in drug discovery has led to attrition in the number of drug targets being validated. Solid tumors are complex, aberrantly growing microenvironments that harness structural components from stroma, nutrients fed through vasculature, and immunosuppressive factors. Increasing evidence of stromally-derived signaling broadens the complexity of our understanding of the tumor microenvironment while stressing the importance of developing better models that reflect these interactions. Three-dimensional (3D) models may be more sensitive to certain gene-silencing events than 2D models because of their components of hypoxia, nutrient gradients, and increased dependence on cell-cell interactions and therefore are more representative of in vivo interactions. Colorectal cancer (CRC) and breast cancer (BC) models composed of epithelial cells only, deemed single-cell-type tumor spheroids (SCTS) and multi-cell-type tumor spheroids (MCTS), containing fibroblasts were developed for RNAi HTS in 384-well microplates with flat-bottom wells for 2D screening and round-bottom, ultra-low-attachment wells for 3D screening. We describe the development of a high-throughput assay platform that can assess physiologically relevant phenotypic differences between screening 2D versus 3D SCTS, 3D SCTS, and MCTS in the context of different cancer subtypes. This assay platform represents a paradigm shift in how we approach drug discovery that can reduce the attrition rate of drugs that enter the clinic.
CFD-ACE+: a CAD system for simulation and modeling of MEMS
NASA Astrophysics Data System (ADS)
Stout, Phillip J.; Yang, H. Q.; Dionne, Paul; Leonard, Andy; Tan, Zhiqiang; Przekwas, Andrzej J.; Krishnan, Anantha
1999-03-01
Computer aided design (CAD) systems are a key to designing and manufacturing MEMS with higher performance/reliability, reduced costs, shorter prototyping cycles and improved time- to-market. One such system is CFD-ACE+MEMS, a modeling and simulation environment for MEMS which includes grid generation, data visualization, graphical problem setup, and coupled fluidic, thermal, mechanical, electrostatic, and magnetic physical models. The fluid model is a 3D multi- block, structured/unstructured/hybrid, pressure-based, implicit Navier-Stokes code with capabilities for multi- component diffusion, multi-species transport, multi-step gas phase chemical reactions, surface reactions, and multi-media conjugate heat transfer. The thermal model solves the total enthalpy from of the energy equation. The energy equation includes unsteady, convective, conductive, species energy, viscous dissipation, work, and radiation terms. The electrostatic model solves Poisson's equation. Both the finite volume method and the boundary element method (BEM) are available for solving Poisson's equation. The BEM method is useful for unbounded problems. The magnetic model solves for the vector magnetic potential from Maxwell's equations including eddy currents but neglecting displacement currents. The mechanical model is a finite element stress/deformation solver which has been coupled to the flow, heat, electrostatic, and magnetic calculations to study flow, thermal electrostatically, and magnetically included deformations of structures. The mechanical or structural model can accommodate elastic and plastic materials, can handle large non-linear displacements, and can model isotropic and anisotropic materials. The thermal- mechanical coupling involves the solution of the steady state Navier equation with thermoelastic deformation. The electrostatic-mechanical coupling is a calculation of the pressure force due to surface charge on the mechanical structure. Results of CFD-ACE+MEMS modeling of MEMS such as cantilever beams, accelerometers, and comb drives are discussed.
NASA Astrophysics Data System (ADS)
Gao, Zhuo; Zhan, Weida; Sun, Quan; Hao, Ziqiang
2018-04-01
Differential multi-pulse position modulation (DMPPM) is a new type of modulation technology. There is a fast transmission rate, high bandwidth utilization, high modulation rate characteristics. The study of DMPPM modulation has important scientific value and practical significance. Channel capacity is one of the important indexes to measure the communication capability of communication system, and studying the channel capacity of DMPPM without background noise is the key to analyze the characteristics of DMPPM. The DMPPM theoretical model is established. The symbol structure of DMPPM with guard time slot is analyzed, and the channel capacity expression of DMPPM is deduced. Simulation analysis by MATLAB. The curves of unit channel capacity and capacity efficiency at different pulse and photon counting rates are analyzed. The results show that DMPPM is more advantageous than multi-pulse position modulation (MPPM), and is more suitable for future wireless optical communication system.
den Brok, Perry; van Tartwijk, Jan; Wubbels, Theo; Veldman, Ietje
2010-06-01
The differential effectiveness of schools and teachers receives a growing interest, but few studies focused on the relevance of student ethnicity for this effectiveness and only a small number of these studies investigated teaching in terms of the teacher-student interpersonal relationship. Furthermore, the methodology employed often restricted researchers to investigating direct effects between variables across large samples of students. This study uses causal modelling to investigate associations between student background characteristics, students' perceptions of the teacher-student interpersonal relationship, and student outcomes, across and within several population subgroups in Dutch secondary multi-ethnic classes. Multi-group structural equation modelling was used to investigate causal paths between variables in four ethnic groups: Dutch (N=387), Turkish first- and second-generation immigrant students (N=267), Moroccan first and second generation (N=364), and Surinamese second-generation students (N=101). Different structural paths were necessary to explain associations between variables in the different (sub) groups. Different amounts of variance in student attitudes could be explained by these variables. The teacher-student interpersonal relationship is more important for students with a non-Dutch background than for students with a Dutch background. Results suggest that the teacher-student relationship is more important for second generation than for first-generation immigrant students. Multi-group causal model analyses can provide a better, more differentiated picture of the associations between student background variables, teacher behaviour, and student outcomes than do more traditional types of analyses.
A Comparative Study of Multi-material Data Structures for Computational Physics Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garimella, Rao Veerabhadra; Robey, Robert W.
The data structures used to represent the multi-material state of a computational physics application can have a drastic impact on the performance of the application. We look at efficient data structures for sparse applications where there may be many materials, but only one or few in most computational cells. We develop simple performance models for use in selecting possible data structures and programming patterns. We verify the analytic models of performance through a small test program of the representative cases.
USDA-ARS?s Scientific Manuscript database
Multi-angle remote sensing has been proved useful for mapping vegetation community types in desert regions. Based on Multi-angle Imaging Spectro-Radiometer (MISR) multi-angular images, this study compares roles played by Bidirectional Reflectance Distribution Function (BRDF) model parameters with th...
Wickham, Shelley; Large, Maryanne C.J; Poladian, Leon; Jermiin, Lars S
2005-01-01
Many butterfly species possess ‘structural’ colour, where colour is due to optical microstructures found in the wing scales. A number of such structures have been identified in butterfly scales, including three variations on a simple multi-layer structure. In this study, we optically characterize examples of all three types of multi-layer structure, as found in 10 species. The optical mechanism of the suppression and exaggeration of the angle-dependent optical properties (iridescence) of these structures is described. In addition, we consider the phylogeny of the butterflies, and are thus able to relate the optical properties of the structures to their evolutionary development. By applying two different types of analysis, the mechanism of adaptation is addressed. A simple parsimony analysis, in which all evolutionary changes are given an equal weighting, suggests convergent evolution of one structure. A Dollo parsimony analysis, in which the evolutionary ‘cost’ of losing a structure is less than that of gaining it, implies that ‘latent’ structures can be reused. PMID:16849221
NASA Technical Reports Server (NTRS)
Sodemann, H.; Pommier, M.; Arnold, S. R.; Monks, S. A.; Stebel, K.; Burkhart, J. F.; Hair, J. W.; Diskin, G. S.; Clerbaux, C.; Coheur, P.-F.;
2011-01-01
During the POLARCAT summer campaign in 2008, two episodes (2 5 July and 7 10 July 2008) occurred where low-pressure systems traveled from Siberia across the Arctic Ocean towards the North Pole. The two cyclones had extensive smoke plumes from Siberian forest fires and anthropogenic sources in East Asia embedded in their associated air masses, creating an excellent opportunity to use satellite and aircraft observations to validate the performance of atmospheric transport models in the Arctic, which is a challenging model domain due to numerical and other complications. Here we compare transport simulations of carbon monoxide (CO) from the Lagrangian transport model FLEXPART and the Eulerian chemical transport model TOMCAT with retrievals of total column CO from the IASI passive infrared sensor onboard the MetOp-A satellite. The main aspect of the comparison is how realistic horizontal and vertical structures are represented in the model simulations. Analysis of CALIPSO lidar curtains and in situ aircraft measurements provide further independent reference points to assess how reliable the model simulations are and what the main limitations are. The horizontal structure of mid-latitude pollution plumes agrees well between the IASI total column CO and the model simulations. However, finer-scale structures are too quickly diffused in the Eulerian model. Applying the IASI averaging kernels to the model data is essential for a meaningful comparison. Using aircraft data as a reference suggests that the satellite data are biased high, while TOMCAT is biased low. FLEXPART fits the aircraft data rather well, but due to added background concentrations the simulation is not independent from observations. The multi-data, multi-model approach allows separating the influences of meteorological fields, model realisation, and grid type on the plume structure. In addition to the very good agreement between simulated and observed total column CO fields, the results also highlight the difficulty to identify a data set that most realistically represents the actual pollution state of the Arctic atmosphere.
Imaging of oxygenation in 3D tissue models with multi-modal phosphorescent probes
NASA Astrophysics Data System (ADS)
Papkovsky, Dmitri B.; Dmitriev, Ruslan I.; Borisov, Sergei
2015-03-01
Cell-penetrating phosphorescence based probes allow real-time, high-resolution imaging of O2 concentration in respiring cells and 3D tissue models. We have developed a panel of such probes, small molecule and nanoparticle structures, which have different spectral characteristics, cell penetrating and tissue staining behavior. The probes are compatible with conventional live cell imaging platforms and can be used in different detection modalities, including ratiometric intensity and PLIM (Phosphorescence Lifetime IMaging) under one- or two-photon excitation. Analytical performance of these probes and utility of the O2 imaging method have been demonstrated with different types of samples: 2D cell cultures, multi-cellular spheroids from cancer cell lines and primary neurons, excised slices from mouse brain, colon and bladder tissue, and live animals. They are particularly useful for hypoxia research, ex-vivo studies of tissue physiology, cell metabolism, cancer, inflammation, and multiplexing with many conventional fluorophors and markers of cellular function.
NASA Astrophysics Data System (ADS)
Omrani, Elahe; Hasani, Hossein; Dibajian, Sayed Houssain
2018-02-01
Textile composites of 3D integrated spacer configurations have been recently focused by several researchers all over the world. In the present study, newly-designed tubular composites reinforced with 3D spacer weft knitted fabrics were considered and the effects of their structural parameters on some applicable mechanical properties were investigated. For this purpose, two different samples of 3D spacer weft knitted textile types in tubular form were produced on an electronic flat knitting machine, using glass/nylon hybrid yarns. Thermoset tubular-shaped composite parts were manufactured via vacuum infusion molding process using epoxy resin. The mechanical properties of the produced knitted composites in term of external static and internal hydrostatic pressures were evaluated. Resistance of the produced composites against the external static and internal hydrostatic pressures was numerically simulated using multi-scale modeling method. The finding revealed that there is acceptable correlation between experimental and theoretical results.
Multi-objective optimization of composite structures. A review
NASA Astrophysics Data System (ADS)
Teters, G. A.; Kregers, A. F.
1996-05-01
Studies performed on the optimization of composite structures by coworkers of the Institute of Polymers Mechanics of the Latvian Academy of Sciences in recent years are reviewed. The possibility of controlling the geometry and anisotropy of laminar composite structures will make it possible to design articles that best satisfy the requirements established for them. Conflicting requirements such as maximum bearing capacity, minimum weight and/or cost, prescribed thermal conductivity and thermal expansion, etc. usually exist for optimal design. This results in the multi-objective compromise optimization of structures. Numerical methods have been developed for solution of problems of multi-objective optimization of composite structures; parameters of the structure of the reinforcement and the geometry of the design are assigned as controlling parameters. Programs designed to run on personal computers have been compiled for multi-objective optimization of the properties of composite materials, plates, and shells. Solutions are obtained for both linear and nonlinear models. The programs make it possible to establish the Pareto compromise region and special multicriterial solutions. The problem of the multi-objective optimization of the elastic moduli of a spatially reinforced fiberglass with stochastic stiffness parameters has been solved. The region of permissible solutions and the Pareto region have been found for the elastic moduli. The dimensions of the scatter ellipse have been determined for a multidimensional Gaussian probability distribution where correlation between the composite's properties being optimized are accounted for. Two types of problems involving the optimization of a laminar rectangular composite plate are considered: the plate is considered elastic and anisotropic in the first case, and viscoelastic properties are accounted for in the second. The angle of reinforcement and the relative amount of fibers in the longitudinal direction are controlling parameters. The optimized properties are the critical stresses, thermal conductivity, and thermal expansion. The properties of a plate are determined by the properties of the components in the composite, eight of which are stochastic. The region of multi-objective compromise solutions is presented, and the parameters of the scatter ellipses of the properties are given.
A multi-tissue type genome-scale metabolic network for analysis of whole-body systems physiology
2011-01-01
Background Genome-scale metabolic reconstructions provide a biologically meaningful mechanistic basis for the genotype-phenotype relationship. The global human metabolic network, termed Recon 1, has recently been reconstructed allowing the systems analysis of human metabolic physiology and pathology. Utilizing high-throughput data, Recon 1 has recently been tailored to different cells and tissues, including the liver, kidney, brain, and alveolar macrophage. These models have shown utility in the study of systems medicine. However, no integrated analysis between human tissues has been done. Results To describe tissue-specific functions, Recon 1 was tailored to describe metabolism in three human cells: adipocytes, hepatocytes, and myocytes. These cell-specific networks were manually curated and validated based on known cellular metabolic functions. To study intercellular interactions, a novel multi-tissue type modeling approach was developed to integrate the metabolic functions for the three cell types, and subsequently used to simulate known integrated metabolic cycles. In addition, the multi-tissue model was used to study diabetes: a pathology with systemic properties. High-throughput data was integrated with the network to determine differential metabolic activity between obese and type II obese gastric bypass patients in a whole-body context. Conclusion The multi-tissue type modeling approach presented provides a platform to study integrated metabolic states. As more cell and tissue-specific models are released, it is critical to develop a framework in which to study their interdependencies. PMID:22041191
NASA Astrophysics Data System (ADS)
Logan, Nikolas
2015-11-01
Experiments on DIII-D have demonstrated that multiple kink modes with comparable amplitudes can be driven by applied nonaxisymmetric fields with toroidal mode number n=2, in good agreement with ideal MHD models. In contrast to a single-mode model, the structure of the response measured using poloidally distributed magnetic sensors changes when varying the applied poloidal spectrum. This is most readily evident in that different spectra of applied fields can independently excite inboard and outboard magnetic responses, which are identified as distinct plasma modes by IPEC modeling. The outboard magnetic response is correlated with the plasma pressure and consistent with the long wavelength perturbations of the least stable, pressure driven kinks calculated by DCON and used in IPEC. The models show the structure of the pressure driven modes extends throughout the bad curvature region and into the plasma core. The inboard plasma response is correlated with the edge current profile and requires the inclusion of multiple kink modes with greater stability, including opposite helicity modes, to replicate the experimental observations in the models. IPEC reveals the resulting mode structure to be highly localized in the plasma edge. Scans of the applied spectrum show this response induces the transport that influences the density pump-out, as well as the toroidal rotation drag observed in experiment and modeled using PENT. The classification of these two mode types establishes a new multi-modal paradigm for n=2 plasma response and guides the understanding needed to optimize 3D fields for independent control of stability and transport. Supported by US DOE contract DE-AC02-09CH11466.
Optimal multi-community network modularity for information diffusion
NASA Astrophysics Data System (ADS)
Wu, Jiaocan; Du, Ruping; Zheng, Yingying; Liu, Dong
2016-02-01
Studies demonstrate that community structure plays an important role in information spreading recently. In this paper, we investigate the impact of multi-community structure on information diffusion with linear threshold model. We utilize extended GN network that contains four communities and analyze dynamic behaviors of information that spreads on it. And we discover the optimal multi-community network modularity for information diffusion based on the social reinforcement. Results show that, within the appropriate range, multi-community structure will facilitate information diffusion instead of hindering it, which accords with the results derived from two-community network.
NASA Astrophysics Data System (ADS)
Song, Lu-Kai; Wen, Jie; Fei, Cheng-Wei; Bai, Guang-Chen
2018-05-01
To improve the computing efficiency and precision of probabilistic design for multi-failure structure, a distributed collaborative probabilistic design method-based fuzzy neural network of regression (FR) (called as DCFRM) is proposed with the integration of distributed collaborative response surface method and fuzzy neural network regression model. The mathematical model of DCFRM is established and the probabilistic design idea with DCFRM is introduced. The probabilistic analysis of turbine blisk involving multi-failure modes (deformation failure, stress failure and strain failure) was investigated by considering fluid-structure interaction with the proposed method. The distribution characteristics, reliability degree, and sensitivity degree of each failure mode and overall failure mode on turbine blisk are obtained, which provides a useful reference for improving the performance and reliability of aeroengine. Through the comparison of methods shows that the DCFRM reshapes the probability of probabilistic analysis for multi-failure structure and improves the computing efficiency while keeping acceptable computational precision. Moreover, the proposed method offers a useful insight for reliability-based design optimization of multi-failure structure and thereby also enriches the theory and method of mechanical reliability design.
Swat, Maciej H; Thomas, Gilberto L; Shirinifard, Abbas; Clendenon, Sherry G; Glazier, James A
2015-01-01
Tumor cells and structure both evolve due to heritable variation of cell behaviors and selection over periods of weeks to years (somatic evolution). Micro-environmental factors exert selection pressures on tumor-cell behaviors, which influence both the rate and direction of evolution of specific behaviors, especially the development of tumor-cell aggression and resistance to chemotherapies. In this paper, we present, step-by-step, the development of a multi-cell, virtual-tissue model of tumor somatic evolution, simulated using the open-source CompuCell3D modeling environment. Our model includes essential cell behaviors, microenvironmental components and their interactions. Our model provides a platform for exploring selection pressures leading to the evolution of tumor-cell aggression, showing that emergent stratification into regions with different cell survival rates drives the evolution of less cohesive cells with lower levels of cadherins and higher levels of integrins. Such reduced cohesivity is a key hallmark in the progression of many types of solid tumors.
Swat, Maciej H.; Thomas, Gilberto L.; Shirinifard, Abbas; Clendenon, Sherry G.; Glazier, James A.
2015-01-01
Tumor cells and structure both evolve due to heritable variation of cell behaviors and selection over periods of weeks to years (somatic evolution). Micro-environmental factors exert selection pressures on tumor-cell behaviors, which influence both the rate and direction of evolution of specific behaviors, especially the development of tumor-cell aggression and resistance to chemotherapies. In this paper, we present, step-by-step, the development of a multi-cell, virtual-tissue model of tumor somatic evolution, simulated using the open-source CompuCell3D modeling environment. Our model includes essential cell behaviors, microenvironmental components and their interactions. Our model provides a platform for exploring selection pressures leading to the evolution of tumor-cell aggression, showing that emergent stratification into regions with different cell survival rates drives the evolution of less cohesive cells with lower levels of cadherins and higher levels of integrins. Such reduced cohesivity is a key hallmark in the progression of many types of solid tumors. PMID:26083246
A Polytropic Model of the Solar Interior
NASA Astrophysics Data System (ADS)
Calvo-Mozo, B.; Buitrago Casas, J. C.; Martinez Oliveros, J. C.
2015-12-01
In this work we considered different processes in the solar interior that can be described using polytropes. This assumption implies a radially variable continuous polytropic exponent, that is, our model is a multi-polytropic model of the Sun. We derived the equations for this type of multi-polytropic structure and solved them using numerical integration methods. Both, the exponent and proportionality factor in the polytropic model equation of state were taken as input functions, for each spherical layer in the solar interior. Using the spatial distribution of the density and pressure terms from a solar standard model (SSM) we obtained the variable with depth polytropic exponents. We found that the radial distribution of these exponents show four different zones. These can be interpreted as a first region where the energy transport is controlled by radiation. The second region is defined by a sudden change in the polytropic index, which can be associated to the tachocline, followed by a region with a nearly constant polytropic index which suits well a convective zone. Finally, the exponent decreases radially at the photosphere.
a Fractal Analysis for Net Present Value of Multi-Stage Hydraulic Fractured Horizontal Well
NASA Astrophysics Data System (ADS)
Lu, Hong-Lin; Zhang, Ji-Jun; Tan, Xiao-Hua; Li, Xiao-Ping; Zhao, Jia-Hui
Because of the low permeability, multi-stage hydraulic fractured horizontal wells (MHFHWs) occupy a dominant position among production wells in tight gas reservoir. However, net present value (NPV) estimation method for MHFHW in tight gas reservoirs often ignores the effect of heterogeneity in microscopic pore structure. Apart from that, a new fractal model is presented for NPV of MHFHW, based on the fractal expressions of formation parameters. First, with the aid of apparent permeability model, a pseudo pressure expression considering both reservoir fractal features and slippage effect is derived, contributing to establish the productivity model. Secondly, economic assessment method is built based on the fractal productivity model, in order to obtain the NPV of MHFHW. Thirdly, the type curves are illustrated and the influences of different fractal parameters are discussed. The pore fractal dimensions Df and the capillary tortuosity fractal dimensions DT have significant effects on the NPV of an MHFHW. Finally, the proposed model in this paper provides a new methodology for analyzing and predicting the NPV of an MHFHW and may be conducive to a better understanding of the optimal design of MHFHW.
Modelling Multi Hazard Mapping in Semarang City Using GIS-Fuzzy Method
NASA Astrophysics Data System (ADS)
Nugraha, A. L.; Awaluddin, M.; Sasmito, B.
2018-02-01
One important aspect of disaster mitigation planning is hazard mapping. Hazard mapping can provide spatial information on the distribution of locations that are threatened by disaster. Semarang City as the capital of Central Java Province is one of the cities with high natural disaster intensity. Frequent natural disasters Semarang city is tidal flood, floods, landslides, and droughts. Therefore, Semarang City needs spatial information by doing multi hazard mapping to support disaster mitigation planning in Semarang City. Multi Hazards map modelling can be derived from parameters such as slope maps, rainfall, land use, and soil types. This modelling is done by using GIS method with scoring and overlay technique. However, the accuracy of modelling would be better if the GIS method is combined with Fuzzy Logic techniques to provide a good classification in determining disaster threats. The Fuzzy-GIS method will build a multi hazards map of Semarang city can deliver results with good accuracy and with appropriate threat class spread so as to provide disaster information for disaster mitigation planning of Semarang city. from the multi-hazard modelling using GIS-Fuzzy can be known type of membership that has a good accuracy is the type of membership Gauss with RMSE of 0.404 the smallest of the other membership and VAF value of 72.909% of the largest of the other membership.
NASA Astrophysics Data System (ADS)
Yuan, G.; Wang, D. H.
2017-03-01
Multi-directional and multi-degree-of-freedom (multi-DOF) vibration energy harvesting are attracting more and more research interest in recent years. In this paper, the principle of a piezoelectric six-DOF vibration energy harvester based on parallel mechanism is proposed to convert the energy of the six-DOF vibration to single-DOF vibrations of the limbs on the energy harvester and output voltages. The dynamic model of the piezoelectric six-DOF vibration energy harvester is established to estimate the vibrations of the limbs. On this basis, a Stewart-type piezoelectric six-DOF vibration energy harvester is developed and explored. In order to validate the established dynamic model and the analysis results, the simulation model of the Stewart-type piezoelectric six-DOF vibration energy harvester is built and tested with different vibration excitations by SimMechanics, and some preliminary experiments are carried out. The results show that the vibration of the limbs on the piezoelectric six-DOF vibration energy harvester can be estimated by the established dynamic model. The developed Stewart-type piezoelectric six-DOF vibration energy harvester can harvest the energy of multi-directional linear vibration and multi-axis rotating vibration with resonance frequencies of 17 Hz, 25 Hz, and 47 Hz. Moreover, the resonance frequencies of the developed piezoelectric six-DOF vibration energy harvester are not affected by the direction changing of the vibration excitation.
Morabito, Rosa; Colonna, Michele R; Mormina, Enricomaria; Stagno d'Alcontres, Ferdinando; Salpietro, Vincenzo; Blandino, Alfredo; Longo, Marcello; Granata, Francesca
2014-12-01
Craniofacial duplication is a very rare malformation. The phenotype comprises a wide spectrum, ranging from partial duplication of few facial structures to complete dicephalus. We report the case of a newborn with an accessory oral cavity associated to duplication of the tongue and the mandible diagnosed by multi-row detector Computed Tomography, few days after her birth. Our case of partial craniofacial duplication can be considered as Type II of Gorlin classification or as an intermediate form between Type I and Type II of Sun classification. Our experience demonstrates that CT scan, using appropriate reconstruction algorithms, permits a detailed evaluation of the different structures in an anatomical region. Multi-row CT scan is also the more accurate diagnostic procedure for the pre-surgical evaluation of craniofacial malformations. Copyright © 2014 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
A multi-frequency receiver function inversion approach for crustal velocity structure
NASA Astrophysics Data System (ADS)
Li, Xuelei; Li, Zhiwei; Hao, Tianyao; Wang, Sheng; Xing, Jian
2017-05-01
In order to constrain the crustal velocity structures better, we developed a new nonlinear inversion approach based on multi-frequency receiver function waveforms. With the global optimizing algorithm of Differential Evolution (DE), low-frequency receiver function waveforms can primarily constrain large-scale velocity structures, while high-frequency receiver function waveforms show the advantages in recovering small-scale velocity structures. Based on the synthetic tests with multi-frequency receiver function waveforms, the proposed approach can constrain both long- and short-wavelength characteristics of the crustal velocity structures simultaneously. Inversions with real data are also conducted for the seismic stations of KMNB in southeast China and HYB in Indian continent, where crustal structures have been well studied by former researchers. Comparisons of inverted velocity models from previous and our studies suggest good consistency, but better waveform fitness with fewer model parameters are achieved by our proposed approach. Comprehensive tests with synthetic and real data suggest that the proposed inversion approach with multi-frequency receiver function is effective and robust in inverting the crustal velocity structures.
NASA Astrophysics Data System (ADS)
Han, Y.; Misra, S.
2018-04-01
Multi-frequency measurement of a dispersive electromagnetic (EM) property, such as electrical conductivity, dielectric permittivity, or magnetic permeability, is commonly analyzed for purposes of material characterization. Such an analysis requires inversion of the multi-frequency measurement based on a specific relaxation model, such as Cole-Cole model or Pelton's model. We develop a unified inversion scheme that can be coupled to various type of relaxation models to independently process multi-frequency measurement of varied EM properties for purposes of improved EM-based geomaterial characterization. The proposed inversion scheme is firstly tested in few synthetic cases in which different relaxation models are coupled into the inversion scheme and then applied to multi-frequency complex conductivity, complex resistivity, complex permittivity, and complex impedance measurements. The method estimates up to seven relaxation-model parameters exhibiting convergence and accuracy for random initializations of the relaxation-model parameters within up to 3-orders of magnitude variation around the true parameter values. The proposed inversion method implements a bounded Levenberg algorithm with tuning initial values of damping parameter and its iterative adjustment factor, which are fixed in all the cases shown in this paper and irrespective of the type of measured EM property and the type of relaxation model. Notably, jump-out step and jump-back-in step are implemented as automated methods in the inversion scheme to prevent the inversion from getting trapped around local minima and to honor physical bounds of model parameters. The proposed inversion scheme can be easily used to process various types of EM measurements without major changes to the inversion scheme.
NASA Astrophysics Data System (ADS)
Brant Dodson, J.; Taylor, Patrick C.; Branson, Mark
2018-05-01
Recently launched cloud observing satellites provide information about the vertical structure of deep convection and its microphysical characteristics. In this study, CloudSat reflectivity data is stratified by cloud type, and the contoured frequency by altitude diagrams reveal a double-arc structure in deep convective cores (DCCs) above 8 km. This suggests two distinct hydrometeor modes (snow versus hail/graupel) controlling variability in reflectivity profiles. The day-night contrast in the double arcs is about four times larger than the wet-dry season contrast. Using QuickBeam, the vertical reflectivity structure of DCCs is analyzed in two versions of the Superparameterized Community Atmospheric Model (SP-CAM) with single-moment (no graupel) and double-moment (with graupel) microphysics. Double-moment microphysics shows better agreement with observed reflectivity profiles; however, neither model variant captures the double-arc structure. Ultimately, the results show that simulating realistic DCC vertical structure and its variability requires accurate representation of ice microphysics, in particular the hail/graupel modes, though this alone is insufficient.
The Structure of Borders in a Small World
Thiemann, Christian; Theis, Fabian; Grady, Daniel; Brune, Rafael; Brockmann, Dirk
2010-01-01
Territorial subdivisions and geographic borders are essential for understanding phenomena in sociology, political science, history, and economics. They influence the interregional flow of information and cross-border trade and affect the diffusion of innovation and technology. However, it is unclear if existing administrative subdivisions that typically evolved decades ago still reflect the most plausible organizational structure of today. The complexity of modern human communication, the ease of long-distance movement, and increased interaction across political borders complicate the operational definition and assessment of geographic borders that optimally reflect the multi-scale nature of today's human connectivity patterns. What border structures emerge directly from the interplay of scales in human interactions is an open question. Based on a massive proxy dataset, we analyze a multi-scale human mobility network and compute effective geographic borders inherent to human mobility patterns in the United States. We propose two computational techniques for extracting these borders and for quantifying their strength. We find that effective borders only partially overlap with existing administrative borders, and show that some of the strongest mobility borders exist in unexpected regions. We show that the observed structures cannot be generated by gravity models for human traffic. Finally, we introduce the concept of link significance that clarifies the observed structure of effective borders. Our approach represents a novel type of quantitative, comparative analysis framework for spatially embedded multi-scale interaction networks in general and may yield important insight into a multitude of spatiotemporal phenomena generated by human activity. PMID:21124970
The structure of borders in a small world.
Thiemann, Christian; Theis, Fabian; Grady, Daniel; Brune, Rafael; Brockmann, Dirk
2010-11-18
Territorial subdivisions and geographic borders are essential for understanding phenomena in sociology, political science, history, and economics. They influence the interregional flow of information and cross-border trade and affect the diffusion of innovation and technology. However, it is unclear if existing administrative subdivisions that typically evolved decades ago still reflect the most plausible organizational structure of today. The complexity of modern human communication, the ease of long-distance movement, and increased interaction across political borders complicate the operational definition and assessment of geographic borders that optimally reflect the multi-scale nature of today's human connectivity patterns. What border structures emerge directly from the interplay of scales in human interactions is an open question. Based on a massive proxy dataset, we analyze a multi-scale human mobility network and compute effective geographic borders inherent to human mobility patterns in the United States. We propose two computational techniques for extracting these borders and for quantifying their strength. We find that effective borders only partially overlap with existing administrative borders, and show that some of the strongest mobility borders exist in unexpected regions. We show that the observed structures cannot be generated by gravity models for human traffic. Finally, we introduce the concept of link significance that clarifies the observed structure of effective borders. Our approach represents a novel type of quantitative, comparative analysis framework for spatially embedded multi-scale interaction networks in general and may yield important insight into a multitude of spatiotemporal phenomena generated by human activity.
Li, Bing; Yuan, Chunfeng; Xiong, Weihua; Hu, Weiming; Peng, Houwen; Ding, Xinmiao; Maybank, Steve
2017-12-01
In multi-instance learning (MIL), the relations among instances in a bag convey important contextual information in many applications. Previous studies on MIL either ignore such relations or simply model them with a fixed graph structure so that the overall performance inevitably degrades in complex environments. To address this problem, this paper proposes a novel multi-view multi-instance learning algorithm (MIL) that combines multiple context structures in a bag into a unified framework. The novel aspects are: (i) we propose a sparse -graph model that can generate different graphs with different parameters to represent various context relations in a bag, (ii) we propose a multi-view joint sparse representation that integrates these graphs into a unified framework for bag classification, and (iii) we propose a multi-view dictionary learning algorithm to obtain a multi-view graph dictionary that considers cues from all views simultaneously to improve the discrimination of the MIL. Experiments and analyses in many practical applications prove the effectiveness of the M IL.
DOE Office of Scientific and Technical Information (OSTI.GOV)
al-Saffar, Sinan; Joslyn, Cliff A.; Chappell, Alan R.
As semantic datasets grow to be very large and divergent, there is a need to identify and exploit their inherent semantic structure for discovery and optimization. Towards that end, we present here a novel methodology to identify the semantic structures inherent in an arbitrary semantic graph dataset. We first present the concept of an extant ontology as a statistical description of the semantic relations present amongst the typed entities modeled in the graph. This serves as a model of the underlying semantic structure to aid in discovery and visualization. We then describe a method of ontological scaling in which themore » ontology is employed as a hierarchical scaling filter to infer different resolution levels at which the graph structures are to be viewed or analyzed. We illustrate these methods on three large and publicly available semantic datasets containing more than one billion edges each. Keywords-Semantic Web; Visualization; Ontology; Multi-resolution Data Mining;« less
Constraint Based Modeling Going Multicellular.
Martins Conde, Patricia do Rosario; Sauter, Thomas; Pfau, Thomas
2016-01-01
Constraint based modeling has seen applications in many microorganisms. For example, there are now established methods to determine potential genetic modifications and external interventions to increase the efficiency of microbial strains in chemical production pipelines. In addition, multiple models of multicellular organisms have been created including plants and humans. While initially the focus here was on modeling individual cell types of the multicellular organism, this focus recently started to switch. Models of microbial communities, as well as multi-tissue models of higher organisms have been constructed. These models thereby can include different parts of a plant, like root, stem, or different tissue types in the same organ. Such models can elucidate details of the interplay between symbiotic organisms, as well as the concerted efforts of multiple tissues and can be applied to analyse the effects of drugs or mutations on a more systemic level. In this review we give an overview of the recent development of multi-tissue models using constraint based techniques and the methods employed when investigating these models. We further highlight advances in combining constraint based models with dynamic and regulatory information and give an overview of these types of hybrid or multi-level approaches.
A bivariate model for analyzing recurrent multi-type automobile failures
NASA Astrophysics Data System (ADS)
Sunethra, A. A.; Sooriyarachchi, M. R.
2017-09-01
The failure mechanism in an automobile can be defined as a system of multi-type recurrent failures where failures can occur due to various multi-type failure modes and these failures are repetitive such that more than one failure can occur from each failure mode. In analysing such automobile failures, both the time and type of the failure serve as response variables. However, these two response variables are highly correlated with each other since the timing of failures has an association with the mode of the failure. When there are more than one correlated response variables, the fitting of a multivariate model is more preferable than separate univariate models. Therefore, a bivariate model of time and type of failure becomes appealing for such automobile failure data. When there are multiple failure observations pertaining to a single automobile, such data cannot be treated as independent data because failure instances of a single automobile are correlated with each other while failures among different automobiles can be treated as independent. Therefore, this study proposes a bivariate model consisting time and type of failure as responses adjusted for correlated data. The proposed model was formulated following the approaches of shared parameter models and random effects models for joining the responses and for representing the correlated data respectively. The proposed model is applied to a sample of automobile failures with three types of failure modes and up to five failure recurrences. The parametric distributions that were suitable for the two responses of time to failure and type of failure were Weibull distribution and multinomial distribution respectively. The proposed bivariate model was programmed in SAS Procedure Proc NLMIXED by user programming appropriate likelihood functions. The performance of the bivariate model was compared with separate univariate models fitted for the two responses and it was identified that better performance is secured by the bivariate model. The proposed model can be used to determine the time and type of failure that would occur in the automobiles considered here.
Discriminative confidence estimation for probabilistic multi-atlas label fusion.
Benkarim, Oualid M; Piella, Gemma; González Ballester, Miguel Angel; Sanroma, Gerard
2017-12-01
Quantitative neuroimaging analyses often rely on the accurate segmentation of anatomical brain structures. In contrast to manual segmentation, automatic methods offer reproducible outputs and provide scalability to study large databases. Among existing approaches, multi-atlas segmentation has recently shown to yield state-of-the-art performance in automatic segmentation of brain images. It consists in propagating the labelmaps from a set of atlases to the anatomy of a target image using image registration, and then fusing these multiple warped labelmaps into a consensus segmentation on the target image. Accurately estimating the contribution of each atlas labelmap to the final segmentation is a critical step for the success of multi-atlas segmentation. Common approaches to label fusion either rely on local patch similarity, probabilistic statistical frameworks or a combination of both. In this work, we propose a probabilistic label fusion framework based on atlas label confidences computed at each voxel of the structure of interest. Maximum likelihood atlas confidences are estimated using a supervised approach, explicitly modeling the relationship between local image appearances and segmentation errors produced by each of the atlases. We evaluate different spatial pooling strategies for modeling local segmentation errors. We also present a novel type of label-dependent appearance features based on atlas labelmaps that are used during confidence estimation to increase the accuracy of our label fusion. Our approach is evaluated on the segmentation of seven subcortical brain structures from the MICCAI 2013 SATA Challenge dataset and the hippocampi from the ADNI dataset. Overall, our results indicate that the proposed label fusion framework achieves superior performance to state-of-the-art approaches in the majority of the evaluated brain structures and shows more robustness to registration errors. Copyright © 2017 Elsevier B.V. All rights reserved.
A Real Options Approach to Valuing the Risk Transfer in a Multi-Year Procurement Contract
2009-10-01
asset follows a Brownian motion process where the returns have a lognormal distribution. H. BLACK-SCHOLES MODEL The value of the put option p on...risk in a firm-fixed-price contract. The government also provides interest-free financing that can greatly reduce the amount of capital a contractor...structured finance and credit default swap applications. 8 E. OPTIONS THEORY We will use closed form BS-type option pricing methods to estimate the
Deciding the liveness for a subclass of weighted Petri nets based on structurally circular wait
NASA Astrophysics Data System (ADS)
Liu, GuanJun; Chen, LiJing
2016-05-01
Weighted Petri nets as a kind of formal language are widely used to model and verify discrete event systems related to resource allocation like flexible manufacturing systems. System of Simple Sequential Processes with Multi-Resources (S3PMR, a subclass of weighted Petri nets and an important extension to the well-known System of Simple Sequential Processes with Resources, can model many discrete event systems in which (1) multiple processes may run in parallel and (2) each execution step of each process may use multiple units from multiple resource types. This paper gives a necessary and sufficient condition for the liveness of S3PMR. A new structural concept called Structurally Circular Wait (SCW) is proposed for S3PMR. Blocking Marking (BM) associated with an SCW is defined. It is proven that a marked S3PMR is live if and only if each SCW has no BM. We use an example of multi-processor system-on-chip to show that SCW and BM can precisely characterise the (partial) deadlocks for S3PMR. Simultaneously, two examples are used to show the advantages of SCW in preventing deadlocks of S3PMR. These results are significant for the further research on dealing with the deadlock problem.
Stretchable Dual-Capacitor Multi-Sensor for Touch-Curvature-Pressure-Strain Sensing.
Jin, Hanbyul; Jung, Sungchul; Kim, Junhyung; Heo, Sanghyun; Lim, Jaeik; Park, Wonsang; Chu, Hye Yong; Bien, Franklin; Park, Kibog
2017-09-07
We introduce a new type of multi-functional capacitive sensor that can sense several different external stimuli. It is fabricated only with polydimethylsiloxane (PDMS) films and silver nanowire electrodes by using selective oxygen plasma treatment method without photolithography and etching processes. Differently from the conventional single-capacitor multi-functional sensors, our new multi-functional sensor is composed of two vertically-stacked capacitors (dual-capacitor). The unique dual-capacitor structure can detect the type and strength of external stimuli including curvature, pressure, strain, and touch with clear distinction, and it can also detect the surface-normal directionality of curvature, pressure, and touch. Meanwhile, the conventional single-capacitor sensor has ambiguity in distinguishing curvature and pressure and it can detect only the strength of external stimulus. The type, directionality, and strength of external stimulus can be determined based on the relative capacitance changes of the two stacked capacitors. Additionally, the logical flow reflected on a tree structure with its branches reaching the direction and strength of the corresponding external stimulus unambiguously is devised. This logical flow can be readily implemented in the sensor driving circuit if the dual-capacitor sensor is commercialized actually in the future.
Examination of multi-model ensemble seasonal prediction methods using a simple climate system
NASA Astrophysics Data System (ADS)
Kang, In-Sik; Yoo, Jin Ho
2006-02-01
A simple climate model was designed as a proxy for the real climate system, and a number of prediction models were generated by slightly perturbing the physical parameters of the simple model. A set of long (240 years) historical hindcast predictions were performed with various prediction models, which are used to examine various issues of multi-model ensemble seasonal prediction, such as the best ways of blending multi-models and the selection of models. Based on these results, we suggest a feasible way of maximizing the benefit of using multi models in seasonal prediction. In particular, three types of multi-model ensemble prediction systems, i.e., the simple composite, superensemble, and the composite after statistically correcting individual predictions (corrected composite), are examined and compared to each other. The superensemble has more of an overfitting problem than the others, especially for the case of small training samples and/or weak external forcing, and the corrected composite produces the best prediction skill among the multi-model systems.
Defect study in ZnO related structures—A multi-spectroscopic approach
NASA Astrophysics Data System (ADS)
Ling, C. C.; Cheung, C. K.; Gu, Q. L.; Dai, X. M.; Xu, S. J.; Zhu, C. Y.; Luo, J. M.; Zhu, C. Y.; Tam, K. H.; Djurišić, A. B.; Beling, C. D.; Fung, S.; Lu, L. W.; Brauer, G.; Anwand, W.; Skorupa, W.; Ong, H. C.
2008-10-01
ZnO has attracted a great deal of attention in recent years because of its potential applications for fabricating optoelectronic devices. Using a multi-spectroscopic approach including positron annihilation spectroscopy (PAS), deep level transient spectroscopy (DLTS), photoluminescence (PL) and X-ray photoelectron spectroscopy (XPS), we have studied the two observed phenomena from ZnO related structures. They namely included the H 2O 2 pre-treatment induced ohmic to rectifying contact conversion on Au/ n-ZnO contact and the p-type doping by nitrogen ion implantation. The aim of the studies was to offering comprehensive views as to how the defects influenced the structures electrical and optical properties of the structures. It was also shown that PAS measurement using the monoenergetic positron beam could offer valuable information of vacancy type defects in the vertical ZnO nanorod array structure.
Unipolar Barrier Dual-Band Infrared Detectors
NASA Technical Reports Server (NTRS)
Ting, David Z. (Inventor); Soibel, Alexander (Inventor); Khoshakhlagh, Arezou (Inventor); Gunapala, Sarath (Inventor)
2017-01-01
Dual-band barrier infrared detectors having structures configured to reduce spectral crosstalk between spectral bands and/or enhance quantum efficiency, and methods of their manufacture are provided. In particular, dual-band device structures are provided for constructing high-performance barrier infrared detectors having reduced crosstalk and/or enhance quantum efficiency using novel multi-segmented absorber regions. The novel absorber regions may comprise both p-type and n-type absorber sections. Utilizing such multi-segmented absorbers it is possible to construct any suitable barrier infrared detector having reduced crosstalk, including npBPN, nBPN, pBPN, npBN, npBP, pBN and nBP structures. The pBPN and pBN detector structures have high quantum efficiency and suppresses dark current, but has a smaller etch depth than conventional detectors and does not require a thick bottom contact layer.
Fuzzy Edge Connectivity of Graphical Fuzzy State Space Model in Multi-connected System
NASA Astrophysics Data System (ADS)
Harish, Noor Ainy; Ismail, Razidah; Ahmad, Tahir
2010-11-01
Structured networks of interacting components illustrate complex structure in a direct or intuitive way. Graph theory provides a mathematical modeling for studying interconnection among elements in natural and man-made systems. On the other hand, directed graph is useful to define and interpret the interconnection structure underlying the dynamics of the interacting subsystem. Fuzzy theory provides important tools in dealing various aspects of complexity, imprecision and fuzziness of the network structure of a multi-connected system. Initial development for systems of Fuzzy State Space Model (FSSM) and a fuzzy algorithm approach were introduced with the purpose of solving the inverse problems in multivariable system. In this paper, fuzzy algorithm is adapted in order to determine the fuzzy edge connectivity between subsystems, in particular interconnected system of Graphical Representation of FSSM. This new approach will simplify the schematic diagram of interconnection of subsystems in a multi-connected system.
NASA Astrophysics Data System (ADS)
Xue, Lingyun; Li, Guang; Chen, Qingguang; Rao, Huanle; Xu, Ping
2018-03-01
Multiple LED-based spectral synthesis technology has been widely used in the fields of solar simulator, color mixing, and artificial lighting of plant factory and so on. Generally, amounts of LEDs are spatially arranged with compact layout to obtain the high power density output. Mutual thermal spreading among LEDs will produce the coupled thermal effect which will additionally increase the junction temperature of LED. Affected by the Photoelectric thermal coupling effect of LED, the spectrum of LED will shift and luminous efficiency will decrease. Correspondingly, the spectral synthesis result will mismatch. Therefore, thermal management of LED spatial layout plays an important role for multi-LEDs light source system. In the paper, the thermal dissipation network topology model considering the mutual thermal spreading effect among the LEDs is proposed for multi-LEDs system with various types of power. The junction temperature increment cased by the thermal coupling has the great relation with the spatial arrangement. To minimize the thermal coupling effect, an optimized method of LED spatial layout for the specific light source structure is presented and analyzed. The results showed that layout of LED with high-power are arranged in the corner and low-power in the center. Finally, according to this method, it is convenient to determine the spatial layout of LEDs in a system having any kind of light source structure, and has the advantages of being universally applicable to facilitate adjustment.
Hosseinpour, Mehdi; Sahebi, Sina; Zamzuri, Zamira Hasanah; Yahaya, Ahmad Shukri; Ismail, Noriszura
2018-06-01
According to crash configuration and pre-crash conditions, traffic crashes are classified into different collision types. Based on the literature, multi-vehicle crashes, such as head-on, rear-end, and angle crashes, are more frequent than single-vehicle crashes, and most often result in serious consequences. From a methodological point of view, the majority of prior studies focused on multivehicle collisions have employed univariate count models to estimate crash counts separately by collision type. However, univariate models fail to account for correlations which may exist between different collision types. Among others, multivariate Poisson lognormal (MVPLN) model with spatial correlation is a promising multivariate specification because it not only allows for unobserved heterogeneity (extra-Poisson variation) and dependencies between collision types, but also spatial correlation between adjacent sites. However, the MVPLN spatial model has rarely been applied in previous research for simultaneously modelling crash counts by collision type. Therefore, this study aims at utilizing a MVPLN spatial model to estimate crash counts for four different multi-vehicle collision types, including head-on, rear-end, angle, and sideswipe collisions. To investigate the performance of the MVPLN spatial model, a two-stage model and a univariate Poisson lognormal model (UNPLN) spatial model were also developed in this study. Detailed information on roadway characteristics, traffic volume, and crash history were collected on 407 homogeneous segments from Malaysian federal roads. The results indicate that the MVPLN spatial model outperforms the other comparing models in terms of goodness-of-fit measures. The results also show that the inclusion of spatial heterogeneity in the multivariate model significantly improves the model fit, as indicated by the Deviance Information Criterion (DIC). The correlation between crash types is high and positive, implying that the occurrence of a specific collision type is highly associated with the occurrence of other crash types on the same road segment. These results support the utilization of the MVPLN spatial model when predicting crash counts by collision manner. In terms of contributing factors, the results show that distinct crash types are attributed to different subsets of explanatory variables. Copyright © 2018 Elsevier Ltd. All rights reserved.
How quantitative measures unravel design principles in multi-stage phosphorylation cascades.
Frey, Simone; Millat, Thomas; Hohmann, Stefan; Wolkenhauer, Olaf
2008-09-07
We investigate design principles of linear multi-stage phosphorylation cascades by using quantitative measures for signaling time, signal duration and signal amplitude. We compare alternative pathway structures by varying the number of phosphorylations and the length of the cascade. We show that a model for a weakly activated pathway does not reflect the biological context well, unless it is restricted to certain parameter combinations. Focusing therefore on a more general model, we compare alternative structures with respect to a multivariate optimization criterion. We test the hypothesis that the structure of a linear multi-stage phosphorylation cascade is the result of an optimization process aiming for a fast response, defined by the minimum of the product of signaling time and signal duration. It is then shown that certain pathway structures minimize this criterion. Several popular models of MAPK cascades form the basis of our study. These models represent different levels of approximation, which we compare and discuss with respect to the quantitative measures.
A Microfluidic Route to Breaking Chiral Symmetry: Theory and Experiment
NASA Astrophysics Data System (ADS)
Ocko, Samuel; Adams, Laura
A robust route for the biased production of single handed chiral structures has been found in generating non-spherical, multi-component double emulsions using glass microfluidic devices. The specific type of handedness is determined by the final packing geometry of four different inner drops inside an ultra-thin sheath of oil. Before the three dimensional chiral structures are formed, the quasi-one dimensional chain of four inner drops re-arranges in two dimensions into either checkerboard or stripe patterns. We derive an analytical model predicting which pattern is more likely and assembles in the least amount of time. Moreover, our model accurately predicts our experimental results and is based on local bending dynamics, rather than global surface energy minimization. We gratefully acknowledge Professors D. Weitz and L. Mahadevan's support.
NASA Technical Reports Server (NTRS)
Pak, Chan-Gi; Truong, Samson S.
2014-01-01
Small modeling errors in the finite element model will eventually induce errors in the structural flexibility and mass, thus propagating into unpredictable errors in the unsteady aerodynamics and the control law design. One of the primary objectives of Multi Utility Technology Test Bed, X-56A, aircraft is the flight demonstration of active flutter suppression, and therefore in this study, the identification of the primary and secondary modes for the structural model tuning based on the flutter analysis of X-56A. The ground vibration test validated structural dynamic finite element model of the X-56A is created in this study. The structural dynamic finite element model of the X-56A is improved using a model tuning tool. In this study, two different weight configurations of the X-56A have been improved in a single optimization run.
Multi-disciplinary coupling effects for integrated design of propulsion systems
NASA Technical Reports Server (NTRS)
Chamis, C. C.; Singhal, S. N.
1993-01-01
Effective computational simulation procedures are described for modeling the inherent multi-disciplinary interactions which govern the accurate response of propulsion systems. Results are presented for propulsion system responses including multi-disciplinary coupling effects using coupled multi-discipline thermal, structural, and acoustic tailoring; an integrated system of multi-disciplinary simulators; coupled material behavior/fabrication process tailoring; sensitivities using a probabilistic simulator; and coupled materials, structures, fracture, and probabilistic behavior simulator. The results demonstrate that superior designs can be achieved if the analysis/tailoring methods account for the multi-disciplinary coupling effects. The coupling across disciplines can be used to develop an integrated coupled multi-discipline numerical propulsion system simulator.
NASA Astrophysics Data System (ADS)
Pan, Tianheng
2018-01-01
In recent years, the combination of workflow management system and Multi-agent technology is a hot research field. The problem of lack of flexibility in workflow management system can be improved by introducing multi-agent collaborative management. The workflow management system adopts distributed structure. It solves the problem that the traditional centralized workflow structure is fragile. In this paper, the agent of Distributed workflow management system is divided according to its function. The execution process of each type of agent is analyzed. The key technologies such as process execution and resource management are analyzed.
Reduced detonation kinetics and detonation structure in one- and multi-fuel gaseous mixtures
NASA Astrophysics Data System (ADS)
Fomin, P. A.; Trotsyuk, A. V.; Vasil'ev, A. A.
2017-10-01
Two-step approximate models of chemical kinetics of detonation combustion of (i) one-fuel (CH4/air) and (ii) multi-fuel gaseous mixtures (CH4/H2/air and CH4/CO/air) are developed for the first time. The models for multi-fuel mixtures are proposed for the first time. Owing to the simplicity and high accuracy, the models can be used in multi-dimensional numerical calculations of detonation waves in corresponding gaseous mixtures. The models are in consistent with the second law of thermodynamics and Le Chatelier’s principle. Constants of the models have a clear physical meaning. Advantages of the kinetic model for detonation combustion of methane has been demonstrated via numerical calculations of a two-dimensional structure of the detonation wave in a stoichiometric and fuel-rich methane-air mixtures and stoichiometric methane-oxygen mixture. The dominant size of the detonation cell, determines in calculations, is in good agreement with all known experimental data.
Structural analysis of herpes simplex virus by optical super-resolution imaging
NASA Astrophysics Data System (ADS)
Laine, Romain F.; Albecka, Anna; van de Linde, Sebastian; Rees, Eric J.; Crump, Colin M.; Kaminski, Clemens F.
