Science.gov

Sample records for modeling nutrient consumptions

  1. Modeling Nutrient Consumptions in Large Flow-Through Bioreactors for Tissue Engineering

    PubMed Central

    Devarapalli, Mamatha; Lawrence, Benjamin J.; Madihally, Sundararajan V.

    2009-01-01

    Flow-through bioreactors are utilized in tissue regeneration to ensure complete nutrient distribution and apply defined hydrodynamic stresses. The fundamental concepts in designing these bioreactors for regenerating large high aspect ratio tissues (large surface area relative to the thickness of the matrix such as skin, bladder, and cartilage) are not well defined. Further, tissue regeneration is a dynamic process where the porous characteristics change due to proliferation of cells, de novo deposition of matrix components, and degradation of the porous architecture. These changes affect the transport characteristics and there is an imminent need to understand the influence of these factors. Using computational fluid dynamic tools, changes in the pressure drop, shear stress distribution and nutrient consumption patterns during tissue regeneration were assessed in rectangular and circular reactors described by Lawrence et al (Lawrence et al. 2008). Further, six new designs with different inlet and outlet shapes were analyzed. The fluid flow was defined by the Brinkman equation on the porous regions using the pore characteristics of 85 μm and 120 pores/mm2. The minimum flow requirements to satisfy nutrient (oxygen and glucose) requirements for three different cell types (SMCs, chondrocytes, and hepatocytes) was evaluated using convective diffusion equation. For consumption reaction, the Michaelis-Menten rate law was used, with constants (km and vm values) extracted from literature. Simulations were performed by varying the flow rate as well as the cell number. One of the circular reactors with semicircular inlet and outlet shape decreased (i) non-uniformity in hydrodynamic stress within the porous structure and (ii) non-uniform nutrient distribution. All cell types showed increased consumption of oxygen than glucose. Hepatocytes needed a very high flow rate relative to other cell types. Increase in cell number suggested a need for increasing the flow in circular

  2. A novel coupled system of non-local integro-differential equations modelling Young's modulus evolution, nutrients' supply and consumption during bone fracture healing

    NASA Astrophysics Data System (ADS)

    Lu, Yanfei; Lekszycki, Tomasz

    2016-10-01

    During fracture healing, a series of complex coupled biological and mechanical phenomena occurs. They include: (i) growth and remodelling of bone, whose Young's modulus varies in space and time; (ii) nutrients' diffusion and consumption by living cells. In this paper, we newly propose to model these evolution phenomena. The considered features include: (i) a new constitutive equation for growth simulation involving the number of sensor cells; (ii) an improved equation for nutrient concentration accounting for the switch between Michaelis-Menten kinetics and linear consumption regime; (iii) a new constitutive equation for Young's modulus evolution accounting for its dependence on nutrient concentration and variable number of active cells. The effectiveness of the model and its predictive capability are qualitatively verified by numerical simulations (using COMSOL) describing the healing of bone in the presence of damaged tissue between fractured parts.

  3. Energy-consumption modelling

    SciTech Connect

    Reiter, E.R.

    1980-01-01

    A highly sophisticated and accurate approach is described to compute on an hourly or daily basis the energy consumption for space heating by individual buildings, urban sectors, and whole cities. The need for models and specifically weather-sensitive models, composite models, and space-heating models are discussed. Development of the Colorado State University Model, based on heat-transfer equations and on a heuristic, adaptive, self-organizing computation learning approach, is described. Results of modeling energy consumption by the city of Minneapolis and Cheyenne are given. Some data on energy consumption in individual buildings are included.

  4. Oxygen Consumption Rates of Bacteria under Nutrient-Limited Conditions

    PubMed Central

    Riedel, Timothy E.; Nealson, Kenneth H.; Finkel, Steven E.

    2013-01-01

    Many environments on Earth experience nutrient limitation and as a result have nongrowing or very slowly growing bacterial populations. To better understand bacterial respiration under environmentally relevant conditions, the effect of nutrient limitation on respiration rates of heterotrophic bacteria was measured. The oxygen consumption and population density of batch cultures of Escherichia coli K-12, Shewanella oneidensis MR-1, and Marinobacter aquaeolei VT8 were tracked for up to 200 days. The oxygen consumption per CFU (QO2) declined by more than 2 orders of magnitude for all three strains as they transitioned from nutrient-abundant log-phase growth to the nutrient-limited early stationary phase. The large reduction in QO2 from growth to stationary phase suggests that nutrient availability is an important factor in considering environmental respiration rates. Following the death phase, during the long-term stationary phase (LTSP), QO2 values of the surviving population increased with time and more cells were respiring than formed colonies. Within the respiring population, a subpopulation of highly respiring cells increased in abundance with time. Apparently, as cells enter LTSP, there is a viable but not culturable population whose bulk community and per cell respiration rates are dynamic. This result has a bearing on how minimal energy requirements are met, especially in nutrient-limited environments. The minimal QO2 rates support the extension of Kleiber's law to the mass of a bacterium (100-fg range). PMID:23770901

  5. Pulse consumption in Canadian adults influences nutrient intakes.

    PubMed

    Mudryj, Adriana N; Yu, Nancy; Hartman, Terryl J; Mitchell, Diane C; Lawrence, Frank R; Aukema, Harold M

    2012-08-01

    Pulses (dry beans, peas, lentils) are nutrient-dense foods that are recommended as good choices in either the vegetable or meat and alternative food groups in Canada's Food Guide. To examine the prevalence and the effect of pulse consumption on nutrient intake in Canadian adults ( ≥ 19 years), we analysed cross-sectional data (n 20,156) from the 2004 Canadian Community Health Survey, Cycle 2·2. Participants were divided into non-consumers and quartiles of pulse intake. Sample weights were applied and logistic regression analysis was used to explore the association of nutrient intakes and pulse consumption, with cultural background, sex, age and economic status included as covariates. On any given day, 13 % of Canadians consume pulses, with the highest consumption in the Asian population. The pulse intake of consumers in the highest quartile was 294 (se 40) g/d and, compared with non-consumers, these individuals had higher intakes of carbohydrate, fibre and protein. As well, the micronutrient intake of pulse consumers was enhanced, resulting in fewer individuals who were below the estimated average requirement for thiamin, vitamin B6, folate, Fe, Mg, P and Zn, compared with non-consumers. Although pulses are generally low in Na, its intake also was higher in pulse consumers. Among the higher quartiles of pulse consumers, fruit and vegetable intake was one serving higher. These data indicate that pulse consumption supports dietary advice that pulses be included in healthful diets. Further studies elucidating the sources of increased Na in pulse consumers will be necessary so that dietary advice to increase consumption of pulses will maximise their nutritional benefits.

  6. Levels of nutrients in relation to fish consumption among older male anglers in Wisconsin

    PubMed Central

    Christensen, Krista Y.; Thompson, Brooke A.; Werner, Mark; Malecki, Kristen; Imm, Pamela; Anderson, Henry A.

    2016-01-01

    Fish are an important source of nutrients including omega-3 fatty acids, which may reduce risk of adverse health outcomes such as cardiovascular disease; however, fish may also contain significant amounts of environmental pollutants. The Wisconsin Departments of Health Services and Natural Resources developed a survey instrument, along with a strategy to collect human biological samples to assess the risks and benefits associated with long-term fish consumption among older male anglers in Wisconsin. The target population was men aged 50 years and older, who fish Wisconsin waters and live in the state of Wisconsin. Participants provided blood and hair samples and completed a detailed (paper) questionnaire, which included questions on basic demographics, health status, location of catch and species of fish caught/eaten, consumption of locally caught and commercially purchased fish, and awareness and source of information for local and statewide consumption guidelines. Biological samples were used to assess levels of docosahexaenoic acid (DHA), docosapentaenoic acid (DPA), eicosapentaenoic acid (EPA); vitamin D; and selenium in blood. Quantile regression analysis was used to investigate the associations between biomarker levels and self-reported consumption of fish from the Great Lakes and other areas of concern, other locally caught fish, and commercially purchased fish (meals per year). Respondents were largely non-Hispanic white men in their 60’s with at least some college education, and about half were retired. Fish consumption was high (median of 54.5 meals per year), with most fish meals coming from locally-caught fish. Multivariate regression models showed that the effect of supplement use was much greater than that of fish consumption, on nutrient levels, although consumption of fish from the Great Lakes and areas of concern was significantly associated with higher levels of vitamin D even after controlling for supplement usage. PMID:26296180

  7. Multicontextual correlates of energy-dense, nutrient-poor snack food consumption by adolescents.

    PubMed

    Larson, Nicole; Miller, Jonathan M; Eisenberg, Marla E; Watts, Allison W; Story, Mary; Neumark-Sztainer, Dianne

    2017-05-01

    Frequent consumption of energy-dense, nutrient-poor snack foods is an eating behavior of public health concern. This study was designed to inform strategies for reducing adolescent intake of energy-dense snack foods by identifying individual and environmental influences. Surveys were completed in 2009-2010 by 2540 adolescents (54% females, mean age = 14.5 ± 2.0, 80% nonwhite) in Minneapolis-St. Paul, Minnesota schools. Daily servings of energy-dense snack food was assessed using a food frequency questionnaire that asked about consumption of 21 common snack food items, such as potato chips, cookies, and candy. Data representing characteristics of adolescents' environments were collected from parents/caregivers, friends, school personnel, Geographic Information System sources, and a content analysis of favorite television shows. Linear regression was used to examine relationships between each individual or environmental characteristic and snack food consumption in separate models and also to examine relationships in a model including all of the characteristics simultaneously. The factors found to be significantly associated with higher energy-dense snack food intake represented individual attitudes/behaviors (e.g., snacking while watching television) and characteristics of home/family (e.g., home unhealthy food availability), peer (friends' energy-dense snack food consumption), and school (e.g., student snack consumption norms) environments. In total, 25.5% of the variance in adolescents' energy-dense snack food consumption was explained when factors from within each context were examined together. The results suggest that the design of interventions targeting improvement in the dietary quality of adolescents' snack food choices should address relevant individual factors (e.g., eating while watching television) along with characteristics of their home/family (e.g., limiting the availability of unhealthy foods), peer (e.g., guiding the efforts of a peer leader in

  8. Breakfast consumption is positively associated with nutrient adequacy in Canadian children and adolescents.

    PubMed

    Barr, Susan I; DiFrancesco, Loretta; Fulgoni, Victor L

    2014-10-28

    Although breakfast is associated with more favourable nutrient intake profiles in children, limited data exist on the impact of breakfast on nutrient adequacy and the potential risk of excessive intakes. Accordingly, we assessed differences in nutrient intake and adequacy among breakfast non-consumers, consumers of breakfasts with ready-to-eat cereal (RTEC) and consumers of other types of breakfasts. We used cross-sectional data from 12,281 children and adolescents aged 4-18 years who took part in the nationally representative Canadian Community Health Survey, 2004. Mean nutrient intakes (obtained using a multiple-pass 24 h recall method) were compared among the breakfast groups using covariate-adjusted regression analysis. Usual nutrient intake distributions, generated using the National Cancer Institute method, were used to determine the prevalence of nutrient inadequacy or the potential risk of excessive intakes from food sources alone and from the combination of food plus supplements. Of these Canadian children, 10% were breakfast non-consumers, 33% were consumers of RTEC breakfasts and 57% were consumers of other types of breakfasts. Non-consumption of breakfast increased with age (4-8 years: 2%; 9-13 years: 9%; 14-18 years: 18%). Breakfast consumers had higher covariate-adjusted intakes of energy, many nutrients and fibre, and lower fat intakes. The prevalence of nutrient inadequacy for vitamin D, Ca, Fe and Mg (from food alone or from the combination of food plus supplements) was highest in breakfast non-consumers, intermediate in consumers of other types of breakfasts and lowest in consumers of RTEC breakfast. For vitamin A, P and Zn, breakfast non-consumers had a higher prevalence of nutrient inadequacy than both breakfast groups. The potential risk of excessive nutrient intakes was low in all groups. Efforts to encourage and maintain breakfast consumption in children and adolescents are warranted.

  9. Electric-field-enhanced nutrient consumption in dielectric biomaterials that contain anchorage-dependent cells.

    PubMed

    Belfiore, Laurence A; Floren, Michael L; Belfiore, Carol J

    2012-02-01

    This research contribution addresses electric-field stimulation of intra-tissue mass transfer and cell proliferation in viscoelastic biomaterials. The unsteady state reaction-diffusion equation is solved according to the von Kármán-Pohlhausen integral method of boundary layer analysis when nutrient consumption and tissue regeneration occur in response to harmonic electric potential differences across a parallel-plate capacitor in a dielectric-sandwich configuration. The partial differential mass balance with diffusion and electro-kinetic consumption contains the Damköhler (Λ(2)) and Deborah (De) numbers. Zero-field and electric-field-sensitive Damköhler numbers affect nutrient boundary layer growth. Diagonal elements of the 2nd-rank diffusion tensor are enhanced in the presence of weak electric fields, in agreement with the formalism of equilibrium and nonequilibrium thermodynamics. Induced dipole polarization density within viscoelastic biomaterials is calculated via the real and imaginary components of the complex dielectric constant, according to the Debye equation, to quantify electro-kinetic stimulation. Rates of nutrient consumption under zero-field conditions are described by third-order kinetics that include local mass densities of nutrients, oxygen, and attached cells. Thinner nutrient boundary layers are stabilized at shorter dimensionless diffusion times when the zero-field intra-tissue Damköhler number increases above its initial-condition-sensitive critical value [i.e., {Λ(2)(zero-field)}(critical)≥53, see Eq. (23)], such that the biomaterial core is starved of essential ingredients required for successful proliferation. When tissue regeneration occurs above the critical electric-field-sensitive intra-tissue Damköhler number, the electro-kinetic contribution to nutrient consumption cannot be neglected. The critical electric-field-sensitive intra-tissue Damköhler number is proportional to the Deborah number.

  10. Improved nutrient intake and diet quality with 100% fruit juice consumption in children: NHANES 2003-2006

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fruit juice (FJ) consumption has recently been viewed as a sweetened beverage with little regard to its nutrient contribution to the diet. NHANES, 2003–2006, data were used to examine the association of 100% FJ consumption, with nutrient intake and diet quality in children ages 2–5 y (n equals 1,665...

  11. Stress-sensitive nutrient consumption via steady and non-reversing dynamic shear in continuous-flow rotational bioreactors.

    PubMed

    Belfiore, Laurence A; Bonani, Walter; Leoni, Matteo; Belfiore, Carol J

    2009-05-01

    Stress-sensitive biological response is simulated in a modified parallel-disk viscometer that implements steady and unidirectional dynamic shear under physiological conditions. Anchorage-dependent mammalian cells adhere to a protein coating on the surface of the rotating plate, receiving nutrients and oxygen from an aqueous medium that flows radially and tangentially, accompanied by transverse diffusion in the z-direction toward the active surface. This process is modeled as radial convection and axial diffusion with angular symmetry in cylindrical coordinates. The reaction/diffusion boundary condition on the surface of the rotating plate includes position-dependent stress-sensitive nutrient consumption via the zr- and zTheta-elements of the velocity gradient tensor at the cell/aqueous-medium interface. Linear transport laws in chemically reactive systems that obey Curie's theorem predict the existence of cross-phenomena between scalar reaction rates and the magnitude of the second-rank velocity gradient tensor, selecting only those elements of nabla v experienced by anchorage-dependent cells that are bound to protein-active sites. Stress sensitivity via the formalism of irreversible thermodynamics introduces a zeroth-order contribution to heterogeneous reaction rates that must be quenched when nutrients, oxygen, chemically anchored cells, or vacant active protein sites are not present on the surface of the rotating plate. Computer simulations of nutrient consumption profiles via simple nth-order kinetics (i.e., n=1,2) suggest that rotational bioreactor designs should consider stress-sensitivity when the shear-rate-based Damköhler number (i.e., ratio of the stress-dependent zeroth-order rate of nutrient consumption relative to the rate of nutrient diffusion toward active cells adhered to the rotating plate) is greater than approximately 25% of the stress-free Damköhler number. Rotational bioreactor simulations are presented for simple 1st-order, simple 2nd

  12. Household Food Expenditure Patterns, Food Nutrient Consumption and Nutritional Vulnerability in Nigeria: Implications for Policy.

    PubMed

    Akerele, Dare

    2015-01-01

    The study examined the patterns of food spending, food nutrient consumption, and nutrient deficiency profiles of households in Nigeria using a cross-sectional nationwide household survey data. Food nutrients were estimated from food expenditure data while the nutrient deficiency profiles were assessed adapting Foster et al. (1984) poverty index. The study established widespread nutritional deficiencies with low-income household cohorts bearing a greater burden of the deficiencies. Protein-protein deficiency appears to be much more prevalent in urban than rural areas. However, the deficiency of micro-nutrients seems to diffuse across urban-rural divides of the country with deficiency of calcium, vitamin A, and vitamin C appearing to be more pronounced in rural areas while phosphorous, vitamin B1, vitamin B2, and vitamin B3 deficiencies seem to be higher in urban settings. Pro-poor income growth strategies and sensitively guided urban-rural food and nutrition interventions are advocated for improved food consumption and nutritional deficiency reduction.

  13. Almond consumption is associated with better nutrient intake, nutrient adequacy, and diet quality in adults: National Health and Nutrition Examination Survey 2001-2010

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The purpose of this study was to examine the association between almond consumption, the most widely consumed tree nut in the US, and nutrient intake, nutrient adequacy, diet quality, and weight/adiposity in adults. Data from adults (N=24,808), 19+ years, participating in the NHANES 2001-2010 were u...

  14. Dynamic model of flexible phytoplankton nutrient uptake

    PubMed Central

    Bonachela, Juan A.; Raghib, Michael; Levin, Simon A.

    2011-01-01

    The metabolic machinery of marine microbes can be remarkably plastic, allowing organisms to persist under extreme nutrient limitation. With some exceptions, most theoretical approaches to nutrient uptake in phytoplankton are largely dominated by the classic Michaelis–Menten (MM) uptake functional form, whose constant parameters cannot account for the observed plasticity in the uptake apparatus. Following seminal ideas by earlier researchers, we propose a simple cell-level model based on a dynamic view of the uptake process whereby the cell can regulate the synthesis of uptake proteins in response to changes in both internal and external nutrient concentrations. In our flexible approach, the maximum uptake rate and nutrient affinity increase monotonically as the external nutrient concentration decreases. For low to medium nutrient availability, our model predicts uptake and growth rates larger than the classic MM counterparts, while matching the classic MM results for large nutrient concentrations. These results have important consequences for global coupled models of ocean circulation and biogeochemistry, which lack this regulatory mechanism and are thus likely to underestimate phytoplankton abundances and growth rates in oligotrophic regions of the ocean. PMID:22143781

  15. Frequent Canned Food Use is Positively Associated with Nutrient-Dense Food Group Consumption and Higher Nutrient Intakes in US Children and Adults.

    PubMed

    Comerford, Kevin B

    2015-07-09

    In addition to fresh foods, many canned foods also provide nutrient-dense dietary options, often at a lower price, with longer storage potential. The aim of this study was to compare nutrient-dense food group intake and nutrient intake between different levels of canned food consumption in the US. Consumption data were collected for this cross-sectional study from 9761 American canned food consumers (aged two years and older) from The NPD Group's National Eating Trends® (NET®) database during 2011-2013; and the data were assessed using The NPD Group's Nutrient Intake Database. Canned food consumers were placed into three groups: Frequent Can Users (≥6 canned items/week); n = 2584, Average Can Users (3-5 canned items/week); n = 4445, and Infrequent Can Users (≤2 canned items/week); n = 2732. The results provide evidence that Frequent Can Users consume more nutrient-dense food groups such as fruits, vegetables, dairy products, and protein-rich foods, and also have higher intakes of 17 essential nutrients including the shortfall nutrients-potassium, calcium and fiber-when compared to Infrequent Can Users. Therefore, in addition to fresh foods, diets higher in nutrient-dense canned food consumption can also offer dietary options which improve nutrient intakes and the overall diet quality of Americans.

  16. Frequent Canned Food Use is Positively Associated with Nutrient-Dense Food Group Consumption and Higher Nutrient Intakes in US Children and Adults

    PubMed Central

    Comerford, Kevin B.

    2015-01-01

    In addition to fresh foods, many canned foods also provide nutrient-dense dietary options, often at a lower price, with longer storage potential. The aim of this study was to compare nutrient-dense food group intake and nutrient intake between different levels of canned food consumption in the US. Consumption data were collected for this cross-sectional study from 9761 American canned food consumers (aged two years and older) from The NPD Group’s National Eating Trends® (NET®) database during 2011–2013; and the data were assessed using The NPD Group’s Nutrient Intake Database. Canned food consumers were placed into three groups: Frequent Can Users (≥6 canned items/week); n = 2584, Average Can Users (3–5 canned items/week); n = 4445, and Infrequent Can Users (≤2 canned items/week); n = 2732. The results provide evidence that Frequent Can Users consume more nutrient-dense food groups such as fruits, vegetables, dairy products, and protein-rich foods, and also have higher intakes of 17 essential nutrients including the shortfall nutrients—potassium, calcium and fiber—when compared to Infrequent Can Users. Therefore, in addition to fresh foods, diets higher in nutrient-dense canned food consumption can also offer dietary options which improve nutrient intakes and the overall diet quality of Americans. PMID:26184294

  17. Modeling Addictive Consumption as an Infectious Disease.

    PubMed

    Alamar, Benjamin; Glantz, Stanton A

    2006-03-17

    The dominant model of addictive consumption in economics is the theory of rational addiction. The addict in this model chooses how much they are going to consume based upon their level of addiction (past consumption), the current benefits and all future costs. Several empirical studies of cigarette sales and price data have found a correlation between future prices and consumption and current consumption. These studies have argued that the correlation validates the rational addiction model and invalidates any model in which future consumption is not considered. An alternative to the rational addiction model is one in which addiction spreads through a population as if it were an infectious disease, as supported by the large body of empirical research of addictive behaviors. In this model an individual's probability of becoming addicted to a substance is linked to the behavior of their parents, friends and society. In the infectious disease model current consumption is based only on the level of addiction and current costs. Price and consumption data from a simulation of the infectious disease model showed a qualitative match to the results of the rational addiction model. The infectious disease model can explain all of the theoretical results of the rational addiction model with the addition of explaining initial consumption of the addictive good.

  18. Common Indian spices: nutrient composition, consumption and contribution to dietary value.

    PubMed

    Uma Pradeep, K; Geervani, P; Eggum, B O

    1993-09-01

    Nutrient composition of eight commonly consumed spices of South India was analysed. Spices analysed were red chillies (Capsicum annum), black pepper (Piper nigrum), coriander seeds (Coriandrum sativum), cumin seeds (Cuminum cyminum), garlic (Allium sativum), asafoetida (Ferula foetida), dry ginger (Zingiber officinale) and ajowan (Carum copticum). The nutrients analysed were proximate principles, minerals, starch, sugars, dietary fibre components, tannins, phytic acid, enzyme inhibitors and amino acids. Dry ginger, ajowan and asafoetida had high calcium (1.0-1.5%) and iron (54-62 mg/100 g) levels. The tannin content of spices was also high (0.9-1.3% DM). Dietary fibre ranged from 14-53%. Spices had appreciable amounts of essential amino acids like lysine and threonine. A survey revealed the average per capita consumption of spices to be 9.54 g and at that level, the nutrient contribution from spices ranged from 1.2 to 7.9% of an average adult Indian male's requirement for different nutrients.

  19. Lactose intolerance and African Americans: implications for the consumption of appropriate intake levels of key nutrients.

    PubMed

    2009-10-01

    Lactose intolerance is a complex condition that is complicated by cultural beliefs and perceptions about the consumption of dairy products. These attitudes about dairy may contribute to inadequate intake of key nutrients that may impact conditions that contribute to health disparities in African Americans. While a complex health problem, lactose intolerance is easy to treat. However, no treatment can improve the body's ability to produce lactase. Yet, symptoms can be controlled through dietary strategies. This position paper emphasizes the importance of using patient and provider-level strategies in order to reduce the risks to the health of African Americans that may accrue as a result of dairy nutrient deficiency. Evaluation and assessment of interventions tested is critical so that evidence-based approaches to addressing dairy nutrient deficiency and lactose Intolerance can be created. Lastly, it is essential for physicians to communicate key messages to their patients. Since dairy nutrients address important health concerns, the amelioration of lactose intolerance is an investment in health. Lactose intolerance is common, is easy to treat, and can be managed. It is possible to consume dairy even in the face of a history of maldigestion or lactose intolerant issues. Gradually increasing lactose in the diet--drinking small milk portions with food, eating yogurt, and consuming cheese--are effective strategies for managing lactose intolerance and meeting optimal dairy needs.

  20. Dynamic shear-stress-enhanced rates of nutrient consumption in gas-liquid semi-continuous-flow suspensions

    NASA Astrophysics Data System (ADS)

    Belfiore, Laurence A.; Volpato, Fabio Z.; Paulino, Alexandre T.; Belfiore, Carol J.

    2011-12-01

    The primary objective of this investigation is to establish guidelines for generating significant mammalian cell density in suspension bioreactors when stress-sensitive kinetics enhance the rate of nutrient consumption. Ultra-low-frequency dynamic modulations of the impeller (i.e., 35104 Hz) introduce time-dependent oscillatory shear into this transient analysis of cell proliferation under semi-continuous creeping flow conditions. Greater nutrient consumption is predicted when the amplitude A of modulated impeller rotation increases, and stress-kinetic contributions to nutrient consumption rates increase linearly at higher modulation frequency via an application of fluctuation-dissipation response. Interphase mass transfer is required to replace dissolved oxygen as it is consumed by aerobic nutrient consumption in the liquid phase. The theory and predictions described herein could be important at small length scales in the creeping flow regime where viscous shear is significant at the interface between the nutrient medium and isolated cells in suspension. Two-dimensional flow around spherically shaped mammalian cells, suspended in a Newtonian culture medium, is analyzed to calculate the surface-averaged magnitude of the velocity gradient tensor and modify homogeneous rates of nutrient consumption that are stimulated by viscous shear, via the formalism of stress-kinetic reciprocal relations that obey Curie's theorem in non-equilibrium thermodynamics. Time constants for stress-free free and stress-sensitive stress nutrient consumption are defined and quantified to identify the threshold (i.e., stress,threshold) below which the effect of stress cannot be neglected in accurate predictions of bioreactor performance. Parametric studies reveal that the threshold time constant for stress-sensitive nutrient consumption stress,threshold decreases when the time constant for stress

  1. Factors influencing consumption of nutrient rich forest foods in rural Cameroon.

    PubMed

    Fungo, Robert; Muyonga, John H; Kabahenda, Margaret; Okia, Clement A; Snook, Laura

    2016-02-01

    Studies show that a number of forest foods consumed in Cameroon are highly nutritious and rich in health boosting bioactive compounds. This study assessed the knowledge and perceptions towards the nutritional and health promoting properties of forest foods among forest dependent communities. The relationship between knowledge, perceptions and socio-demographic attributes on consumption of forest foods was also determined. A total of 279 females in charge of decision making with respect to food preparation were randomly selected from 12 villages in southern and eastern Cameroon and interviewed using researcher administered questionnaires. Multivariate logistic regression analysis was used to identify the factors affecting consumption of forest foods. Baillonella toxisperma (98%) and Irvingia gabonesis (81%) were the most known nutrient rich forest foods by the respondents. About 31% of the respondents were aware of the nutritional value and health benefits of forest foods. About 10%-61% of the respondents expressed positive attitudes to questions related with health benefits of specific forest foods. Consumption of forest foods was found to be higher among polygamous families and also positively related to length of stay in the forest area and age of respondent with consumption of forest foods. Education had an inverse relationship with use of forest foods. Knowledge and positive attitude towards the nutritional value of forest foods were also found to positively influence consumption of forest foods. Since knowledge was found to influence attitude and consumption, there is need to invest in awareness campaigns to strengthen the current knowledge levels among the study population. This should positively influence the attitudes and perceptions towards increased consumption of forest foods.

  2. ATMOSPHERIC DEPOSITION MODELING AND MONITORING OF NUTRIENTS

    EPA Science Inventory

    This talk presents an overview of the capabilities and roles that regional atmospheric deposition models can play with respect to multi-media environmental problems. The focus is on nutrient deposition (nitrogen). Atmospheric deposition of nitrogen is an important contributor to...

  3. Nutrient Models Developments Using Runoff-Nutrient Relationships in an Agricultural Prairie Basin, Manitoba.

    NASA Astrophysics Data System (ADS)

    Mahmood, T. H.; Pomeroy, J. W.; Wheater, H. S.; Elliott, J. A.; Baulch, H. M.; Lindenschmidt, K. E.

    2015-12-01

    Nutrient export to streams and lakes from agricultural activities can result in significant deterioration of water quality and aquatic ecosystem health. In Western Canada, particular concerns arise for prairie agricultural systems, which are dominated by the effects of a cold climate. Insufficient attention has been given to understand the links between cold region watershed responses and nutrient concentration and a robust watershed-scale modeling framework is needed to simulate nutrient concentration and loads. Long-term, field observations of nutrient concentration-runoff relationships were used to develop nutrient concentration models for the Tobacco Creek Model Watershed (TCMW) which drains into the Red River basin. Field observations include streamflow concentrations of N and P at multiple scales from two headwater basins. Distinct nutrient concentration-runoff models for snowmelt, rain on snow (ROS) and rainfall runoff processes were developed from observed runoff-nutrient concentration relationships. Snowmelt runoff had a moderately positive correlation with particulate nutrient concentrations but no correlation with that of dissolved nutrients. ROS runoff had a weak relationship with both particulate and dissolved nutrient concentrations. Rainfall runoff had the strongest positive correlation with particulate nutrient concentrations but no association with that of dissolved nutrients. The modeling approach also identified a clear hysteretic behavior in the relationship between runoff and particulate nutrient concentration during the 2013 snowmelt runoff event at the basin outlet gauge. The models provide insight into the hydrological controls on nutrient export from cold regions watersheds and the strong effects of inter-annual climatic variability. Snowmelt runoff is a reliable exporter of large nutrient loads while nutrient export by rainfall runoff exceeded snowmelt runoff during hydrologically wet summers such as 2002, 2005, 2011 and 2013.

  4. Watershed modeling and monitoring for assessing nutrient ...

    EPA Pesticide Factsheets

    Presentation for the American Water Works Association Water Sustainability Conference. The presentation highlights latest results from water quality trading research conducted by ORD using the East Fork Watershed in Southwestern Ohio as a case study. The watershed has a nutrient enrichment problem that is creating harmful algal blooms in a reservoir used for drinking water and recreation. Innovative modeling and monitoring is combined to understand how to best manage this water quality problem and costs associated with this endeavor. The presentation will provide an overview of the water quality trading feasibility research. The research includes the development and evaluation of innovative modeling and monitoring approaches to manage watersheds for nutrient pollution using a whole systems approach.

  5. Unravelling trophic subsidies of agroecosystems for biodiversity conservation: food consumption and nutrient recycling by waterbirds in Mediterranean rice fields.