2015-01-01
Herpes simplex virus type-1 (HSV-1) is one of the most widespread pathogens among humans. Although the structure of HSV-1 has been extensively investigated, the precise organization of tegument and envelope proteins remains elusive. Here we use super-resolution imaging by direct stochastic optical reconstruction microscopy (dSTORM) in combination with a model-based analysis of single-molecule localization data, to determine the position of protein layers within virus particles. We resolve different protein layers within individual HSV-1 particles using multi-colour dSTORM imaging and discriminate envelope-anchored glycoproteins from tegument proteins, both in purified virions and in virions present in infected cells. Precise characterization of HSV-1 structure was achieved by particle averaging of purified viruses and model-based analysis of the radial distribution of the tegument proteins VP16, VP1/2 and pUL37, and envelope protein gD. From this data, we propose a model of the protein organization inside the tegument.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Lei, E-mail: wanglei2239@126.com; Gao, Yi-Tian; State Key Laboratory of Software Development Environment, Beijing University of Aeronautics and Astronautics, Beijing 100191
2012-08-15
Under investigation in this paper is a variable-coefficient modified Kortweg-de Vries (vc-mKdV) model describing certain situations from the fluid mechanics, ocean dynamics and plasma physics. N-fold Darboux transformation (DT) of a variable-coefficient Ablowitz-Kaup-Newell-Segur spectral problem is constructed via a gauge transformation. Multi-solitonic solutions in terms of the double Wronskian for the vc-mKdV model are derived by the reduction of the N-fold DT. Three types of the solitonic interactions are discussed through figures: (1) Overtaking collision; (2) Head-on collision; (3) Parallel solitons. Nonlinear, dispersive and dissipative terms have the effects on the velocities of the solitonic waves while the amplitudes ofmore » the waves depend on the perturbation term. - Highlights: Black-Right-Pointing-Pointer N-fold DT is firstly applied to a vc-AKNS spectral problem. Black-Right-Pointing-Pointer Seeking a double Wronskian solution is changed into solving two systems. Black-Right-Pointing-Pointer Effects of the variable coefficients on the multi-solitonic waves are discussed in detail. Black-Right-Pointing-Pointer This work solves the problem from Yi Zhang [Ann. Phys. 323 (2008) 3059].« less
NASA Astrophysics Data System (ADS)
Yang, Xudong; Sun, Lingyu; Zhang, Cheng; Li, Lijun; Dai, Zongmiao; Xiong, Zhenkai
2018-03-01
The application of polymer composites as a substitution of metal is an effective approach to reduce vehicle weight. However, the final performance of composite structures is determined not only by the material types, structural designs and manufacturing process, but also by their mutual restrict. Hence, an integrated "material-structure-process-performance" method is proposed for the conceptual and detail design of composite components. The material selection is based on the principle of composite mechanics such as rule of mixture for laminate. The design of component geometry, dimension and stacking sequence is determined by parametric modeling and size optimization. The selection of process parameters are based on multi-physical field simulation. The stiffness and modal constraint conditions were obtained from the numerical analysis of metal benchmark under typical load conditions. The optimal design was found by multi-discipline optimization. Finally, the proposed method was validated by an application case of automotive hatchback using carbon fiber reinforced polymer. Compared with the metal benchmark, the weight of composite one reduces 38.8%, simultaneously, its torsion and bending stiffness increases 3.75% and 33.23%, respectively, and the first frequency also increases 44.78%.
NASA Astrophysics Data System (ADS)
Fredette, Luke; Singh, Rajendra
2017-02-01
A spectral element approach is proposed to determine the multi-axis dynamic stiffness terms of elastomeric isolators with fractional damping over a broad range of frequencies. The dynamic properties of a class of cylindrical isolators are modeled by using the continuous system theory in terms of homogeneous rods or Timoshenko beams. The transfer matrix type dynamic stiffness expressions are developed from exact harmonic solutions given translational or rotational displacement excitations. Broadband dynamic stiffness magnitudes (say up to 5 kHz) are computationally verified for axial, torsional, shear, flexural, and coupled stiffness terms using a finite element model. Some discrepancies are found between finite element and spectral element models for the axial and flexural motions, illustrating certain limitations of each method. Experimental validation is provided for an isolator with two cylindrical elements (that work primarily in the shear mode) using dynamic measurements, as reported in the prior literature, up to 600 Hz. Superiority of the fractional damping formulation over structural or viscous damping models is illustrated via experimental validation. Finally, the strengths and limitations of the spectral element approach are briefly discussed.
A multi-core fiber based interferometer for high temperature sensing
NASA Astrophysics Data System (ADS)
Zhou, Song; Huang, Bo; Shu, Xuewen
2017-04-01
In this paper, we have verified and implemented a Mach-Zehnder interferometer based on seven-core fiber for high temperature sensing application. This proposed structure is based on a multi-mode-multi-core-multi-mode fiber structure sandwiched by a single mode fiber. Between the single-mode and multi-core fiber, a 3 mm long multi-mode fiber is formed for lead-in and lead-out light. The basic operation principle of this device is the use of multi-core modes, single-mode and multi-mode interference coupling is also utilized. Experimental results indicate that this interferometer sensor is capable of accurate measurements of temperatures up to 800 °C, and the temperature sensitivity of the proposed sensor is as high as 170.2 pm/°C, which is much higher than the current existing MZI based temperature sensors (109 pm/°C). This type of sensor is promising for practical high temperature applications due to its advantages including high sensitivity, simple fabrication process, low cost and compactness.
Multi-fibers connectors systems for FOCCoS-PFS-Subaru
NASA Astrophysics Data System (ADS)
de Oliveira, Antonio Cesar; de Oliveira, Ligia Souza; Souza Marrara, Lucas; dos Santos, Leandro Henrique; Vital de Arruda, Marcio; dos Santos, Jesulino Bispo; Ferreira, Décio; Rosa, Josimar Aparecido; de Paiva Vilaça, Rodrigo; Sodré, Laerte; de Oliveira, Claudia Mendes; Gunn, James E.
2014-07-01
The Fiber Optical Cable and Connector System (FOCCoS), provides optical connection between 2400 positioners and a set of spectrographs through optical fibers cables as part of PFS instrument for Subaru telescope. The optical fiber cable will be segmented in 3 parts along the route, cable A, cable B and cable C, connected by a set of multi-fiber connectors. The company USCONEC produces the multi-fiber connector under study. The USCONEC 32F model can connect 32 optical fibers in a 4 x 8 matrix arrangement. The ferrules are made of a durable composite, Polyphenylene Sulfide (PPS) based thermoplastic. The connections are held in place by a push-on/pull-off latch, and the connector can also be distinguished by a pair of metal guide pins that protrude from the front of the connector. Two fibers per connector will be used for monitoring the connection procedure. It was found to be easy to polish and it is small enough to be mounted in groups. Highly multiplexed instruments like PFS require a fiber connector system that can deliver excellent optical performance and reliability. PFS requires two different types of structures to organize the connectors. The Tower Connector system, with 80 multi-fiber connectors, will be a group of connectors for connecting cable B (Telescope Structure) with cable C (Positioners Plate). The Gang Connector system is a group of 8 gang connectors, each one with 12 multi-fibers connectors, for connecting cable B (Telescope Structure) with cable A (Spectrograph). The bench tests with these connector systems and the chosen fibers should measure the throughput of light and the stability after many connections and disconnections. In this paper we describe tests and procedures to evaluate the throughput and FRD increment. The lifetime of the ferrules is also in evaluation.
Fluid-structure interaction with the entropic lattice Boltzmann method
NASA Astrophysics Data System (ADS)
Dorschner, B.; Chikatamarla, S. S.; Karlin, I. V.
2018-02-01
We propose a fluid-structure interaction (FSI) scheme using the entropic multi-relaxation time lattice Boltzmann (KBC) model for the fluid domain in combination with a nonlinear finite element solver for the structural part. We show the validity of the proposed scheme for various challenging setups by comparison to literature data. Beyond validation, we extend the KBC model to multiphase flows and couple it with a finite element method (FEM) solver. Robustness and viability of the entropic multi-relaxation time model for complex FSI applications is shown by simulations of droplet impact on elastic superhydrophobic surfaces.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luh, G.C.
1994-01-01
This thesis presents the application of advanced modeling techniques to construct nonlinear forward and inverse models of internal combustion engines for the detection and isolation of incipient faults. The NARMAX (Nonlinear Auto-Regressive Moving Average modeling with eXogenous inputs) technique of system identification proposed by Leontaritis and Billings was used to derive the nonlinear model of a internal combustion engine, over operating conditions corresponding to the I/M240 cycle. The I/M240 cycle is a standard proposed by the United States Environmental Protection Agency to measure tailpipe emissions in inspection and maintenance programs and consists of a driving schedule developed for the purposemore » of testing compliance with federal vehicle emission standards for carbon monoxide, unburned hydrocarbons, and nitrogen oxides. The experimental work for model identification and validation was performed on a 3.0 liter V6 engine installed in an engine test cell at the Center for Automotive Research at The Ohio State University. In this thesis, different types of model structures were proposed to obtain multi-input multi-output (MIMO) nonlinear NARX models. A modification of the algorithm proposed by He and Asada was used to estimate the robust orders of the derived MIMO nonlinear models. A methodology for the analysis of inverse NARX model was developed. Two methods were proposed to derive the inverse NARX model: (1) inversion from the forward NARX model; and (2) direct identification of inverse model from the output-input data set. In this thesis, invertibility, minimum-phase characteristic of zero dynamics, and stability analysis of NARX forward model are also discussed. Stability in the sense of Lyapunov is also investigated to check the stability of the identified forward and inverse models. This application of inverse problem leads to the estimation of unknown inputs and to actuator fault diagnosis.« less
NASA Astrophysics Data System (ADS)
Bai, Peng; Jeon, Mi Young; Ren, Limin; Knight, Chris; Deem, Michael W.; Tsapatsis, Michael; Siepmann, J. Ilja
2015-01-01
Zeolites play numerous important roles in modern petroleum refineries and have the potential to advance the production of fuels and chemical feedstocks from renewable resources. The performance of a zeolite as separation medium and catalyst depends on its framework structure. To date, 213 framework types have been synthesized and >330,000 thermodynamically accessible zeolite structures have been predicted. Hence, identification of optimal zeolites for a given application from the large pool of candidate structures is attractive for accelerating the pace of materials discovery. Here we identify, through a large-scale, multi-step computational screening process, promising zeolite structures for two energy-related applications: the purification of ethanol from fermentation broths and the hydroisomerization of alkanes with 18-30 carbon atoms encountered in petroleum refining. These results demonstrate that predictive modelling and data-driven science can now be applied to solve some of the most challenging separation problems involving highly non-ideal mixtures and highly articulated compounds.
A MULTI-WAVELENGTH 3D MODEL OF BD+30°3639
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freeman, M. J.; Kastner, Joel H.
2016-10-01
We present a 3D multi-wavelength reconstruction of BD+30°3639, one of the best-studied planetary nebulae in the solar neighborhood. BD+30°3639, which hosts a [WR]-type central star, has been imaged at wavelength regimes that span the electromagnetic spectrum, from radio to X-rays. We have used the astrophysical modeling software SHAPE to construct a 3D morpho-kinematic model of BD+30°3639. This reconstruction represents the most complete 3D model of a PN to date from the standpoint of the incorporation of multi-wavelength data. Based on previously published kinematic data in optical emission lines and in lines of CO (radio) and H{sub 2} (near-IR), we weremore » able to reconstruct BD+30's basic velocity components assuming a set of homologous velocity expansion laws combined with collimated flows along the major axis of the nebula. We confirm that the CO “bullets” in the PN lie along an axis that is slightly misaligned with respect to the major axis of the optical nebula, and that these bullets are likely responsible for the disrupted structures of the ionized and H{sub 2}-emitting shells within BD+30. Given the relative geometries and thus dynamical ages of BD+30's main structural components, it is furthermore possible that the same jets that ejected the CO bullets are responsible for the generation of the X-ray-emitting hot bubble within the PN. Comparison of alternative viewing geometries for our 3D reconstruction of BD+30°3639 with imagery of NGC 40 and NGC 6720 suggests a common evolutionary path for these nebulae.« less
Multi-Scale Models for the Scale Interaction of Organized Tropical Convection
NASA Astrophysics Data System (ADS)
Yang, Qiu
Assessing the upscale impact of organized tropical convection from small spatial and temporal scales is a research imperative, not only for having a better understanding of the multi-scale structures of dynamical and convective fields in the tropics, but also for eventually helping in the design of new parameterization strategies to improve the next-generation global climate models. Here self-consistent multi-scale models are derived systematically by following the multi-scale asymptotic methods and used to describe the hierarchical structures of tropical atmospheric flows. The advantages of using these multi-scale models lie in isolating the essential components of multi-scale interaction and providing assessment of the upscale impact of the small-scale fluctuations onto the large-scale mean flow through eddy flux divergences of momentum and temperature in a transparent fashion. Specifically, this thesis includes three research projects about multi-scale interaction of organized tropical convection, involving tropical flows at different scaling regimes and utilizing different multi-scale models correspondingly. Inspired by the observed variability of tropical convection on multiple temporal scales, including daily and intraseasonal time scales, the goal of the first project is to assess the intraseasonal impact of the diurnal cycle on the planetary-scale circulation such as the Hadley cell. As an extension of the first project, the goal of the second project is to assess the intraseasonal impact of the diurnal cycle over the Maritime Continent on the Madden-Julian Oscillation. In the third project, the goals are to simulate the baroclinic aspects of the ITCZ breakdown and assess its upscale impact on the planetary-scale circulation over the eastern Pacific. These simple multi-scale models should be useful to understand the scale interaction of organized tropical convection and help improve the parameterization of unresolved processes in global climate models.
The importance of structural softening for the evolution and architecture of passive margins
Duretz, T.; Petri, B.; Mohn, G.; Schmalholz, S. M.; Schenker, F. L.; Müntener, O.
2016-01-01
Lithospheric extension can generate passive margins that bound oceans worldwide. Detailed geological and geophysical studies in present and fossil passive margins have highlighted the complexity of their architecture and their multi-stage deformation history. Previous modeling studies have shown the significant impact of coarse mechanical layering of the lithosphere (2 to 4 layer crust and mantle) on passive margin formation. We built upon these studies and design high-resolution (~100–300 m) thermo-mechanical numerical models that incorporate finer mechanical layering (kilometer scale) mimicking tectonically inherited heterogeneities. During lithospheric extension a variety of extensional structures arises naturally due to (1) structural softening caused by necking of mechanically strong layers and (2) the establishment of a network of weak layers across the deforming multi-layered lithosphere. We argue that structural softening in a multi-layered lithosphere is the main cause for the observed multi-stage evolution and architecture of magma-poor passive margins. PMID:27929057
Leveraging ISI Multi-Model Prediction for Navy Operations: Proposal to the Office of Naval Research
2014-09-30
ISI Multi-Model Prediction for Navy Operations: Proposal to the Office of Naval Research PI: James L. Kinter III Director, Center for Ocean-Land...TYPE 3. DATES COVERED 00-00-2014 to 00-00-2014 4. TITLE AND SUBTITLE Leveraging ISI Multi-Model Prediction for Navy Operations: Proposal to the ... Office of Naval Research 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f
2002-01-01
their expression profile and for classification of cells into tumerous and non- tumerous classes. Then we will present a parallel tree method for... cancerous cells. We will use the same dataset and use tree structured classifiers with multi-resolution analysis for classifying cancerous from non- cancerous ...cells. We have the expressions of 4096 genes from 98 different cell types. Of these 98, 72 are cancerous while 26 are non- cancerous . We are interested
NASA Astrophysics Data System (ADS)
Marconi, S.; Collalti, A.; Santini, M.; Valentini, R.
2013-12-01
3D-CMCC-Forest Ecosystem Model is a process based model formerly developed for complex forest ecosystems to estimate growth, water and carbon cycles, phenology and competition processes on a daily/monthly time scale. The Model integrates some characteristics of the functional-structural tree models with the robustness of the light use efficiency approach. It treats different heights, ages and species as discrete classes, in competition for light (vertical structure) and space (horizontal structure). The present work evaluates the results of the recently developed daily version of 3D-CMCC-FEM for two neighboring different even aged and mono specific study cases. The former is a heterogeneous Pedunculate oak forest (Quercus robur L. ), the latter a more homogeneous Scot pine forest (Pinus sylvestris L.). The multi-layer approach has been evaluated against a series of simplified versions to determine whether the improved model complexity in canopy structure definition increases its predictive ability. Results show that a more complex structure (three height layers) should be preferable to simulate heterogeneous scenarios (Pedunculate oak stand), where heights distribution within the canopy justify the distinction in dominant, dominated and sub-dominated layers. On the contrary, it seems that using a multi-layer approach for more homogeneous stands (Scot pine stand) may be disadvantageous. Forcing the structure of an homogeneous stand to a multi-layer approach may in fact increase sources of uncertainty. On the other hand forcing complex forests to a mono layer simplified model, may cause an increase in mortality and a reduction in average DBH and Height. Compared with measured CO2 flux data, model results show good ability in estimating carbon sequestration trends, on both a monthly/seasonal and daily time scales. Moreover the model simulates quite well leaf phenology and the combined effects of the two different forest stands on CO2 fluxes.
NALDB: nucleic acid ligand database for small molecules targeting nucleic acid
Kumar Mishra, Subodh; Kumar, Amit
2016-01-01
Nucleic acid ligand database (NALDB) is a unique database that provides detailed information about the experimental data of small molecules that were reported to target several types of nucleic acid structures. NALDB is the first ligand database that contains ligand information for all type of nucleic acid. NALDB contains more than 3500 ligand entries with detailed pharmacokinetic and pharmacodynamic information such as target name, target sequence, ligand 2D/3D structure, SMILES, molecular formula, molecular weight, net-formal charge, AlogP, number of rings, number of hydrogen bond donor and acceptor, potential energy along with their Ki, Kd, IC50 values. All these details at single platform would be helpful for the development and betterment of novel ligands targeting nucleic acids that could serve as a potential target in different diseases including cancers and neurological disorders. With maximum 255 conformers for each ligand entry, our database is a multi-conformer database and can facilitate the virtual screening process. NALDB provides powerful web-based search tools that make database searching efficient and simplified using option for text as well as for structure query. NALDB also provides multi-dimensional advanced search tool which can screen the database molecules on the basis of molecular properties of ligand provided by database users. A 3D structure visualization tool has also been included for 3D structure representation of ligands. NALDB offers an inclusive pharmacological information and the structurally flexible set of small molecules with their three-dimensional conformers that can accelerate the virtual screening and other modeling processes and eventually complement the nucleic acid-based drug discovery research. NALDB can be routinely updated and freely available on bsbe.iiti.ac.in/bsbe/naldb/HOME.php. Database URL: http://bsbe.iiti.ac.in/bsbe/naldb/HOME.php PMID:26896846
Recent Developments in Smart Adaptive Structures for Solar Sailcraft
NASA Technical Reports Server (NTRS)
Whorton, M. S.; Kim, Y. K.; Oakley, J.; Adetona, O.; Keel, L. H.
2007-01-01
The "Smart Adaptive Structures for Solar Sailcraft" development activity at MSFC has investigated issues associated with understanding how to model and scale the subsystem and multi-body system dynamics of a gossamer solar sailcraft with the objective of designing sailcraft attitude control systems. This research and development activity addressed three key tasks that leveraged existing facilities and core competencies of MSFC to investigate dynamics and control issues of solar sails. Key aspects of this effort included modeling and testing of a 30 m deployable boom; modeling of the multi-body system dynamics of a gossamer sailcraft; investigation of control-structures interaction for gossamer sailcraft; and development and experimental demonstration of adaptive control technologies to mitigate control-structures interaction.
Object-oriented biomedical system modelling--the language.
Hakman, M; Groth, T
1999-11-01
The paper describes a new object-oriented biomedical continuous system modelling language (OOBSML). It is fully object-oriented and supports model inheritance, encapsulation, and model component instantiation and behaviour polymorphism. Besides the traditional differential and algebraic equation expressions the language includes also formal expressions for documenting models and defining model quantity types and quantity units. It supports explicit definition of model input-, output- and state quantities, model components and component connections. The OOBSML model compiler produces self-contained, independent, executable model components that can be instantiated and used within other OOBSML models and/or stored within model and model component libraries. In this way complex models can be structured as multilevel, multi-component model hierarchies. Technically the model components produced by the OOBSML compiler are executable computer code objects based on distributed object and object request broker technology. This paper includes both the language tutorial and the formal language syntax and semantic description.
Nurses' labour supply elasticities: the importance of accounting for extensive margins.
Hanel, Barbara; Kalb, Guyonne; Scott, Anthony
2014-01-01
We estimate a multi-sector model of nursing qualification holders' labour supply in different occupations. A structural approach allows us to model the labour force participation decision, the occupational and shift-type choice, and the decision about hours worked as a joint outcome following from maximising a utility function. Disutility from work is allowed to vary by occupation and also by shift type in the utility function. Our results suggest that average wage elasticities might be higher than previous research has found. This is mainly due to the effect of wages on the decision to enter or exit the profession, which was not included in the previous literature, rather than from its effect on increased working hours for those who already work in the profession. Copyright © 2013 Elsevier B.V. All rights reserved.
Predicting multi-wall structural response to hypervelocity impact using the hull code
NASA Technical Reports Server (NTRS)
Schonberg, William P.
1993-01-01
Previously, multi-wall structures have been analyzed extensively, primarily through experiment, as a means of increasing the meteoroid/space debris impact protection of spacecraft. As structural configurations become more varied, the number of tests required to characterize their response increases dramatically. As an alternative to experimental testing, numerical modeling of high-speed impact phenomena is often being used to predict the response of a variety of structural systems under different impact loading conditions. The results of comparing experimental tests to Hull Hydrodynamic Computer Code predictions are reported. Also, the results of a numerical parametric study of multi-wall structural response to hypervelocity cylindrical projectile impact are presented.
NASA Astrophysics Data System (ADS)
Yoon, Gwonchan; Lee, Myeongsang; Kim, Kyungwoo; In Kim, Jae; Chang, Hyun Joon; Baek, Inchul; Eom, Kilho; Na, Sungsoo
2015-12-01
Amyloid fibrils are responsible for pathogenesis of various diseases and exhibit the structural feature of an ordered, hierarchical structure such as multi-stranded helical structure. As the multi-strandedness of amyloid fibrils has recently been found to be highly correlated with their toxicity and infectivity, it is necessary to study how the hierarchical (i.e. multi-stranded) structure of amyloid fibril is formed. Moreover, although it has recently been reported that the nanomechanics of amyloid proteins plays a key role on the amyloid-induced pathogenesis, a critical role that the multi-stranded helical structure of the fibrils plays in their nanomechanical properties has not fully characterized. In this work, we characterize the morphology and mechanical properties of multi-stranded amyloid fibrils by using equilibrium molecular dynamics simulation and elastic network model. It is shown that the helical pitch of multi-stranded amyloid fibril is linearly proportional to the number of filaments comprising the amyloid fibril, and that multi-strandedness gives rise to improving the bending rigidity of the fibril. Moreover, we have also studied the morphology and mechanical properties of a single protofilament (filament) in order to understand the effect of cross-β structure and mutation on the structures and mechanical properties of amyloid fibrils. Our study sheds light on the underlying design principles showing how the multi-stranded amyloid fibril is formed and how the structure of amyloid fibrils governs their nanomechanical properties.
NASA Astrophysics Data System (ADS)
Amanowicz, Łukasz; Wojtkowiak, Janusz
2017-11-01
In this paper the experimentally obtained flow characteristics of multi-pipe earth-to-air heat exchangers (EAHEs) were used to validate the EAHE flow performance numerical model prepared by means of CFD software Ansys Fluent. The cut-cell meshing and the k-ɛ realizable turbulence model with default coefficients values and enhanced wall treatment was used. The total pressure losses and airflow in each pipe of multi-pipe exchangers was investigated both experimentally and numerically. The results show that airflow in each pipe of multi-pipe EAHE structures is not equal. The validated numerical model can be used for a proper designing of multi-pipe EAHEs from the flow characteristics point of view. The influence of EAHEs geometrical parameters on the total pressure losses and airflow division between the exchanger pipes can be also analysed. Usage of CFD for designing the EAHEs can be helpful for HVAC engineers (Heating Ventilation and Air Conditioning) for optimizing the geometrical structure of multi-pipe EAHEs in order to save the energy and decrease operational costs of low-energy buildings.
Bayesian multi-scale smoothing of photon-limited images with applications to astronomy and medicine
NASA Astrophysics Data System (ADS)
White, John
Multi-scale models for smoothing Poisson signals or images have gained much attention over the past decade. A new Bayesian model is developed using the concept of the Chinese restaurant process to find structures in two-dimensional images when performing image reconstruction or smoothing. This new model performs very well when compared to other leading methodologies for the same problem. It is developed and evaluated theoretically and empirically throughout Chapter 2. The newly developed Bayesian model is extended to three-dimensional images in Chapter 3. The third dimension has numerous different applications, such as different energy spectra, another spatial index, or possibly a temporal dimension. Empirically, this method shows promise in reducing error with the use of simulation studies. A further development removes background noise in the image. This removal can further reduce the error and is done using a modeling adjustment and post-processing techniques. These details are given in Chapter 4. Applications to real world problems are given throughout. Photon-based images are common in astronomical imaging due to the collection of different types of energy such as X-Rays. Applications to real astronomical images are given, and these consist of X-ray images from the Chandra X-ray observatory satellite. Diagnostic medicine uses many types of imaging such as magnetic resonance imaging and computed tomography that can also benefit from smoothing techniques such as the one developed here. Reducing the amount of radiation a patient takes will make images more noisy, but this can be mitigated through the use of image smoothing techniques. Both types of images represent the potential real world use for these methods.
NASA Astrophysics Data System (ADS)
Siepmann, J. Ilja; Bai, Peng; Tsapatsis, Michael; Knight, Chris; Deem, Michael W.
2015-03-01
Zeolites play numerous important roles in modern petroleum refineries and have the potential to advance the production of fuels and chemical feedstocks from renewable resources. The performance of a zeolite as separation medium and catalyst depends on its framework structure and the type or location of active sites. To date, 213 framework types have been synthesized and >330000 thermodynamically accessible zeolite structures have been predicted. Hence, identification of optimal zeolites for a given application from the large pool of candidate structures is attractive for accelerating the pace of materials discovery. Here we identify, through a large-scale, multi-step computational screening process, promising zeolite structures for two energy-related applications: the purification of ethanol beyond the ethanol/water azeotropic concentration in a single separation step from fermentation broths and the hydroisomerization of alkanes with 18-30 carbon atoms encountered in petroleum refining. These results demonstrate that predictive modeling and data-driven science can now be applied to solve some of the most challenging separation problems involving highly non-ideal mixtures and highly articulated compounds. Financial support from the Department of Energy Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Award DE-FG02-12ER16362 is gratefully acknowledged.
Strong quantum-confined Stark effect in a lattice-matched GeSiSn/GeSn multi-quantum-well structure
NASA Astrophysics Data System (ADS)
Peng, Ruizhi; Chunfuzhang; Han, Genquan; Hao, Yue
2017-06-01
This paper presents modeling and simulation of a multiple quantum well structure formed with Ge0.95Sn0.05 quantum wells separated by Ge0.51Si0.35Sn0.14 barriers for the applications. These alloy compositions are chosen to satisfy two conditions simultaneously: type-I band alignment between Ge0.95Sn0.05/Ge0.51Si0.35Sn0.14 and a lattice match between wells and barriers. This lattice match ensures that the strain-free structure can be grown upon a relaxed Ge0.51Si0.35Sn0.14 buffer on a silicon substrate - a CMOS compatible process. A electro-absorption modulator with the Ge0.95Sn0.05/Ge0.51Si0.35Sn0.14 multiple quantum well structure based on quantum-confined Stark effect(QCSE) is demonstrated in theory. The energy band diagrams of the GeSiSn/GeSn multi-quantum-well structure at 0 and 0.5V bias are calculated, respectively. And the corresponding absorption coefficients as a function of cut-off energy for this multiple quantum well structure at 0 and 0.5Vbias are also obtained, respectively. The reduction of cut-off energy is observed with the applying of the external electric field, indicating a strong QCSE in the structure.
Fitzgerald, Joseph M; Broadbridge, Carissa L
2013-01-01
Many researchers employ single-item scales of subjective experiences such as imagery and confidence to assess autobiographical memory. We tested the hypothesis that four latent constructs, recollection, belief, impact, and rehearsal, account for the variance in commonly used scales across four different types of autobiographical memory: earliest childhood memory, cue word memory of personal experience, highly vivid memory, and most stressful memory. Participants rated each memory on scales hypothesised to be indicators of one of four latent constructs. Multi-group confirmatory factor analyses and structural analyses confirmed the similarity of the latent constructs of recollection, belief, impact, and rehearsal, as well as the similarity of the structural relationships among those constructs across memory type. The observed pattern of mean differences between the varieties of autobiographical experiences was consistent with prior research and theory in the study of autobiographical memory.
A fast learning method for large scale and multi-class samples of SVM
NASA Astrophysics Data System (ADS)
Fan, Yu; Guo, Huiming
2017-06-01
A multi-class classification SVM(Support Vector Machine) fast learning method based on binary tree is presented to solve its low learning efficiency when SVM processing large scale multi-class samples. This paper adopts bottom-up method to set up binary tree hierarchy structure, according to achieved hierarchy structure, sub-classifier learns from corresponding samples of each node. During the learning, several class clusters are generated after the first clustering of the training samples. Firstly, central points are extracted from those class clusters which just have one type of samples. For those which have two types of samples, cluster numbers of their positive and negative samples are set respectively according to their mixture degree, secondary clustering undertaken afterwards, after which, central points are extracted from achieved sub-class clusters. By learning from the reduced samples formed by the integration of extracted central points above, sub-classifiers are obtained. Simulation experiment shows that, this fast learning method, which is based on multi-level clustering, can guarantee higher classification accuracy, greatly reduce sample numbers and effectively improve learning efficiency.
Co-Labeling for Multi-View Weakly Labeled Learning.
Xu, Xinxing; Li, Wen; Xu, Dong; Tsang, Ivor W
2016-06-01
It is often expensive and time consuming to collect labeled training samples in many real-world applications. To reduce human effort on annotating training samples, many machine learning techniques (e.g., semi-supervised learning (SSL), multi-instance learning (MIL), etc.) have been studied to exploit weakly labeled training samples. Meanwhile, when the training data is represented with multiple types of features, many multi-view learning methods have shown that classifiers trained on different views can help each other to better utilize the unlabeled training samples for the SSL task. In this paper, we study a new learning problem called multi-view weakly labeled learning, in which we aim to develop a unified approach to learn robust classifiers by effectively utilizing different types of weakly labeled multi-view data from a broad range of tasks including SSL, MIL and relative outlier detection (ROD). We propose an effective approach called co-labeling to solve the multi-view weakly labeled learning problem. Specifically, we model the learning problem on each view as a weakly labeled learning problem, which aims to learn an optimal classifier from a set of pseudo-label vectors generated by using the classifiers trained from other views. Unlike traditional co-training approaches using a single pseudo-label vector for training each classifier, our co-labeling approach explores different strategies to utilize the predictions from different views, biases and iterations for generating the pseudo-label vectors, making our approach more robust for real-world applications. Moreover, to further improve the weakly labeled learning on each view, we also exploit the inherent group structure in the pseudo-label vectors generated from different strategies, which leads to a new multi-layer multiple kernel learning problem. Promising results for text-based image retrieval on the NUS-WIDE dataset as well as news classification and text categorization on several real-world multi-view datasets clearly demonstrate that our proposed co-labeling approach achieves state-of-the-art performance for various multi-view weakly labeled learning problems including multi-view SSL, multi-view MIL and multi-view ROD.
Modeling Structure and Dynamics of Protein Complexes with SAXS Profiles
Schneidman-Duhovny, Dina; Hammel, Michal
2018-01-01
Small-angle X-ray scattering (SAXS) is an increasingly common and useful technique for structural characterization of molecules in solution. A SAXS experiment determines the scattering intensity of a molecule as a function of spatial frequency, termed SAXS profile. SAXS profiles can be utilized in a variety of molecular modeling applications, such as comparing solution and crystal structures, structural characterization of flexible proteins, assembly of multi-protein complexes, and modeling of missing regions in the high-resolution structure. Here, we describe protocols for modeling atomic structures based on SAXS profiles. The first protocol is for comparing solution and crystal structures including modeling of missing regions and determination of the oligomeric state. The second protocol performs multi-state modeling by finding a set of conformations and their weights that fit the SAXS profile starting from a single-input structure. The third protocol is for protein-protein docking based on the SAXS profile of the complex. We describe the underlying software, followed by demonstrating their application on interleukin 33 (IL33) with its primary receptor ST2 and DNA ligase IV-XRCC4 complex. PMID:29605933
NASA Astrophysics Data System (ADS)
Sun, Li; Wang, Deyu
2011-09-01
A new multi-level analysis method of introducing the super-element modeling method, derived from the multi-level analysis method first proposed by O. F. Hughes, has been proposed in this paper to solve the problem of high time cost in adopting a rational-based optimal design method for ship structural design. Furthermore, the method was verified by its effective application in optimization of the mid-ship section of a container ship. A full 3-D FEM model of a ship, suffering static and quasi-static loads, was used as the analyzing object for evaluating the structural performance of the mid-ship module, including static strength and buckling performance. Research results reveal that this new method could substantially reduce the computational cost of the rational-based optimization problem without decreasing its accuracy, which increases the feasibility and economic efficiency of using a rational-based optimal design method in ship structural design.
A multi-objective approach to solid waste management.
Galante, Giacomo; Aiello, Giuseppe; Enea, Mario; Panascia, Enrico
2010-01-01
The issue addressed in this paper consists in the localization and dimensioning of transfer stations, which constitute a necessary intermediate level in the logistic chain of the solid waste stream, from municipalities to the incinerator. Contextually, the determination of the number and type of vehicles involved is carried out in an integrated optimization approach. The model considers both initial investment and operative costs related to transportation and transfer stations. Two conflicting objectives are evaluated, the minimization of total cost and the minimization of environmental impact, measured by pollution. The design of the integrated waste management system is hence approached in a multi-objective optimization framework. To determine the best means of compromise, goal programming, weighted sum and fuzzy multi-objective techniques have been employed. The proposed analysis highlights how different attitudes of the decision maker towards the logic and structure of the problem result in the employment of different methodologies and the obtaining of different results. The novel aspect of the paper lies in the proposal of an effective decision support system for operative waste management, rather than a further contribution to the transportation problem. The model was applied to the waste management of optimal territorial ambit (OTA) of Palermo (Italy). 2010 Elsevier Ltd. All rights reserved.
A multi-objective approach to solid waste management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galante, Giacomo, E-mail: galante@dtpm.unipa.i; Aiello, Giuseppe; Enea, Mario
2010-08-15
The issue addressed in this paper consists in the localization and dimensioning of transfer stations, which constitute a necessary intermediate level in the logistic chain of the solid waste stream, from municipalities to the incinerator. Contextually, the determination of the number and type of vehicles involved is carried out in an integrated optimization approach. The model considers both initial investment and operative costs related to transportation and transfer stations. Two conflicting objectives are evaluated, the minimization of total cost and the minimization of environmental impact, measured by pollution. The design of the integrated waste management system is hence approached inmore » a multi-objective optimization framework. To determine the best means of compromise, goal programming, weighted sum and fuzzy multi-objective techniques have been employed. The proposed analysis highlights how different attitudes of the decision maker towards the logic and structure of the problem result in the employment of different methodologies and the obtaining of different results. The novel aspect of the paper lies in the proposal of an effective decision support system for operative waste management, rather than a further contribution to the transportation problem. The model was applied to the waste management of optimal territorial ambit (OTA) of Palermo (Italy).« less
Novel wearable and wireless ring-type pulse oximeter with multi-detectors.
Huang, Cheng-Yang; Chan, Ming-Che; Chen, Chien-Yue; Lin, Bor-Shyh
2014-09-19
The pulse oximeter is a popular instrument to monitor the arterial oxygen saturation (SPO2). Although a fingertip-type pulse oximeter is the mainstream one on the market at present, it is still inconvenient for long-term monitoring, in particular, with respect to motion. Therefore, the development of a wearable pulse oximeter, such as a finger base-type pulse oximeter, can effectively solve the above issue. However, the tissue structure of the finger base is complex, and there is lack of detailed information on the effect of the light source and detector placement on measuring SPO2. In this study, the practicability of a ring-type pulse oximeter with a multi-detector was investigated by optical human tissue simulation. The optimal design of a ring-type pulse oximeter that can provide the best efficiency of measuring SPO2 was discussed. The efficiency of ring-type pulse oximeters with a single detector and a multi-detector was also discussed. Finally, a wearable and wireless ring-type pulse oximeter was also implemented to validate the simulation results and was compared with the commercial fingertip-type pulse oximeter.
Novel Wearable and Wireless Ring-Type Pulse Oximeter with Multi-Detectors
Huang, Cheng-Yang; Chan, Ming-Che; Chen, Chien-Yue; Lin, Bor-Shyh
2014-01-01
The pulse oximeter is a popular instrument to monitor the arterial oxygen saturation (SPO2). Although a fingertip-type pulse oximeter is the mainstream one on the market at present, it is still inconvenient for long-term monitoring, in particular, with respect to motion. Therefore, the development of a wearable pulse oximeter, such as a finger base-type pulse oximeter, can effectively solve the above issue. However, the tissue structure of the finger base is complex, and there is lack of detailed information on the effect of the light source and detector placement on measuring SPO2. In this study, the practicability of a ring-type pulse oximeter with a multi-detector was investigated by optical human tissue simulation. The optimal design of a ring-type pulse oximeter that can provide the best efficiency of measuring SPO2 was discussed. The efficiency of ring-type pulse oximeters with a single detector and a multi-detector was also discussed. Finally, a wearable and wireless ring-type pulse oximeter was also implemented to validate the simulation results and was compared with the commercial fingertip-type pulse oximeter. PMID:25244586
Naik, P K; Singh, T; Singh, H
2009-07-01
Quantitative structure-activity relationship (QSAR) analyses were performed independently on data sets belonging to two groups of insecticides, namely the organophosphates and carbamates. Several types of descriptors including topological, spatial, thermodynamic, information content, lead likeness and E-state indices were used to derive quantitative relationships between insecticide activities and structural properties of chemicals. A systematic search approach based on missing value, zero value, simple correlation and multi-collinearity tests as well as the use of a genetic algorithm allowed the optimal selection of the descriptors used to generate the models. The QSAR models developed for both organophosphate and carbamate groups revealed good predictability with r(2) values of 0.949 and 0.838 as well as [image omitted] values of 0.890 and 0.765, respectively. In addition, a linear correlation was observed between the predicted and experimental LD(50) values for the test set data with r(2) of 0.871 and 0.788 for both the organophosphate and carbamate groups, indicating that the prediction accuracy of the QSAR models was acceptable. The models were also tested successfully from external validation criteria. QSAR models developed in this study should help further design of novel potent insecticides.
Agent-based modeling of the interaction between CD8+ T cells and Beta cells in type 1 diabetes.
Ozturk, Mustafa Cagdas; Xu, Qian; Cinar, Ali
2018-01-01
We propose an agent-based model for the simulation of the autoimmune response in T1D. The model incorporates cell behavior from various rules derived from the current literature and is implemented on a high-performance computing system, which enables the simulation of a significant portion of the islets in the mouse pancreas. Simulation results indicate that the model is able to capture the trends that emerge during the progression of the autoimmunity. The multi-scale nature of the model enables definition of rules or equations that govern cellular or sub-cellular level phenomena and observation of the outcomes at the tissue scale. It is expected that such a model would facilitate in vivo clinical studies through rapid testing of hypotheses and planning of future experiments by providing insight into disease progression at different scales, some of which may not be obtained easily in clinical studies. Furthermore, the modular structure of the model simplifies tasks such as the addition of new cell types, and the definition or modification of different behaviors of the environment and the cells with ease.
Modeling and control for vibration suppression of a flexible smart structure
NASA Technical Reports Server (NTRS)
Dosch, J.; Leo, D.; Inman, D.
1993-01-01
Theoretical and experimental results of the modeling and control of a flexible ribbed antenna are presented. The antenna consists of eight flexible ribs which constitutes a smart antenna in the sense that the actuator and sensors are an integral part of the structure. The antenna exhibits closely space and repeated modes, thus multi-input multi-output (MIMO) control is necessary for controllability and observability of the structure. The structure also exhibits mode localization phenomenon and contains post buckled members making an accurate finite element model of the structure difficult to obtain. An identified MIMO minimum order model of the antenna is synthesized from identified single-input single-output (SISO) transfer functions curve fit in the frequency domain. The identified model is used to design a positive position feedback (PPF) controller that increases damping in all of the modes in the targeted frequency range. Due to the accuracy of the open loop model of the antenna, the closed loop response predicted by the identified model correlates well wtih experimental results.
Agent-based model with multi-level herding for complex financial systems
NASA Astrophysics Data System (ADS)
Chen, Jun-Jie; Tan, Lei; Zheng, Bo
2015-02-01
In complex financial systems, the sector structure and volatility clustering are respectively important features of the spatial and temporal correlations. However, the microscopic generation mechanism of the sector structure is not yet understood. Especially, how to produce these two features in one model remains challenging. We introduce a novel interaction mechanism, i.e., the multi-level herding, in constructing an agent-based model to investigate the sector structure combined with volatility clustering. According to the previous market performance, agents trade in groups, and their herding behavior comprises the herding at stock, sector and market levels. Further, we propose methods to determine the key model parameters from historical market data, rather than from statistical fitting of the results. From the simulation, we obtain the sector structure and volatility clustering, as well as the eigenvalue distribution of the cross-correlation matrix, for the New York and Hong Kong stock exchanges. These properties are in agreement with the empirical ones. Our results quantitatively reveal that the multi-level herding is the microscopic generation mechanism of the sector structure, and provide new insight into the spatio-temporal interactions in financial systems at the microscopic level.
Agent-based model with multi-level herding for complex financial systems
Chen, Jun-Jie; Tan, Lei; Zheng, Bo
2015-01-01
In complex financial systems, the sector structure and volatility clustering are respectively important features of the spatial and temporal correlations. However, the microscopic generation mechanism of the sector structure is not yet understood. Especially, how to produce these two features in one model remains challenging. We introduce a novel interaction mechanism, i.e., the multi-level herding, in constructing an agent-based model to investigate the sector structure combined with volatility clustering. According to the previous market performance, agents trade in groups, and their herding behavior comprises the herding at stock, sector and market levels. Further, we propose methods to determine the key model parameters from historical market data, rather than from statistical fitting of the results. From the simulation, we obtain the sector structure and volatility clustering, as well as the eigenvalue distribution of the cross-correlation matrix, for the New York and Hong Kong stock exchanges. These properties are in agreement with the empirical ones. Our results quantitatively reveal that the multi-level herding is the microscopic generation mechanism of the sector structure, and provide new insight into the spatio-temporal interactions in financial systems at the microscopic level. PMID:25669427
Xiao, WenBo; Nazario, Gina; Wu, HuaMing; Zhang, HuaMing; Cheng, Feng
2017-01-01
In this article, we introduced an artificial neural network (ANN) based computational model to predict the output power of three types of photovoltaic cells, mono-crystalline (mono-), multi-crystalline (multi-), and amorphous (amor-) crystalline. The prediction results are very close to the experimental data, and were also influenced by numbers of hidden neurons. The order of the solar generation power output influenced by the external conditions from smallest to biggest is: multi-, mono-, and amor- crystalline silicon cells. In addition, the dependences of power prediction on the number of hidden neurons were studied. For multi- and amorphous crystalline cell, three or four hidden layer units resulted in the high correlation coefficient and low MSEs. For mono-crystalline cell, the best results were achieved at the hidden layer unit of 8.
Wu, Dingming; Wang, Dongfang; Zhang, Michael Q; Gu, Jin
2015-12-01
One major goal of large-scale cancer omics study is to identify molecular subtypes for more accurate cancer diagnoses and treatments. To deal with high-dimensional cancer multi-omics data, a promising strategy is to find an effective low-dimensional subspace of the original data and then cluster cancer samples in the reduced subspace. However, due to data-type diversity and big data volume, few methods can integrative and efficiently find the principal low-dimensional manifold of the high-dimensional cancer multi-omics data. In this study, we proposed a novel low-rank approximation based integrative probabilistic model to fast find the shared principal subspace across multiple data types: the convexity of the low-rank regularized likelihood function of the probabilistic model ensures efficient and stable model fitting. Candidate molecular subtypes can be identified by unsupervised clustering hundreds of cancer samples in the reduced low-dimensional subspace. On testing datasets, our method LRAcluster (low-rank approximation based multi-omics data clustering) runs much faster with better clustering performances than the existing method. Then, we applied LRAcluster on large-scale cancer multi-omics data from TCGA. The pan-cancer analysis results show that the cancers of different tissue origins are generally grouped as independent clusters, except squamous-like carcinomas. While the single cancer type analysis suggests that the omics data have different subtyping abilities for different cancer types. LRAcluster is a very useful method for fast dimension reduction and unsupervised clustering of large-scale multi-omics data. LRAcluster is implemented in R and freely available via http://bioinfo.au.tsinghua.edu.cn/software/lracluster/ .
Automatic Prediction of Protein 3D Structures by Probabilistic Multi-template Homology Modeling.
Meier, Armin; Söding, Johannes
2015-10-01
Homology modeling predicts the 3D structure of a query protein based on the sequence alignment with one or more template proteins of known structure. Its great importance for biological research is owed to its speed, simplicity, reliability and wide applicability, covering more than half of the residues in protein sequence space. Although multiple templates have been shown to generally increase model quality over single templates, the information from multiple templates has so far been combined using empirically motivated, heuristic approaches. We present here a rigorous statistical framework for multi-template homology modeling. First, we find that the query proteins' atomic distance restraints can be accurately described by two-component Gaussian mixtures. This insight allowed us to apply the standard laws of probability theory to combine restraints from multiple templates. Second, we derive theoretically optimal weights to correct for the redundancy among related templates. Third, a heuristic template selection strategy is proposed. We improve the average GDT-ha model quality score by 11% over single template modeling and by 6.5% over a conventional multi-template approach on a set of 1000 query proteins. Robustness with respect to wrong constraints is likewise improved. We have integrated our multi-template modeling approach with the popular MODELLER homology modeling software in our free HHpred server http://toolkit.tuebingen.mpg.de/hhpred and also offer open source software for running MODELLER with the new restraints at https://bitbucket.org/soedinglab/hh-suite.
Mapping nonlinear receptive field structure in primate retina at single cone resolution
Li, Peter H; Greschner, Martin; Gunning, Deborah E; Mathieson, Keith; Sher, Alexander; Litke, Alan M; Paninski, Liam
2015-01-01
The function of a neural circuit is shaped by the computations performed by its interneurons, which in many cases are not easily accessible to experimental investigation. Here, we elucidate the transformation of visual signals flowing from the input to the output of the primate retina, using a combination of large-scale multi-electrode recordings from an identified ganglion cell type, visual stimulation targeted at individual cone photoreceptors, and a hierarchical computational model. The results reveal nonlinear subunits in the circuity of OFF midget ganglion cells, which subserve high-resolution vision. The model explains light responses to a variety of stimuli more accurately than a linear model, including stimuli targeted to cones within and across subunits. The recovered model components are consistent with known anatomical organization of midget bipolar interneurons. These results reveal the spatial structure of linear and nonlinear encoding, at the resolution of single cells and at the scale of complete circuits. DOI: http://dx.doi.org/10.7554/eLife.05241.001 PMID:26517879
NASA Astrophysics Data System (ADS)
Yu, L.; Terashima, S.; Ong, H. J.; Chan, P. Y.; Tanihata, I.; Iwamoto, C.; Tran, D. T.; Tamii, A.; Aoi, N.; Fujioka, H.; Gey, G.; Sakaguchi, H.; Sakaue, A.; Sun, B. H.; Tang, T. L.; Wang, T. F.; Watanabe, Y. N.; Zhang, G. X.
2017-09-01
A new type of neutron detector, named Stack Structure Solid organic Scintillator (S4), consisting of multi-layer plastic scintillators with capability to suppress low-energy γ rays under high-counting rate has been constructed and tested. To achieve n- γ discrimination, we exploit the difference in the ranges of the secondary charged particles produced by the interactions of neutrons and γ rays in the scintillator material. The thickness of a plastic scintillator layer was determined based on the results of Monte Carlo simulations using the Geant4 toolkit. With layer thicknesses of 5 mm, we have achieved a good separation between neutrons and γ rays at 5 MeVee threshold setting. We have also determined the detection efficiencies using monoenergetic neutrons at two energies produced by the d + d → n+3He reaction. The results agree well with the Geant4 simulations implementing the Li e ̀ge Intranuclear Cascade hadronic model (INCL++) and the high-precision model of low-energy neutron interactions (NeutronHP).
Electrochemical Characterization of Carbon Nanotubes for Fuel Cell MEA's
NASA Technical Reports Server (NTRS)
Panagaris, Jael; Loyselle, Patricia
2004-01-01
Single-walled and multi-walled carbon nanotubes from different sources have been evaluated before and after sonication to identify structural differences and evaluate electrochemical performance. Raman spectral analysis and cyclic voltammetry in situ with QCM were the principle means of evaluating the tubes. The raman data indicates that sonication in toluene modifies the structural properties of the nanotubes. Sonication also affects the electrochemical performance of single-walled nanotubes and the multi-walled tubes differently. The characterization of different types of carbon nanotubes leads up to identifying a potential candidate for incorporating carbon nanotubes for fuel cell MEA structures.
Two-dimensional multi-component photometric decomposition of CALIFA galaxies
NASA Astrophysics Data System (ADS)
Méndez-Abreu, J.; Ruiz-Lara, T.; Sánchez-Menguiano, L.; de Lorenzo-Cáceres, A.; Costantin, L.; Catalán-Torrecilla, C.; Florido, E.; Aguerri, J. A. L.; Bland-Hawthorn, J.; Corsini, E. M.; Dettmar, R. J.; Galbany, L.; García-Benito, R.; Marino, R. A.; Márquez, I.; Ortega-Minakata, R. A.; Papaderos, P.; Sánchez, S. F.; Sánchez-Blazquez, P.; Spekkens, K.; van de Ven, G.; Wild, V.; Ziegler, B.
2017-02-01
We present a two-dimensional multi-component photometric decomposition of 404 galaxies from the Calar Alto Legacy Integral Field Area data release 3 (CALIFA-DR3). They represent all possible galaxies with no clear signs of interaction and not strongly inclined in the final CALIFA data release. Galaxies are modelled in the g, r, and I Sloan Digital Sky Survey (SDSS) images including, when appropriate, a nuclear point source, bulge, bar, and an exponential or broken disc component. We use a human-supervised approach to determine the optimal number of structures to be included in the fit. The dataset, including the photometric parameters of the CALIFA sample, is released together with statistical errors and a visual analysis of the quality of each fit. The analysis of the photometric components reveals a clear segregation of the structural composition of galaxies with stellar mass. At high masses (log (M⋆/M⊙) > 11), the galaxy population is dominated by galaxies modelled with a single Sérsic or a bulge+disc with a bulge-to-total (B/T) luminosity ratio B/T > 0.2. At intermediate masses (9.5 < log (M⋆/M⊙) < 11), galaxies described with bulge+disc but B/T < 0.2 are preponderant, whereas, at the low mass end (log (M⋆/M⊙) < 9.5), the prevailing population is constituted by galaxies modelled with either purediscs or nuclear point sources+discs (I.e., no discernible bulge). We obtain that 57% of the volume corrected sample of disc galaxies in the CALIFA sample host a bar. This bar fraction shows a significant drop with increasing galaxy mass in the range 9.5 < log (M⋆/M⊙) < 11.5. The analyses of the extended multi-component radial profile result in a volume-corrected distribution of 62%, 28%, and 10% for the so-called Type I (pure exponential), Type II (down-bending), and Type III (up-bending) disc profiles, respectively. These fractions are in discordance with previous findings. We argue that the different methodologies used to detect the breaks are the main cause for these differences. The catalog of fitted parameters is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/598/A32
ERIC Educational Resources Information Center
Zhou, Bo; Konstorum, Anna; Duong, Thao; Tieu, Kinh H.; Wells, William M.; Brown, Gregory G.; Stern, Hal S.; Shahbaba, Babak
2013-01-01
We propose a hierarchical Bayesian model for analyzing multi-site experimental fMRI studies. Our method takes the hierarchical structure of the data (subjects are nested within sites, and there are multiple observations per subject) into account and allows for modeling between-site variation. Using posterior predictive model checking and model…
Properties of Low-mass AGN as They Relate to Unification and Massive AGN
NASA Astrophysics Data System (ADS)
Hood, Carol E.
2011-01-01
Current unification models of AGN suggest the observational differences between Type 1 and Type 2 objects are solely due to the orientation angle of the object. Observations have proved consistent with predictions and continue to strengthen the case for unification, however, many are still searching for "true" Type 2 objects, including predictions of their formation due to low luminosity or low accretion rate. Low-mass (< 106solar masses) AGN provide interesting environments in which these unification models can be studied. We also aim to compare the properties of low-mass AGN with their more massive counterparts to look for structural similarities and differences over a more substantial range of luminosities and accretion rates than previously studied. We present an in-depth multi-wavelength study of one of the prototypical low-mass AGN, POX 52, investigating the properties of the central engine along with that of the host galaxy. This includes data from the VLA, Spitzer, 2MASS, HST, GALEX, XMM, and Chandra, providing us with one of the most comprehensive looks into low-mass AGN. Unlike the other prototypical low-mass AGN, NGC 4395, POX 52 resides in a dwarf elliptical galaxy, accreting at ≈ 0.35 the Eddington limit. Additionally, we examine a sample 41 Type 1 and Type 2 objects, including POX 52 and NGC 4395, with the Spitzer IRS and a sub-sample of those with XMM to study the absorption properties of low-mass AGN, to test the validity of unification models in the low-mass regime, and to investigate possible structural differences between objects with low and high mass black holes and accretion rates. We will discuss the IR spectral shape and present emission-line diagnostics for Type 1 and Type 2 AGNs at low masses.
Multi-scale finite element modeling of strain localization in geomaterials with strong discontinuity
NASA Astrophysics Data System (ADS)
Lai, Timothy Yu
2002-01-01
Geomaterials such as soils and rocks undergo strain localization during various loading conditions. Strain localization manifests itself in the form of a shear band, a narrow zone of intense straining. It is now generally recognized that these localized deformations lead to an accelerated softening response and influence the response of structures at or near failure. In order to accurately predict the behavior of geotechnical structures, the effects of strain localization must be included in any model developed. In this thesis, a multi-scale Finite Element (FE) model has been developed that captures the macro- and micro-field deformation patterns present during strain localization. The FE model uses a strong discontinuity approach where a jump in the displacement field is assumed. The onset of strain localization is detected using bifurcation theory that checks when the governing equations lose ellipticity. Two types of bifurcation, continuous and discontinuous are considered. Precise conditions for plane strain loading conditions are reported for each type of bifurcation. Post-localization behavior is governed by the traction relations on the band. Different plasticity models such as Mohr-Coulomb, Drucker-Prager and a Modified Mohr-Coulomb yield were implemented together with cohesion softening and cutoff for the post-localization behavior. The FE model is implemented into a FORTRAN code SPIN2D-LOC using enhanced constant strain triangular (CST) elements. The model is formulated using standard Galerkin finite element method, applicable to problems under undrained conditions and small deformation theory. A band-tracing algorithm is implemented to track the propagation of the shear band. To validate the model, several simulations are performed from simple compression test of soft rock to simulation of a full-scale geosynthetic reinforced soil wall model undergoing strain localization. Results from both standard and enhanced FE method are included for comparison. The resulting load-displacement curves show that the model can represent the softening behavior of geomaterials once strain localization is detected. The orientation of the shear band is found to depend on both the friction and dilation angle of the geomaterial. For most practical problems, slight mesh dependency can be expected but is associated with the standard FE interpolation rather than the strong discontinuity enhancements.
On multi-site damage identification using single-site training data
NASA Astrophysics Data System (ADS)
Barthorpe, R. J.; Manson, G.; Worden, K.
2017-11-01
This paper proposes a methodology for developing multi-site damage location systems for engineering structures that can be trained using single-site damaged state data only. The methodology involves training a sequence of binary classifiers based upon single-site damage data and combining the developed classifiers into a robust multi-class damage locator. In this way, the multi-site damage identification problem may be decomposed into a sequence of binary decisions. In this paper Support Vector Classifiers are adopted as the means of making these binary decisions. The proposed methodology represents an advancement on the state of the art in the field of multi-site damage identification which require either: (1) full damaged state data from single- and multi-site damage cases or (2) the development of a physics-based model to make multi-site model predictions. The potential benefit of the proposed methodology is that a significantly reduced number of recorded damage states may be required in order to train a multi-site damage locator without recourse to physics-based model predictions. In this paper it is first demonstrated that Support Vector Classification represents an appropriate approach to the multi-site damage location problem, with methods for combining binary classifiers discussed. Next, the proposed methodology is demonstrated and evaluated through application to a real engineering structure - a Piper Tomahawk trainer aircraft wing - with its performance compared to classifiers trained using the full damaged-state dataset.
NASA Astrophysics Data System (ADS)
Fawzy, Diaa E.; Stȩpień, K.
2018-03-01
In the current study we present ab initio numerical computations of the generation and propagation of longitudinal waves in magnetic flux tubes embedded in the atmospheres of late-type stars. The interaction between convective turbulence and the magnetic structure is computed and the obtained longitudinal wave energy flux is used in a self-consistent manner to excite the small-scale magnetic flux tubes. In the current study we reduce the number of assumptions made in our previous studies by considering the full magnetic wave energy fluxes and spectra as well as time-dependent ionization (TDI) of hydrogen, employing multi-level Ca II atomic models, and taking into account departures from local thermodynamic equilibrium. Our models employ the recently confirmed value of the mixing-length parameter α=1.8. Regions with strong magnetic fields (magnetic filling factors of up to 50%) are also considered in the current study. The computed Ca II emission fluxes show a strong dependence on the magnetic filling factors, and the effect of time-dependent ionization (TDI) turns out to be very important in the atmospheres of late-type stars heated by acoustic and magnetic waves. The emitted Ca II fluxes with TDI included into the model are decreased by factors that range from 1.4 to 5.5 for G0V and M0V stars, respectively, compared to models that do not consider TDI. The results of our computations are compared with observations. Excellent agreement between the observed and predicted basal flux is obtained. The predicted trend of Ca II emission flux with magnetic filling factor and stellar surface temperature also agrees well with the observations but the calculated maximum fluxes for stars of different spectral types are about two times lower than observations. Though the longitudinal MHD waves considered here are important for chromosphere heating in high activity stars, additional heating mechanism(s) are apparently present.
Mass Conservation in Modeling Moisture Diffusion in Multi-Layer Carbon Composite Structures
NASA Technical Reports Server (NTRS)
Nurge, Mark A.; Youngquist, Robert C.; Starr, Stanley O.
2009-01-01
Moisture diffusion in multi-layer carbon composite structures is difficult to model using finite difference methods due to the discontinuity in concentrations between adjacent layers of differing materials. Applying a mass conserving approach at these boundaries proved to be effective at accurately predicting moisture uptake for a sample exposed to a fixed temperature and relative humidity. Details of the model developed are presented and compared with actual moisture uptake data gathered over 130 days from a graphite epoxy composite sandwich coupon with a Rohacell foam core.
Development of high intensity linear accelerator for heavy ion inertial fusion driver
NASA Astrophysics Data System (ADS)
Lu, Liang; Hattori, Toshiyuki; Hayashizaki, Noriyosu; Ishibashi, Takuya; Okamura, Masahiro; Kashiwagi, Hirotsugu; Takeuchi, Takeshi; Zhao, Hongwei; He, Yuan
2013-11-01
In order to verify the direct plasma injection scheme (DPIS), an acceleration test was carried out in 2001 using a radio frequency quadrupole (RFQ) heavy ion linear accelerator (linac) and a CO2-laser ion source (LIS) (Okamura et al., 2002) [1]. The accelerated carbon beam was observed successfully and the obtained current was 9.22 mA for C4+. To confirm the capability of the DPIS, we succeeded in accelerating 60 mA carbon ions with the DPIS in 2004 (Okamura et al., 2004; Kashiwagi and Hattori, 2004) [2,3]. We have studied a multi-beam type RFQ with an interdigital-H (IH) cavity that has a power-efficient structure in the low energy region. We designed and manufactured a two-beam type RFQ linac as a prototype for the multi-beam type linac; the beam acceleration test of carbon beams showed that it successfully accelerated from 5 keV/u up to 60 keV/u with an output current of 108 mA (2×54 mA/channel) (Ishibashi et al., 2011) [4]. We believe that the acceleration techniques of DPIS and the multi-beam type IH-RFQ linac are technical breakthroughs for heavy-ion inertial confinement fusion (HIF). The conceptual design of the RF linac with these techniques for HIF is studied. New accelerator-systems using these techniques for the HIF basic experiment are being designed to accelerate 400 mA carbon ions using four-beam type IH-RFQ linacs with DPIS. A model with a four-beam acceleration cavity was designed and manufactured to establish the proof of principle (PoP) of the accelerator.
[Research progress of multi-model medical image fusion and recognition].
Zhou, Tao; Lu, Huiling; Chen, Zhiqiang; Ma, Jingxian
2013-10-01
Medical image fusion and recognition has a wide range of applications, such as focal location, cancer staging and treatment effect assessment. Multi-model medical image fusion and recognition are analyzed and summarized in this paper. Firstly, the question of multi-model medical image fusion and recognition is discussed, and its advantage and key steps are discussed. Secondly, three fusion strategies are reviewed from the point of algorithm, and four fusion recognition structures are discussed. Thirdly, difficulties, challenges and possible future research direction are discussed.
Construction of multi-scale consistent brain networks: methods and applications.
Ge, Bao; Tian, Yin; Hu, Xintao; Chen, Hanbo; Zhu, Dajiang; Zhang, Tuo; Han, Junwei; Guo, Lei; Liu, Tianming
2015-01-01
Mapping human brain networks provides a basis for studying brain function and dysfunction, and thus has gained significant interest in recent years. However, modeling human brain networks still faces several challenges including constructing networks at multiple spatial scales and finding common corresponding networks across individuals. As a consequence, many previous methods were designed for a single resolution or scale of brain network, though the brain networks are multi-scale in nature. To address this problem, this paper presents a novel approach to constructing multi-scale common structural brain networks from DTI data via an improved multi-scale spectral clustering applied on our recently developed and validated DICCCOLs (Dense Individualized and Common Connectivity-based Cortical Landmarks). Since the DICCCOL landmarks possess intrinsic structural correspondences across individuals and populations, we employed the multi-scale spectral clustering algorithm to group the DICCCOL landmarks and their connections into sub-networks, meanwhile preserving the intrinsically-established correspondences across multiple scales. Experimental results demonstrated that the proposed method can generate multi-scale consistent and common structural brain networks across subjects, and its reproducibility has been verified by multiple independent datasets. As an application, these multi-scale networks were used to guide the clustering of multi-scale fiber bundles and to compare the fiber integrity in schizophrenia and healthy controls. In general, our methods offer a novel and effective framework for brain network modeling and tract-based analysis of DTI data.
System-Wide Water Resources Program Nutrient Sub-Model (SWWRP-NSM) Version 1.1
2008-09-01
species including crops, native grasses, and trees . The process descriptions utilize a single plant growth model to simulate all types of land covers...characteristics: • Multi- species , multi-phase, and multi-reaction system • Fast (equilibrium-based) and slow (non-equilibrium-based or rate- based...Transformation and loading of N and P species in the overland flow • Simulation of the N and P cycle in the water column (both overland and
Coupled multi-disciplinary simulation of composite engine structures in propulsion environment
NASA Technical Reports Server (NTRS)
Chamis, Christos C.; Singhal, Surendra N.
1992-01-01
A computational simulation procedure is described for the coupled response of multi-layered multi-material composite engine structural components which are subjected to simultaneous multi-disciplinary thermal, structural, vibration, and acoustic loadings including the effect of hostile environments. The simulation is based on a three dimensional finite element analysis technique in conjunction with structural mechanics codes and with acoustic analysis methods. The composite material behavior is assessed at the various composite scales, i.e., the laminate/ply/constituents (fiber/matrix), via a nonlinear material characterization model. Sample cases exhibiting nonlinear geometrical, material, loading, and environmental behavior of aircraft engine fan blades, are presented. Results for deformed shape, vibration frequency, mode shapes, and acoustic noise emitted from the fan blade, are discussed for their coupled effect in hot and humid environments. Results such as acoustic noise for coupled composite-mechanics/heat transfer/structural/vibration/acoustic analyses demonstrate the effectiveness of coupled multi-disciplinary computational simulation and the various advantages of composite materials compared to metals.
Multi-Hamiltonian structure of equations of hydrodynamic type
NASA Astrophysics Data System (ADS)
Gümral, H.; Nutku, Y.
1990-11-01
The discussion of the Hamiltonian structure of two-component equations of hydrodynamic type is completed by presenting the Hamiltonian operators for Euler's equation governing the motion of plane sound waves of finite amplitude and another quasilinear second-order wave equation. There exists a doubly infinite family of conserved Hamiltonians for the equations of gas dynamics that degenerate into one, namely, the Benney sequence, for shallow-water waves. Infinite sequences of conserved quantities for these equations are also presented. In the case of multicomponent equations of hydrodynamic type, it is shown, that Kodama's generalization of the shallow-water equations admits bi-Hamiltonian structure.
ERIC Educational Resources Information Center
Chang, Ting-Cheng; Wang, Hui
2016-01-01
This paper proposes a cloud multi-criteria group decision-making model for teacher evaluation in higher education which is involving subjectivity, imprecision and fuzziness. First, selecting the appropriate evaluation index depending on the evaluation objectives, indicating a clear structural relationship between the evaluation index and…
Model for multi-stand management based on structural attributes of individual stands
G.W. Miller; J. Sullivan
1997-01-01
A growing interest in managing forest ecosystems calls for decision models that take into account attribute goals for large forest areas while continuing to recognize the individual stand as a basic unit of forest management. A dynamic, nonlinear forest management model is described that schedules silvicultural treatments for individual stands that are linked by multi-...
Application of chaotic attractor analysis in crack assessment of plates
NASA Astrophysics Data System (ADS)
Jalili, Sina; Daneshmehr, A. R.
2018-03-01
Part-through crack presence with limited length is one of the prevalent defects in plate structures. However, this type of damage has only a slight effect on the dynamic response of the structures. In this paper the modified line spring method (MLSM) is used to develop a nonlinear multi-degree of freedom model of part through cracked rectangular plate and chaotic interrogation is implemented to assess crack-induced degradation in the nonlinear model. After a convergence study of the proposed model in time series domain in which the plate subjected to Lorenz-type chaotic excitation, the tuning of interrogation is conducted by crossing the Lyapunov exponents' spectrums of the nonlinear model of the plate and chaotic signal. In this research nonlinear prediction error (NPE) is proposed as a damage sensitive feature which deals with the chaotic attractor of the excited system response. It is found that there are ranges of tuning parameter that result in higher damage sensitivity of the NPE. Damage characteristics such as: length, angle, location and depth of crack are considered as parameters to be varied to scrutinize the response of the plates. Results show that NPE generally has significantly higher sensitivity in comparison with conventional frequency-based methods; however this property has different levels for various boundary conditions.
A novel simulation theory and model system for multi-field coupling pipe-flow system
NASA Astrophysics Data System (ADS)
Chen, Yang; Jiang, Fan; Cai, Guobiao; Xu, Xu
2017-09-01
Due to the lack of a theoretical basis for multi-field coupling in many system-level models, a novel set of system-level basic equations for flow/heat transfer/combustion coupling is put forward. Then a finite volume model of quasi-1D transient flow field for multi-species compressible variable-cross-section pipe flow is established by discretising the basic equations on spatially staggered grids. Combining with the 2D axisymmetric model for pipe-wall temperature field and specific chemical reaction mechanisms, a finite volume model system is established; a set of specific calculation methods suitable for multi-field coupling system-level research is structured for various parameters in this model; specific modularisation simulation models can be further derived in accordance with specific structures of various typical components in a liquid propulsion system. This novel system can also be used to derive two sub-systems: a flow/heat transfer two-field coupling pipe-flow model system without chemical reaction and species diffusion; and a chemical equilibrium thermodynamic calculation-based multi-field coupling system. The applicability and accuracy of two sub-systems have been verified through a series of dynamic modelling and simulations in earlier studies. The validity of this system is verified in an air-hydrogen combustion sample system. The basic equations and the model system provide a unified universal theory and numerical system for modelling and simulation and even virtual testing of various pipeline systems.
Hazard Interactions and Interaction Networks (Cascades) within Multi-Hazard Methodologies
NASA Astrophysics Data System (ADS)
Gill, Joel; Malamud, Bruce D.
2016-04-01
Here we combine research and commentary to reinforce the importance of integrating hazard interactions and interaction networks (cascades) into multi-hazard methodologies. We present a synthesis of the differences between 'multi-layer single hazard' approaches and 'multi-hazard' approaches that integrate such interactions. This synthesis suggests that ignoring interactions could distort management priorities, increase vulnerability to other spatially relevant hazards or underestimate disaster risk. We proceed to present an enhanced multi-hazard framework, through the following steps: (i) describe and define three groups (natural hazards, anthropogenic processes and technological hazards/disasters) as relevant components of a multi-hazard environment; (ii) outline three types of interaction relationship (triggering, increased probability, and catalysis/impedance); and (iii) assess the importance of networks of interactions (cascades) through case-study examples (based on literature, field observations and semi-structured interviews). We further propose visualisation frameworks to represent these networks of interactions. Our approach reinforces the importance of integrating interactions between natural hazards, anthropogenic processes and technological hazards/disasters into enhanced multi-hazard methodologies. Multi-hazard approaches support the holistic assessment of hazard potential, and consequently disaster risk. We conclude by describing three ways by which understanding networks of interactions contributes to the theoretical and practical understanding of hazards, disaster risk reduction and Earth system management. Understanding interactions and interaction networks helps us to better (i) model the observed reality of disaster events, (ii) constrain potential changes in physical and social vulnerability between successive hazards, and (iii) prioritise resource allocation for mitigation and disaster risk reduction.
Wholly Aromatic Ether-Imides as n-Type Semiconductors
NASA Technical Reports Server (NTRS)
Weiser, Erik; St. Clair, Terry L.; Dingemans, Theo J.; Samulski, Edward T.; Irene, Gene
2006-01-01
Some wholly aromatic ether-imides consisting of rod-shaped, relatively-low-mass molecules that can form liquid crystals have been investigated for potential utility as electron-donor-type (ntype) organic semiconductors. It is envisioned that after further research to improve understanding of their physical and chemical properties, compounds of this type would be used to make thin film semiconductor devices (e.g., photovoltaic cells and field-effect transistors) on flexible electronic-circuit substrates. This investigation was inspired by several prior developments: Poly(ether-imides) [PEIs] are a class of engineering plastics that have been used extensively in the form of films in a variety of electronic applications, including insulating layers, circuit boards, and low-permittivity coatings. Wholly aromatic PEIs containing naphthalene and perylene moieties have been shown to be useful as electrochromic polymers. More recently, low-molecular-weight imides comprising naphthalene-based molecules with terminal fluorinated tails were shown to be useful as n-type organic semiconductors in such devices as field-effect transistors and Schottky diodes. Poly(etherimide)s as structural resins have been extensively investigated at NASA Langley Research Center for over 30 years. More recently, the need for multi-functional materials has become increasingly important. This n-type semiconductor illustrates the scope of current work towards new families of PEIs that not only can be used as structural resins for carbon-fiber reinforced composites, but also can function as sensors. Such a multi-functional material would permit so-called in-situ health monitoring of composite structures during service. The work presented here demonstrates that parts of the PEI backbone can be used as an n-type semiconductor with such materials being sensitive to damage, temperature, stress, and pressure. In the near future, multi-functional or "smart" composite structures are envisioned to be able to communicate such important parameters to the flight crew and provide vital information with respect to the operational status of their aircraft.
Modeling process-structure-property relationships for additive manufacturing
NASA Astrophysics Data System (ADS)
Yan, Wentao; Lin, Stephen; Kafka, Orion L.; Yu, Cheng; Liu, Zeliang; Lian, Yanping; Wolff, Sarah; Cao, Jian; Wagner, Gregory J.; Liu, Wing Kam
2018-02-01
This paper presents our latest work on comprehensive modeling of process-structure-property relationships for additive manufacturing (AM) materials, including using data-mining techniques to close the cycle of design-predict-optimize. To illustrate the processstructure relationship, the multi-scale multi-physics process modeling starts from the micro-scale to establish a mechanistic heat source model, to the meso-scale models of individual powder particle evolution, and finally to the macro-scale model to simulate the fabrication process of a complex product. To link structure and properties, a highefficiency mechanistic model, self-consistent clustering analyses, is developed to capture a variety of material response. The model incorporates factors such as voids, phase composition, inclusions, and grain structures, which are the differentiating features of AM metals. Furthermore, we propose data-mining as an effective solution for novel rapid design and optimization, which is motivated by the numerous influencing factors in the AM process. We believe this paper will provide a roadmap to advance AM fundamental understanding and guide the monitoring and advanced diagnostics of AM processing.
Multi-wavelength Observations and Modeling of Solar Flares: Magnetic Structures
NASA Astrophysics Data System (ADS)
Su, Y.
2017-12-01
We present a review of our recent investigations on multi-wavelength observations and magnetic field modeling of solar flares. High-resolution observations taken by NVST and BBSO/NST reveal unprecedented fine structures of the flaring regions. Observations by SDO, IRIS, and GOES provide the complementary information. The magnetic field models are constructed using either non-linear force free field extrapolations or flux rope insertion method. Our studies have shown that the flaring regions often consist of double or multiple flux ropes, which often exist at different heights. The fine flare ribbon structures may be due to the magnetic reconnection in the complex quasi separatrix layers. The magnetic field modeling of several large flares suggests that the so called hot-channel structure is corresponding to the erupting flux rope above the X-point in a magnetic configuration with Hyperbolic Flux Tube.
Approximation abilities of neuro-fuzzy networks
NASA Astrophysics Data System (ADS)
Mrówczyńska, Maria
2010-01-01
The paper presents the operation of two neuro-fuzzy systems of an adaptive type, intended for solving problems of the approximation of multi-variable functions in the domain of real numbers. Neuro-fuzzy systems being a combination of the methodology of artificial neural networks and fuzzy sets operate on the basis of a set of fuzzy rules "if-then", generated by means of the self-organization of data grouping and the estimation of relations between fuzzy experiment results. The article includes a description of neuro-fuzzy systems by Takaga-Sugeno-Kang (TSK) and Wang-Mendel (WM), and in order to complement the problem in question, a hierarchical structural self-organizing method of teaching a fuzzy network. A multi-layer structure of the systems is a structure analogous to the structure of "classic" neural networks. In its final part the article presents selected areas of application of neuro-fuzzy systems in the field of geodesy and surveying engineering. Numerical examples showing how the systems work concerned: the approximation of functions of several variables to be used as algorithms in the Geographic Information Systems (the approximation of a terrain model), the transformation of coordinates, and the prediction of a time series. The accuracy characteristics of the results obtained have been taken into consideration.
Acoustic metamaterials with synergetic coupling
NASA Astrophysics Data System (ADS)
Ma, Fuyin; Huang, Meng; Wu, Jiu Hui
2017-12-01
In this paper, we propose a general design concept for acoustic metamaterials that introduces a ubiquitous synergetic behavior into the design procedure, in which the structure of the design is driven by its functional requirements. Since the physical properties of the widely used, resonant-type metamaterials are mainly determined by the eigenmodes of the structure, we first introduce the design concept through the modal displacement distributions on two typical plate-type structures. Next, by employing broadband sound attenuations that involve both the insulation and absorption as the typical targets, two synergetic coupling behaviors are systematically revealed among the dense resonant modes and multi-cell. Furthermore, through plate-type multiple-cell structures assembled from nine oscillators, the design is shown to realize strong broadband attenuations with either the average sound transmission loss (STL) below 2000 Hz higher than 40 dB or the absorption approximately 0.99 in the range of 400-700 Hz wherein the average absorption below 800 Hz remains higher than 0.8. Finally, two multi-cell plate-type samples are fabricated and then used experimentally to measure the STLs in support of the proposed synergetic coupling design method. Both the computational and experimental results demonstrate that the proposed synergetic design concept could effectively initiate a design for metamaterials that offer a new degree of freedom for broadband sound attenuations.
NASA Astrophysics Data System (ADS)
Kelvin, Lee Steven
This thesis explores the relation between galaxy structure, morphology and stellar mass. In the first part I present single-Sersic two-dimensional model fits to 167,600 galaxies modelled independently in the ugrizYJHK bandpasses using reprocessed Sloan Digital Sky Survey Data Release Seven (SDSS DR7) and UKIRT Infrared Deep Sky Survey Large Area Survey (UKIDSS LAS) imaging data available via the Galaxy and Mass Assembly (GAMA) data base. In order to facilitate this study, we developed Structural Investigation of Galaxies via Model Analysis (SIGMA): an automated wrapper around several contemporary astronomy software packages. We confirm that variations in global structural measurements with wavelength arise due to the effects of dust attenuation and stellar population/metallicity gradients within galaxies. In the second part of this thesis we establish a volume-limited sample of 3,845 galaxies in the local Universe and visually classify these galaxies according to their morphological Hubble type. We find that single-Sersic photometry accurately reproduces the morphology luminosity functions predicted in the literature. We employ multi-component Sersic profiling to provide bulge-disk decompositions for this sample, allowing for the luminosity and stellar mass to be divided between the key structural components: spheroids and disks. Grouping the stellar mass in these structures by the evolutionary mechanisms that formed them, we find that hot-mode collapse, merger or otherwise turbulent mechanisms account for ~46% of the total stellar mass budget, cold-mode gas accretion and splashback mechanisms account for ~48% of the total stellar mass budget and secular evolutionary processes for ~6.5% of the total stellar mass budget in the local (z<0.06) Universe.
Modeling and Characterization of Electrical Resistivity of Carbon Composite Laminates
NASA Astrophysics Data System (ADS)
Yasuda, Hiromi
Origami has recently received significant interest from the scientific and engineering communities as a method for designing building blocks of engineered structures to enhance their mechanical properties. However, the primary focus has been placed on their kinematic applications by leveraging the compactness and auxeticity of planar origami platforms. In this thesis, we study two different types of volumetric origami structures, Tachi-Miura Polyhedron (TMP) and Triangulated Cylindrical Origami (TCO), hierarchically from a single unit cell level to an assembly of multi-origami cells. We strategically assemble these origami cells into mechanical metamaterials and demonstrate their unique static/dynamic mechanical responses. In particular, these origami structures exhibit tailorable stiffness and strain softening/hardening behaviors, which leads to rich wave dynamics in origami-based architectures such as tunable frequency bands and new types of nonlinear wave propagations. One of the novel waveforms investigated in this thesis is the rarefaction solitary wave arising from strain-softening nature of origami unit cell. This unique wave dynamic mechanism is analyzed in numerical, analytical, and experimental approaches. By leveraging their tailorable folding mechanisms, the origami-based mechanical metamaterials can be used for designing new types of engineering devices and structures, not only for deployable space and disaster relief applications, but also for vibration filtering, impact mitigation, and energy harvesting.
NASA Astrophysics Data System (ADS)
Siegert, Stefan
2017-04-01
Initialised climate forecasts on seasonal time scales, run several months or even years ahead, are now an integral part of the battery of products offered by climate services world-wide. The availability of seasonal climate forecasts from various modeling centres gives rise to multi-model ensemble forecasts. Post-processing such seasonal-to-decadal multi-model forecasts is challenging 1) because the cross-correlation structure between multiple models and observations can be complicated, 2) because the amount of training data to fit the post-processing parameters is very limited, and 3) because the forecast skill of numerical models tends to be low on seasonal time scales. In this talk I will review new statistical post-processing frameworks for multi-model ensembles. I will focus particularly on Bayesian hierarchical modelling approaches, which are flexible enough to capture commonly made assumptions about collective and model-specific biases of multi-model ensembles. Despite the advances in statistical methodology, it turns out to be very difficult to out-perform the simplest post-processing method, which just recalibrates the multi-model ensemble mean by linear regression. I will discuss reasons for this, which are closely linked to the specific characteristics of seasonal multi-model forecasts. I explore possible directions for improvements, for example using informative priors on the post-processing parameters, and jointly modelling forecasts and observations.
An Integer Programming Model for Multi-Echelon Supply Chain Decision Problem Considering Inventories
NASA Astrophysics Data System (ADS)
Harahap, Amin; Mawengkang, Herman; Siswadi; Effendi, Syahril
2018-01-01
In this paper we address a problem that is of significance to the industry, namely the optimal decision of a multi-echelon supply chain and the associated inventory systems. By using the guaranteed service approach to model the multi-echelon inventory system, we develop a mixed integer; programming model to simultaneously optimize the transportation, inventory and network structure of a multi-echelon supply chain. To solve the model we develop a direct search approach using a strategy of releasing nonbasic variables from their bounds, combined with the “active constraint” method. This strategy is used to force the appropriate non-integer basic variables to move to their neighbourhood integer points.
NASA Technical Reports Server (NTRS)
Mcguirk, James P.
1990-01-01
Satellite data analysis tools are developed and implemented for the diagnosis of atmospheric circulation systems over the tropical Pacific Ocean. The tools include statistical multi-variate procedures, a multi-spectral radiative transfer model, and the global spectral forecast model at NMC. Data include in-situ observations; satellite observations from VAS (moisture, infrared and visible) NOAA polar orbiters (including Tiros Operational Satellite System (TOVS) multi-channel sounding data and OLR grids) and scanning multichannel microwave radiometer (SMMR); and European Centre for Medium Weather Forecasts (ECHMWF) analyses. A primary goal is a better understanding of the relation between synoptic structures of the area, particularly tropical plumes, and the general circulation, especially the Hadley circulation. A second goal is the definition of the quantitative structure and behavior of all Pacific tropical synoptic systems. Finally, strategies are examined for extracting new and additional information from existing satellite observations. Although moisture structure is emphasized, thermal patterns are also analyzed. Both horizontal and vertical structures are studied and objective quantitative results are emphasized.
Drummond, Meghan C.; Barzik, Melanie; Bird, Jonathan E.; Zhang, Duan-Sun; Lechene, Claude P.; Corey, David P.; Cunningham, Lisa L.; Friedman, Thomas B.
2015-01-01
The maintenance of sensory hair cell stereocilia is critical for lifelong hearing; however, mechanisms of structural homeostasis remain poorly understood. Conflicting models propose that stereocilia F-actin cores are either continually renewed every 24–48 h via a treadmill or are stable, exceptionally long-lived structures. Here to distinguish between these models, we perform an unbiased survey of stereocilia actin dynamics in more than 500 utricle hair cells. Live-imaging EGFP-β-actin or dendra2-β-actin reveal stable F-actin cores with turnover and elongation restricted to stereocilia tips. Fixed-cell microscopy of wild-type and mutant β-actin demonstrates that incorporation of actin monomers into filaments is required for localization to stereocilia tips. Multi-isotope imaging mass spectrometry and live imaging of single differentiating hair cells capture stereociliogenesis and explain uniform incorporation of 15N-labelled protein and EGFP-β-actin into nascent stereocilia. Collectively, our analyses support a model in which stereocilia actin cores are stable structures that incorporate new F-actin only at the distal tips. PMID:25898120
Usability of aerial video footage for 3-D scene reconstruction and structural damage assessment
NASA Astrophysics Data System (ADS)
Cusicanqui, Johnny; Kerle, Norman; Nex, Francesco
2018-06-01
Remote sensing has evolved into the most efficient approach to assess post-disaster structural damage, in extensively affected areas through the use of spaceborne data. For smaller, and in particular, complex urban disaster scenes, multi-perspective aerial imagery obtained with unmanned aerial vehicles and derived dense color 3-D models are increasingly being used. These type of data allow the direct and automated recognition of damage-related features, supporting an effective post-disaster structural damage assessment. However, the rapid collection and sharing of multi-perspective aerial imagery is still limited due to tight or lacking regulations and legal frameworks. A potential alternative is aerial video footage, which is typically acquired and shared by civil protection institutions or news media and which tends to be the first type of airborne data available. Nevertheless, inherent artifacts and the lack of suitable processing means have long limited its potential use in structural damage assessment and other post-disaster activities. In this research the usability of modern aerial video data was evaluated based on a comparative quality and application analysis of video data and multi-perspective imagery (photos), and their derivative 3-D point clouds created using current photogrammetric techniques. Additionally, the effects of external factors, such as topography and the presence of smoke and moving objects, were determined by analyzing two different earthquake-affected sites: Tainan (Taiwan) and Pescara del Tronto (Italy). Results demonstrated similar usabilities for video and photos. This is shown by the short 2 cm of difference between the accuracies of video- and photo-based 3-D point clouds. Despite the low video resolution, the usability of these data was compensated for by a small ground sampling distance. Instead of video characteristics, low quality and application resulted from non-data-related factors, such as changes in the scene, lack of texture, or moving objects. We conclude that not only are current video data more rapidly available than photos, but they also have a comparable ability to assist in image-based structural damage assessment and other post-disaster activities.
NASA Astrophysics Data System (ADS)
Kavalerov, B. V.; Anoshkin, A. N.; Osokin, V. M.; Tretyakov, A. A.; Potrakhov, N. N.; Bessonov, V. B.; Obodovskiy, A. V.
2018-02-01
The advantages of using the method of microfocus radiography in the non-destructive testing of aviation products are considered in the paper, using the example of a circular beam of a U-shaped profile made of polymer composite materials. The basic types of characteristic defects of parts arising in such a type are described both in the process of their manufacture and in the process of their exploitation, namely interlayer delaminations, pores and folds. Peculiarities of obtaining pseudo-volumetric images, which allow to increase the informativity about the structure of the object of control, as well as to identify the arising heterogeneities are given. A model of a robotic system is described that makes it possible to realize a small or multi-angle survey scheme, and, in particular, to carry out tomographic studies.
Vranceanu, Ana-Maria; Hobfoll, Stevan E.; Johnson, Robert J.
2007-01-01
Objective This retrospective, cross-sectional study explored the hypothesis that multiple forms of child abuse and neglect (child multi-type maltreatment; CMM) would be associated with women’s lower social support and higher stress in adulthood, and that this, in turn, would amplify their vulnerability to symptoms of depression and posttraumatic stress disorder (PTSD). Method Participants were 100 women recruited from an inner-city gynecological treatment center for low-income women. Data were analyzed via structural equation modeling (SEM) with Lisrel 8.0. Results CMM was directly predictive of decreased social support and increased stress in adulthood. CMM was also directly predictive of PTSD symptoms, but not depression symptoms in adulthood. Social support partially mediated the relationship between CMM and adult PTSD symptoms, and stress fully mediated the relationship between CMM and adult symptoms of depression. Conclusions Findings support both direct and mediational effects of social resources on adult depression and PTSD symptoms in women with histories of CMM, suggesting that resources are key factors in psychological adjustment of CMM victims. PMID:17215039
Wagner, C.; Mannion, R.; Hammer, A.; Groene, O.; Arah, O.A.; Dersarkissian, M.; Suñol, R.
2014-01-01
Objective To better understand associations between organizational culture (OC), organizational management structure (OS) and quality management in hospitals. Design A multi-method, multi-level, cross-sectional observational study. Setting and participants As part of the DUQuE project (Deepening our Understanding of Quality improvement in Europe), a random sample of 188 hospitals in 7 countries (France, Poland, Turkey, Portugal, Spain, Germany and Czech Republic) participated in a comprehensive questionnaire survey and a one-day on-site surveyor audit. Respondents for this study (n = 158) included professional quality managers and hospital trustees. Main outcome measures Extent of implementation of quality management systems, extent of compliance with existing management procedures and implementation of clinical quality activities. Results Among participating hospitals, 33% had a clan culture as their dominant culture type, 26% an open and developmental culture type, 16% a hierarchical culture type and 25% a rational culture type. The culture type had no statistically significant association with the outcome measures. Some structural characteristics were associated with the development of quality management systems. Conclusion The type of OC was not associated with the development of quality management in hospitals. Other factors (not culture type) are associated with the development of quality management. An OS that uses fewer protocols is associated with a less developed quality management system, whereas an OS which supports innovation in care is associated with a more developed quality management system. PMID:24671119
Wagner, C; Mannion, R; Hammer, A; Groene, O; Arah, O A; Dersarkissian, M; Suñol, R
2014-04-01
To better understand associations between organizational culture (OC), organizational management structure (OS) and quality management in hospitals. A multi-method, multi-level, cross-sectional observational study. As part of the DUQuE project (Deepening our Understanding of Quality improvement in Europe), a random sample of 188 hospitals in 7 countries (France, Poland, Turkey, Portugal, Spain, Germany and Czech Republic) participated in a comprehensive questionnaire survey and a one-day on-site surveyor audit. Respondents for this study (n = 158) included professional quality managers and hospital trustees. Extent of implementation of quality management systems, extent of compliance with existing management procedures and implementation of clinical quality activities. Among participating hospitals, 33% had a clan culture as their dominant culture type, 26% an open and developmental culture type, 16% a hierarchical culture type and 25% a rational culture type. The culture type had no statistically significant association with the outcome measures. Some structural characteristics were associated with the development of quality management systems. The type of OC was not associated with the development of quality management in hospitals. Other factors (not culture type) are associated with the development of quality management. An OS that uses fewer protocols is associated with a less developed quality management system, whereas an OS which supports innovation in care is associated with a more developed quality management system.
NASA Astrophysics Data System (ADS)
Balakrishnan, Vivekananthan; Dinh, Toan; Phan, Hoang-Phuong; Kozeki, Takahiro; Namazu, Takahiro; Viet Dao, Dzung; Nguyen, Nam-Trung
2017-07-01
This paper reports an analytical model and its validation for a released microscale heater made of 3C-SiC thin films. A model for the equivalent electrical and thermal parameters was developed for the two-layer multi-segment heat and electric conduction. The model is based on a 1D energy equation, which considers the temperature-dependent resistivity and allows for the prediction of voltage-current and power-current characteristics of the microheater. The steady-state analytical model was validated by experimental characterization. The results, in particular the nonlinearity caused by temperature dependency, are in good agreement. The low power consumption of the order of 0.18 mW at approximately 310 K indicates the potential use of the structure as thermal sensors in portable applications.
Models for Type Ia Supernovae and Related Astrophysical Transients
NASA Astrophysics Data System (ADS)
Röpke, Friedrich K.; Sim, Stuart A.
2018-06-01
We give an overview of recent efforts to model Type Ia supernovae and related astrophysical transients resulting from thermonuclear explosions in white dwarfs. In particular we point out the challenges resulting from the multi-physics multi-scale nature of the problem and discuss possible numerical approaches to meet them in hydrodynamical explosion simulations and radiative transfer modeling. We give examples of how these methods are applied to several explosion scenarios that have been proposed to explain distinct subsets or, in some cases, the majority of the observed events. In case we comment on some of the successes and shortcoming of these scenarios and highlight important outstanding issues.
Wavefield complexity and stealth structures: Resolution constraints by wave physics
NASA Astrophysics Data System (ADS)
Nissen-Meyer, T.; Leng, K.
2017-12-01
Imaging the Earth's interior relies on understanding how waveforms encode information from heterogeneous multi-scale structure. This relation is given by elastodynamics, but forward modeling in the context of tomography primarily serves to deliver synthetic waveforms and gradients for the inversion procedure. While this is entirely appropriate, it depreciates a wealth of complementary inference that can be obtained from the complexity of the wavefield. Here, we are concerned with the imprint of realistic multi-scale Earth structure on the wavefield, and the question on the inherent physical resolution limit of structures encoded in seismograms. We identify parameter and scattering regimes where structures remain invisible as a function of seismic wavelength, structural multi-scale geometry, scattering strength, and propagation path. Ultimately, this will aid in interpreting tomographic images by acknowledging the scope of "forgotten" structures, and shall offer guidance for optimising the selection of seismic data for tomography. To do so, we use our novel 3D modeling method AxiSEM3D which tackles global wave propagation in visco-elastic, anisotropic 3D structures with undulating boundaries at unprecedented resolution and efficiency by exploiting the inherent azimuthal smoothness of wavefields via a coupled Fourier expansion-spectral-element approach. The method links computational cost to wavefield complexity and thereby lends itself well to exploring the relation between waveforms and structures. We will show various examples of multi-scale heterogeneities which appear or disappear in the waveform, and argue that the nature of the structural power spectrum plays a central role in this. We introduce the concept of wavefield learning to examine the true wavefield complexity for a complexity-dependent modeling framework and discriminate which scattering structures can be retrieved by surface measurements. This leads to the question of physical invisibility and the tomographic resolution limit, and offers insight as to why tomographic images still show stark differences for smaller-scale heterogeneities despite progress in modeling and data resolution. Finally, we give an outlook on how we expand this modeling framework towards an inversion procedure guided by wavefield complexity.
Multi-scale modelling of elastic moduli of trabecular bone
Hamed, Elham; Jasiuk, Iwona; Yoo, Andrew; Lee, YikHan; Liszka, Tadeusz
2012-01-01
We model trabecular bone as a nanocomposite material with hierarchical structure and predict its elastic properties at different structural scales. The analysis involves a bottom-up multi-scale approach, starting with nanoscale (mineralized collagen fibril) and moving up the scales to sub-microscale (single lamella), microscale (single trabecula) and mesoscale (trabecular bone) levels. Continuum micromechanics methods, composite materials laminate theory and finite-element methods are used in the analysis. Good agreement is found between theoretical and experimental results. PMID:22279160
Zhang, Hua; Zhang, Tuo; Gao, Jianzhao; Ruan, Jishou; Shen, Shiyi; Kurgan, Lukasz
2012-01-01
Proteins fold through a two-state (TS), with no visible intermediates, or a multi-state (MS), via at least one intermediate, process. We analyze sequence-derived factors that determine folding types by introducing a novel sequence-based folding type predictor called FOKIT. This method implements a logistic regression model with six input features which hybridize information concerning amino acid composition and predicted secondary structure and solvent accessibility. FOKIT provides predictions with average Matthews correlation coefficient (MCC) between 0.58 and 0.91 measured using out-of-sample tests on four benchmark datasets. These results are shown to be competitive or better than results of four modern predictors. We also show that FOKIT outperforms these methods when predicting chains that share low similarity with the chains used to build the model, which is an important advantage given the limited number of annotated chains. We demonstrate that inclusion of solvent accessibility helps in discrimination of the folding kinetic types and that three of the features constitute statistically significant markers that differentiate TS and MS folders. We found that the increased content of exposed Trp and buried Leu are indicative of the MS folding, which implies that the exposure/burial of certain hydrophobic residues may play important role in the formation of the folding intermediates. Our conclusions are supported by two case studies.
Pore network properties of sandstones in a fault damage zone
NASA Astrophysics Data System (ADS)
Bossennec, Claire; Géraud, Yves; Moretti, Isabelle; Mattioni, Luca; Stemmelen, Didier
2018-05-01
The understanding of fluid flow in faulted sandstones is based on a wide range of techniques. These depend on the multi-method determination of petrological and structural features, porous network properties and both spatial and temporal variations and interactions of these features. The question of the multi-parameter analysis on fluid flow controlling properties is addressed for an outcrop damage zone in the hanging wall of a normal fault zone on the western border of the Upper Rhine Graben, affecting the Buntsandstein Group (Early Triassic). Diagenetic processes may alter the original pore type and geometry in fractured and faulted sandstones. Therefore, these may control the ultimate porosity and permeability of the damage zone. The classical model of evolution of hydraulic properties with distance from the major fault core is nuanced here. The hydraulic behavior of the rock media is better described by a pluri-scale model including: 1) The grain scale, where the hydraulic properties are controlled by sedimentary features, the distance from the fracture, and the impact of diagenetic processes. These result in the ultimate porous network characteristics observed. 2) A larger scale, where the structural position and characteristics (density, connectivity) of the fracture corridors are strongly correlated with both geo-mechanical and hydraulic properties within the damage zone.
Li, Guifeng; Wan, Jianxin; Huang, Xiangqian; Zeng, Qiao; Tang, Jing
2011-08-01
In recent years, multi-walled carbon nanotubes (MWCTs) are very favorable to the adsorption of middle molecular substances in the hemoperfusion because of their multiporous structure, large surface area and high reactivity, which are beneficial to the excellent absorption properties. The purpose of this study was to study the MWCTs on the adsorption capacity of the middle molecular substances. Vitamin B12 (VB12) was selected as a model of the middle molecular substances. The morphologies of MWCTs and activated carbon from commercial "carbon kidney" were observed with scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The adsorption behavior of VB12 was compared to each other with UV-visible absorption spectra. The MWCTs formed a sophistaicate gap structure, and compared to the activated carbon, MWCTs had a larger surface area. By Langmuir equation and Freundlich equation fitting analysis, VB12 adsorption on MWCTs is fit for multi-molecular layer adsorption, and the adsorption type of activated carbon is more inclined to the model corresponding to Langmuir monolayer adsorption. The adsorption rate of MWCTs is faster than that of the activated carbon and the adsorption capacity is greater, which could be expected to become the new adsorbent in the hemoperfusion.
NACA0012 benchmark model experimental flutter results with unsteady pressure distributions
NASA Technical Reports Server (NTRS)
Rivera, Jose A., Jr.; Dansberry, Bryan E.; Bennett, Robert M.; Durham, Michael H.; Silva, Walter A.
1992-01-01
The Structural Dynamics Division at NASA Langley Research Center has started a wind tunnel activity referred to as the Benchmark Models Program. The primary objective of this program is to acquire measured dynamic instability and corresponding pressure data that will be useful for developing and evaluating aeroelastic type computational fluid dynamics codes currently in use or under development. The program is a multi-year activity that will involve testing of several different models to investigate various aeroelastic phenomena. This paper describes results obtained from a second wind tunnel test of the first model in the Benchmark Models Program. This first model consisted of a rigid semispan wing having a rectangular planform and a NACA 0012 airfoil shape which was mounted on a flexible two degree of freedom mount system. Experimental flutter boundaries and corresponding unsteady pressure distribution data acquired over two model chords located at the 60 and 95 percent span stations are presented.
Distributed digital signal processors for multi-body flexible structures
NASA Technical Reports Server (NTRS)
Lee, Gordon K. F.
1992-01-01
Multi-body flexible structures, such as those currently under investigation in spacecraft design, are large scale (high-order) dimensional systems. Controlling and filtering such structures is a computationally complex problem. This is particularly important when many sensors and actuators are located along the structure and need to be processed in real time. This report summarizes research activity focused on solving the signal processing (that is, information processing) issues of multi-body structures. A distributed architecture is developed in which single loop processors are employed for local filtering and control. By implementing such a philosophy with an embedded controller configuration, a supervising controller may be used to process global data and make global decisions as the local devices are processing local information. A hardware testbed, a position controller system for a servo motor, is employed to illustrate the capabilities of the embedded controller structure. Several filtering and control structures which can be modeled as rational functions can be implemented on the system developed in this research effort. Thus the results of the study provide a support tool for many Control/Structure Interaction (CSI) NASA testbeds such as the Evolutionary model and the nine-bay truss structure.
NASA Astrophysics Data System (ADS)
Ryu, Hoon; Jeong, Yosang; Kang, Ji-Hoon; Cho, Kyu Nam
2016-12-01
Modelling of multi-million atomic semiconductor structures is important as it not only predicts properties of physically realizable novel materials, but can accelerate advanced device designs. This work elaborates a new Technology-Computer-Aided-Design (TCAD) tool for nanoelectronics modelling, which uses a sp3d5s∗ tight-binding approach to describe multi-million atomic structures, and simulate electronic structures with high performance computing (HPC), including atomic effects such as alloy and dopant disorders. Being named as Quantum simulation tool for Advanced Nanoscale Devices (Q-AND), the tool shows nice scalability on traditional multi-core HPC clusters implying the strong capability of large-scale electronic structure simulations, particularly with remarkable performance enhancement on latest clusters of Intel Xeon PhiTM coprocessors. A review of the recent modelling study conducted to understand an experimental work of highly phosphorus-doped silicon nanowires, is presented to demonstrate the utility of Q-AND. Having been developed via Intel Parallel Computing Center project, Q-AND will be open to public to establish a sound framework of nanoelectronics modelling with advanced HPC clusters of a many-core base. With details of the development methodology and exemplary study of dopant electronics, this work will present a practical guideline for TCAD development to researchers in the field of computational nanoelectronics.
NASA Astrophysics Data System (ADS)
Gao, C.; Lekic, V.
2016-12-01
When constraining the structure of the Earth's continental lithosphere, multiple seismic observables are often combined due to their complementary sensitivities.The transdimensional Bayesian (TB) approach in seismic inversion allows model parameter uncertainties and trade-offs to be quantified with few assumptions. TB sampling yields an adaptive parameterization that enables simultaneous inversion for different model parameters (Vp, Vs, density, radial anisotropy), without the need for strong prior information or regularization. We use a reversible jump Markov chain Monte Carlo (rjMcMC) algorithm to incorporate different seismic observables - surface wave dispersion (SWD), Rayleigh wave ellipticity (ZH ratio), and receiver functions - into the inversion for the profiles of shear velocity (Vs), compressional velocity (Vp), density (ρ), and radial anisotropy (ξ) beneath a seismic station. By analyzing all three data types individually and together, we show that TB sampling can eliminate the need for a fixed parameterization based on prior information, and reduce trade-offs in model estimates. We then explore the effect of different types of misfit functions for receiver function inversion, which is a highly non-unique problem. We compare the synthetic inversion results using the L2 norm, cross-correlation type and integral type misfit function by their convergence rates and retrieved seismic structures. In inversions in which only one type of model parameter (Vs for the case of SWD) is inverted, assumed scaling relationships are often applied to account for sensitivity to other model parameters (e.g. Vp, ρ, ξ). Here we show that under a TB framework, we can eliminate scaling assumptions, while simultaneously constraining multiple model parameters to varying degrees. Furthermore, we compare the performance of TB inversion when different types of model parameters either share the same or use independent parameterizations. We show that different parameterizations can lead to differences in retrieved model parameters, consistent with limited data constraints. We then quantitatively examine the model parameter trade-offs and find that trade-offs between Vp and radial anisotropy might limit our ability to constrain shallow-layer radial anisotropy using current seismic observables.
A Triple-Mode Flexible E-Skin Sensor Interface for Multi-Purpose Wearable Applications
Kim, Sung-Woo; Lee, Youngoh; Park, Jonghwa; Kim, Seungmok; Chae, Heeyoung; Ko, Hyunhyub
2017-01-01
This study presents a flexible wireless electronic skin (e-skin) sensor system that includes a multi-functional sensor device, a triple-mode reconfigurable readout integrated circuit (ROIC), and a mobile monitoring interface. The e-skin device’s multi-functionality is achieved by an interlocked micro-dome array structure that uses a polyvinylidene fluoride and reduced graphene oxide (PVDF/RGO) composite material that is inspired by the structure and functions of the human fingertip. For multi-functional implementation, the proposed triple-mode ROIC is reconfigured to support piezoelectric, piezoresistance, and pyroelectric interfaces through single-type e-skin sensor devices. A flexible system prototype was developed and experimentally verified to provide various wireless wearable sensing functions—including pulse wave, voice, chewing/swallowing, breathing, knee movements, and temperature—while their real-time sensed data are displayed on a smartphone. PMID:29286312
Measuring the X-shaped structures in edge-on galaxies
NASA Astrophysics Data System (ADS)
Savchenko, S. S.; Sotnikova, N. Ya.; Mosenkov, A. V.; Reshetnikov, V. P.; Bizyaev, D. V.
2017-11-01
We present a detailed photometric study of a sample of 22 edge-on galaxies with clearly visible X-shaped structures. We propose a novel method to derive geometrical parameters of these features, along with the parameters of their host galaxies based on the multi-component photometric decomposition of galactic images. To include the X-shaped structure into our photometric model, we use the imfit package, in which we implement a new component describing the X-shaped structure. This method is applied for a sample of galaxies with available Sloan Digital Sky Survey and Spitzer IRAC 3.6 μm observations. In order to explain our results, we perform realistic N-body simulations of a Milky Way-type galaxy and compare the observed and the model X-shaped structures. Our main conclusions are as follows: (1) galaxies with strong X-shaped structures reside in approximately the same local environments as field galaxies; (2) the characteristic size of the X-shaped structures is about 2/3 of the bar size; (3) there is a correlation between the X-shaped structure size and its observed flatness: the larger structures are more flattened; (4) our N-body simulations qualitatively confirm the observational results and support the bar-driven scenario for the X-shaped structure formation.
López-Causapé, Carla; de Dios-Caballero, Juan; Cobo, Marta; Escribano, Amparo; Asensio, Óscar; Oliver, Antonio; Del Campo, Rosa; Cantón, Rafael; Solé, Amparó; Cortell, Isidoro; Asensio, Oscar; García, Gloria; Martínez, María Teresa; Cols, María; Salcedo, Antonio; Vázquez, Carlos; Baranda, Félix; Girón, Rosa; Quintana, Esther; Delgado, Isabel; de Miguel, María Ángeles; García, Marta; Oliva, Concepción; Prados, María Concepción; Barrio, María Isabel; Pastor, María Dolores; Olveira, Casilda; de Gracia, Javier; Álvarez, Antonio; Escribano, Amparo; Castillo, Silvia; Figuerola, Joan; Togores, Bernat; Oliver, Antonio; López, Carla; de Dios Caballero, Juan; Tato, Marta; Máiz, Luis; Suárez, Lucrecia; Cantón, Rafael
2017-09-01
The first Spanish multi-centre study on the microbiology of cystic fibrosis (CF) was conducted from 2013 to 2014. The study involved 24 CF units from 17 hospitals, and recruited 341 patients. The aim of this study was to characterise Pseudomonas aeruginosa isolates, 79 of which were recovered from 75 (22%) patients. The study determined the population structure, antibiotic susceptibility profile and genetic background of the strains. Fifty-five percent of the isolates were multi-drug-resistant, and 16% were extensively-drug-resistant. Defective mutS and mutL genes were observed in mutator isolates (15.2%). Considerable genetic diversity was observed by pulsed-field gel electrophoresis (70 patterns) and multi-locus sequence typing (72 sequence types). International epidemic clones were not detected. Fifty-one new and 14 previously described array tube (AT) genotypes were detected by AT technology. This study found a genetically unrelated and highly diverse CF P. aeruginosa population in Spain, not represented by the epidemic clones widely distributed across Europe, with multiple combinations of virulence factors and high antimicrobial resistance rates (except for colistin). Copyright © 2017 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.