    PubMed

    Navedo, Juan G; Hahn, Steffen; Parejo, Manuel; Abad-Gómez, José M; Gutiérrez, Jorge S; Villegas, Auxiliadora; Sánchez-Guzmán, Juan M; Masero, José A

    2015-04-01

    Waterbirds can reallocate a considerable amount of nutrients within agricultural fields and between agriculture sites and wetlands. However their effects on biogeochemical cycles have rarely been quantified. We estimated bird numbers, diet (from stable isotope analysis), food supply, and the food consumption on rice fields by overwintering waterbirds in one of the most important areas for rice production in southwestern Europe and a key area for various migrating and resident waterbird species. Herein, we modelled the nutrient (N and P) recycling in rice fields, and their transport to reservoirs. The energy consumption by waterbirds (96,605±18,311 individuals) on rice fields during winter averaged at 89.9±39.0 kJ·m(-2), with its majority (89.9%) belonging to foraging on rice seeds. Thus, the birds removed about 26% of rice seeds leftover after harvest (estimated in 932.5±504.7 seeds·m(-2) in early winter) wherein common cranes and dabbling ducks (four species) were the most important consumers. Waterbirds foraging and roosting in the rice fields recycled more than 24.1 (1.0 kg·ha(-1)) of N and an additional 5.0 tons (0.2 kg·ha(-1)) of P in the Extremadura's rice fields during winter. Additionally, we estimated that 2.3 tons of N and 550 kg of P were removed from rice fields and transported to reservoirs. The seasonal foraging of wildlife should result in a direct benefit for rice farmers by improving nutrient recycling through defecation by waterbirds with respect to artificial fertilisation. Additionally, rice fields located in the cranes' core wintering areas can provide sufficient food supply to induce habitat shift from their traditional wintering habitat in 'dehesas' to rice fields, which causes indirect socioeconomic benefit through reduced acorn consumption by cranes. Our modelling approach may thus be especially helpful for management decisions regarding rice agroecosystems in areas which are also important for the conservation of migratory

  6. Plain Water and Sugar-Sweetened Beverage Consumption in Relation to Energy and Nutrient Intake at Full-Service Restaurants

    PubMed Central

    An, Ruopeng

    2016-01-01

    Background: Drinking plain water, such as tap or bottled water, provides hydration and satiety without adding calories. We examined plain water and sugar-sweetened beverage (SSB) consumption in relation to energy and nutrient intake at full-service restaurants. Methods: Data came from the 2005–2012 National Health and Nutrition Examination Survey, comprising a nationally-representative sample of 2900 adults who reported full-service restaurant consumption in 24-h dietary recalls. Linear regressions were performed to examine the differences in daily energy and nutrient intake at full-service restaurants by plain water and SSB consumption status, adjusting for individual characteristics and sampling design. Results: Over 18% of U.S. adults had full-service restaurant consumption on any given day. Among full-service restaurant consumers, 16.7% consumed SSBs, 2.6% consumed plain water but no SSBs, and the remaining 80.7% consumed neither beverage at the restaurant. Compared to onsite SSB consumption, plain water but no SSB consumption was associated with reduced daily total energy intake at full-service restaurants by 443.4 kcal, added sugar intake by 58.2 g, saturated fat intake by 4.4 g, and sodium intake by 616.8 mg, respectively. Conclusion: Replacing SSBs with plain water consumption could be an effective strategy to balance energy/nutrient intake and prevent overconsumption at full-service restaurant setting. PMID:27153083

  7. Global Expanded Nutrient Supply (GENuS) Model: A New Method for Estimating the Global Dietary Supply of Nutrients.

    PubMed

    Smith, Matthew R; Micha, Renata; Golden, Christopher D; Mozaffarian, Dariush; Myers, Samuel S

    2016-01-01

    Insufficient data exist for accurate estimation of global nutrient supplies. Commonly used global datasets contain key weaknesses: 1) data with global coverage, such as the FAO food balance sheets, lack specific information about many individual foods and no information on micronutrient supplies nor heterogeneity among subnational populations, while 2) household surveys provide a closer approximation of consumption, but are often not nationally representative, do not commonly capture many foods consumed outside of the home, and only provide adequate information for a few select populations. Here, we attempt to improve upon these datasets by constructing a new model--the Global Expanded Nutrient Supply (GENuS) model--to estimate nutrient availabilities for 23 individual nutrients across 225 food categories for thirty-four age-sex groups in nearly all countries. Furthermore, the model provides historical trends in dietary nutritional supplies at the national level using data from 1961-2011. We determine supplies of edible food by expanding the food balance sheet data using FAO production and trade data to increase food supply estimates from 98 to 221 food groups, and then estimate the proportion of major cereals being processed to flours to increase to 225. Next, we estimate intake among twenty-six demographic groups (ages 20+, both sexes) in each country by using data taken from the Global Dietary Database, which uses nationally representative surveys to relate national averages of food consumption to individual age and sex-groups; for children and adolescents where GDD data does not yet exist, average calorie-adjusted amounts are assumed. Finally, we match food supplies with nutrient densities from regional food composition tables to estimate nutrient supplies, running Monte Carlo simulations to find the range of potential nutrient supplies provided by the diet. To validate our new method, we compare the GENuS estimates of nutrient supplies against independent

  8. Global Expanded Nutrient Supply (GENuS) Model: A New Method for Estimating the Global Dietary Supply of Nutrients

    PubMed Central

    Golden, Christopher D.; Mozaffarian, Dariush

    2016-01-01

    Insufficient data exist for accurate estimation of global nutrient supplies. Commonly used global datasets contain key weaknesses: 1) data with global coverage, such as the FAO food balance sheets, lack specific information about many individual foods and no information on micronutrient supplies nor heterogeneity among subnational populations, while 2) household surveys provide a closer approximation of consumption, but are often not nationally representative, do not commonly capture many foods consumed outside of the home, and only provide adequate information for a few select populations. Here, we attempt to improve upon these datasets by constructing a new model—the Global Expanded Nutrient Supply (GENuS) model—to estimate nutrient availabilities for 23 individual nutrients across 225 food categories for thirty-four age-sex groups in nearly all countries. Furthermore, the model provides historical trends in dietary nutritional supplies at the national level using data from 1961–2011. We determine supplies of edible food by expanding the food balance sheet data using FAO production and trade data to increase food supply estimates from 98 to 221 food groups, and then estimate the proportion of major cereals being processed to flours to increase to 225. Next, we estimate intake among twenty-six demographic groups (ages 20+, both sexes) in each country by using data taken from the Global Dietary Database, which uses nationally representative surveys to relate national averages of food consumption to individual age and sex-groups; for children and adolescents where GDD data does not yet exist, average calorie-adjusted amounts are assumed. Finally, we match food supplies with nutrient densities from regional food composition tables to estimate nutrient supplies, running Monte Carlo simulations to find the range of potential nutrient supplies provided by the diet. To validate our new method, we compare the GENuS estimates of nutrient supplies against independent

  9. Fruit juice consumption decreases the proportion of children with inadequate intakes of key nutrients: NHANES 2003-2006

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fruit juice (FJ) consumption has been under scrutiny despite its nutrient profile. NHANES (2003–2006) data were used to compare the proportion of children ages 2–18 years with intakes of selected vitamins/minerals below recommended levels among consumers (n = 3,976; 51% females) and non-consumers (n...

  10. Do nutrient-competition models predict nutrient availabilities in limnetic ecosystems?

    PubMed

    Leibold, Mathew A

    1997-03-01

    Recent theory on resource competition, predicated on the importance of hypothesized trade-offs between minimum requirements for nutrient resources, predicts that there should be negative correlations between the supply rate of major limiting nutrients and the availability of at least some secondary nutrients and/or among the availabilities of different limiting nutrients. However, an analysis of four data sets from large-scale surveys of lakes shows mostly positive correlations among the availabilities and supplies of nutrients. In contrast, a fifth data set, obtained in an area of high acidification, does show several important negative correlations that are consistent with the nutrient competition models. Further analyses suggest two possible explanations for the preponderance of positive correlation. Negative correlations between nutrients and light indicate that an important trade-off among species regulating phytoplankton may involve low light requirements versus low nutrient requirements. The existence of negative correlations in nutrient availabilities in acidic lakes (where herbivory appears less important than in buffered lakes) also suggests that another important trade-off may involve an ability to minimize loss rates (especially due to grazing) versus an overall ability to exploit nutrient resources.

  11. Long Term Trends in Subantarctic Nutrient Consumption: Evidence from Sedimentary and Diatom-Bound Nitrogen Isotopes

    NASA Astrophysics Data System (ADS)

    Bedsole, P.

    2014-12-01

    It has been proposed that the long term increase in Subantarctic opal export during glacial periods, centered around 1 Ma, is related to enhanced iron deposition and, potentially, carbon dioxide drawdown. New bulk sedimentary and diatom-bound nitrogen isotope records are used in combination with opal accumulation data from ODP Site 1090 to investigate controls on export production over the last 3 Ma. Sedimentary nitrogen content tracks opal during periods of high iron accumulation, especially after ~1 Ma. Bulk sedimentary nitrogen isotope trends are negatively correlated with sedimentary N-content and opal accumulation. This may be signal weaker nutrient consumption during times of high production, perhaps as a result of enhanced vertical nutrient supply. Alternatively, this variation in bulk, where high values occur in organic poor intervals, is consistent with other evidence for nitrogen isotopic alteration during periods of low export to the seafloor. The diatom-bound nitrogen isotope record does not have a clear relationship with opal or iron accumulation. A long term shift in the diatom-bound N isotope values is apparent, where the average diatom-bound δ15N from 0.5-1 Ma is 4.4 ‰, and from 2-2.6 Ma is 5.9 ‰. This decrease may reflect long-term changes in nitrate availability. A first order comparison to planktonic/benthic carbon isotopic gradients suggests that enhanced vertical mixing may explain the observed productivity peaks and lower overall diatom-bound N isotope values in the interval centered around 1 Ma.

  12. Whole-grain consumption is associated with diet quality and nutrient intake in adults: the National Health and Nutrition Examination Survey, 1999-2004

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The consumption of whole grains and its association with nutrient intake has not been assessed in a recent nationally representative population. The objective was to examine the association of consumption of whole grains, using the new whole-grain definition, with diet quality and nutrient intake in...

  13. Modeling the Response of Nutrient Concentrations and Primary Productivity in Lake Michigan to Nutrient Loading Scenarios

    EPA Science Inventory

    A water quality model, LM3 Eutro, will be used to estimate the response of nutrient concentrations and primary productivity in Lake Michigan to nutrient loading scenarios. This work is part of a larger effort, the Future Midwestern landscapes study, that will estimate the produc...

  14. Food consumption and nutrient intake in Italian school children: results of the ZOOM8 study.

    PubMed

    Martone, Deborah; Roccaldo, Romana; Censi, Laura; Toti, Elisabetta; Catasta, Giovina; D'Addesa, Dina; Carletti, Claudia

    2013-09-01

    The food consumption and food habits of Italian third-class-primary-school children were assessed and their energy and nutrient intakes were compared with requirements. The study involved 1740 subjects (900 males and 840 females) aged 8-9 years, from the north, centre and south of Italy. Body weight and height were measured. Parents filled in a semi-quantitative Food Frequency Questionnaire for their child. The results showed that the diet of Italian children is unbalanced in terms of macronutrients and deficient in fiber. The average daily intakes of fruit (234 g/d), vegetables (134 g/d) and legumes (17 g/d), were lower than the nationally recommended ones. The percentages of energy intake from fats (41%) and from carbohydrates (45%) were higher and lower respectively than recommended. Low intakes of fiber (13.5 g/d) were reported. A national nutrition policy in Italy should focus on nutrition education programs in schools and for parents.

  15. Kootenai River Nutrient Dosing System and N-P Consumption: Year 2008.

    SciTech Connect

    Holderman, Charles

    2009-02-19

    In early 2006 we designed and built low energy consumption, pump-operated system, for dosing of the liquid nutrient in the summer 2006 season. This operated successfully, and the system was used again during the 2007 and 2008 seasons for dosing. During the early winter period, 2008, laboratory tests were made of the liquid nutrient pump system, and it was noted that small amounts of air were being entrained on the suction side of the pump, during conditions when the inlet pressure was low. It was believed that this was the cause of diurnal fluctuations in the flow supplied, characteristic of the 2007 year flow data. Replacement of '0' rings on the inlet side of the pumps was the solution to this problem, and when tested in the field during the summer season, the flow supplied was found to be stable. A decision was made by the IKERT committee at the meeting of 20th to 21st May 2008 (held in Coeur d'Alene, Idaho) to use an injection flow rate of liquid fertilizer (polyammonium phosphate 10-34-0) to achieve a target phosphorus concentration of 3.0 {micro}g/L, after complete mixing in the river. This target concentration was the same as that used in 2006 and 2007. The proposed starting date was as early as possible in June 2008. Plans were made to measure the dosing flow in three ways. Two of the three methods of flow measurement (1 and 2 below) are inter-dependent. These were: (1) Direct measurement of flow rate by diverting dosing flow into a 1000 mL volume standard flask. The flow rate was computed by dividing the flask volume by the time required to fill the flask. This was done a few times only during the summer period. (2) Adjusting the flow rate reading of the Gamma dosing pump using the 'calibration' function to achieve agreement with the flow rate computed by method 1 above. (3) Direct measurement by electrical signal from conductive fluid passing through a magnetic field (Seametrics meter, as used in previous years). Values were recorded every 4 minutes by a

  16. Effects of nutrient enrichment on channel catfish growth and consumption in Mount Storm Lake, West Virginia

    USGS Publications Warehouse

    Blanc, T.J.; Margraf, F.J.

    2002-01-01

    With the objective of augmenting fish production in Mount Storm Lake, Virginia Electric and Power Company initiated a programme of phosphorus addition to increase primary production, and ultimately, channel catfish (Ictaturus punctatus) growth in the 486 ha cooling reservoir. We simulated channel catfish growth dynamics using two bioenergetics modelling scenarios: (i) effects of average reservoir temperature on growth, conversion efficiency and consumption; and (ii) effects of reservoir enrichment on growth, which is simulated by increasing feeding rates. During 1991-1993, fish were sampled monthly, but sampling was increased to every 2 weeks during the peak growing season (June-September). Most of the channel catfish collected were aged 0 year and aged 1 year with rapid annual growth rates ranging from 9.0 to 13.7 J/g. We found many age 1 250-300 mm catfish, but few beyond this size. Conversion efficiency (joules gained/joules consumed) was low at approximately 18-19%. High algae consumption (40%) was evident, but consumption of zooplankton and Asiatic clam (Corbicula sp.) increased over the study. Simulated increased feeding rates showed that channel catfish were food limited in summer and fall (July-December). Weight gains with 5 and 10% feeding increases were 6-13% and 18-38%, respectively, from the baseline. Catfish of all sizes should benefit from phosphorus additions.

  17. NUTRIENTS IN WATERSHEDS: DEVELOPING ENHANCED MODELING TOOLS

    EPA Science Inventory

    Nutrient enrichment is one of the most important stressors causing water-resource impairment. These impairments are causing devastating changes: 1) high nitrate concentrations have rendered the groundwaters and reservoirs in many regions impotable -- especially in the rural area...

  18. Patterns of food and nutrient consumption in northern Iran, a high-risk area for esophageal cancer.

    PubMed

    Islami, Farhad; Malekshah, Akbar Fazeltabar; Kimiagar, Masoud; Pourshams, Akram; Wakefield, Jon; Goglani, Goharshad; Rakhshani, Nasser; Nasrollahzadeh, Dariush; Salahi, Rasoul; Semnani, Shahryar; Saadatian-Elahi, Mitra; Abnet, Christian C; Kamangar, Farin; Dawsey, Sanford M; Brennan, Paul; Boffetta, Paolo; Malekzadeh, Reza

    2009-01-01

    Our objectives were to investigate patterns of food and nutrient consumption in Golestan province, a high-incidence area for esophageal cancer (EC) in northern Iran. Twelve 24-h dietary recalls were administered during a 1-yr period to 131 healthy participants in a pilot cohort study. We compare here nutrient intake in Golestan with recommended daily allowances (RDAs) and lowest threshold intakes (LTIs). We also compare the intake of 27 food groups and nutrients among several population subgroups using mean values from the 12 recalls. Rural women had a very low level of vitamin intake, which was even lower than LTIs (P < 0.01). Daily intake of vitamins A and C was lower than LTI in 67% and 73% of rural women, respectively. Among rural men, the vitamin intakes were not significantly different from LTIs. Among urban women, the vitamin intakes were significantly lower than RDAs but were significantly higher than LTIs. Among urban men, the intakes were not significantly different from RDAs. Compared to urban dwellers, intake of most food groups and nutrients, including vitamins, was significantly lower among rural dwellers. In terms of vitamin intake, no significant difference was observed between Turkmen and non-Turkmen ethnics. The severe deficiency in vitamin intake among women and rural dwellers and marked differences in nutrient intake between rural and urban dwellers may contribute to the observed epidemiological pattern of EC in Golestan, with high incidence rates among women and people with low socioeconomic status and the highest incidence rate among rural women.

  19. Nutrient utilisation and intestinal fermentation are differentially affected by the consumption of resistant starch varieties and conventional fibres in pigs.

    PubMed

    Rideout, Todd C; Liu, Qiang; Wood, Peter; Fan, Ming Z

    2008-05-01

    This study examined the influence of different resistant starch (RS) varieties and conventional fibres on the efficiency of nutrient utilisation and intestinal fermentation in pigs. Thirty-six pigs (30 kg) were fed poultry meal-based diets supplemented with 10 % granular resistant corn starch (GCS), granular resistant potato starch (GPS), retrograded resistant corn starch (RCS), guar gum (GG) or cellulose for 36 d according to a completely randomised block design. Distal ileal and total tract recoveries were similar (P>0.05) among the RS varieties. Distal ileal starch recovery was higher (P < 0.05) in pigs consuming the RS diets (27-42 %) as compared with the control group (0.64 %). Consumption of GCS reduced (P < 0.05) apparent total tract digestibility and whole-body retention of crude protein in comparison with the control group. Consumption of GPS reduced (P < 0.05) total tract Ca digestibility and whole-body retention of Ca and P compared with the control group. However, consumption of RCS increased (P < 0.05) total tract Ca digestibility compared with the control group. Caecal butyrate concentration was increased (P < 0.05) following consumption of RCS and GG in comparison with the control group. Consumption of all the RS varieties reduced (P < 0.05) caecal indole concentrations compared with the control. Caecal butyrate concentrations were positively correlated (P < 0.05; r 0.63-0.83) with thermal properties among the RS varieties. We conclude that nutrient utilisation and intestinal fermentation are differentially affected by the consumption of different RS varieties and types of fibres. Thermal properties associated with different RS varieties may be useful markers for developing RS varieties with specific functionality.

  20. Food and nutrient intakes of French frequent seafood consumers with regard to fish consumption recommendations: results from the CALIPSO study.

    PubMed

    Sirot, Véronique; Dumas, Céline; Leblanc, Jean-Charles; Margaritis, Irène

    2011-05-01

    Besides providing n-3 fatty acids with nutritional and health benefits, seafood consumption may contribute to the reduction of nutrient prevalences of inadequacy. To evaluate the contributions of seafood and other food groups to nutrient intakes of frequent seafood consumers, food consumption was evaluated through an FFQ on 991 French men and women (18-81 years) consuming seafood at least twice a week. Intakes, prevalence of inadequacies, risks of upper limit excess and food contributions to intakes were assessed for thirty-three nutrients. Mean fat contributions to total energy intakes (38·3 and 39·0 % for men and women, respectively) met French recommendations, but mean carbohydrate intakes (40·9 and 39·7 %, respectively) were insufficient. Micronutrient inadequacies were lower than in the French general population, the highest being for vitamin C (41·3 and 40·1 % for men and women, respectively), vitamin E (35·0 and 35·3 % for men and women, respectively) and Mg (37·5 and 25·5 % for men and women, respectively). Upper safety limits (USL) were exceeded mostly for Zn (6·2 %), Ca (3·7 %), retinol (2·0 %) and Cu (0·9 %). Mean contributions of seafood to vitamin D, B12, I and Se intakes ranged 40-65 %. Molluscs and crustaceans significantly contributed to vitamin B12 (13·7 %), Cu (11·4 %), Fe (11·5 %), Zn (8·4 %) and I (6·1 %) intakes, and canned fish contributed to vitamin D intake (13·4 %). Besides fish, contributions of mollusc and crustacean consumption to nutrient intakes should be considered from a public health viewpoint. Consuming seafood at least twice a week induces moderate inadequacies and risks of exceeding USL for some micronutrients, whereas macronutrient intakes remained imbalanced.

  1. Maternal high fat and/or salt consumption induces sex-specific inflammatory and nutrient transport in the rat placenta.

    PubMed

    Reynolds, Clare M; Vickers, Mark H; Harrison, Claudia J; Segovia, Stephanie A; Gray, Clint

    2015-05-01

    Maternal high fat and salt consumption are associated with developmental programming of disease in adult offspring. Inadequacies in placental nutrient transport may explain these 'programmed effects'. Diet-induced inflammation may have detrimental effects on placental function leading to alteration of key nutrient transporters. We examined the effects of maternal high fat and/or salt diets on markers of placental nutrient transport and inflammation. Sprague-Dawley rats were assigned to (1) control (CD; 1% Salt 10% kcal from fat); (2) high salt (SD; 4% salt, 10% kcal from fat); (3) high fat (HF; 1% Salt 45% kcal from fat) or (4) high fat high salt (HFSD; 4% salt, 45% kcal from fat) 21 days prior to and throughout gestation. At embryonic day 18, dams were killed by isoflurane anesthesia followed by decapitation; placenta/fetuses were weighed, sexed, and collected for molecular analysis. Maternal SD, HF, and HFSD consumption decreased weight of placenta derived from male offspring; however, weight of placenta derived from female offspring was only reduced with maternal HF diet. This was associated with increased expression of LPL, SNAT2, GLUT1, and GLUT4 in placenta derived from male offspring suggesting increased fetal exposure to free fatty acids and glucose. Maternal SD, HF, and HFSD diet consumption increased expression of proinflammatory mediators IL-1β, TNFα, and CD68 in male placenta. Our results suggest that a proinflammatory placental profile results in detrimental alterations in nutrient transport which may contribute to the developmental origins of cardio-metabolic disturbances in offspring throughout life.

  2. Traditional food consumption is associated with higher nutrient intakes in Inuit children attending childcare centres in Nunavik

    PubMed Central

    Gagné, Doris; Blanchet, Rosanne; Lauzière, Julie; Vaissière, Émilie; Vézina, Carole; Ayotte, Pierre; Déry, Serge; O'Brien, Huguette Turgeon

    2012-01-01

    Objectives To describe traditional food (TF) consumption and to evaluate its impact on nutrient intakes of preschool Inuit children from Nunavik. Design A cross-sectional study. Methods Dietary intakes of children were assessed with a single 24-hour recall (n=217). TF consumption at home and at the childcare centres was compared. Differences in children's nutrient intakes when consuming or not consuming at least 1 TF item were examined using ANCOVA. Results A total of 245 children attending childcare centres in 10 communities of Nunavik were recruited between 2006 and 2010. The children's mean age was 25.0±9.6 months (11–54 months). Thirty-six percent of children had consumed at least 1 TF item on the day of the recall. TF contributed to 2.6% of total energy intake. Caribou and Arctic char were the most reported TF species. Land animals and fish/shellfish were the main contributors to energy intake from TF (38 and 33%, respectively). In spite of a low TF intake, children who consumed TF had significantly (p<0.05) higher intakes of protein, omega-3 fatty acids, iron, phosphorus, zinc, copper, selenium, niacin, pantothenic acid, riboflavin, and vitamin B12, and lower intakes of energy and carbohydrate compared with non-consumers. There was no significant difference in any of the socio-economic variables between children who consumed TF and those who did not. Conclusion Although TF was not eaten much, it contributed significantly to the nutrient intakes of children. Consumption of TF should be encouraged as it provides many nutritional, economic, and sociocultural benefits. PMID:22818718

  3. Consumption of Mass Communication--Construction of a Model on Information Consumption Behaviour.

    ERIC Educational Resources Information Center

    Sepstrup, Preben

    A general conceptual model on the consumption of information is introduced. Information as the output of the mass media is treated as a product, and a model on the consumption of this product is developed by merging elements from consumer behavior theory and mass communication theory. Chapter I gives basic assumptions about the individual and the…

  4. Tree nut consumption improves nutrient intake and diet quality in US adults: an analysis of National Health and Nutrition Examination Survey (NHANES) 1999-2004

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent epidemiologic studies assessing tree nut (almonds, Brazil nuts, cashews, hazelnuts, macadamia nuts, pecans, pine nuts, pistachios, and walnuts) consumption and the association with nutrient intake and diet quality are lacking. This study determined the association of tree nut consumption and ...

  5. Models for nutrition education to increase consumption of calcium and dairy products among African Americans.

    PubMed

    Bronner, Yvonne L; Hawkins, Anita S; Holt, Mckessa L; Hossain, Mian B; Rowel, Randolph H; Sydnor, Kim L; Divers, Shaquana P

    2006-04-01

    Calcium and dairy consumption are documented to be low among African Americans and have demonstrated benefits to bone growth, overall nutritional status, and health throughout the life cycle. There is also an emerging relationship to the prevention of obesity. This low consumption has been attributed to both cultural and community/environmental barriers. Using a life course construct and an ecological model of health behavior, this paper will illustrate why nutrition education and food consumption behavior at one stage of the life cycle may influence health status at that stage as well as influence health and consumption of calcium and dairy products at subsequent stages. The life course construct recognizes that both past and present behavior and experiences (in this case food and nutrient intake) are shaped by the wider social, economic, and cultural context and therefore may provide clues to current patterns of health and disease. The ecological model, concerned with constructs of environmental change, behavior, and policies that may help people make choices in their daily life, complements the life course approach when examining the potential influence of nutrition education provided by federally funded food and nutrition programs on calcium and dairy consumption behavior across the life cycle. The "critical period model" within the life course construct is operative for calcium, a nutrient for which adequate intake is critically important during adolescence when peak bone density development, necessary for later protection against osteoporosis, is important.

  6. Benthic nutrient fluxes and sediment oxygen consumption in a full-scale facultative pond in Patagonia, Argentina.

    PubMed

    Faleschini, M; Esteves, J L

    2013-01-01

    The study of benthic metabolism is an interesting tool to understand the process that occurs in bottom water at wastewater stabilization ponds. Here, rates of benthic oxygen consumption and nutrient exchange across the water-sludge interface were measured in situ using a benthic chamber. The research was carried out during autumn, winter, and summer at a municipal facultative stabilization pond working in a temperate region (Puerto Madryn city, Argentina). Both a site near the raw wastewater inlet (Inlet station) and a site near the outlet (Outlet station) were sampled. Important seasonal and spatial patterns were identified as being related to benthic fluxes. Ammonium release ranged from undetectable (autumn/summer - Inlet station) to +30.7 kg-NH4(+) ha(-1) d(-1) (autumn - Outlet station), denitrification ranged from undetectable (winter - in both sites) to -4.0 kg-NO3(-) ha(-1) d(-1) (autumn - Outlet station), and oxygen consumption ranged from 0.07 kg-O2ha(-1) d(-1) (autumn/summer - Outlet station) to 0.84 kg-O2ha(-1) d(-1) (autumn - Inlet station). During the warmer months, the mineralization of organic matter from the bottom pond acts as a source of nutrients, which seem to support the important development of phytoplankton and nitrification activity recorded in the surface water. Bottom processes could be related to the advanced degree and efficiency of the treatment, the temperature, and probably the strong and frequent wind present in the region.

  7. Understanding and Changing Food Consumption Behavior Among Children: The Comprehensive Child Consumption Patterns Model.

    PubMed

    Jeffries, Jayne K; Noar, Seth M; Thayer, Linden

    2015-01-01

    Current theoretical models attempting to explain diet-related weight status among children center around three individual-level theories. Alone, these theories fail to explain why children are engaging or not engaging in health-promoting eating behaviors. Our Comprehensive Child Consumption Patterns model takes a comprehensive approach and was developed specifically to help explain child food consumption behavior and addresses many of the theoretical gaps found in previous models, including integration of the life course trajectory, key influencers, perceived behavioral control, and self-regulation. Comprehensive Child Consumption Patterns model highlights multiple levels of the socioecological model to explain child food consumption, illustrating how negative influence at multiple levels can lead to caloric imbalance and contribute to child overweight and obesity. Recognizing the necessity for multi-level and system-based interventions, this model serves as a template for holistic, integrated interventions to improve child eating behavior, ultimately impacting life course health development.

  8. A global model of carbon-nutrient interactions

    NASA Technical Reports Server (NTRS)

    Moore, Berrien, III; Gildea, Patricia; Vorosmarty, Charles; Mellilo, Jerry M.; Peterson, Bruce J.

    1985-01-01

    The global biogeochemical model presented has two primary objectives. First, it characterizes natural elemental cycles and their linkages for the four elements significant to Earth's biota: C, N, S, and P. Second, it describes changes in these cycles due to human activity. Global nutrient cycles were studied within the drainage basins of several major world rivers on each continent. The initial study region was the Mississippi drainage basin, concentrating on carbon and nitrogen. The model first establishes the nutrient budgets of the undisturbed ecosystems in a study region. It then uses a data set of land use histories for that region to document the changes in these budgets due to land uses. Nutrient movement was followed over time (1800 to 1980) for 30 ecosystems and 10 land use categories. A geographically referenced ecological information system (GREIS) was developed to manage the digital global data bases of 0.5 x 0.5 grid cells needed to run the model: potential vegetation, drainage basins, precipitation, runoff, contemporary land cover, and FAO soil maps of the world. The results show the contributions of land use categories to river nutrient loads on a continental scale; shifts in nutrient cycling patterns from closed, steady state systems to mobile transient or open, steady state systems; soil organic matter depletion patterns in U.S. agricultural lands; changing nutrient ratios due to land use changes; and the effect of using heavy fertilizer on aquatic systems.

  9. Modeling the relative importance of nutrient and carbon loads ...

    EPA Pesticide Factsheets

    The Louisiana continental shelf (LCS) in the northern Gulf of Mexico experiences bottom water hypoxia in the summer. In order to gain a more fundamental understanding of the controlling factors leading to hypoxia, the Gulf of Mexico Dissolved Oxygen Model (GoMDOM) was applied to this area to simulate dissolved oxygen concentrations in the water as a function of various nutrient loadings. The model is a numerical, biogeochemical, three-dimensional ecological model that receives its physical transport data from the Navy Coastal Ocean Model (NCOM-LCS). GoMDOM was calibrated to a large set of nutrient, phytoplankton, dissolved oxygen, sediment nutrient flux, sediment oxygen demand (SOD), primary production, and respiration data collected in 2006 and corroborated with field data collected in 2003. The primary objective was to use the model to estimate a nutrient load reduction of both nitrogen and phosphorus necessary to reduce the size of the hypoxic area to 5,000 km2, a goal established in the 2008 Gulf of Mexico Hypoxia Action Plan prepared by the Mississippi River/Gulf of Mexico Watershed Nutrient Task Force. Using the year 2006 as a test case, the model results suggest that the nitrogen and phosphorus load reduction from the Atchafalaya and Mississippi River basins would need to be reduced by 64% to achieve the target hypoxia area. The Louisiana continental shelf (LCS) in the northern part of the Gulf of Mexico has a history of subsurface hypoxia in the summer.

  10. Modelling nutrient emissions and the impact of nutrient reduction measures in the Weser river basin, Germany.

    PubMed

    Hirt, Ulrike; Venohr, Markus; Kreins, Peter; Behrendt, Horst

    2008-01-01

    To implement the European Water Framework Directive (WFD) into German law, measures have to be taken to reduce the unacceptably high nutrient input into rivers. To identify the most effective measures, the sources and pathways of nutrient emissions into rivers have to be quantified. Therefore, the MONERIS model is applied, which quantifies nutrients emissions into river basins, via various point and diffuse pathways, as well as nutrient load in rivers. Most nitrogen emissions come from groundwater flow (43%), tile drainages (30%), and point sources (12%), whereas most phosphorus emissions come from groundwater flow (31%), point sources (23%), erosion (13%) and overland flow (12%). Because of their great distance from the river basin outlet, the southern sub-basins Werra and Fulda-Diemel have an 8% reduction in their nitrogen loads and a 15% and 16% reduction in their phosphorus loads, respectively. This reduction is due to retention in the main part of the river Weser. For the choice of the most effective measures, the different retention in the river is relevant.

  11. An electricity consumption model for electric vehicular flow

    NASA Astrophysics Data System (ADS)

    Xiao, Hong; Huang, Hai-Jun; Tang, Tie-Qiao

    2016-09-01

    In this paper, we apply the relationships between the macro and micro variables of traffic flow to develop an electricity consumption model for electric vehicular flow. We use the proposed model to study the quantitative relationships between the electricity consumption/total power and speed/density under uniform flow, and the electricity consumptions during the evolution processes of shock, rarefaction wave and small perturbation. The numerical results indicate that the proposed model can perfectly describe the electricity consumption for electric vehicular flow, which shows that the proposed model is reasonable.

  12. Modeling nutrient transports and exchanges of nutrients between shallow regions and the open Baltic sea in present and future climate.

    PubMed

    Eilola, Kari; Rosell, Elin Almroth; Dieterich, Christian; Fransner, Filippa; Höglund, Anders; Meier, H E Markus

    2012-09-01

    We quantified horizontal transport patterns and the net exchange of nutrients between shallow regions and the open sea in the Baltic proper. A coupled biogeochemical-physical circulation model was used for transient simulations 1961-2100. The model was driven by regional downscaling of the IPCC climate change scenario A1B from two global General Circulation Models in combination with two nutrient load scenarios. Modeled nutrient transports followed mainly the large-scale internal water circulation and showed only small circulation changes in the future projections. The internal nutrient cycling and exchanges between shallow and deeper waters became intensified, and the internal removal of phosphorus became weaker in the warmer future climate. These effects counteracted the impact from nutrient load reductions according to the Baltic Sea Action Plan. The net effect of climate change and nutrient reductions was an increased net import of dissolved inorganic phosphorus to shallow areas in the Baltic proper.

  13. Adequate nutrient intakes are associated with traditional food consumption in nunavut inuit children aged 3-5 years.

    PubMed

    Johnson-Down, Louise; Egeland, Grace M

    2010-07-01

    Dietary habits among Arctic preschoolers are unknown. A cross-sectional health survey of 388 Inuit, aged 3-5 y, was conducted in 16 communities in Canada's Nunavut Territory. Twenty-four-hour recall and FFQ with parents and primary caregivers quantified diet from market and traditional foods (TF). The Institute of Medicine's Dietary Reference Intakes estimated adequacy comparing intakes with Estimated Average Requirement or Adequate Intakes (AI). High-sugar and high-fat food and sugar beverage consumption and the extent to which dietary habits followed the Canadian Food Guide were evaluated. The children's mean age was 4.4 +/- 0.9 y and the mean BMI percentile was 90.2%. Consumption of nutrient-poor and energy-dense food and beverages contributed to 35% of energy. Most children met the requirements for many nutrients despite not eating the recommended servings from Eating Well with Canada's Food Guide First Nations, Inuit and Métis. Higher intake of TF resulted in higher intakes of cholesterol, vitamins A and D, iron, magnesium, and zinc. The percent above the AI for vitamin D was 43.1, 56.8, and 83.2% among no, low, and high TF consumers, respectively (chi2 test; P-trend < 0.0001). Dietary habits indicate a population at risk for overweight, obesity, and tooth decay. Interventions should encourage TF, including plant-based TF; healthy market food choices, including fruit and vegetables; and milk or alternative sources of vitamin D and calcium and discourage unhealthy market food choices.

  14. Dynamic investigation of nutrient consumption and injection strategy in microbial enhanced oil recovery (MEOR) by means of large-scale experiments.

    PubMed

    Song, Zhiyong; Zhu, Weiyao; Sun, Gangzheng; Blanckaert, Koen

    2015-08-01

    Microbial enhanced oil recovery (MEOR) depends on the in situ microbial activity to release trapped oil in reservoirs. In practice, undesired consumption is a universal phenomenon but cannot be observed effectively in small-scale physical simulations due to the scale effect. The present paper investigates the dynamics of oil recovery, biomass and nutrient consumption in a series of flooding experiments in a dedicated large-scale sand-pack column. First, control experiments of nutrient transportation with and without microbial consumption were conducted, which characterized the nutrient loss during transportation. Then, a standard microbial flooding experiment was performed recovering additional oil (4.9 % Original Oil in Place, OOIP), during which microbial activity mostly occurred upstream, where oil saturation declined earlier and steeper than downstream in the column. Subsequently, more oil remained downstream due to nutrient shortage. Finally, further research was conducted to enhance the ultimate recovery by optimizing the injection strategy. An extra 3.5 % OOIP was recovered when the nutrients were injected in the middle of the column, and another additional 11.9 % OOIP were recovered by altering the timing of nutrient injection.

  15. Evaluation of the Relative Validity of the Short Diet Questionnaire for Assessing Usual Consumption Frequencies of Selected Nutrients and Foods.

    PubMed

    Shatenstein, Bryna; Payette, Hélène

    2015-08-04

    A 36-item Short Diet Questionnaire (SDQ) was developed to assess usual consumption frequencies of foods providing fats, fibre, calcium, vitamin D, in addition to fruits and vegetables. It was pretested among 30 community-dwelling participants from the Québec Longitudinal Study on Nutrition and Successful Aging, "NuAge" (n = 1793, 52.4% women), recruited in three age groups (70 ± 2 years; 75 ± 2 years; 80 ± 2 years). Following revision, the SDQ was administered to 527 NuAge participants (55% female), distributed among the three age groups, both sexes and languages (French, English) prior to the second of three non-consecutive 24 h diet recalls (24HR) and validated relative to the mean of three 24HR. Full data were available for 396 participants. Most SDQ nutrients and fruit and vegetable servings were lower than 24HR estimates (p < 0.05) except calcium, vitamin D, and saturated and trans fats. Spearman correlations between the SDQ and 24HR were modest and significant (p < 0.01), ranging from 0.19 (cholesterol) to 0.45 (fruits and vegetables). Cross-classification into quartiles showed 33% of items were jointly classified into identical quartiles of the distribution, 73% into identical and contiguous quartiles, and only 7% were frankly misclassified. The SDQ is a reasonably accurate, rapid approach for ranking usual frequencies of selected nutrients and foods. Further testing is needed in a broader age range.

  16. Evaluation of the Relative Validity of the Short Diet Questionnaire for Assessing Usual Consumption Frequencies of Selected Nutrients and Foods

    PubMed Central

    Shatenstein, Bryna; Payette, Hélène

    2015-01-01

    A 36-item Short Diet Questionnaire (SDQ) was developed to assess usual consumption frequencies of foods providing fats, fibre, calcium, vitamin D, in addition to fruits and vegetables. It was pretested among 30 community-dwelling participants from the Québec Longitudinal Study on Nutrition and Successful Aging, “NuAge” (n = 1793, 52.4% women), recruited in three age groups (70 ± 2 years; 75 ± 2 years; 80 ± 2 years). Following revision, the SDQ was administered to 527 NuAge participants (55% female), distributed among the three age groups, both sexes and languages (French, English) prior to the second of three non-consecutive 24 h diet recalls (24HR) and validated relative to the mean of three 24HR. Full data were available for 396 participants. Most SDQ nutrients and fruit and vegetable servings were lower than 24HR estimates (p < 0.05) except calcium, vitamin D, and saturated and trans fats. Spearman correlations between the SDQ and 24HR were modest and significant (p < 0.01), ranging from 0.19 (cholesterol) to 0.45 (fruits and vegetables). Cross-classification into quartiles showed 33% of items were jointly classified into identical quartiles of the distribution, 73% into identical and contiguous quartiles, and only 7% were frankly misclassified. The SDQ is a reasonably accurate, rapid approach for ranking usual frequencies of selected nutrients and foods. Further testing is needed in a broader age range. PMID:26247965

  17. Contribution of beef consumption to nutrient intake, diet quality, and food patterns in the diets of the US population.

    PubMed

    Nicklas, Theresa A; O'Neil, Carol E; Zanovec, Michael; Keast, Debra R; Fulgoni, Victor L

    2012-01-01

    This study examined the association between the nutrient contribution of beef, in its lowest and highest fat forms, and diet quality and food patterns in individuals 4+years of age. Beef consumers were categorized into three groups (lowest lean/highest fat [LLHF]; middle lean/middle fat content; and highest lean/lowest fat [HLLF]) based on the lean and fat content of beef consumed. Compared to non-beef consumers, HLLF consumers had higher intakes of vitamins B(6) and B(12), iron, zinc, and potassium. Non-beef consumers had higher intakes of thiamin, folate, calcium, and magnesium than HLLF beef consumers. The HLLF group had significantly higher intakes of vitamins A, C, B(6), and B(12); niacin; phosphorus; magnesium; iron; zinc; and potassium, protein and lower intakes of total energy; total fat; SFA; MUFA; total carbohydrates. There was no difference in diet quality between HLLF beef consumers and non-beef consumers. Moderate consumption of lean beef contributes to intakes of selected nutrients and diet quality was similar to non-beef consumers.

  18. Antioxidant capacity total in non-melanoma skin cancer and its relationship with food consumption of antioxidant nutrients.

    PubMed

    Freitas, Betânia e Silva de Almendra; de Castro, Laís Lima; Aguiar, Jordana Rayane Sousa; de Araújo, Camila Guedes Borges; Visacri, Marília Berlofa; Tuan, Bruna Taliani; Pincinato, Eder de Carvalho; Moriel, Patricia

    2015-04-01

    The non-melanoma skin cancer is the most common cancer and accounts for more than half of the diagnoses of cancer, and basal cell carcinoma (BCC), the most frequent cutaneous neoplasm, corresponding to 70-80% of cutaneous tumors. Oxidative stress is an important trigger for skin carcinogenesis. Thus, it is important to evaluate oxidative stress, in order to discern effective therapeutic strategies able to stop it or attenuate it, thereby prevent the installation of non-melanoma skin cancer. Cross-sectional study with controls, involving 84 individuals of both sexes aged between 38-84 years, divided into two groups: control group of healthy people(n = 24) and the case group included individuals who presented non-melanoma skin and they have undergoing surgery (n = 60). The blood samples of the individuals were obtained for evaluation of biomarkers of oxidative stress (F2-isoprostane, nitrite, thiobarbituric acid reactive substances (TBARS) and total antioxidant capacity). The usual dietary intake and nutritional status of the subjects were evaluated. The significance level for this study was 5%. Patients in the case group had higher serum concentrations of biomarkers of oxidative stress, F2-isoprostane concentrations were significantly higher compared to controls. The results showed high rates of overweight and obesity in the case and control groups. The dietary concentrations of antioxidant minerals zinc, copper and selenium in the case group were significantly lower compared to controls. The correlation between markers of oxidative stress and dietary concentrations of antioxidant nutrients showed the influence of food intake of vitamins A and E in reducing oxidative stress, since these nutrients behave as important antioxidants, acting as sweepers of RL, by removing of the body the negative effects on the redox balance of the skin. We emphasize the importance of adopting healthy eating habits that optimize the consumption of antioxidant nutrients as a strategy to

  19. Food Consumption and Nutrient Intake by Children Aged 10 to 48 Months Attending Day Care in The Netherlands

    PubMed Central

    Goldbohm, R. Alexandra; Rubingh, Carina M.; Lanting, Caren I.; Joosten, Koen F. M.

    2016-01-01

    The diet of young children is an important determinant of long-term health effects, such as overweight and obesity. We analyzed two-day food consumption records from 1526 young children (10–48 months old) attending 199 daycare centers across The Netherlands. Data were observed and recorded in diaries by caregivers at the day nursery and by parents at home on days that the children attended the daycare center. According to national and European reference values, the children had an adequate nutrient intake with exception of low intakes of total fat, n-3 fatty acids from fish and possibly iron. Intakes of energy and protein were substantially higher than recommended and part of the population exceeded the tolerable upper intake levels for sodium, zinc and retinol. Consumption of fruit, fats, fish, and fluids was substantially less than recommended. The children used mostly (semi-)skimmed milk products and non-refined bread and cereals, as recommended. Two thirds of the consumed beverages, however, contained sugar and contributed substantially to energy intake. In young children, low intakes of n-3 fatty acids and iron are a potential matter of concern, as are the high intakes of energy, protein, sugared beverages, and milk, since these may increase the risk of becoming overweight. PMID:27428995

  20. Food Consumption and Nutrient Intake by Children Aged 10 to 48 Months Attending Day Care in The Netherlands.

    PubMed

    Goldbohm, R Alexandra; Rubingh, Carina M; Lanting, Caren I; Joosten, Koen F M

    2016-07-14

    The diet of young children is an important determinant of long-term health effects, such as overweight and obesity. We analyzed two-day food consumption records from 1526 young children (10-48 months old) attending 199 daycare centers across The Netherlands. Data were observed and recorded in diaries by caregivers at the day nursery and by parents at home on days that the children attended the daycare center. According to national and European reference values, the children had an adequate nutrient intake with exception of low intakes of total fat, n-3 fatty acids from fish and possibly iron. Intakes of energy and protein were substantially higher than recommended and part of the population exceeded the tolerable upper intake levels for sodium, zinc and retinol. Consumption of fruit, fats, fish, and fluids was substantially less than recommended. The children used mostly (semi-)skimmed milk products and non-refined bread and cereals, as recommended. Two thirds of the consumed beverages, however, contained sugar and contributed substantially to energy intake. In young children, low intakes of n-3 fatty acids and iron are a potential matter of concern, as are the high intakes of energy, protein, sugared beverages, and milk, since these may increase the risk of becoming overweight.

  1. Trends in food consumption and nutrient intake in Germany between 2006 and 2012: results of the German National Nutrition Monitoring (NEMONIT).

    PubMed

    Gose, Maria; Krems, Carolin; Heuer, Thorsten; Hoffmann, Ingrid

    2016-04-01

    The German National Nutrition Monitoring (NEMONIT) is a longitudinal and nationwide study to assess changes in food consumption and nutrient intake in Germany. A sample of 1840 participants (baseline age: 14-80 years) was drawn from the nationally representative German National Nutrition Survey (NVS) II (2005-2007). The participants have been interviewed by telephone annually since 2008. Food consumption was assessed by two 24-h recalls in the NVS II and the 4 years of NEMONIT (2008-2012/2013), respectively. Energy and nutrient intakes were calculated using the German Nutrient Database 3.02. Diet quality was evaluated using the Healthy Eating Index-NVS (HEI-NVS) II. Time trends were analysed by generalised estimating equation. Consumption of fruit/fruit products and fruit juice/nectar among men and women decreased, whereas consumption of water, soft drinks and coffee/tea increased over the 6-year period. Furthermore, increased consumption of confectionery and animal fats was observed among women. HEI-NVS II did not change since NVS II in both sexes. There were no changes in energy and protein intakes, but carbohydrate intake declined while fat intake increased over time. Regarding micronutrients, a decreasing intake of thiamin, riboflavin and vitamin B6 was observed in both sexes, but intake of Mg, Fe and niacin increased among women over time. In conclusion, food consumption and nutrient intake remained relatively stable between 2005-2007 and 2012/2013 within this German cohort. A few favourable and unfavourable changes were observed. Compared with national dietary guidelines, consumption of food of plant origin remained too low and consumption of meat/meat products remained too high in Germany.

  2. Food supply versus household survey data: nutrient consumption trends for Spain, 1958-1988.

    PubMed

    Rodríguez-Artalejo, F; Banegas, J R; Graciani, A; Hernández-Vecino, R; del Rey-Calero, J

    1996-08-01

    Various methods of estimating food consumption, such as food balance sheets (FBS) and household surveys (HS), have been developed over the years and have been used to inform, monitor and evaluate nutrition policies. Because these methods vary in their objectives and data collection procedures, the objective of this study has been to elaborate FBS data for Spain and to study the consistency of fat, carbohydrate and protein intake trends, as measured by FBS and HS, for the period 1958 to 1988. Food balance sheets were elaborated by the authors according to the methodology of FAO using all available data sources for the 1958-1988 period. This data considered every major food item contributing to the total energy intake of the spanish population. Household survey data were taken from three similar national household budget surveys carried out on a representative sample of the Spanish population in 1958, 1964-1965, and 1980-1981. Estimates of food consumption were transformed into macronutrient intake by applying standard food tables. When macronutrient intake were expressed in absolute amounts, an unexpected finding was the tendency of the household surveys to overestimate food balance sheet data for fat, and to a lesser extent protein and carbohydrate, intake during the first years in the series. Also, the slopes of the trends of macronutrient intake were significantly (p < 0.05) greater for food balance sheets than for household survey data, specially for fat. When macronutrient intake were expressed as percent of total energy, differences between the two types of data tended to diminish and heterogeneity of slopes disappeared. We conclude that household survey and food supply data provide partially different information on macronutrient intake trends in the Spanish population for the period 1958-1988. The discrepancy is particularly noticeable for fat intake and when data are expressed in absolute amounts.

  3. Modeling of nutrient concentrations in the river Loktinka, Western Siberia

    NASA Astrophysics Data System (ADS)

    Sheludkov, Artyom; Kiesel, Jens; Veshkurtseva, Tatyana

    2014-05-01

    Nutrient pollution is the process where too many nutrients, mainly nitrogen and phosphorus, are added to bodies of water and act as fertilizer, causing excessive growth of algae and threatening the natural species assemblages. The investigated catchment area is the river Loktinka which is located in the southern part of the West Siberian Plain, in the forest-steppe vegetation region. One of the most serious contaminant of the surface waters in the region are nutrients. The main input of nutrients comes from untreated runoff from agricultural fields and pastures. To mitigate agricultural non-point source pollution, simulation tools can aid in the development of temporal and spatial management plans. This study presents a software application of a Geohydrological Analysis Model, developed by Prof. Kalinin, Tyumen State University, Russian Federation (1998) for the region. The model is based on "Runoff Forming Surfaces", which are a distinguished part of the catchment characterized by a set of natural components such as land use, soil and elevation. These areas are relatively homogeneous and lead to the same parameters for representing the hydrological cycle. The model is used to simulate the water quality situation which was sampled during spring runoff in 2013. Results of the Siberian Geohydrological Analysis Model are compared to simulations carried out with the Soil and Water Assessment Tool (SWAT).

  4. Nutrient Dynamics in Flooded Wetlands. II: Model Application

    EPA Science Inventory

    In this paper we applied and evaluated the wetland nutrient model described in an earlier paper. Hydrologic and water quality data from a small restored wetland located on Kent Island, Maryland, which is part of the Delmarva Peninsula on the Eastern shores of the Chesapeake Bay...

  5. Nutrient-dependent/pheromone-controlled adaptive evolution: a model

    PubMed Central

    Kohl, James Vaughn

    2013-01-01

    Background The prenatal migration of gonadotropin-releasing hormone (GnRH) neurosecretory neurons allows nutrients and human pheromones to alter GnRH pulsatility, which modulates the concurrent maturation of the neuroendocrine, reproductive, and central nervous systems, thus influencing the development of ingestive behavior, reproductive sexual behavior, and other behaviors. Methods This model details how chemical ecology drives adaptive evolution via: (1) ecological niche construction, (2) social niche construction, (3) neurogenic niche construction, and (4) socio-cognitive niche construction. This model exemplifies the epigenetic effects of olfactory/pheromonal conditioning, which alters genetically predisposed, nutrient-dependent, hormone-driven mammalian behavior and choices for pheromones that control reproduction via their effects on luteinizing hormone (LH) and systems biology. Results Nutrients are metabolized to pheromones that condition behavior in the same way that food odors condition behavior associated with food preferences. The epigenetic effects of olfactory/pheromonal input calibrate and standardize molecular mechanisms for genetically predisposed receptor-mediated changes in intracellular signaling and stochastic gene expression in GnRH neurosecretory neurons of brain tissue. For example, glucose and pheromones alter the hypothalamic secretion of GnRH and LH. A form of GnRH associated with sexual orientation in yeasts links control of the feedback loops and developmental processes required for nutrient acquisition, movement, reproduction, and the diversification of species from microbes to man. Conclusion An environmental drive evolved from that of nutrient ingestion in unicellular organisms to that of pheromone-controlled socialization in insects. In mammals, food odors and pheromones cause changes in hormones such as LH, which has developmental affects on pheromone-controlled sexual behavior in nutrient-dependent reproductively fit individuals

  6. Consumption of various forms of apples is associated with a better nutrient intake and improved nutrient adequacy in diets of children: National Health and Nutrition Examination Survey 2003–2010

    PubMed Central

    Nicklas, Theresa A.; O'Neil, Carol E.; Fulgoni, Victor L.

    2015-01-01

    Background Consumption of fruit has been associated with a variety of health benefits, yet, 75% of children have usual intakes of total fruit below minimum recommended amounts. Apples are the second most commonly consumed fruit in the United States; however, no studies have examined the impact of apple consumption on nutrient intake and adequacy in children's diets. Objective The purpose of this study is to examine the association between apple (various forms) consumption with nutrient intake and nutrient adequacy in a nationally representative sample of children. Design Participants were children aged 2–18 years (n=13,339), from the National Health and Nutrition Examination Survey 2003–2010. Least square means of total energy and nutrient intake, and the percentage of the population below the estimated average requirement (EAR) or above the adequate intake (AI) among apple consumers and non-consumers were examined. Results Consumers of total apple products had higher (p<0.01) total intakes of fiber, magnesium, and potassium and lower intakes of total fat, saturated fatty acids, monounsaturated fatty acid, and sodium than non-consumers. Apple consumers had higher (p<0.01) total sugar intake, but lower intake of added sugars compared to non-consumers. A lower (p<0.01) percentage of apple consumers were below the EAR for 13 of the 16 nutrients studied. Apple consumers had approximately a 10 percentage unit difference below the EAR for calcium and magnesium, and vitamins A, C, D, and E, than non-consumers. The percentage above the AI for fiber was significantly (p<0.0001) higher among total apple consumers (6.24±0.45 g) compared to non-consumers (0.57±0.07 g). The results were similar for individual apple products (i.e. apple juice, applesauce, and whole apples). Conclusion Consumption of any forms of apples provided valuable nutrients in the diets of children. PMID:26445211

  7. Modeling seasonal export and retention of nutrients in european catchments.

    NASA Astrophysics Data System (ADS)

    de Klein, J.

    2003-04-01

    In the abatement of eutrophication of standing waters management of sources and transport of nutrients in river catchments is crucial. However the transport of nitrogen and phosphorus can vary significantly among (sub) catchments as a result of different physical, chemical and biotic factors. Qualitative and quantitative differences in nutrient pathways within catchments hamper the application of common standards and reliable prediction of the effect of nutrient loads. The EU-project BUFFER is set up to provide a tool which describes the relation between catchment properties and activities resulting in nutrient loads on one hand, and the ecological state of the receiving lakes on the other hand. To support this a new model-concept is developed that describes the transport and retention of nutrients in running waters (De Klein, 2002). The calculation requires minimum input data and generates output on a seasonal basis. The model was so far applied to Dutch catchments. This paper presents the extension and verification of the model, based on data of intensively studied catchments within the BUFFER-project. This implies the method can be applied to a wider range of European catchments. Basic model inputs are total annual loads of nutrients from point and diffuse sources to the surface (head) waters. During transport nutrients are retained in the catchment. Retention coefficients vary over the seasons and are calculated from a) residence time, which can be approximated using rainfall data, size of drainage basin and morphological properties b) temperature. The model outputs retention and export from the catchment on a monthly basis, using a set of straightforward formulas. Coefficients are calibrated with a subset of the measured data in an optimization routine, and subsequently verified. The similarity of measured and calculated values was high (r2 > 0.8; p<0.01). With a rather simple calculation method with few input data it is possible to estimate monthly export

  8. Improved diet quality, nutrient intake, and health associated with out-of-hand tree nut consumption in U.S. adults: NHANES 1999–2004

    Technology Transfer Automated Retrieval System (TEKTRAN)

    HANES (1999–2004), data were used to examine the association of out-of-hand tree nut consumption (almonds, Brazil nuts, cashews, filberts, macadamias, pecans, pine nuts, pistachios, and walnuts) with diet quality, nutrient intakes, and health risks in adults 19+ yrs (n equals 13,292). Using 24 hour ...

  9. Fruit juice consumption is associated with improved nutrient adequacy in children and adolescents: The National Health and Nutrition Examination Survey (NHANES) 2003-2006

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The goal of the study was to examine the contribution of 100% fruit juice consumption to dietary adequacy of shortfall nutrients by children and adolescents. This was a cross-sectional study and used data from the 2003–2006 National Health and Nutrition Examination Survey (NHANES). Participants were...

  10. Consumption of 100% fruit juice is associated with better nutrient intake and diet quality but not with weight status in children: NHANES 2007-2010

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study examined the impact of various levels of 100% fruit juice (FJ) consumption on intake of nutrients, diet quality, and weight in children using the more recent national data. We conducted a cross-sectional study examining the data from children 2-18 years of age (n=6,090). Intake of nutrien...

  11. Consumption of whole grains is associated with improved diet quality and nutrient intake in children and adolescents: the National Health and Nutrition Examination Survey 1999–2004

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to examine the association of consumption of whole grains (WG) with diet quality and nutrient intake in children and adolescents by a secondary analysis of cross-sectional data. The 1999-2004 National Health and Nutrition Examination Survey was used to study children ...

  12. 100% Orange juice consumption is associated with better diet quality, improved nutrient adequacy, decreased risk for obesity, and improved biomarkers of health in adults

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Consumption of 100% orange juice (OJ) has been positively associated with nutrient adequacy and diet quality, with no increased risk of overweight/obesity in children; however, no one has examined these factors in adults. The purpose of this study was to examine the association of 100% orange juice ...

  13. Cooked oatmeal consumption is associated with better diet quality, better nutrient intakes, and reduced risk for central adiposity and obesity in Children 2-18 years

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to assess the association between oatmeal consumption and nutrient intake, diet quality, and weight/adiposity of children aged 2-18. A nationally representative sample of children aged 2-18 (N=14,690) participating in National Health and Nutrition Examination Survey 2...

  14. Out-of-hand nut consumption is associated with improved nutrient intake and health risk markers in US children and adults: NHANES 1999-2004

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The purpose of this study was to determine the association of out-of-hand nut (OOHN) consumption with nutrient intake, diet quality, and the prevalence of risk factors for cardiovascular disease and metabolic syndrome. Data from 24-hour recalls from individuals aged 2+ years (n = 24,385) participati...

  15. Modelling and simulation of nutrient dispersion from coated fertilizer granules

    NASA Astrophysics Data System (ADS)

    Razali, Radzuan; Daud, Hanita; Nor, Shafiq Mohd.

    2014-10-01

    The usage of Controlled-Release Fertilizer (CRF) is essential in plants and crops to fulfill the need and requirement for the modern agriculture which now feeds 6 billion people. Therefore modeling and simulation of nutrient release from coated fertilizer has become the best method to study the behavior of some parameters toward water saturation in and nutrient release from the coated-fertilizer granule. This paper is the improvement development of modeling and computer simulation by Basu [1] which include some of the factors affecting the water saturation time and nutrient release time from a coated-fertilizer. The effect of granule radius, the diffusivity of water and nutrient, the temperature of surrounding, the contact areas and the characteristic of the coating are studied and the simulation was developed using MATLAB software. The studies and understanding of this project is very important and useful especially to determine the important parameters in the manufacturing process of the coated-fertilizer granule and also will be useful for the farmers/users in the selection of the best fertilizers for their crops.

  16. Statistical modelling of variability in sediment-water nutrient and oxygen fluxes

    NASA Astrophysics Data System (ADS)

    Serpetti, Natalia; Witte, Ursula; Heath, Michael

    2016-06-01

    Organic detritus entering, or produced, in the marine environment is re-mineralised to inorganic nutrient in the seafloor sediments. The flux of dissolved inorganic nutrient between the sediment and overlying water column is a key process in the marine ecosystem, which binds the biogeochemical sub-system to the living food web. These fluxes are potentially affected by a wide range of physical and biological factors and disentangling these is a significant challenge. Here we develop a set of General Additive Models (GAM) of nitrate, nitrite, ammonia, phosphate, silicate and oxygen fluxes, based on a year-long campaign of field measurements off the north-east coast of Scotland. We show that sediment grain size, turbidity due to sediment re-suspension, temperature, and biogenic matter content were the key factors affecting oxygen consumption, ammonia and silicate fluxes. However, phosphate fluxes were only related to suspended sediment concentrations, whilst nitrate fluxes showed no clear relationship to any of the expected drivers of change, probably due to the effects of denitrification. Our analyses show that the stoichiometry of nutrient regeneration in the ecosystem is not necessarily constant and may be affected by combinations of processes. We anticipate that our statistical modelling results will form the basis for testing the functionality of process-based mathematical models of whole-sediment biogeochemistry.

  17. Consumption of bakery products, sweetened soft drinks and yogurt among children aged 6-7 years: association with nutrient intake and overall diet quality.

    PubMed

    Rodríguez-Artalejo, Fernando; García, Esther López; Gorgojo, Lydia; Garcés, Carmen; Royo, Miguel Angel; Martín Moreno, José María; Benavente, Mercedes; Macías, Alfonso; De Oya, Manuel

    2003-03-01

    The present study tests the hypothesis that higher consumption of bakery products, sweetened soft drinks and yogurt is associated with higher intake of energy, saturated fats, sugars and worse overall diet quality among Spanish children. This is a cross-sectional study covering 1112 children aged 6.0-7.0 years in four Spanish cities. Nutrient and food intake were obtained through a food-frequency questionnaire, and overall diet quality calculated using the healthy-eating index (HEI) developed by Kennedy et al. (1995). Standardized methods were used to measure anthropometric variables. Associations of interest were summarized as the difference in nutrient and food consumption between the value of the fifth and the first quintile of consumption (dq) of bakery products, sweetened soft drinks or yogurt, adjusted for energy intake and BMI. Bakery products, sweetened soft drinks and yogurt supplied 15.5, 1.0 and 5.6 % energy intake respectively. Higher consumption of these three foods was associated with greater energy intake (P<0.001), but not with higher BMI. Consumption of bakery products was associated with the proportion of energy derived from intake of total carbohydrates (dq 4.5 %, P<0.001) and sugars (dq 2 %, P<0.001), but did not show association with the HEI. Consumption of sweetened soft drinks was associated with a lower consumption of milk (dq -88 ml, P<0.001) and Ca (dq -175 mg/d, P<0.001), and worse HEI (dq -2, P<0.01). Consumption of yogurt, while associated with higher energy intake from saturated fats (dq 1.77 %, P<0.001) and sugars (dq 2.02 %, P<0.001), showed no association with the HEI. Differences in the intake of nutrients and foods across quintiles of consumption of bakery products, sweetened soft drinks and yogurt were usually very small. We conclude that the impact of the consumption of bakery products, sweetened soft drinks and yogurt on the quality of the diet of Spanish children is only modest, although it may contribute to aggravating

  18. MODELING ENERGY EXPENDITURE AND OXYGEN CONSUMPTION IN HUMAN EXPOSURE MODELS: ACCOUNTING FOR FATIGUE AND EPOC

    EPA Science Inventory

    Human exposure and dose models often require a quantification of oxygen consumption for a simulated individual. Oxygen consumption is dependent on the modeled Individual's physical activity level as described in an activity diary. Activity level is quantified via standardized val...

  19. Ecosystem Modeling Applied to Nutrient Criteria Development in Rivers

    NASA Astrophysics Data System (ADS)

    Carleton, James N.; Park, Richard A.; Clough, Jonathan S.

    2009-09-01

    Threshold concentrations for biological impairment by nutrients are difficult to quantify in lotic systems, yet States and Tribes in the United States are charged with developing water quality criteria to protect these ecosystems from excessive enrichment. The analysis described in this article explores the use of the ecosystem model AQUATOX to investigate impairment thresholds keyed to biological indexes that can be simulated. The indexes selected for this exercise include percentage cyanobacterial biomass of sestonic algae, and benthic chlorophyll a. The calibrated model was used to analyze responses of these indexes to concurrent reductions in phosphorus, nitrogen, and suspended sediment in an enriched upper Midwestern river. Results suggest that the indexes would respond strongly to changes in phosphorus and suspended sediment, and less strongly to changes in nitrogen concentration. Using simulated concurrent reductions in all three water quality constituents, a total phosphorus concentration of 0.1 mg/l was identified as a threshold concentration, and therefore a hypothetical water quality criterion, for prevention of both excessive periphyton growth and sestonic cyanobacterial blooms. This kind of analysis is suggested as a way to evaluate multiple contrasting impacts of hypothetical nutrient and sediment reductions and to define nutrient criteria or target concentrations that balance multiple management objectives concurrently.

  20. Development of a model to determine oxygen consumption when crawling.

    PubMed

    Pollard, J P; Heberger, J R; Dempsey, P G

    During a mine disaster or emergency, underground air can quickly become contaminated. In these circumstances, all underground mine workers are taught to don breathable air supply units at the first sign of an emergency. However, no contemporary oxygen consumption data is available for the purposes of designing breathing air supply equipment specifically for mine escape. Further, it would be useful to quantify the oxygen requirements of breathing air supply users for various escape scenarios. To address this need, 14 participants crawled a distance of 305 m each while their breath-by-breath oxygen consumption measurements were taken. Using these data, linear regression models were developed to determine peak and average oxygen consumption rates as well as total oxygen consumption. These models can be used by manufacturers of breathing air supply equipment to aid in the design of devices that would be capable of producing sufficient on-demand oxygen to allow miners to perform self-escape.

  1. Development of a model to determine oxygen consumption when crawling

    PubMed Central

    Pollard, J.P.; Heberger, J.R.; Dempsey, P.G.

    2016-01-01

    During a mine disaster or emergency, underground air can quickly become contaminated. In these circumstances, all underground mine workers are taught to don breathable air supply units at the first sign of an emergency. However, no contemporary oxygen consumption data is available for the purposes of designing breathing air supply equipment specifically for mine escape. Further, it would be useful to quantify the oxygen requirements of breathing air supply users for various escape scenarios. To address this need, 14 participants crawled a distance of 305 m each while their breath-by-breath oxygen consumption measurements were taken. Using these data, linear regression models were developed to determine peak and average oxygen consumption rates as well as total oxygen consumption. These models can be used by manufacturers of breathing air supply equipment to aid in the design of devices that would be capable of producing sufficient on-demand oxygen to allow miners to perform self-escape. PMID:26997858

  2. A modeling study examining the impact of nutrient boundaries ...

    EPA Pesticide Factsheets

    A mass balance eutrophication model, Gulf of Mexico Dissolved Oxygen Model (GoMDOM), has been developed and applied to describe nitrogen, phosphorus and primary production in the Louisiana shelf of the Gulf of Mexico. Features of this model include bi-directional boundary exchanges, an empirical site-specific light attenuation equation, estimates of 56 river loads and atmospheric loads. The model was calibrated for 2006 by comparing model output to observations in zones that represent different locations in the Gulf. The model exhibited reasonable skill in simulating the phosphorus and nitrogen field data and primary production observations. The model was applied to generate a nitrogen mass balance estimate, to perform sensitivity analysis to compare the importance of the nutrient boundary concentrations versus the river loads on nutrient concentrations and primary production within the shelf, and to provide insight into the relative importance of different limitation factors on primary production. The mass budget showed the importance of the rivers as the major external nitrogen source while the atmospheric load contributed approximately 2% of the total external load. Sensitivity analysis showed the importance of accurate estimates of boundary nitrogen concentrations on the nitrogen levels on the shelf, especially at regions further away from the river influences. The boundary nitrogen concentrations impacted primary production less than nitrogen concent

  3. Modelling of the Nutrient Medium for Plants Cultivation in Spaceflight

    NASA Astrophysics Data System (ADS)

    Nechitailo, Galina S.