NASA Astrophysics Data System (ADS)
Lachaut, T.; Yoon, J.; Klassert, C. J. A.; Talozi, S.; Mustafa, D.; Knox, S.; Selby, P. D.; Haddad, Y.; Gorelick, S.; Tilmant, A.
2016-12-01
Probabilistic approaches to uncertainty in water systems management can face challenges of several types: non stationary climate, sudden shocks such as conflict-driven migrations, or the internal complexity and dynamics of large systems. There has been a rising trend in the development of bottom-up methods that place focus on the decision side instead of probability distributions and climate scenarios. These approaches are based on defining acceptability thresholds for the decision makers and considering the entire range of possibilities over which such thresholds are crossed. We aim at improving the knowledge on the applicability and relevance of this approach by enlarging its scope beyond climate uncertainty and single decision makers; thus including demographic shifts, internal system dynamics, and multiple stakeholders at different scales. This vulnerability analysis is part of the Jordan Water Project and makes use of an ambitious multi-agent model developed by its teams with the extensive cooperation of the Ministry of Water and Irrigation of Jordan. The case of Jordan is a relevant example for migration spikes, rapid social changes, resource depletion and climate change impacts. The multi-agent modeling framework used provides a consistent structure to assess the vulnerability of complex water resources systems with distributed acceptability thresholds and stakeholder interaction. A proof of concept and preliminary results are presented for a non-probabilistic vulnerability analysis that involves different types of stakeholders, uncertainties other than climatic and the integration of threshold-based indicators. For each stakeholder (agent) a vulnerability matrix is constructed over a multi-dimensional domain, which includes various hydrologic and/or demographic variables.
NASA Astrophysics Data System (ADS)
Mamun, A. A.
2017-10-01
The existence of self-gravito-acoustic (SGA) shock structures (SSs) associated with negative self-gravitational potential in a self-gravitating, strongly coupled, multi-component, degenerate quantum plasma (SGSCMCDQP) system is predicted for the first time. The modified Burgers (MB) equation, which is valid for both planar and non-planar (spherical) geometries, is derived analytically, and solved numerically. It is shown that the longitudinal viscous force acting on inertial plasma species of the plasma system is the source of dissipation and is responsible for the formation of these SGA SSs in the plasma system. The time evolution of these SGA SSs is also shown for different values (viz., 0.5, 1, and 2) of Γ, where Γ is the ratio of the nonlinear coefficient to the dissipative coefficient in the MB equation. The SGSCMCDQP model and the numerical analysis of the MB equation presented here are so general that they can be applied in any type of SGSCMCDQP systems like astrophysical compact objects having planar or non-planar (spherical) shape.
A Stochastic Point Cloud Sampling Method for Multi-Template Protein Comparative Modeling.
Li, Jilong; Cheng, Jianlin
2016-05-10
Generating tertiary structural models for a target protein from the known structure of its homologous template proteins and their pairwise sequence alignment is a key step in protein comparative modeling. Here, we developed a new stochastic point cloud sampling method, called MTMG, for multi-template protein model generation. The method first superposes the backbones of template structures, and the Cα atoms of the superposed templates form a point cloud for each position of a target protein, which are represented by a three-dimensional multivariate normal distribution. MTMG stochastically resamples the positions for Cα atoms of the residues whose positions are uncertain from the distribution, and accepts or rejects new position according to a simulated annealing protocol, which effectively removes atomic clashes commonly encountered in multi-template comparative modeling. We benchmarked MTMG on 1,033 sequence alignments generated for CASP9, CASP10 and CASP11 targets, respectively. Using multiple templates with MTMG improves the GDT-TS score and TM-score of structural models by 2.96-6.37% and 2.42-5.19% on the three datasets over using single templates. MTMG's performance was comparable to Modeller in terms of GDT-TS score, TM-score, and GDT-HA score, while the average RMSD was improved by a new sampling approach. The MTMG software is freely available at: http://sysbio.rnet.missouri.edu/multicom_toolbox/mtmg.html.
A Stochastic Point Cloud Sampling Method for Multi-Template Protein Comparative Modeling
Li, Jilong; Cheng, Jianlin
2016-01-01
Generating tertiary structural models for a target protein from the known structure of its homologous template proteins and their pairwise sequence alignment is a key step in protein comparative modeling. Here, we developed a new stochastic point cloud sampling method, called MTMG, for multi-template protein model generation. The method first superposes the backbones of template structures, and the Cα atoms of the superposed templates form a point cloud for each position of a target protein, which are represented by a three-dimensional multivariate normal distribution. MTMG stochastically resamples the positions for Cα atoms of the residues whose positions are uncertain from the distribution, and accepts or rejects new position according to a simulated annealing protocol, which effectively removes atomic clashes commonly encountered in multi-template comparative modeling. We benchmarked MTMG on 1,033 sequence alignments generated for CASP9, CASP10 and CASP11 targets, respectively. Using multiple templates with MTMG improves the GDT-TS score and TM-score of structural models by 2.96–6.37% and 2.42–5.19% on the three datasets over using single templates. MTMG’s performance was comparable to Modeller in terms of GDT-TS score, TM-score, and GDT-HA score, while the average RMSD was improved by a new sampling approach. The MTMG software is freely available at: http://sysbio.rnet.missouri.edu/multicom_toolbox/mtmg.html. PMID:27161489
Improved reliability of wind turbine towers with active tuned mass dampers (ATMDs)
NASA Astrophysics Data System (ADS)
Fitzgerald, Breiffni; Sarkar, Saptarshi; Staino, Andrea
2018-04-01
Modern multi-megawatt wind turbines are composed of slender, flexible, and lightly damped blades and towers. These components exhibit high susceptibility to wind-induced vibrations. As the size, flexibility and cost of the towers have increased in recent years, the need to protect these structures against damage induced by turbulent aerodynamic loading has become apparent. This paper combines structural dynamic models and probabilistic assessment tools to demonstrate improvements in structural reliability when modern wind turbine towers are equipped with active tuned mass dampers (ATMDs). This study proposes a multi-modal wind turbine model for wind turbine control design and analysis. This study incorporates an ATMD into the tower of this model. The model is subjected to stochastically generated wind loads of varying speeds to develop wind-induced probabilistic demand models for towers of modern multi-megawatt wind turbines under structural uncertainty. Numerical simulations have been carried out to ascertain the effectiveness of the active control system to improve the structural performance of the wind turbine and its reliability. The study constructs fragility curves, which illustrate reductions in the vulnerability of towers to wind loading owing to the inclusion of the damper. Results show that the active controller is successful in increasing the reliability of the tower responses. According to the analysis carried out in this paper, a strong reduction of the probability of exceeding a given displacement at the rated wind speed has been observed.
Upper Mantle Shear Wave Structure Beneath North America From Multi-mode Surface Wave Tomography
NASA Astrophysics Data System (ADS)
Yoshizawa, K.; Ekström, G.
2008-12-01
The upper mantle structure beneath the North American continent has been investigated from measurements of multi-mode phase speeds of Love and Rayleigh waves. To estimate fundamental-mode and higher-mode phase speeds of surface waves from a single seismogram at regional distances, we have employed a method of nonlinear waveform fitting based on a direct model-parameter search using the neighbourhood algorithm (Yoshizawa & Kennett, 2002). The method of the waveform analysis has been fully automated by employing empirical quantitative measures for evaluating the accuracy/reliability of estimated multi-mode phase dispersion curves, and thus it is helpful in processing the dramatically increasing numbers of seismic data from the latest regional networks such as USArray. As a first step toward modeling the regional anisotropic shear-wave velocity structure of the North American upper mantle with extended vertical resolution, we have applied the method to long-period three-component records of seismic stations in North America, which mostly comprise the GSN and US regional networks as well as the permanent and transportable USArray stations distributed by the IRIS DMC. Preliminary multi-mode phase-speed models show large-scale patterns of isotropic heterogeneity, such as a strong velocity contrast between the western and central/eastern United States, which are consistent with the recent global and regional models (e.g., Marone, et al. 2007; Nettles & Dziewonski, 2008). We will also discuss radial anisotropy of shear wave speed beneath North America from multi-mode dispersion measurements of Love and Rayleigh waves.
Nyman, Elin; Rozendaal, Yvonne J W; Helmlinger, Gabriel; Hamrén, Bengt; Kjellsson, Maria C; Strålfors, Peter; van Riel, Natal A W; Gennemark, Peter; Cedersund, Gunnar
2016-04-06
We are currently in the middle of a major shift in biomedical research: unprecedented and rapidly growing amounts of data may be obtained today, from in vitro, in vivo and clinical studies, at molecular, physiological and clinical levels. To make use of these large-scale, multi-level datasets, corresponding multi-level mathematical models are needed, i.e. models that simultaneously capture multiple layers of the biological, physiological and disease-level organization (also referred to as quantitative systems pharmacology-QSP-models). However, today's multi-level models are not yet embedded in end-usage applications, neither in drug research and development nor in the clinic. Given the expectations and claims made historically, this seemingly slow adoption may seem surprising. Therefore, we herein consider a specific example-type 2 diabetes-and critically review the current status and identify key remaining steps for these models to become mainstream in the future. This overview reveals how, today, we may use models to ask scientific questions concerning, e.g., the cellular origin of insulin resistance, and how this translates to the whole-body level and short-term meal responses. However, before these multi-level models can become truly useful, they need to be linked with the capabilities of other important existing models, in order to make them 'personalized' (e.g. specific to certain patient phenotypes) and capable of describing long-term disease progression. To be useful in drug development, it is also critical that the developed models and their underlying data and assumptions are easily accessible. For clinical end-usage, in addition, model links to decision-support systems combined with the engagement of other disciplines are needed to create user-friendly and cost-efficient software packages.
Biasing and the search for primordial non-Gaussianity beyond the local type
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gleyzes, Jérôme; De Putter, Roland; Doré, Olivier
Primordial non-Gaussianity encodes valuable information about the physics of inflation, including the spectrum of particles and interactions. Significant improvements in our understanding of non-Gaussanity beyond Planck require information from large-scale structure. The most promising approach to utilize this information comes from the scale-dependent bias of halos. For local non-Gaussanity, the improvements available are well studied but the potential for non-Gaussianity beyond the local type, including equilateral and quasi-single field inflation, is much less well understood. In this paper, we forecast the capabilities of large-scale structure surveys to detect general non-Gaussianity through galaxy/halo power spectra. We study how non-Gaussanity can bemore » distinguished from a general biasing model and where the information is encoded. For quasi-single field inflation, significant improvements over Planck are possible in some regions of parameter space. We also show that the multi-tracer technique can significantly improve the sensitivity for all non-Gaussianity types, providing up to an order of magnitude improvement for equilateral non-Gaussianity over the single-tracer measurement.« less
Narayanan, Rajeevan T.; Egger, Robert; Johnson, Andrew S.; Mansvelder, Huibert D.; Sakmann, Bert; de Kock, Christiaan P.J.; Oberlaender, Marcel
2015-01-01
Vertical thalamocortical afferents give rise to the elementary functional units of sensory cortex, cortical columns. Principles that underlie communication between columns remain however unknown. Here we unravel these by reconstructing in vivo-labeled neurons from all excitatory cell types in the vibrissal part of rat primary somatosensory cortex (vS1). Integrating the morphologies into an exact 3D model of vS1 revealed that the majority of intracortical (IC) axons project far beyond the borders of the principal column. We defined the corresponding innervation volume as the IC-unit. Deconstructing this structural cortical unit into its cell type-specific components, we found asymmetric projections that innervate columns of either the same whisker row or arc, and which subdivide vS1 into 2 orthogonal [supra-]granular and infragranular strata. We show that such organization could be most effective for encoding multi whisker inputs. Communication between columns is thus organized by multiple highly specific horizontal projection patterns, rendering IC-units as the primary structural entities for processing complex sensory stimuli. PMID:25838038
TREAT Neutronics Analysis and Design Support, Part I: Multi-SERTTA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bess, John D.; Woolstenhulme, Nicolas E.; Hill, Connie M.
2016-08-01
Experiment vehicle design is necessary in preparation for Transient Reactor Test (TREAT) facility restart and the resumption of transient testing to support Accident Tolerant Fuel (ATF) characterization and other future fuels testing requirements. Currently the most mature vehicle design is the Multi-SERTTA (Static Environments Rodlet Transient Test Apparatuses), which can accommodate up to four concurrent rodlet-sized specimens under separate environmental conditions. Robust test vehicle design requires neutronics analyses to support design development, optimization of the power coupling factor (PCF) to efficiently maximize energy generation in the test fuel rodlets, and experiment safety analyses. Calculations were performed to support analysis ofmore » a near-final design of the Multi-SERTTA vehicle, the design process for future TREAT test vehicles, and establish analytical practices for upcoming transient test experiments. Models of the Multi-SERTTA vehicle containing typical PWR-fuel rodlets were prepared and neutronics calculations were performed using MCNP6.1 with ENDF/B-VII.1 nuclear data libraries. Calculation of the PCF for reference conditions of a PWR fuel rodlet in clean water at operational temperature and pressure provided results between 1.10 and 1.74 W/g-MW depending on the location of the four Multi-SERTTA units with the stack. Basic changes to the Multi-SERTTA secondary vessel containment and support have minimal impact on PCF; using materials with less neutron absorption can improve expected PCF values, especially in the primary containment. An optimized balance is needed between structural integrity, experiment safety, and energy deposition in the experiment. Type of medium and environmental conditions within the primary vessel surrounding the fuel rodlet can also have a significant impact on resultant PCF values. The estimated reactivity insertion worth into the TREAT core is impacted more by the primary and secondary Multi-SERTTA vehicle structure with the experiment content and contained environment having a near negligible impact on overall system reactivity. Additional calculations were performed to evaluate the peak-to-average assembly powers throughout the TREAT core, as well as the nuclear heat generation for the various structural components of the Multi-SERTTA assembly. Future efforts include the evaluation of flux collars to shape the PCF for individual Multi-SERTTA units during an experiment such as to achieve uniformity in test unit environmental conditions impacted by the non-uniform axial flux/power profile of TREAT. Upon resumption of transient testing, experimental results from both the Multi-SERTTA and Multi-SERTTA-CAL will be compared against calculational results and methods for further optimization and design strategies.« less
Studies for the 3-Dimensional Structure, Composition, and Dynamic of Io's Atmosphere
NASA Technical Reports Server (NTRS)
Smyth, William H.
2001-01-01
Research work is discussed for the following: (1) the exploration of new H and Cl chemistry in Io's atmosphere using the already developed two-dimensional multi-species hydrodynamic model of Wong and Smyth; and (2) for the development of a new three-dimensional multi-species hydrodynamic model for Io's atmosphere.
Generating global network structures by triad types
Ferligoj, Anuška; Žiberna, Aleš
2018-01-01
This paper addresses the question of whether one can generate networks with a given global structure (defined by selected blockmodels, i.e., cohesive, core-periphery, hierarchical, and transitivity), considering only different types of triads. Two methods are used to generate networks: (i) the newly proposed method of relocating links; and (ii) the Monte Carlo Multi Chain algorithm implemented in the ergm package in R. Most of the selected blockmodel types can be generated by considering all types of triads. The selection of only a subset of triads can improve the generated networks’ blockmodel structure. Yet, in the case of a hierarchical blockmodel without complete blocks on the diagonal, additional local structures are needed to achieve the desired global structure of generated networks. This shows that blockmodels can emerge based only on local processes that do not take attributes into account. PMID:29847563
Kim, Sungjin; Jinich, Adrián; Aspuru-Guzik, Alán
2017-04-24
We propose a multiple descriptor multiple kernel (MultiDK) method for efficient molecular discovery using machine learning. We show that the MultiDK method improves both the speed and accuracy of molecular property prediction. We apply the method to the discovery of electrolyte molecules for aqueous redox flow batteries. Using multiple-type-as opposed to single-type-descriptors, we obtain more relevant features for machine learning. Following the principle of "wisdom of the crowds", the combination of multiple-type descriptors significantly boosts prediction performance. Moreover, by employing multiple kernels-more than one kernel function for a set of the input descriptors-MultiDK exploits nonlinear relations between molecular structure and properties better than a linear regression approach. The multiple kernels consist of a Tanimoto similarity kernel and a linear kernel for a set of binary descriptors and a set of nonbinary descriptors, respectively. Using MultiDK, we achieve an average performance of r 2 = 0.92 with a test set of molecules for solubility prediction. We also extend MultiDK to predict pH-dependent solubility and apply it to a set of quinone molecules with different ionizable functional groups to assess their performance as flow battery electrolytes.
Freed, A D; Diethelm, K
2006-11-01
A viscoelastic model of the K-BKZ (Kaye, Technical Report 134, College of Aeronautics, Cranfield 1962; Bernstein et al., Trans Soc Rheol 7: 391-410, 1963) type is developed for isotropic biological tissues and applied to the fat pad of the human heel. To facilitate this pursuit, a class of elastic solids is introduced through a novel strain-energy function whose elements possess strong ellipticity, and therefore lead to stable material models. This elastic potential - via the K-BKZ hypothesis - also produces the tensorial structure of the viscoelastic model. Candidate sets of functions are proposed for the elastic and viscoelastic material functions present in the model, including two functions whose origins lie in the fractional calculus. The Akaike information criterion is used to perform multi-model inference, enabling an objective selection to be made as to the best material function from within a candidate set.
Shape analysis modeling for character recognition
NASA Astrophysics Data System (ADS)
Khan, Nadeem A. M.; Hegt, Hans A.
1998-10-01
Optimal shape modeling of character-classes is crucial for achieving high performance on recognition of mixed-font, hand-written or (and) poor quality text. A novel scheme is presented in this regard focusing on constructing such structural models that can be hierarchically examined. These models utilize a certain `well-thought' set of shape primitives. They are simplified enough to ignore the inter- class variations in font-type or writing style yet retaining enough details for discrimination between the samples of the similar classes. Thus the number of models per class required can be kept minimal without sacrificing the recognition accuracy. In this connection a flexible multi- stage matching scheme exploiting the proposed modeling is also described. This leads to a system which is robust against various distortions and degradation including those related to cases of touching and broken characters. Finally, we present some examples and test results as a proof-of- concept demonstrating the validity and the robustness of the approach.
Bridgers, Franca Ferrari; Kacinik, Natalie
2017-02-01
The majority of words in most languages consist of derived poly-morphemic words but a cross-linguistic review of the literature (Amenta and Crepaldi in Front Psychol 3:232-243, 2012) shows a contradictory picture with respect to how such words are represented and processed. The current study examined the effects of linearity and structural complexity on the processing of Italian derived words. Participants performed a lexical decision task on three types of prefixed and suffixed words and nonwords differing in the complexity of their internal structure. The processing of these words was indeed found to vary according to the nature of the affixes, the order in which they appear, and the type of information the affix encodes. The results thus indicate that derived words are not a uniform class and the best account of these findings appears to be a constraint-based or probabilistic multi-route processing model (e.g., Kuperman et al. in Lang Cogn Process 23:1089-1132, 2008; J Exp Psychol Hum Percept Perform 35:876-895, 2009; J Mem Lang 62:83-97, 2010).
NASA Astrophysics Data System (ADS)
Bernard, Jairus Daniel
Lightweight structural components are important to the automotive and aerospace industries so that better fuel economy can be realized. Magnesium alloys in particular are being examined to fulfill this need due to their attractive stiffness- and strength-to-weight ratios when compared to other materials. However, when introducing a material into new roles, one needs to properly characterize its mechanical properties. Fatigue behavior is especially important considering aerospace and automotive component applications. Therefore, quantifying the structure-property relationships and accurately predicting the fatigue behavior for these materials are vital. This study has two purposes. The first is to quantify the structure-property relationships for the fatigue behavior in an AM30 magnesium alloy. The second is to use the microstructural-based MultiStage Fatigue (MSF) model in order to accurately predict the fatigue behavior of three magnesium alloys: AM30, Elektron 21, and AZ61. While some studies have previously quantified the MSF material constants for several magnesium alloys, detailed research into the fatigue regimes, notably the microstructurally small crack (MSC) region, is lacking. Hence, the contribution of this work is the first of its kind to experimentally quantify the fatigue crack incubation and MSC regimes that are used for the MultiStage Fatigue model. Using a multi-faceted experimental approach, these regimes were explored with a replica method that used a dual-stage silicone based compound along with previously published in situ fatigue tests. These observations were used in calibrating the MultiStage Fatigue model.
MISR at 15: Multiple Perspectives on Our Changing Earth
NASA Astrophysics Data System (ADS)
Diner, D. J.; Ackerman, T. P.; Braverman, A. J.; Bruegge, C. J.; Chopping, M. J.; Clothiaux, E. E.; Davies, R.; Di Girolamo, L.; Garay, M. J.; Jovanovic, V. M.; Kahn, R. A.; Kalashnikova, O.; Knyazikhin, Y.; Liu, Y.; Marchand, R.; Martonchik, J. V.; Muller, J. P.; Nolin, A. W.; Pinty, B.; Verstraete, M. M.; Wu, D. L.
2014-12-01
Launched aboard NASA's Terra satellite in December 1999, the Multi-angle Imaging SpectroRadiometer (MISR) instrument has opened new vistas in remote sensing of our home planet. Its 9 pushbroom cameras provide as many view angles ranging from 70 degrees forward to 70 degrees backward along Terra's flight track, in four visible and near-infrared spectral bands. MISR's well-calibrated, accurately co-registered, and moderately high spatial resolution radiance images have been coupled with novel data processing algorithms to mine the information content of angular reflectance anisotropy and multi-camera stereophotogrammetry, enabling new perspectives on the 3-D structure and dynamics of Earth's atmosphere and surface in support of climate and environmental research. Beginning with "first light" in February 2000, the nearly 15-year (and counting) MISR observational record provides an unprecedented data set with applications to multiple disciplines, documenting regional, global, short-term, and long-term changes in aerosol optical depths, aerosol type, near-surface particulate pollution, spectral top-of-atmosphere and surface albedos, aerosol plume-top and cloud-top heights, height-resolved cloud fractions, atmospheric motion vectors, and the structure of vegetated and ice-covered terrains. Recent computational advances include aerosol retrievals at finer spatial resolution than previously possible, and production of near-real time tropospheric winds with a latency of less than 3 hours, making possible for the first time the assimilation of MISR data into weather forecast models. In addition, recent algorithmic and technological developments provide the means of using and acquiring multi-angular data in new ways, such as the application of optical tomography to map 3-D atmospheric structure; building smaller multi-angle instruments in the future; and extending the multi-angular imaging methodology to the ultraviolet, shortwave infrared, and polarimetric realms. Such advances promise further enhancements to the observational power of the remote sensing approaches that MISR has pioneered.
NASA Astrophysics Data System (ADS)
Moura, Y.; Aragão, L. E.; Galvão, L. S.; Dalagnol, R.; Lyapustin, A.; Santos, E. G.; Espirito-Santo, F.
2017-12-01
Degradation of Amazon rainforests represents a vital threat to carbon storage, climate regulation and biodiversity; however its effect on tropical ecosystems is largely unknown. In this study we evaluate the effects of forest degradation on forest structure and functioning over the Xingu Basin in the Brazilian Amazon. The vegetation types in the area is dominated by Open Ombrophilous Forest (Asc), Semi-decidiuous Forest (Fse) and Dense Ombrophilous Forest (Dse). We used Airborne Laser Scanning (ALS) data together with time series of optical remote sensing images from the Moderate Resolution Imaging Spectroradiometer (MODIS) bi-directional corrected using the Multi-Angle Implementation for Atmospheric Correction (MAIAC). We derive time-series (2008 to 2016) of the Enhanced Vegetation Index (EVI) and Green-Red Normalized Difference (GRND) to analyze the dynamics of degraded areas with related changes in canopy structure and greenness values, respectively. Airborne ALS measurements showed the largest tree heights in the Dse class with values up to 40m tall. Asc and Fse vegetation types reached up to 30m and 25m in height, respectively. Differences in canopy structure were also evident from the analysis of canopy volume models (CVMs). Asc showed higher proportion of sunlit, as expected for open forest types. Fse showed gaps predominantly in lower height levels, and a higher overall proportion of shaded crown. Full canopy closure was reached at about15 m height for both Asc and Dse, and at about 20 m height for Fse. We also used a base map of degraded areas (available from Imazon - Instituto do Homen e Meio Ambiente da Amazônia) to follow these regions throughout time using EVI and GRND from MODIS. All three forest types displayed seasonal cycles. Notable differences in amplitude were detected during the periods when degradation occurred and both indexes showed a decrease in their response. However, there were marked differences in timing and amplitude depending on forest type. These responses were influenced by the spatial resolution of 1km of the MODIS images, limited the ability to observe small degraded regions. In conclusion, ASL together with optical remote sensing used in a straight multi-scale approach may contribute to understand the impacts of degradation in the structure and functioning of tropical forest.
Comparative analysis of a jack-up drilling unit with different leg systems
NASA Astrophysics Data System (ADS)
Ren, Xiangang; Bai, Yong; Jia, Lusheng
2012-09-01
The jack-up unit is one of the best drilling platforms in offshore oil fields with water depth shallower than 150 meters. As the most pivotal component of the jack-up unit, the leg system can directly affect the global performance of a jack-up unit. Investigation shows that there are three kinds of leg structure forms in the world now: the reverse K, X, and mixing types. In order to clarify the advantage and defects of each one, as well as their effect on the global performance of the jack-up unit, this paper commenced to study performance targets of a deepwater jack-up unit with different leg systems (X type, reverse K type, and mixing type). In this paper a typical leg scantling dimension and identical external loads were selected, detailed finite element snalysis (FEA) models were built to simulate the jack-up unit's structural behavior, and the multi-point constraint (MPC) element together with the spring element was used to deal with the boundary condition. Finally, the above problems were solved by comparative analysis of their main performance targets (including ultimate static strength, dynamic response, and weight).
NASA Astrophysics Data System (ADS)
Yan, Wentao; Lin, Stephen; Kafka, Orion L.; Lian, Yanping; Yu, Cheng; Liu, Zeliang; Yan, Jinhui; Wolff, Sarah; Wu, Hao; Ndip-Agbor, Ebot; Mozaffar, Mojtaba; Ehmann, Kornel; Cao, Jian; Wagner, Gregory J.; Liu, Wing Kam
2018-05-01
Additive manufacturing (AM) possesses appealing potential for manipulating material compositions, structures and properties in end-use products with arbitrary shapes without the need for specialized tooling. Since the physical process is difficult to experimentally measure, numerical modeling is a powerful tool to understand the underlying physical mechanisms. This paper presents our latest work in this regard based on comprehensive material modeling of process-structure-property relationships for AM materials. The numerous influencing factors that emerge from the AM process motivate the need for novel rapid design and optimization approaches. For this, we propose data-mining as an effective solution. Such methods—used in the process-structure, structure-properties and the design phase that connects them—would allow for a design loop for AM processing and materials. We hope this article will provide a road map to enable AM fundamental understanding for the monitoring and advanced diagnostics of AM processing.
NASA Astrophysics Data System (ADS)
Yan, Wentao; Lin, Stephen; Kafka, Orion L.; Lian, Yanping; Yu, Cheng; Liu, Zeliang; Yan, Jinhui; Wolff, Sarah; Wu, Hao; Ndip-Agbor, Ebot; Mozaffar, Mojtaba; Ehmann, Kornel; Cao, Jian; Wagner, Gregory J.; Liu, Wing Kam
2018-01-01
Additive manufacturing (AM) possesses appealing potential for manipulating material compositions, structures and properties in end-use products with arbitrary shapes without the need for specialized tooling. Since the physical process is difficult to experimentally measure, numerical modeling is a powerful tool to understand the underlying physical mechanisms. This paper presents our latest work in this regard based on comprehensive material modeling of process-structure-property relationships for AM materials. The numerous influencing factors that emerge from the AM process motivate the need for novel rapid design and optimization approaches. For this, we propose data-mining as an effective solution. Such methods—used in the process-structure, structure-properties and the design phase that connects them—would allow for a design loop for AM processing and materials. We hope this article will provide a road map to enable AM fundamental understanding for the monitoring and advanced diagnostics of AM processing.
NASA Astrophysics Data System (ADS)
Polosin, A. N.; Chistyakova, T. B.
2018-05-01
In this article, the authors describe mathematical modeling of polymer processing in extruders of various types used in extrusion and calender productions of film materials. The method consists of the synthesis of a static model for calculating throughput, energy consumption of the extruder, extrudate quality indices, as well as a dynamic model for evaluating polymer residence time in the extruder, on which the quality indices depend. Models are adjusted according to the extruder type (single-screw, reciprocating, twin-screw), its screw and head configuration, extruder’s work temperature conditions, and the processed polymer type. Models enable creating extruder screw configurations and determining extruder controlling action values that provide the extrudate of required quality while satisfying extruder throughput and energy consumption requirements. Model adequacy has been verified using polyolefins’ and polyvinylchloride processing data in different extruders. The program complex, based on mathematical models, has been developed in order to control extruders of various types in order to ensure resource and energy saving in multi-assortment productions of polymeric films. Using the program complex in the control system for the extrusion stage of the polymeric film productions enables improving film quality, reducing spoilage, lessening the time required for production line change-over to other throughput and film type assignment.
Schulte, W; Töpfer, R; Stracke, R; Schell, J; Martini, N
1997-04-01
Three genes coding for different multifunctional acetyl-CoA carboxylase (ACCase; EC 6.4.1.2) isoenzymes from Brassica napus were isolated and divided into two major classes according to structural features in their 5' regions: class I comprises two genes with an additional coding exon of approximately 300 bp at the 5' end, and class II is represented by one gene carrying an intron of 586 bp in its 5' untranslated region. Fusion of the peptide sequence encoded by the additional first exon of a class I ACCase gene to the jellyfish Aequorea victoria green fluorescent protein (GFP) and transient expression in tobacco protoplasts targeted GFP to the chloroplasts. In contrast to the deduced primary structure of the biotin carboxylase domain encoded by the class I gene, the corresponding amino acid sequence of the class II ACCase shows higher identity with that of the Arabidopsis ACCase, both lacking a transit peptide. The Arabidopsis ACCase has been proposed to be a cytosolic isoenzyme. These observations indicate that the two classes of ACCase genes encode plastidic and cytosolic isoforms of multi-functional, eukaryotic type, respectively, and that B. napus contains at least one multi-functional ACCase besides the multi-subunit, prokaryotic type located in plastids. Southern blot analysis of genomic DNA from B. napus, Brassica rapa, and Brassica oleracea, the ancestors of amphidiploid rapeseed, using a fragment of a multi-functional ACCase gene as a probe revealed that ACCase is encoded by a multi-gene family of at least five members.
Vickers, T. Winston; Ernest, Holly B.; Boyce, Walter M.
2017-01-01
The importance of examining multiple hierarchical levels when modeling resource use for wildlife has been acknowledged for decades. Multi-level resource selection functions have recently been promoted as a method to synthesize resource use across nested organizational levels into a single predictive surface. Analyzing multiple scales of selection within each hierarchical level further strengthens multi-level resource selection functions. We extend this multi-level, multi-scale framework to modeling resistance for wildlife by combining multi-scale resistance surfaces from two data types, genetic and movement. Resistance estimation has typically been conducted with one of these data types, or compared between the two. However, we contend it is not an either/or issue and that resistance may be better-modeled using a combination of resistance surfaces that represent processes at different hierarchical levels. Resistance surfaces estimated from genetic data characterize temporally broad-scale dispersal and successful breeding over generations, whereas resistance surfaces estimated from movement data represent fine-scale travel and contextualized movement decisions. We used telemetry and genetic data from a long-term study on pumas (Puma concolor) in a highly developed landscape in southern California to develop a multi-level, multi-scale resource selection function and a multi-level, multi-scale resistance surface. We used these multi-level, multi-scale surfaces to identify resource use patches and resistant kernel corridors. Across levels, we found puma avoided urban, agricultural areas, and roads and preferred riparian areas and more rugged terrain. For other landscape features, selection differed among levels, as did the scales of selection for each feature. With these results, we developed a conservation plan for one of the most isolated puma populations in the U.S. Our approach captured a wide spectrum of ecological relationships for a population, resulted in effective conservation planning, and can be readily applied to other wildlife species. PMID:28609466
Zeller, Katherine A; Vickers, T Winston; Ernest, Holly B; Boyce, Walter M
2017-01-01
The importance of examining multiple hierarchical levels when modeling resource use for wildlife has been acknowledged for decades. Multi-level resource selection functions have recently been promoted as a method to synthesize resource use across nested organizational levels into a single predictive surface. Analyzing multiple scales of selection within each hierarchical level further strengthens multi-level resource selection functions. We extend this multi-level, multi-scale framework to modeling resistance for wildlife by combining multi-scale resistance surfaces from two data types, genetic and movement. Resistance estimation has typically been conducted with one of these data types, or compared between the two. However, we contend it is not an either/or issue and that resistance may be better-modeled using a combination of resistance surfaces that represent processes at different hierarchical levels. Resistance surfaces estimated from genetic data characterize temporally broad-scale dispersal and successful breeding over generations, whereas resistance surfaces estimated from movement data represent fine-scale travel and contextualized movement decisions. We used telemetry and genetic data from a long-term study on pumas (Puma concolor) in a highly developed landscape in southern California to develop a multi-level, multi-scale resource selection function and a multi-level, multi-scale resistance surface. We used these multi-level, multi-scale surfaces to identify resource use patches and resistant kernel corridors. Across levels, we found puma avoided urban, agricultural areas, and roads and preferred riparian areas and more rugged terrain. For other landscape features, selection differed among levels, as did the scales of selection for each feature. With these results, we developed a conservation plan for one of the most isolated puma populations in the U.S. Our approach captured a wide spectrum of ecological relationships for a population, resulted in effective conservation planning, and can be readily applied to other wildlife species.
NASA Astrophysics Data System (ADS)
Peng, Haijun; Wang, Wei
2016-10-01
An adaptive surrogate model-based multi-objective optimization strategy that combines the benefits of invariant manifolds and low-thrust control toward developing a low-computational-cost transfer trajectory between libration orbits around the L1 and L2 libration points in the Sun-Earth system has been proposed in this paper. A new structure for a multi-objective transfer trajectory optimization model that divides the transfer trajectory into several segments and gives the dominations for invariant manifolds and low-thrust control in different segments has been established. To reduce the computational cost of multi-objective transfer trajectory optimization, a mixed sampling strategy-based adaptive surrogate model has been proposed. Numerical simulations show that the results obtained from the adaptive surrogate-based multi-objective optimization are in agreement with the results obtained using direct multi-objective optimization methods, and the computational workload of the adaptive surrogate-based multi-objective optimization is only approximately 10% of that of direct multi-objective optimization. Furthermore, the generating efficiency of the Pareto points of the adaptive surrogate-based multi-objective optimization is approximately 8 times that of the direct multi-objective optimization. Therefore, the proposed adaptive surrogate-based multi-objective optimization provides obvious advantages over direct multi-objective optimization methods.
Reference Models for Multi-Layer Tissue Structures
2016-09-01
simulation, finite element analysis 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON USAMRMC...Physiologically realistic, fully specimen-specific, nonlinear reference models. Tasks. Finite element analysis of non-linear mechanics of cadaver...models. Tasks. Finite element analysis of non-linear mechanics of multi-layer tissue regions of human subjects. Deliverables. Partially subject- and
2017-03-20
computation, Prime Implicates, Boolean Abstraction, real- time embedded software, software synthesis, correct by construction software design , model...types for time -dependent data-flow networks". J.-P. Talpin, P. Jouvelot, S. Shukla. ACM-IEEE Conference on Methods and Models for System Design ...information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
Multi-scale Multi-mechanism Toughening of Hydrogels
NASA Astrophysics Data System (ADS)
Zhao, Xuanhe
Hydrogels are widely used as scaffolds for tissue engineering, vehicles for drug delivery, actuators for optics and fluidics, and model extracellular matrices for biological studies. The scope of hydrogel applications, however, is often severely limited by their mechanical properties. Inspired by the mechanics and hierarchical structures of tough biological tissues, we propose that a general principle for the design of tough hydrogels is to implement two mechanisms for dissipating mechanical energy and maintaining high elasticity in hydrogels. A particularly promising strategy for the design is to integrate multiple pairs of mechanisms across multiple length scales into a hydrogel. We develop a multiscale theoretical framework to quantitatively guide the design of tough hydrogels. On the network level, we have developed micro-physical models to characterize the evolution of polymer networks under deformation. On the continuum level, we have implemented constitutive laws formulated from the network-level models into a coupled cohesive-zone and Mullins-effect model to quantitatively predict crack propagation and fracture toughness of hydrogels. Guided by the design principle and quantitative model, we will demonstrate a set of new hydrogels, based on diverse types of polymers, yet can achieve extremely high toughness superior to their natural counterparts such as cartilages. The work was supported by NSF(No. CMMI- 1253495) and ONR (No. N00014-14-1-0528).
Geo-structural modelling for potential large rock slide in Machu Picchu
NASA Astrophysics Data System (ADS)
Spizzichino, D.; Delmonaco, G.; Margottini, C.; Mazzoli, S.
2009-04-01
The monumental complex of the Historical Sanctuary of Machu Picchu, declared as World Heritage Site by UNESCO in 1983, is located in the Andean chain at approx. 80 km from Cuzco (Peru) and at an elevation of 2430 m a.s.l. along the Urubamba River Valley. From a geological point of view, the Machu Picchu granitoid pluton, forming part of the larger "Quillabamba granite", is one of a series of plutons intruded along the axial zone of the high Eastern Cordillera Permo-Liassic rift system including a variety of rock types, dominantly granites and granodiorites. The most evident structures at the outcrop scale consist of planar joint sets that may be variably reactivated and exhibiting 4 main orientations. At present, the site is affected by geological risk due to frequent landslides that threaten security and tourist exploitation. In the last years, the international landslide scientific community has promoted a multi-discipline joint programme mainly finalised to slope deformation monitoring and analysis after the warning, launched in 2001, of a potential collapse of the citadel, caused by a huge rock slide. The contribute of the Italian research team was devoted to implement a landslide risk analysis and an innovative remote sensing techniques. The main scope of this work is to present the implementation of a geo-structural modelling aimed at defining present and potential slope stability conditions of the Machu Picchu Citadel. Data have been collected by geological, structural and geomechanical field surveys and laboratory tests in order to reconstruct the geomorphological evolution of the area. Landslide types and evolution are strictly controlled by regional tectonic uplift and structural setting. Several slope instability phenomena have been identified and classified according to mechanism, material involved and state of activity. Rock falls, debris flows, rock slides and debris slides are the main surveyed landslide types. Rock slides and rock falls may produce blocks with dimensions variable from 10-1 to 102m3 that form the toe accumulation on steeper slopes. The area of the citadel has also been interpreted as affected by a deep mass movement (>100m) that, if confirmed by the present day monitoring systems, could be referred to a deep-seated gravitational slope deformation (DSGSD), probably of the type of the compound bi-planar sagging (CB) described by Hutchinson (1988). The analysis of active strain processes (e.g. tension cracks) along with the damage pattern surveyed on archaeological structures (e.g. sinking, swelling, tilting) suggest that the potential failure of a large rock slide may be located at a depth of ca. 30m. The various data sets have been integrated in order to obtain a general geo-structural and geotechnical model (strength and deformation parameters, seismic input) of the citadel at the slope scale. This represents a first step in implementing a slope stability analysis capable of reconstructing present and potential landslide evolution under static and dynamic conditions. This multi-discipline study, based on geological and structural analysis integrated with geotechnical and geomechanical interpretation, will aid defining actual landslide hazard and risk levels, indispensable for the design of low impact mitigation measures to be applied at Machu Picchu Citadel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gastelum, Zoe N.; White, Amanda M.; Whitney, Paul D.
2013-06-04
The Multi-Source Signatures for Nuclear Programs project, part of Pacific Northwest National Laboratory’s (PNNL) Signature Discovery Initiative, seeks to computationally capture expert assessment of multi-type information such as text, sensor output, imagery, or audio/video files, to assess nuclear activities through a series of Bayesian network (BN) models. These models incorporate knowledge from a diverse range of information sources in order to help assess a country’s nuclear activities. The models span engineering topic areas, state-level indicators, and facility-specific characteristics. To illustrate the development, calibration, and use of BN models for multi-source assessment, we present a model that predicts a country’s likelihoodmore » to participate in the international nuclear nonproliferation regime. We validate this model by examining the extent to which the model assists non-experts arrive at conclusions similar to those provided by nuclear proliferation experts. We also describe the PNNL-developed software used throughout the lifecycle of the Bayesian network model development.« less
GenSSI 2.0: multi-experiment structural identifiability analysis of SBML models.
Ligon, Thomas S; Fröhlich, Fabian; Chis, Oana T; Banga, Julio R; Balsa-Canto, Eva; Hasenauer, Jan
2018-04-15
Mathematical modeling using ordinary differential equations is used in systems biology to improve the understanding of dynamic biological processes. The parameters of ordinary differential equation models are usually estimated from experimental data. To analyze a priori the uniqueness of the solution of the estimation problem, structural identifiability analysis methods have been developed. We introduce GenSSI 2.0, an advancement of the software toolbox GenSSI (Generating Series for testing Structural Identifiability). GenSSI 2.0 is the first toolbox for structural identifiability analysis to implement Systems Biology Markup Language import, state/parameter transformations and multi-experiment structural identifiability analysis. In addition, GenSSI 2.0 supports a range of MATLAB versions and is computationally more efficient than its previous version, enabling the analysis of more complex models. GenSSI 2.0 is an open-source MATLAB toolbox and available at https://github.com/genssi-developer/GenSSI. thomas.ligon@physik.uni-muenchen.de or jan.hasenauer@helmholtz-muenchen.de. Supplementary data are available at Bioinformatics online.
A multi-frequency EPR and ENDOR study of Rh and Ir complexes in alkali and silver halides
NASA Astrophysics Data System (ADS)
Callens, F.; Vrielinck, H.; Matthys, P.
2003-01-01
Aliovalent Rh and Ir cations have been frequently used to influence the photographic properties of silver halide emulsions. The doping introduces several types of related defects with distinct trapping and recombination properties. EPR and ENDOR are, in principle, ideally suited for the determination of the microscopic structure of the individual centres but it will be demonstrated that well-chosen, sometimes sophisticated multi-frequency experiments are necessary in order to (partially) reach this goal. Model studies on single crystals of AgCl and NaCl also appeared indispensable for the unravelling of the spectra. In the review of Rh-centres in NaCl and AgCl special attention is paid to methods that allow to detect cation vacancies near Rh2+ complexes. An alternative explanation for the high temperature behaviour of the [RhCl6](4-) complexes in AgCl is presented.
How to retrieve additional information from the multiplicity distributions
NASA Astrophysics Data System (ADS)
Wilk, Grzegorz; Włodarczyk, Zbigniew
2017-01-01
Multiplicity distributions (MDs) P(N) measured in multiparticle production processes are most frequently described by the negative binomial distribution (NBD). However, with increasing collision energy some systematic discrepancies have become more and more apparent. They are usually attributed to the possible multi-source structure of the production process and described using a multi-NBD form of the MD. We investigate the possibility of keeping a single NBD but with its parameters depending on the multiplicity N. This is done by modifying the widely known clan model of particle production leading to the NBD form of P(N). This is then confronted with the approach based on the so-called cascade-stochastic formalism which is based on different types of recurrence relations defining P(N). We demonstrate that a combination of both approaches allows the retrieval of additional valuable information from the MDs, namely the oscillatory behavior of the counting statistics apparently visible in the high energy data.
Multi-scale Modeling in Clinical Oncology: Opportunities and Barriers to Success.
Yankeelov, Thomas E; An, Gary; Saut, Oliver; Luebeck, E Georg; Popel, Aleksander S; Ribba, Benjamin; Vicini, Paolo; Zhou, Xiaobo; Weis, Jared A; Ye, Kaiming; Genin, Guy M
2016-09-01
Hierarchical processes spanning several orders of magnitude of both space and time underlie nearly all cancers. Multi-scale statistical, mathematical, and computational modeling methods are central to designing, implementing and assessing treatment strategies that account for these hierarchies. The basic science underlying these modeling efforts is maturing into a new discipline that is close to influencing and facilitating clinical successes. The purpose of this review is to capture the state-of-the-art as well as the key barriers to success for multi-scale modeling in clinical oncology. We begin with a summary of the long-envisioned promise of multi-scale modeling in clinical oncology, including the synthesis of disparate data types into models that reveal underlying mechanisms and allow for experimental testing of hypotheses. We then evaluate the mathematical techniques employed most widely and present several examples illustrating their application as well as the current gap between pre-clinical and clinical applications. We conclude with a discussion of what we view to be the key challenges and opportunities for multi-scale modeling in clinical oncology.
Multi-scale Modeling in Clinical Oncology: Opportunities and Barriers to Success
Yankeelov, Thomas E.; An, Gary; Saut, Oliver; Luebeck, E. Georg; Popel, Aleksander S.; Ribba, Benjamin; Vicini, Paolo; Zhou, Xiaobo; Weis, Jared A.; Ye, Kaiming; Genin, Guy M.
2016-01-01
Hierarchical processes spanning several orders of magnitude of both space and time underlie nearly all cancers. Multi-scale statistical, mathematical, and computational modeling methods are central to designing, implementing and assessing treatment strategies that account for these hierarchies. The basic science underlying these modeling efforts is maturing into a new discipline that is close to influencing and facilitating clinical successes. The purpose of this review is to capture the state-of-the-art as well as the key barriers to success for multi-scale modeling in clinical oncology. We begin with a summary of the long-envisioned promise of multi-scale modeling in clinical oncology, including the synthesis of disparate data types into models that reveal underlying mechanisms and allow for experimental testing of hypotheses. We then evaluate the mathematical techniques employed most widely and present several examples illustrating their application as well as the current gap between pre-clinical and clinical applications. We conclude with a discussion of what we view to be the key challenges and opportunities for multi-scale modeling in clinical oncology. PMID:27384942
Large field inflation from axion mixing
NASA Astrophysics Data System (ADS)
Shiu, Gary; Staessens, Wieland; Ye, Fang
2015-06-01
We study the general multi-axion systems, focusing on the possibility of large field inflation driven by axions. We find that through axion mixing from a non-diagonal metric on the moduli space and/or from Stückelberg coupling to a U(1) gauge field, an effectively super-Planckian decay constant can be generated without the need of "alignment" in the axion decay constants. We also investigate the consistency conditions related to the gauge symmetries in the multi-axion systems, such as vanishing gauge anomalies and the potential presence of generalized Chern-Simons terms. Our scenario applies generally to field theory models whose axion periodicities are intrinsically sub-Planckian, but it is most naturally realized in string theory. The types of axion mixings invoked in our scenario appear quite commonly in D-brane models, and we present its implementation in type II superstring theory. Explicit stringy models exhibiting all the characteristics of our ideas are constructed within the frameworks of Type IIA intersecting D6-brane models on and Type IIB intersecting D7-brane models on Swiss-Cheese Calabi-Yau orientifolds.
NASA Astrophysics Data System (ADS)
Tsai, F. T.; Elshall, A. S.; Hanor, J. S.
2012-12-01
Subsurface modeling is challenging because of many possible competing propositions for each uncertain model component. How can we judge that we are selecting the correct proposition for an uncertain model component out of numerous competing propositions? How can we bridge the gap between synthetic mental principles such as mathematical expressions on one hand, and empirical observation such as observation data on the other hand when uncertainty exists on both sides? In this study, we introduce hierarchical Bayesian model averaging (HBMA) as a multi-model (multi-proposition) framework to represent our current state of knowledge and decision for hydrogeological structure modeling. The HBMA framework allows for segregating and prioritizing different sources of uncertainty, and for comparative evaluation of competing propositions for each source of uncertainty. We applied the HBMA to a study of hydrostratigraphy and uncertainty propagation of the Southern Hills aquifer system in the Baton Rouge area, Louisiana. We used geophysical data for hydrogeological structure construction through indictor hydrostratigraphy method and used lithologic data from drillers' logs for model structure calibration. However, due to uncertainty in model data, structure and parameters, multiple possible hydrostratigraphic models were produced and calibrated. The study considered four sources of uncertainties. To evaluate mathematical structure uncertainty, the study considered three different variogram models and two geological stationarity assumptions. With respect to geological structure uncertainty, the study considered two geological structures with respect to the Denham Springs-Scotlandville fault. With respect to data uncertainty, the study considered two calibration data sets. These four sources of uncertainty with their corresponding competing modeling propositions resulted in 24 calibrated models. The results showed that by segregating different sources of uncertainty, HBMA analysis provided insights on uncertainty priorities and propagation. In addition, it assisted in evaluating the relative importance of competing modeling propositions for each uncertain model component. By being able to dissect the uncertain model components and provide weighted representation of the competing propositions for each uncertain model component based on the background knowledge, the HBMA functions as an epistemic framework for advancing knowledge about the system under study.
Modelling the Evolution of Social Structure
Sutcliffe, A. G.; Dunbar, R. I. M.; Wang, D.
2016-01-01
Although simple social structures are more common in animal societies, some taxa (mainly mammals) have complex, multi-level social systems, in which the levels reflect differential association. We develop a simulation model to explore the conditions under which multi-level social systems of this kind evolve. Our model focuses on the evolutionary trade-offs between foraging and social interaction, and explores the impact of alternative strategies for distributing social interaction, with fitness criteria for wellbeing, alliance formation, risk, stress and access to food resources that reward social strategies differentially. The results suggest that multi-level social structures characterised by a few strong relationships, more medium ties and large numbers of weak ties emerge only in a small part of the overall fitness landscape, namely where there are significant fitness benefits from wellbeing and alliance formation and there are high levels of social interaction. In contrast, ‘favour-the-few’ strategies are more competitive under a wide range of fitness conditions, including those producing homogeneous, single-level societies of the kind found in many birds and mammals. The simulations suggest that the development of complex, multi-level social structures of the kind found in many primates (including humans) depends on a capacity for high investment in social time, preferential social interaction strategies, high mortality risk and/or differential reproduction. These conditions are characteristic of only a few mammalian taxa. PMID:27427758
NASA Astrophysics Data System (ADS)
Solomou, Alexandros G.; Machairas, Theodoros T.; Karakalas, Anargyros A.; Saravanos, Dimitris A.
2017-06-01
A thermo-mechanically coupled finite element (FE) for the simulation of multi-layered shape memory alloy (SMA) beams admitting large displacements and rotations (LDRs) is developed to capture the geometrically nonlinear effects which are present in many SMA applications. A generalized multi-field beam theory implementing a SMA constitutive model based on small strain theory, thermo-mechanically coupled governing equations and multi-field kinematic hypotheses combining first order shear deformation assumptions with a sixth order polynomial temperature field through the thickness of the beam section are extended to admit LDRs. The co-rotational formulation is adopted, where the motion of the beam is decomposed to rigid body motion and relative small deformation in the local frame. A new generalized multi-layered SMA FE is formulated. The nonlinear transient spatial discretized equations of motion of the SMA structure are synthesized and solved using the Newton-Raphson method combined with an implicit time integration scheme. Correlations of models incorporating the present beam FE with respective results of models incorporating plane stress SMA FEs, demonstrate excellent agreement of the predicted LDRs response, temperature and phase transformation fields, as well as, significant gains in computational time.
Electrical stimulus artifact cancellation and neural spike detection on large multi-electrode arrays
Grosberg, Lauren E.; Madugula, Sasidhar; Litke, Alan; Cunningham, John; Chichilnisky, E. J.; Paninski, Liam
2017-01-01
Simultaneous electrical stimulation and recording using multi-electrode arrays can provide a valuable technique for studying circuit connectivity and engineering neural interfaces. However, interpreting these measurements is challenging because the spike sorting process (identifying and segregating action potentials arising from different neurons) is greatly complicated by electrical stimulation artifacts across the array, which can exhibit complex and nonlinear waveforms, and overlap temporarily with evoked spikes. Here we develop a scalable algorithm based on a structured Gaussian Process model to estimate the artifact and identify evoked spikes. The effectiveness of our methods is demonstrated in both real and simulated 512-electrode recordings in the peripheral primate retina with single-electrode and several types of multi-electrode stimulation. We establish small error rates in the identification of evoked spikes, with a computational complexity that is compatible with real-time data analysis. This technology may be helpful in the design of future high-resolution sensory prostheses based on tailored stimulation (e.g., retinal prostheses), and for closed-loop neural stimulation at a much larger scale than currently possible. PMID:29131818
Mena, Gonzalo E; Grosberg, Lauren E; Madugula, Sasidhar; Hottowy, Paweł; Litke, Alan; Cunningham, John; Chichilnisky, E J; Paninski, Liam
2017-11-01
Simultaneous electrical stimulation and recording using multi-electrode arrays can provide a valuable technique for studying circuit connectivity and engineering neural interfaces. However, interpreting these measurements is challenging because the spike sorting process (identifying and segregating action potentials arising from different neurons) is greatly complicated by electrical stimulation artifacts across the array, which can exhibit complex and nonlinear waveforms, and overlap temporarily with evoked spikes. Here we develop a scalable algorithm based on a structured Gaussian Process model to estimate the artifact and identify evoked spikes. The effectiveness of our methods is demonstrated in both real and simulated 512-electrode recordings in the peripheral primate retina with single-electrode and several types of multi-electrode stimulation. We establish small error rates in the identification of evoked spikes, with a computational complexity that is compatible with real-time data analysis. This technology may be helpful in the design of future high-resolution sensory prostheses based on tailored stimulation (e.g., retinal prostheses), and for closed-loop neural stimulation at a much larger scale than currently possible.
Strath, Scott J; Kate, Rohit J; Keenan, Kevin G; Welch, Whitney A; Swartz, Ann M
2016-01-01
To develop and test time series single site and multi-site placement models, we used wrist, hip and ankle processed accelerometer data to estimate energy cost and type of physical activity in adults. Ninety-nine subjects in three age groups (18–39, 40–64, 65 + years) performed 11 activities while wearing three triaxial accelereometers: one each on the non-dominant wrist, hip, and ankle. During each activity net oxygen cost (METs) was assessed. The time series of accelerometer signals were represented in terms of uniformly discretized values called bins. Support Vector Machine was used for activity classification with bins and every pair of bins used as features. Bagged decision tree regression was used for net metabolic cost prediction. To evaluate model performance we employed the jackknife leave-one-out cross validation method. Single accelerometer and multi-accelerometer site model estimates across and within age group revealed similar accuracy, with a bias range of −0.03 to 0.01 METs, bias percent of −0.8 to 0.3%, and a rMSE range of 0.81–1.04 METs. Multi-site accelerometer location models improved activity type classification over single site location models from a low of 69.3% to a maximum of 92.8% accuracy. For each accelerometer site location model, or combined site location model, percent accuracy classification decreased as a function of age group, or when young age groups models were generalized to older age groups. Specific age group models on average performed better than when all age groups were combined. A time series computation show promising results for predicting energy cost and activity type. Differences in prediction across age group, a lack of generalizability across age groups, and that age group specific models perform better than when all ages are combined needs to be considered as analytic calibration procedures to detect energy cost and type are further developed. PMID:26449155
NASA Astrophysics Data System (ADS)
Lee, Joohwi; Kim, Sun Hyung; Styner, Martin
2016-03-01
The delineation of rodent brain structures is challenging due to low-contrast multiple cortical and subcortical organs that are closely interfacing to each other. Atlas-based segmentation has been widely employed due to its ability to delineate multiple organs at the same time via image registration. The use of multiple atlases and subsequent label fusion techniques has further improved the robustness and accuracy of atlas-based segmentation. However, the accuracy of atlas-based segmentation is still prone to registration errors; for example, the segmentation of in vivo MR images can be less accurate and robust against image artifacts than the segmentation of post mortem images. In order to improve the accuracy and robustness of atlas-based segmentation, we propose a multi-object, model-based, multi-atlas segmentation method. We first establish spatial correspondences across atlases using a set of dense pseudo-landmark particles. We build a multi-object point distribution model using those particles in order to capture inter- and intra- subject variation among brain structures. The segmentation is obtained by fitting the model into a subject image, followed by label fusion process. Our result shows that the proposed method resulted in greater accuracy than comparable segmentation methods, including a widely used ANTs registration tool.
Multi-scale model for the hierarchical architecture of native cellulose hydrogels.
Martínez-Sanz, Marta; Mikkelsen, Deirdre; Flanagan, Bernadine; Gidley, Michael J; Gilbert, Elliot P
2016-08-20
The structure of protiated and deuterated cellulose hydrogels has been investigated using a multi-technique approach combining small-angle scattering with diffraction, spectroscopy and microscopy. A model for the multi-scale structure of native cellulose hydrogels is proposed which highlights the essential role of water at different structural levels characterised by: (i) the existence of cellulose microfibrils containing an impermeable crystalline core surrounded by a partially hydrated paracrystalline shell, (ii) the creation of a strong network of cellulose microfibrils held together by hydrogen bonding to form cellulose ribbons and (iii) the differential behaviour of tightly bound water held within the ribbons compared to bulk solvent. Deuterium labelling provides an effective platform on which to further investigate the role of different plant cell wall polysaccharides in cellulose composite formation through the production of selectively deuterated cellulose composite hydrogels. Copyright © 2016 Elsevier Ltd. All rights reserved.
An Analysis of Turkey's PISA 2015 Results Using Two-Level Hierarchical Linear Modelling
ERIC Educational Resources Information Center
Atas, Dogu; Karadag, Özge
2017-01-01
In the field of education, most of the data collected are multi-level structured. Cities, city based schools, school based classes and finally students in the classrooms constitute a hierarchical structure. Hierarchical linear models give more accurate results compared to standard models when the data set has a structure going far as individuals,…
Automatic 3D kidney segmentation based on shape constrained GC-OAAM
NASA Astrophysics Data System (ADS)
Chen, Xinjian; Summers, Ronald M.; Yao, Jianhua
2011-03-01
The kidney can be classified into three main tissue types: renal cortex, renal medulla and renal pelvis (or collecting system). Dysfunction of different renal tissue types may cause different kidney diseases. Therefore, accurate and efficient segmentation of kidney into different tissue types plays a very important role in clinical research. In this paper, we propose an automatic 3D kidney segmentation method which segments the kidney into the three different tissue types: renal cortex, medulla and pelvis. The proposed method synergistically combines active appearance model (AAM), live wire (LW) and graph cut (GC) methods, GC-OAAM for short. Our method consists of two main steps. First, a pseudo 3D segmentation method is employed for kidney initialization in which the segmentation is performed slice-by-slice via a multi-object oriented active appearance model (OAAM) method. An improved iterative model refinement algorithm is proposed for the AAM optimization, which synergistically combines the AAM and LW method. Multi-object strategy is applied to help the object initialization. The 3D model constraints are applied to the initialization result. Second, the object shape information generated from the initialization step is integrated into the GC cost computation. A multi-label GC method is used to segment the kidney into cortex, medulla and pelvis. The proposed method was tested on 19 clinical arterial phase CT data sets. The preliminary results showed the feasibility and efficiency of the proposed method.
ERIC Educational Resources Information Center
Parker, Mitchum B.; Curtner-Smith, Matthew D.
2014-01-01
Previous research has suggested that sport education (SE) may be a superior curriculum model to multi-activity (MA) teaching because its pedagogies and structures create a task-involving motivational climate. The purpose of this study was to describe and compare the objective motivational climates teachers create within the MA and SE models.…
The Feasibility of Quality Function Deployment (QFD) as an Assessment and Quality Assurance Model
ERIC Educational Resources Information Center
Matorera, D.; Fraser, W. J.
2016-01-01
Business schools are globally often seen as structured, purpose-driven, multi-sector and multi-perspective organisations. This article is based on the response of a graduate school to an innovative industrial Quality Function Deployment-based model (QFD), which was to be adopted initially in a Master's degree programme for quality assurance…
LinkEHR-Ed: a multi-reference model archetype editor based on formal semantics.
Maldonado, José A; Moner, David; Boscá, Diego; Fernández-Breis, Jesualdo T; Angulo, Carlos; Robles, Montserrat
2009-08-01
To develop a powerful archetype editing framework capable of handling multiple reference models and oriented towards the semantic description and standardization of legacy data. The main prerequisite for implementing tools providing enhanced support for archetypes is the clear specification of archetype semantics. We propose a formalization of the definition section of archetypes based on types over tree-structured data. It covers the specialization of archetypes, the relationship between reference models and archetypes and conformance of data instances to archetypes. LinkEHR-Ed, a visual archetype editor based on the former formalization with advanced processing capabilities that supports multiple reference models, the editing and semantic validation of archetypes, the specification of mappings to data sources, and the automatic generation of data transformation scripts, is developed. LinkEHR-Ed is a useful tool for building, processing and validating archetypes based on any reference model.
Radiative neutrino masses from order-4 CP symmetry
NASA Astrophysics Data System (ADS)
Ivanov, Igor P.
2018-02-01
Generalized CP symmetry of order 4 (CP4) is surprisingly powerful in shaping scalar and quark sectors of multi-Higgs models. Here, we extend this framework to the neutrino sector. We build two simple Majorana neutrino mass models with unbroken CP4, which are analogous to Ma's scotogenic model. Both models use three Higgs doublets and two or three right-handed (RH) neutrinos. The minimal CP4 symmetric scotogenic model uses only two RH neutrinos, leads to three non-zero light neutrino masses, and contains a built-in mechanism to further suppress them via phase alignment. With three RH neutrinos, one generates a type I seesaw mass matrix of rank 1, which is then corrected by the same scotogenic mechanism, naturally leading to two neutrino mass scales with mild hierarchy. These minimal CP4-based constructions emerge as a primer for introducing additional symmetry structures and exploring their phenomenological consequences.
Reinforcement mechanism of multi-anchor wall with double wall facing
NASA Astrophysics Data System (ADS)
Suzuki, Kouta; Kobayashi, Makoto; Miura, Kinya; Konami, Takeharu; Hayashi, Taketo
2017-10-01
The reinforced soil wall has high seismic performance as generally known. However, the seismic behavior has not been clarified accurately yet, especially on multi-anchor wall with double wall facing. Indefinite behavior of reinforced soil wall during earthquake make us complicated in case with adopting to the abutment, because of arrangement of anchor plate as reinforcement often different according to the width of roads. In this study, a series of centrifuge model tests were carried out to investigate the reinforcement mechanism of multi anchor wall with double wall facing from the perspective of the vertical earth pressure. Several types of reinforce arrangement and rigid wall were applied in order to verify the arch function in the reinforced regions. The test results show unique behavior of vertical earth pressure, which was affected by arch action. All the vertical earth pressure placed behind facing panel, are larger than that of middle part between facing panel despite of friction between backfill and facing panel. Similar results were obtained in case using rigid wall. On the other hands, the vertical earth pressure, which were measured at the 3cm high from bottom of model container, shows larger than that of bottom. This results show the existence of arch action between double walls. In addition, it implies that the wall facing of such soil structure confined the backfill as pseudo wall, which is very reason that the multi anchor wall with double wall facing has high seismic performance.
Entropy measure of credit risk in highly correlated markets
NASA Astrophysics Data System (ADS)
Gottschalk, Sylvia
2017-07-01
We compare the single and multi-factor structural models of corporate default by calculating the Jeffreys-Kullback-Leibler divergence between their predicted default probabilities when asset correlations are either high or low. Single-factor structural models assume that the stochastic process driving the value of a firm is independent of that of other companies. A multi-factor structural model, on the contrary, is built on the assumption that a single firm's value follows a stochastic process correlated with that of other companies. Our main results show that the divergence between the two models increases in highly correlated, volatile, and large markets, but that it is closer to zero in small markets, when asset correlations are low and firms are highly leveraged. These findings suggest that during periods of financial instability, when asset volatility and correlations increase, one of the models misreports actual default risk.
Hammond, Colin M.; Owen-Hughes, Tom; Norman, David G.
2014-01-01
Crystallographic and NMR approaches have provided a wealth of structural information about protein domains. However, often these domains are found as components of larger multi domain polypeptides or complexes. Orienting domains within such contexts can provide powerful new insight into their function. The combination of site specific spin labelling and Pulsed Electron Double Resonance (PELDOR) provide a means of obtaining structural measurements that can be used to generate models describing how such domains are oriented. Here we describe a pipeline for modelling the location of thio-reactive nitroxyl spin locations to engineered sties on the histone chaperone Vps75. We then use a combination of experimentally determined measurements and symmetry constraints to model the orientation in which homodimers of Vps75 associate to form homotetramers using the XPLOR-NIH platform. This provides a working example of how PELDOR measurements can be used to generate a structural model. PMID:25448300
NASA Astrophysics Data System (ADS)
Olliverre, Nathan; Asad, Muhammad; Yang, Guang; Howe, Franklyn; Slabaugh, Gregory
2017-03-01
Multi-Voxel Magnetic Resonance Spectroscopy (MV-MRS) provides an important and insightful technique for the examination of the chemical composition of brain tissue, making it an attractive medical imaging modality for the examination of brain tumours. MRS, however, is affected by the issue of the Partial Volume Effect (PVE), where the signals of multiple tissue types can be found within a single voxel and provides an obstacle to the interpretation of the data. The PVE results from the low resolution achieved in MV-MRS images relating to the signal to noise ratio (SNR). To counteract PVE, this paper proposes a novel Pairwise Mixture Model (PMM), that extends a recently reported Signal Mixture Model (SMM) for representing the MV-MRS signal as normal, low or high grade tissue types. Inspired by Conditional Random Field (CRF) and its continuous variant the PMM incorporates the surrounding voxel neighbourhood into an optimisation problem, the solution of which provides an estimation to a set of coefficients. The values of the estimated coefficients represents the amount of each tissue type (normal, low or high) found within a voxel. These coefficients can then be visualised as a nosological rendering using a coloured grid representing the MV-MRS image overlaid on top of a structural image, such as a Magnetic Resonance Image (MRI). Experimental results show an accuracy of 92.69% in classifying patient tumours as either low or high grade compared against the histopathology for each patient. Compared to 91.96% achieved by the SMM, the proposed PMM method demonstrates the importance of incorporating spatial coherence into the estimation as well as its potential clinical usage.
Multi-fluid Dynamics for Supersonic Jet-and-Crossflows and Liquid Plug Rupture
NASA Astrophysics Data System (ADS)
Hassan, Ezeldin A.
Multi-fluid dynamics simulations require appropriate numerical treatments based on the main flow characteristics, such as flow speed, turbulence, thermodynamic state, and time and length scales. In this thesis, two distinct problems are investigated: supersonic jet and crossflow interactions; and liquid plug propagation and rupture in an airway. Gaseous non-reactive ethylene jet and air crossflow simulation represents essential physics for fuel injection in SCRAMJET engines. The regime is highly unsteady, involving shocks, turbulent mixing, and large-scale vortical structures. An eddy-viscosity-based multi-scale turbulence model is proposed to resolve turbulent structures consistent with grid resolution and turbulence length scales. Predictions of the time-averaged fuel concentration from the multi-scale model is improved over Reynolds-averaged Navier-Stokes models originally derived from stationary flow. The response to the multi-scale model alone is, however, limited, in cases where the vortical structures are small and scattered thus requiring prohibitively expensive grids in order to resolve the flow field accurately. Statistical information related to turbulent fluctuations is utilized to estimate an effective turbulent Schmidt number, which is shown to be highly varying in space. Accordingly, an adaptive turbulent Schmidt number approach is proposed, by allowing the resolved field to adaptively influence the value of turbulent Schmidt number in the multi-scale turbulence model. The proposed model estimates a time-averaged turbulent Schmidt number adapted to the computed flowfield, instead of the constant value common to the eddy-viscosity-based Navier-Stokes models. This approach is assessed using a grid-refinement study for the normal injection case, and tested with 30 degree injection, showing improved results over the constant turbulent Schmidt model both in mean and variance of fuel concentration predictions. For the incompressible liquid plug propagation and rupture study, numerical simulations are conducted using an Eulerian-Lagrangian approach with a continuous-interface method. A reconstruction scheme is developed to allow topological changes during plug rupture by altering the connectivity information of the interface mesh. Rupture time is shown to be delayed as the initial precursor film thickness increases. During the plug rupture process, a sudden increase of mechanical stresses on the tube wall is recorded, which can cause tissue damage.
A fully resolved fluid-structure-muscle-activation model for esophageal transport
NASA Astrophysics Data System (ADS)
Kou, Wenjun; Bhalla, Amneet P. S.; Griffith, Boyce E.; Johnson, Mark; Patankar, Neelesh A.
2013-11-01
Esophageal transport is a mechanical and physiological process that transfers the ingested food bolus from the pharynx to the stomach through a multi-layered esophageal tube. The process involves interactions between the bolus, esophageal wall composed of mucosal, circular muscle (CM) and longitudinal muscle (LM) layers, and neurally coordinated muscle activation including CM contraction and LM shortening. In this work, we present a 3D fully-resolved model of esophageal transport based on the immersed boundary method. The model describes the bolus as a Newtonian fluid, the esophageal wall as a multi-layered elastic tube represented by springs and beams, and the muscle activation as a traveling wave of sequential actuation/relaxation of muscle fibers, represented by springs with dynamic rest lengths. Results on intraluminal pressure profile and bolus shape will be shown, which are qualitatively consistent with experimental observations. Effects of activating CM contraction only, LM shortening only or both, for the bolus transport, are studied. A comparison among them can help to identify the role of each type of muscle activation. The support of grant R01 DK56033 and R01 DK079902 from NIH is gratefully acknowledged.
NALDB: nucleic acid ligand database for small molecules targeting nucleic acid.
Kumar Mishra, Subodh; Kumar, Amit
2016-01-01
Nucleic acid ligand database (NALDB) is a unique database that provides detailed information about the experimental data of small molecules that were reported to target several types of nucleic acid structures. NALDB is the first ligand database that contains ligand information for all type of nucleic acid. NALDB contains more than 3500 ligand entries with detailed pharmacokinetic and pharmacodynamic information such as target name, target sequence, ligand 2D/3D structure, SMILES, molecular formula, molecular weight, net-formal charge, AlogP, number of rings, number of hydrogen bond donor and acceptor, potential energy along with their Ki, Kd, IC50 values. All these details at single platform would be helpful for the development and betterment of novel ligands targeting nucleic acids that could serve as a potential target in different diseases including cancers and neurological disorders. With maximum 255 conformers for each ligand entry, our database is a multi-conformer database and can facilitate the virtual screening process. NALDB provides powerful web-based search tools that make database searching efficient and simplified using option for text as well as for structure query. NALDB also provides multi-dimensional advanced search tool which can screen the database molecules on the basis of molecular properties of ligand provided by database users. A 3D structure visualization tool has also been included for 3D structure representation of ligands. NALDB offers an inclusive pharmacological information and the structurally flexible set of small molecules with their three-dimensional conformers that can accelerate the virtual screening and other modeling processes and eventually complement the nucleic acid-based drug discovery research. NALDB can be routinely updated and freely available on bsbe.iiti.ac.in/bsbe/naldb/HOME.php. Database URL: http://bsbe.iiti.ac.in/bsbe/naldb/HOME.php. © The Author(s) 2016. Published by Oxford University Press.
Tang, Dalin; Yang, Chun; Geva, Tal; Gaudette, Glenn; del Nido, Pedro J.
2011-01-01
Multi-physics right and left ventricle (RV/LV) fluid-structure interaction (FSI) models were introduced to perform mechanical stress analysis and evaluate the effect of patch materials on RV function. The FSI models included three different patch materials (Dacron scaffold, treated pericardium, and contracting myocardium), two-layer construction, fiber orientation, and active anisotropic material properties. The models were constructed based on cardiac magnetic resonance (CMR) images acquired from a patient with severe RV dilatation and solved by ADINA. Our results indicate that the patch model with contracting myocardium leads to decreased stress level in the patch area, improved RV function and patch area contractility. PMID:21765559
A multi-cloak bifunctional device
NASA Astrophysics Data System (ADS)
Raza, Muhammad; Liu, Yichao; Ma, Yungui
2015-01-01
Invisibility cloak has attracted the attention of electromagnetic researchers due to its magical properties and marvelous potential applications in the field of applied physics and engineering. Recently, a multiphysics cloaking has put the new spirit into this field. In this paper, we introduce a device, composed of three shells and each shell works as an invisibility cloak for a specific physical phenomenon. Following this technique, a number of cloaks with different implementation approaches can be proposed for distinct physical phenomena in a single structure. Here, we restrict ourselves for the case of two physical behaviors: thermal and electrical conductivities. This type of multi-cloaking structure can be best used in mechanically designed structures to better control heating and electrical effects.
Study of CFB Simulation Model with Coincidence at Multi-Working Condition
NASA Astrophysics Data System (ADS)
Wang, Z.; He, F.; Yang, Z. W.; Li, Z.; Ni, W. D.
A circulating fluidized bed (CFB) two-stage simulation model was developed. To realize the model results coincident with the design value or real operation value at specified multi-working conditions and with capability of real-time calculation, only the main key processes were taken into account and the dominant factors were further abstracted out of these key processes. The simulation results showed a sound accordance at multi-working conditions, and confirmed the advantage of the two-stage model over the original single-stage simulation model. The combustion-support effect of secondary air was investigated using the two-stage model. This model provides a solid platform for investigating the pant-leg structured CFB furnace, which is now under design for a supercritical power plant.
Development of the US3D Code for Advanced Compressible and Reacting Flow Simulations
NASA Technical Reports Server (NTRS)
Candler, Graham V.; Johnson, Heath B.; Nompelis, Ioannis; Subbareddy, Pramod K.; Drayna, Travis W.; Gidzak, Vladimyr; Barnhardt, Michael D.
2015-01-01
Aerothermodynamics and hypersonic flows involve complex multi-disciplinary physics, including finite-rate gas-phase kinetics, finite-rate internal energy relaxation, gas-surface interactions with finite-rate oxidation and sublimation, transition to turbulence, large-scale unsteadiness, shock-boundary layer interactions, fluid-structure interactions, and thermal protection system ablation and thermal response. Many of the flows have a large range of length and time scales, requiring large computational grids, implicit time integration, and large solution run times. The University of Minnesota NASA US3D code was designed for the simulation of these complex, highly-coupled flows. It has many of the features of the well-established DPLR code, but uses unstructured grids and has many advanced numerical capabilities and physical models for multi-physics problems. The main capabilities of the code are described, the physical modeling approaches are discussed, the different types of numerical flux functions and time integration approaches are outlined, and the parallelization strategy is overviewed. Comparisons between US3D and the NASA DPLR code are presented, and several advanced simulations are presented to illustrate some of novel features of the code.
The Multi-Player Performance-Enhancing Drug Game
Haugen, Kjetil K.; Nepusz, Tamás; Petróczi, Andrea
2013-01-01
This paper extends classical work on economics of doping into a multi-player game setting. Apart from being among the first papers formally formulating and analysing a multi-player doping situation, we find interesting results related to different types of Nash-equilibria (NE). Based mainly on analytic results, we claim at least two different NE structures linked to the choice of prize functions. Linear prize functions provide NEs characterised by either everyone or nobody taking drugs, while non-linear prize functions lead to qualitatively different NEs with significantly more complex predictive characteristics. PMID:23691018
NASA Astrophysics Data System (ADS)
Bense, V. F.; Gleeson, T.; Loveless, S. E.; Bour, O.; Scibek, J.
2013-12-01
Deformation along faults in the shallow crust (< 1 km) introduces permeability heterogeneity and anisotropy, which has an important impact on processes such as regional groundwater flow, hydrocarbon migration, and hydrothermal fluid circulation. Fault zones have the capacity to be hydraulic conduits connecting shallow and deep geological environments, but simultaneously the fault cores of many faults often form effective barriers to flow. The direct evaluation of the impact of faults to fluid flow patterns remains a challenge and requires a multidisciplinary research effort of structural geologists and hydrogeologists. However, we find that these disciplines often use different methods with little interaction between them. In this review, we document the current multi-disciplinary understanding of fault zone hydrogeology. We discuss surface- and subsurface observations from diverse rock types from unlithified and lithified clastic sediments through to carbonate, crystalline, and volcanic rocks. For each rock type, we evaluate geological deformation mechanisms, hydrogeologic observations and conceptual models of fault zone hydrogeology. Outcrop observations indicate that fault zones commonly have a permeability structure suggesting they should act as complex conduit-barrier systems in which along-fault flow is encouraged and across-fault flow is impeded. Hydrogeological observations of fault zones reported in the literature show a broad qualitative agreement with outcrop-based conceptual models of fault zone hydrogeology. Nevertheless, the specific impact of a particular fault permeability structure on fault zone hydrogeology can only be assessed when the hydrogeological context of the fault zone is considered and not from outcrop observations alone. To gain a more integrated, comprehensive understanding of fault zone hydrogeology, we foresee numerous synergistic opportunities and challenges for the discipline of structural geology and hydrogeology to co-evolve and address remaining challenges by co-locating study areas, sharing approaches and fusing data, developing conceptual models from hydrogeologic data, numerical modeling, and training interdisciplinary scientists.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orgel, Joseph P.R.O.; Eid, Aya; Antipova, Olga
Decorin is the archetypal small leucine rich repeat proteoglycan of the vertebrate extracellular matrix (ECM). With its glycosaminoglycuronan chain, it is responsible for stabilizing inter-fibrillar organization. Type I collagen is the predominant member of the fibrillar collagen family, fulfilling both organizational and structural roles in animal ECMs. In this study, interactions between decoron (the decorin core protein) and binding sites in the d and e1 bands of the type I collagen fibril were investigated through molecular modeling of their respective X-ray diffraction structures. Previously, it was proposed that a model-based, highly curved concave decoron interacts with a single collagen molecule,more » which would form extensive van der Waals contacts and give rise to strong non-specific binding. However, the large well-ordered aggregate that is the collagen fibril places significant restraints on modes of ligand binding and necessitates multi-collagen molecular contacts. We present here a relatively high-resolution model of the decoron-fibril collagen complex. We find that the respective crystal structures complement each other well, although it is the monomeric form of decoron that shows the most appropriate shape complementarity with the fibril surface and favorable calculated energies of interaction. One molecule of decoron interacts with four to six collagen molecules, and the binding specificity relies on a large number of hydrogen bonds and electrostatic interactions, primarily with the collagen motifs KXGDRGE and AKGDRGE (d and e{sub 1} bands). This work helps us to understand collagen-decorin interactions and the molecular architecture of the fibrillar ECM in health and disease.« less
Orgel, Joseph P R O; Eid, Aya; Antipova, Olga; Bella, Jordi; Scott, John E
2009-09-15
Decorin is the archetypal small leucine rich repeat proteoglycan of the vertebrate extracellular matrix (ECM). With its glycosaminoglycuronan chain, it is responsible for stabilizing inter-fibrillar organization. Type I collagen is the predominant member of the fibrillar collagen family, fulfilling both organizational and structural roles in animal ECMs. In this study, interactions between decoron (the decorin core protein) and binding sites in the d and e(1) bands of the type I collagen fibril were investigated through molecular modeling of their respective X-ray diffraction structures. Previously, it was proposed that a model-based, highly curved concave decoron interacts with a single collagen molecule, which would form extensive van der Waals contacts and give rise to strong non-specific binding. However, the large well-ordered aggregate that is the collagen fibril places significant restraints on modes of ligand binding and necessitates multi-collagen molecular contacts. We present here a relatively high-resolution model of the decoron-fibril collagen complex. We find that the respective crystal structures complement each other well, although it is the monomeric form of decoron that shows the most appropriate shape complementarity with the fibril surface and favorable calculated energies of interaction. One molecule of decoron interacts with four to six collagen molecules, and the binding specificity relies on a large number of hydrogen bonds and electrostatic interactions, primarily with the collagen motifs KXGDRGE and AKGDRGE (d and e(1) bands). This work helps us to understand collagen-decorin interactions and the molecular architecture of the fibrillar ECM in health and disease.
NASA Astrophysics Data System (ADS)
Cai, Jiaxiang; Liang, Hua; Zhang, Chun
2018-06-01
Based on the multi-symplectic Hamiltonian formula of the generalized Rosenau-type equation, a multi-symplectic scheme and an energy-preserving scheme are proposed. To improve the accuracy of the solution, we apply the composition technique to the obtained schemes to develop high-order schemes which are also multi-symplectic and energy-preserving respectively. Discrete fast Fourier transform makes a significant improvement to the computational efficiency of schemes. Numerical results verify that all the proposed schemes have satisfactory performance in providing accurate solution and preserving the discrete mass and energy invariants. Numerical results also show that although each basic time step is divided into several composition steps, the computational efficiency of the composition schemes is much higher than that of the non-composite schemes.
Estimating the Propagation of Interdependent Cascading Outages with Multi-Type Branching Processes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qi, Junjian; Ju, Wenyun; Sun, Kai
In this paper, the multi-type branching process is applied to describe the statistics and interdependencies of line outages, the load shed, and isolated buses. The offspring mean matrix of the multi-type branching process is estimated by the Expectation Maximization (EM) algorithm and can quantify the extent of outage propagation. The joint distribution of two types of outages is estimated by the multi-type branching process via the Lagrange-Good inversion. The proposed model is tested with data generated by the AC OPA cascading simulations on the IEEE 118-bus system. The largest eigenvalues of the offspring mean matrix indicate that the system ismore » closer to criticality when considering the interdependence of different types of outages. Compared with empirically estimating the joint distribution of the total outages, good estimate is obtained by using the multitype branching process with a much smaller number of cascades, thus greatly improving the efficiency. It is shown that the multitype branching process can effectively predict the distribution of the load shed and isolated buses and their conditional largest possible total outages even when there are no data of them.« less
Design and control of a multi-DOF micromanipulator dedicated to multiscale micromanipulation
NASA Astrophysics Data System (ADS)
Yang, Yi-Ling; Wei, Yan-Ding; Lou, Jun-Qiang; Fu, Lei; Fang, Sheng
2017-11-01
This paper presents the design, implementation and control of a new piezoelectrically actuated compliant micromanipulator dedicated to multiscale, precision and reliable operations. To begin with, the manipulator is devised to obtain multi degrees of freedom and large workspace ranges. Two-stage amplification mechanisms (consists of the leverage and the rocker mechanisms) and composite parallelogram mechanisms are combined to construct the lower microstage. Meanwhile, the structure design of the upper dual-driven microgripper is based on the bridge-type mechanism and the unilateral parallelogram mechanism. Through finite-element analysis, the structural parameters of the micromanipulator are optimized and the structural interaction performances are examined. Moreover, a cooperative control strategy is proposed to achieve the synchronous control of the motion trajectory, the gripper position and the contact force. Precision motion control in terms of the hysteresis phenomenon and system disturbances is ensured by using an adaptive sliding mode control (SMC). In particular, an improved nonsymmetrical Bouc-Wen model and a fuzzy regulator are proposed in the SMC. Several experimental investigations are conducted to validate the effectiveness of the developed micromanipulator by performing transferring operations of a micro-object. Experimental results demonstrate that the micromanipulator presents good characteristics, and precision and robust operation can be acquired using the cooperative controller.
Multi-objective Optimization Design of Gear Reducer Based on Adaptive Genetic Algorithms
NASA Astrophysics Data System (ADS)
Li, Rui; Chang, Tian; Wang, Jianwei; Wei, Xiaopeng; Wang, Jinming
2008-11-01
An adaptive Genetic Algorithm (GA) is introduced to solve the multi-objective optimized design of the reducer. Firstly, according to the structure, strength, etc. in a reducer, a multi-objective optimized model of the helical gear reducer is established. And then an adaptive GA based on a fuzzy controller is introduced, aiming at the characteristics of multi-objective, multi-parameter, multi-constraint conditions. Finally, a numerical example is illustrated to show the advantages of this approach and the effectiveness of an adaptive genetic algorithm used in optimized design of a reducer.
Xu, Dong; Jaroszewski, Lukasz; Li, Zhanwen; Godzik, Adam
2015-01-01
Motivation: Most proteins consist of multiple domains, independent structural and evolutionary units that are often reshuffled in genomic rearrangements to form new protein architectures. Template-based modeling methods can often detect homologous templates for individual domains, but templates that could be used to model the entire query protein are often not available. Results: We have developed a fast docking algorithm ab initio domain assembly (AIDA) for assembling multi-domain protein structures, guided by the ab initio folding potential. This approach can be extended to discontinuous domains (i.e. domains with ‘inserted’ domains). When tested on experimentally solved structures of multi-domain proteins, the relative domain positions were accurately found among top 5000 models in 86% of cases. AIDA server can use domain assignments provided by the user or predict them from the provided sequence. The latter approach is particularly useful for automated protein structure prediction servers. The blind test consisting of 95 CASP10 targets shows that domain boundaries could be successfully determined for 97% of targets. Availability and implementation: The AIDA package as well as the benchmark sets used here are available for download at http://ffas.burnham.org/AIDA/. Contact: adam@sanfordburnham.org Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25701568
Ren, Yuanqiang; Qiu, Lei; Yuan, Shenfang; Bao, Qiao
2017-05-11
Structural health monitoring (SHM) of aircraft composite structure is helpful to increase reliability and reduce maintenance costs. Due to the great effectiveness in distinguishing particular guided wave modes and identifying the propagation direction, the spatial-wavenumber filter technique has emerged as an interesting SHM topic. In this paper, a new scanning spatial-wavenumber filter (SSWF) based imaging method for multiple damages is proposed to conduct on-line monitoring of aircraft composite structures. Firstly, an on-line multi-damage SSWF is established, including the fundamental principle of SSWF for multiple damages based on a linear piezoelectric (PZT) sensor array, and a corresponding wavenumber-time imaging mechanism by using the multi-damage scattering signal. Secondly, through combining the on-line multi-damage SSWF and a PZT 2D cross-shaped array, an image-mapping method is proposed to conduct wavenumber synthesis and convert the two wavenumber-time images obtained by the PZT 2D cross-shaped array to an angle-distance image, from which the multiple damages can be directly recognized and located. In the experimental validation, both simulated multi-damage and real multi-damage introduced by repeated impacts are performed on a composite plate structure. The maximum localization error is less than 2 cm, which shows good performance of the multi-damage imaging method. Compared with the existing spatial-wavenumber filter based damage evaluation methods, the proposed method requires no more than the multi-damage scattering signal and can be performed without depending on any wavenumber modeling or measuring. Besides, this method locates multiple damages by imaging instead of the geometric method, which helps to improve the signal-to-noise ratio. Thus, it can be easily applied to on-line multi-damage monitoring of aircraft composite structures.
Ren, Yuanqiang; Qiu, Lei; Yuan, Shenfang; Bao, Qiao
2017-01-01
Structural health monitoring (SHM) of aircraft composite structure is helpful to increase reliability and reduce maintenance costs. Due to the great effectiveness in distinguishing particular guided wave modes and identifying the propagation direction, the spatial-wavenumber filter technique has emerged as an interesting SHM topic. In this paper, a new scanning spatial-wavenumber filter (SSWF) based imaging method for multiple damages is proposed to conduct on-line monitoring of aircraft composite structures. Firstly, an on-line multi-damage SSWF is established, including the fundamental principle of SSWF for multiple damages based on a linear piezoelectric (PZT) sensor array, and a corresponding wavenumber-time imaging mechanism by using the multi-damage scattering signal. Secondly, through combining the on-line multi-damage SSWF and a PZT 2D cross-shaped array, an image-mapping method is proposed to conduct wavenumber synthesis and convert the two wavenumber-time images obtained by the PZT 2D cross-shaped array to an angle-distance image, from which the multiple damages can be directly recognized and located. In the experimental validation, both simulated multi-damage and real multi-damage introduced by repeated impacts are performed on a composite plate structure. The maximum localization error is less than 2 cm, which shows good performance of the multi-damage imaging method. Compared with the existing spatial-wavenumber filter based damage evaluation methods, the proposed method requires no more than the multi-damage scattering signal and can be performed without depending on any wavenumber modeling or measuring. Besides, this method locates multiple damages by imaging instead of the geometric method, which helps to improve the signal-to-noise ratio. Thus, it can be easily applied to on-line multi-damage monitoring of aircraft composite structures. PMID:28772879
Multi-agent electricity market modeling with EMCAS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
North, M.; Macal, C.; Conzelmann, G.
2002-09-05
Electricity systems are a central component of modern economies. Many electricity markets are transitioning from centrally regulated systems to decentralized markets. Furthermore, several electricity markets that have recently undergone this transition have exhibited extremely unsatisfactory results, most notably in California. These high stakes transformations require the introduction of largely untested regulatory structures. Suitable tools that can be used to test these regulatory structures before they are applied to real systems are required. Multi-agent models can provide such tools. To better understand the requirements such as tool, a live electricity market simulation was created. This experience helped to shape the developmentmore » of the multi-agent Electricity Market Complex Adaptive Systems (EMCAS) model. To explore EMCAS' potential, several variations of the live simulation were created. These variations probed the possible effects of changing power plant outages and price setting rules on electricity market prices.« less
Cost Analysis in a Multi-Mission Operations Environment
NASA Technical Reports Server (NTRS)
Felton, Larry; Newhouse, Marilyn; Bornas, Nick; Botts, Dennis; Ijames, Gayleen; Montgomery, Patty; Roth, Karl
2014-01-01
Spacecraft control centers have evolved from dedicated, single-mission or single mission-type support to multi-mission, service-oriented support for operating a variety of mission types. At the same time, available money for projects is shrinking and competition for new missions is increasing. These factors drive the need for an accurate and flexible model to support estimating service costs for new or extended missions; the cost model in turn drives the need for an accurate and efficient approach to service cost analysis. The National Aeronautics and Space Administration (NASA) Huntsville Operations Support Center (HOSC) at Marshall Space Flight Center (MSFC) provides operations services to a variety of customers around the world. HOSC customers range from launch vehicle test flights; to International Space Station (ISS) payloads; to small, short duration missions; and has included long duration flagship missions. The HOSC recently completed a detailed analysis of service costs as part of the development of a complete service cost model. The cost analysis process required the team to address a number of issues. One of the primary issues involves the difficulty of reverse engineering individual mission costs in a highly efficient multi-mission environment, along with a related issue of the value of detailed metrics or data to the cost model versus the cost of obtaining accurate data. Another concern is the difficulty of balancing costs between missions of different types and size and extrapolating costs to different mission types. The cost analysis also had to address issues relating to providing shared, cloud-like services in a government environment, and then assigning an uncertainty or risk factor to cost estimates that are based on current technology, but will be executed using future technology. Finally the cost analysis needed to consider how to validate the resulting cost models taking into account the non-homogeneous nature of the available cost data and the decreasing flight rate. This paper presents the issues encountered during the HOSC cost analysis process, and the associated lessons learned. These lessons can be used when planning for a new multi-mission operations center or in the transformation from a dedicated control center to multi-center operations, as an aid in defining processes that support future cost analysis and estimation. The lessons can also be used by mature service-oriented, multi-mission control centers to streamline or refine their cost analysis process.
Characterizing mandibular growth using three-dimensional imaging techniques and anatomic landmarks
Kelly, Michael P.; Vorperian, Houri K.; Wang, Yuan; Tillman, Katelyn K.; Werner, Helen M.; Chung, Moo K.; Gentry, Lindell R.
2017-01-01
Objective To provide quantitative data on the multi-planar growth of the mandible, this study derived accurate linear and angular mandible measurements using landmarks on three dimensional (3D) mandible models. This novel method was used to quantify 3D mandibular growth and characterize the emergence of sexual dimorphism. Design Cross-sectional and longitudinal imaging data were obtained from a retrospective computed tomography (CT) database for 51 typically developing individuals between the ages of one and nineteen years. The software Analyze was used to generate 104 3DCT mandible models. Eleven landmarks placed on the models defined six linear measurements (lateral condyle, gonion, and endomolare width, ramus and mental depth, and mandible length) and three angular measurements (gonion, gnathion, and lingual). A fourth degree polynomial fit quantified growth trends, its derivative quantified growth rates, and a composite growth model determined growth types (neural/cranial and somatic/skeletal). Sex differences were assessed in four age cohorts, each spanning five years, to determine the ontogenetic pattern producing sexual dimorphism of the adult mandible. Results Mandibular growth trends and growth rates were non-uniform. In general, structures in the horizontal plane displayed predominantly neural/cranial growth types, whereas structures in the vertical plane had somatic/skeletal growth types. Significant prepubertal sex differences in the inferior aspect of the mandible dissipated when growth in males began to outpace that of females at eight to ten years of age, but sexual dimorphism re-emerged during and after puberty. Conclusions This 3D analysis of mandibular growth provides preliminary normative developmental data for clinical assessment and craniofacial growth studies. PMID:28161602
Landscape matrix mediates occupancy dynamics of Neotropical avian insectivores
Kennedy, Christina M.; Campbell Grant, Evan H.; Neel, Maile C.; Fagan, William F.; Marpa, Peter P.
2011-01-01
In addition to patch-level attributes (i.e., area and isolation), the nature of land cover between habitat patches (the matrix) may drive colonization and extinction dynamics in fragmented landscapes. Despite a long-standing recognition of matrix effects in fragmented systems, an understanding of the relative impacts of different types of land cover on patterns and dynamics of species occurrence remains limited. We employed multi-season occupancy models to determine the relative influence of patch area, patch isolation, within-patch vegetation structure, and landscape matrix on occupancy dynamics of nine Neotropical nsectivorous birds in 99 forest patches embedded in four matrix types (agriculture, suburban evelopment, bauxite mining, and forest) in central Jamaica. We found that within-patch vegetation structure and the matrix type between patches were more important than patch area and patch isolation in determining local colonization and local extinction probabilities, and that the effects of patch area, isolation, and vegetation structure on occupancy dynamics tended to be matrix and species dependent. Across the avian community, the landscape matrix influenced local extinction more than local colonization, indicating that extinction processes, rather than movement, likely drive interspecific differences in occupancy dynamics. These findings lend crucial empirical support to the hypothesis that species occupancy dynamics in fragmented systems may depend greatly upon the landscape context.
de la Cruz, Roberto; Guerrero, Pilar; Calvo, Juan; Alarcón, Tomás
2017-12-01
The development of hybrid methodologies is of current interest in both multi-scale modelling and stochastic reaction-diffusion systems regarding their applications to biology. We formulate a hybrid method for stochastic multi-scale models of cells populations that extends the remit of existing hybrid methods for reaction-diffusion systems. Such method is developed for a stochastic multi-scale model of tumour growth, i.e. population-dynamical models which account for the effects of intrinsic noise affecting both the number of cells and the intracellular dynamics. In order to formulate this method, we develop a coarse-grained approximation for both the full stochastic model and its mean-field limit. Such approximation involves averaging out the age-structure (which accounts for the multi-scale nature of the model) by assuming that the age distribution of the population settles onto equilibrium very fast. We then couple the coarse-grained mean-field model to the full stochastic multi-scale model. By doing so, within the mean-field region, we are neglecting noise in both cell numbers (population) and their birth rates (structure). This implies that, in addition to the issues that arise in stochastic-reaction diffusion systems, we need to account for the age-structure of the population when attempting to couple both descriptions. We exploit our coarse-graining model so that, within the mean-field region, the age-distribution is in equilibrium and we know its explicit form. This allows us to couple both domains consistently, as upon transference of cells from the mean-field to the stochastic region, we sample the equilibrium age distribution. Furthermore, our method allows us to investigate the effects of intracellular noise, i.e. fluctuations of the birth rate, on collective properties such as travelling wave velocity. We show that the combination of population and birth-rate noise gives rise to large fluctuations of the birth rate in the region at the leading edge of front, which cannot be accounted for by the coarse-grained model. Such fluctuations have non-trivial effects on the wave velocity. Beyond the development of a new hybrid method, we thus conclude that birth-rate fluctuations are central to a quantitatively accurate description of invasive phenomena such as tumour growth.
NASA Astrophysics Data System (ADS)
de la Cruz, Roberto; Guerrero, Pilar; Calvo, Juan; Alarcón, Tomás
2017-12-01
The development of hybrid methodologies is of current interest in both multi-scale modelling and stochastic reaction-diffusion systems regarding their applications to biology. We formulate a hybrid method for stochastic multi-scale models of cells populations that extends the remit of existing hybrid methods for reaction-diffusion systems. Such method is developed for a stochastic multi-scale model of tumour growth, i.e. population-dynamical models which account for the effects of intrinsic noise affecting both the number of cells and the intracellular dynamics. In order to formulate this method, we develop a coarse-grained approximation for both the full stochastic model and its mean-field limit. Such approximation involves averaging out the age-structure (which accounts for the multi-scale nature of the model) by assuming that the age distribution of the population settles onto equilibrium very fast. We then couple the coarse-grained mean-field model to the full stochastic multi-scale model. By doing so, within the mean-field region, we are neglecting noise in both cell numbers (population) and their birth rates (structure). This implies that, in addition to the issues that arise in stochastic-reaction diffusion systems, we need to account for the age-structure of the population when attempting to couple both descriptions. We exploit our coarse-graining model so that, within the mean-field region, the age-distribution is in equilibrium and we know its explicit form. This allows us to couple both domains consistently, as upon transference of cells from the mean-field to the stochastic region, we sample the equilibrium age distribution. Furthermore, our method allows us to investigate the effects of intracellular noise, i.e. fluctuations of the birth rate, on collective properties such as travelling wave velocity. We show that the combination of population and birth-rate noise gives rise to large fluctuations of the birth rate in the region at the leading edge of front, which cannot be accounted for by the coarse-grained model. Such fluctuations have non-trivial effects on the wave velocity. Beyond the development of a new hybrid method, we thus conclude that birth-rate fluctuations are central to a quantitatively accurate description of invasive phenomena such as tumour growth.
Shu, Zhengyu; Lin, Hong; Shi, Shaolei; Mu, Xiangduo; Liu, Yanru; Huang, Jianzhong
2016-05-03
The whole-cell lipase from Burkholderia cepacia has been used as a biocatalyst in organic synthesis. However, there is no report in the literature on the component or the gene sequence of the cell-bound lipase from this species. Qualitative analysis of the cell-bound lipase would help to illuminate the regulation mechanism of gene expression and further improve the yield of the cell-bound lipase by gene engineering. Three predictive cell-bound lipases, lipA, lipC21 and lipC24, from Burkholderia sp. ZYB002 were cloned and expressed in E. coli. Both LipA and LipC24 displayed the lipase activity. LipC24 was a novel mesophilic enzyme and displayed preference for medium-chain-length acyl groups (C10-C14). The 3D structural model of LipC24 revealed the open Y-type active site. LipA displayed 96 % amino acid sequence identity with the known extracellular lipase. lipA-inactivation and lipC24-inactivation decreased the total cell-bound lipase activity of Burkholderia sp. ZYB002 by 42 % and 14 %, respectively. The cell-bound lipase activity from Burkholderia sp. ZYB002 originated from a multi-enzyme mixture with LipA as the main component. LipC24 was a novel lipase and displayed different enzymatic characteristics and structural model with LipA. Besides LipA and LipC24, other type of the cell-bound lipases (or esterases) should exist.
NASA Astrophysics Data System (ADS)
Han, Minah; Jang, Hanjoo; Baek, Jongduk
2018-03-01
We investigate lesion detectability and its trends for different noise structures in single-slice and multislice CBCT images with anatomical background noise. Anatomical background noise is modeled using a power law spectrum of breast anatomy. Spherical signal with a 2 mm diameter is used for modeling a lesion. CT projection data are acquired by the forward projection and reconstructed by the Feldkamp-Davis-Kress algorithm. To generate different noise structures, two types of reconstruction filters (Hanning and Ram-Lak weighted ramp filters) are used in the reconstruction, and the transverse and longitudinal planes of reconstructed volume are used for detectability evaluation. To evaluate single-slice images, the central slice, which contains the maximum signal energy, is used. To evaluate multislice images, central nine slices are used. Detectability is evaluated using human and model observer studies. For model observer, channelized Hotelling observer (CHO) with dense difference-of-Gaussian (D-DOG) channels are used. For all noise structures, detectability by a human observer is higher for multislice images than single-slice images, and the degree of detectability increase in multislice images depends on the noise structure. Variation in detectability for different noise structures is reduced in multislice images, but detectability trends are not much different between single-slice and multislice images. The CHO with D-DOG channels predicts detectability by a human observer well for both single-slice and multislice images.
NASA Astrophysics Data System (ADS)
Kim, Garam; Sun, Min-Chul; Kim, Jang Hyun; Park, Euyhwan; Park, Byung-Gook
2017-01-01
In order to improve the internal quantum efficiency of GaN-based LEDs, a LED structure featuring a p-type trench in the multi-quantum well (MQW) is proposed. This structure has effects on spreading holes into the MQW and reducing the quantum-confined stark effect (QCSE). In addition, two simple fabrication methods using electron-beam (e-beam) lithography or selective wet etching for manufacturing the p-type structure are also proposed. From the measurement results of the manufactured GaN-based LEDs, it is confirmed that the proposed structure using e-beam lithography or selective wet etching shows improved light output power compared to the conventional structure because of more uniform hole distribution. It is also confirmed that the proposed structure formed by e-beam lithography has a significant effect on strain relaxation and reduction in the QCSE from the electro-luminescence measurement.
Application of advanced structure to multi-tone mask for FPD process
NASA Astrophysics Data System (ADS)
Song, Jin-Han; Jeong, Jin-Woong; Kim, Kyu-Sik; Jeong, Woo-Gun; Yun, Sang-Pil; Lee, Dong-Heok; Choi, Sang-Soo
2017-07-01
In accordance with improvement of FPD technology, masks such as phase shift mask (PSM) and multi-tone mask (MTM) for a particular purpose also have been developed. Above all, the MTM consisted of more than tri-tone transmittance has a substantial advantage which enables to reduce the number of mask demand in FPD fabrication process contrast to normal mask of two-tone transmittance.[1,2] A chromium (Cr)-based MTM (Typically top type) is being widely employed because of convenience of etch process caused by its only Cr-based structure consisted of Cr absorber layer and Cr half-tone layer. However, the top type of Cr-based MTM demands two Cr sputtering processes after each layer etching process and writing process. For this reason, a different material from the Cr-based MTM is required for reduction of mask fabrication time and cost. In this study, we evaluate a MTM which has a structure combined Cr with molybdenum silicide (MoSi) to resolve the issues mentioned above. The MoSi which is demonstrated by integrated circuit (IC) process is a suitable material for MTM evaluation. This structure could realize multi-transmittance in common with the Cr-based MTM. Moreover, it enables to reduce the number of sputtering process. We investigate a optimized structure upon consideration of productivity along with performance such as critical dimension (CD) variation and transmittance range of each structure. The transmittance is targeted at h-line wavelength (405 nm) in the evaluation. Compared with Cr-based MTM, the performances of all Cr-/MoSi-based MTMs are considered.
NASA Astrophysics Data System (ADS)
Peng, Cheng-Jien
The purpose of this study is to see the application feasibility of barium strontium titanate (BST) thin films on ultra large scale integration (ULSI) dynamic random access memory (DRAM) capacitors through the understanding of the relationships among processing, structure and electrical properties. Thin films of BST were deposited by multi-ion -beam reactive sputtering (MIBERS) technique and metallo -organic decomposition (MOD) method. The processing parameters such as Ba/Sr ratio, substrate temperature, annealing temperature and time, film thickness and doping concentration were correlated with the structure and electric properties of the films. Some effects of secondary low-energy oxygen ion bombardment were also examined. Microstructures of BST thin films could be classified into two types: (a) Type I structures, with multi-grains through the film thickness, for amorphous as-grown films after high temperature annealing, and (b) columnar structure (Type II) which remained even after high temperature annealing, for well-crystallized films deposited at high substrate temperatures. Type I films showed Curie-von Schweidler response, while Type II films showed Debted type behavior. Type I behavior may be attributed to the presence of a high density of disordered grain boundaries. Two types of current -voltage characteristics could be seen in non-bombarded films depending on the chemistry of the films (doped or undoped) and substrate temperature during deposition. Only the MIBERS films doped with high donor concentration and deposited at high substrate temperature showed space-charge -limited conduction (SCLC) with discrete shallow traps embedded in trap-distributed background at high electric field. All other non-bombarded films, including MOD films, showed trap-distributed SCLC behavior with a slope of {~}7.5-10 due to the presence of grain boundaries through film thickness or traps induced by unavoidable acceptor impurities in the films. Donor-doping could significantly improve the time -dependent dielectric breakdown (TDDB) behavior of BST thin films, mostly likely due to the lower oxygen vacancy concentration resulted from donor-doping.
Komori, Hirofumi; Miyazaki, Kentaro; Higuchi, Yoshiki
2009-04-02
A multi-copper protein with two cupredoxin-like domains was identified from our in-house metagenomic database. The recombinant protein, mgLAC, contained four copper ions/subunits, oxidized various phenolic and non-phenolic substrates, and had spectroscopic properties similar to common laccases. X-ray structure analysis revealed a homotrimeric architecture for this enzyme, which resembles nitrite reductase (NIR). However, a difference in copper coordination was found at the domain interface. mgLAC contains a T2/T3 tri-nuclear copper cluster at this site, whereas a mononuclear T2 copper occupies this position in NIR. The trimer is thus an essential part of the architecture of two-domain multi-copper proteins, and mgLAC may be an evolutionary precursor of NIR.