    2016-07-01

    MODELLING OF THE NUTRIENT MEDIUM FOR PLANTS CULTIVATION IN SPACEFLIGHT Nechitajlo G.S.*, Rakhmetova A.A.**, Bogoslovskaja O.A.**, Ol'hovskay I.P.**, Glushchenko N.N.** *Emanuel Institute of Biochemical Physics of Russian Academy of Sciences (IBCP RAS) mail: spacemal@mail.ru **V.L. Talrose Institute for Energy Problems of Chemical Physics of Russian Academy of Science (INEPCP RAS) mail: nnglu@ mail.ru The valuable life and fruitful activity of cosmonauts and researchers in conditions of spaceflights and prolonged work at space stations are only possible with creating life area providing fresh air, natural food, comfortable psychological conditions, etc. The solution of that problem under space conditions seems impossible without use of high nano- and biotechnologies for plants growth. A priority should be given not only to choose species of growth plants in space, but also to improve conditions for their growth which includes optimal nourishing components for plants, preparation of nutrient mediums, illumination and temperature. We are deeply convinced that just manipulations with growing conditions for cultivated plants, but not genes changes, is a guarantee of success in the decision of this problem. For improving the method of plants growing on the artificial nutrient medium with balanced content of components, being necessary for growth and development of plants, we added essential metal elements: Fe, Zn, Cu - in an electroneutral state in the form of nanoparticles instead of sulfates or other easily dissolving salts. Nanoparticulated metals are known to have a number of advantages in comparison with salts: metals in an electroneutral form are characterized with the prolonged and multifunctional action, low toxicity per se and appearing to be much below the toxicity of the same metals in the ionic forms, accumulation as a reserve being used in biotic dozes, active distribution in bodies and organs of plants and stimulation of vital processes. A high reactivity

  4. A new compensated root water and nutrient uptake model implemented in HYDRUS programs

    NASA Astrophysics Data System (ADS)

    Simunek, Jiri; Hopmans, Jan W.; Lazarovitch, Naftali

    2010-05-01

    Plant root water and nutrient uptake is one of the most important processes in subsurface unsaturated flow and transport modeling, as root uptake controls actual plant evapotranspiration, water recharge and nutrient leaching to the groundwater. Root water uptake in unsaturated flow models is usually uncompensated and nutrient uptake is simulated assuming that all uptake is passive. We present a new compensated root water and nutrient uptake model, implemented in HYDRUS programs. The so-called root adaptability factor (Jarvis, 1989) is used to represent a threshold value above which reduced root water or nutrient uptake in water- or nutrient-stressed parts of the root zone is fully compensated for by increased uptake in other soil regions that are less stressed. Using a critical value of the water stress index, water uptake compensation is proportional to the water stress response function. Total root nutrient uptake is determined from the total of active and passive nutrient uptake. The partitioning between passive and active uptake is controlled by the a priori defined concentration value c_max. Passive nutrient uptake is simulated by multiplying root water uptake with the dissolved nutrient concentration, for soil solution concentration values below c_max. Passive nutrient uptake is thus zero when c_max is equal to zero. As the active nutrient uptake is obtained from the difference between plant nutrient demand and passive nutrient uptake (using Michaelis-Menten kinetics), the presented model thus implies that reduced passive nutrient uptake is compensated for by active nutrient uptake. In addition, the proposed root uptake model includes compensation for active nutrient uptake, in a similar way as used for root water uptake. The proposed root water and nutrient uptake model is demonstrated by several hypothetical and real examples, for plants supplied by water due to capillary rise from groundwater and surface drip irrigation.

  5. Modelling global nutrient retention by river damming: Phosphorus and silicon

    NASA Astrophysics Data System (ADS)

    Maavara, Taylor; Dürr, Hans; Van Cappellen, Philippe

    2014-05-01

    The phosphorus to silicon (P:Si) nutrient ratio is a key variable affecting ecosystem health in many aquatic environments. River damming represents a major anthropogenic perturbation of natural material flows along the aquatic continuum, with the potential to profoundly modify absolute and relative nutrient availabilities in surface waters. In this study, a multi-tiered approach for estimating global nutrient retention in man-made reservoirs is presented. We illustrate its application to the global riverine flux of reactive Si, using a database of dissolved reactive Si (DSi) budgets for 24 natural lakes and 22 artificial reservoirs. The database includes information on bedrock geology, surface water pH, water residence time, reservoir age and function, climate, and trophic status. Statistical analyses (ANOVA, t-test, PCA, linear plus non-linear regressions) are used to identify the best predictors of DSi retention and delineate how reservoir properties modulate nutrient dynamics. Results indicate that (1) reservoirs retain significantly less DSi than natural lakes, and (2) the water residence time, reservoir age and function (e.g., hydroelectrical production, irrigation, flood control) are the main system variables controlling DSi retention by dams. Next, a biogeochemical Si model is used to reproduce the previously derived statistical trends for DSi retention. Calibration of the model yields a relationship that enables one to predict annual in-reservoir siliceous productivity as a function of the external reactive Si supply. The model further accounts for the transition from reservoirs where reactive Si retention is primarily due to burial of allochtonous Si to those where in-reservoir DSi uptake by diatoms dominates. Finally, the statistical and mechanistic relationships are extrapolated to estimate that 25-28 Tg SiO2 yr-1 are retained worldwide by dams, or 7% of the annual reactive Si load to watersheds. We are currently applying the same multi-tiered approach

  6. Tree nut consumption improves nutrient intake and diet quality in US adults: an analysis of National Health and Nutrition Examination Survey (NHANES) 1999-2004.

    PubMed

    O'Neil, Carol E; Keast, Debra R; Fulgoni, Victor L; Nicklas, Theresa A

    2010-01-01

    Recent epidemiologic studies assessing tree nut (almonds, Brazil nuts, cashews, hazelnuts, macadamia nuts, pecans, pine nuts, pistachios, and walnuts) consumption and the association with nutrient intake and diet quality are lacking. This study determined the association of tree nut consumption and nutrient intake and diet quality using a nationally representative sample of adults. Adults 19+ years (y) (n=13,292) participating in the 1999-2004 National Health and Nutrition Examination Survey were used. Intake was determined from 24-hour diet recalls; tree nut consumers were defined as those consuming > or =(1/4) ounce/day (7.09 g). Means, standard errors, and ANOVA (adjusted for covariates) were determined using appropriate sample weights. Diet quality was measured using the Healthy Eating Index-2005. Among consumers, mean intake of tree nuts/tree nut butters was 1.19 +/- 0.04 oz/d versus 0.01 +/- 0.00 oz/d for non-consumers. In this study, 5.5 +/- 0.3 % of individuals 19-50 y (n=7,049) and 8.4 +/- 0.6 % of individuals 51+ y (n=6,243) consumed tree nuts/tree nut butters. Mean differences (p<0.01) between tree nut consumers and non-consumers of adult shortfall nutrients were: fiber (+5.0 g/d), vitamin E (+3.7 mg AT/d), calcium (+73 mg/d), magnesium (+95 mg/d), and potassium (+260 mg/d). Tree nut consumers had lower sodium intake (-157 mg/d, p<0.01). Diet quality was significantly higher in tree nut consumers (58.0+/-0.4 vs. 48.5+/-0.3, p<0.01). Tree nut consumption was associated with a higher overall diet quality score and improved nutrient intakes. Specific dietary recommendations for nut consumption should be provided for consumers.

  7. Short-Term Energy Outlook Model Documentation: Motor Gasoline Consumption Model

    EIA Publications

    2011-01-01

    The motor gasoline consumption module of the Short-Term Energy Outlook (STEO) model is designed to provide forecasts of total U.S. consumption of motor gasolien based on estimates of vehicle miles traveled and average vehicle fuel economy.

  8. Soil nutrient competition in earth system models: an important but underappreciated driver of plant responses to nutrient fertilization

    NASA Astrophysics Data System (ADS)

    Zhu, Q.; Riley, W. J.; Tang, J.; Koven, C.

    2015-12-01

    Earth System Models (ESMs) used to project future biosphere-climate feedbacks rely on predictions of terrestrial carbon dynamics. Furthermore, soil nutrient availability strongly modulates land surface carbon dynamics, including plant sequestration of atmospheric CO2. Plant growth under future environmental changes (e.g., nitrogen and phosphorus deposition) depends on how well plants compete with microbial and abiotic competitors. Here, we surveyed recent developments of nutrient competition representations in ESMs that participated in the CMIP5 project. We found that nutrient competition is over-simplified despite its ecological significance. Existing ESMs either assume that soil-decomposing microbes (1) outcompete plants or (2) are evenly competitive, both of which are inconsistent with theoretical understanding and field observations. We compiled and synthesized global data of forest carbon productivity in response to nitrogen and phosphorus fertilization experiments. Using this synthesis, we show that existing ESMs with the first and second competition schemes lead to underestimation and overestimation, respectively, of fertilization effects on plant growth. We reduced these systematic biases by applying a new competition scheme in CLM4.5 and the essentially equivalent ACME land model (ALMv0) based on the Equilibrium Chemistry Approximation, which is based on classical equilibrium chemical kinetics theory. This approach dynamically updates nutrient competitiveness among multiple consumers (e.g., plants, decomposing microbes, nitrifier, denitrifier, mineral surfaces) as a function of soil nutrient status. There has been a long-term debate regarding how to implement theoretically realistic and computationally efficient nutrient competition schemes in ESMs. Our approach reconciles the complex nature of ecosystem nutrient competition with a computationally tractable approach applicable to ESMs. More importantly, our results imply that previous estimates of plant

  9. A realistic dynamic blower energy consumption model for wastewater applications.

    PubMed

    Amerlinck, Y; De Keyser, W; Urchegui, G; Nopens, I

    2016-10-01

    At wastewater treatment plants (WWTPs) aeration is the largest energy consumer. This high energy consumption requires an accurate assessment in view of plant optimization. Despite the ever increasing detail in process models, models for energy production still lack detail to enable a global optimization of WWTPs. A new dynamic model for a more accurate prediction of aeration energy costs in activated sludge systems, equipped with submerged air distributing diffusers (producing coarse or fine bubbles) connected via piping to blowers, has been developed and demonstrated. This paper addresses the model structure, its calibration and application to the WWTP of Mekolalde (Spain). The new model proved to give an accurate prediction of the real energy consumption by the blowers and captures the trends better than the constant average power consumption models currently being used. This enhanced prediction of energy peak demand, which dominates the price setting of energy, illustrates that the dynamic model is preferably used in multi-criteria optimization exercises for minimizing the energy consumption.

  10. Prey-predator model with a nonlocal consumption of prey

    NASA Astrophysics Data System (ADS)

    Banerjee, M.; Volpert, V.

    2016-08-01

    The prey-predator model with nonlocal consumption of prey introduced in this work extends previous studies of local reaction-diffusion models. Linear stability analysis of the homogeneous in space stationary solution and numerical simulations of nonhomogeneous solutions allow us to analyze bifurcations and dynamics of stationary solutions and of travelling waves. These solutions present some new properties in comparison with the local models. They correspond to different feeding strategies of predators observed in ecology.

  11. Prey-predator model with a nonlocal consumption of prey.

    PubMed

    Banerjee, M; Volpert, V

    2016-08-01

    The prey-predator model with nonlocal consumption of prey introduced in this work extends previous studies of local reaction-diffusion models. Linear stability analysis of the homogeneous in space stationary solution and numerical simulations of nonhomogeneous solutions allow us to analyze bifurcations and dynamics of stationary solutions and of travelling waves. These solutions present some new properties in comparison with the local models. They correspond to different feeding strategies of predators observed in ecology.

  12. Stoichiometry, herbivory and competition for nutrients: simple models based on planktonic ecosystems.

    PubMed

    Grover, James P

    2002-02-21

    Models are examined in which two prey species compete for two nutrient resources, and are preyed upon by a predator that recycles both nutrients. Two factors determine the effective relative supply of the nutrients, hence competitive outcomes: the external nutrient supply ratio, and the relative recycling of the two nutrients within the system. This second factor is governed by predator stoichiometry--its relative requirements for nutrients in its own biomass. A model with nutrient resources that are essential for the competing prey is detailed. Criteria are given to identify the limiting nutrient for a food chain of one competitor with the predator. Increased supply of this limiting nutrient increases predator density and concentration of this nutrient at equilibrium, while decreasing the concentration of a non-limiting nutrient. Changes in supply or recycling of a non-limiting nutrient affect only the concentration of that nutrient. Criteria for the invasion of a second prey competitor are presented. When different nutrients limit growth of the resident prey and the invader, increased supply or recycling of the invader's limiting nutrient assists invasion, while increased supply or recycling of the resident's limiting nutrient hinders invasion. If the same nutrient limits both resident and invader, then changes in supply and recycling have complex effects on invasion, depending on species properties. In a parameterized model of a planktonic ecosystem, green algae and cyanobacteria coexist over a wide range of nitrogen:phosphorus supply ratios, without predators. When the herbivore Daphnia is added, coexistence is eliminated or greatly restricted, and green algae dominate over a wide range of supply conditions, because the effective supply of P is greatly reduced as Daphnia rapidly recycles N.

  13. Food consumption patterns, diversity of food nutrients and mean nutrient intake in relation to HIV/AIDS status in Kisumu district Kenya.

    PubMed

    Onyango, Agatha Christine; Walingo, Mary Khakoni; Othuon, Lucas

    2009-09-01

    As the causes and consequences of the AIDS epidemic become clearer, so does the fundamental importance of food and nutritional security for HIV-affected individuals. Even as food insecurity remains a major problem in poor households, its effects are worsened in disease states like HIV infection. Food deficiency and nutritional inadequacy compromise an individual's physical status and work capacity, and may also diminish their resource base and household provisioning. The prevalence of HIV and AIDS in Kenya threatens food production systems, which intensifies poverty, increases the nutritional implications for HIV-infected individuals, accelerates the rate of orphanhood beyond what existing social networks can cope with, and basically affects all indicators of socio-economic development in the country. This cross-sectional study sought to assess food and nutrient intake in HIV-affected versus non-HIV-affected households. Purposive sampling was used to select 160 households (77 HIV-affected households and 83 non-HIV-affected households) in Kisumu district, a lowland area along Lake Victoria. A consolidated questionnaire that included a food-frequency checklist and personal 24-hour dietary recall was used to gather information from 40 households. The data were analysed quantitatively; descriptive statistics were mainly measures of central tendency, and inferential statistics involved chi-square tests and independent t-test samples. A table depicting food composition was used to compute the nutrient intake of each household. The findings reveal a significant relationship between a household's HIV/AIDS status and nutrient intake.

  14. MODEL SIMULATION STUDIES OF SCALE-DEPENDENT GAIN IN STREAM NUTRIENT ASSIMILATIVE CAPACITY RESULTING FROM IMPROVING NUTRIENT RETENTION METRICS

    EPA Science Inventory

    Considering the difficulty in measuring restoration success for nonpoint source pollutants, nutrient assimilative capacity (NAS) offers an attractive systems-based metric. Here NAS was defined using an impulse-response model of nitrate fate and transport. Eleven parameters were e...

  15. Pan-European modelling of riverine nutrient concentrations - spatial patterns, source detection, trend analyses, scenario modelling

    NASA Astrophysics Data System (ADS)

    Bartosova, Alena; Arheimer, Berit; Capell, Rene; Donnelly, Chantal; Strömqvist, Johan

    2016-04-01

    Nutrient transport models are important tools for large scale assessments of macro-nutrient fluxes (nitrogen, phosphorus) and thus can serve as support tool for environmental assessment and management. Results from model applications over large areas, i.e. from major river basin to continental scales can fill a gap where monitoring data is not available. Here, we present results from the pan-European rainfall-runoff and nutrient transfer model E-HYPE, which is based on open data sources. We investigate the ability of the E-HYPE model to replicate the spatial and temporal variations found in observed time-series of riverine N and P concentrations, and illustrate the model usefulness for nutrient source detection, trend analyses, and scenario modelling. The results show spatial patterns in N concentration in rivers across Europe which can be used to further our understanding of nutrient issues across the European continent. E-HYPE results show hot spots with highest concentrations of total nitrogen in Western Europe along the North Sea coast. Source apportionment was performed to rank sources of nutrient inflow from land to sea along the European coast. An integrated dynamic model as E-HYPE also allows us to investigate impacts of climate change and measure programs, which was illustrated in a couple of scenarios for the Baltic Sea. Comparing model results with observations shows large uncertainty in many of the data sets and the assumptions used in the model set-up, e.g. point source release estimates. However, evaluation of model performance at a number of measurement sites in Europe shows that mean N concentration levels are generally well simulated. P levels are less well predicted which is expected as the variability of P concentrations in both time and space is higher. Comparing model performance with model set-ups using local data for the Weaver River (UK) did not result in systematically better model performance which highlights the complexity of model

  16. The MARINA model (Model to Assess River Inputs of Nutrients to seAs): Model description and results for China.

    PubMed

    Strokal, Maryna; Kroeze, Carolien; Wang, Mengru; Bai, Zhaohai; Ma, Lin

    2016-08-15

    Chinese agriculture has been developing fast towards industrial food production systems that discharge nutrient-rich wastewater into rivers. As a result, nutrient export by rivers has been increasing, resulting in coastal water pollution. We developed a Model to Assess River Inputs of Nutrients to seAs (MARINA) for China. The MARINA Nutrient Model quantifies river export of nutrients by source at the sub-basin scale as a function of human activities on land. MARINA is a downscaled version for China of the Global NEWS-2 (Nutrient Export from WaterSheds) model with an improved approach for nutrient losses from animal production and population. We use the model to quantify dissolved inorganic and organic nitrogen (N) and phosphorus (P) export by six large rivers draining into the Bohai Gulf (Yellow, Hai, Liao), Yellow Sea (Yangtze, Huai) and South China Sea (Pearl) in 1970, 2000 and 2050. We addressed uncertainties in the MARINA Nutrient model. Between 1970 and 2000 river export of dissolved N and P increased by a factor of 2-8 depending on sea and nutrient form. Thus, the risk for coastal eutrophication increased. Direct losses of manure to rivers contribute to 60-78% of nutrient inputs to the Bohai Gulf and 20-74% of nutrient inputs to the other seas in 2000. Sewage is an important source of dissolved inorganic P, and synthetic fertilizers of dissolved inorganic N. Over half of the nutrients exported by the Yangtze and Pearl rivers originated from human activities in downstream and middlestream sub-basins. The Yellow River exported up to 70% of dissolved inorganic N and P from downstream sub-basins and of dissolved organic N and P from middlestream sub-basins. Rivers draining into the Bohai Gulf are drier, and thus transport fewer nutrients. For the future we calculate further increases in river export of nutrients. The MARINA Nutrient model quantifies the main sources of coastal water pollution for sub-basins. This information can contribute to formulation of

  17. Nutrient uptake and mineralization during leaf decay in streams - a model simulation

    SciTech Connect

    Webster, Jackson; Newbold, J. Denis; Thomas, Steve; Valett, H. Maurice; Mulholland, Patrick J

    2009-01-01

    We developed a stoichiometrically explicit computer model to examine how heterotrophic uptake of nutrients and microbial mineralization occurring during the decay of leaves in streams may be important in modifying nutrient concentrations. The simulations showed that microbial uptake can substantially decrease stream nutrient concentrations during the initial phases of decomposition, while mineralization may produce increases in concentrations during later stages of decomposition. The simulations also showed that initial nutrient content of the leaves can affect the stream nutrient concentration dynamics and determine whether nitrogen or phosphorus is the limiting nutrient. Finally, the simulations suggest a net retention (uptake > mineralization) of nutrients in headwater streams, which is balanced by export of particulate organic nutrients to downstream reaches. Published studies support the conclusion that uptake can substantially change stream nutrient concentrations. On the other hand, there is little published evidence that mineralization also affects nutrient concentrations. Also, there is little information on direct microbial utilization of nutrients contained in the decaying leaves themselves. Our results suggest several directions for research that will improve our understanding of the complex relationship between leaf decay and nutrient dynamics in streams.

  18. Sensitivity of hypoxia predictions for the northern Gulf of Mexico to sediment oxygen consumption and model nesting

    NASA Astrophysics Data System (ADS)

    Fennel, Katja; Hu, Jiatang; Laurent, Arnaud; Marta-Almeida, Martinho; Hetland, Robert

    2013-02-01

    Every summer, a large area (15,000 km2 on average) over the Texas-Louisiana shelf in the northern Gulf of Mexico turns hypoxic due to decay of organic matter that is primarily derived from nutrient inputs from the Mississippi/Atchafalaya River System. Interannual variability in the size of the hypoxic zone is large. The 2008 Action Plan put forth by the Mississippi River/Gulf of Mexico Watershed Nutrient Task Force, an alliance of multiple state and federal agencies and tribes, calls for a reduction of the size of the hypoxic zone through nutrient management in the watershed. Comprehensive models help build mechanistic understanding of the processes underlying hypoxia formation and variability and are thus indispensable tools for devising efficient nutrient reduction strategies and for building reasonable expectations as to what responses can be expected for a given nutrient reduction. Here we present such a model, evaluate its hypoxia simulations against monitoring observations, and assess the sensitivity of the hypoxia simulations to model resolution, variations in sediment oxygen consumption, and choice of physical horizontal boundary conditions. We find that hypoxia simulations on the shelf are very sensitive to the parameterization of sediment oxygen consumption, a result of the fact that hypoxic conditions are restricted to a relatively thin layer above the bottom over most of the shelf. We show that the strength of vertical stratification is an important predictor of dissolved oxygen concentration in bottom waters and that modification of physical horizontal boundary conditions can have a large effect on hypoxia simulations because it can affect stratification strength.

  19. Contribution of beef consumption to nutrient intake, diet quality, and food patterns in the diets of the US population

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study examined the association between the nutrient contribution of beef, in its lowest and highest fat forms, and diet quality and food patterns in individuals 4+ years of age. Beef consumers were categorized into three groups (lowest lean/highest fat [LLHF]; middle lean/middle fat content; an...

  20. Employment, Production and Consumption model: Patterns of phase transitions

    NASA Astrophysics Data System (ADS)

    Lavička, H.; Lin, L.; Novotný, J.

    2010-04-01

    We have simulated the model of Employment, Production and Consumption (EPC) using Monte Carlo. The EPC model is an agent based model that mimics very basic rules of industrial economy. From the perspective of physics, the nature of the interactions in the EPC model represents multi-agent interactions where the relations among agents follow the key laws for circulation of capital and money. Monte Carlo simulations of the stochastic model reveal phase transition in the model economy. The two phases are the phase with full unemployment and the phase with nearly full employment. The economy switches between these two states suddenly as a reaction to a slight variation in the exogenous parameter, thus the system exhibits strong non-linear behavior as a response to the change of the exogenous parameters.

  1. Modeling of Methods to Control Heat-Consumption Efficiency

    NASA Astrophysics Data System (ADS)

    Tsynaeva, E. A.; Tsynaeva, A. A.

    2016-11-01

    In this work, consideration has been given to thermophysical processes in automated heat consumption control systems (AHCCSs) of buildings, flow diagrams of these systems, and mathematical models describing the thermophysical processes during the systems' operation; an analysis of adequacy of the mathematical models has been presented. A comparison has been made of the operating efficiency of the systems and the methods to control the efficiency. It has been determined that the operating efficiency of an AHCCS depends on its diagram and the temperature chart of central quality control (CQC) and also on the temperature of a low-grade heat source for the system with a heat pump.

  2. Low Calorie Beverage Consumption Is Associated with Energy and Nutrient Intakes and Diet Quality in British Adults.

    PubMed

    Gibson, Sigrid A; Horgan, Graham W; Francis, Lucy E; Gibson, Amelia A; Stephen, Alison M

    2016-01-02

    It is unclear whether consumption of low-calorie beverages (LCB) leads to compensatory consumption of sweet foods, thus reducing benefits for weight control or diet quality. This analysis investigated associations between beverage consumption and energy intake and diet quality of adults in the UK National Diet and Nutrition Survey (NDNS) (2008-2011; n = 1590), classified into: (a) non-consumers of soft drinks (NC); (b) LCB consumers; (c) sugar-sweetened beverage (SSB) consumers; or (d) consumers of both beverages (BB), based on 4-day dietary records. Within-person data on beverage consumption on different days assessed the impact on energy intake. LCB consumers and NC consumed less energy and non-milk extrinsic sugars than other groups. Micronutrient intakes and food choices suggested higher dietary quality in NC/LCB consumers compared with SSB/BB consumers. Within individuals on different days, consumption of SSB, milk, juice, and alcohol were all associated with increased energy intake, while LCB and tea, coffee or water were associated with no change; or reduced energy intake when substituted for caloric beverages. Results indicate that NC and LCB consumers tend to have higher quality diets compared with SSB or BB consumers and do not compensate for sugar or energy deficits by consuming more sugary foods.

  3. Low Calorie Beverage Consumption Is Associated with Energy and Nutrient Intakes and Diet Quality in British Adults

    PubMed Central

    Gibson, Sigrid A.; Horgan, Graham W.; Francis, Lucy E.; Gibson, Amelia A.; Stephen, Alison M.

    2016-01-01

    It is unclear whether consumption of low-calorie beverages (LCB) leads to compensatory consumption of sweet foods, thus reducing benefits for weight control or diet quality. This analysis investigated associations between beverage consumption and energy intake and diet quality of adults in the UK National Diet and Nutrition Survey (NDNS) (2008–2011; n = 1590), classified into: (a) non-consumers of soft drinks (NC); (b) LCB consumers; (c) sugar-sweetened beverage (SSB) consumers; or (d) consumers of both beverages (BB), based on 4-day dietary records. Within-person data on beverage consumption on different days assessed the impact on energy intake. LCB consumers and NC consumed less energy and non-milk extrinsic sugars than other groups. Micronutrient intakes and food choices suggested higher dietary quality in NC/LCB consumers compared with SSB/BB consumers. Within individuals on different days, consumption of SSB, milk, juice, and alcohol were all associated with increased energy intake, while LCB and tea, coffee or water were associated with no change; or reduced energy intake when substituted for caloric beverages. Results indicate that NC and LCB consumers tend to have higher quality diets compared with SSB or BB consumers and do not compensate for sugar or energy deficits by consuming more sugary foods. PMID:26729159

  4. THE COMPARISON OF TWO WATERSHEDS USING A WATERSHED NUTRIENT LOADING MODEL

    EPA Science Inventory

    Monitoring data, collected from the Yaquina River, Oregon, from 1999 through 2002 were used as the basis for developing the nutrient flux model as part of a larger agency program for quantifying nutrient processes. The PNWL nitrate loading model indicates that the nitrate load is...

  5. Computational Model for Oxygen Transport and Consumption in Human Vitreous

    PubMed Central

    Filas, Benjamen A.; Shui, Ying-Bo; Beebe, David C.

    2013-01-01

    Purpose. Previous studies that measured liquefaction and oxygen content in human vitreous suggested that exposure of the lens to excess oxygen causes nuclear cataracts. Here, we developed a computational model that reproduced available experimental oxygen distributions for intact and degraded human vitreous in physiologic and environmentally perturbed conditions. After validation, the model was used to estimate how age-related changes in vitreous physiology and structure alter oxygen levels at the lens. Methods. A finite-element model for oxygen transport and consumption in the human vitreous was created. Major inputs included ascorbate-mediated oxygen consumption in the vitreous, consumption at the posterior lens surface, and inflow from the retinal vasculature. Concentration-dependent relations were determined from experimental human data or estimated from animal studies, with the impact of all assumptions explored via parameter studies. Results. The model reproduced experimental data in humans, including oxygen partial pressure (Po2) gradients (≈15 mm Hg) across the anterior-posterior extent of the vitreous body, higher oxygen levels at the pars plana relative to the vitreous core, increases in Po2 near the lens after cataract surgery, and equilibration in the vitreous chamber following vitrectomy. Loss of the antioxidative capacity of ascorbate increases oxygen levels 3-fold at the lens surface. Homogeneous vitreous degeneration (liquefaction), but not partial posterior vitreous detachment, greatly increases oxygen exposure to the lens. Conclusions. Ascorbate content and the structure of the vitreous gel are critical determinants of lens oxygen exposure. Minimally invasive surgery and restoration of vitreous structure warrant further attention as strategies for preventing nuclear cataracts. PMID:24008409

  6. Modelling C allocation in response to nutrient availability

    NASA Astrophysics Data System (ADS)

    Stocker, Benjamin; Prentice, Colin

    2015-04-01

    Carbon (C) allocation in ecosystems is a key variable of the global terrestrial C cycle. While photosynthesis governs the amount of C that enters ecosystems, its subsequent allocation to compartments with different life times determines its over-all residence time and variations in allocation patterns drive changes in ecosystem C balance and its response to environmental change. A better understanding of the controls on allocation is thus key to improving global vegetation models that commonly rely on using fixed partitioning factors. Observational data suggests variations of ecosystem structure and functioning along large-scale gradients of resource availability. Below-ground C allocation, inferred as gross primary production minus above-ground biomass production increases along gradients of decreasing nutrient availability. This is not only due to more root growth, but also due to enhanced production of exudates and stimulation of root symbionts and has been interpreted to reflect optimal plant allocation decisions under a varying soil fertility status. Here, we propose a model that accounts for trade-offs between (i) growth in above-ground and (ii) below-ground plant compartments, (iii) exudation to the rhizosphere and root symbionts and (iv) temporary storage in non-structural pools. By postulating the maximization of long-term growth under a given (seasonal regime) of soil nitrogen (N) availability, we attempt to reproduce observed large-scale gradients. The model is formulated based on a C cost for different N uptake decisions, where the cost is a function of N availability, root mass, and soil temperature (for biological N fixation). On a daily time scale, ecosystem N uptake may be realized by C exudation to the rhizosphere and/or symbiotic fixation of atmospheric N2. On an annual time scale, allocation to roots versus leaves is adjusted to soil inorganic N availability and modeled to yield maximum total growth. Exudation versus temporary storage of C is

  7. Increasing addition of autochthonous to allochthonous carbon in nutrient-rich aquatic systems stimulates carbon consumption but does not alter bacterial community composition

    NASA Astrophysics Data System (ADS)

    Attermeyer, K.; Hornick, T.; Kayler, Z. E.; Bahr, A.; Zwirnmann, E.; Grossart, H.-P.; Premke, K.

    2013-08-01

    Dissolved organic carbon (DOC) concentrations - mainly of terrestrial origin - are increasing worldwide in inland waters. The biodegradability of the DOC varies depending on quantity and chemical quality. Heterotrophic bacteria are the main consumers of DOC and thus determine DOC temporal dynamics and availability for higher trophic levels. It is therefore crucial to understand the processes controlling the bacterial turnover of additional allochthonous and autochthonous DOC in aquatic systems. Our aim was to study bacterial carbon (C) turnover with respect to DOC quantity and chemical quality using both allochthonous and autochthonous DOC sources. We incubated a natural bacterial community with allochthonous C (13C-labeled beech leachate) and increased concentrations and pulses (intermittent occurrence of organic matter input) of autochthonous C (algae lysate). We then determined bacterial carbon consumption, activities, and community composition together with the carbon flow through bacteria using stable C isotopes. The chemical analysis of single sources revealed differences in aromaticity and fractions of low and high molecular weight substances (LMWS and HMWS, respectively) between allochthonous and autochthonous C sources. In parallel to these differences in chemical composition, we observed a higher availability of allochthonous C as evidenced by increased DOC consumption and bacterial growth efficiencies (BGE) when solely allochthonous C was provided. In treatments with mixed sources, rising concentrations of added autochthonous DOC resulted in a further, significant increase in bacterial DOC consumption from 52 to 68% when nutrients were not limiting. This rise was accompanied by a decrease in the humic substances (HS) fraction and an increase in bacterial biomass. Stable C isotope analyses of phospholipid fatty acids (PLFA) and respired dissolved inorganic carbon (DIC) supported a preferential assimilation of autochthonous C and respiration of the

  8. Short-Term Energy Outlook Model Documentation: Other Petroleum Products Consumption Model

    EIA Publications

    2011-01-01

    The other petroleum product consumption module of the Short-Term Energy Outlook (STEO) model is designed to provide U.S. consumption forecasts for 6 petroleum product categories: asphalt and road oil, petrochemical feedstocks, petroleum coke, refinery still gas, unfinished oils, and other miscvellaneous products

  9. Modeling nutrient flows in the food chain of China.

    PubMed

    Ma, L; Ma, W Q; Velthof, G L; Wang, F H; Qin, W; Zhang, F S; Oenema, O

    2010-01-01

    Increasing nitrogen (N) and phosphorus (P) inputs have greatly contributed to the increasing food production in China during the last decades, but have also increased N and P losses to the environment. The pathways and magnitude of these losses are not well quantified. Here, we report on N and P use efficiencies and losses at a national scale in 2005, using the model NUFER (NUtrient flows in Food chains, Environment and Resources use). Total amount of "new" N imported to the food chain was 48.8 Tg in 2005. Only 4.4.Tg reached households as food. Average N use efficiencies in crop production, animal production, and the whole food chain were 26, 11, and 9%, respectively. Most of the imported N was lost to the environment, that is, 23 Tg N to atmosphere, as ammonia (57%), nitrous oxide (2%), dinitrogen (33%), and nitrogen oxides (8%), and 20 Tg to waters. The total P input into the food chain was 7.8 Tg. The average P use efficiencies in crop production, animal production, and the whole food chain were 36, 5, and 7%, respectively. This is the first comprehensive overview of N and P balances, losses, and use efficiencies of the food chain in China. It shows that the N and P costs of food are high (for N 11 kg kg(-1), for P 13 kg kg(-1)). Key measures for lowering the N and P costs of food production are (i) increasing crop and animal production, (ii) balanced fertilization, and (iii) improved manure management.