Prado-Prado, Francisco; García-Mera, Xerardo; Escobar, Manuel; Alonso, Nerea; Caamaño, Olga; Yañez, Matilde; González-Díaz, Humberto
2012-01-01
The number of neurodegenerative diseases has been increasing in recent years. Many of the drug candidates to be used in the treatment of neurodegenerative diseases present specific 3D structural features. An important protein in this sense is the acetylcholinesterase (AChE), which is the target of many Alzheimer's dementia drugs. Consequently, the prediction of Drug-Protein Interactions (DPIs/nDPIs) between new drug candidates and specific 3D structure and targets is of major importance. To this end, we can use Quantitative Structure-Activity Relationships (QSAR) models to carry out a rational DPIs prediction. Unfortunately, many previous QSAR models developed to predict DPIs take into consideration only 2D structural information and codify the activity against only one target. To solve this problem we can develop some 3D multi-target QSAR (3D mt-QSAR) models. In this study, using the 3D MI-DRAGON technique, we have introduced a new predictor for DPIs based on two different well-known software. We have used the MARCH-INSIDE (MI) and DRAGON software to calculate 3D structural parameters for drugs and targets respectively. Both classes of 3D parameters were used as input to train Artificial Neuronal Network (ANN) algorithms using as benchmark dataset the complex network (CN) made up of all DPIs between US FDA approved drugs and their targets. The entire dataset was downloaded from the DrugBank database. The best 3D mt-QSAR predictor found was an ANN of Multi-Layer Perceptron-type (MLP) with profile MLP 37:37-24-1:1. This MLP classifies correctly 274 out of 321 DPIs (Sensitivity = 85.35%) and 1041 out of 1190 nDPIs (Specificity = 87.48%), corresponding to training Accuracy = 87.03%. We have validated the model with external predicting series with Sensitivity = 84.16% (542/644 DPIs; Specificity = 87.51% (2039/2330 nDPIs) and Accuracy = 86.78%. The new CNs of DPIs reconstructed from US FDA can be used to explore large DPI databases in order to discover both new drugs and/or targets. We have carried out some theoretical-experimental studies to illustrate the practical use of 3D MI-DRAGON. First, we have reported the prediction and pharmacological assay of 22 different rasagiline derivatives with possible AChE inhibitory activity. In this work, we have reviewed different computational studies on Drug- Protein models. First, we have reviewed 10 studies on DP computational models. Next, we have reviewed 2D QSAR, 3D QSAR, CoMFA, CoMSIA and Docking with different compounds to find Drug-Protein QSAR models. Last, we have developped a 3D multi-target QSAR (3D mt-QSAR) models for the prediction of the activity of new compounds against different targets or the discovery of new targets.
NASA Technical Reports Server (NTRS)
Matsui, Toshihisa; Zeng, Xiping; Tao, Wei-Kuo; Masunaga, Hirohiko; Olson, William S.; Lang, Stephen
2008-01-01
This paper proposes a methodology known as the Tropical Rainfall Measuring Mission (TRMM) Triple-Sensor Three-step Evaluation Framework (T3EF) for the systematic evaluation of precipitating cloud types and microphysics in a cloud-resolving model (CRM). T3EF utilizes multi-frequency satellite simulators and novel statistics of multi-frequency radiance and backscattering signals observed from the TRMM satellite. Specifically, T3EF compares CRM and satellite observations in the form of combined probability distributions of precipitation radar (PR) reflectivity, polarization-corrected microwave brightness temperature (Tb), and infrared Tb to evaluate the candidate CRM. T3EF is used to evaluate the Goddard Cumulus Ensemble (GCE) model for cases involving the South China Sea Monsoon Experiment (SCSMEX) and Kwajalein Experiment (KWAJEX). This evaluation reveals that the GCE properly captures the satellite-measured frequencies of different precipitating cloud types in the SCSMEX case but underestimates the frequencies of deep convective and deep stratiform types in the KWAJEX case. Moreover, the GCE tends to simulate excessively large and abundant frozen condensates in deep convective clouds as inferred from the overestimated GCE-simulated radar reflectivities and microwave Tb depressions. Unveiling the detailed errors in the GCE s performance provides the best direction for model improvements.
Detecting Multi-scale Structures in Chandra Images of Centaurus A
NASA Astrophysics Data System (ADS)
Karovska, M.; Fabbiano, G.; Elvis, M. S.; Evans, I. N.; Kim, D. W.; Prestwich, A. H.; Schwartz, D. A.; Murray, S. S.; Forman, W.; Jones, C.; Kraft, R. P.; Isobe, T.; Cui, W.; Schreier, E. J.
1999-12-01
Centaurus A (NGC 5128) is a giant early-type galaxy with a merger history, containing the nearest radio-bright AGN. Recent Chandra High Resolution Camera (HRC) observations of Cen A reveal X-ray multi-scale structures in this object with unprecedented detail and clarity. We show the results of an analysis of the Chandra data with smoothing and edge enhancement techniques that allow us to enhance and quantify the multi-scale structures present in the HRC images. These techniques include an adaptive smoothing algorithm (Ebeling et al 1999), and a multi-directional gradient detection algorithm (Karovska et al 1994). The Ebeling et al adaptive smoothing algorithm, which is incorporated in the CXC analysis s/w package, is a powerful tool for smoothing images containing complex structures at various spatial scales. The adaptively smoothed images of Centaurus A show simultaneously the high-angular resolution bright structures at scales as small as an arcsecond and the extended faint structures as large as several arc minutes. The large scale structures suggest complex symmetry, including a component possibly associated with the inner radio lobes (as suggested by the ROSAT HRI data, Dobereiner et al 1996), and a separate component with an orthogonal symmetry that may be associated with the galaxy as a whole. The dust lane and the x-ray ridges are very clearly visible. The adaptively smoothed images and the edge-enhanced images also suggest several filamentary features including a large filament-like structure extending as far as about 5 arcminutes to North-West.
Research on connection structure of aluminumbody bus using multi-objective topology optimization
NASA Astrophysics Data System (ADS)
Peng, Q.; Ni, X.; Han, F.; Rhaman, K.; Ulianov, C.; Fang, X.
2018-01-01
For connecting Aluminum Alloy bus body aluminum components often occur the problem of failure, a new aluminum alloy connection structure is designed based on multi-objective topology optimization method. Determining the shape of the outer contour of the connection structure with topography optimization, establishing a topology optimization model of connections based on SIMP density interpolation method, going on multi-objective topology optimization, and improving the design of the connecting piece according to the optimization results. The results show that the quality of the aluminum alloy connector after topology optimization is reduced by 18%, and the first six natural frequencies are improved and the strength performance and stiffness performance are obviously improved.
Maureen C. Kennedy; E. David Ford; Thomas M. Hinckley
2009-01-01
Many hypotheses have been advanced about factors that control tree longevity. We use a simulation model with multi-criteria optimization and Pareto optimality to determine branch morphologies in the Pinaceae that minimize the effect of growth limitations due to water stress while simultaneously maximizing carbohydrate gain. Two distinct branch morphologies in the...
NASA Astrophysics Data System (ADS)
Nagano, Yuta; Kohno, Hideo
2017-11-01
Multiwalled carbon nanotubes with tetragonal cross section frequently form junctions with flattened multi-walled carbon nanotubes, a kind of carbon nanoribbon. The three-dimensional structure of the junctions is revealed by transmission-electron-microscopy-based tomography. Two types of junction, parallel and diagonal, are found. The formation mechanism of these two types of junction is discussed in terms of the origami mechanism that was previously proposed to explain the formation of carbon nanoribbons and nanotetrahedra.
Novel active principles from spider venom.
Vassilevski, Alexander A; Grishin, Eugene V
2011-12-01
Spiders are one of the most intriguing groups of venomous animals. Substances found in their venom vary from simple inorganic compounds to large multi-domain proteins. In this article, we review some of the latest work presenting active principles that add to the known spider toxin universe. Two aspects of novelty are addressed in particular, structural (novel types of molecules in terms of structure) and functional (novel types of biological targets hit by substances from spider venom and novel mechanisms of action).
Multi-Dimensional Quantum Tunneling and Transport Using the Density-Gradient Model
NASA Technical Reports Server (NTRS)
Biegel, Bryan A.; Yu, Zhi-Ping; Ancona, Mario; Rafferty, Conor; Saini, Subhash (Technical Monitor)
1999-01-01
We show that quantum effects are likely to significantly degrade the performance of MOSFETs (metal oxide semiconductor field effect transistor) as these devices are scaled below 100 nm channel length and 2 nm oxide thickness over the next decade. A general and computationally efficient electronic device model including quantum effects would allow us to monitor and mitigate these effects. Full quantum models are too expensive in multi-dimensions. Using a general but efficient PDE solver called PROPHET, we implemented the density-gradient (DG) quantum correction to the industry-dominant classical drift-diffusion (DD) model. The DG model efficiently includes quantum carrier profile smoothing and tunneling in multi-dimensions and for any electronic device structure. We show that the DG model reduces DD model error from as much as 50% down to a few percent in comparison to thin oxide MOS capacitance measurements. We also show the first DG simulations of gate oxide tunneling and transverse current flow in ultra-scaled MOSFETs. The advantages of rapid model implementation using the PDE solver approach will be demonstrated, as well as the applicability of the DG model to any electronic device structure.
NASA Astrophysics Data System (ADS)
Wismüller, Axel; De, Titas; Lochmüller, Eva; Eckstein, Felix; Nagarajan, Mahesh B.
2013-03-01
The ability of Minkowski Functionals to characterize local structure in different biological tissue types has been demonstrated in a variety of medical image processing tasks. We introduce anisotropic Minkowski Functionals (AMFs) as a novel variant that captures the inherent anisotropy of the underlying gray-level structures. To quantify the anisotropy characterized by our approach, we further introduce a method to compute a quantitative measure motivated by a technique utilized in MR diffusion tensor imaging, namely fractional anisotropy. We showcase the applicability of our method in the research context of characterizing the local structure properties of trabecular bone micro-architecture in the proximal femur as visualized on multi-detector CT. To this end, AMFs were computed locally for each pixel of ROIs extracted from the head, neck and trochanter regions. Fractional anisotropy was then used to quantify the local anisotropy of the trabecular structures found in these ROIs and to compare its distribution in different anatomical regions. Our results suggest a significantly greater concentration of anisotropic trabecular structures in the head and neck regions when compared to the trochanter region (p < 10-4). We also evaluated the ability of such AMFs to predict bone strength in the femoral head of proximal femur specimens obtained from 50 donors. Our results suggest that such AMFs, when used in conjunction with multi-regression models, can outperform more conventional features such as BMD in predicting failure load. We conclude that such anisotropic Minkowski Functionals can capture valuable information regarding directional attributes of local structure, which may be useful in a wide scope of biomedical imaging applications.
Wismüller, Axel; De, Titas; Lochmüller, Eva; Eckstein, Felix; Nagarajan, Mahesh B.
2017-01-01
The ability of Minkowski Functionals to characterize local structure in different biological tissue types has been demonstrated in a variety of medical image processing tasks. We introduce anisotropic Minkowski Functionals (AMFs) as a novel variant that captures the inherent anisotropy of the underlying gray-level structures. To quantify the anisotropy characterized by our approach, we further introduce a method to compute a quantitative measure motivated by a technique utilized in MR diffusion tensor imaging, namely fractional anisotropy. We showcase the applicability of our method in the research context of characterizing the local structure properties of trabecular bone micro-architecture in the proximal femur as visualized on multi-detector CT. To this end, AMFs were computed locally for each pixel of ROIs extracted from the head, neck and trochanter regions. Fractional anisotropy was then used to quantify the local anisotropy of the trabecular structures found in these ROIs and to compare its distribution in different anatomical regions. Our results suggest a significantly greater concentration of anisotropic trabecular structures in the head and neck regions when compared to the trochanter region (p < 10−4). We also evaluated the ability of such AMFs to predict bone strength in the femoral head of proximal femur specimens obtained from 50 donors. Our results suggest that such AMFs, when used in conjunction with multi-regression models, can outperform more conventional features such as BMD in predicting failure load. We conclude that such anisotropic Minkowski Functionals can capture valuable information regarding directional attributes of local structure, which may be useful in a wide scope of biomedical imaging applications. PMID:29170580
Pattern search in multi-structure data: a framework for the next-generation evidence-based medicine
NASA Astrophysics Data System (ADS)
Sukumar, Sreenivas R.; Ainsworth, Keela C.
2014-03-01
With the impetus towards personalized and evidence-based medicine, the need for a framework to analyze/interpret quantitative measurements (blood work, toxicology, etc.) with qualitative descriptions (specialist reports after reading images, bio-medical knowledgebase, etc.) to predict diagnostic risks is fast emerging. Addressing this need, we pose and answer the following questions: (i) How can we jointly analyze and explore measurement data in context with qualitative domain knowledge? (ii) How can we search and hypothesize patterns (not known apriori) from such multi-structure data? (iii) How can we build predictive models by integrating weakly-associated multi-relational multi-structure data? We propose a framework towards answering these questions. We describe a software solution that leverages hardware for scalable in-memory analytics and applies next-generation semantic query tools on medical data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, L.H., E-mail: Luhui.Han@tum.de; Hu, X.Y., E-mail: Xiangyu.Hu@tum.de; Adams, N.A., E-mail: Nikolaus.Adams@tum.de
In this paper we present a scale separation approach for multi-scale modeling of free-surface and two-phase flows with complex interface evolution. By performing a stimulus-response operation on the level-set function representing the interface, separation of resolvable and non-resolvable interface scales is achieved efficiently. Uniform positive and negative shifts of the level-set function are used to determine non-resolvable interface structures. Non-resolved interface structures are separated from the resolved ones and can be treated by a mixing model or a Lagrangian-particle model in order to preserve mass. Resolved interface structures are treated by the conservative sharp-interface model. Since the proposed scale separationmore » approach does not rely on topological information, unlike in previous work, it can be implemented in a straightforward fashion into a given level set based interface model. A number of two- and three-dimensional numerical tests demonstrate that the proposed method is able to cope with complex interface variations accurately and significantly increases robustness against underresolved interface structures.« less
Genotype-phenotype association study via new multi-task learning model
Huo, Zhouyuan; Shen, Dinggang
2018-01-01
Research on the associations between genetic variations and imaging phenotypes is developing with the advance in high-throughput genotype and brain image techniques. Regression analysis of single nucleotide polymorphisms (SNPs) and imaging measures as quantitative traits (QTs) has been proposed to identify the quantitative trait loci (QTL) via multi-task learning models. Recent studies consider the interlinked structures within SNPs and imaging QTs through group lasso, e.g. ℓ2,1-norm, leading to better predictive results and insights of SNPs. However, group sparsity is not enough for representing the correlation between multiple tasks and ℓ2,1-norm regularization is not robust either. In this paper, we propose a new multi-task learning model to analyze the associations between SNPs and QTs. We suppose that low-rank structure is also beneficial to uncover the correlation between genetic variations and imaging phenotypes. Finally, we conduct regression analysis of SNPs and QTs. Experimental results show that our model is more accurate in prediction than compared methods and presents new insights of SNPs. PMID:29218896
Multi-Scale Multi-Physics Modeling of Matrix Transport Properties in Fractured Shale Reservoirs
NASA Astrophysics Data System (ADS)
Mehmani, A.; Prodanovic, M.
2014-12-01
Understanding the shale matrix flow behavior is imperative in successful reservoir development for hydrocarbon production and carbon storage. Without a predictive model, significant uncertainties in flowback from the formation, the communication between the fracture and matrix as well as proper fracturing practice will ensue. Informed by SEM images, we develop deterministic network models that couple pores from multiple scales and their respective fluid physics. The models are used to investigate sorption hysteresis as an affordable way of inferring the nanoscale pore structure in core scale. In addition, restricted diffusion as a function of pore shape, pore-throat size ratios and network connectivity is computed to make correct interpretation of the 2D NMR maps possible. Our novel pore network models have the ability to match sorption hysteresis measurements without any tuning parameters. The results clarify a common misconception of linking type 3 nitrogen hysteresis curves to only the shale pore shape and show promising sensitivty for nanopore structre inference in core scale. The results on restricted diffusion shed light on the importance of including shape factors in 2D NMR interpretations. A priori "weighting factors" as a function of pore-throat and throat-length ratio are presented and the effect of network connectivity on diffusion is quantitatively assessed. We are currently working on verifying our models with experimental data gathered from the Eagleford formation.
Stewart, David R.; Long, James M.
2015-01-01
Species distribution models are useful tools to evaluate habitat relationships of fishes. We used hierarchical Bayesian multispecies mixture models to evaluate the relationships of both detection and abundance with habitat of reservoir fishes caught using tandem hoop nets. A total of 7,212 fish from 12 species were captured, and the majority of the catch was composed of Channel Catfish Ictalurus punctatus (46%), Bluegill Lepomis macrochirus(25%), and White Crappie Pomoxis annularis (14%). Detection estimates ranged from 8% to 69%, and modeling results suggested that fishes were primarily influenced by reservoir size and context, water clarity and temperature, and land-use types. Species were differentially abundant within and among habitat types, and some fishes were found to be more abundant in turbid, less impacted (e.g., by urbanization and agriculture) reservoirs with longer shoreline lengths; whereas, other species were found more often in clear, nutrient-rich impoundments that had generally shorter shoreline length and were surrounded by a higher percentage of agricultural land. Our results demonstrated that habitat and reservoir characteristics may differentially benefit species and assemblage structure. This study provides a useful framework for evaluating capture efficiency for not only hoop nets but other gear types used to sample fishes in reservoirs.
NASA Astrophysics Data System (ADS)
Koziel, Slawomir; Bekasiewicz, Adrian
2016-10-01
Multi-objective optimization of antenna structures is a challenging task owing to the high computational cost of evaluating the design objectives as well as the large number of adjustable parameters. Design speed-up can be achieved by means of surrogate-based optimization techniques. In particular, a combination of variable-fidelity electromagnetic (EM) simulations, design space reduction techniques, response surface approximation models and design refinement methods permits identification of the Pareto-optimal set of designs within a reasonable timeframe. Here, a study concerning the scalability of surrogate-assisted multi-objective antenna design is carried out based on a set of benchmark problems, with the dimensionality of the design space ranging from six to 24 and a CPU cost of the EM antenna model from 10 to 20 min per simulation. Numerical results indicate that the computational overhead of the design process increases more or less quadratically with the number of adjustable geometric parameters of the antenna structure at hand, which is a promising result from the point of view of handling even more complex problems.
Bi-objective integer programming for RNA secondary structure prediction with pseudoknots.
Legendre, Audrey; Angel, Eric; Tahi, Fariza
2018-01-15
RNA structure prediction is an important field in bioinformatics, and numerous methods and tools have been proposed. Pseudoknots are specific motifs of RNA secondary structures that are difficult to predict. Almost all existing methods are based on a single model and return one solution, often missing the real structure. An alternative approach would be to combine different models and return a (small) set of solutions, maximizing its quality and diversity in order to increase the probability that it contains the real structure. We propose here an original method for predicting RNA secondary structures with pseudoknots, based on integer programming. We developed a generic bi-objective integer programming algorithm allowing to return optimal and sub-optimal solutions optimizing simultaneously two models. This algorithm was then applied to the combination of two known models of RNA secondary structure prediction, namely MEA and MFE. The resulting tool, called BiokoP, is compared with the other methods in the literature. The results show that the best solution (structure with the highest F 1 -score) is, in most cases, given by BiokoP. Moreover, the results of BiokoP are homogeneous, regardless of the pseudoknot type or the presence or not of pseudoknots. Indeed, the F 1 -scores are always higher than 70% for any number of solutions returned. The results obtained by BiokoP show that combining the MEA and the MFE models, as well as returning several optimal and several sub-optimal solutions, allow to improve the prediction of secondary structures. One perspective of our work is to combine better mono-criterion models, in particular to combine a model based on the comparative approach with the MEA and the MFE models. This leads to develop in the future a new multi-objective algorithm to combine more than two models. BiokoP is available on the EvryRNA platform: https://EvryRNA.ibisc.univ-evry.fr .
Cao, Renzhi; Bhattacharya, Debswapna; Adhikari, Badri; Li, Jilong; Cheng, Jianlin
2015-01-01
Model evaluation and selection is an important step and a big challenge in template-based protein structure prediction. Individual model quality assessment methods designed for recognizing some specific properties of protein structures often fail to consistently select good models from a model pool because of their limitations. Therefore, combining multiple complimentary quality assessment methods is useful for improving model ranking and consequently tertiary structure prediction. Here, we report the performance and analysis of our human tertiary structure predictor (MULTICOM) based on the massive integration of 14 diverse complementary quality assessment methods that was successfully benchmarked in the 11th Critical Assessment of Techniques of Protein Structure prediction (CASP11). The predictions of MULTICOM for 39 template-based domains were rigorously assessed by six scoring metrics covering global topology of Cα trace, local all-atom fitness, side chain quality, and physical reasonableness of the model. The results show that the massive integration of complementary, diverse single-model and multi-model quality assessment methods can effectively leverage the strength of single-model methods in distinguishing quality variation among similar good models and the advantage of multi-model quality assessment methods of identifying reasonable average-quality models. The overall excellent performance of the MULTICOM predictor demonstrates that integrating a large number of model quality assessment methods in conjunction with model clustering is a useful approach to improve the accuracy, diversity, and consequently robustness of template-based protein structure prediction. PMID:26369671
Rice, Tyler B; Kwan, Elliott; Hayakawa, Carole K; Durkin, Anthony J; Choi, Bernard; Tromberg, Bruce J
2013-01-01
Laser Speckle Imaging (LSI) is a simple, noninvasive technique for rapid imaging of particle motion in scattering media such as biological tissue. LSI is generally used to derive a qualitative index of relative blood flow due to unknown impact from several variables that affect speckle contrast. These variables may include optical absorption and scattering coefficients, multi-layer dynamics including static, non-ergodic regions, and systematic effects such as laser coherence length. In order to account for these effects and move toward quantitative, depth-resolved LSI, we have developed a method that combines Monte Carlo modeling, multi-exposure speckle imaging (MESI), spatial frequency domain imaging (SFDI), and careful instrument calibration. Monte Carlo models were used to generate total and layer-specific fractional momentum transfer distributions. This information was used to predict speckle contrast as a function of exposure time, spatial frequency, layer thickness, and layer dynamics. To verify with experimental data, controlled phantom experiments with characteristic tissue optical properties were performed using a structured light speckle imaging system. Three main geometries were explored: 1) diffusive dynamic layer beneath a static layer, 2) static layer beneath a diffuse dynamic layer, and 3) directed flow (tube) submerged in a dynamic scattering layer. Data fits were performed using the Monte Carlo model, which accurately reconstructed the type of particle flow (diffusive or directed) in each layer, the layer thickness, and absolute flow speeds to within 15% or better.
Relative resolution: A hybrid formalism for fluid mixtures.
Chaimovich, Aviel; Peter, Christine; Kremer, Kurt
2015-12-28
We show here that molecular resolution is inherently hybrid in terms of relative separation. While nearest neighbors are characterized by a fine-grained (geometrically detailed) model, other neighbors are characterized by a coarse-grained (isotropically simplified) model. We notably present an analytical expression for relating the two models via energy conservation. This hybrid framework is correspondingly capable of retrieving the structural and thermal behavior of various multi-component and multi-phase fluids across state space.
Relative resolution: A hybrid formalism for fluid mixtures
NASA Astrophysics Data System (ADS)
Chaimovich, Aviel; Peter, Christine; Kremer, Kurt
2015-12-01
We show here that molecular resolution is inherently hybrid in terms of relative separation. While nearest neighbors are characterized by a fine-grained (geometrically detailed) model, other neighbors are characterized by a coarse-grained (isotropically simplified) model. We notably present an analytical expression for relating the two models via energy conservation. This hybrid framework is correspondingly capable of retrieving the structural and thermal behavior of various multi-component and multi-phase fluids across state space.
How do bendy straws bend? A study of re-configurability of multi-stable corrugated shells
NASA Astrophysics Data System (ADS)
Bende, Nakul; Selden, Sarah; Evans, Arthur; Santangelo, Christian; Hayward, Ryan
Shape programmable systems have evolved to allow for reconfiguration of structures through a variety of mechanisms including swelling, stress-relaxation, and thermal expansion. Particularly, there has been a recent interest in systems that exhibit bi-stability or multi-stability to achieve transformation between two or more pre-programmed states. Here, we study the ubiquitous architecture of corrugated shells, such as drinking straws or bellows, which has been well known for centuries. Some of these structures exhibit almost continuous stability amongst a wide range of reconfigurable shapes, but the underlying mechanisms are not well understood. To understand multi-stability in `bendy-straw' structures, we study the unit bi-conical segment using experiments and finite element modeling to elucidate the key geometrical and mechanical factors responsible for its multi-stability. The simple transformations of a unit segment - a change in length or angle can impart complex re-configurability of a structure containing many of these units. The fundamental understanding provided of this simple multi-stable building block could yield improvements in shape re-configurability for a wide array of applications such as corrugated medical tubing, robotics, and deployable structures. NSF EFRI ODISSEI-1240441.
Multi-level manual and autonomous control superposition for intelligent telerobot
NASA Technical Reports Server (NTRS)
Hirai, Shigeoki; Sato, T.
1989-01-01
Space telerobots are recognized to require cooperation with human operators in various ways. Multi-level manual and autonomous control superposition in telerobot task execution is described. The object model, the structured master-slave manipulation system, and the motion understanding system are proposed to realize the concept. The object model offers interfaces for task level and object level human intervention. The structured master-slave manipulation system offers interfaces for motion level human intervention. The motion understanding system maintains the consistency of the knowledge through all the levels which supports the robot autonomy while accepting the human intervention. The superposing execution of the teleoperational task at multi-levels realizes intuitive and robust task execution for wide variety of objects and in changeful environment. The performance of several examples of operating chemical apparatuses is shown.
Ogawa, Shinpei; Kimata, Masafumi
2017-01-01
Wavelength- or polarization-selective thermal infrared (IR) detectors are promising for various novel applications such as fire detection, gas analysis, multi-color imaging, multi-channel detectors, recognition of artificial objects in a natural environment, and facial recognition. However, these functions require additional filters or polarizers, which leads to high cost and technical difficulties related to integration of many different pixels in an array format. Plasmonic metamaterial absorbers (PMAs) can impart wavelength or polarization selectivity to conventional thermal IR detectors simply by controlling the surface geometry of the absorbers to produce surface plasmon resonances at designed wavelengths or polarizations. This enables integration of many different pixels in an array format without any filters or polarizers. We review our recent advances in wavelength- and polarization-selective thermal IR sensors using PMAs for multi-color or polarimetric imaging. The absorption mechanism defined by the surface structures is discussed for three types of PMAs—periodic crystals, metal-insulator-metal and mushroom-type PMAs—to demonstrate appropriate applications. Our wavelength- or polarization-selective uncooled IR sensors using various PMAs and multi-color image sensors are then described. Finally, high-performance mushroom-type PMAs are investigated. These advanced functional thermal IR detectors with wavelength or polarization selectivity will provide great benefits for a wide range of applications. PMID:28772855
Ogawa, Shinpei; Kimata, Masafumi
2017-05-04
Wavelength- or polarization-selective thermal infrared (IR) detectors are promising for various novel applications such as fire detection, gas analysis, multi-color imaging, multi-channel detectors, recognition of artificial objects in a natural environment, and facial recognition. However, these functions require additional filters or polarizers, which leads to high cost and technical difficulties related to integration of many different pixels in an array format. Plasmonic metamaterial absorbers (PMAs) can impart wavelength or polarization selectivity to conventional thermal IR detectors simply by controlling the surface geometry of the absorbers to produce surface plasmon resonances at designed wavelengths or polarizations. This enables integration of many different pixels in an array format without any filters or polarizers. We review our recent advances in wavelength- and polarization-selective thermal IR sensors using PMAs for multi-color or polarimetric imaging. The absorption mechanism defined by the surface structures is discussed for three types of PMAs-periodic crystals, metal-insulator-metal and mushroom-type PMAs-to demonstrate appropriate applications. Our wavelength- or polarization-selective uncooled IR sensors using various PMAs and multi-color image sensors are then described. Finally, high-performance mushroom-type PMAs are investigated. These advanced functional thermal IR detectors with wavelength or polarization selectivity will provide great benefits for a wide range of applications.
Learning to Predict Combinatorial Structures
NASA Astrophysics Data System (ADS)
Vembu, Shankar
2009-12-01
The major challenge in designing a discriminative learning algorithm for predicting structured data is to address the computational issues arising from the exponential size of the output space. Existing algorithms make different assumptions to ensure efficient, polynomial time estimation of model parameters. For several combinatorial structures, including cycles, partially ordered sets, permutations and other graph classes, these assumptions do not hold. In this thesis, we address the problem of designing learning algorithms for predicting combinatorial structures by introducing two new assumptions: (i) The first assumption is that a particular counting problem can be solved efficiently. The consequence is a generalisation of the classical ridge regression for structured prediction. (ii) The second assumption is that a particular sampling problem can be solved efficiently. The consequence is a new technique for designing and analysing probabilistic structured prediction models. These results can be applied to solve several complex learning problems including but not limited to multi-label classification, multi-category hierarchical classification, and label ranking.
NASA Astrophysics Data System (ADS)
Ji, P.; Piasecki, M.
2012-12-01
With the rapid growth in data volumes, data diversity and data demands from multi-disciplinary research effort, data management and exploitation are increasingly facing significant challenges for environmental scientific community. We describe Environmental data store (EDS), a system we are developing that is a web-based system following an open source implementation to manage and exploit multi-data-type environmental data. EDS provides repository services for the six fundamental data types, which meet the demands of multi-disciplinary environmental research. These data types are: a) Time Series Data, b) GeoSpatial data, c) Digital Data, d) Ex-Situ Sampling data, e) Modeling Data, f) Raster Data. Through data portal, EDS allows for efficient consuming these six types of data placed in data pool, which is made up of different data nodes corresponding to different data types, including iRODS, ODM, THREADS, ESSDB, GeoServer, etc.. EDS data portal offers unified submission interface for the above different data types; provides fully integrated, scalable search across content from the above different data systems; also features mapping, analysis, exporting and visualization, through integration with other software. EDS uses a number of developed systems, follows widely used data standards, and highlights the thematic, semantic, and syntactic support on the submission and search, in order to advance multi-disciplinary environmental research. This system will be installed and develop at the CrossRoads initiative at the City College of New York.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kollias, Pavlos
This is a multi-institutional, collaborative project using a three-tier modeling approach to bridge field observations and global cloud-permitting models, with emphases on cloud population structural evolution through various large-scale environments. Our contribution was in data analysis for the generation of high value cloud and precipitation products and derive cloud statistics for model validation. There are two areas in data analysis that we contributed: the development of a synergistic cloud and precipitation cloud classification that identify different cloud (e.g. shallow cumulus, cirrus) and precipitation types (shallow, deep, convective, stratiform) using profiling ARM observations and the development of a quantitative precipitation ratemore » retrieval algorithm using profiling ARM observations. Similar efforts have been developed in the past for precipitation (weather radars), but not for the millimeter-wavelength (cloud) radar deployed at the ARM sites.« less
Ideal MHD Stability and Characteristics of Edge Localized Modes on CFETR
NASA Astrophysics Data System (ADS)
Li, Zeyu; Chan, Vincent; Xu, Xueqiao; Wang, Xiaogang; Cfetr Physics Team
2017-10-01
Investigation on the equilibrium operation regime, its ideal magnetohydrodynamics (MHD) stability and edge localized modes (ELM) characteristics is performed for China Fusion Engineering Test Reactor (CFETR). The CFETR operation regime study starts with a baseline scenario derived from multi-code integrated modeling, with key parameters varied to build a systematic database. These parameters, under profile and pedestal constraints, provide the foundation for engineering design. The linear stabilities of low-n and intermediate-n peeling-ballooning modes for CFETR baseline scenario are analyzed. Multi-code benchmarking, including GATO, ELITE, BOUT + + and NIMROD, demonstrated good agreement in predicting instabilities. Nonlinear behavior of ELMs for the baseline scenario is simulated using BOUT + + . Instabilities are found both at the pedestal top and inside the pedestal region, which lead to a mix of grassy and type I ELMs. Pedestal structures extending inward beyond the pedestal top are also varied to study the influence on ELM characteristic. Preliminary results on the dependence of the Type-I ELM divertor heat load scaling on machine size and pedestal pressure will also be presented. Prepared by LLNL under Contract DE-AC52-07NA27344 and National Magnetic Confinement Fusion Research Program of China (Grant No. 2014GB110003 and 2014GB107004).
Chiral tunneling in gated inversion symmetric Weyl semimetal.
Bai, Chunxu; Yang, Yanling; Chang, Kai
2016-02-18
Based on the chirality-resolved transfer-matrix method, we evaluate the chiral transport tunneling through Weyl semimetal multi-barrier structures created by periodic gates. It is shown that, in sharp contrast to the cases of three dimensional normal semimetals, the tunneling coefficient as a function of incident angle shows a strong anisotropic behavior. Importantly, the tunneling coefficients display an interesting periodic oscillation as a function of the crystallographic angle of the structures. With the increasement of the barriers, the tunneling current shows a Fabry-Perot type interferences. For superlattice structures, the fancy miniband effect has been revealed. Our results show that the angular dependence of the first bandgap can be reduced into a Lorentz formula. The disorder suppresses the oscillation of the tunneling conductance, but would not affect its average amplitude. This is in sharp contrast to that in multi-barrier conventional semiconductor structures. Moreover, numerical results for the dependence of the angularly averaged conductance on the incident energy and the structure parameters are presented and contrasted with those in two dimensional relativistic materials. Our work suggests that the gated Weyl semimetal opens a possible new route to access to new type nanoelectronic device.
Chiral tunneling in gated inversion symmetric Weyl semimetal
Bai, Chunxu; Yang, Yanling; Chang, Kai
2016-01-01
Based on the chirality-resolved transfer-matrix method, we evaluate the chiral transport tunneling through Weyl semimetal multi-barrier structures created by periodic gates. It is shown that, in sharp contrast to the cases of three dimensional normal semimetals, the tunneling coefficient as a function of incident angle shows a strong anisotropic behavior. Importantly, the tunneling coefficients display an interesting periodic oscillation as a function of the crystallographic angle of the structures. With the increasement of the barriers, the tunneling current shows a Fabry-Perot type interferences. For superlattice structures, the fancy miniband effect has been revealed. Our results show that the angular dependence of the first bandgap can be reduced into a Lorentz formula. The disorder suppresses the oscillation of the tunneling conductance, but would not affect its average amplitude. This is in sharp contrast to that in multi-barrier conventional semiconductor structures. Moreover, numerical results for the dependence of the angularly averaged conductance on the incident energy and the structure parameters are presented and contrasted with those in two dimensional relativistic materials. Our work suggests that the gated Weyl semimetal opens a possible new route to access to new type nanoelectronic device. PMID:26888491
The natural oscillation of two types of ENSO events based on analyses of CMIP5 model control runs
NASA Astrophysics Data System (ADS)
Xu, Kang; Su, Jingzhi; Zhu, Congwen
2014-07-01
The eastern- and central-Pacific El Niño-Southern Oscillation (EP- and CP-ENSO) have been found to be dominant in the tropical Pacific Ocean, and are characterized by interannual and decadal oscillation, respectively. In the present study, we defined the EP- and CP-ENSO modes by singular value decomposition (SVD) between SST and sea level pressure (SLP) anomalous fields. We evaluated the natural features of these two types of ENSO modes as simulated by the pre-industrial control runs of 20 models involved in phase five of the Coupled Model Intercomparison Project (CMIP5). The results suggested that all the models show good skill in simulating the SST and SLP anomaly dipolar structures for the EP-ENSO mode, but only 12 exhibit good performance in simulating the tripolar CP-ENSO modes. Wavelet analysis suggested that the ensemble principal components in these 12 models exhibit an interannual and multi-decadal oscillation related to the EP- and CP-ENSO, respectively. Since there are no changes in external forcing in the pre-industrial control runs, such a result implies that the decadal oscillation of CP-ENSO is possibly a result of natural climate variability rather than external forcing.
Wang, Yang; Wu, Lin
2018-07-01
Low-Rank Representation (LRR) is arguably one of the most powerful paradigms for Multi-view spectral clustering, which elegantly encodes the multi-view local graph/manifold structures into an intrinsic low-rank self-expressive data similarity embedded in high-dimensional space, to yield a better graph partition than their single-view counterparts. In this paper we revisit it with a fundamentally different perspective by discovering LRR as essentially a latent clustered orthogonal projection based representation winged with an optimized local graph structure for spectral clustering; each column of the representation is fundamentally a cluster basis orthogonal to others to indicate its members, which intuitively projects the view-specific feature representation to be the one spanned by all orthogonal basis to characterize the cluster structures. Upon this finding, we propose our technique with the following: (1) We decompose LRR into latent clustered orthogonal representation via low-rank matrix factorization, to encode the more flexible cluster structures than LRR over primal data objects; (2) We convert the problem of LRR into that of simultaneously learning orthogonal clustered representation and optimized local graph structure for each view; (3) The learned orthogonal clustered representations and local graph structures enjoy the same magnitude for multi-view, so that the ideal multi-view consensus can be readily achieved. The experiments over multi-view datasets validate its superiority, especially over recent state-of-the-art LRR models. Copyright © 2018 Elsevier Ltd. All rights reserved.
A Model Based Approach to Increase the Part Accuracy in Robot Based Incremental Sheet Metal Forming
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meier, Horst; Laurischkat, Roman; Zhu Junhong
One main influence on the dimensional accuracy in robot based incremental sheet metal forming results from the compliance of the involved robot structures. Compared to conventional machine tools the low stiffness of the robot's kinematic results in a significant deviation of the planned tool path and therefore in a shape of insufficient quality. To predict and compensate these deviations offline, a model based approach, consisting of a finite element approach, to simulate the sheet forming, and a multi body system, modeling the compliant robot structure, has been developed. This paper describes the implementation and experimental verification of the multi bodymore » system model and its included compensation method.« less
ERIC Educational Resources Information Center
Georgakopoulos, Alexia
2009-01-01
This study challenges narrow definitions of teacher effectiveness and uses a systems approach to investigate teacher effectiveness as a multi-dimensional, holistic phenomenon. The methods of Nominal Group Technique and Interpretive Structural Modeling were used to assist U.S. and Japanese students separately construct influence structures during…
Stability and structural properties of gene regulation networks with coregulation rules.
Warrell, Jonathan; Mhlanga, Musa
2017-05-07
Coregulation of the expression of groups of genes has been extensively demonstrated empirically in bacterial and eukaryotic systems. Such coregulation can arise through the use of shared regulatory motifs, which allow the coordinated expression of modules (and module groups) of functionally related genes across the genome. Coregulation can also arise through the physical association of multi-gene complexes through chromosomal looping, which are then transcribed together. We present a general formalism for modeling coregulation rules in the framework of Random Boolean Networks (RBN), and develop specific models for transcription factor networks with modular structure (including module groups, and multi-input modules (MIM) with autoregulation) and multi-gene complexes (including hierarchical differentiation between multi-gene complex members). We develop a mean-field approach to analyse the dynamical stability of large networks incorporating coregulation, and show that autoregulated MIM and hierarchical gene-complex models can achieve greater stability than networks without coregulation whose rules have matching activation frequency. We provide further analysis of the stability of small networks of both kinds through simulations. We also characterize several general properties of the transients and attractors in the hierarchical coregulation model, and show using simulations that the steady-state distribution factorizes hierarchically as a Bayesian network in a Markov Jump Process analogue of the RBN model. Copyright © 2017. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Chen, Yiying; Ryder, James; Naudts, Kim; McGrath, Matthew J.; Otto, Juliane; Bastriko, Vladislav; Valade, Aude; Launiainen, Samuli; Ogée, Jérôme; Elbers, Jan A.; Foken, Thomas; Tiedemann, Frank; Heinesch, Bernard; Black, Andrew; Haverd, Vanessa; Loustau, Denis; Ottlé, Catherine; Peylin, Philippe; Polcher, Jan; Luyssaert, Sebastiaan
2015-04-01
Canopy structure is one of the most important vegetation characteristics for land-atmosphere interactions as it determines the energy and scalar exchanges between land surface and overlay air mass. In this study we evaluated the performance of a newly developed multi-layer energy budget (Ryder et al., 2014) in a land surface model, ORCHIDEE-CAN (Naudts et al., 2014), which simulates canopy structure and can be coupled to an atmospheric model using an implicit procedure. Furthermore, a vertical discrete drag parametrization scheme was also incorporated into this model, in order to obtain a better description of the sub-canopy wind profile simulation. Site level datasets, including the top-of-the-canopy and sub-canopy observations made available from eight flux observation sites, were collected in order to conduct this evaluation. The geo-location of the collected observation sites crossed climate zones from temperate to boreal and the vegetation types included deciduous, evergreen broad leaved and evergreen needle leaved forest with maximum LAI ranging from 2.1 to 7.0. First, we used long-term top-of-the-canopy measurements to analyze the performance of the current one-layer energy budget in ORCHIDEE-CAN. Three major processes were identified for improvement through the implementation of a multi-layer energy budget: 1) night time radiation balance, 2) energy partitioning during winter and 3) prediction of the ground heat flux. Short-term sub-canopy observations were used to calibrate the parameters in sub-canopy radiation, turbulence and resistances modules with an automatic tuning process following the maximum gradient of the user-defined objective function. The multi-layer model is able to capture the dynamic of sub-canopy turbulence, temperature and energy fluxes with imposed LAI profile and optimized parameter set at a site level calibration. The simulation result shows the improvement both on the nighttime energy balance and energy partitioning during winter and presents a better Taylor skill score, compared to the result from single layer simulation. The importance of using the multi-layer energy budget in a land surface model for coupling to the atmospheric model will also be discussed in this presentation. Reference: Ryder, J., J. Polcher, P. Peylin, C. Ottlé, Y. Chen, E. Van Gorsel, V. Haverd, M. J. McGrath, K.Naudts, J. Otto, A. Valade, and S. Luyssaert, 2014. "A multi-layer land surface energy budget model for implicit coupling with global atmospheric simulations", Geosci. Model Dev. Discuss. 7, 8649-8701 Naudts, K. J. Ryder, M. J. McGrath, J. Otto, Y. Chen, A. Valade, V. Bellasen, G. Berhongaray, G. Bönisch, M. Campioli, J. Ghattas, T. De Groote, V. Haverd, J. Kattge, N. MacBean, F. Maignan, P. Merilä, J. Penuelas, P. Peylin, B. Pinty, H. Pretzsch, E. D. Schulze, D. Solyga, N. Vuichard, Y. Yan, and S. Luyssaert, 2014. "A vertically discretised canopy description for ORCHIDEE (SVN r2290) and the modifications to the energy, water and carbon fluxes", Geosci. Model Dev. Discuss. 7, 8565-8647
NASA Technical Reports Server (NTRS)
Dabney, Philip W.; Harding, David J.; Valett, Susan R.; Vasilyev, Aleksey A.; Yu, Anthony W.
2012-01-01
The Slope Imaging Multi-polarization Photon-counting Lidar (SIMPL) is a multi-beam, micropulse airborne laser altimeter that acquires active and passive polarimetric optical remote sensing measurements at visible and near-infrared wavelengths. SIMPL was developed to demonstrate advanced measurement approaches of potential benefit for improved, more efficient spaceflight laser altimeter missions. SIMPL data have been acquired for wide diversity of forest types in the summers of 2010 and 2011 in order to assess the potential of its novel capabilities for characterization of vegetation structure and composition. On each of its four beams SIMPL provides highly-resolved measurements of forest canopy structure by detecting single-photons with 15 cm ranging precision using a narrow-beam system operating at a laser repetition rate of 11 kHz. Associated with that ranging data SIMPL provides eight amplitude parameters per beam unlike the single amplitude provided by typical laser altimeters. Those eight parameters are received energy that is parallel and perpendicular to that of the plane-polarized transmit pulse at 532 nm (green) and 1064 nm (near IR), for both the active laser backscatter retro-reflectance and the passive solar bi-directional reflectance. This poster presentation will cover the instrument architecture and highlight the performance of the SIMPL instrument with examples taken from measurements for several sites with distinct canopy structures and compositions. Specific performance areas such as probability of detection, after pulsing, and dead time, will be highlighted and addressed, along with examples of their impact on the measurements and how they limit the ability to accurately model and recover the canopy properties. To assess the sensitivity of SIMPL's measurements to canopy properties an instrument model has been implemented in the FLIGHT radiative transfer code, based on Monte Carlo simulation of photon transport. SIMPL data collected in 2010 over the Smithsonian Environmental Research Center, MD are currently being modelled and compared to other remote sensing and in situ data sets. Results on the adaptation of FLIGHT to model micropulse, single'photon ranging measurements are presented elsewhere at this conference. NASA's ICESat-2 spaceflight mission, scheduled for launch in 2016, will utilize a multi-beam, micropulse, single-photon ranging measurement approach (although non-polarimetric and only at 532 nm). Insights gained from the analysis and modelling of SIMPL data will help guide preparations for that mission, including development of calibration/validation plans and algorithms for the estimation of forest biophysical parameters.
Control/structure interaction conceptual design tool
NASA Technical Reports Server (NTRS)
Briggs, Hugh C.
1990-01-01
The JPL Control/Structure Interaction Program is developing new analytical methods for designing micro-precision spacecraft with controlled structures. One of these, the Conceptual Design Tool, will illustrate innovative new approaches to the integration of multi-disciplinary analysis and design methods. The tool will be used to demonstrate homogeneity of presentation, uniform data representation across analytical methods, and integrated systems modeling. The tool differs from current 'integrated systems' that support design teams most notably in its support for the new CSI multi-disciplinary engineer. The design tool will utilize a three dimensional solid model of the spacecraft under design as the central data organization metaphor. Various analytical methods, such as finite element structural analysis, control system analysis, and mechanical configuration layout, will store and retrieve data from a hierarchical, object oriented data structure that supports assemblies of components with associated data and algorithms. In addition to managing numerical model data, the tool will assist the designer in organizing, stating, and tracking system requirements.
Multi-Target Regression via Robust Low-Rank Learning.
Zhen, Xiantong; Yu, Mengyang; He, Xiaofei; Li, Shuo
2018-02-01
Multi-target regression has recently regained great popularity due to its capability of simultaneously learning multiple relevant regression tasks and its wide applications in data mining, computer vision and medical image analysis, while great challenges arise from jointly handling inter-target correlations and input-output relationships. In this paper, we propose Multi-layer Multi-target Regression (MMR) which enables simultaneously modeling intrinsic inter-target correlations and nonlinear input-output relationships in a general framework via robust low-rank learning. Specifically, the MMR can explicitly encode inter-target correlations in a structure matrix by matrix elastic nets (MEN); the MMR can work in conjunction with the kernel trick to effectively disentangle highly complex nonlinear input-output relationships; the MMR can be efficiently solved by a new alternating optimization algorithm with guaranteed convergence. The MMR leverages the strength of kernel methods for nonlinear feature learning and the structural advantage of multi-layer learning architectures for inter-target correlation modeling. More importantly, it offers a new multi-layer learning paradigm for multi-target regression which is endowed with high generality, flexibility and expressive ability. Extensive experimental evaluation on 18 diverse real-world datasets demonstrates that our MMR can achieve consistently high performance and outperforms representative state-of-the-art algorithms, which shows its great effectiveness and generality for multivariate prediction.
NASA Astrophysics Data System (ADS)
Lu, Meilian; Yang, Dong; Zhou, Xing
2013-03-01
Based on the analysis of the requirements of conversation history storage in CPM (Converged IP Messaging) system, a Multi-views storage model and access methods of conversation history are proposed. The storage model separates logical views from physical storage and divides the storage into system managed region and user managed region. It simultaneously supports conversation view, system pre-defined view and user-defined view of storage. The rationality and feasibility of multi-view presentation, the physical storage model and access methods are validated through the implemented prototype. It proves that, this proposal has good scalability, which will help to optimize the physical data storage structure and improve storage performance.
NASA Astrophysics Data System (ADS)
Eisner, Stephanie; Huang, Shaochun; Majasalmi, Titta; Bright, Ryan; Astrup, Rasmus; Beldring, Stein
2017-04-01
Forests are recognized for their decisive effect on landscape water balance with structural forest characteristics as stand density or species composition determining energy partitioning and dominant flow paths. However, spatial and temporal variability in forest structure is often poorly represented in hydrological modeling frameworks, in particular in regional to large scale hydrological modeling and impact analysis. As a common practice, prescribed land cover classes (including different generic forest types) are linked to parameter values derived from literature, or parameters are determined by calibration. While national forest inventory (NFI) data provide comprehensive, detailed information on hydrologically relevant forest characteristics, their potential to inform hydrological simulation over larger spatial domains is rarely exploited. In this study we present a modeling framework that couples the distributed hydrological model HBV with forest structural information derived from the Norwegian NFI and multi-source remote sensing data. The modeling framework, set up for the entire of continental Norway at 1 km spatial resolution, is explicitly designed to study the combined and isolated impacts of climate change, forest management and land use change on hydrological fluxes. We use a forest classification system based on forest structure rather than biomes which allows to implicitly account for impacts of forest management on forest structural attributes. In the hydrological model, different forest classes are represented by three parameters: leaf area index (LAI), mean tree height and surface albedo. Seasonal cycles of LAI and surface albedo are dynamically simulated to make the framework applicable under climate change conditions. Based on a hindcast for the pilot regions Nord-Trøndelag and Sør-Trøndelag, we show how forest management has affected regional hydrological fluxes during the second half of the 20th century as contrasted to climate variability.
Linking multi-temporal satellite imagery to coastal wetland dynamics and bird distribution
Pickens, Bradley A.; King, Sammy L.
2014-01-01
Ecosystems are characterized by dynamic ecological processes, such as flooding and fires, but spatial models are often limited to a single measurement in time. The characterization of direct, fine-scale processes affecting animals is potentially valuable for management applications, but these are difficult to quantify over broad extents. Direct predictors are also expected to improve transferability of models beyond the area of study. Here, we investigated the ability of non-static and multi-temporal habitat characteristics to predict marsh bird distributions, while testing model generality and transferability between two coastal habitats. Distribution models were developed for king rail (Rallus elegans), common gallinule (Gallinula galeata), least bittern (Ixobrychus exilis), and purple gallinule (Porphyrio martinica) in fresh and intermediate marsh types in the northern Gulf Coast of Louisiana and Texas, USA. For model development, repeated point count surveys of marsh birds were conducted from 2009 to 2011. Landsat satellite imagery was used to quantify both annual conditions and cumulative, multi-temporal habitat characteristics. We used multivariate adaptive regression splines to quantify bird-habitat relationships for fresh, intermediate, and combined marsh habitats. Multi-temporal habitat characteristics ranked as more important than single-date characteristics, as temporary water was most influential in six of eight models. Predictive power was greater for marsh type-specific models compared to general models and model transferability was poor. Birds in fresh marsh selected for annual habitat characterizations, while birds in intermediate marsh selected for cumulative wetness and heterogeneity. Our findings emphasize that dynamic ecological processes can affect species distribution and species-habitat relationships may differ with dominant landscape characteristics.
In silico biology of bone modelling and remodelling: adaptation.
Gerhard, Friederike A; Webster, Duncan J; van Lenthe, G Harry; Müller, Ralph
2009-05-28
Modelling and remodelling are the processes by which bone adapts its shape and internal structure to external influences. However, the cellular mechanisms triggering osteoclastic resorption and osteoblastic formation are still unknown. In order to investigate current biological theories, in silico models can be applied. In the past, most of these models were based on the continuum assumption, but some questions related to bone adaptation can be addressed better by models incorporating the trabecular microstructure. In this paper, existing simulation models are reviewed and one of the microstructural models is extended to test the hypothesis that bone adaptation can be simulated without particular knowledge of the local strain distribution in the bone. Validation using an experimental murine loading model showed that this is possible. Furthermore, the experimental model revealed that bone formation cannot be attributed only to an increase in trabecular thickness but also to structural reorganization including the growth of new trabeculae. How these new trabeculae arise is still an unresolved issue and might be better addressed by incorporating other levels of hierarchy, especially the cellular level. The cellular level sheds light on the activity and interplay between the different cell types, leading to the effective change in the whole bone. For this reason, hierarchical multi-scale simulations might help in the future to better understand the biomathematical laws behind bone adaptation.
CFD Methods and Tools for Multi-Element Airfoil Analysis
NASA Technical Reports Server (NTRS)
Rogers, Stuart E.; George, Michael W. (Technical Monitor)
1995-01-01
This lecture will discuss the computational tools currently available for high-lift multi-element airfoil analysis. It will present an overview of a number of different numerical approaches, their current capabilities, short-comings, and computational costs. The lecture will be limited to viscous methods, including inviscid/boundary layer coupling methods, and incompressible and compressible Reynolds-averaged Navier-Stokes methods. Both structured and unstructured grid generation approaches will be presented. Two different structured grid procedures are outlined, one which uses multi-block patched grids, the other uses overset chimera grids. Turbulence and transition modeling will be discussed.