  10. Nutrient supply and mercury dynamics in marine ecosystems: A conceptual model

    PubMed Central

    Chen, Celia Y.; Hammerschmidt, Chad R.; Mason, Robert P.; Gilmour, Cynthia C.; Sunderland, Elsie M.; Greenfield, Ben K.; Buckman, Kate L.; Lamborg, Carl H.

    2013-01-01

    There is increasing interest and concern over the impacts of mercury (Hg) inputs to marine ecosystems. One of the challenges in assessing these effects is that the cycling and trophic transfer of Hg are strongly linked to other contaminants and disturbances. In addition to Hg, a major problem facing coastal waters is the impacts of elevated nutrient, particularly nitrogen (N), inputs. Increases in nutrient loading alter coastal ecosystems in ways that should change the transport, transformations and fate of Hg, including increases in fixation of organic carbon and deposition to sediments, decreases in the redox status of sediments and changes in fish habitat. In this paper we present a conceptual model which suggests that increases in loading of reactive N to marine ecosystems might alter Hg dynamics, decreasing bioavailabilty and trophic transfer. This conceptual model is most applicable to coastal waters, but may also be relevant to the pelagic ocean. We present information from case studies that both support and challenge this conceptual model, including marine observations across a nutrient gradient; results of a nutrient-trophic transfer Hg model for pelagic and coastal ecosystems; observations of Hg species, and nutrients from coastal sediments in the northeastern U.S.; and an analysis of fish Hg concentrations in estuaries under different nutrient loadings. These case studies suggest that changes in nutrient loading can impact Hg dynamics in coastal and open ocean ecosystems. Unfortunately none of the case studies is comprehensive; each only addresses a portion of the conceptual model and has limitations. Nevertheless, our conceptual model has important management implications. Many estuaries near developed areas are impaired due to elevated nutrient inputs. Widespread efforts are underway to control N loading and restore coastal ecosystem function. An unintended consequence of nutrient control measures could be to exacerbate problems associated with Hg

  11. A Multi-Agency Nutrient Dataset Used to Estimate Loads, Improve Monitoring Design, and Calibrate Regional Nutrient SPARROW Models

    USGS Publications Warehouse

    Saad, D.A.; Schwarz, G.E.; Robertson, D.M.; Booth, N.L.

    2011-01-01

    Stream-loading information was compiled from federal, state, and local agencies, and selected universities as part of an effort to develop regional SPAtially Referenced Regressions On Watershed attributes (SPARROW) models to help describe the distribution, sources, and transport of nutrients in streams throughout much of the United States. After screening, 2,739 sites, sampled by 73 agencies, were identified as having suitable data for calculating long-term mean annual nutrient loads required for SPARROW model calibration. These sites had a wide range in nutrient concentrations, loads, and yields, and environmental characteristics in their basins. An analysis of the accuracy in load estimates relative to site attributes indicated that accuracy in loads improve with increases in the number of observations, the proportion of uncensored data, and the variability in flow on observation days, whereas accuracy declines with increases in the root mean square error of the water-quality model, the flow-bias ratio, the number of days between samples, the variability in daily streamflow for the prediction period, and if the load estimate has been detrended. Based on compiled data, all areas of the country had recent declines in the number of sites with sufficient water-quality data to compute accurate annual loads and support regional modeling analyses. These declines were caused by decreases in the number of sites being sampled and data not being entered in readily accessible databases. ?? 2011 American Water Resources Association. This article is a U.S. Government work and is in the public domain in the USA.

  12. Tree Nut Consumption Is Associated with Better Nutrient Adequacy and Diet Quality in Adults: National Health and Nutrition Examination Survey 2005–2010

    PubMed Central

    O’Neil, Carol E.; Nicklas, Theresa A.; Fulgoni, Victor L.

    2015-01-01

    Nutrient adequacy of tree nut consumers has not been examined. The National Health and Nutrition Examination Survey 2005–2010 data were used to assess the association of tree nut consumption by adults 19+ years (n = 14,386) with nutrient adequacy and diet quality. Covariate adjusted usual intake was determined using two 24-h dietary recalls and the National Cancer Institute method. Percentages of the consumption groups below the Estimated Average Requirement (EAR) or above the Adequate Intake (AI) were determined. Diet quality was determined using the Healthy Eating Index-2005 (HEI) score. Usual intake data showed consumers of tree nuts had a lower percentage (p < 0.0001) of the population below the EAR for vitamins A (22 ± 5 vs. 49 ± 1), E (38 ± 4 vs. 94 ± 0.4) and C (17 ± 4 vs. 44 ± 1); folate (2.5 ± 1.5 vs. 12 ± 0.6); calcium (26 ± 3 vs. 44 ± 1); iron (3 ± 0.6 vs. 9 ± 0.4); magnesium (8 ± 1 vs. 60 ± 1); and zinc (1.5 ± 1 vs. 13 ± 1). Tree nut consumers had a higher percentage (p < 0.0001) of the population above the AI for fiber (33 ± 3 vs. 4 ± 0.3) and potassium (12 ± 3 mg vs. 2 ± 0.2 mg). HEI-2005 total score was higher (p < 0.0001) in tree nut consumers (61 ± 0.7 vs. 52 ± 0.3) than non-consumers. Health professionals should encourage the use of tree nuts as part of a dietary approach to healthy eating. PMID:25599274

  13. Dissolved Nutrient Retention Dynamics in River Networks: A Modeling Investigation of Transient Flow and Scale Effects

    SciTech Connect

    Ye, Sheng; Covino, Timothy P.; Sivapalan, Murugesu; Basu, Nandita; Li, Hongyi; Wang, Shaowen

    2012-06-30

    In this paper, we use a dynamic network flow model, coupled with a transient storage zone biogeochemical model, to simulate dissolved nutrient removal processes at the channel network scale. We have explored several scenarios in respect of the combination of rainfall variability, and the biological and geomorphic characteristics of the catchment, to understand the dominant controls on removal and delivery of dissolved nutrients (e.g., nitrate). These model-based theoretical analyses suggested that while nutrient removal efficiency is lower during flood events compared to during baseflow periods, flood events contribute significantly to bulk nutrient removal, whereas bulk removal during baseflow periods is less. This is due to the fact that nutrient supply is larger during flood events; this trend is even stronger in large rivers. However, the efficiency of removal during both periods decreases in larger rivers, however, due to (i) increasing flow velocities and thus decreasing residence time, and (ii) increasing flow depth, and thus decreasing nutrient uptake rates. Besides nutrient removal processes can be divided into two parts: in the main channel and in the hyporheic transient storage zone. When assessing their relative contributions the size of the transient storage zone is a dominant control, followed by uptake rates in the main channel and in the transient storage zone. Increasing size of the transient storage zone with downstream distance affects the relative contributions to nutrient removal of the water column and the transient storage zone, which also impacts the way nutrient removal rates scale with increasing size of rivers. Intra-annual hydrologic variability has a significant impact on removal rates at all scales: the more variable the streamflow is, compared to mean discharge, the less nutrient is removed in the channel network. A scale-independent first order uptake coefficient, ke, estimated from model simulations, is highly dependent on the

  14. Seasonal variability of nutrients in the Yangtze Estuary and adjacent waters: A model study

    NASA Astrophysics Data System (ADS)

    Zong, H.; Ding, P.

    2014-12-01

    Eutrophication has been one of the major threats to the coastal ecosystem. Several factors are believed to be associated with eutrophication, which including the high nutrient loads delivered into the estuary from river. Yangtze river is the longest river in China. It brings huge amount of nutrients into the Yangtze Estuary (YE) and adjacent East China Sea (ECS) and contributes significantly to the eutrophication in estuary and the adjacent waters. The eutrophication in this region exhibits strong seasonal variability, with the worst situation occurring in summer. This seasonal variability might be coupled with the timing of riverine nutrient inputs and physical processes (wind and along-shore current). To study seasonal variability of nutrients (N/P) in YE, a 3D physical-biological coupled model was applied to the YE and its adjacent waters. The physical model was the Regional Ocean Model System (ROMS) and the biological model was a nitrogen, phytoplankton, zooplankton, and detritus (NPZD) model. The simulated nutrients distribution pattern was consistent with observation. With the numerical experiments, we examined nutrients transport under different river loads and different physical processes. Seasonal variability of nutrients budget in YE and alone-shelf transport flux were also studied.

  15. Modeling nutrient release in the Tai Lake basin of China: source identification and policy implications.

    PubMed

    Liu, Beibei; Liu, Heng; Zhang, Bing; Bi, Jun

    2013-03-01

    Because nutrient enrichment has become increasingly severe in the Tai Lake Basin of China, identifying sources and loads is crucial for watershed nutrient management. This paper develops an empirical framework to estimate nutrient release from five major sectors, which requires fewer input parameters and produces acceptable accuracy. Sectors included are industrial manufacturing, livestock breeding (industrial and family scale), crop agriculture, household consumption (urban and rural), and atmospheric deposition. Results show that in the basin (only the five sectors above), total nutrient loads of nitrogen (N) and phosphorus (P) into aquatic systems in 2008 were 33043.2 tons N a(-1) and 5254.4 tons P a(-1), and annual area-specific nutrient loads were 1.94 tons N km(-2) and 0.31 tons P km(-2). Household consumption was the major sector having the greatest impact (46 % in N load, 47 % in P load), whereas atmospheric deposition (18 %) and crop agriculture (15 %) sectors represented other significant proportions of N load. The load estimates also indicate that 32 % of total P came from the livestock breeding sector, making it the second largest phosphorus contributor. According to the nutrient pollution sectors, six best management practices are selected for cost-effectiveness analysis, and feasible options are recommended. Overall, biogas digester construction on industrial-scale farms is proven the most cost-effective, whereas the building of rural decentralized facilities is the best alternative under extreme financial constraint. However, the reduction potential, average monetary cost, and other factors such as risk tolerance of policy makers should all be considered in the actual decision-making process.

  16. Modeling Nutrient Release in the Tai Lake Basin of China: Source Identification and Policy Implications

    NASA Astrophysics Data System (ADS)

    Liu, Beibei; Liu, Heng; Zhang, Bing; Bi, Jun

    2013-03-01

    Because nutrient enrichment has become increasingly severe in the Tai Lake Basin of China, identifying sources and loads is crucial for watershed nutrient management. This paper develops an empirical framework to estimate nutrient release from five major sectors, which requires fewer input parameters and produces acceptable accuracy. Sectors included are industrial manufacturing, livestock breeding (industrial and family scale), crop agriculture, household consumption (urban and rural), and atmospheric deposition. Results show that in the basin (only the five sectors above), total nutrient loads of nitrogen (N) and phosphorus (P) into aquatic systems in 2008 were 33043.2 tons N a-1 and 5254.4 tons P a-1, and annual area-specific nutrient loads were 1.94 tons N km-2 and 0.31 tons P km-2. Household consumption was the major sector having the greatest impact (46 % in N load, 47 % in P load), whereas atmospheric deposition (18 %) and crop agriculture (15 %) sectors represented other significant proportions of N load. The load estimates also indicate that 32 % of total P came from the livestock breeding sector, making it the second largest phosphorus contributor. According to the nutrient pollution sectors, six best management practices are selected for cost-effectiveness analysis, and feasible options are recommended. Overall, biogas digester construction on industrial-scale farms is proven the most cost-effective, whereas the building of rural decentralized facilities is the best alternative under extreme financial constraint. However, the reduction potential, average monetary cost, and other factors such as risk tolerance of policy makers should all be considered in the actual decision-making process.

  17. The Federal Highway Administration Gasohol Consumption Estimation Model

    SciTech Connect

    Hwang, HL

    2003-08-28

    The Federal Highway Administration (FHWA) is responsible for estimating the portion of Federal highway funds attributable to each State. The process involves use of State-reported data (gallons) and a set of estimation models when accurate State data is unavailable. To ensure that the distribution of funds is equitable, FHWA periodically reviews the estimation models. Estimation of the use of gasohol is difficult because of State differences in the definition of gasohol, inability of many States to separate and report gasohol usage from other fuel types, changes in fuel composition in nonattainment areas to address concerns over the use of certain fuel additives, and the lack of a valid State-level surrogate data set for gasohol use. Under the sponsorship of FHWA, Oak Ridge National Laboratory (ORNL) reviewed the regression-based gasohol estimation model that has been in use for several years. Based on an analytical assessment of that model and an extensive review of potential data sets, ORNL developed an improved rule-based model. The new model uses data from Internal Revenue Service, Energy Information Administration, Environmental Protection Agency, Department of Energy, ORNL, and FHWA sources. The model basically consists of three parts: (1) development of a controlled total of national gasohol usage, (2) determination of reliable State gasohol consumption data, and (3) estimation of gasohol usage for all other States. The new model will be employed for the 2004 attribution process. FHWA is currently soliciting comments and inputs from interested parties. Relevant data, as identified, will be pursued and refinements will be made by the research team if warranted.

  18. Early sugar-sweetened beverage consumption frequency is associated with poor quality of later food and nutrient intake patterns among Japanese young children: the Osaka Maternal and Child Health Study.

    PubMed

    Okubo, Hitomi; Miyake, Yoshihiro; Sasaki, Satoshi; Tanaka, Keiko; Hirota, Yoshio

    2016-06-01

    Evidence from Western countries shows that higher consumption of sugar-sweetened beverages (SSBs) is associated with lower quality of young children's diets, but little is known about these relations in non-Western countries with relatively low consumption levels of SSBs. We hypothesized that SSB consumption in infancy would be associated with poor quality of later food and nutrient intake patterns among Japanese young children. The study subjects were 493 Japanese mother-child pairs from a prospective birth cohort study. Dietary data on children were collected from the mothers using self-administered questionnaires when the children were aged 16-24 months and 41-49 months. Multiple linear regression analyses were used to examine the relationships between SSB consumption frequency in infancy and later intake of foods and nutrients. At 16-24 months of age, more than half of the children (56.4%) consumed SSBs less than once a week, whereas 11.6% consumed SSBs at least once daily. More frequent consumption of SSBs in infancy was associated with higher intake of confectionaries and SSBs and lower intake of fruits and vegetables at 41-49 months of age. These associations were still evident after adjustment for maternal SSB consumption and socioeconomic status. At the nutrient level, SSB consumption frequency was positively associated with energy intake and inversely associated with intake of many nutrients, such as protein, dietary fiber, and most of the micronutrients examined. In conclusion, higher consumption frequency of SSBs at an early age is associated with poor quality of overall dietary intake among young Japanese children 1.5-2.5 years later.

  19. Uniform modeling of bacterial colony patterns with varying nutrient and substrate

    NASA Astrophysics Data System (ADS)

    Schwarcz, Deborah; Levine, Herbert; Ben-Jacob, Eshel; Ariel, Gil

    2016-04-01

    Bacteria develop complex patterns depending on growth condition. For example, Bacillus subtilis exhibit five different patterns depending on substrate hardness and nutrient concentration. We present a unified integro-differential model that reproduces the entire experimentally observed morphology diagram at varying nutrient concentrations and substrate hardness. The model allows a comprehensive and quantitative comparison between experimental and numerical variables and parameters, such as colony growth rate, nutrient concentration and diffusion constants. As a result, the role of the different physical mechanisms underlying and regulating the growth of the colony can be evaluated.

  20. Boosted Regression Tree Models to Explain Watershed Nutrient Concentrations and Biological Condition

    EPA Science Inventory

    Boosted regression tree (BRT) models were developed to quantify the nonlinear relationships between landscape variables and nutrient concentrations in a mesoscale mixed land cover watershed during base-flow conditions. Factors that affect instream biological components, based on ...

  1. Materials flow modeling of nutrient recycling in biodiesel production from microalgae.

    PubMed

    Rösch, Christine; Skarka, Johannes; Wegerer, Nadja

    2012-03-01

    Biodiesel production based on microalgae as feedstock is associated with a high demand of nutrients, respectively nitrogen and phosphorus. The production of 1l biodiesel requires between 0.23 and 1.55 kg nitrogen and 29-145 g of phosphorus depending of the cultivation conditions for microalgae. The supply of nutrients can be expected to severely limit the extent to which the production of biofuels from microalgae can be sustainably expanded. The nutrient demand can be reduced if the nutrients in the residual algae biomass after oil extraction are reused for algae cultivation. This modeling work illustrates that for the investigated process chains and scenarios the nutrient recycling rates are in the range from 30% to 90% for nitrogen and from 48% to 93% for phosphorus. The highest recycling values can be achieved by hydrothermal gasification of the oil-free residues.

  2. One hundred percent orange juice consumption is associated with better diet quality, improved nutrient adequacy, and no increased risk for overweight/obesity in children.

    PubMed

    O'Neil, Carol E; Nicklas, Theresa A; Rampersaud, Gail C; Fulgoni, Victor L

    2011-09-01

    The purpose of this study was to examine the association of 100% orange juice (OJ) consumption by children 2 to 18 years of age (n = 7250) participating in the 2003 to 2006 National Health and Nutrition Examination Survey with intakes of select nutrients, MyPyramid food groups, diet quality-measured by the Healthy Eating Index-2005, weight status, and associated risk factors. The National Cancer Institute method was used to estimate the usual intake of 100% OJ consumption, selected nutrients, and MyPyramid food groups. Percentages of the population below the Estimated Average Requirement were determined. Covariate adjusted logistic regression was used to determine if consumers had a lower odds ratio of being overweight or obese. Usual per capita intake of 100% OJ was 1.7 oz/d. Among consumers, the usual intake of 100% OJ for children (n = 2183; 26.2% of population) was 10.2 oz/d. Consumers had higher (P < .05) energy intakes than nonconsumers (9148 ± 113 vs 8625 ± 473 kJ). However, there were no differences in weight or body mass index in consumers and nonconsumers, and there was no significant difference in the risk of being overweight or obese between consumers and nonconsumers (odds ratio, 0.86; 95% confidence interval, 0.70-1.05). Compared with nonconsumers, consumers had a higher (P < .01) percentage (% ± SE) of the population meeting the Estimated Average Requirement for vitamin A (19.6 ± 2.0 vs 30.2 ± 1.4), vitamin C (0.0 ± 0.0 vs 29.2 ± 1.2), folate (1.3 ± 0.3 vs 5.1 ± 0.6), and magnesium (25.5 ± 2.0 vs 39.0 ± 11). The Healthy Eating Index-2005 was significantly (P < .01) higher in consumers (52.4 ± 0.4 vs 48.5 ± 0.3). Consumers also had higher intakes of total fruit, fruit juice, and whole fruit. Moderate consumption of 100% OJ should be encouraged in children as a component of a healthy diet.

  3. Water quality in Atlantic rainforest mountain rivers (South America): quality indices assessment, nutrients distribution, and consumption effect.

    PubMed

    Avigliano, Esteban; Schenone, Nahuel

    2016-08-01

    The South American Atlantic rainforest is a one-of-a-kind ecosystem considered as a biodiversity hotspot; however, in the last decades, it was intensively reduced to 7 % of its original surface. Water resources and water quality are one of the main goods and services this system provides to people. For monitoring and management recommendations, the present study is focused on (1) determining the nutrient content (nitrate, nitrite, ammonium, and phosphate) and physiochemical parameters (temperature, pH, electrical conductivity, turbidity, dissolved oxygen, and total dissolved solids) in surface water from 24 rainforest mountain rivers in Argentina, (2) analyzing the human health risk, (3) assessing the environmental distribution of the determined pollutants, and (4) analyzing water quality indices (WQIobj and WQImin). In addition, for total coliform bacteria, a dataset was used from literature. Turbidity, total dissolved solids, and nitrite (NO2 (-)) exceeded the guideline value recommended by national or international guidelines in several sampling stations. The spatial distribution pattern was analyzed by Principal Component Analysis and Factor Analysis (PCA/FA) showing well-defined groups of rivers. Both WQI showed good adjustment (R (2) = 0.89) and rated water quality as good or excellent in all sampling sites (WQI > 71). Therefore, this study suggests the use of the WQImin for monitoring water quality in the region and also the water treatment of coliform, total dissolved solids, and turbidity.

  4. Modeling energy expenditure and oxygen consumption in human exposure models: accounting for fatigue and EPOC.

    PubMed

    Isaacs, Kristin; Glen, Graham; Mccurdy, Thomas; Smith, Luther

    2008-05-01

    Human exposure and dose models often require a quantification of oxygen consumption for a simulated individual. Oxygen consumption is dependent on the modeled individual's physical activity level as described in an activity diary. Activity level is quantified via standardized values of metabolic equivalents of work (METS) for the activity being performed and converted into activity-specific oxygen consumption estimates. However, oxygen consumption remains elevated after a moderate- or high-intensity activity is completed. This effect, which is termed excess post-exercise oxygen consumption (EPOC), requires upward adjustment of the METS estimates that follow high-energy expenditure events, to model subsequent increased ventilation and intake dose rates. In addition, since an individual's capacity for work decreases during extended activity, methods are also required to adjust downward those METS estimates that exceed physiologically realistic limits over time. A unified method for simultaneously performing these adjustments is developed. The method simulates a cumulative oxygen deficit for each individual and uses it to impose appropriate time-dependent reductions in the METS time series and additions for EPOC. The relationships between the oxygen deficit and METS limits are nonlinear and are derived from published data on work capacity and oxygen consumption. These modifications result in improved modeling of ventilation patterns, and should improve intake dose estimates associated with exposure to airborne environmental contaminants.

  5. Modeling brine and nutrient dynamics in Antarctic sea ice: the case of dissolved silica

    NASA Astrophysics Data System (ADS)

    Vancoppenolle, M.; Goosse, H.; de Montety, A.; Fichefet, T.; Tremblay, B.; Tison, J.

    2009-12-01

    Sea ice ecosystems are characterized by micro-algae living in brine inclusions. The growth rate of ice algae depends on light and nutrient supply. Here, the interactions between nutrients and brine dynamics under the influence of algae are investigated using a one-dimensional model. The model includes snow and ice thermodynamics with brine physics and an idealized sea ice biological component, characterized by one nutrient, namely dissolved silica (DSi). In the model, DSi follows brine motion and is consumed by ice algae. Depending on physical ice characteristics, the brine flow is either advective, diffusive or turbulent. The vertical profiles of ice salinity and DSi concentration are solutions of advection-diffusion equations. The model is configured to simulate the typical thermodynamic regimes of first-year Antarctic pack ice. The simulated vertical profiles of salinity and DSi qualitatively reproduce observations. Analysis of results highlights the role of convection in the lowermost 5-10 cm of ice. Convection mixes saline, nutrient-poor brine with comparatively fresh, nutrient-rich seawater. This implies a rejection of salt to the ocean and a flux of DSi to the ice. In presence of growing algae, the simulated ocean-to-ice DSi flux increases by 0-115% compared to an abiotic situation. In turn, primary production and brine convection act in synergy to form a nutrient pump. The other important processes are the flooding of the surface by seawater and the percolation of meltwater. The former refills nutrients near the ice surface in spring. The latter, if present, tends to expell nutrients from the ice in summer. Sketch of salt (left) and nutrient (right) exchanges at the ice-ocean interface proposed in this paper.

  6. Hybrid mice as genetic models of high alcohol consumption.

    PubMed

    Blednov, Y A; Ozburn, A R; Walker, D; Ahmed, S; Belknap, J K; Harris, R A

    2010-01-01

    We showed that F1 hybrid genotypes may provide a broader variety of ethanol drinking phenotypes than the inbred progenitor strains used to create the hybrids (Blednov et al. in Alcohol Clin Exp Res 29:1949-1958, 2005). To extend this work, we characterized alcohol consumption as well as intake of other tastants (saccharin, quinine and sodium chloride) in five inbred strains of mice (FVB, SJL, B6, BUB, NZB) and in their reciprocal F1 hybrids with B6 (FVBxB6; B6xFVB; NZBxB6; B6xNZB; BUBxB6; B6xBUB; SJLxB6; B6xSJL). We also compared ethanol intake in these mice for several concentrations before and after two periods of abstinence. F1 hybrid mice derived from the crosses of B6 and FVB and also B6 and SJL drank higher levels of ethanol than their progenitor strains, demonstrating overdominance for two-bottle choice drinking test. The B6 and NZB hybrid showed additivity in two-bottle choice drinking, whereas the hybrid of B6 and BUB demonstrated full or complete dominance. Genealogical origin, as well as non-alcohol taste preferences (sodium chloride), predicted ethanol consumption. Mice derived from the crosses of B6 and FVB showed high sustained alcohol preference and the B6 and NZB hybrids showed reduced alcohol preference after periods of abstinence. These new genetic models offer some advantages over inbred strains because they provide high, sustained, alcohol intake, and should allow mapping of loci important for the genetic architecture of these traits.

  7. Linking nutrient loading and oxygen in the coastal ocean: A new global scale model

    NASA Astrophysics Data System (ADS)

    Reed, Daniel C.; Harrison, John A.

    2016-03-01

    Recent decades have witnessed an exponential spread of low-oxygen regions in the coastal ocean due at least in-part to enhanced terrestrial nutrient inputs. As oxygen deprivation is a major stressor on marine ecosystems, there is a great need to quantitatively link shifts in nutrient loading with changes in oxygen concentrations. To this end, we have developed and here describe, evaluate, and apply the Coastal Ocean Oxygen Linked to Benthic Exchange And Nutrient Supply (COOLBEANS) model, a first-of-its-kind, spatially explicit (with 152 coastal segments) model, global model of coastal oxygen and nutrient dynamics. In COOLBEANS, benthic oxygen demand (BOD) is calculated using empirical models for aerobic respiration, iron reduction, and sulfate reduction, while oxygen supply is represented by a simple parameterization of exchange between surface and bottom waters. A nutrient cycling component translates shifts in riverine nutrient inputs into changes in organic matter delivery to sediments and, ultimately, oxygen uptake. Modeled BOD reproduces observations reasonably well (Nash-Sutcliffe efficiency = 0.71), and estimates of exchange between surface and bottom waters correlate with stratification. The model examines sensitivity of bottom water oxygen to changes in nutrient inputs and vertical exchange between surface and bottom waters, highlighting the importance of this vertical exchange in defining the susceptibility of a system to oxygen depletion. These sensitivities along with estimated maximum hypoxic areas that are supported by present day nutrient loads are consistent with existing hypoxic regions. Sensitivities are put into context by applying historic changes in nitrogen loading observed in the Gulf of Mexico to the global coastal ocean, demonstrating that such loads would drive many systems anoxic or even sulfidic.

  8. Evaluation models for soil nutrient based on support vector machine and artificial neural networks.

    PubMed

    Li, Hao; Leng, Weijia; Zhou, Yibing; Chen, Fudi; Xiu, Zhilong; Yang, Dazuo

    2014-01-01

    Soil nutrient is an important aspect that contributes to the soil fertility and environmental effects. Traditional evaluation approaches of soil nutrient are quite hard to operate, making great difficulties in practical applications. In this paper, we present a series of comprehensive evaluation models for soil nutrient by using support vector machine (SVM), multiple linear regression (MLR), and artificial neural networks (ANNs), respectively. We took the content of organic matter, total nitrogen, alkali-hydrolysable nitrogen, rapidly available phosphorus, and rapidly available potassium as independent variables, while the evaluation level of soil nutrient content was taken as dependent variable. Results show that the average prediction accuracies of SVM models are 77.87% and 83.00%, respectively, while the general regression neural network (GRNN) model's average prediction accuracy is 92.86%, indicating that SVM and GRNN models can be used effectively to assess the levels of soil nutrient with suitable dependent variables. In practical applications, both SVM and GRNN models can be used for determining the levels of soil nutrient.

  9. Stressor-Response Models Relating Nutrient Enrichment to Algal Communities in Pacific Northwest Streams and Rivers

    NASA Astrophysics Data System (ADS)

    Sobota, D. J.; Hubler, S.; Paul, M. J.; Labiosa, R.

    2015-12-01

    Excessive algal growth in streams and rivers from nutrient enrichment can cause costly human health and environmental problems. As part of the US Environmental Protection Agency's Nutrient Scientific Technical Exchange Partnership and Support (N-STEPS) program, we have been developing stressor-response (S-R) models relating nutrients to attached algal (periphyton) communities to help prioritize monitoring for water quality impairments in Oregon (Pacific Northwest, USA) streams and rivers. Existing data from the state and neighboring states were compiled and standardized from the Oregon Department of Environmental Quality, US Environmental Protection Agency, and the US Geological Survey. To develop S-R models, algal community and biomass metrics were compared with nitrogen (N) and phosphorus (P) concentration data, including total, dissolved, and inorganic forms of these nutrients. In total, 928 paired algal-nutrient samples were compiled from the 8 Level-III Ecoregions occurring in Oregon. Relationships between algal biomass metrics and nutrient concentrations were weak, with only ash-free dry mass and standing stock of chlorophyll a showing slight positive relationships across gradients of total N and soluble reactive P concentrations, respectively. In contrast, metrics describing algal community composition, including percent diatoms and abundance of nutrient-sensitive species, showed very strong nonlinear relationships with total N or P concentrations. This suggests that data describing algal community composition can help identify specific nutrient stressors across environmentally-diverse streams and rivers in the Pacific Northwest. Future analyses will examine if nutrient-algal S-R models vary across different hydrological, physiographical, and ecological settings in the region.

  10. Modelling phytoplankton succession and nutrient transfer along the Scheldt estuary (Belgium, The Netherlands)

    NASA Astrophysics Data System (ADS)

    Gypens, N.; Delhez, E.; Vanhoutte-Brunier, A.; Burton, S.; Thieu, V.; Passy, P.; Liu, Y.; Callens, J.; Rousseau, V.; Lancelot, C.

    2013-12-01

    The freshwater (RIVE) and the marine (MIRO) biogeochemical models were coupled to a 1D hydro-sedimentary model to describe contemporary phytoplankton succession and nutrient transfers in the macrotidal Scheldt estuary (BE/NL) affected by anthropogenic nutrient loads. The 1D-RIVE-MIRO model simulations are performed between Ghent and Vlissingen and the longitudinal estuarine profiles are validated by visual and statistical comparison with physico-chemical and phytoplankton observations available for the year 2006. Results show the occurrence of two distinct spatial phytoplankton blooms in the upper and lower estuary, suggesting that neither the freshwater nor the marine phytoplankton gets over the maximum turbidity zone (MTZ) at the saline transition. Sensitivity tests performed to understand how changing conditions (salinity, turbidity and nutrients) along the estuary are controlling this bimodal spatial phytoplankton distribution identify salinity and light availability as the key drivers while the grazing pressure and nutrient limitation play a negligible role. Additional tests with varying salinity-resistant (euryhaline) species in the freshwater assemblage conclude that the presence (or absence) of euryhalines determines the magnitude and the spreading of freshwater and marine phytoplankton blooms in the estuary. Annual nutrient budgets estimated from 1D-RIVE-MIRO simulations show that biological activities have a negligible impact on nutrient export but modify the speciation of nutrients exported to the coastal zone towards inorganic forms, thus directly available to phytoplankton. The implementation of nutrient reduction options (upgrading of waste water treatment plants, conversion to organic farming) on the Scheldt watershed influences the whole estuary and affects both the magnitude and the speciation of nutrients exported to the coastal zone with expected impact on coastal phytoplankton dynamic.

  11. A new theory of plant-microbe nutrient competition resolves inconsistencies between observations and model predictions.

    PubMed

    Zhu, Qing; Riley, William J; Tang, Jinyun

    2017-04-01

    Terrestrial plants assimilate anthropogenic CO2 through photosynthesis and synthesizing new tissues. However, sustaining these processes requires plants to compete with microbes for soil nutrients, which therefore calls for an appropriate understanding and modeling of nutrient competition mechanisms in Earth System Models (ESMs). Here, we survey existing plant-microbe competition theories and their implementations in ESMs. We found no consensus regarding the representation of nutrient competition and that observational and theoretical support for current implementations are weak. To reconcile this situation, we applied the Equilibrium Chemistry Approximation (ECA) theory to plant-microbe nitrogen competition in a detailed grassland (15) N tracer study and found that competition theories in current ESMs fail to capture observed patterns and the ECA prediction simplifies the complex nature of nutrient competition and quantitatively matches the (15) N observations. Since plant carbon dynamics are strongly modulated by soil nutrient acquisition, we conclude that (1) predicted nutrient limitation effects on terrestrial carbon accumulation by existing ESMs may be biased and (2) our ECA-based approach may improve predictions by mechanistically representing plant-microbe nutrient competition.

  12. Application of Hierarchy Theory to Cross-Scale Hydrologic Modeling of Nutrient Loads

    EPA Science Inventory

    We describe a model called Regional Hydrologic Modeling for Environmental Evaluation 16 (RHyME2) for quantifying annual nutrient loads in stream networks and watersheds. RHyME2 is 17 a cross-scale statistical and process-based water-quality model. The model ...

  13. Changes of Dietary Pattern, Food Choice, Food Consumption, Nutrient Intake and Body Mass Index of Korean American College Students with Different Length of Residence in the Los Angeles Areas

    ERIC Educational Resources Information Center

    Kim, Nam; Tam, Chick F.; Poon, George; Lew, Polong; Kim, Samuel Saychang; Kim, James C.; Kim, Rachel Byungsook

    2010-01-01

    This study was to investigate how dietary pattern, food choice, food consumption, nutrient intake and body mass index (BMI) vary with length of residence for Korean American college students. The respondents were 60 Korean American residents living in the Los Angeles Area. They were divided into two groups based on the length of stay in the U.S.:…

  14. An empirical model for estimating annual consumption by freshwater fish populations

    USGS Publications Warehouse

    Liao, H.; Pierce, C.L.; Larscheid, J.G.

    2005-01-01

    Population consumption is an important process linking predator populations to their prey resources. Simple tools are needed to enable fisheries managers to estimate population consumption. We assembled 74 individual estimates of annual consumption by freshwater fish populations and their mean annual population size, 41 of which also included estimates of mean annual biomass. The data set included 14 freshwater fish species from 10 different bodies of water. From this data set we developed two simple linear regression models predicting annual population consumption. Log-transformed population size explained 94% of the variation in log-transformed annual population consumption. Log-transformed biomass explained 98% of the variation in log-transformed annual population consumption. We quantified the accuracy of our regressions and three alternative consumption models as the mean percent difference from observed (bioenergetics-derived) estimates in a test data set. Predictions from our population-size regression matched observed consumption estimates poorly (mean percent difference = 222%). Predictions from our biomass regression matched observed consumption reasonably well (mean percent difference = 24%). The biomass regression was superior to an alternative model, similar in complexity, and comparable to two alternative models that were more complex and difficult to apply. Our biomass regression model, log10(consumption) = 0.5442 + 0.9962??log10(biomass), will be a useful tool for fishery managers, enabling them to make reasonably accurate annual population consumption predictions from mean annual biomass estimates. ?? Copyright by the American Fisheries Society 2005.

  15. Short-Term Energy Outlook Model Documentation: Electricity Generation and Fuel Consumption Models

    EIA Publications

    2014-01-01

    The electricity generation and fuel consumption models of the Short-Term Energy Outlook (STEO) model provide forecasts of electricity generation from various types of energy sources and forecasts of the quantities of fossil fuels consumed for power generation. The structure of the electricity industry and the behavior of power generators varies between different areas of the United States. In order to capture these differences, the STEO electricity supply and fuel consumption models are designed to provide forecasts for the four primary Census regions.

  16. A Geographic Information System approach to modeling nutrient and sediment transport

    SciTech Connect

    Levine, D.A.; Hunsaker, C.T.; Beauchamp, J.J.; Timmins, S.P.

    1993-02-01

    The objective of this study was to develop a water quality model to quantify nonpoint-source (NPS) pollution that uses a geographic information system (GIS) to link statistical modeling of nutrient and sediment delivery with the spatial arrangement of the parameters that drive the model. The model predicts annual nutrient and sediment loading and was developed, calibrated, and tested on 12 watersheds within the Lake Ray Roberts drainage basin in north Texas. Three physiographic regions are represented by these watersheds, and model success, as measured by the accuracy of load estimates, was compared within and across these regions.

  17. A mathematical model of water and nutrient transport in xylem vessels of a wheat plant.

    PubMed

    Payvandi, S; Daly, K R; Jones, D L; Talboys, P; Zygalakis, K C; Roose, T

    2014-03-01

    At a time of increasing global demand for food, dwindling land and resources, and escalating pressures from climate change, the farming industry is undergoing financial strain, with a need to improve efficiency and crop yields. In order to improve efficiencies in farming, and in fertiliser usage in particular, understanding must be gained of the fertiliser-to-crop-yield pathway. We model one aspect of this pathway; the transport of nutrients within the vascular tissues of a crop plant from roots to leaves. We present a mathematical model of the transport of nutrients within the xylem vessels in response to the evapotranspiration of water. We determine seven different classes of flow, including positive unidirectional flow, which is optimal for nutrient transport from the roots to the leaves; and root multidirectional flow, which is similar to the hydraulic lift process observed in plants. We also investigate the effect of diffusion on nutrient transport and find that diffusion can be significant at the vessel termini especially if there is an axial efflux of nutrient, and at night when transpiration is minimal. Models such as these can then be coupled to whole-plant models to be used for optimisation of nutrient delivery scenarios.

  18. Nutrient Intakes: Individuals in 48 States, Year 1977-78. Nationwide Food Consumption Survey 1977-78. Report No. I-2.

    ERIC Educational Resources Information Center

    Department of Agriculture, Washington, DC.

    This report presents 3-day nutrient intake data for about 36,100 individuals in 48 states. Data are provided in 157 tables, and results are summarized in the text. The contribution of 14 food groups to intakes of food energy and 14 nutrients are presented. Also included are the average intakes of food energy and nutrients, the nutrient densities…

  19. Relationship of Consumption of Meals Including Grain, Fish and Meat, and Vegetable Dishes to the Prevention of Nutrient Deficiency: The INTERMAP Toyama Study.

    PubMed

    Koyama, Tatsuya; Yoshita, Katsushi; Sakurai, Masaru; Miura, Katsuyuki; Naruse, Yuchi; Okuda, Nagako; Okayama, Akira; Stamler, Jeremiah; Ueshima, Hirotsugu; Nakagawa, Hideaki

    2016-01-01

    A Japanese-style diet consists of meals that include grain (shushoku), fish and meat (shusai), and vegetable dishes (fukusai). Little is known about the association of such meals (designated well-balanced meals hereafter) with nutrient intake. We therefore examined the frequency of well-balanced meals required to prevent nutrient deficiency. Participants were Japanese people, ages 40 to 59 y, from Toyama, recruited for INTERMAP, in an international population-based study. Each person provided 4 in-depth 24-h dietary recalls (149 men, 150 women). The prevalence of risk ratios of not meeting the Dietary Reference Intakes for Japanese (2015) was calculated. Well-balanced diets were assessed by the Japanese Food Guide Spinning Top. We counted the frequencies of meals in which participants consumed 1.0 or more servings of all 3 dishes categories. We divided the frequency of consumption of well-balanced meals into the following 4 groups: <1.00 time/d, 1.00-1.49 times/d, 1.50-1.74 times/d, and ≥1.75 times/d. Compared with participants in the highest frequency group for well-balanced meals, those who consumed well-balanced meals less than once a day had a higher risk of not meeting the adequate intake for potassium and the recommended dietary allowance for vitamin A. Those who consumed well-balanced meals on average less than 1.50 times per day had a higher risk of not meeting the recommended dietary allowance for calcium and vitamin C. Our results suggest that individuals should on average consume well-balanced meals more than 1.5 times per day to prevent calcium and vitamin C deficiencies.

  20. Regional scale nutrient modelling: exports to the Great Barrier Reef World Heritage Area.

    PubMed

    McKergow, Lucy A; Prosser, Ian P; Hughes, Andrew O; Brodie, Jon

    2005-01-01

    Clearing of native vegetation and replacement with cropping and grazing systems has increased nutrient exports to the Great Barrier Reef (GBR) to a level many times the natural rate. We present a technique for modelling nutrient transport, based on material budgets of river systems, and use it to identify the patterns and sources of nutrients exported. The outputs of the model can then be used to help prioritise catchment areas and land uses for management and assess various management options. Hillslope erosion is the largest source of particulate nutrients because of its dominance as a sediment source and the higher nutrient concentrations on surface soils. Dissolved nutrient fractions contribute 30% of total nitrogen and 15% of total phosphorus inputs. Spatial patterns show the elevated dissolved inorganic nitrogen export in the wetter catchments, and the dominance of particulate N and P from soil erosion in coastal areas. This study has identified catchments with high levels of contribution to exports and targeting these should be a priority.

  1. Improved Hypoxia Modeling for Nutrient Control Decisions in the Gulf of Mexico

    NASA Technical Reports Server (NTRS)

    Habib, Shaid; Pickering, Ken; Tzortziou, Maria; Maninio, Antonio; Policelli, Fritz

    2010-01-01

    As required by the Harmful Algal Bloom and Hypoxia Research Control Act of 1998, the Mississippi River/Gulf of Mexico Watershed Nutrient Task Force issued the 2001 Gulf Hypoxia Action Plan (updated in 2008). In response to the Gulf Hypoxia Action Plan of 2001 (updated in 2008), the EPA Gulf of Mexico Hypoxia Modeling and Monitoring Project has established a detailed model for the Mississippi-Attchafalaya River Basin which provides a capability to forecast the multi-source nutrient loading to the Gulf and the subsequent bio-geochemical processes leading to hypoxic conditions and subsequent effects on Gulf habitats and fisheries. The primary purpose of the EPA model is to characterize the impacts of nutrient management actions, or proposed actions on the spatial and temporal characteristics of the Gulf hypoxic zone. The model is expected to play a significant role in determining best practices and improved strategies for incentivizing nutrient reduction strategies, including installation of on-farm structures to reduce sediment and nutrient runoff, use of cover crops and other agricultural practices, restoration of wetlands and riparian buffers, improved waste water treatment and decreased industrial nitrogen emissions. These decisions are currently made in a fragmented way by federal, state, and local agencies, using a variety of small scale models and limited data. During the past three years, EPA has collected an enormous amount of in-situ data to be used in the model. We believe that the use of NASA satellite data products in the model and for long term validation of the model has the potential to significantly increase the accuracy and therefore the utility of the model for the decision making described above. This proposal addresses the Gulf of Mexico Alliance (GOMA) priority issue of reductions in nutrient inputs to coastal ecosystem. It further directly relates to water quality for healthy beaches and shellfish beds and wetland and coastal conservation

  2. Modelling combined effects of nutrients and toxicants in a branch of the Rhine Delta

    SciTech Connect

    Kramer, P.R.G.; Nijs, A.C.M. de; Aldenberg, T.

    1995-12-31

    A model is presented in which fate and effects of both nutrients and toxicants are combined at the level of phytoplankton and zooplankton in a river system including its sedimentation area. Within water quality modelling emphasis has been on either eutrophication or on toxic fates. Eutrophication research mainly focuses on the relationship between nutrients and water quality parameters. Ecotoxicological studies on the other hand aim either at describing fate of toxic substances or estimating biological effects on or below organism level on the basis of dose-effect experiments. However, an integrated approach linking fate and effects of nutrients and toxic substances on the ecosystem level is demanded to understand the behavior of natural systems exposed to a mix of compounds. The model describes a branch of the river Rhine, the river IJssel, with its sedimentation areas, lake Ketelmeer and lake IJsselmeer, which have suffered severely from high inputs of both nutrients and heavy metals in the past. Only from the seventies onward international sanitation programs have significantly improved the situation. Despite the improvements further actions are required because the problems of high chlorophyll levels as well as high loading of metals remain. It is shown that nutrients may induce an increase in phytoplankton biomass due to less efficient zooplankton grazing. Model results show that in order to change the present state of eutrophication also the input of xenobiotic substances affecting the zooplankton must be decreased.

  3. Nutrient inputs to the Laurentian Great Lakes by source and watershed estimated using SPARROW watershed models

    USGS Publications Warehouse

    Robertson, Dale M.; Saad, David A.

    2011-01-01

    Nutrient input to the Laurentian Great Lakes continues to cause problems with eutrophication. To reduce the extent and severity of these problems, target nutrient loads were established and Total Maximum Daily Loads are being developed for many tributaries. Without detailed loading information it is difficult to determine if the targets are being met and how to prioritize rehabilitation efforts. To help address these issues, SPAtially Referenced Regressions On Watershed attributes (SPARROW) models were developed for estimating loads and sources of phosphorus (P) and nitrogen (N) from the United States (U.S.) portion of the Great Lakes, Upper Mississippi, Ohio, and Red River Basins. Results indicated that recent U.S. loadings to Lakes Michigan and Ontario are similar to those in the 1980s, whereas loadings to Lakes Superior, Huron, and Erie decreased. Highest loads were from tributaries with the largest watersheds, whereas highest yields were from areas with intense agriculture and large point sources of nutrients. Tributaries were ranked based on their relative loads and yields to each lake. Input from agricultural areas was a significant source of nutrients, contributing ∼33-44% of the P and ∼33-58% of the N, except for areas around Superior with little agriculture. Point sources were also significant, contributing ∼14-44% of the P and 13-34% of the N. Watersheds around Lake Erie contributed nutrients at the highest rate (similar to intensively farmed areas in the Midwest) because they have the largest nutrient inputs and highest delivery ratio.

  4. Extinction and permanence of two-nutrient and two-microorganism chemostat model with pulsed input

    NASA Astrophysics Data System (ADS)

    Wang, Tieying; Chen, Lansun; Zhang, Ping

    2010-10-01

    In this paper, a model of the chemostat involving two species of microorganisms competing for two perfectly complementary, growth-limiting nutrients and periodically pulsed input is considered. By using the Floquet's theorem, we find the two-microorganism eradication periodic solution is globally asymptotically stable if R1 < 1 . At the same time we can find nutrients and microorganisms are permanent if R2 > 1 . Meanwhile, sufficient conditions based on biologically meaningful parameters in the model are given that predict competitive exclusion for certain parameter ranges and coexistence for others. Finally, our results are illustrated by numerical simulation.

  5. Bioclogging of dune sediments by coupled nutrient transport and microbial evolution: a numerical modeling study

    NASA Astrophysics Data System (ADS)

    Boano, Fulvio; Ridolfi, Luca; Packman, Aaron; Vidali, Cristina

    2014-05-01

    Streambeds are biogeochemical hotspots for a number of reactions that influence the fate of nutrients in streams and groundwater and that are performed by microorganisms attached to the hyporheic sediments. It is well known that in nutrient-enriched streams the metabolic activity of hyporheic microbes relies on water-borne solutes that are supplied by water exchanged with the stream. However, microbes also exert feedbacks on nutrient fluxes through the process of bioclogging, i.e., the reduction of water-filled pore volume and sediment permeability caused by biofilm growth and gas production. Unfortunately, the present understanding of this process is limited by the difficulty of data collection within streambed sediments. In order to better understand the dynamics of bioclogging, we have performed a numerical modeling study on the coupling between water fluxes, nutrient reactions, and permeability variations due to microbial growth. We have updated a previously published hydro-biogeochemical model with the addition of two microbial components representing autotrophic (nitrifying) bacteria and heterotrophic (facultative aerobic) bacteria. We assume that biofilm grows and occupies pore space, thus altering hydraulic conductivity and modifying the fluxes of water and nutrients which support microbial metabolism. The simulation results show that the system eventually attains an equilibrium between microbial growth and nutrient fluxes that is characterized by a vertical stratification of the microbial species and by a strong reduction of permeability near the stream-sediment interface. These findings denote the existence of an equilibrium configuration and provide insights on how microbial reaction rates are constrained by sediment properties, hydrodynamic factors, and nutrient availability.

  6. Modeling tribal exposures to methyl mercury from fish consumption

    EPA Science Inventory

    Exposure assessment and risk management considerations for tribal fish consumption are different than for the general U.S. population because of higher fish intake from subsistence fishing and/or from unique cultural practices. This research summarizes analyses of available data ...

  7. Modeling Tribal Exposures to PCBs from Fish Consumption

    EPA Science Inventory

    Studies have shown that U.S. population continues to be exposed to polychlorinated biphenyls (PCBs), despite the ban ~40 years ago. Fish intake is a major pathway, especially, for high fish-consumption groups. Exposure assessment and risk management considerations for tribal fish...

  8. Short-Term Energy Outlook Model Documentation: Natural Gas Consumption and Prices

    EIA Publications

    2015-01-01

    The natural gas consumption and price modules of the Short-Term Energy Outlook (STEO) model are designed to provide consumption and end-use retail price forecasts for the residential, commercial, and industrial sectors in the nine Census districts and natural gas working inventories in three regions. Natural gas consumption shares and prices in each Census district are used to calculate an average U.S. retail price for each end-use sector.

  9. Predictive modeling of transient storage and nutrient uptake: Implications for stream restoration

    USGS Publications Warehouse

    O'Connor, Ben L.; Hondzo, Miki; Harvey, Judson

    2010-01-01

    This study examined two key aspects of reactive transport modeling for stream restoration purposes: the accuracy of the nutrient spiraling and transient storage models for quantifying reach-scale nutrient uptake, and the ability to quantify transport parameters using measurements and scaling techniques in order to improve upon traditional conservative tracer fitting methods. Nitrate (NO3–) uptake rates inferred using the nutrient spiraling model underestimated the total NO3– mass loss by 82%, which was attributed to the exclusion of dispersion and transient storage. The transient storage model was more accurate with respect to the NO3– mass loss (±20%) and also demonstrated that uptake in the main channel was more significant than in storage zones. Conservative tracer fitting was unable to produce transport parameter estimates for a riffle-pool transition of the study reach, while forward modeling of solute transport using measured/scaled transport parameters matched conservative tracer breakthrough curves for all reaches. Additionally, solute exchange between the main channel and embayment surface storage zones was quantified using first-order theory. These results demonstrate that it is vital to account for transient storage in quantifying nutrient uptake, and the continued development of measurement/scaling techniques is needed for reactive transport modeling of streams with complex hydraulic and geomorphic conditions.

  10. 3D modeling of phytoplankton seasonal variation and nutrient budget in a southern Mediterranean Lagoon.

    PubMed

    Béjaoui, Béchir; Solidoro, Cosimo; Harzallah, Ali; Chevalier, Cristèle; Chapelle, Annie; Zaaboub, Noureddine; Aleya, Lotfi

    2017-01-30

    A 3D coupled physical-biogeochemical model is developed and applied to Bizerte Lagoon (Tunisia), in order to understand and quantitatively assess its hydrobiological functioning and nutrients budget. The biogeochemical module accounts for nitrogen and phosphorus and includes the water column and upper sediment layer. The simulations showed that water circulation and the seasonal patterns of nutrients, phytoplankton and dissolved oxygen were satisfactorily reproduced. Model results indicate that water circulation in the lagoon is driven mainly by tide and wind. Plankton primary production is co-limited by phosphorus and nitrogen, and is highest in the inner part of the lagoon, due to the combined effects of high water residence time and high nutrient inputs from the boundary. However, a sensitivity analysis highlights the importance of exchanges with the Mediterranean Sea in maintaining a high level of productivity. Intensive use of fertilizers in the catchment area has a significant effect on phytoplankton biomass increase.

  11. Food Expenditure and Nutrient Availability in Elderly Households.

    ERIC Educational Resources Information Center

    Hama, Mary Y.; Chern, Wen S.

    1988-01-01

    A model of food expenditure and nutrient consumption is developed and estimated using the data from the elderly supplemental survey to the 1977-78 USDA Nationwide Food Consumption Survey. Results provide strong evidence that elderly households make concurrent decisions on food budgets and nutritional needs. (Author)

  12. Use of hybrid discrete cellular models for identification of macroscopic nutrient loss in reaction-diffusion models of tissues.

    PubMed

    Aristotelous, Andreas C; Haider, Mansoor A

    2014-08-01

    Macroscopic models accounting for cellular effects in natural or engineered tissues may involve unknown constitutive terms that are highly dependent on interactions at the scale of individual cells. Hybrid discrete models, which represent cells individually, were used to develop and apply techniques for modeling diffusive nutrient transport and cellular uptake to identify a nonlinear nutrient loss term in a macroscopic reaction-diffusion model of the system. Flexible and robust numerical methods were used, based on discontinuous Galerkin finite elements in space and a Crank-Nicolson temporal discretization. Scales were bridged via averaging operations over a complete set of subdomains yielding data for identification of a macroscopic nutrient loss term that was accurately captured via a fifth-order polynomial. Accuracy of the identified macroscopic model was demonstrated by direct, quantitative comparisons of the tissue and cellular scale models in terms of three error norms computed on a mesoscale mesh.

  13. Watershed modeling and monitoring for assessing nutrient trading viability and increasing the adoption of nutrient management practices

    EPA Science Inventory

    Presentation for the American Water Works Association Water Sustainability Conference. The presentation highlights latest results from water quality trading research conducted by ORD using the East Fork Watershed in Southwestern Ohio as a case study. The watershed has a nutrient ...

  14. Modeling the fluid-dynamics and oxygen consumption in a porous scaffold stimulated by cyclic squeeze pressure.

    PubMed

    Ferroni, Marco; Giusti, Serena; Nascimento, Diana; Silva, Ana; Boschetti, Federica; Ahluwalia, Arti

    2016-08-01

    The architecture and dynamic physical environment of tissues can be recreated in-vitro by combining 3D porous scaffolds and bioreactors able to apply controlled mechanical stimuli on cells. In such systems, the entity of the stimuli and the distribution of nutrients within the engineered construct depend on the micro-structure of the scaffolds. In this work, we present a new approach for optimizing computational fluid-dynamics (CFD) models for the investigation of fluid-induced forces generated by cyclic squeeze pressure within a porous construct, coupled with oxygen consumption of cardiomyocytes. A 2D axial symmetric macro-scaled model of a squeeze pressure bioreactor chamber was used as starting point for generating time dependent pressure profiles. Subsequently the fluid movement generated by the pressure fields was coupled with a complete 3D micro-scaled model of a porous protein cryogel. Oxygen transport and consumption inside the scaffold was evaluated considering a homogeneous distribution of cardiomyocytes throughout the structure, as confirmed by preliminary cell culture experiments. The results show that a 3D description of the system, coupling a porous geometry and time dependent pressure driven flow with fluid-structure-interaction provides an accurate and meaningful description of the microenvironment in terms of shear stress and oxygen distribution than simple stationary 2D models.

  15. Budgeting of major nutrients and the mitigation options for nutrient mining in semi-arid tropical agro-ecosystem of Tamil Nadu, India using NUTMON model.

    PubMed

    Surendran, U; Rama Subramoniam, S; Raja, P; Kumar, V; Murugappan, V

    2016-04-01

    Mining of nutrients from soil is a major problem in developing countries causing soil degradation and threaten long-term food production. The present study attempts to apply NUTrient MONitoring (NUTMON) model for carrying out nutrient budgeting to assess the stocks and flows of nitrogen (N), phosphorus (P), and potassium (K) in defined geographical unit based on the inputs, viz., mineral fertilizers, manures, atmospheric deposition, and sedimentation, and outputs, viz., harvested crop produces, residues, leaching, denitrification, and erosion losses. The study area covers Coimbatore and Erode Districts, which are potential agricultural areas in western agro-ecological zone of Tamil Nadu, India. The calculated nutrient balances for both the districts at district scale, using NUTMON methodology, were negative for nitrogen (N -3.3 and -10.1 kg ha(-1)) and potassium (K -58.6 and -9.8 kg ha(-1)) and positive for phosphorus (P +14.5 and 20.5 kg ha(-1)). Soil nutrient pool has to adjust the negative balance of N and K; there will be an expected mining of nutrient from the soil reserve. A strategy was attempted for deriving the fertilizer recommendation using Decision Support System for Integrated Fertilizer Recommendation (DSSIFER) to offset the mining in selected farms. The results showed that when DSSIFER recommended fertilizers are applied to crops, the nutrient balance was positive. NUTMON-Toolbox with DSSIFER would serve the purpose on enhancing soil fertility, productivity, and sustainability. The management options to mitigate nutrient mining with an integrated system approach are also discussed.

  16. Calibration models for electromagnetic induction methods to assess nutrient accumulation beneath confined livestock areas.

    PubMed

    Cordeiro, Marcos R C; Ranjan, R Sri; Ferguson, Ian J

    2011-01-01

    Nutrient accumulation in soils beneath confined livestock areas is a potential source of groundwater contamination. Electromagnetic induction (EMI) has become a practical method to assess nutrient content, with multiple linear regression (MLR) as the statistical method often employed to translate EMI readings into nutrient content. The purpose of this research is to compare and contrast the performance of spatially referenced MLR models that include secondary, 'easy-to-acquire' predictor variables such as spatial coordinate locations, soil water content and elevation information with MLR models based solely on EMI readings. Six feedlot areas were surveyed with an EM38 conductivity meter and between 6 and 12 sites at each feedlot were sampled at five different depths. The electrical conductivity (EC(e)), nitrate (NO3-) and phosphate (PO4(3-)) concentrations were measured and used as response variables. Analyses were performed using two different approaches: the response variables in individual layers and response variables by combining the layers within the soil profile. The results of both MLR methods were comparable in most instances because the models preferentially incorporated predictors derived from EM38 readings. Differences between the models were more evident when predicting NO3- and PO4(3-), even though prediction of these two analytes by either method was generally poor. Combined profile analysis was more effective for defining nutrient build-up because by-layer analysis gave non-significant or poor models in many instances.

  17. Modelling long-term ecotoxicological effects on an algal population under dynamic nutrient stress.

    PubMed

    Bontje, D; Kooi, B W; Liebig, M; Kooijman, S A L M

    2009-07-01

    We study the effects of toxicants on the functioning of phototrophic unicellular organism (an algae) in a simple aquatic microcosm by applying a parameter-sparse model. The model allows us to study the interaction between ecological and toxicological effects. Nutrient stress and toxicant stress, together or alone, can cause extinction of the algal population. The modelled algae consume dissolved inorganic nitrogen (DIN) under surplus light and use it for growth and maintenance. Dead algal biomass is mineralized by bacterial activity, leading to nutrient recycling. The ecological model is coupled with a toxicity-module that describes the dependency of the algal growth and death rate on the toxicant concentration. Model parameter fitting is performed on experimental data from Liebig, M., Schmidt, G., Bontje, D., Kooi, B.W., Streck, G., Traunspurger, W., Knacker, T. [2008. Direct and indirect effects of pollutants on algae and algivorous ciliates in an aquatic indoor microcosm. Aquatic Toxicology 88, 102-110]. These experiments were especially designed to include nutrient limitation, nutrient recycling and long-term exposure to toxicants. The flagellate species Cryptomonas sp. was exposed to the herbicide prometryn and insecticide methyl parathion in semi-closed Erlenmeyers. Given the total limiting amount of nitrogen in the system, the estimated toxicant concentration at which a long-term steady population of algae goes extinct will be derived. We intend to use the results of this study to investigate the effects of ecological (environmental) and toxicological stresses on more realistic ecosystem structure and functioning.

  18. Improved Hypoxia Modeling for Nutrient Control Decisions in the Gulf of Mexico

    NASA Technical Reports Server (NTRS)

    Habib, Shahid; Pickering, Ken; Tzortziou, Maria; Maninio, Antonio; Policelli, Fritz; Stehr, Jeff

    2011-01-01

    The Gulf of Mexico Modeling Framework is a suite of coupled models linking the deposition and transport of sediment and nutrients to subsequent bio-geo chemical processes and the resulting effect on concentrations of dissolved oxygen in the coastal waters of Louisiana and Texas. Here, we examine the potential benefits of using multiple NASA remote sensing data products within this Modeling Framework for increasing the accuracy of the models and their utility for nutrient control decisions in the Gulf of Mexico. Our approach is divided into three components: evaluation and improvement of (a) the precipitation input data (b) atmospheric constituent concentrations in EPA's air quality/deposition model and (c) the calculation of algal biomass, organic carbon and suspended solids within the water quality/eutrophication models of the framework.

  19. Measurements and modelling of base station power consumption under real traffic loads.

    PubMed

    Lorincz, Josip; Garma, Tonko; Petrovic, Goran

    2012-01-01

    Base stations represent the main contributor to the energy consumption of a mobile cellular network. Since traffic load in mobile networks significantly varies during a working or weekend day, it is important to quantify the influence of these variations on the base station power consumption. Therefore, this paper investigates changes in the instantaneous power consumption of GSM (Global System for Mobile Communications) and UMTS (Universal Mobile Telecommunications System) base stations according to their respective traffic load. The real data in terms of the power consumption and traffic load have been obtained from continuous measurements performed on a fully operated base station site. Measurements show the existence of a direct relationship between base station traffic load and power consumption. According to this relationship, we develop a linear power consumption model for base stations of both technologies. This paper also gives an overview of the most important concepts which are being proposed to make cellular networks more energy-efficient.

  20. Measurements and Modelling of Base Station Power Consumption under Real Traffic Loads †

    PubMed Central

    Lorincz, Josip; Garma, Tonko; Petrovic, Goran

    2012-01-01

    Base stations represent the main contributor to the energy consumption of a mobile cellular network. Since traffic load in mobile networks significantly varies during a working or weekend day, it is important to quantify the influence of these variations on the base station power consumption. Therefore, this paper investigates changes in the instantaneous power consumption of GSM (Global System for Mobile Communications) and UMTS (Universal Mobile Telecommunications System) base stations according to their respective traffic load. The real data in terms of the power consumption and traffic load have been obtained from continuous measurements performed on a fully operated base station site. Measurements show the existence of a direct relationship between base station traffic load and power consumption. According to this relationship, we develop a linear power consumption model for base stations of both technologies. This paper also gives an overview of the most important concepts which are being proposed to make cellular networks more energy-efficient. PMID:22666026

  1. Social Modeling Influences and Alcohol Consumption during the First Semester of College: A Natural History Study

    ERIC Educational Resources Information Center

    Talbott, Laura L.; Moore, Charity G.; Usdan, Stuart L.

    2012-01-01

    The authors examine both the alcohol consumption pattern of freshmen students during their first semester and the degree to which social modeling of peer behavior impacts consumption. A total of 534 students, residing on campus, were prospectively examined at four 30-day intervals. Data were evaluated on the basis of age, gender, and the effects…

  2. Two cytochrome oxygen consumption model and mechanism for carotid body chemoreception.

    PubMed

    Nair, P K; Buerk, D G; Whalen, W J; Schubert, R W

    1986-01-01

    We have measured sinus nerve discharge, tissue PO2 and oxygen consumption (VO2) in cat carotid bodies under different experimental conditions using our recessed oxygen microelectrode. Our results indicate that the change in chemoreceptor activity with oxygen disappearance following blood flow occlusion can be related to a two cytochrome model for oxygen consumption as previously proposed by Mills and Jöbsis (1972).

  3. Nutrient Dynamics In Flooded Wetlands. I: Model Development

    EPA Science Inventory

    Wetlands are rich ecosystems recognized for ameliorating floods, improving water quality and providing other ecosystem benefits. In this part of a two-paper sequel, we present a relatively detailed process-based model for nitrogen and phosphorus retention, cycling and removal in...

  4. Assessing the construct validity of five nutrient profiling systems using diet modeling with linear programming.

    PubMed

    Clerfeuille, E; Vieux, F; Lluch, A; Darmon, N; Rolf-Pedersen, N

    2013-09-01

    Nutrient profiling classifies individual food products according to their nutrient content. According to the WHO (World Health Organization), validation is a key step in the development of a nutrient profiling system. The aim was to assess the construct validity of five European nutrient profiling systems (Choices, Keyhole, (AFSSA), European Commission (EC) system and FoodProfiler). Construct validity was assessed for each of the five-selected nutrient profiling systems by testing whether healthy foods (that is, identified as eligible by the system) make healthy diets, and unhealthy foods (that is, non-eligible) make unhealthy diets, using diet modeling. The AFSSA, EC and FoodProfiler systems were identified as valid, but differences in their levels of permissiveness suggested some misclassified food products. The two other systems failed the construct validity assessment. Among these three systems, the EC system is the less demanding in terms of nutritional information, it would, therefore, be the easiest to implement for regulating nutrition and health claims in Europe.