Kharmanda, G
2016-11-01
A new strategy of multi-objective structural optimization is integrated into Austin-Moore prosthesis in order to improve its performance. The new resulting model is so-called Improved Austin-Moore. The topology optimization is considered as a conceptual design stage to sketch several kinds of hollow stems according to the daily loading cases. The shape optimization presents the detailed design stage considering several objectives. Here, A new multiplicative formulation is proposed as a performance scale in order to define the best compromise between several requirements. Numerical applications on 2D and 3D problems are carried out to show the advantages of the proposed model.
Hazard interactions and interaction networks (cascades) within multi-hazard methodologies
NASA Astrophysics Data System (ADS)
Gill, Joel C.; Malamud, Bruce D.
2016-08-01
This paper combines research and commentary to reinforce the importance of integrating hazard interactions and interaction networks (cascades) into multi-hazard methodologies. We present a synthesis of the differences between multi-layer single-hazard approaches and multi-hazard approaches that integrate such interactions. This synthesis suggests that ignoring interactions between important environmental and anthropogenic processes could distort management priorities, increase vulnerability to other spatially relevant hazards or underestimate disaster risk. In this paper we proceed to present an enhanced multi-hazard framework through the following steps: (i) description and definition of three groups (natural hazards, anthropogenic processes and technological hazards/disasters) as relevant components of a multi-hazard environment, (ii) outlining of three types of interaction relationship (triggering, increased probability, and catalysis/impedance), and (iii) assessment of the importance of networks of interactions (cascades) through case study examples (based on the literature, field observations and semi-structured interviews). We further propose two visualisation frameworks to represent these networks of interactions: hazard interaction matrices and hazard/process flow diagrams. Our approach reinforces the importance of integrating interactions between different aspects of the Earth system, together with human activity, into enhanced multi-hazard methodologies. Multi-hazard approaches support the holistic assessment of hazard potential and consequently disaster risk. We conclude by describing three ways by which understanding networks of interactions contributes to the theoretical and practical understanding of hazards, disaster risk reduction and Earth system management. Understanding interactions and interaction networks helps us to better (i) model the observed reality of disaster events, (ii) constrain potential changes in physical and social vulnerability between successive hazards, and (iii) prioritise resource allocation for mitigation and disaster risk reduction.
Abeijon, Paula; Garcia-Mera, Xerardo; Caamano, Olga; Yanez, Matilde; Lopez-Castro, Edgar; Romero-Duran, Francisco J; Gonzalez-Diaz, Humberto
2017-01-01
Hansch's model is a classic approach to Quantitative Structure-Binding Relationships (QSBR) problems in Pharmacology and Medicinal Chemistry. Hansch QSAR equations are used as input parameters of electronic structure and lipophilicity. In this work, we perform a review on Hansch's analysis. We also developed a new type of PT-QSBR Hansch's model based on Perturbation Theory (PT) and QSBR approach for a large number of drugs reported in CheMBL. The targets are proteins expressed by the Hippocampus region of the brain of Alzheimer Disease (AD) patients. The model predicted correctly 49312 out of 53783 negative perturbations (Specificity = 91.7%) and 16197 out of 21245 positive perturbations (Sensitivity = 76.2%) in training series. The model also predicted correctly 49312/53783 (91.7%) and 16197/21245 (76.2%) negative or positive perturbations in external validation series. We applied our model in theoretical-experimental studies of organic synthesis, pharmacological assay, and prediction of unmeasured results for a series of compounds similar to Rasagiline (compound of reference) with potential neuroprotection effect. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Chemical Structure-Biological Activity Models for Pharmacophores’ 3D-Interactions
Putz, Mihai V.; Duda-Seiman, Corina; Duda-Seiman, Daniel; Putz, Ana-Maria; Alexandrescu, Iulia; Mernea, Maria; Avram, Speranta
2016-01-01
Within medicinal chemistry nowadays, the so-called pharmaco-dynamics seeks for qualitative (for understanding) and quantitative (for predicting) mechanisms/models by which given chemical structure or series of congeners actively act on biological sites either by focused interaction/therapy or by diffuse/hazardous influence. To this aim, the present review exposes three of the fertile directions in approaching the biological activity by chemical structural causes: the special computing trace of the algebraic structure-activity relationship (SPECTRAL-SAR) offering the full analytical counterpart for multi-variate computational regression, the minimal topological difference (MTD) as the revived precursor for comparative molecular field analyses (CoMFA) and comparative molecular similarity indices analysis (CoMSIA); all of these methods and algorithms were presented, discussed and exemplified on relevant chemical medicinal systems as proton pump inhibitors belonging to the 4-indolyl,2-guanidinothiazole class of derivatives blocking the acid secretion from parietal cells in the stomach, the 1-[(2-hydroxyethoxy)-methyl]-6-(phenylthio)thymine congeners’ (HEPT ligands) antiviral activity against Human Immunodeficiency Virus of first type (HIV-1) and new pharmacophores in treating severe genetic disorders (like depression and psychosis), respectively, all involving 3D pharmacophore interactions. PMID:27399692
[The role of CCLINs in the event of an epidemic of multi-drug and highly resistant bacteria].
Landriu, Danièle
2015-01-01
The management of epidemics of multi-drug and highly resistant bacteria must be based on a structured organisation. Within each region it requires the expertise of centres for the interregional coordination of nosocomial infection control (CCLINs) and their regional branches of nosocomial infection control (Arlin) which support hospitals in reporting these types of epidemics. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Multi-Layer SnSe Nanoflake Field-Effect Transistors with Low-Resistance Au Ohmic Contacts
NASA Astrophysics Data System (ADS)
Cho, Sang-Hyeok; Cho, Kwanghee; Park, No-Won; Park, Soonyong; Koh, Jung-Hyuk; Lee, Sang-Kwon
2017-05-01
We report p-type tin monoselenide (SnSe) single crystals, grown in double-sealed quartz ampoules using a modified Bridgman technique at 920 °C. X-ray powder diffraction (XRD) and energy dispersive X-ray spectroscopy (EDX) measurements clearly confirm that the grown SnSe consists of single-crystal SnSe. Electrical transport of multi-layer SnSe nanoflakes, which were prepared by exfoliation from bulk single crystals, was conducted using back-gated field-effect transistor (FET) structures with Au and Ti contacts on SiO2/Si substrates, revealing that multi-layer SnSe nanoflakes exhibit p-type semiconductor characteristics owing to the Sn vacancies on the surfaces of SnSe nanoflakes. In addition, a strong carrier screening effect was observed in 70-90-nm-thick SnSe nanoflake FETs. Furthermore, the effect of the metal contacts to multi-layer SnSe nanoflake-based FETs is also discussed with two different metals, such as Ti/Au and Au contacts.
Real-Time Visual Tracking through Fusion Features
Ruan, Yang; Wei, Zhenzhong
2016-01-01
Due to their high-speed, correlation filters for object tracking have begun to receive increasing attention. Traditional object trackers based on correlation filters typically use a single type of feature. In this paper, we attempt to integrate multiple feature types to improve the performance, and we propose a new DD-HOG fusion feature that consists of discriminative descriptors (DDs) and histograms of oriented gradients (HOG). However, fusion features as multi-vector descriptors cannot be directly used in prior correlation filters. To overcome this difficulty, we propose a multi-vector correlation filter (MVCF) that can directly convolve with a multi-vector descriptor to obtain a single-channel response that indicates the location of an object. Experiments on the CVPR2013 tracking benchmark with the evaluation of state-of-the-art trackers show the effectiveness and speed of the proposed method. Moreover, we show that our MVCF tracker, which uses the DD-HOG descriptor, outperforms the structure-preserving object tracker (SPOT) in multi-object tracking because of its high-speed and ability to address heavy occlusion. PMID:27347951
Aerogel Hybrid Composite Materials: Designs and Testing for Multifunctional Applications
NASA Technical Reports Server (NTRS)
Williams, Martha K.; Fesmire, James E.
2016-01-01
This webinar will introduce the broad spectrum of aerogel composites and their diverse performance properties such as reduced heat transfer to energy storage, and expands specifically on the aerogel/fiber laminate systems and testing methodologies. The multi-functional laminate composite system, AeroFiber, and its construction is designed by varying the type of fiber (e.g. polyester, carbon, Kevlar®, Spectra® or Innegral(TradeMark) and combinations thereof), the aerogel panel type and thickness, and overall layup configuration. The combination and design of materials may be customized and tailored to achieve a range of desired properties in the resulting laminate system. Multi-functional properties include structural strength, impact resistance, reduction in heat transfer, increased fire resistance, mechanical energy absorption, and acoustic energy dampening. Applications include aerospace, aircraft, automotive, boating, building and construction, lightweight portable structures, liquefied natural gas, cryogenics, transportation and energy, sporting equipment, and military protective gear industries.
ERIC Educational Resources Information Center
Ursavas, Omer Faruk; Reisoglu, Ilknur
2017-01-01
Purpose: The purpose of this paper is to explore the validity of extended technology acceptance model (TAM) in explaining pre-service teachers' Edmodo acceptance and the variation of variables related to TAM among pre-service teachers having different cognitive styles. Design/methodology/approach: Structural equation modeling approach was used to…
Chemical and morphological characterization of III-V strained layered heterostructures
NASA Astrophysics Data System (ADS)
Gray, Allen Lindsay
This dissertation describes investigations into the chemical and morphological characterization of III-V strained layered heterostructures by high-resolution x-ray diffraction. The purpose of this work is two-fold. The first was to use high-resolution x-ray diffraction coupled with transmission electron microscopy to characterize structurally a quaternary AlGaAsSb/InGaAsSb multiple quantum well heterostructure laser device. A method for uniquely determining the chemical composition of the strain quaternary quantum well, information previously thought to be unattainable using high resolution x-ray diffraction is thoroughly described. The misconception that high-resolution x-ray diffraction can separately find the well and barrier thickness of a multi-quantum well from the pendellosung fringe spacing is corrected, and thus the need for transmission electron microscopy is motivated. Computer simulations show that the key in finding the well composition is the intensity of the -3rd order satellite peaks in the diffraction pattern. The second part of this work addresses the evolution of strain relief in metastable multi-period InGaAs/GaAs multi-layered structures by high-resolution x-ray reciprocal space maps. Results are accompanied by transmission electron and differential contrast microscopy. The evolution of strain relief is tracked from a coherent "pseudomorphic" growth to a dislocated state as a function of period number by examining the x-ray diffuse scatter emanating from the average composition (zeroth-order) of the multi-layer. Relaxation is determined from the relative positions of the substrate with respect to the zeroth-order peak. For the low period number, the diffuse scatter from the multi-layer structure region arises from periodic, coherent crystallites. For the intermediate period number, the displacement fields around the multi-layer structure region transition to random coherent crystallites. At the higher period number, displacement fields of overlapping dislocations from relaxation of the random crystallites cause the initial stages of relaxation of the multi-layer structure. At the highest period number studied, relaxation of the multi-layer structure becomes bi-modal characterized by overlapping dislocations caused by mosaic block relaxation and periodically spaced misfit dislocations formed by 60°-type dislocations. The relaxation of the multi-layer structure has an exponential dependence on the diffuse scatter length-scale, which is shown to be a sensitive measure of the onset of relaxation.
Dujovny, M; Kossovsky, N; Kossowsky, R; Valdivia, R; Suk, J S; Diaz, F G; Berman, S K; Cleary, W
1985-10-01
Because of various mechanical, metallurgical, and commercial constraints, aneurysm clips are manufactured from different alloys, including several stainless steel and cobalt alloys. Some of the steels contain volume fractions of the crystal phase known as martensite. Martensitic alloys have body-centered cubic structure, are prone to stress corrosion failure, and are ferromagnetic. Martensitic steel can be displaced like a compass needle when exposed to a magnetic field such as that generated during magnetic resonance imaging (MRI). The force exerted by the magnetic field is proportional to the volume fraction of the magnetic phase. We investigated the martensitic content and magnetic field-induced displacement of 12 common aneurysm clips. Four clips of each of the following types were examined: Sugita, Sundt-Kees Multi-Angle, Heifetz (two types), Vari-Angle McFadden, Yasargil (two types), Scoville, Mayfield, Vari-Angle, Pivot, and Kapp. Phase homogeneity and crystal structure were analyzed by x-ray diffraction using a Phillips x-ray diffractometer. Clip deflection in an Oxford Research Systems MRI spectrometer was measured in our in vivo rat abdominal aortic aneurysm model. Results showed that the volume fraction of the martensitic phase in the various clips correlated with the magnitude of the deflection. Among the clips examined, the Yasargil, Sugita, Heifetz Elgiloy, and Vari-Angle McFadden had a nonmartensitic composition and did not deflect in the magnetic field. The Scoville contained 5% martensite and deflected only marginally. Martensite comprised 35% of the Mayfield clip, which deflected 45 degrees, and 90% of the Heifetz, Vari-Angle, Pivot, and Sundt-Kees Multi-Angle clips, which deflected approximately 70 degrees or slipped off the aneurysm.(ABSTRACT TRUNCATED AT 250 WORDS)
Bulusu, Kartik V; Plesniak, Michael W
2016-07-19
The arterial network in the human vasculature comprises of ubiquitously present blood vessels with complex geometries (branches, curvatures and tortuosity). Secondary flow structures are vortical flow patterns that occur in curved arteries due to the combined action of centrifugal forces, adverse pressure gradients and inflow characteristics. Such flow morphologies are greatly affected by pulsatility and multiple harmonics of physiological inflow conditions and vary greatly in size-strength-shape characteristics compared to non-physiological (steady and oscillatory) flows (1 - 7). Secondary flow structures may ultimately influence the wall shear stress and exposure time of blood-borne particles toward progression of atherosclerosis, restenosis, sensitization of platelets and thrombosis (4 - 6, 8 - 13). Therefore, the ability to detect and characterize these structures under laboratory-controlled conditions is precursor to further clinical investigations. A common surgical treatment to atherosclerosis is stent implantation, to open up stenosed arteries for unobstructed blood flow. But the concomitant flow perturbations due to stent installations result in multi-scale secondary flow morphologies (4 - 6). Progressively higher order complexities such as asymmetry and loss in coherence can be induced by ensuing stent failures vis-à-vis those under unperturbed flows (5). These stent failures have been classified as "Types I-to-IV" based on failure considerations and clinical severity (14). This study presents a protocol for the experimental investigation of the complex secondary flow structures due to complete transverse stent fracture and linear displacement of fractured parts ("Type IV") in a curved artery model. The experimental method involves the implementation of particle image velocimetry (2C-2D PIV) techniques with an archetypal carotid artery inflow waveform, a refractive index matched blood-analog working fluid for phase-averaged measurements (15 - 18). Quantitative identification of secondary flow structures was achieved using concepts of flow physics, critical point theory and a novel wavelet transform algorithm applied to experimental PIV data (5, 6, 19 - 26).
[Advances in studies on the structure of farmland shelterbelt ecosystem].
Li, Chunping; Guan, Wenbin; Fan, Zhiping; Su, Fanxin; Wang, Xilin
2003-11-01
The ecological function of farmland shelterbelt system is determined by its structure. The spatio-temporal structure is a key aspect in related researches, which is very necessary to study the integrity, stability and durability of shelterbelt modules. In this article, the researches on the structure of farmland shelterbelt ecosystem were reviewed from the four scales of tree structure, shelterbelt structure, shelterbelts network and landscape structure. The principles, methods and productions of each scale were summarized, and the prospects were also discussed. Dynamic simulation of tree growth process in shelterbelts could be conducted by the theory of form and quality structure of tree and by fractal graphics, which were helpful to study the mechanism of individual trees and belts based on photosynthetic and transpiration mechanism of individual trees. The mechanism model of shelterbelt porosity should be conducted, so that, the sustainable yield model of shelterbelt management could be established, and the optimized model of shelterbelt networks with multi-special and multi-hierarchical structure could also be formed. Evaluating the reasonability, stability and durability of shelterbelt landscape based on the theories and methods of landscape ecology was an important task in the future studies.
Distributed Cooperation Solution Method of Complex System Based on MAS
NASA Astrophysics Data System (ADS)
Weijin, Jiang; Yuhui, Xu
To adapt the model in reconfiguring fault diagnosing to dynamic environment and the needs of solving the tasks of complex system fully, the paper introduced multi-Agent and related technology to the complicated fault diagnosis, an integrated intelligent control system is studied in this paper. Based on the thought of the structure of diagnostic decision and hierarchy in modeling, based on multi-layer decomposition strategy of diagnosis task, a multi-agent synchronous diagnosis federation integrated different knowledge expression modes and inference mechanisms are presented, the functions of management agent, diagnosis agent and decision agent are analyzed, the organization and evolution of agents in the system are proposed, and the corresponding conflict resolution algorithm in given, Layered structure of abstract agent with public attributes is build. System architecture is realized based on MAS distributed layered blackboard. The real world application shows that the proposed control structure successfully solves the fault diagnose problem of the complex plant, and the special advantage in the distributed domain.
Multi-stage Vector-Borne Zoonoses Models: A Global Analysis.
Bichara, Derdei; Iggidr, Abderrahman; Smith, Laura
2018-04-25
A class of models that describes the interactions between multiple host species and an arthropod vector is formulated and its dynamics investigated. A host-vector disease model where the host's infection is structured into n stages is formulated and a complete global dynamics analysis is provided. The basic reproduction number acts as a sharp threshold, that is, the disease-free equilibrium is globally asymptotically stable (GAS) whenever [Formula: see text] and that a unique interior endemic equilibrium exists and is GAS if [Formula: see text]. We proceed to extend this model with m host species, capturing a class of zoonoses where the cross-species bridge is an arthropod vector. The basic reproduction number of the multi-host-vector, [Formula: see text], is derived and shown to be the sum of basic reproduction numbers of the model when each host is isolated with an arthropod vector. It is shown that the disease will persist in all hosts as long as it persists in one host. Moreover, the overall basic reproduction number increases with respect to the host and that bringing the basic reproduction number of each isolated host below unity in each host is not sufficient to eradicate the disease in all hosts. This is a type of "amplification effect," that is, for the considered vector-borne zoonoses, the increase in host diversity increases the basic reproduction number and therefore the disease burden.
Design Through Manufacturing: The Solid Model - Finite Element Analysis Interface
NASA Technical Reports Server (NTRS)
Rubin, Carol
2003-01-01
State-of-the-art computer aided design (CAD) presently affords engineers the opportunity to create solid models of machine parts which reflect every detail of the finished product. Ideally, these models should fulfill two very important functions: (1) they must provide numerical control information for automated manufacturing of precision parts, and (2) they must enable analysts to easily evaluate the stress levels (using finite element analysis - FEA) for all structurally significant parts used in space missions. Today's state-of-the-art CAD programs perform function (1) very well, providing an excellent model for precision manufacturing. But they do not provide a straightforward and simple means of automating the translation from CAD to FEA models, especially for aircraft-type structures. The research performed during the fellowship period investigated the transition process from the solid CAD model to the FEA stress analysis model with the final goal of creating an automatic interface between the two. During the period of the fellowship a detailed multi-year program for the development of such an interface was created. The ultimate goal of this program will be the development of a fully parameterized automatic ProE/FEA translator for parts and assemblies, with the incorporation of data base management into the solution, and ultimately including computational fluid dynamics and thermal modeling in the interface.
CubeSat mechanical design: creating low mass and durable structures
NASA Astrophysics Data System (ADS)
Fiedler, Gilbert; Straub, Jeremy
2017-05-01
This paper considers the mechanical design of a low-mass, low-cost spacecraft for use in a multi-satellite sensing constellation. For a multi-spacecraft mission, aggregated small mass and cost reductions can have significant impact. One approach to mass reduction is to make cuts into the structure, removing material. Stress analysis is used to determine the level of material reduction possible. Focus areas for this paper include determining areas to make cuts to ensure that a strong shape remains, while considering the comparative cost and skill level of each type of cut. Real-world results for a CubeSat and universally applicable analysis are presented.
Lithological and Surface Geometry Joint Inversions Using Multi-Objective Global Optimization Methods
NASA Astrophysics Data System (ADS)
Lelièvre, Peter; Bijani, Rodrigo; Farquharson, Colin
2016-04-01
Geologists' interpretations about the Earth typically involve distinct rock units with contacts (interfaces) between them. In contrast, standard minimum-structure geophysical inversions are performed on meshes of space-filling cells (typically prisms or tetrahedra) and recover smoothly varying physical property distributions that are inconsistent with typical geological interpretations. There are several approaches through which mesh-based minimum-structure geophysical inversion can help recover models with some of the desired characteristics. However, a more effective strategy may be to consider two fundamentally different types of inversions: lithological and surface geometry inversions. A major advantage of these two inversion approaches is that joint inversion of multiple types of geophysical data is greatly simplified. In a lithological inversion, the subsurface is discretized into a mesh and each cell contains a particular rock type. A lithological model must be translated to a physical property model before geophysical data simulation. Each lithology may map to discrete property values or there may be some a priori probability density function associated with the mapping. Through this mapping, lithological inverse problems limit the parameter domain and consequently reduce the non-uniqueness from that presented by standard mesh-based inversions that allow physical property values on continuous ranges. Furthermore, joint inversion is greatly simplified because no additional mathematical coupling measure is required in the objective function to link multiple physical property models. In a surface geometry inversion, the model comprises wireframe surfaces representing contacts between rock units. This parameterization is then fully consistent with Earth models built by geologists, which in 3D typically comprise wireframe contact surfaces of tessellated triangles. As for the lithological case, the physical properties of the units lying between the contact surfaces are set to a priori values. The inversion is tasked with calculating the geometry of the contact surfaces instead of some piecewise distribution of properties in a mesh. Again, no coupling measure is required and joint inversion is simplified. Both of these inverse problems involve high nonlinearity and discontinuous or non-obtainable derivatives. They can also involve the existence of multiple minima. Hence, one can not apply the standard descent-based local minimization methods used to solve typical minimum-structure inversions. Instead, we are applying Pareto multi-objective global optimization (PMOGO) methods, which generate a suite of solutions that minimize multiple objectives (e.g. data misfits and regularization terms) in a Pareto-optimal sense. Providing a suite of models, as opposed to a single model that minimizes a weighted sum of objectives, allows a more complete assessment of the possibilities and avoids the often difficult choice of how to weight each objective. While there are definite advantages to PMOGO joint inversion approaches, the methods come with significantly increased computational requirements. We are researching various strategies to ameliorate these computational issues including parallelization and problem dimension reduction.
NASA Astrophysics Data System (ADS)
Allen, Matthew S.; Mayes, Randall L.; Bergman, Elizabeth J.
2010-11-01
Modal substructuring or component mode synthesis (CMS) has been standard practice for many decades in the analytical realm, yet a number of significant difficulties have been encountered when attempting to combine experimentally derived modal models with analytical ones or when predicting the effect of structural modifications using experimental measurements. This work presents a new method that removes the effects of a flexible fixture from an experimentally obtained modal model. It can be viewed as an extension to the approach where rigid masses are removed from a structure. The approach presented here improves the modal basis of the substructure, so that it can be used to more accurately estimate the modal parameters of the built-up system. New types of constraints are also presented, which constrain the modal degrees of freedom of the substructures, avoiding the need to estimate the connection point displacements and rotations. These constraints together with the use of a flexible fixture enable a new approach for joining structures, especially those with statically indeterminate multi-point connections, such as two circular flanges that are joined by many more bolts than required to enforce compatibility if the substructures were rigid. Fixture design is discussed, one objective of which is to achieve a mass-loaded boundary condition that exercises the substructure at the connection point as it is in the built up system. The proposed approach is demonstrated with two examples using experimental measurements from laboratory systems. The first is a simple problem of joining two beams of differing lengths, while the second consists of a three-dimensional structure comprising a circular plate that is bolted at eight locations to a flange on a cylindrical structure. In both cases frequency response functions predicted by the substructuring methods agree well with those of the actual coupled structures over a significant range of frequencies.
Enhanced modeling features within TREETOPS
NASA Technical Reports Server (NTRS)
Vandervoort, R. J.; Kumar, Manoj N.
1989-01-01
The original motivation for TREETOPS was to build a generic multi-body simulation and remove the burden of writing multi-body equations from the engineers. The motivation of the enhancement was twofold: (1) to extend the menu of built-in features (sensors, actuators, constraints, etc.) that did not require user code; and (2) to extend the control system design capabilities by linking with other government funded software (NASTRAN and MATLAB). These enhancements also serve to bridge the gap between structures and control groups. It is common on large space programs for the structures groups to build hi-fidelity models of the structure using NASTRAN and for the controls group to build lower order models because they lack the tools to incorporate the former into their analysis. Now the controls engineers can accept the hi-fidelity NASTRAN models into TREETOPS, add sensors and actuators, perform model reduction and couple the result directly into MATLAB to perform their design. The controller can then be imported directly into TREETOPS for non-linear, time-history simulation.
NASA Astrophysics Data System (ADS)
Pichierri, Manuele; Hajnsek, Irena
2015-04-01
In this work, the potential of multi-baseline Pol-InSAR for crop parameter estimation (e.g. crop height and extinction coefficients) is explored. For this reason, a novel Oriented Volume over Ground (OVoG) inversion scheme is developed, which makes use of multi-baseline observables to estimate the whole stack of model parameters. The proposed algorithm has been initially validated on a set of randomly-generated OVoG scenarios, to assess its stability over crop structure changes and its robustness against volume decorrelation and other decorrelation sources. Then, it has been applied to a collection of multi-baseline repeat-pass SAR data, acquired over a rural area in Germany by DLR's F-SAR.
Scaling of membrane-type locally resonant acoustic metamaterial arrays.
Naify, Christina J; Chang, Chia-Ming; McKnight, Geoffrey; Nutt, Steven R
2012-10-01
Metamaterials have emerged as promising solutions for manipulation of sound waves in a variety of applications. Locally resonant acoustic materials (LRAM) decrease sound transmission by 500% over acoustic mass law predictions at peak transmission loss (TL) frequencies with minimal added mass, making them appealing for weight-critical applications such as aerospace structures. In this study, potential issues associated with scale-up of the structure are addressed. TL of single-celled and multi-celled LRAM was measured using an impedance tube setup with systematic variation in geometric parameters to understand the effects of each parameter on acoustic response. Finite element analysis was performed to predict TL as a function of frequency for structures with varying complexity, including stacked structures and multi-celled arrays. Dynamic response of the array structures under discrete frequency excitation was investigated using laser vibrometry to verify negative dynamic mass behavior.
Design and 4D Printing of Cross-Folded Origami Structures: A Preliminary Investigation.
Teoh, Joanne Ee Mei; An, Jia; Feng, Xiaofan; Zhao, Yue; Chua, Chee Kai; Liu, Yong
2018-03-03
In 4D printing research, different types of complex structure folding and unfolding have been investigated. However, research on cross-folding of origami structures (defined as a folding structure with at least two overlapping folds) has not been reported. This research focuses on the investigation of cross-folding structures using multi-material components along different axes and different horizontal hinge thickness with single homogeneous material. Tensile tests were conducted to determine the impact of multi-material components and horizontal hinge thickness. In the case of multi-material structures, the hybrid material composition has a significant impact on the overall maximum strain and Young's modulus properties. In the case of single material structures, the shape recovery speed is inversely proportional to the horizontal hinge thickness, while the flexural or bending strength is proportional to the horizontal hinge thickness. A hinge with a thickness of 0.5 mm could be folded three times prior to fracture whilst a hinge with a thickness of 0.3 mm could be folded only once prior to fracture. A hinge with a thickness of 0.1 mm could not even be folded without cracking. The introduction of a physical hole in the center of the folding/unfolding line provided stress relief and prevented fracture. A complex flower petal shape was used to successfully demonstrate the implementation of overlapping and non-overlapping folding lines using both single material segments and multi-material segments. Design guidelines for establishing cross-folding structures using multi-material components along different axes and different horizontal hinge thicknesses with single or homogeneous material were established. These guidelines can be used to design and implement complex origami structures with overlapping and non-overlapping folding lines. Combined overlapping folding structures could be implemented and allocating specific hole locations in the overall designs could be further explored. In addition, creating a more precise prediction by investigating sets of in between hinge thicknesses and comparing the folding times before fracture, will be the subject of future work.
Data fusion of multi-scale representations for structural damage detection
NASA Astrophysics Data System (ADS)
Guo, Tian; Xu, Zili
2018-01-01
Despite extensive researches into structural health monitoring (SHM) in the past decades, there are few methods that can detect multiple slight damage in noisy environments. Here, we introduce a new hybrid method that utilizes multi-scale space theory and data fusion approach for multiple damage detection in beams and plates. A cascade filtering approach provides multi-scale space for noisy mode shapes and filters the fluctuations caused by measurement noise. In multi-scale space, a series of amplification and data fusion algorithms are utilized to search the damage features across all possible scales. We verify the effectiveness of the method by numerical simulation using damaged beams and plates with various types of boundary conditions. Monte Carlo simulations are conducted to illustrate the effectiveness and noise immunity of the proposed method. The applicability is further validated via laboratory cases studies focusing on different damage scenarios. Both results demonstrate that the proposed method has a superior noise tolerant ability, as well as damage sensitivity, without knowing material properties or boundary conditions.
Lau, Ying; Htun, Tha Pyai; Lim, Peng Im; Ho-Lim, Sarah Su Tin; Chi, Claudia; Tsai, Cammy; Ong, Kai Wen; Klainin-Yobas, Piyanee
2017-02-01
Identifying the factors influencing breastfeeding attitude is significant for the implementation of effective promotion policies and counselling activities. To our best knowledge, no previous studies have modelled the relationships among breastfeeding attitude, health-related quality of life and maternal obesity among multi-ethnic pregnant women; the current study attempts to fill this research gap. This study investigated the relationships among maternal characteristics, health-related quality of life and breastfeeding attitude amidst normal weight and overweight/obese pregnant women using a multi-group structural equation modelling approach. Exploratory cross-sectional design was used. Antenatal clinics of a university-affiliated hospital PARTICIPANTS: Pregnant women were invited to participate; 708 (78.8%) agreed to participate in the study. We examined a hypothetical model on the basis of integrating the concepts of a breastfeeding decision-making model, theory of planned behaviour-based model for breastfeeding and health-related quality of life model among 708 multi-ethnic pregnant women in Singapore. The Iowa Infant Feeding Attitude Scale and Medical Outcomes Study Short Form Health Survey were used to measure breastfeeding attitude and health-related quality of life, respectively. Two structural equation models demonstrated that better health-related quality of life, higher monthly household income, planned pregnancy and previous exclusive breastfeeding experience were significantly associated with positive breastfeeding attitude among normal and overweight/obese pregnant women. Among normal weight pregnant women, those who were older with higher educational level were more likely to have positive breastfeeding attitude. Among overweight/obese pregnant women, Chinese women with confinement nanny plan were less likely to have positive breastfeeding attitude. No significant difference existed between normal weight and overweight/obese pregnant women concerning estimates of health-related quality of life on breastfeeding attitude (Critical Ratio=-0.193). The model satisfactorily fitted the data (Incremental Fit Index=0.924, Tucker-Lewis Index=0.905, Comparative Fit Index=0.921 and Root Means Square Error of Approximation=0.025). Health-related quality of life was found to affect breastfeeding attitude in multi-ethnic pregnant women. This relationship implied the importance of early culturally specific interventions to enhance health-related quality of life for improving positive breastfeeding attitude among pregnant women across different ethnic groups. Copyright © 2016 Elsevier Ltd. All rights reserved.
Kaufman, Michelle R; Cornish, Flora; Zimmerman, Rick S; Johnson, Blair T
2014-08-15
Despite increasing recent emphasis on the social and structural determinants of HIV-related behavior, empirical research and interventions lag behind, partly because of the complexity of social-structural approaches. This article provides a comprehensive and practical review of the diverse literature on multi-level approaches to HIV-related behavior change in the interest of contributing to the ongoing shift to more holistic theory, research, and practice. It has the following specific aims: (1) to provide a comprehensive list of relevant variables/factors related to behavior change at all points on the individual-structural spectrum, (2) to map out and compare the characteristics of important recent multi-level models, (3) to reflect on the challenges of operating with such complex theoretical tools, and (4) to identify next steps and make actionable recommendations. Using a multi-level approach implies incorporating increasing numbers of variables and increasingly context-specific mechanisms, overall producing greater intricacies. We conclude with recommendations on how best to respond to this complexity, which include: using formative research and interdisciplinary collaboration to select the most appropriate levels and variables in a given context; measuring social and institutional variables at the appropriate level to ensure meaningful assessments of multiple levels are made; and conceptualizing intervention and research with reference to theoretical models and mechanisms to facilitate transferability, sustainability, and scalability.
An Optimization-based Framework to Learn Conditional Random Fields for Multi-label Classification
Naeini, Mahdi Pakdaman; Batal, Iyad; Liu, Zitao; Hong, CharmGil; Hauskrecht, Milos
2015-01-01
This paper studies multi-label classification problem in which data instances are associated with multiple, possibly high-dimensional, label vectors. This problem is especially challenging when labels are dependent and one cannot decompose the problem into a set of independent classification problems. To address the problem and properly represent label dependencies we propose and study a pairwise conditional random Field (CRF) model. We develop a new approach for learning the structure and parameters of the CRF from data. The approach maximizes the pseudo likelihood of observed labels and relies on the fast proximal gradient descend for learning the structure and limited memory BFGS for learning the parameters of the model. Empirical results on several datasets show that our approach outperforms several multi-label classification baselines, including recently published state-of-the-art methods. PMID:25927015
Representative Structural Element - A New Paradigm for Multi-Scale Structural Modeling
2016-07-05
developed by NASA Glenn Research Center based on Aboudi’s micromechanics theories [5] that provides a wide range of capabilities for modeling ...to use appropriate models for related problems based on the capability of corresponding approaches. Moreover, the analyses will give a general...interface of heterogeneous materials but also help engineers to use appropriate models for related problems based on the capability of corresponding
NASA Astrophysics Data System (ADS)
Klug, P.; Schlenz, F.; Hank, T.; Migdall, S.; Weiß, I.; Danner, M.; Bach, H.; Mauser, W.
2016-08-01
The analysis system developed in the frame of the M4Land project (Model based, Multi-temporal, Multi scale and Multi sensorial retrieval of continuous land management information) has proven its capabilities of classifying crop type and creating products on the intensity of agricultural production using optical remote sensing data from Landsat and RapidEye. In this study, Sentinel-2 data is used for the first time together with Landsat 7 ETM+ and 8 OLI data within the M4Land analysis system to derive continuously crop type and the agricultural intensity of fields in an area north of Munich, Germany and the year 2015.
Synchrotron IR microspectroscopy for protein structure analysis: Potential and questions
Yu, Peiqiang
2006-01-01
Synchrotron radiation-based Fourier transform infrared microspectroscopy (S-FTIR) has been developed as a rapid, direct, non-destructive, bioanalytical technique. This technique takes advantage of synchrotron light brightness and small effective source size and is capable of exploring the molecular chemical make-up within microstructures of a biological tissue without destruction of inherent structures at ultra-spatial resolutions within cellular dimension. To date there has been very little application of this advanced technique to the study of pure protein inherent structure at a cellular level in biological tissues. In this review, a novel approach was introduced to show the potential of the newly developed, advancedmore » synchrotron-based analytical technology, which can be used to localize relatively “pure“ protein in the plant tissues and relatively reveal protein inherent structure and protein molecular chemical make-up within intact tissue at cellular and subcellular levels. Several complex protein IR spectra data analytical techniques (Gaussian and Lorentzian multi-component peak modeling, univariate and multivariate analysis, principal component analysis (PCA), and hierarchical cluster analysis (CLA) are employed to relatively reveal features of protein inherent structure and distinguish protein inherent structure differences between varieties/species and treatments in plant tissues. By using a multi-peak modeling procedure, RELATIVE estimates (but not EXACT determinations) for protein secondary structure analysis can be made for comparison purpose. The issues of pro- and anti-multi-peaking modeling/fitting procedure for relative estimation of protein structure were discussed. By using the PCA and CLA analyses, the plant molecular structure can be qualitatively separate one group from another, statistically, even though the spectral assignments are not known. The synchrotron-based technology provides a new approach for protein structure research in biological tissues at ultraspatial resolutions.« less
Non-destructive lichen biomass estimation in northwestern Alaska: a comparison of methods.
Rosso, Abbey; Neitlich, Peter; Smith, Robert J
2014-01-01
Terrestrial lichen biomass is an important indicator of forage availability for caribou in northern regions, and can indicate vegetation shifts due to climate change, air pollution or changes in vascular plant community structure. Techniques for estimating lichen biomass have traditionally required destructive harvesting that is painstaking and impractical, so we developed models to estimate biomass from relatively simple cover and height measurements. We measured cover and height of forage lichens (including single-taxon and multi-taxa "community" samples, n = 144) at 73 sites on the Seward Peninsula of northwestern Alaska, and harvested lichen biomass from the same plots. We assessed biomass-to-volume relationships using zero-intercept regressions, and compared differences among two non-destructive cover estimation methods (ocular vs. point count), among four landcover types in two ecoregions, and among single-taxon vs. multi-taxa samples. Additionally, we explored the feasibility of using lichen height (instead of volume) as a predictor of stand-level biomass. Although lichen taxa exhibited unique biomass and bulk density responses that varied significantly by growth form, we found that single-taxon sampling consistently under-estimated true biomass and was constrained by the need for taxonomic experts. We also found that the point count method provided little to no improvement over ocular methods, despite increased effort. Estimated biomass of lichen-dominated communities (mean lichen cover: 84.9±1.4%) using multi-taxa, ocular methods differed only nominally among landcover types within ecoregions (range: 822 to 1418 g m-2). Height alone was a poor predictor of lichen biomass and should always be weighted by cover abundance. We conclude that the multi-taxa (whole-community) approach, when paired with ocular estimates, is the most reasonable and practical method for estimating lichen biomass at landscape scales in northwest Alaska.
Non-Destructive Lichen Biomass Estimation in Northwestern Alaska: A Comparison of Methods
Rosso, Abbey; Neitlich, Peter; Smith, Robert J.
2014-01-01
Terrestrial lichen biomass is an important indicator of forage availability for caribou in northern regions, and can indicate vegetation shifts due to climate change, air pollution or changes in vascular plant community structure. Techniques for estimating lichen biomass have traditionally required destructive harvesting that is painstaking and impractical, so we developed models to estimate biomass from relatively simple cover and height measurements. We measured cover and height of forage lichens (including single-taxon and multi-taxa “community” samples, n = 144) at 73 sites on the Seward Peninsula of northwestern Alaska, and harvested lichen biomass from the same plots. We assessed biomass-to-volume relationships using zero-intercept regressions, and compared differences among two non-destructive cover estimation methods (ocular vs. point count), among four landcover types in two ecoregions, and among single-taxon vs. multi-taxa samples. Additionally, we explored the feasibility of using lichen height (instead of volume) as a predictor of stand-level biomass. Although lichen taxa exhibited unique biomass and bulk density responses that varied significantly by growth form, we found that single-taxon sampling consistently under-estimated true biomass and was constrained by the need for taxonomic experts. We also found that the point count method provided little to no improvement over ocular methods, despite increased effort. Estimated biomass of lichen-dominated communities (mean lichen cover: 84.9±1.4%) using multi-taxa, ocular methods differed only nominally among landcover types within ecoregions (range: 822 to 1418 g m−2). Height alone was a poor predictor of lichen biomass and should always be weighted by cover abundance. We conclude that the multi-taxa (whole-community) approach, when paired with ocular estimates, is the most reasonable and practical method for estimating lichen biomass at landscape scales in northwest Alaska. PMID:25079228
A Covering Type Extrusion Die with Twin Cavities for Semi-Hollow Al-Profiles
NASA Astrophysics Data System (ADS)
Deng, Rurong; Huang, Xuemei
2018-03-01
A new structure named covering type with twin cavities in a die for the semi-hollow aluminum profiles was present. The determination of structure parameters was introduced in detail. Mainly including the selection of the machine, the arrangement of portholes, the structure design of chamber and the selection of bearing. The method of checking the die strength was introduced. According to the extrusion results, the structure of the traditional solid die, the porthole die with single cavity and the covering type structure with twin cavities were compared. The characteristics of the latter structure were simple and easy to process. The practical application shows that the new die structure can enhance the die life, improve the production efficiency and reduce the cost. The high precision and the surface brightness of the profiles were obtained. The structure is worth promoting. The aim is to provide reliable data and reference for the further research and development of this technology on the extrusion die with multi-cavities in a die.
Resilience of the quantum Rabi model in circuit QED
NASA Astrophysics Data System (ADS)
E Manucharyan, Vladimir; Baksic, Alexandre; Ciuti, Cristiano
2017-07-01
In circuit quantum electrodynamics (circuit QED), an artificial ‘circuit atom’ can couple to a quantized microwave radiation much stronger than its real atomic counterpart. The celebrated quantum Rabi model describes the simplest interaction of a two-level system with a single-mode boson field. When the coupling is large enough, the bare multilevel structure of a realistic circuit atom cannot be ignored even if the circuit is strongly anharmonic. We explored this situation theoretically for flux (fluxonium) and charge (Cooper pair box) type multi-level circuits tuned to their respective flux/charge degeneracy points. We identified which spectral features of the quantum Rabi model survive and which are renormalized for large coupling. Despite significant renormalization of the low-energy spectrum in the fluxonium case, the key quantum Rabi feature—nearly-degenerate vacuum consisting of an atomic state entangled with a multi-photon field—appears in both types of circuits when the coupling is sufficiently large. Like in the quantum Rabi model, for very large couplings the entanglement spectrum is dominated by only two, nearly equal eigenvalues, in spite of the fact that a large number of bare atomic states are actually involved in the atom-resonator ground state. We interpret the emergence of the two-fold degeneracy of the vacuum of both circuits as an environmental suppression of flux/charge tunneling due to their dressing by virtual low-/high-impedance photons in the resonator. For flux tunneling, the dressing is nothing else than the shunting of a Josephson atom with a large capacitance of the resonator. Suppression of charge tunneling is a manifestation of the dynamical Coulomb blockade of transport in tunnel junctions connected to resistive leads.
NASA Astrophysics Data System (ADS)
Mohamed, Raihani; Perumal, Thinagaran; Sulaiman, Md Nasir; Mustapha, Norwati; Zainudin, M. N. Shah
2017-10-01
Pertaining to the human centric concern and non-obtrusive way, the ambient sensor type technology has been selected, accepted and embedded in the environment in resilient style. Human activities, everyday are gradually becoming complex and thus complicate the inferences of activities when it involving the multi resident in the same smart environment. Current works solutions focus on separate model between the resident, activities and interactions. Some study use data association and extra auxiliary of graphical nodes to model human tracking information in an environment and some produce separate framework to incorporate the auxiliary for interaction feature model. Thus, recognizing the activities and which resident perform the activity at the same time in the smart home are vital for the smart home development and future applications. This paper will cater the above issue by considering the simplification and efficient method using the multi label classification framework. This effort eliminates time consuming and simplifies a lot of pre-processing tasks comparing with previous approach. Applications to the multi resident multi label learning in smart home problems shows the LC (Label Combination) using Decision Tree (DT) as base classifier can tackle the above problems.
NASA Astrophysics Data System (ADS)
Mochinaga, H.; Aoki, N.; Mouri, T.
2017-12-01
We propose a robust workflow of 3D geological modelling based on integrated analysis while honouring seismic, gravity, and wellbore data for exploration and development at flash steam geothermal power plants. We design the workflow using temperature logs at less than 10 well locations for practical use at an early stage of geothermal exploration and development. In the workflow, geostatistical technique, multi-attribute analysis, and artificial neural network are employed for the integration of multi geophysical data. The geological modelling is verified by using a 3D seismic data which was acquired in the Yamagawa Demonstration Area (approximately 36 km2), located at the city of Ibusuki in Kagoshima, Japan in 2015. Temperature-depth profiles are typically characterized by heat transfer of conduction, outflow, and up-flow which have low frequency trends. On the other hand, feed and injection zones with high permeability would cause high frequency perturbation on temperature-depth profiles. Each trend is supposed to be caused by different geological properties and subsurface structures. In this study, we estimate high frequency (> 2 cycles/km) and low frequency (< 1 cycle/km) models separately by means of different types of attribute volumes. These attributes are mathematically generated from P-impedance and density volumes derived from seismic inversion, an ant-tracking seismic volume, and a geostatistical temperature model prior to application of artificial neural network on the geothermal modelling. As a result, the band-limited stepwise approach predicts a more precise geothermal model than that of full-band temperature profiles at a time. Besides, lithofacies interpretation confirms reliability of the predicted geothermal model. The integrated interpretation is significantly consistent with geological reports from previous studies. Isotherm geobodies illustrate specific features of geothermal reservoir and cap rock, shallow aquifer, and its hydrothermal circulation in 3D visualization. The advanced workflow of 3D geological modelling is suitable for optimization of well locations for production and reinjection in geothermal fields.
BioASF: a framework for automatically generating executable pathway models specified in BioPAX.
Haydarlou, Reza; Jacobsen, Annika; Bonzanni, Nicola; Feenstra, K Anton; Abeln, Sanne; Heringa, Jaap
2016-06-15
Biological pathways play a key role in most cellular functions. To better understand these functions, diverse computational and cell biology researchers use biological pathway data for various analysis and modeling purposes. For specifying these biological pathways, a community of researchers has defined BioPAX and provided various tools for creating, validating and visualizing BioPAX models. However, a generic software framework for simulating BioPAX models is missing. Here, we attempt to fill this gap by introducing a generic simulation framework for BioPAX. The framework explicitly separates the execution model from the model structure as provided by BioPAX, with the advantage that the modelling process becomes more reproducible and intrinsically more modular; this ensures natural biological constraints are satisfied upon execution. The framework is based on the principles of discrete event systems and multi-agent systems, and is capable of automatically generating a hierarchical multi-agent system for a given BioPAX model. To demonstrate the applicability of the framework, we simulated two types of biological network models: a gene regulatory network modeling the haematopoietic stem cell regulators and a signal transduction network modeling the Wnt/β-catenin signaling pathway. We observed that the results of the simulations performed using our framework were entirely consistent with the simulation results reported by the researchers who developed the original models in a proprietary language. The framework, implemented in Java, is open source and its source code, documentation and tutorial are available at http://www.ibi.vu.nl/programs/BioASF CONTACT: j.heringa@vu.nl. © The Author 2016. Published by Oxford University Press.
Cao, Renzhi; Bhattacharya, Debswapna; Adhikari, Badri; Li, Jilong; Cheng, Jianlin
2016-09-01
Model evaluation and selection is an important step and a big challenge in template-based protein structure prediction. Individual model quality assessment methods designed for recognizing some specific properties of protein structures often fail to consistently select good models from a model pool because of their limitations. Therefore, combining multiple complimentary quality assessment methods is useful for improving model ranking and consequently tertiary structure prediction. Here, we report the performance and analysis of our human tertiary structure predictor (MULTICOM) based on the massive integration of 14 diverse complementary quality assessment methods that was successfully benchmarked in the 11th Critical Assessment of Techniques of Protein Structure prediction (CASP11). The predictions of MULTICOM for 39 template-based domains were rigorously assessed by six scoring metrics covering global topology of Cα trace, local all-atom fitness, side chain quality, and physical reasonableness of the model. The results show that the massive integration of complementary, diverse single-model and multi-model quality assessment methods can effectively leverage the strength of single-model methods in distinguishing quality variation among similar good models and the advantage of multi-model quality assessment methods of identifying reasonable average-quality models. The overall excellent performance of the MULTICOM predictor demonstrates that integrating a large number of model quality assessment methods in conjunction with model clustering is a useful approach to improve the accuracy, diversity, and consequently robustness of template-based protein structure prediction. Proteins 2016; 84(Suppl 1):247-259. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
Electrostatic shock structures in dissipative multi-ion dusty plasmas
NASA Astrophysics Data System (ADS)
Elkamash, I. S.; Kourakis, I.
2018-06-01
A comprehensive analytical model is introduced for shock excitations in dusty bi-ion plasma mixtures, taking into account collisionality and kinematic (fluid) viscosity. A multicomponent plasma configuration is considered, consisting of positive ions, negative ions, electrons, and a massive charged component in the background (dust). The ionic dynamical scale is focused upon; thus, electrons are assumed to be thermalized, while the dust is stationary. A dissipative hybrid Korteweg-de Vries/Burgers equation is derived. An analytical solution is obtained, in the form of a shock structure (a step-shaped function for the electrostatic potential, or an electric field pulse) whose maximum amplitude in the far downstream region decays in time. The effect of relevant plasma configuration parameters, in addition to dissipation, is investigated. Our work extends earlier studies of ion-acoustic type shock waves in pure (two-component) bi-ion plasma mixtures.
NASA Astrophysics Data System (ADS)
Zhang, Pengfei; Zam, Azhar; Pugh, Edward N.; Zawadzki, Robert J.
2014-02-01
Animal models of human diseases play an important role in studying and advancing our understanding of these conditions, allowing molecular level studies of pathogenesis as well as testing of new therapies. Recently several non-invasive imaging modalities including Fundus Camera, Scanning Laser Ophthalmoscopy (SLO) and Optical Coherence Tomography (OCT) have been successfully applied to monitor changes in the retinas of the living animals in experiments in which a single animal is followed over a portion of its lifespan. Here we evaluate the capabilities and limitations of these three imaging modalities for visualization of specific structures in the mouse eye. Example images acquired from different types of mice are presented. Future directions of development for these instruments and potential advantages of multi-modal imaging systems are discussed as well.
Comparison of universal approximators incorporating partial monotonicity by structure.
Minin, Alexey; Velikova, Marina; Lang, Bernhard; Daniels, Hennie
2010-05-01
Neural networks applied in control loops and safety-critical domains have to meet more requirements than just the overall best function approximation. On the one hand, a small approximation error is required; on the other hand, the smoothness and the monotonicity of selected input-output relations have to be guaranteed. Otherwise, the stability of most of the control laws is lost. In this article we compare two neural network-based approaches incorporating partial monotonicity by structure, namely the Monotonic Multi-Layer Perceptron (MONMLP) network and the Monotonic MIN-MAX (MONMM) network. We show the universal approximation capabilities of both types of network for partially monotone functions. On a number of datasets, we investigate the advantages and disadvantages of these approaches related to approximation performance, training of the model and convergence. 2009 Elsevier Ltd. All rights reserved.
Uniscale multi-view registration using double dog-leg method
NASA Astrophysics Data System (ADS)
Chen, Chao-I.; Sargent, Dusty; Tsai, Chang-Ming; Wang, Yuan-Fang; Koppel, Dan
2009-02-01
3D computer models of body anatomy can have many uses in medical research and clinical practices. This paper describes a robust method that uses videos of body anatomy to construct multiple, partial 3D structures and then fuse them to form a larger, more complete computer model using the structure-from-motion framework. We employ the Double Dog-Leg (DDL) method, a trust-region based nonlinear optimization method, to jointly optimize the camera motion parameters (rotation and translation) and determine a global scale that all partial 3D structures should agree upon. These optimized motion parameters are used for constructing local structures, and the global scale is essential for multi-view registration after all these partial structures are built. In order to provide a good initial guess of the camera movement parameters and outlier free 2D point correspondences for DDL, we also propose a two-stage scheme where multi-RANSAC with a normalized eight-point algorithm is first performed and then a few iterations of an over-determined five-point algorithm is used to polish the results. Our experimental results using colonoscopy video show that the proposed scheme always produces more accurate outputs than the standard RANSAC scheme. Furthermore, since we have obtained many reliable point correspondences, time-consuming and error-prone registration methods like the iterative closest points (ICP) based algorithms can be replaced by a simple rigid-body transformation solver when merging partial structures into a larger model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guin, Arijit; Ramanathan, Ramya; Ritzi, Robert W.
In Part 1 of this series we presented a methodology and a code for modeling the hierarchical sedimentary architecture in braided channel belt deposits. Here, in Part 2, the code was used to create a digital model of this architecture, and the corresponding spatial distribution of permeability. The simulated architecture was compared to the real stratal architecture observed in an abandoned channel belt of the Sagavanirktok River, Alaska by Lunt et al. (2004). The comparisons included assessments of similarity which were both qualitative and quantitative. From the qualitative comparisons we conclude that a synthetic deposit created by the code hasmore » unit types, at each level, with a geometry which is generally consistent with the geometry of unit types observed in the field. The digital unit types would generally be recognized as representing their counterparts in nature, including cross stratasets, lobate and scroll bar deposits, channel fills, etc. Furthermore, the synthetic deposit has a hierarchical spatial relationship among these units which represents how the unit types are observed in field exposures and in geophysical images. In quantitative comparisons the proportions and the length, width, and height of unit types at different scales, across all levels of the stratal hierarchy compare well between the digital and the natural deposits. A number of important attributes of the channel belt model were shown to be influenced by more than one level within the hierarchy of stratal architecture. First, the high-permeability open-framework gravels percolated at all levels and thus formed preferential flow pathways. Open framework gravels are indeed known to form preferential flow pathways in natural channel belt deposits. The nature of a percolating cluster changed across different levels of the hierarchy of stratal architecture. As a result of this geologic structure, the percolation occurs at proportions of open-framework gravels below the theoretical percolation threshold for random infinite media. Second, when the channel belt model was populated with permeability distributions by lowest-level unit type, the composite permeability semivariogram contained structures that were identifiable at more than one scale, and each of these structures could be directly linked to unit types of different scales existing at different levels within the hierarchy of strata. These collective results are encouraging with respect to our goal that this model be relevant as a base case in future studies for testing ideas in research addressing the upscaling problem in aquifers and reservoirs with multi-scale heterogeneity.« less
Collective operations in a file system based execution model
Shinde, Pravin; Van Hensbergen, Eric
2013-02-12
A mechanism is provided for group communications using a MULTI-PIPE synthetic file system. A master application creates a multi-pipe synthetic file in the MULTI-PIPE synthetic file system, the master application indicating a multi-pipe operation to be performed. The master application then writes a header-control block of the multi-pipe synthetic file specifying at least one of a multi-pipe synthetic file system name, a message type, a message size, a specific destination, or a specification of the multi-pipe operation. Any other application participating in the group communications then opens the same multi-pipe synthetic file. A MULTI-PIPE file system module then implements the multi-pipe operation as identified by the master application. The master application and the other applications then either read or write operation messages to the multi-pipe synthetic file and the MULTI-PIPE synthetic file system module performs appropriate actions.