  5. Computer simulation of two chemostat models for one nutrient resource.

    PubMed

    Chichurin, Alexander V; Shvychkina, Helena N

    2016-08-01

    We consider Michaelis-Menten chemostat dynamic models, describing the process of continuous cultivation of bacteria with one organic substrate and two types of microorganisms in a case where the Michaelis-Menten constants for the two competing species of microorganisms are equal. For such a system we obtain solutions with the finite initial conditions assuming only positive values. As it is shown the problem is reduced to the solution of the nonlinear differential equation of the first order. For some parametric relations the solutions of the differential system are found in the analytical form. Using numerical procedures we construct software modules that allow modeling the chemostat cultivation for the changing parameters and visualizing the dynamics of the development process for each microorganism. A comparative analysis of some numerical methods that are used to integrate the resulting nonlinear differential equation is given.

  6. Recovery of arctic tundra from thermal erosion disturbance is constrained by nutrient accumulation: a modeling analysis.

    PubMed

    Pearce, A R; Rastetter, E B; Kwiatkowski, B L; Bowden, W B; Mack, M C; Jiang, Y

    2015-07-01

    Abstract. We calibrated the Multiple Element Limitation (MEL) model to Alaskan arctic tundra to simulate recovery of thermal erosion features (TEFs) caused by permafrost thaw and mass wasting. TEFs could significantly alter regional carbon (C) and nutrient budgets because permafrost soils contain large stocks of soil organic matter (SOM) and TEFs are expected to become more frequent as the climate warms. We simulated recovery following TEF stabilization and did not address initial, short-term losses of C and nutrients during TEF formation. To capture the variability among and within TEFs, we modeled a range of post-stabilization conditions by varying the initial size of SOM stocks and nutrient supply rates. Simulations indicate that nitrogen (N) losses after the TEF stabilizes are small, but phosphorus (P) losses continue. Vegetation biomass recovered 90% of its undisturbed C, N, and P stocks in 100 years using nutrients mineralized from SOM. Because of low litter inputs but continued decomposition, younger SOM continued to be lost for 10 years after the TEF began to recover, but recovered to about 84% of its undisturbed amount in 100 years. The older recalcitrant SOM in mineral soil continued to be lost throughout the 100-year simulation. Simulations suggest that biomass recovery depended on the amount of SOM remaining after disturbance. Recovery was initially limited by the photosynthetic capacity of vegetation but became co-limited by N and P once a plant canopy developed. Biomass and SOM recovery was enhanced by increasing nutrient supplies, but the magnitude, source, and controls on these supplies are poorly understood. Faster mineralization of nutrients from SOM (e.g., by warming) enhanced vegetation recovery but delayed recovery of SOM. Taken together, these results suggest that although vegetation and surface SOM on TEFs recovered quickly (25 and 100 years, respectively), the recovery of deep, mineral soil SOM took centuries and represented a major

  7. Variations in Amazon forest productivity correlated with foliar nutrients and modelled rates of photosynthetic carbon supply.

    PubMed

    Mercado, Lina M; Patiño, Sandra; Domingues, Tomas F; Fyllas, Nikolaos M; Weedon, Graham P; Sitch, Stephen; Quesada, Carlos Alberto; Phillips, Oliver L; Aragão, Luiz E O C; Malhi, Yadvinder; Dolman, A J; Restrepo-Coupe, Natalia; Saleska, Scott R; Baker, Timothy R; Almeida, Samuel; Higuchi, Niro; Lloyd, Jon

    2011-11-27

    The rate of above-ground woody biomass production, W(P), in some western Amazon forests exceeds those in the east by a factor of 2 or more. Underlying causes may include climate, soil nutrient limitations and species composition. In this modelling paper, we explore the implications of allowing key nutrients such as N and P to constrain the photosynthesis of Amazon forests, and also we examine the relationship between modelled rates of photosynthesis and the observed gradients in W(P). We use a model with current understanding of the underpinning biochemical processes as affected by nutrient availability to assess: (i) the degree to which observed spatial variations in foliar [N] and [P] across Amazonia affect stand-level photosynthesis; and (ii) how these variations in forest photosynthetic carbon acquisition relate to the observed geographical patterns of stem growth across the Amazon Basin. We find nutrient availability to exert a strong effect on photosynthetic carbon gain across the Basin and to be a likely important contributor to the observed gradient in W(P). Phosphorus emerges as more important than nitrogen in accounting for the observed variations in productivity. Implications of these findings are discussed in the context of future tropical forests under a changing climate.

  8. Daily consumption of foods and nutrients from institutional and home sources among young children attending two contrasting day-care centers in Guatemala City.

    PubMed

    Vossenaar, M; Jaramillo, P M; Soto-Méndez, M-J; Panday, B; Hamelinck, V; Bermúdez, O I; Doak, C M; Mathias, P; Solomons, N W

    2012-12-01

    Adequate nutrition is critical to child development and institutions such as day-care centers could potentially complement children's diets to achieve optimal daily intakes. The aim of the study was to describe the full-day diet of children, examining and contrasting the relative contribution of home-derived versus institutional energy and nutrient sources. The present comparison should be considered in the domain of a case-study format. The diets of 33, 3-6 y old children attending low-income day-care centers serving either 3 or a single meal were examined. The home-diet was assessed by means of 3 non-consecutive 24-hr recalls. Estimated energy and nutrient intakes at the centers and at home were assessed and related to Recommended Nutrient Intakes (RNI). Nutrient densities, critical densities and main sources of nutrients were computed. We observed that in children attending the day-care center serving three meals, home-foods contributed less than half the daily energy (47.7%) and between 29.9% and 53.5% of daily nutrients. In children receiving only lunch outside the home, energy contribution from the home was 83.9% and 304 kcal lower than for children receiving 3 meals. Furthermore, between 59.0% and 94.8% of daily nutrients were provided at home. Daily energy, nutrient intakes and nutrient densities were well above the nutrient requirements for this age group, and particularly high for vitamin A. The overall dietary variety was superior in the situation of greater contribution of home fare, but overall the nutrient density and adequacy of the aggregate intakes did not differ in any important manner.

  9. Springs as Model Systems for Aquatic Ecosystems Ecology: Stoichiometry, Metabolism and Nutrient Limitation

    NASA Astrophysics Data System (ADS)

    Cohen, M. J.; Nifong, R. L.; Kurz, M. J.; Martin, J. B.; Cropper, W. P.; Korhnak, L. V.

    2013-12-01

    and P gradients, they are more plastic in response to micronutrient variation, particularly for iron and manganese. Expanding on the Droop model framework for understanding nutrient assimilation and plant growth, we discuss these results in the context of nutrient limitation of benthic-dominated lotic systems. We conclude that these spring-fed model systems are N and P saturated, and discuss tools for predicting nutrient limitation and thus eutrophication in flowing waters.

  10. Biological Nutrient Removal Model No. 2 (BNRM2): a general model for wastewater treatment plants.

    PubMed

    Barat, R; Serralta, J; Ruano, M V; Jiménez, E; Ribes, J; Seco, A; Ferrer, J

    2013-01-01

    This paper presents the plant-wide model Biological Nutrient Removal Model No. 2 (BNRM2). Since nitrite was not considered in the BNRM1, and this previous model also failed to accurately simulate the anaerobic digestion because precipitation processes were not considered, an extension of BNRM1 has been developed. This extension comprises all the components and processes required to simulate nitrogen removal via nitrite and the formation of the solids most likely to precipitate in anaerobic digesters. The solids considered in BNRM2 are: struvite, amorphous calcium phosphate, hidroxyapatite, newberite, vivianite, strengite, variscite, and calcium carbonate. With regard to nitrogen removal via nitrite, apart from nitrite oxidizing bacteria two groups of ammonium oxidizing organisms (AOO) have been considered since different sets of kinetic parameters have been reported for the AOO present in activated sludge systems and SHARON (Single reactor system for High activity Ammonium Removal Over Nitrite) reactors. Due to the new processes considered, BNRM2 allows an accurate prediction of wastewater treatment plant performance in wider environmental and operating conditions.

  11. Estimating the carrying capacity of green mussel cultivation by using net nutrient removal model.

    PubMed

    Srisunont, Chayarat; Babel, Sandhya

    2016-11-15

    This study aims to evaluate the nutrient removal potential and carrying capacity of green mussel cultivation by using the mass balance model. The developed model takes into consideration the green mussel growth rate, density and chlorophyll a concentration. The data employed in this study were based on culture conditions at Sriracha Fisheries Research Station, Thailand. Results show that net nutrient removal by green mussel is 3302, 380, and 124mg/year/indv for carbon, nitrogen, and phosphorus respectively. The carrying capacity of green mussel cultivation was found to be 300indv/m(2) based on chlorophyll a concentration which will not release phosphorus in the water environment beyond the standard (45μg-PO4(-3)-P/L). Higher chlorophyll a concentration results in lowered green mussel carrying capacity. This model can assist farm operators with possible management strategies for a sustainable mussel cultivation and protection of the marine environment.

  12. A model for gas and nutrient exchange in the chorionic vasculature system of the mouse placenta

    NASA Astrophysics Data System (ADS)

    Mirbod, Parisa; Sled, John

    2015-11-01

    The aim of this study is to develop an analytical model for the oxygen and nutrient transport from the umbilical cord to the small villous capillaries. The nutrient and carbon dioxide removal from the fetal cotyledons in the mouse placental system has also been considered. This model describes the mass transfer between the fetal and the maternal red blood cells in the chorionic arterial vasculature system. The model reveals the detail fetal vasculature system and its geometry and the precise mechanisms of mass transfer through the placenta. The dimensions of the villous capillaries, the total length of the villous trees, the total villi surface area, and the total resistance to mass transport in the fetal villous trees has also been defined. This is the first effort to explain the reason why there are at least 7 lobules in the mouse placenta from the fluid dynamics point of view.

  13. The Catchment Runoff Attenuation Flux Tool, a minimum information requirement nutrient pollution model

    NASA Astrophysics Data System (ADS)

    Adams, R.; Quinn, P. F.; Bowes, M. J.

    2015-04-01

    A model for simulating runoff pathways and water quality fluxes has been developed using the minimum information requirement (MIR) approach. The model, the Catchment Runoff Attenuation Flux Tool (CRAFT), is applicable to mesoscale catchments and focusses primarily on hydrological pathways that mobilise nutrients. Hence CRAFT can be used to investigate the impact of flow pathway management intervention strategies designed to reduce the loads of nutrients into receiving watercourses. The model can help policy makers meet water quality targets and consider methods to obtain "good" ecological status. A case study of the 414 km2 Frome catchment, Dorset, UK, has been described here as an application of CRAFT in order to highlight the above issues at the mesoscale. The model was primarily calibrated on 10-year records of weekly data to reproduce the observed flows and nutrient (nitrate nitrogen - N; phosphorus - P) concentrations. Data from 2 years with sub-daily monitoring at the same site were also analysed. These data highlighted some additional signals in the nutrient flux, particularly of soluble reactive phosphorus, which were not observable in the weekly data. This analysis has prompted the choice of using a daily time step as the minimum information requirement to simulate the processes observed at the mesoscale, including the impact of uncertainty. A management intervention scenario was also run to demonstrate how the model can support catchment managers investigating how reducing the concentrations of N and P in the various flow pathways. This mesoscale modelling tool can help policy makers consider a range of strategies to meet the European Union (EU) water quality targets for this type of catchment.

  14. Modeling the Relative Importance of Nutrient and Carbon Loads, Boundary Fluxes, and Sediment Fluxes on Gulf of Mexico Hypoxia.

    PubMed

    Feist, Timothy J; Pauer, James J; Melendez, Wilson; Lehrter, John C; DePetro, Phillip A; Rygwelski, Kenneth R; Ko, Dong S; Kreis, Russell G

    2016-08-16

    The Louisiana continental shelf in the northern Gulf of Mexico experiences bottom water hypoxia in the summer. In this study, we applied a biogeochemical model that simulates dissolved oxygen concentrations on the shelf in response to varying riverine nutrient and organic carbon loads, boundary fluxes, and sediment fluxes. Five-year model simulations demonstrated that midsummer hypoxic areas were most sensitive to riverine nutrient loads and sediment oxygen demand from settled organic carbon. Hypoxic area predictions were also sensitive to nutrient and organic carbon fluxes from lateral boundaries. The predicted hypoxic area decreased with decreases in nutrient loads, but the extent of change was influenced by the method used to estimate model boundary concentrations. We demonstrated that modeling efforts to predict changes in hypoxic area on the continental shelf in relationship to changes in nutrients should include representative boundary nutrient and organic carbon concentrations and functions for estimating sediment oxygen demand that are linked to settled organic carbon derived from water-column primary production. On the basis of our model analyses using the most representative boundary concentrations, nutrient loads would need to be reduced by 69% to achieve the Gulf of Mexico Nutrient Task Force Action Plan target hypoxic area of 5000 km(2).

  15. Modelling nutrient retention in the coastal zone of an eutrophic sea

    NASA Astrophysics Data System (ADS)

    Almroth-Rosell, Elin; Edman, Moa; Eilola, Kari; Markus Meier, H. E.; Sahlberg, Jörgen

    2016-10-01

    The Swedish Coastal zone Model (SCM) was used at a test site, the Stockholm archipelago, located in the northern part of the central Baltic Sea, to study the retention capacity of the coastal filter on nitrogen (N) and phosphorus (P) loads from land and atmosphere. The efficiency of the coastal filter to permanently retain nutrients determines how much of the local nutrient loads actually reach the open sea. The SCM system is a nutrient-phytoplankton-zooplankton-detritus-type model coupled to a horizontally integrated, physical model in particular suitable for estuaries. In this study the Stockholm Archipelago, consisting of 86 sub-basins, was divided into three sub-areas: the inner, the intermediate and the outer archipelago. An evaluation of model results showed that the modelled freshwater supply agrees well with observations. The nutrient, salinity and temperature dynamics simulated by the SCM are also found to be in good or acceptable agreement with observations. The analysis showed that the Stockholm Archipelago works as a filter for nutrients that enter the coastal zone from land, but the filter efficiency is not effective enough to retain all the supplied nutrients. However, at least 65 and 72 % of the P and N, respectively, are retained during the studied period (1990-2012). A major part of the retention is permanent, which for P means burial. For N, almost 92 % of the permanent retention is represented by benthic denitrification, less than 8 % by burial, while pelagic denitrification is below 1 %. Highest total amounts of P and N are retained in the outer archipelago, where the surface area is largest. The area-specific retention of P and N, however, is highest in the smaller inner archipelago and decreases towards the open sea. A reduction scenario of the land loads of N and P showed that the filter efficiencies of N and P increase and the export of N from the archipelago decreases. About 15 years after the reduction, the export of P changes into an

  16. Modeling the Transport and Fate of Fecal Pollution and Nutrients of Miyun Reservoir

    NASA Astrophysics Data System (ADS)

    Liu, L.; Fu, X.; Wang, G.

    2009-12-01

    Miyun Reservoir, a mountain valley reservoir, is located 100 km northeast of Beijing City. Besides the functions of flood control, irrigation and fishery for Beijing area, Miyun Reservoir is the main drinking water storage for Beijing city. The water quality is therefore of great importance. Recently, the concentration of fecal pollution and nutrients in the reservoir are constantly rising to arrest the attention of Beijing municipality. Fecal pollution from sewage is a significant public health concern due to the known presence of human viruses and parasites in these discharges. To investigate the transport and fate of the fecal pollution and nutrients at Miyun reservoir and the health risks associated with drinking and fishery, the reservoir and two tributaries, Chaohe river and Baihe river discharging into it are being examined for bacterial, nutrients and other routine pollution. To understand the relative importance of different processes influencing pollution transport and inactivation, a finite-element model of surf-zone hydrodynamics (coupled with models for temperature, fecal pollution, nutrients and other routine contaminants) is used. The developed models are being verified by the observed water quality data including water temperature, conductivities and dissolved oxygen from the reservoir and its tributaries. Different factors impacting the inactivation of fecal pollution and the transport of nutrients such as water temperature, sedimentation, sunlight insolation are evaluated for Miyun reservoir by a sensitivity analysis analogized from the previous research of Lake Michigan (figure 1, indicating that solar insolation dominates the inactivation of E. Coli, an indicator of fecal pollution, Liu et al. 2006). The calibrated modeling system can be used to temporally and spatially simulate and predict the variation of the concentration of fecal pollution and nutrients of Miyun reservoir. Therefore this research can provide a forecasting tool for the

  17. Computer model of hydroponics nutrient solution pH control using ammonium.

    PubMed

    Pitts, M; Stutte, G

    1999-01-01

    A computer simulation of a hydroponics-based plant growth chamber using ammonium to control pH was constructed to determine the feasibility of such a system. In nitrate-based recirculating hydroponics systems, the pH will increase as plants release hydroxide ions into the nutrient solution to maintain plant charge balance. Ammonium is an attractive alternative to traditional pH controls in an ALSS, but requires careful monitoring and control to avoid overdosing the plants with ammonium. The primary advantage of using NH4+ for pH control is that it exploits the existing plant nutrient uptake charge balance mechanisms to maintain solution pH. The simulation models growth, nitrogen uptake, and pH of a l-m2 stand of wheat. Simulation results indicated that ammonium-based control of nutrient solution pH is feasible using a proportional integral controller. Use of a 1 mmol/L buffer (Ka = 1.6 x 10(-6)) in the nutrient solution is required.

  18. Dynamic root growth and architecture responses to limiting nutrient availability: linking physiological models and experimentation.

    PubMed

    Postma, Johannes A; Schurr, Ulrich; Fiorani, Fabio

    2014-01-01

    In recent years the study of root phenotypic plasticity in response to sub-optimal environmental factors and the genetic control of these responses have received renewed attention. As a path to increased productivity, in particular for low fertility soils, several applied research projects worldwide target the improvement of crop root traits both in plant breeding and biotechnology contexts. To assist these tasks and address the challenge of optimizing root growth and architecture for enhanced mineral resource use, the development of realistic simulation models is of great importance. We review this research field from a modeling perspective focusing particularly on nutrient acquisition strategies for crop production on low nitrogen and low phosphorous soils. Soil heterogeneity and the dynamics of nutrient availability in the soil pose a challenging environment in which plants have to forage efficiently for nutrients in order to maintain their internal nutrient homeostasis throughout their life cycle. Mathematical models assist in understanding plant growth strategies and associated root phenes that have potential to be tested and introduced in physiological breeding programs. At the same time, we stress that it is necessary to carefully consider model assumptions and development from a whole plant-resource allocation perspective and to introduce or refine modules simulating explicitly root growth and architecture dynamics through ontogeny with reference to key factors that constrain root growth. In this view it is important to understand negative feedbacks such as plant-plant competition. We conclude by briefly touching on available and developing technologies for quantitative root phenotyping from lab to field, from quantification of partial root profiles in the field to 3D reconstruction of whole root systems. Finally, we discuss how these approaches can and should be tightly linked to modeling to explore the root phenome.

  19. A mechanistic soil biogeochemistry model with explicit representation of microbial and macrofaunal activities and nutrient cycles

    NASA Astrophysics Data System (ADS)

    Fatichi, Simone; Manzoni, Stefano; Or, Dani; Paschalis, Athanasios

    2016-04-01

    The potential of a given ecosystem to store and release carbon is inherently linked to soil biogeochemical processes. These processes are deeply connected to the water, energy, and vegetation dynamics above and belowground. Recently, it has been advocated that a mechanistic representation of soil biogeochemistry require: (i) partitioning of soil organic carbon (SOC) pools according to their functional role; (ii) an explicit representation of microbial dynamics; (iii) coupling of carbon and nutrient cycles. While some of these components have been introduced in specialized models, they have been rarely implemented in terrestrial biosphere models and tested in real cases. In this study, we combine a new soil biogeochemistry model with an existing model of land-surface hydrology and vegetation dynamics (T&C). Specifically the soil biogeochemistry component explicitly separates different litter pools and distinguishes SOC in particulate, dissolved and mineral associated fractions. Extracellular enzymes and microbial pools are explicitly represented differentiating the functional roles of bacteria, saprotrophic and mycorrhizal fungi. Microbial activity depends on temperature, soil moisture and litter or SOC stoichiometry. The activity of macrofauna is also modeled. Nutrient dynamics include the cycles of nitrogen, phosphorous and potassium. The model accounts for feedbacks between nutrient limitations and plant growth as well as for plant stoichiometric flexibility. In turn, litter input is a function of the simulated vegetation dynamics. Root exudation and export to mycorrhiza are computed based on a nutrient uptake cost function. The combined model is tested to reproduce respiration dynamics and nitrogen cycle in few sites where data were available to test plausibility of results across a range of different metrics. For instance in a Swiss grassland ecosystem, fine root, bacteria, fungal and macrofaunal respiration account for 40%, 23%, 33% and 4% of total belowground

  20. A dynamic CSTT model for the effects of added nutrients in Loch Creran, a shallow fjord

    NASA Astrophysics Data System (ADS)

    Laurent, Céline; Tett, Paul; Fernandes, Teresa; Gilpin, Linda; Jones, Ken

    2006-07-01

    Despite a tendency for the complexity of physical-biological models to increase, simple coupled models remain useful for some applications and can provide insights into crucial links between physical and biological processes. This argument is illustrated with an account of a simple 3-box model intended to help assess the capacity of fjords to assimilate nutrients from fish farms. The model, a dynamic version of the UK "Comprehensive Studies Task Team" (CSTT) steady-state model for eutrophication, was applied to Loch Creran (Scottish Western Highlands) and was implemented using Stella 8 and tested using historical data from 1975 (before the installation of a salmon farm) and field data collected in 2003, during the period of operation of the farm. The model's biological state variables are chlorophyll, dissolved inorganic nitrogen (DIN) and dissolved inorganic phosphorus (DIP), and it includes a simple run-off model to convert rainfall into river discharge. The physical processes involved in exchange between the loch and the adjacent waters of the Firth of Lorne were parameterised as a constant daily exchange rate. Between 1975 and 2003, local inputs of nutrient increased but, despite this, there was little apparent increase in nutrient concentrations in the loch, and observed chlorophyll concentrations decreased substantially. Model simulations of chlorophyll and DIN agreed well with observations in 1975, as did DIN simulations in 2003. However, simulated chlorophyll was overestimated in 2003. Some of the agreement between observations and simulations come from the use of observed boundary conditions to force the model. However, even when boundary conditions are subtracted from simulations and observations, the simulations in most cases retain a significant correlation with observations, demonstrating that the model's 'interior' processes do add to its ability to replicate conditions in the loch.

  1. A Rat Drinking in the Dark Model for Studying Ethanol and Sucrose Consumption

    PubMed Central

    Holgate, Joan Y.; Shariff, Masroor; Mu, Erica W. H.; Bartlett, Selena

    2017-01-01

    Background: The intermittent access 2-bottle choice (IA2BC) and drinking in the dark (DID) models were developed for studying rodent binge-like consumption. Traditionally, IA2BC was used with rats and DID with mice. Recently, IA2BC was adapted to study mouse ethanol consumption. However, it is unknown whether DID is suitable for rats or if one rat model is more advantageous than another for studying binge-like consumption. Methods: Male Wistar rats consumed 20% ethanol or 5% sucrose using IA2BC or DID for 12 weeks. IA2BC drinking sessions occurred on alternate days (Mondays–Fridays) and lasted 24 h, whereas DID sessions ran 4 h/day, 5 days/week (Monday–Friday). Average consumption/session, week and hour was measured. To explore DID model suitability for screening novel compounds for controlling ethanol and sucrose intake, varenicline (2 mg/kg) or vehicle was administered to DID rats. Results: IA2BC rats consume more ethanol/session and similar amounts of ethanol/week than DID rats. While, IA2BC rats consume more sucrose/session and week than DID rats. Although IA2BC rats had more ethanol and sucrose access time, DID rats had greater ethanol and sucrose intake/hour. Varenicline significantly reduced ethanol and sucrose consumption in DID rats, consistent with previously published IA2BC studies. Conclusions: Despite the shorter access time, the rat DID model induced higher initial intake and greater consumption/hour for both ethanol and sucrose. The shorter duration of DID sessions did not prevent detection of varenicline-induced reductions in ethanol or sucrose consumption, suggesting the DID model may be suitable for studying binge-like ethanol and sucrose consumption. PMID:28275340

  2. Evaluation of the current state of distributed watershed nutrient water quality modeling.

    PubMed

    Wellen, Christopher; Kamran-Disfani, Ahmad-Reza; Arhonditsis, George B

    2015-03-17

    Watershed models have been widely used for creating the scientific basis for management decisions regarding nonpoint source pollution. In this study, we evaluated the current state of watershed scale, spatially distributed, process-based, water quality modeling of nutrient pollution. Beginning from 1992, the year when Beven and Binley published their seminal paper on uncertainty analysis in hydrological modeling, and ending in 2010, we selected 257 scientific publications which (i) employed spatially distributed modeling approaches at a watershed scale; (ii) provided predictions of flow, nutrient/sediment concentrations or loads; and (iii) reported fit to measured data. Most "best practices" (optimization, validation, sensitivity, and uncertainty analysis) are not consistently employed during model development. There are no statistically significant differences in model performance among land uses. Studies which used more than one point in space to evaluate their distributed models had significantly lower median values of the Nash-Sutcliffe Efficiency (0.70 vs 0.56, p<0.005, nonparametric Mann-Whitney test), and r2 (p<0.005). This finding suggests that model calibration only to the basin outlet may mask compensation of positive and negative errors of source and transportation processes. We conclude by advocating a number of new directions for distributed watershed modeling, including in-depth uncertainty analysis and the use of additional information, not necessarily related to model end points, to constrain parameter estimation.

  3. Effects of signal light on the fuel consumption and emissions under car-following model

    NASA Astrophysics Data System (ADS)

    Tang, Tie-Qiao; Yi, Zhi-Yan; Lin, Qing-Feng

    2017-03-01

    In this paper, a car-following model is utilized to study the effects of signal light on each vehicle's fuel consumption, CO, HC and NOX. The numerical results show that each vehicle's fuel consumption and emissions are influenced by the signal light and that the effects are related to the green split of the signal light and the vehicle's time headway at the origin, which can help drivers adjust their micro driving behavior on the road with a signal light to reduce their fuel consumption and emissions.

  4. Greenland Ice Sheet nutrient export: Towards a reaction-transport model of fjord dynamics

    NASA Astrophysics Data System (ADS)

    Crosby, James; Arndt, Sandra; Wadham, Jemma; Bingham, Rory

    2015-04-01

    Glacial runoff has the potential to deliver large quantities of dissolved and particulate bioavailable nutrients to surrounding marine environments. The marine waters bordering the Greenland Ice Sheet (GrIS) host some of the most productive ecosystems in the world, and possess high socio-economic value from fisheries. Furthermore, the productivity of phytoplankton in the North Atlantic sequesters CO2 from the atmosphere with a potentially important effect on the global coastal ocean CO2 budget. Providing a link between glacier and coastal ocean, fjords are critical components of the marine coastal system in this region, acting as both transfer routes and sinks for glacial nutrient export. As such they have the potential to act as significant biogeochemical processors, yet are currently underexplored. We propose to close this knowledge gap by developing a coupled 2D physical-biogeochemical model of the Godthåbsfjord system to quantitatively assess the impact of nutrients exported from the GrIS on fjord primary productivity and biogeochemical dynamics. Here, we present the first results of the hydrodynamic model. Hydrodynamic circulation patterns and freshwater transit times are explored to provide a first understanding of the glacier-fjord-ocean continuum. The hydrodynamic model will be dynamically coupled to a biogeochemical model with the view to providing a comprehensive understanding of the fate of nutrients exported from the GrIS. This will be extended to address the future sensitivity of these coastal systems to a warming climate, knowledge of which is critical when assessing the role of these dynamic and unique environments.

  5. Nonlinear regression modeling of nutrient loads in streams: A Bayesian approach

    USGS Publications Warehouse

    Qian, S.S.; Reckhow, K.H.; Zhai, J.; McMahon, G.

    2005-01-01

    A Bayesian nonlinear regression modeling method is introduced and compared with the least squares method for modeling nutrient loads in stream networks. The objective of the study is to better model spatial correlation in river basin hydrology and land use for improving the model as a forecasting tool. The Bayesian modeling approach is introduced in three steps, each with a more complicated model and data error structure. The approach is illustrated using a data set from three large river basins in eastern North Carolina. Results indicate that the Bayesian model better accounts for model and data uncertainties than does the conventional least squares approach. Applications of the Bayesian models for ambient water quality standards compliance and TMDL assessment are discussed. Copyright 2005 by the American Geophysical Union.

  6. A novel cost based model for energy consumption in cloud computing.

    PubMed

    Horri, A; Dastghaibyfard, Gh

    2015-01-01

    Cloud data centers consume enormous amounts of electrical energy. To support green cloud computing, providers also need to minimize cloud infrastructure energy consumption while conducting the QoS. In this study, for cloud environments an energy consumption model is proposed for time-shared policy in virtualization layer. The cost and energy usage of time-shared policy were modeled in the CloudSim simulator based upon the results obtained from the real system and then proposed model was evaluated by different scenarios. In the proposed model, the cache interference costs were considered. These costs were based upon the size of data. The proposed model was implemented in the CloudSim simulator and the related simulation results indicate that the energy consumption may be considerable and that it can vary with different parameters such as the quantum parameter, data size, and the number of VMs on a host. Measured results validate the model and demonstrate that there is a tradeoff between energy consumption and QoS in the cloud environment. Also, measured results validate the model and demonstrate that there is a tradeoff between energy consumption and QoS in the cloud environment.

  7. Modelling of Scenedesmus obliquus; function of nutrients with modified Gompertz model.

    PubMed

    Celekli, Abuzer; Balci, Muharrem; Bozkurt, Hüseyin

    2008-12-01

    This study attempted to investigate variation in biovolume of Scenedesmus obliquus, in the modified Johnson medium at 20+/-2 degrees C, under 16kergcm(-2)s(-1) continuous illumination. The experiments were carried out at four nitrate (8, 12, 16, and 20mM) and four phosphate (0.1, 0.3, 0.5 and 0.7mM) concentrations at pH 7 and 8. The best response for algal growth was found at 0.3mM phosphate and 12mM nitrate at pH 7, as it was obtained from weight averaging method. Besides, optimum phosphate and nitrate concentrations significantly distinguished (p<0.01) from other concentrations according to Turkey's HSD test. Key features of the growth of S. obliquus under phosphate and nitrate influenced batch culture was successfully predicted by modified Gompertz model. Through the cultivations, specific growth rate (mu) ranged from 0.30 to 1.02 day(-1), while biovolume doubling time (td) varied from 0.68 to 2.30 days. There were important differences (p<0.05) for both mu and td among response variables. Both nutrients displayed noteworthy effect (p<0.01) on the algal biovolume.

  8. Modeling long-term changes in tundra carbon balance following wildfire, climate change, and potential nutrient addition.

    PubMed

    Jiang, Yueyang; Rastetter, Edward B; Shaver, Gaius R; Rocha, Adrian V; Zhuang, Qianlai; Kwiatkowski, Bonnie L

    2017-01-01

    To investigate the underlying mechanisms that control long-term recovery of tundra carbon (C) and nutrients after fire, we employed the Multiple Element Limitation (MEL) model to simulate 200-yr post-fire changes in the biogeochemistry of three sites along a burn severity gradient in response to increases in air temperature, CO2 concentration, nitrogen (N) deposition, and phosphorus (P) weathering rates. The simulations were conducted for severely burned, moderately burned, and unburned arctic tundra. Our simulations indicated that recovery of C balance after fire was mainly determined by the internal redistribution of nutrients among ecosystem components (controlled by air temperature), rather than the supply of nutrients from external sources (e.g., nitrogen deposition and fixation, phosphorus weathering). Increases in air temperature and atmospheric CO2 concentration resulted in (1) a net transfer of nutrient from soil organic matter to vegetation and (2) higher C : nutrient ratios in vegetation and soil organic matter. These changes led to gains in vegetation biomass C but net losses in soil organic C stocks. Under a warming climate, nutrients lost in wildfire were difficult to recover because the warming-induced acceleration in nutrient cycles caused further net nutrient loss from the system through leaching. In both burned and unburned tundra, the warming-caused acceleration in nutrient cycles and increases in ecosystem C stocks were eventually constrained by increases in soil C : nutrient ratios, which increased microbial retention of plant-available nutrients in the soil. Accelerated nutrient turnover, loss of C, and increasing soil temperatures will likely result in vegetation changes, which further regulate the long-term biogeochemical succession. Our analysis should help in the assessment of tundra C budgets and of the recovery of biogeochemical function following fire, which is in turn necessary for the maintenance of wildlife habitat and tundra

  9. Evaluating the Power Consumption of Wireless Sensor Network Applications Using Models

    PubMed Central

    Dâmaso, Antônio; Freitas, Davi; Rosa, Nelson; Silva, Bruno; Maciel, Paulo

    2013-01-01

    Power consumption is the main concern in developing Wireless Sensor Network (WSN) applications. Consequently, several strategies have been proposed for investigating the power consumption of this kind of application. These strategies can help to predict the WSN lifetime, provide recommendations to application developers and may optimize the energy consumed by the WSN applications. While measurement is a known and precise strategy for power consumption evaluation, it is very costly, tedious and may be unfeasible considering the (usual) large number of WSN nodes. Furthermore, due to the inherent dynamism of WSNs, the instrumentation required by measurement techniques makes difficult their use in several different scenarios. In this context, this paper presents an approach for evaluating the power consumption of WSN applications by using simulation models along with a set of tools to automate the proposed approach. Starting from a programming language code, we automatically generate consumption models used to predict the power consumption of WSN applications. In order to evaluate the proposed approach, we compare the results obtained by using the generated models against ones obtained by measurement. PMID:23486217

  10. Evaluating the power consumption of wireless sensor network applications using models.

    PubMed

    Dâmaso, Antônio; Freitas, Davi; Rosa, Nelson; Silva, Bruno; Maciel, Paulo

    2013-03-13

    Power consumption is the main concern in developing Wireless Sensor Network (WSN) applications. Consequently, several strategies have been proposed for investigating the power consumption of this kind of application. These strategies can help to predict the WSN lifetime, provide recommendations to application developers and may optimize the energy consumed by the WSN applications. While measurement is a known and precise strategy for power consumption evaluation, it is very costly, tedious and may be unfeasible considering the (usual) large number of WSN nodes. Furthermore, due to the inherent dynamism of WSNs, the instrumentation required by measurement techniques makes difficult their use in several different scenarios. In this context, this paper presents an approach for evaluating the power consumption of WSN applications by using simulation models along with a set of tools to automate the proposed approach. Starting from a programming language code, we automatically generate consumption models used to predict the power consumption of WSN applications. In order to evaluate the proposed approach, we compare the results obtained by using the generated models against ones obtained by measurement.