Collective operations in a file system based execution model
Shinde, Pravin; Van Hensbergen, Eric
2013-02-19
A mechanism is provided for group communications using a MULTI-PIPE synthetic file system. A master application creates a multi-pipe synthetic file in the MULTI-PIPE synthetic file system, the master application indicating a multi-pipe operation to be performed. The master application then writes a header-control block of the multi-pipe synthetic file specifying at least one of a multi-pipe synthetic file system name, a message type, a message size, a specific destination, or a specification of the multi-pipe operation. Any other application participating in the group communications then opens the same multi-pipe synthetic file. A MULTI-PIPE file system module then implements the multi-pipe operation as identified by the master application. The master application and the other applications then either read or write operation messages to the multi-pipe synthetic file and the MULTI-PIPE synthetic file system module performs appropriate actions.
2013-03-01
of coarser-scale materials and structures containing Kevlar fibers (e.g., yarns, fabrics, plies, lamina, and laminates ). Journal of Materials...Multi-Length Scale-Enriched Continuum-Level Material Model for Kevlar -Fiber-Reinforced Polymer-Matrix Composites M. Grujicic, B. Pandurangan, J.S...extensive set of molecular-level computational analyses regarding the role of various microstructural/morphological defects on the Kevlar fiber
Multi-fracture response of cross-ply ceramic composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erdman, D.L.; Weitsman, Y.J.
1996-12-31
Ceramic matrix composites are candidate materials for high temperature applications due to their ability to retain mechanical properties. However, in view of the relatively low transverse strength and ductility associated with unidirectional ceramic matrix lay-ups, it is necessary to consider multi-directional reinforcement for any practical structural application. The simplest laminate that would provide multi-directional toughness would be the cross-ply lay-up. Although there are numerous publications concerned with modeling of the stress-strain response of unidirectional ceramic matrix laminates, there are relatively few investigations in the current literature which deal with laminates such as the cross-ply lay-up. Additionally, the aforementioned publications aremore » often incomplete since they fail to address the failure mechanisms associated with this lay-up in a comprehensive manner and consequently have limited success in correlating experimental stress-strain response with mechanical test results. Furthermore, many current experimental investigations fail to report the details of damage evolution and stress-strain response which are required for correlation with analyses. This investigation presents a comprehensive extended shear-lag type analysis that considers transverse matrix cracking in the 90{degree} plies, the non-linearity of the 0{degree} plies, and slip at the 0/90 ply interface.« less
Towards a virtual lung: multi-scale, multi-physics modelling of the pulmonary system.
Burrowes, K S; Swan, A J; Warren, N J; Tawhai, M H
2008-09-28
The essential function of the lung, gas exchange, is dependent on adequate matching of ventilation and perfusion, where air and blood are delivered through complex branching systems exposed to regionally varying transpulmonary and transmural pressures. Structure and function in the lung are intimately related, yet computational models in pulmonary physiology usually simplify or neglect structure. The geometries of the airway and vascular systems and their interaction with parenchymal tissue have an important bearing on regional distributions of air and blood, and therefore on whole lung gas exchange, but this has not yet been addressed by modelling studies. Models for gas exchange have typically incorporated considerable detail at the level of chemical reactions, with little thought for the influence of structure. To date, relatively little attention has been paid to modelling at the cellular or subcellular level in the lung, or to linking information from the protein structure/interaction and cellular levels to the operation of the whole lung. We review previous work in developing anatomically based models of the lung, airways, parenchyma and pulmonary vasculature, and some functional studies in which these models have been used. Models for gas exchange at several spatial scales are briefly reviewed, and the challenges and benefits from modelling cellular function in the lung are discussed.
Insights into Penicillium roqueforti Morphological and Genetic Diversity
Gillot, Guillaume; Jany, Jean-Luc; Coton, Monika; Le Floch, Gaétan; Debaets, Stella; Ropars, Jeanne; López-Villavicencio, Manuela; Dupont, Joëlle; Branca, Antoine; Giraud, Tatiana; Coton, Emmanuel
2015-01-01
Fungi exhibit substantial morphological and genetic diversity, often associated with cryptic species differing in ecological niches. Penicillium roqueforti is used as a starter culture for blue-veined cheeses, being responsible for their flavor and color, but is also a common spoilage organism in various foods. Different types of blue-veined cheeses are manufactured and consumed worldwide, displaying specific organoleptic properties. These features may be due to the different manufacturing methods and/or to the specific P. roqueforti strains used. Substantial morphological diversity exists within P. roqueforti and, although not taxonomically valid, several technological names have been used for strains on different cheeses (e.g., P. gorgonzolae, P. stilton). A worldwide P. roqueforti collection from 120 individual blue-veined cheeses and 21 other substrates was analyzed here to determine (i) whether P. roqueforti is a complex of cryptic species, by applying the Genealogical Concordance Phylogenetic Species Recognition criterion (GC-PSR), (ii) whether the population structure assessed using microsatellite markers correspond to blue cheese types, and (iii) whether the genetic clusters display different morphologies. GC-PSR multi-locus sequence analyses showed no evidence of cryptic species. The population structure analysis using microsatellites revealed the existence of highly differentiated populations, corresponding to blue cheese types and with contrasted morphologies. This suggests that the population structure has been shaped by different cheese-making processes or that different populations were recruited for different cheese types. Cheese-making fungi thus constitute good models for studying fungal diversification under recent selection. PMID:26091176
ERIC Educational Resources Information Center
Dolan, Conor V.; Molenaar, Peter C. M.
1994-01-01
In multigroup covariance structure analysis with structured means, the traditional latent selection model is formulated as a special case of phenotypic selection. Illustrations with real and simulated data demonstrate how one can test specific hypotheses concerning selection on latent variables. (SLD)
NASA Astrophysics Data System (ADS)
Hou, Tsung-Chin; Gao, Wei-Yuan; Chang, Chia-Sheng; Zhu, Guan-Rong; Su, Yu-Min
2017-04-01
The three-span steel-arch-steel-girder Jiaxian Bridge was newly constructed in 2010 to replace the former one that has been destroyed by Typhoon Sinlaku (2008, Taiwan). It was designed and built to continue the domestic service requirement, as well as to improve the tourism business of the Kaohsiung city government, Taiwan. This study aimed at establishing the baseline model of Jiaxian Bridge for hazardous scenario simulation such as typhoons, floods and earthquakes. Necessities of these precaution works were attributed to the inherent vulnerability of the sites: near fault and river cross. The uncalibrated baseline bridge model was built with structural finite element in accordance with the blueprints. Ambient vibration measurements were performed repeatedly to acquire the elastic dynamic characteristics of the bridge structure. Two frequency domain system identification algorithms were employed to extract the measured operational modal parameters. Modal shapes, frequencies, and modal assurance criteria (MAC) were configured as the fitting targets so as to calibrate/update the structural parameters of the baseline model. It has been recognized that different types of structural parameters contribute distinguishably to the fitting targets, as this study has similarly explored. For steel-arch-steel-girder bridges in particular this case, joint rigidity of the steel components was found to be dominant while material properties and section geometries relatively minor. The updated model was capable of providing more rational elastic responses of the bridge superstructure under normal service conditions as well as hazardous scenarios, and can be used for manage the health conditions of the bridge structure.
Informing Aerosol Transport Models With Satellite Multi-Angle Aerosol Measurements
NASA Technical Reports Server (NTRS)
Limbacher, J.; Patadia, F.; Petrenko, M.; Martin, M. Val; Chin, M.; Gaitley, B.; Garay, M.; Kalashnikova, O.; Nelson, D.; Scollo, S.
2011-01-01
As the aerosol products from the NASA Earth Observing System's Multi-angle Imaging SpectroRadiometer (MISR) mature, we are placing greater focus on ways of using the aerosol amount and type data products, and aerosol plume heights, to constrain aerosol transport models. We have demonstrated the ability to map aerosol air-mass-types regionally, and have identified product upgrades required to apply them globally, including the need for a quality flag indicating the aerosol type information content, that varies depending upon retrieval conditions. We have shown that MISR aerosol type can distinguish smoke from dust, volcanic ash from sulfate and water particles, and can identify qualitative differences in mixtures of smoke, dust, and pollution aerosol components in urban settings. We demonstrated the use of stereo imaging to map smoke, dust, and volcanic effluent plume injection height, and the combination of MISR and MODIS aerosol optical depth maps to constrain wildfire smoke source strength. This talk will briefly highlight where we stand on these application, with emphasis on the steps we are taking toward applying the capabilities toward constraining aerosol transport models, planet-wide.
"torino 1911" Project: a Contribution of a Slam-Based Survey to Extensive 3d Heritage Modeling
NASA Astrophysics Data System (ADS)
Chiabrando, F.; Della Coletta, C.; Sammartano, G.; Spanò, A.; Spreafico, A.
2018-05-01
In the framework of the digital documentation of complex environments the advanced Geomatics researches offers integrated solution and multi-sensor strategies for the 3D accurate reconstruction of stratified structures and articulated volumes in the heritage domain. The use of handheld devices for rapid mapping, both image- and range-based, can help the production of suitable easy-to use and easy-navigable 3D model for documentation projects. These types of reality-based modelling could support, with their tailored integrated geometric and radiometric aspects, valorisation and communication projects including virtual reconstructions, interactive navigation settings, immersive reality for dissemination purposes and evoking past places and atmospheres. The aim of this research is localized within the "Torino 1911" project, led by the University of San Diego (California) in cooperation with the PoliTo. The entire project is conceived for multi-scale reconstruction of the real and no longer existing structures in the whole park space of more than 400,000 m2, for a virtual and immersive visualization of the Turin 1911 International "Fabulous Exposition" event, settled in the Valentino Park. Particularly, in the presented research, a 3D metric documentation workflow is proposed and validated in order to integrate the potentialities of LiDAR mapping by handheld SLAM-based device, the ZEB REVO Real Time instrument by GeoSLAM (2017 release), instead of TLS consolidated systems. Starting from these kind of models, the crucial aspects of the trajectories performances in the 3D reconstruction and the radiometric content from imaging approaches are considered, specifically by means of compared use of common DSLR cameras and portable sensors.
Tian, Fang-Bao; Luo, Haoxiang; Zhu, Luoding; Liao, James C.; Lu, Xi-Yun
2012-01-01
We have introduced a modified penalty approach into the flow-structure interaction solver that combines an immersed boundary method (IBM) and a multi-block lattice Boltzmann method (LBM) to model an incompressible flow and elastic boundaries with finite mass. The effect of the solid structure is handled by the IBM in which the stress exerted by the structure on the fluid is spread onto the collocated grid points near the boundary. The fluid motion is obtained by solving the discrete lattice Boltzmann equation. The inertial force of the thin solid structure is incorporated by connecting this structure through virtual springs to a ghost structure with the equivalent mass. This treatment ameliorates the numerical instability issue encountered in this type of problems. Thanks to the superior efficiency of the IBM and LBM, the overall method is extremely fast for a class of flow-structure interaction problems where details of flow patterns need to be resolved. Numerical examples, including those involving multiple solid bodies, are presented to verify the method and illustrate its efficiency. As an application of the present method, an elastic filament flapping in the Kármán gait and the entrainment regions near a cylinder is studied to model fish swimming in these regions. Significant drag reduction is found for the filament, and the result is consistent with the metabolic cost measured experimentally for the live fish. PMID:23564971
NASA Astrophysics Data System (ADS)
Tian, Fang-Bao; Luo, Haoxiang; Zhu, Luoding; Liao, James C.; Lu, Xi-Yun
2011-08-01
We have introduced a modified penalty approach into the flow-structure interaction solver that combines an immersed boundary method (IBM) and a multi-block lattice Boltzmann method (LBM) to model an incompressible flow and elastic boundaries with finite mass. The effect of the solid structure is handled by the IBM in which the stress exerted by the structure on the fluid is spread onto the collocated grid points near the boundary. The fluid motion is obtained by solving the discrete lattice Boltzmann equation. The inertial force of the thin solid structure is incorporated by connecting this structure through virtual springs to a ghost structure with the equivalent mass. This treatment ameliorates the numerical instability issue encountered in this type of problems. Thanks to the superior efficiency of the IBM and LBM, the overall method is extremely fast for a class of flow-structure interaction problems where details of flow patterns need to be resolved. Numerical examples, including those involving multiple solid bodies, are presented to verify the method and illustrate its efficiency. As an application of the present method, an elastic filament flapping in the Kármán gait and the entrainment regions near a cylinder is studied to model fish swimming in these regions. Significant drag reduction is found for the filament, and the result is consistent with the metabolic cost measured experimentally for the live fish.
Grain growth prediction based on data assimilation by implementing 4DVar on multi-phase-field model
NASA Astrophysics Data System (ADS)
Ito, Shin-ichi; Nagao, Hiromichi; Kasuya, Tadashi; Inoue, Junya
2017-12-01
We propose a method to predict grain growth based on data assimilation by using a four-dimensional variational method (4DVar). When implemented on a multi-phase-field model, the proposed method allows us to calculate the predicted grain structures and uncertainties in them that depend on the quality and quantity of the observational data. We confirm through numerical tests involving synthetic data that the proposed method correctly reproduces the true phase-field assumed in advance. Furthermore, it successfully quantifies uncertainties in the predicted grain structures, where such uncertainty quantifications provide valuable information to optimize the experimental design.
A mixed integer bi-level DEA model for bank branch performance evaluation by Stackelberg approach
NASA Astrophysics Data System (ADS)
Shafiee, Morteza; Lotfi, Farhad Hosseinzadeh; Saleh, Hilda; Ghaderi, Mehdi
2016-03-01
One of the most complicated decision making problems for managers is the evaluation of bank performance, which involves various criteria. There are many studies about bank efficiency evaluation by network DEA in the literature review. These studies do not focus on multi-level network. Wu (Eur J Oper Res 207:856-864, 2010) proposed a bi-level structure for cost efficiency at the first time. In this model, multi-level programming and cost efficiency were used. He used a nonlinear programming to solve the model. In this paper, we have focused on multi-level structure and proposed a bi-level DEA model. We then used a liner programming to solve our model. In other hand, we significantly improved the way to achieve the optimum solution in comparison with the work by Wu (2010) by converting the NP-hard nonlinear programing into a mixed integer linear programming. This study uses a bi-level programming data envelopment analysis model that embodies internal structure with Stackelberg-game relationships to evaluate the performance of banking chain. The perspective of decentralized decisions is taken in this paper to cope with complex interactions in banking chain. The results derived from bi-level programming DEA can provide valuable insights and detailed information for managers to help them evaluate the performance of the banking chain as a whole using Stackelberg-game relationships. Finally, this model was applied in the Iranian bank to evaluate cost efficiency.
Towards a multi-level approach to the emergence of meaning processes in living systems.
Queiroz, João; El-Hani, Charbel Niño
2006-09-01
Any description of the emergence and evolution of different types of meaning processes (semiosis, sensu C.S.Peirce) in living systems must be supported by a theoretical framework which makes it possible to understand the nature and dynamics of such processes. Here we propose that the emergence of semiosis of different kinds can be understood as resulting from fundamental interactions in a triadically-organized hierarchical process. To grasp these interactions, we develop a model grounded on Stanley Salthe's hierarchical structuralism. This model can be applied to establish, in a general sense, a set of theoretical constraints for explaining the instantiation of different kinds of meaning processes (iconic, indexical, symbolic) in semiotic systems. We use it to model a semiotic process in the immune system, namely, B-cell activation, in order to offer insights into the heuristic role it can play in the development of explanations for specific semiotic processes.
NASA Technical Reports Server (NTRS)
Arnold, Steven M.; Lerch, Bradley A.; Saleeb, Atef F.; Kasemer, Matthew P.
2013-01-01
Time-dependent deformation and damage behavior can significantly affect the life of aerospace propulsion components. Consequently, one needs an accurate constitutive model that can represent both reversible and irreversible behavior under multiaxial loading conditions. This paper details the characterization and utilization of a multi-mechanism constitutive model of the GVIPS class (Generalized Viscoplastic with Potential Structure) that has been extended to describe the viscoelastoplastic deformation and damage of the titanium alloy Ti-6Al-4V. Associated material constants were characterized at five elevated temperatures where viscoelastoplastic behavior was observed, and at three elevated temperatures where damage (of both the stiffness reduction and strength reduction type) was incurred. Experimental data from a wide variety of uniaxial load cases were used to correlate and validate the proposed GVIPS model. Presented are the optimized material parameters, and the viscoelastoplastic deformation and damage responses at the various temperatures.
Soranno, Patricia A.; Cheruvelil, Kendra Spence; Webster, Katherine E.; Bremigan, Mary T.; Wagner, Tyler; Stow, Craig A.
2010-01-01
Governmental entities are responsible for managing and conserving large numbers of lake, river, and wetland ecosystems that can be addressed only rarely on a case-by-case basis. We present a system for predictive classification modeling, grounded in the theoretical foundation of landscape limnology, that creates a tractable number of ecosystem classes to which management actions may be tailored. We demonstrate our system by applying two types of predictive classification modeling approaches to develop nutrient criteria for eutrophication management in 1998 north temperate lakes. Our predictive classification system promotes the effective management of multiple ecosystems across broad geographic scales by explicitly connecting management and conservation goals to the classification modeling approach, considering multiple spatial scales as drivers of ecosystem dynamics, and acknowledging the hierarchical structure of freshwater ecosystems. Such a system is critical for adaptive management of complex mosaics of freshwater ecosystems and for balancing competing needs for ecosystem services in a changing world.
NASA Technical Reports Server (NTRS)
Elishakoff, Isaac
1998-01-01
Ten papers, published in various publications, on buckling, and the effects of imperfections on various structures are presented. These papers are: (1) Buckling mode localization in elastic plates due to misplacement in the stiffner location; (2) On vibrational imperfection sensitivity on Augusti's model structure in the vicinity of a non-linear static state; (3) Imperfection sensitivity due to elastic moduli in the Roorda Koiter frame; (4) Buckling mode localization in a multi-span periodic structure with a disorder in a single span; (5) Prediction of natural frequency and buckling load variability due to uncertainty in material properties by convex modeling; (6) Derivation of multi-dimensional ellipsoidal convex model for experimental data; (7) Passive control of buckling deformation via Anderson localization phenomenon; (8)Effect of the thickness and initial im perfection on buckling on composite cylindrical shells: asymptotic analysis and numerical results by BOSOR4 and PANDA2; (9) Worst case estimation of homology design by convex analysis; (10) Buckling of structures with uncertain imperfections - Personal perspective.
Using synchronization in multi-model ensembles to improve prediction
NASA Astrophysics Data System (ADS)
Hiemstra, P.; Selten, F.
2012-04-01
In recent decades, many climate models have been developed to understand and predict the behavior of the Earth's climate system. Although these models are all based on the same basic physical principles, they still show different behavior. This is for example caused by the choice of how to parametrize sub-grid scale processes. One method to combine these imperfect models, is to run a multi-model ensemble. The models are given identical initial conditions and are integrated forward in time. A multi-model estimate can for example be a weighted mean of the ensemble members. We propose to go a step further, and try to obtain synchronization between the imperfect models by connecting the multi-model ensemble, and exchanging information. The combined multi-model ensemble is also known as a supermodel. The supermodel has learned from observations how to optimally exchange information between the ensemble members. In this study we focused on the density and formulation of the onnections within the supermodel. The main question was whether we could obtain syn-chronization between two climate models when connecting only a subset of their state spaces. Limiting the connected subspace has two advantages: 1) it limits the transfer of data (bytes) between the ensemble, which can be a limiting factor in large scale climate models, and 2) learning the optimal connection strategy from observations is easier. To answer the research question, we connected two identical quasi-geostrohic (QG) atmospheric models to each other, where the model have different initial conditions. The QG model is a qualitatively realistic simulation of the winter flow on the Northern hemisphere, has three layers and uses a spectral imple-mentation. We connected the models in the original spherical harmonical state space, and in linear combinations of these spherical harmonics, i.e. Empirical Orthogonal Functions (EOFs). We show that when connecting through spherical harmonics, we only need to connect 28% of the state variables to obtain synchronization. In addition, when connecting through EOFs, we can reduce this percentage even more to 12%. This reduction is caused by the more efficient description of the model state variables when using EOFs. The connected state variables center around the medium scale structures in the model. Small and large scale structures need not be connected in order to obtain synchronization. This could be related to the baroclinic instabilities in the QG model which are located in the medium scale structures of the model. The baroclinic instabilities are the main source of divergence between the two connected models.
Motion generation of peristaltic mobile robot with particle swarm optimization algorithm
NASA Astrophysics Data System (ADS)
Homma, Takahiro; Kamamichi, Norihiro
2015-03-01
In developments of robots, bio-mimetics is attracting attention, which is a technology for the design of the structure and function inspired from biological system. There are a lot of examples of bio-mimetics in robotics such as legged robots, flapping robots, insect-type robots, fish-type robots. In this study, we focus on the motion of earthworm and aim to develop a peristaltic mobile robot. The earthworm is a slender animal moving in soil. It has a segmented body, and each segment can be shorted and lengthened by muscular actions. It can move forward by traveling expanding motions of each segment backward. By mimicking the structure and motion of the earthworm, we can construct a robot with high locomotive performance against an irregular ground or a narrow space. In this paper, to investigate the motion analytically, a dynamical model is introduced, which consist of a series-connected multi-mass model. Simple periodic patterns which mimic the motions of earthworms are applied in an open-loop fashion, and the moving patterns are verified through numerical simulations. Furthermore, to generate efficient motion of the robot, a particle swarm optimization algorithm, one of the meta-heuristic optimization, is applied. The optimized results are investigated by comparing to simple periodic patterns.
NASA Astrophysics Data System (ADS)
Vaiana, Michael; Muldoon, Sarah Feldt
2018-01-01
The field of neuroscience is facing an unprecedented expanse in the volume and diversity of available data. Traditionally, network models have provided key insights into the structure and function of the brain. With the advent of big data in neuroscience, both more sophisticated models capable of characterizing the increasing complexity of the data and novel methods of quantitative analysis are needed. Recently, multilayer networks, a mathematical extension of traditional networks, have gained increasing popularity in neuroscience due to their ability to capture the full information of multi-model, multi-scale, spatiotemporal data sets. Here, we review multilayer networks and their applications in neuroscience, showing how incorporating the multilayer framework into network neuroscience analysis has uncovered previously hidden features of brain networks. We specifically highlight the use of multilayer networks to model disease, structure-function relationships, network evolution, and link multi-scale data. Finally, we close with a discussion of promising new directions of multilayer network neuroscience research and propose a modified definition of multilayer networks designed to unite and clarify the use of the multilayer formalism in describing real-world systems.
NASA Astrophysics Data System (ADS)
Wang, Gongwen; Ma, Zhenbo; Li, Ruixi; Song, Yaowu; Qu, Jianan; Zhang, Shouting; Yan, Changhai; Han, Jiangwei
2017-04-01
In this paper, multi-source (geophysical, geochemical, geological and remote sensing) datasets were used to construct multi-scale (district-, deposit-, and orebody-scale) 3D geological models and extract 3D exploration criteria for subsurface Mo-polymetallic exploration targeting in the Luanchuan district in China. The results indicate that (i) a series of region-/district-scale NW-trending thrusts controlled main Mo-polymetallic forming, and they were formed by regional Indosinian Qinling orogenic events, the secondary NW-trending district-scale folds and NE-trending faults and the intrusive stock structure are produced based on thrust structure in Caledonian-Indosinian orogenic events; they are ore-bearing zones and ore-forming structures; (ii) the NW-trending district-scale and NE-trending deposit-scale normal faults were crossed and controlled by the Jurassic granite stocks in 3D space, they are associated with the magma-skarn Mo polymetallic mineralization (the 3D buffer distance of ore-forming granite stocks is 600 m) and the NW-trending hydrothermal Pb-Zn deposits which are surrounded by the Jurassic granite stocks and constrained by NW-trending or NE-trending faults (the 3D buffer distance of ore-forming fault is 700 m); and (iii) nine Mo polymetallic and four Pb-Zn targets were identified in the subsurface of the Luanchuan district.
Yin, X-X; Zhang, Y; Cao, J; Wu, J-L; Hadjiloucas, S
2016-12-01
We provide a comprehensive account of recent advances in biomedical image analysis and classification from two complementary imaging modalities: terahertz (THz) pulse imaging and dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). The work aims to highlight underlining commonalities in both data structures so that a common multi-channel data fusion framework can be developed. Signal pre-processing in both datasets is discussed briefly taking into consideration advances in multi-resolution analysis and model based fractional order calculus system identification. Developments in statistical signal processing using principal component and independent component analysis are also considered. These algorithms have been developed independently by the THz-pulse imaging and DCE-MRI communities, and there is scope to place them in a common multi-channel framework to provide better software standardization at the pre-processing de-noising stage. A comprehensive discussion of feature selection strategies is also provided and the importance of preserving textural information is highlighted. Feature extraction and classification methods taking into consideration recent advances in support vector machine (SVM) and extreme learning machine (ELM) classifiers and their complex extensions are presented. An outlook on Clifford algebra classifiers and deep learning techniques suitable to both types of datasets is also provided. The work points toward the direction of developing a new unified multi-channel signal processing framework for biomedical image analysis that will explore synergies from both sensing modalities for inferring disease proliferation. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Mansor, Zakwan; Zakaria, Mohd Zakimi; Nor, Azuwir Mohd; Saad, Mohd Sazli; Ahmad, Robiah; Jamaluddin, Hishamuddin
2017-09-01
This paper presents the black-box modelling of palm oil biodiesel engine (POB) using multi-objective optimization differential evolution (MOODE) algorithm. Two objective functions are considered in the algorithm for optimization; minimizing the number of term of a model structure and minimizing the mean square error between actual and predicted outputs. The mathematical model used in this study to represent the POB system is nonlinear auto-regressive moving average with exogenous input (NARMAX) model. Finally, model validity tests are applied in order to validate the possible models that was obtained from MOODE algorithm and lead to select an optimal model.
Loudiyi, M; Rutledge, D N; Aït-Kaddour, A
2018-10-30
Common Dimension (ComDim) chemometrics method for multi-block data analysis was employed to evaluate the impact of different added salts and ripening times on physicochemical, color, dynamic low amplitude oscillatory rheology, texture profile, and molecular structure (fluorescence and MIR spectroscopies) of five Cantal-type cheeses. Firstly, Independent Components Analysis (ICA) was applied separately on fluorescence and MIR spectra in order to extract the relevant signal source and the associated proportions related to molecular structure characteristics. ComDim was then applied on the 31 data tables corresponding to the proportion of ICA signals obtained for spectral methods and the global analysis of cheeses by the other techniques. The ComDim results indicated that generally cheeses made with 50% NaCl or with 75:25% NaCl/KCl exhibit the equivalent characteristics in structural, textural, meltability and color properties. The proposed methodology demonstrates the applicability of ComDim for the characterization of samples when different techniques describe the same samples. Copyright © 2018 Elsevier Ltd. All rights reserved.
Multi-temporal LiDAR and Landsat quantification of fire-induced changes to forest structure
McCarley, T. Ryan; Kolden, Crystal A.; Vaillant, Nicole M.; Hudak, Andrew T.; Smith, Alistair M.S.; Wing, Brian M.; Kellogg, Bryce; Kreitler, Jason R.
2017-01-01
Measuring post-fire effects at landscape scales is critical to an ecological understanding of wildfire effects. Predominantly this is accomplished with either multi-spectral remote sensing data or through ground-based field sampling plots. While these methods are important, field data is usually limited to opportunistic post-fire observations, and spectral data often lacks validation with specific variables of change. Additional uncertainty remains regarding how best to account for environmental variables influencing fire effects (e.g., weather) for which observational data cannot easily be acquired, and whether pre-fire agents of change such as bark beetle and timber harvest impact model accuracy. This study quantifies wildfire effects by correlating changes in forest structure derived from multi-temporal Light Detection and Ranging (LiDAR) acquisitions to multi-temporal spectral changes captured by the Landsat Thematic Mapper and Operational Land Imager for the 2012 Pole Creek Fire in central Oregon. Spatial regression modeling was assessed as a methodology to account for spatial autocorrelation, and model consistency was quantified across areas impacted by pre-fire mountain pine beetle and timber harvest. The strongest relationship (pseudo-r2 = 0.86, p < 0.0001) was observed between the ratio of shortwave infrared and near infrared reflectance (d74) and LiDAR-derived estimate of canopy cover change. Relationships between percentage of LiDAR returns in forest strata and spectral indices generally increased in strength with strata height. Structural measurements made closer to the ground were not well correlated. The spatial regression approach improved all relationships, demonstrating its utility, but model performance declined across pre-fire agents of change, suggesting that such studies should stratify by pre-fire forest condition. This study establishes that spectral indices such as d74 and dNBR are most sensitive to wildfire-caused structural changes such as reduction in canopy cover and perform best when that structure has not been reduced pre-fire.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodriguez, Mario E.
An area in earthquake risk reduction that needs an urgent examination is the selection of earthquake records for nonlinear dynamic analysis of structures. An often-mentioned shortcoming from results of nonlinear dynamic analyses of structures is that these results are limited to the type of records that these analyses use as input data. This paper proposes a procedure for selecting earthquake records for nonlinear dynamic analysis of structures. This procedure uses a seismic damage index evaluated using the hysteretic energy dissipated by a Single Degree of Freedom System (SDOF) representing a multi-degree-of freedom structure responding to an earthquake record, and themore » plastic work capacity of the system at collapse. The type of structural system is considered using simple parameters. The proposed method is based on the evaluation of the damage index for a suite of earthquake records and a selected type of structural system. A set of 10 strong ground motion records is analyzed to show an application of the proposed procedure for selecting earthquake records for structural design.« less
NASA Astrophysics Data System (ADS)
Niakan, F.; Vahdani, B.; Mohammadi, M.
2015-12-01
This article proposes a multi-objective mixed-integer model to optimize the location of hubs within a hub network design problem under uncertainty. The considered objectives include minimizing the maximum accumulated travel time, minimizing the total costs including transportation, fuel consumption and greenhouse emissions costs, and finally maximizing the minimum service reliability. In the proposed model, it is assumed that for connecting two nodes, there are several types of arc in which their capacity, transportation mode, travel time, and transportation and construction costs are different. Moreover, in this model, determining the capacity of the hubs is part of the decision-making procedure and balancing requirements are imposed on the network. To solve the model, a hybrid solution approach is utilized based on inexact programming, interval-valued fuzzy programming and rough interval programming. Furthermore, a hybrid multi-objective metaheuristic algorithm, namely multi-objective invasive weed optimization (MOIWO), is developed for the given problem. Finally, various computational experiments are carried out to assess the proposed model and solution approaches.
Non-destructive evaluation of coating thickness using guided waves
NASA Astrophysics Data System (ADS)
Ostiguy, Pierre-Claude; Quaegebeur, Nicolas; Masson, Patrice
2015-04-01
Among existing strategies for non-destructive evaluation of coating thickness, ultrasonic methods based on the measurement of the Time-of-Flight (ToF) of high frequency bulk waves propagating through the thickness of a structure are widespread. However, these methods only provide a very localized measurement of the coating thickness and the precision on the results is largely affected by the surface roughness, porosity or multi-layered nature of the host structure. Moreover, since the measurement is very local, inspection of large surfaces can be time consuming. This article presents a robust methodology for coating thickness estimation based on the generation and measurement of guided waves. Guided waves have the advantage over ultrasonic bulk waves of being less sensitive to surface roughness, and of measuring an average thickness over a wider area, thus reducing the time required to inspect large surfaces. The approach is based on an analytical multi-layer model and intercorrelation of reference and measured signals. The method is first assessed numerically for an aluminum plate, where it is demonstrated that coating thickness can be measured within a precision of 5 micrometers using the S0 mode at frequencies below 500 kHz. Then, an experimental validation is conducted and results show that coating thicknesses in the range of 10 to 200 micrometers can be estimated within a precision of 10 micrometers of the exact coating thickness on this type of structure.
NASA Astrophysics Data System (ADS)
Garavaglia, Federico; Le Lay, Matthieu; Gottardi, Fréderic; Garçon, Rémy; Gailhard, Joël; Paquet, Emmanuel; Mathevet, Thibault
2017-08-01
Model intercomparison experiments are widely used to investigate and improve hydrological model performance. However, a study based only on runoff simulation is not sufficient to discriminate between different model structures. Hence, there is a need to improve hydrological models for specific streamflow signatures (e.g., low and high flow) and multi-variable predictions (e.g., soil moisture, snow and groundwater). This study assesses the impact of model structure on flow simulation and hydrological realism using three versions of a hydrological model called MORDOR: the historical lumped structure and a revisited formulation available in both lumped and semi-distributed structures. In particular, the main goal of this paper is to investigate the relative impact of model equations and spatial discretization on flow simulation, snowpack representation and evapotranspiration estimation. Comparison of the models is based on an extensive dataset composed of 50 catchments located in French mountainous regions. The evaluation framework is founded on a multi-criterion split-sample strategy. All models were calibrated using an automatic optimization method based on an efficient genetic algorithm. The evaluation framework is enriched by the assessment of snow and evapotranspiration modeling against in situ and satellite data. The results showed that the new model formulations perform significantly better than the initial one in terms of the various streamflow signatures, snow and evapotranspiration predictions. The semi-distributed approach provides better calibration-validation performance for the snow cover area, snow water equivalent and runoff simulation, especially for nival catchments.
Multi-disciplinary coupling for integrated design of propulsion systems
NASA Technical Reports Server (NTRS)
Chamis, C. C.; Singhal, S. N.
1993-01-01
Effective computational simulation procedures are described for modeling the inherent multi-disciplinary interactions for determining the true response of propulsion systems. Results are presented for propulsion system responses including multi-discipline coupling effects via (1) coupled multi-discipline tailoring, (2) an integrated system of multidisciplinary simulators, (3) coupled material-behavior/fabrication-process tailoring, (4) sensitivities using a probabilistic simulator, and (5) coupled materials/structures/fracture/probabilistic behavior simulator. The results show that the best designs can be determined if the analysis/tailoring methods account for the multi-disciplinary coupling effects. The coupling across disciplines can be used to develop an integrated interactive multi-discipline numerical propulsion system simulator.
NASA Astrophysics Data System (ADS)
Wen, Xian-Huan; Gómez-Hernández, J. Jaime
1998-03-01
The macrodispersion of an inert solute in a 2-D heterogeneous porous media is estimated numerically in a series of fields of varying heterogeneity. Four different random function (RF) models are used to model log-transmissivity (ln T) spatial variability, and for each of these models, ln T variance is varied from 0.1 to 2.0. The four RF models share the same univariate Gaussian histogram and the same isotropic covariance, but differ from one another in terms of the spatial connectivity patterns at extreme transmissivity values. More specifically, model A is a multivariate Gaussian model for which, by definition, extreme values (both high and low) are spatially uncorrelated. The other three models are non-multi-Gaussian: model B with high connectivity of high extreme values, model C with high connectivity of low extreme values, and model D with high connectivities of both high and low extreme values. Residence time distributions (RTDs) and macrodispersivities (longitudinal and transverse) are computed on ln T fields corresponding to the different RF models, for two different flow directions and at several scales. They are compared with each other, as well as with predicted values based on first-order analytical results. Numerically derived RTDs and macrodispersivities for the multi-Gaussian model are in good agreement with analytically derived values using first-order theories for log-transmissivity variance up to 2.0. The results from the non-multi-Gaussian models differ from each other and deviate largely from the multi-Gaussian results even when ln T variance is small. RTDs in non-multi-Gaussian realizations with high connectivity at high extreme values display earlier breakthrough than in multi-Gaussian realizations, whereas later breakthrough and longer tails are observed for RTDs from non-multi-Gaussian realizations with high connectivity at low extreme values. Longitudinal macrodispersivities in the non-multi-Gaussian realizations are, in general, larger than in the multi-Gaussian ones, while transverse macrodispersivities in the non-multi-Gaussian realizations can be larger or smaller than in the multi-Gaussian ones depending on the type of connectivity at extreme values. Comparing the numerical results for different flow directions, it is confirmed that macrodispersivities in multi-Gaussian realizations with isotropic spatial correlation are not flow direction-dependent. Macrodispersivities in the non-multi-Gaussian realizations, however, are flow direction-dependent although the covariance of ln T is isotropic (the same for all four models). It is important to account for high connectivities at extreme transmissivity values, a likely situation in some geological formations. Some of the discrepancies between first-order-based analytical results and field-scale tracer test data may be due to the existence of highly connected paths of extreme conductivity values.
Multi-region statistical shape model for cochlear implantation
NASA Astrophysics Data System (ADS)
Romera, Jordi; Kjer, H. Martin; Piella, Gemma; Ceresa, Mario; González Ballester, Miguel A.
2016-03-01
Statistical shape models are commonly used to analyze the variability between similar anatomical structures and their use is established as a tool for analysis and segmentation of medical images. However, using a global model to capture the variability of complex structures is not enough to achieve the best results. The complexity of a proper global model increases even more when the amount of data available is limited to a small number of datasets. Typically, the anatomical variability between structures is associated to the variability of their physiological regions. In this paper, a complete pipeline is proposed for building a multi-region statistical shape model to study the entire variability from locally identified physiological regions of the inner ear. The proposed model, which is based on an extension of the Point Distribution Model (PDM), is built for a training set of 17 high-resolution images (24.5 μm voxels) of the inner ear. The model is evaluated according to its generalization ability and specificity. The results are compared with the ones of a global model built directly using the standard PDM approach. The evaluation results suggest that better accuracy can be achieved using a regional modeling of the inner ear.
Spatial scaling and multi-model inference in landscape genetics: Martes americana in northern Idaho
Tzeidle N. Wasserman; Samuel A. Cushman; Michael K. Schwartz; David O. Wallin
2010-01-01
Individual-based analyses relating landscape structure to genetic distances across complex landscapes enable rigorous evaluation of multiple alternative hypotheses linking landscape structure to gene flow. We utilize two extensions to increase the rigor of the individual-based causal modeling approach to inferring relationships between landscape patterns and gene flow...
Prospects of second generation artificial intelligence tools in calibration of chemical sensors.
Braibanti, Antonio; Rao, Rupenaguntla Sambasiva; Ramam, Veluri Anantha; Rao, Gollapalli Nageswara; Rao, Vaddadi Venkata Panakala
2005-05-01
Multivariate data driven calibration models with neural networks (NNs) are developed for binary (Cu++ and Ca++) and quaternary (K+, Ca++, NO3- and Cl-) ion-selective electrode (ISE) data. The response profiles of ISEs with concentrations are non-linear and sub-Nernstian. This task represents function approximation of multi-variate, multi-response, correlated, non-linear data with unknown noise structure i.e. multi-component calibration/prediction in chemometric parlance. Radial distribution function (RBF) and Fuzzy-ARTMAP-NN models implemented in the software packages, TRAJAN and Professional II, are employed for the calibration. The optimum NN models reported are based on residuals in concentration space. Being a data driven information technology, NN does not require a model, prior- or posterior- distribution of data or noise structure. Missing information, spikes or newer trends in different concentration ranges can be modeled through novelty detection. Two simulated data sets generated from mathematical functions are modeled as a function of number of data points and network parameters like number of neurons and nearest neighbors. The success of RBF and Fuzzy-ARTMAP-NNs to develop adequate calibration models for experimental data and function approximation models for more complex simulated data sets ensures AI2 (artificial intelligence, 2nd generation) as a promising technology in quantitation.
Rosenberg, Oren S.; Dovala, Dustin; Li, Xueming; ...
2015-04-09
We report that Mycobacterium tuberculosis and Staphylococcus aureus secrete virulence factors via type VII protein secretion (T7S), a system that intriguingly requires all of its secretion substrates for activity. To gain insights into T7S function, we used structural approaches to guide studies of the putative translocase EccC, a unique enzyme with three ATPase domains, and its secretion substrate EsxB. The crystal structure of EccC revealed that the ATPase domains are joined by linker/pocket interactions that modulate its enzymatic activity. EsxB binds via its signal sequence to an empty pocket on the C-terminal ATPase domain, which is accompanied by an increasemore » in ATPase activity. Surprisingly, substrate binding does not activate EccC allosterically but, rather, by stimulating its multimerization. Thus, the EsxB substrate is also an integral T7S component, illuminating a mechanism that helps to explain interdependence of substrates, and suggests a model in which binding of substrates modulates their coordinate release from the bacterium.« less
Multi-Level Anomaly Detection on Time-Varying Graph Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bridges, Robert A; Collins, John P; Ferragut, Erik M
This work presents a novel modeling and analysis framework for graph sequences which addresses the challenge of detecting and contextualizing anomalies in labelled, streaming graph data. We introduce a generalization of the BTER model of Seshadhri et al. by adding flexibility to community structure, and use this model to perform multi-scale graph anomaly detection. Specifically, probability models describing coarse subgraphs are built by aggregating probabilities at finer levels, and these closely related hierarchical models simultaneously detect deviations from expectation. This technique provides insight into a graph's structure and internal context that may shed light on a detected event. Additionally, thismore » multi-scale analysis facilitates intuitive visualizations by allowing users to narrow focus from an anomalous graph to particular subgraphs or nodes causing the anomaly. For evaluation, two hierarchical anomaly detectors are tested against a baseline Gaussian method on a series of sampled graphs. We demonstrate that our graph statistics-based approach outperforms both a distribution-based detector and the baseline in a labeled setting with community structure, and it accurately detects anomalies in synthetic and real-world datasets at the node, subgraph, and graph levels. To illustrate the accessibility of information made possible via this technique, the anomaly detector and an associated interactive visualization tool are tested on NCAA football data, where teams and conferences that moved within the league are identified with perfect recall, and precision greater than 0.786.« less
A Carbon Nanotube Pillar Array Ionizer for Miniature Ion Thruster Applications
2008-12-01
interest in using argon as a propellant. The advantages of argon go beyond its low cost to include its inertness, which makes it safe to handle and...They can be formed either as single- walled structures (SWCNTs), as shown in Figure 5, or as multi-walled structures ( MWCNTs ), as shown in Figure 6...The structure in Figure 6 is known as a Russian Doll MWCNT due to its structure of concentric individual CNTs. There is another type of MWCNT known
NASA Astrophysics Data System (ADS)
Cameron, Christopher J.; Lind Nordgren, Eleonora; Wennhage, Per; Göransson, Peter
2014-06-01
Balancing structural and acoustic performance of a multi-layered sandwich panel is a formidable undertaking. Frequently the gains achieved in terms of reduced weight, still meeting the structural design requirements, are lost by the changes necessary to regain acceptable acoustic performance. To alleviate this, a design method for a multifunctional load bearing vehicle body panel is proposed which attempts to achieve a balance between structural and acoustic performance. The approach is based on numerical modelling of the structural and acoustic behaviour in a combined topology, size, and property optimization in order to achieve a three dimensional optimal distribution of structural and acoustic foam materials within the bounding surfaces of a sandwich panel. In particular the effects of the coupling between one of the bounding surface face sheets and acoustic foam are examined for its impact on both the structural and acoustic overall performance of the panel. The results suggest a potential in introducing an air gap between the acoustic foam parts and one of the face sheets, provided that the structural design constraints are met without prejudicing the layout of the different foam types.
Assessing the financial characteristics of multi-institutional organizations.
Coyne, J S
1985-01-01
The prospective pricing of health services is precipitating greater attention to financial characteristics and greater development of multi-institutional organizations (MIOs). This study compares the financial characteristics of 1,590 MIO hospitals with 2,819 freestanding hospitals by ownership type: church-operated, other not-for-profit, and investor-owned. Using 1981 data from the American Hospital Association, the hospitals' capital structure and profitability are measured using three financial ratios: total assets-to-equity, return on equity, and operating margin. The results indicate both greater leverage and greater profitability among MIO hospitals, particularly in the investor-owned sector. The implications of these findings are discussed relative to financial performance by hospital ownership type in the future. PMID:4038697
Assessing the financial characteristics of multi-institutional organizations.
Coyne, J S
1985-02-01
The prospective pricing of health services is precipitating greater attention to financial characteristics and greater development of multi-institutional organizations (MIOs). This study compares the financial characteristics of 1,590 MIO hospitals with 2,819 freestanding hospitals by ownership type: church-operated, other not-for-profit, and investor-owned. Using 1981 data from the American Hospital Association, the hospitals' capital structure and profitability are measured using three financial ratios: total assets-to-equity, return on equity, and operating margin. The results indicate both greater leverage and greater profitability among MIO hospitals, particularly in the investor-owned sector. The implications of these findings are discussed relative to financial performance by hospital ownership type in the future.
The development of a revised version of multi-center molecular Ornstein-Zernike equation
NASA Astrophysics Data System (ADS)
Kido, Kentaro; Yokogawa, Daisuke; Sato, Hirofumi
2012-04-01
Ornstein-Zernike (OZ)-type theory is a powerful tool to obtain 3-dimensional solvent distribution around solute molecule. Recently, we proposed multi-center molecular OZ method, which is suitable for parallel computing of 3D solvation structure. The distribution function in this method consists of two components, namely reference and residue parts. Several types of the function were examined as the reference part to investigate the numerical robustness of the method. As the benchmark, the method is applied to water, benzene in aqueous solution and single-walled carbon nanotube in chloroform solution. The results indicate that fully-parallelization is achieved by utilizing the newly proposed reference functions.
Polguj, Michał; Wysiadecki, Grzegorz; Podgórski, Michał; Szymański, Jacek; Olbrych, Katarzyna; Olewnik, Łukasz; Topol, Mirosław
2015-10-15
Proper blood supply is necessary for the physiological function of every internal organ. The article offers the first classification of the bovine intra-testicular arteries. A corrosive study focused on the intra-testicular arterial vasculature was performed on 40 bovine testes. The vessels were analyzed accurately using MultiScanBase v.18.02 software. A corrosive study focused on the intra-testicular arteries was performed on 40 bovine testes. The vessels were analyzed accurately using MultiScanBase v.18.02 software. In bulls, the centripetal arteries tended to run straight to the mediastinal region, where they form knot-like vascular structures. Those structures are the origin for centrifugal recurrent branches, running peripherally. However, three basic types of intra-testicular arterial vasculature were noted. Type I had centrifugal, recurrent branches, running peripherally towards the surface of the testis but did not reach the tunica albuginea. Type II exhibited centrifugal, recurrent branches running more horizontally than type I. Type III is the most heterogeneous type, composed of other variform types of arteries not classified as type I or type II. Type II was most commonly observed as a vascular conglomerate of intra-testicular arteries within the arterial network of the mediastinum testis. In type III, artery diameter was significantly smaller than observed in types I and II (p < 0.01). Types I and II did not differ between each other regarding artery diameter (p > 0.05). Variations of the intra-testicular arterial vasculature in bovine testis may suggest that particular types of vessels play different physiological roles. The most common type of intra-testicular artery comprising the arterial network of the mediastinum testis was type II.
Identification of mutated driver pathways in cancer using a multi-objective optimization model.
Zheng, Chun-Hou; Yang, Wu; Chong, Yan-Wen; Xia, Jun-Feng
2016-05-01
New-generation high-throughput technologies, including next-generation sequencing technology, have been extensively applied to solve biological problems. As a result, large cancer genomics projects such as the Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium are producing large amount of rich and diverse data in multiple cancer types. The identification of mutated driver genes and driver pathways from these data is a significant challenge. Genome aberrations in cancer cells can be divided into two types: random 'passenger mutation' and functional 'driver mutation'. In this paper, we introduced a Multi-objective Optimization model based on a Genetic Algorithm (MOGA) to solve the maximum weight submatrix problem, which can be employed to identify driver genes and driver pathways promoting cancer proliferation. The maximum weight submatrix problem defined to find mutated driver pathways is based on two specific properties, i.e., high coverage and high exclusivity. The multi-objective optimization model can adjust the trade-off between high coverage and high exclusivity. We proposed an integrative model by combining gene expression data and mutation data to improve the performance of the MOGA algorithm in a biological context. Copyright © 2016 Elsevier Ltd. All rights reserved.
Impact Cratering Physics al Large Planetary Scales
NASA Astrophysics Data System (ADS)
Ahrens, Thomas J.
2007-06-01
Present understanding of the physics controlling formation of ˜10^3 km diameter, multi-ringed impact structures on planets were derived from the ideas of Scripps oceanographer, W. Van Dorn, University of London's, W, Murray, and, Caltech's, D. O'Keefe who modeled the vertical oscillations (gravity and elasticity restoring forces) of shock-induced melt and damaged rock within the transient crater immediately after the downward propagating hemispheric shock has processed rock (both lining, and substantially below, the transient cavity crater). The resulting very large surface wave displacements produce the characteristic concentric, multi-ringed basins, as stored energy is radiated away and also dissipated upon inducing further cracking. Initial calculational description, of the above oscillation scenario, has focused upon on properly predicting the resulting density of cracks, and, their orientations. A new numerical version of the Ashby--Sammis crack damage model is coupled to an existing shock hydrodynamics code to predict impact induced damage distributions in a series of 15--70 cm rock targets from high speed impact experiments for a range of impactor type and velocity. These are compared to results of crack damage distributions induced in crustal rocks with small arms impactors and mapped ultrasonically in recent Caltech experiments (Ai and Ahrens, 2006).
Conventions and workflows for using Situs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wriggers, Willy, E-mail: wriggers@biomachina.org
2012-04-01
Recent developments of the Situs software suite for multi-scale modeling are reviewed. Typical workflows and conventions encountered during processing of biophysical data from electron microscopy, tomography or small-angle X-ray scattering are described. Situs is a modular program package for the multi-scale modeling of atomic resolution structures and low-resolution biophysical data from electron microscopy, tomography or small-angle X-ray scattering. This article provides an overview of recent developments in the Situs package, with an emphasis on workflows and conventions that are important for practical applications. The modular design of the programs facilitates scripting in the bash shell that allows specific programs tomore » be combined in creative ways that go beyond the original intent of the developers. Several scripting-enabled functionalities, such as flexible transformations of data type, the use of symmetry constraints or the creation of two-dimensional projection images, are described. The processing of low-resolution biophysical maps in such workflows follows not only first principles but often relies on implicit conventions. Situs conventions related to map formats, resolution, correlation functions and feature detection are reviewed and summarized. The compatibility of the Situs workflow with CCP4 conventions and programs is discussed.« less
Generation Algorithm of Discrete Line in Multi-Dimensional Grids
NASA Astrophysics Data System (ADS)
Du, L.; Ben, J.; Li, Y.; Wang, R.
2017-09-01
Discrete Global Grids System (DGGS) is a kind of digital multi-resolution earth reference model, in terms of structure, it is conducive to the geographical spatial big data integration and mining. Vector is one of the important types of spatial data, only by discretization, can it be applied in grids system to make process and analysis. Based on the some constraint conditions, this paper put forward a strict definition of discrete lines, building a mathematic model of the discrete lines by base vectors combination method. Transforming mesh discrete lines issue in n-dimensional grids into the issue of optimal deviated path in n-minus-one dimension using hyperplane, which, therefore realizing dimension reduction process in the expression of mesh discrete lines. On this basis, we designed a simple and efficient algorithm for dimension reduction and generation of the discrete lines. The experimental results show that our algorithm not only can be applied in the two-dimensional rectangular grid, also can be applied in the two-dimensional hexagonal grid and the three-dimensional cubic grid. Meanwhile, when our algorithm is applied in two-dimensional rectangular grid, it can get a discrete line which is more similar to the line in the Euclidean space.
MOFA Software for the COBRA Toolbox
DOE Office of Scientific and Technical Information (OSTI.GOV)
Griesemer, Marc; Navid, Ali
MOFA-COBRA is a software code for Matlab that performs Multi-Objective Flux Analysis (MOFA), a solving of linear programming problems. Teh leading software package for conducting different types of analyses using constrain-based models is the COBRA Toolbox for Matlab. MOFA-COBRA is an added tool for COBRA that solves multi-objective problems using a novel algorithm.