  11. A mechanistic model for electricity consumption on dairy farms: definition, validation, and demonstration.

    PubMed

    Upton, J; Murphy, M; Shalloo, L; Groot Koerkamp, P W G; De Boer, I J M

    2014-01-01

    Our objective was to define and demonstrate a mechanistic model that enables dairy farmers to explore the impact of a technical or managerial innovation on electricity consumption, associated CO2 emissions, and electricity costs. We, therefore, (1) defined a model for electricity consumption on dairy farms (MECD) capable of simulating total electricity consumption along with related CO2 emissions and electricity costs on dairy farms on a monthly basis; (2) validated the MECD using empirical data of 1yr on commercial spring calving, grass-based dairy farms with 45, 88, and 195 milking cows; and (3) demonstrated the functionality of the model by applying 2 electricity tariffs to the electricity consumption data and examining the effect on total dairy farm electricity costs. The MECD was developed using a mechanistic modeling approach and required the key inputs of milk production, cow number, and details relating to the milk-cooling system, milking machine system, water-heating system, lighting systems, water pump systems, and the winter housing facilities as well as details relating to the management of the farm (e.g., season of calving). Model validation showed an overall relative prediction error (RPE) of less than 10% for total electricity consumption. More than 87% of the mean square prediction error of total electricity consumption was accounted for by random variation. The RPE values of the milk-cooling systems, water-heating systems, and milking machine systems were less than 20%. The RPE values for automatic scraper systems, lighting systems, and water pump systems varied from 18 to 113%, indicating a poor prediction for these metrics. However, automatic scrapers, lighting, and water pumps made up only 14% of total electricity consumption across all farms, reducing the overall impact of these poor predictions. Demonstration of the model showed that total farm electricity costs increased by between 29 and 38% by moving from a day and night tariff to a flat

  12. Evolution of consumption distribution and model of wealth distribution in China between 1995 and 2012

    NASA Astrophysics Data System (ADS)

    Gao, Li

    2015-07-01

    We study the evolution of the distribution of consumption of individuals in the majority population in China during the period 1995-2012 and find that its probability density functions (PDFs) obey the rule Pc(x) = K(x - μ) e-(x - μ)2/2σ2. We also find (i) that the PDFs and the individual income distribution appear to be identical, (ii) that the peaks of the PDFs of the individual consumption distribution are consistently on the low side of the PDFs of the income distribution, and (iii) that the average of the marginal propensity to consume (MPC) is large, MPC bar = 0.77, indicating that in the majority population individual consumption is low and strongly dependent on income. The long right tail of the PDFs of consumption indicates that few people in China are participating in the high consumption economy, and that consumption inequality is high. After comparing the PDFs of consumption with the PDFs of income we obtain the PDFs of residual wealth during the period 1995-2012, which exhibit a Gaussian distribution. We use an agent-based kinetic wealth-exchange model (KWEM) to simulate this evolutional process and find that this Gaussian distribution indicates a strong propensity to save rather than spend. This may be due to an anticipation of such large potential outlays as housing, education, and health care in the context of an inadequate welfare support system.

  13. Input-Output Modeling for Urban Energy Consumption in Beijing: Dynamics and Comparison

    PubMed Central

    Zhang, Lixiao; Hu, Qiuhong; Zhang, Fan

    2014-01-01

    Input-output analysis has been proven to be a powerful instrument for estimating embodied (direct plus indirect) energy usage through economic sectors. Using 9 economic input-output tables of years 1987, 1990, 1992, 1995, 1997, 2000, 2002, 2005, and 2007, this paper analyzes energy flows for the entire city of Beijing and its 30 economic sectors, respectively. Results show that the embodied energy consumption of Beijing increased from 38.85 million tonnes of coal equivalent (Mtce) to 206.2 Mtce over the past twenty years of rapid urbanization; the share of indirect energy consumption in total energy consumption increased from 48% to 76%, suggesting the transition of Beijing from a production-based and manufacturing-dominated economy to a consumption-based and service-dominated economy. Real estate development has shown to be a major driving factor of the growth in indirect energy consumption. The boom and bust of construction activities have been strongly correlated with the increase and decrease of system-side indirect energy consumption. Traditional heavy industries remain the most energy-intensive sectors in the economy. However, the transportation and service sectors have contributed most to the rapid increase in overall energy consumption. The analyses in this paper demonstrate that a system-wide approach such as that based on input-output model can be a useful tool for robust energy policy making. PMID:24595199

  14. Stable isotopes and Digital Elevation Models to study nutrient inputs in high-Arctic lakes

    NASA Astrophysics Data System (ADS)

    Calizza, Edoardo; Rossi, David; Costantini, Maria Letizia; Careddu, Giulio; Rossi, Loreto

    2016-04-01

    Ice cover, run-off from the watershed, aquatic and terrestrial primary productivity, guano deposition from birds are key factors controlling nutrient and organic matter inputs in high-Arctic lakes. All these factors are expected to be significantly affected by climate change. Quantifying these controls is a key baseline step to understand what combination of factors subtends the biological productivity in Arctic lakes and will drive their ecological response to environmental change. Basing on Digital Elevation Models, drainage maps, and C and N elemental content and stable isotope analysis in sediments, aquatic vegetation and a dominant macroinvertebrate species (Lepidurus arcticus Pallas 1973) belonging to Tvillingvatnet, Storvatnet and Kolhamna, three lakes located in North Spitsbergen (Svalbard), we propose an integrated approach for the analysis of (i) nutrient and organic matter inputs in lakes; (ii) the role of catchment hydro-geomorphology in determining inter-lake differences in the isotopic composition of sediments; (iii) effects of diverse nutrient inputs on the isotopic niche of Lepidurus arcticus. Given its high run-off and large catchment, organic deposits in Tvillingvatnet where dominated by terrestrial inputs, whereas inputs were mainly of aquatic origin in Storvatnet, a lowland lake with low potential run-off. In Kolhamna, organic deposits seem to be dominated by inputs from birds, which actually colonise the area. Isotopic signatures were similar between samples within each lake, representing precise tracers for studies on the effect of climate change on biogeochemical cycles in lakes. The isotopic niche of L. aricticus reflected differences in sediments between lakes, suggesting a bottom-up effect of hydro-geomorphology characterizing each lake on nutrients assimilated by this species. The presented approach proven to be an effective research pathway for the identification of factors subtending to nutrient and organic matter inputs and transfer

  15. Layered Plant-Growth Media for Optimizing Gaseous, Liquid and Nutrient Requirements: Modeling, Design and Monitoring

    NASA Astrophysics Data System (ADS)

    Heinse, R.; Jones, S. B.; Bingham, G.; Bugbee, B.

    2006-12-01

    Rigorous management of restricted root zones utilizing coarse-textured porous media greatly benefits from optimizing the gas-water balance within plant-growth media. Geophysical techniques can help to quantify root- zone parameters like water content, air-filled porosity, temperature and nutrient concentration to better address the root systems performance. The efficiency of plant growth amid high root densities and limited volumes is critically linked to maintaining a favorable water content/air-filled porosity balance while considering adequate fluxes to replenish water at decreasing hydraulic conductivities during uptake. Volumes adjacent to roots also need to be optimized to provide adequate nutrients throughout the plant's life cycle while avoiding excessive salt concentrations. Our objectives were to (1) design and model an optimized root zone system using optimized porous media layers, (2) verify our design by monitoring the water content distribution and tracking nutrient release and transport, and (3) mimic water and nutrient uptake using plants or wicks to draw water from the root system. We developed a unique root-zone system using layered Ottawa sands promoting vertically uniform water contents and air-filled porosities. Watering was achieved by maintaining a shallow saturated layer at the bottom of the column and allowing capillarity to draw water upward, where coarser particle sizes formed the bottom layers with finer particles sizes forming the layers above. The depth of each layer was designed to optimize water content based on measurements and modeling of the wetting water retention curves. Layer boundaries were chosen to retain saturation between 50 and 85 percent. The saturation distribution was verified by dual-probe heat-pulse water-content sensors. The nutrient experiment involved embedding slow release fertilizer in the porous media in order to detect variations in electrical resistivity versus time during the release, diffusion and uptake of

  16. Density outbursts in a food web model with a closed nutrient cycle

    NASA Astrophysics Data System (ADS)

    Szwabiński, Janusz

    2013-09-01

    A spatial three level food web model with a closed nutrient cycle is presented and analyzed via Monte Carlo simulations. The food web consists of three trophic levels. The basal level species (called resources, R) corresponds to primary producers in real ecosystems. The species at an intermediate level (consumers, C) relates to herbivores. It feeds on the resources. The consumers themselves constitute food for the top level species (predators, P), which corresponds to carnivores. The remains of the consumers and predators (detritus, D) provide nutrient for the resources. The time evolution of the model reveals two asymptotic states: an absorbing one with all species being extinct, and a coexisting one, in which concentrations of all species are non-zero. There are two possible ways for the system to reach the absorbing state. In some cases the densities increase very quickly at the beginning of a simulation and then decline slowly and almost monotonically. In others, well pronounced peaks in the R, C and D densities appear regularly before the extinction. Those peaks correspond to density outbursts (waves) traveling through the system. We investigate the mechanisms leading to the waves. In particular, we show that the percolation of the detritus (i.e. the accumulation of nutrients) is necessary for the emergence of the waves. Moreover, our results corroborate the hypothesis that top-level predators play an essential role in maintaining the stability of a food web (top-down control).

  17. Uncertainties in fuel loading and fire consumption calculations and the Smoke and Emissions Model Intercomparison Project

    NASA Astrophysics Data System (ADS)

    Larkin, N.; Solomon, R.; Strand, T.; Raffuse, S. M.; Craig, K.

    2009-12-01

    Fire and fuel managers often need to know how much fuel will be consumed by a fire, and how much smoke the fire will produce. Many factors influence the end result, including fuel type, loading, and moisture, quantity of live and dead fuels, terrain, and meteorology. A variety of fuel models and consumption models have been developed to help provide estimated quantities of fuel consumption and subsequent smoke production. We present results from this work, done as part of the Smoke and Emissions Model Intercomparison Project that show that the specific choice of model and model coupling can have a large effect on the final answer. We have used four different consumption models (CONSUME3, EPM, FEPS, and FOFEM) with three different fuel loading maps (NFDRS, Hardy, FCCS) to bracket the simulated results. A new web-based database viewer now allows both scientists and land and fire managers to directly compare various results by selecting a fuel loading map and consumption model. For model users interested in information for a specific fire these comparisons can be useful in understanding the uncertainties resulting from different model choices.

  18. Nutrients from dairy foods are difficult to replace in diets of Americans: food pattern modeling and an analyses of the National Health and Nutrition Examination Survey 2003-2006.

    PubMed

    Fulgoni, Victor L; Keast, Debra R; Auestad, Nancy; Quann, Erin E

    2011-10-01

    Because dairy products provide shortfall nutrients (eg, calcium, potassium, and vitamin D) and other important nutrients, this study hypothesized that it would be difficult for Americans to meet nutritional requirements for these nutrients in the absence of dairy product consumption or when recommended nondairy calcium sources are consumed. To test this hypothesis, MyPyramid dietary pattern modeling exercises and an analyses of data from the National Health and Nutrition Examination Survey 2003-2006 were conducted in those aged at least 2 years (n = 16 822). Impact of adding or removing 1 serving of dairy, removing all dairy, and replacing dairy with nondairy calcium sources was evaluated. Dietary pattern modeling indicated that at least 3 servings of dairy foods are needed to help individuals meet recommendations for nutrients, such as calcium and magnesium, and 4 servings may be needed to help some groups meet potassium recommendations. A calcium-equivalent serving of dairy requires 1.1 servings of fortified soy beverage, 0.6 serving of fortified orange juice, 1.2 servings of bony fish, or 2.2 servings of leafy greens. The replacement of dairy with calcium-equivalent foods alters the overall nutritional profile of the diet and affects nutrients including protein, potassium, magnesium, phosphorus, riboflavin, vitamins A, D and B(12). Similar modeling exercises using consumption data from the National Health and Nutrition Examination Survey also demonstrated that nondairy calcium replacement foods are not a nutritionally equivalent substitute for dairy products. In conclusion, although it is possible to meet calcium intake recommendations without consuming dairy foods, calcium replacement foods are not a nutritionally equivalent substitute for dairy foods and consumption of a calcium-equivalent amount of some nondairy foods is unrealistic.

  19. Water and Nutrient Balances in a Large Tile-Drained Agricultural Catchment: A Distributed Modeling Study

    SciTech Connect

    Li, Hongyi; Sivapalan, Murugesu; Tian, Fuqiang; Liu, Dengfeng

    2010-11-16

    This paper presents the development and implementation of a distributed model of coupled water nutrient processes, based on the representative elementary watershed (REW) approach, to the Upper Sangamon River Basin, a large, tile-drained agricultural basin located in central Illinois, mid-west of USA. Comparison of model predictions with the observed hydrological and biogeochemical data, as well as regional estimates from literature studies, shows that the model is capable of capturing the dynamics of water, sediment and nutrient cycles reasonably well. The model is then used as a tool to gain insights into the physical and chemical processes underlying the inter- and intra-annual variability of water and nutrient balances. Model predictions show that about 80% of annual runoff is contributed by tile drainage, while the remainder comes from surface runoff (mainly saturation excess flow) and subsurface runoff. It is also found that, at the annual scale nitrogen storage in the soil is depleted during wet years, and is supplemented during dry years. This carryover of nitrogen storage from dry year to wet year is mainly caused by the lateral loading of nitrate. Phosphorus storage, on the other hand, is not affected much by wet/dry conditions simply because the leaching of it is very minor compared to the other mechanisms taking phosphorous out of the basin, such as crop harvest. The analysis then turned to the movement of nitrate with runoff. Model results suggested that nitrate loading from hillslope into the channel is preferentially carried by tile drainage. Once in the stream it is then subject to in-stream denitrification, the significant spatio-temporal variability of which can be related to the variation of the hydrologic and hydraulic conditions across the river network.

  20. Group theoretical modeling of thermal explosion with reactant consumption

    NASA Astrophysics Data System (ADS)

    Ibragimov, Ranis N.; Dameron, Michael

    2012-09-01

    Today engineering and science researchers routinely confront problems in mathematical modeling involving nonlinear differential equations. Many mathematical models formulated in terms of nonlinear differential equations can be successfully treated and solved by Lie group methods. Lie group analysis is especially valuable in investigating nonlinear differential equations, for its algorithms act as reliably as for linear cases. The aim of this article is to provide the group theoretical modeling of the symmetrical heating of an exothermally reacting medium with approximations to the body's temperature distribution similar to those made by Thomas [17] and Squire [15]. The quantitative results were found to be in a good agreement with Adler and Enig in [1], where the authors were comparing the integral curves corresponding to the critical conditions for the first-order reaction. Further development of the modeling by including the critical temperature is proposed. Overall, it is shown, in particular, that the application of Lie group analysis allows one to extend the previous analytic results for the first order reactions to nth order ones.

  1. Coupling hydrological and impact assessment models to explore nutrient cycling in freshwater systems

    NASA Astrophysics Data System (ADS)

    Bouwman, Lex; van Beek, Rens; Beusen, Arthur; Mogollón, José; Middelburg, Jack

    2016-04-01

    The IMAGE-Global Nutrient Model (GNM) is a new globally distributed, spatially explicit model in which the hydrology model PCR-GLOBWB is coupled to the integrated assessment model IMAGE to simulate nitrogen (N) and phosphorus (P) delivery, and then with a spiraling ecological approach to simulating instream biogeochemistry. Routing the water with dissolved and suspended N and P from upstream grid cells occurs simultaneous with N and P delivery to water bodies within grid cells from diffuse and point sources (wastewater). IMAGE-GNM describes the following diffuse sources associated with the water flow: surface runoff, shallow and deep groundwater, riparian zones. Depending on the landscape features, all these flows may be present within one grid cell. Furthermore, diffuse N and P inputs occur through allochtonous organic matter inputs via litterfall in (temporarily) inundated river floodplains, and atmospheric deposition. In the spiraling concept, the residence time of the water and nutrient uptake velocity determine N and P retention in water bodies. Validation of model results with observations yields acceptable agreement given the global scale of the uncalibrated model. Sensitivity analysis shows shifts in the importance of the different sources, with decreasing importance of natural sources and increasing influence of wastewater and agriculture. IMAGE-GNM can be employed to study the interaction between society and the environment over prolonged time periods. Here we show results for the full 20th century.

  2. A Parental Health Education Model of Children's Food Consumption: Influence on Children's Attitudes, Intention, and Consumption of Healthy and Unhealthy Foods.

    PubMed

    Lwin, May O; Shin, Wonsun; Yee, Andrew Z H; Wardoyo, Reidinar Juliane

    2017-03-31

    This study proposes that parental mediation of television advertising and parental guidance of food consumption differentially influence children's attitude, intention, and behavior toward the consumption of healthy and unhealthy foods. Structural equation modeling based on a survey of 1,119 children aged 9-12 supported our model, revealing that parental education strategies influence children's food consumption in a complex manner that is highly context-dependent. Parental guidance of food consumption enhanced children's healthy food attitude and intention to consume, while reducing the intention to consume unhealthy food. However, parental mediation of television advertising influenced unhealthy food attitude to a greater extent than healthy food attitude. Implications for health promotion and education, as well as parents and policy makers are discussed.

  3. Adolescents and Music Media: Toward an Involvement-Mediational Model of Consumption and Self-Concept

    ERIC Educational Resources Information Center

    Kistler, Michelle; Rodgers, Kathleen Boyce; Power, Thomas; Austin, Erica Weintraub; Hill, Laura Griner

    2010-01-01

    Using social cognitive theory and structural regression modeling, we examined pathways between early adolescents' music media consumption, involvement with music media, and 3 domains of self-concept (physical appearance, romantic appeal, and global self-worth; N=124). A mediational model was supported for 2 domains of self-concept. Music media…

  4. An Application of Variational Theory to an Integrated Walrasian Model of Exchange, Consumption and Production

    NASA Astrophysics Data System (ADS)

    Donato, M. B.; Milasi, M.; Vitanza, C.

    2010-09-01

    An existence result of a Walrasian equilibrium for an integrated model of exchange, consumption and production is obtained. The equilibrium model is characterized in terms of a suitable generalized quasi-variational inequality; so the existence result comes from an original technique which takes into account tools of convex and set-valued analysis.

  5. Regional assessments of the Nation's water quality—Improved understanding of stream nutrient sources through enhanced modeling capabilities

    USGS Publications Warehouse

    Preston, Stephen D.; Alexander, Richard B.; Woodside, Michael D.

    2011-01-01

    The U.S. Geological Survey (USGS) recently completed assessments of stream nutrients in six major regions extending over much of the conterminous United States. SPARROW (SPAtially Referenced Regressions On Watershed attributes) models were developed for each region to explain spatial patterns in monitored stream nutrient loads in relation to human activities and natural resources and processes. The model information, reported by stream reach and catchment, provides contrasting views of the spatial patterns of nutrient source contributions, including those from urban (wastewater effluent and diffuse runoff from developed land), agricultural (farm fertilizers and animal manure), and specific background sources (atmospheric nitrogen deposition, soil phosphorus, forest nitrogen fixation, and channel erosion).

  6. The consequences of introducing stochasticity in nutrient utilisation models: the case of phosphorus utilisation by pigs.

    PubMed

    Symeou, V; Leinonen, I; Kyriazakis, I

    2016-02-14

    Simulation models of nutrient utilisation ignore that variation in pig system components can influence the predicted mean and variance of the performance of a group of pigs. The objective of this study was to develop a methodology to investigate how variation in feed composition would (a) affect the outputs of a nutrient utilisation model and (b) interact with variation that arises from the traits of individual pigs. We used a P intake and utilisation model to address these characteristics. Introduction of stochasticity gave rise to a number of methodological challenges--for example, how to generate variation in both feed composition and pigs and account for correlations between ingredients when modelling variation associated with feed mixing efficiency. Introducing variation in feed composition and pig phenotype resulted in moderate decreases in mean digested, retained and excreted P predicted for a population of pigs and an increase in their associated CV. A lower percentage of pigs in the population were predicted to meet their requirements during the feeding period considered, by comparison with the no-variation scenario. Variation in feed ingredient composition contributed more to performance variation than variation due to mixing efficiency. When variations in both feed composition and pig traits were considered, it was the former rather than the latter that had the dominant influence on variability in pig performance. The developed framework emphasises the consequences of random variability on the predictions of nutrient utilisation models. Such consequences will have a significant impact on decisions about management strategies such as feeding that are subject to variation.

  7. Mathematical model of galactose regulation and metabolic consumption in yeast.

    PubMed

    Mitre, Tina M; Mackey, Michael C; Khadra, Anmar

    2016-10-21

    The galactose network has been extensively studied at the unicellular level to broaden our understanding of the regulatory mechanisms governing galactose metabolism in multicellular organisms. Although the key molecular players involved in the metabolic and regulatory processes of this system have been known for decades, their interactions and chemical kinetics remain incompletely understood. Mathematical models can provide an alternative method to study the dynamics of this network from a quantitative and a qualitative perspective. Here, we employ this approach to unravel the main properties of the galactose network, including equilibrium binary and temporal responses, as a way to decipher its adaptation to actively-changing inputs. We combine its two main components: the genetic branch, which allows for bistable responses, and a metabolic branch, encompassing the relevant metabolic processes that can be repressed by glucose. We use both computational tools to estimate model parameters based on published experimental data, as well as bifurcation analysis to decipher the properties of the system in various parameter regimes. Our model analysis reveals that the interplay between the inducer (galactose) and the repressor (glucose) creates a bistable regime which dictates the temporal responses of the system. Based on the same bifurcation techniques, we explain why the system is robust to genetic mutations and molecular instabilities. These findings may provide experimentalists with a theoretical framework with which they can determine how the galactose network functions under various conditions.

  8. Identification of nutrient and physical seed trait QTL in the model legume Lotus japonicus.

    PubMed

    Klein, Melinda A; Grusak, Michael A

    2009-08-01

    Legume seeds have the potential to provide a significant portion of essential micronutrients to the human diet. To identify the genetic basis for seed nutrient density, quantitative trait locus (QTL) analysis was conducted with the Miyakojima MG-20 x Gifu B-129 recombinant inbred population from the model legume Lotus japonicus. This population was grown to seed under greenhouse conditions in 2006 and 2007. Phenotypic data were collected for seed calcium (Ca), copper (Cu), iron (Fe), potassium (K), magnesium (Mg), manganese (Mn), phosphorus (P), sulfur (S), and zinc (Zn) concentrations and content. Data for physical seed traits (average seed mass and seed-pod allocation values) were also collected. Based on these phenotypic data, QTL analyses identified 103 QTL linked to 55 different molecular markers. Transgressive segregation, identified within this recombinant inbred population for both seed nutrient and physical traits, suggests new allelic combinations are available for agronomic trait improvement. QTL co-localization was also seen, suggesting that common transport processes might contribute to seed nutrient loading. Identification of loci involved in seed mineral density can be an important first step in identifying the genetic factors and, consequently, the physiological processes involved in mineral distribution to developing seeds. Longer term research efforts will focus on facilitating agronomic breeding efforts through ortholog identification in related crop legumes.

  9. Modeling carbon-nutrient interactions during the early recovery of tundra after fire.

    PubMed

    Jiang, Yueyang; Rastetter, Edward B; Rocha, Adrian V; Pearce, Andrea R; Kwiatkowski, Bonnie L; Shaver, Gaius R

    2015-09-01

    Fire frequency has dramatically increased in the tundra of northern Alaska, USA, which has major implications for the carbon budget of the region and the functioning of these ecosystems, which support important wildlife species. We investigated the postfire succession of plant and soil carbon (C), nitrogen (N), and phosphorus (P) fluxes and stocks along a burn severity gradient in the 2007 Anaktuvuk River fire scar in northern Alaska. Modeling results indicated that the early regrowth of postfire tundra vegetation was limited primarily by its canopy photosynthetic potential, rather than nutrient availability, because of the initially low leaf area and relatively high inorganic N and P concentrations in soil. Our simulations indicated that the postfire recovery of tundra vegetation was sustained predominantly by the uptake of residual inorganic N (i.e., in the remaining ash), and the redistribution of N and P from soil organic matter to vegetation. Although residual nutrients in ash were higher in the severe burn than the moderate burn, the moderate burn recovered faster because of the higher remaining biomass and consequent photosynthetic potential. Residual nutrients in ash allowed both burn sites to recover and exceed the unburned site in both aboveground biomass and production five years after the fire. The investigation of interactions among postfire C, N, and P cycles has contributed to a mechanistic understanding of the response of tundra ecosystems to fire disturbance. Our study provided insight on how the trajectory of recovery of tundra from wildfire is regulated during early succession.

  10. Application of the general model 'biological nutrient removal model no. 1' to upgrade two full-scale WWTPs.

    PubMed

    Ruano, M V; Serralta, J; Ribes, J; Garcia-Usach, F; Bouzas, A; Barat, R; Seco, A; Ferrer, J

    2012-01-01

    In this paper, two practical case studies for upgrading two wastewater treatment plants (WWTPs) using the general model BNRM 1 (Biological Nutrient Removal Model No. 1) are presented. In the first case study, the Tarragona WWTP was upgraded by reducing the phosphorus load to the anaerobic digester in order to minimize the precipitation problems. Phosphorus load reduction was accomplished by mixing the primary sludge and the secondary sludge and by elutriating the mixed sludge. In the second case study, the Alcantarilla WWTP, the nutrient removal was enhanced by maintaining a relatively low dissolved oxygen concentration in Stage A to maintain the acidogenic bacteria activity. The VFA produced in Stage A favour the denitrification process and biological phosphorus removal in Stage B. These case studies demonstrate the benefits of using the general model BNRMI to simulate settling processes and biological processes related to both anaerobic and aerobic bacteria in the same process unit.

  11. A single-equation study of US petroleum consumption: The role of model specificiation

    SciTech Connect

    Jones, C.T. )

    1993-04-01

    The price responsiveness of US petroleum consumption began to attract a great deal of attention following the unexpected and substantial oil price increases of 1973-74. There have been a number of large, multi-equation econometric studies of US energy demand since then which have focused primarily on estimating short run and long run price and income elasticities of individual energy resources (coal, oil, natural gas electricity) for various consumer sectors (residential, industrial, commercial). Following these early multi-equation studies there have been several single-equation studies of aggregate US petroleum consumption. When choosing an economic model specification for a single-equation study of aggregate US petroleum consumption, an easily estimated model that will provide unbiased price and income elasticity estimates and yield accurate forecasts is needed. Using Hendry's general-to-simple specification search technique and annual data to obtain a restricted, data-acceptable simplification of a general ADL model yielded GNP and short run price elasticities near the consensus estimates, but a long run price elasticity substantially smaller than existing estimates. Comparisons with three other seemingly acceptable simple-to-general models showed that popular model specifications often involve untested, unacceptable parameter restrictions. These models may also demonstrate poorer forecasting performance. Based on results, the general-to-simple approach appears to offer a more accurate methodology for generating superior forecast models of petroleum consumption and other energy use patterns.

  12. Multiple soil nutrient competition between plants, microbes, and mineral surfaces: model development, parameterization, and example applications in several tropical forests

    DOE PAGES

    Zhu, Q.; Riley, W. J.; Tang, J.; ...

    2016-01-18

    Soil is a complex system where biotic (e.g., plant roots, micro-organisms) and abiotic (e.g., mineral surfaces) consumers compete for resources necessary for life (e.g., nitrogen, phosphorus). This competition is ecologically significant, since it regulates the dynamics of soil nutrients and controls aboveground plant productivity. Here we develop, calibrate and test a nutrient competition model that accounts for multiple soil nutrients interacting with multiple biotic and abiotic consumers. As applied here for tropical forests, the Nutrient COMpetition model (N-COM) includes three primary soil nutrients (NH4+, NO3− and POx; representing the sum of PO43−, HPO42− and H2PO4−) and five potential competitors (plantmore » roots, decomposing microbes, nitrifiers, denitrifiers and mineral surfaces). The competition is formulated with a quasi-steady-state chemical equilibrium approximation to account for substrate (multiple substrates share one consumer) and consumer (multiple consumers compete for one substrate) effects. N-COM successfully reproduced observed soil heterotrophic respiration, N2O emissions, free phosphorus, sorbed phosphorus and NH4+ pools at a tropical forest site (Tapajos). The overall model uncertainty was moderately well constrained. Our sensitivity analysis revealed that soil nutrient competition was primarily regulated by consumer–substrate affinity rather than environmental factors such as soil temperature or soil moisture. Our results also imply that under strong nutrient limitation, relative competitiveness depends strongly on the competitor functional traits (affinity and nutrient carrier enzyme abundance). We then applied the N-COM model to analyze field nitrogen and phosphorus perturbation experiments in two tropical forest sites (in Hawaii and Puerto Rico) not used in model development or calibration. Under soil inorganic nitrogen and phosphorus elevated conditions, the model accurately replicated the experimentally observed

  13. Multiple soil nutrient competition between plants, microbes, and mineral surfaces: model development, parameterization, and example applications in several tropical forests

    NASA Astrophysics Data System (ADS)

    Zhu, Q.; Riley, W. J.; Tang, J.; Koven, C. D.

    2016-01-01

    Soil is a complex system where biotic (e.g., plant roots, micro-organisms) and abiotic (e.g., mineral surfaces) consumers compete for resources necessary for life (e.g., nitrogen, phosphorus). This competition is ecologically significant, since it regulates the dynamics of soil nutrients and controls aboveground plant productivity. Here we develop, calibrate and test a nutrient competition model that accounts for multiple soil nutrients interacting with multiple biotic and abiotic consumers. As applied here for tropical forests, the Nutrient COMpetition model (N-COM) includes three primary soil nutrients (NH4+, NO3- and POx; representing the sum of PO43-, HPO42- and H2PO4-) and five potential competitors (plant roots, decomposing microbes, nitrifiers, denitrifiers and mineral surfaces). The competition is formulated with a quasi-steady-state chemical equilibrium approximation to account for substrate (multiple substrates share one consumer) and consumer (multiple consumers compete for one substrate) effects. N-COM successfully reproduced observed soil heterotrophic respiration, N2O emissions, free phosphorus, sorbed phosphorus and NH4+ pools at a tropical forest site (Tapajos). The overall model uncertainty was moderately well constrained. Our sensitivity analysis revealed that soil nutrient competition was primarily regulated by consumer-substrate affinity rather than environmental factors such as soil temperature or soil moisture. Our results also imply that under strong nutrient limitation, relative competitiveness depends strongly on the competitor functional traits (affinity and nutrient carrier enzyme abundance). We then applied the N-COM model to analyze field nitrogen and phosphorus perturbation experiments in two tropical forest sites (in Hawaii and Puerto Rico) not used in model development or calibration. Under soil inorganic nitrogen and phosphorus elevated conditions, the model accurately

  14. Image-based modelling of nutrient movement in and around the rhizosphere

    PubMed Central

    Daly, Keith R.; Keyes, Samuel D.; Masum, Shakil; Roose, Tiina

    2016-01-01

    In this study, we developed a spatially explicit model for nutrient uptake by root hairs based on X-ray computed tomography images of the rhizosphere soil structure. This work extends our previous work to larger domains and hence is valid for longer times. Unlike the model used previously, which considered only a small region of soil about the root, we considered an effectively infinite volume of bulk soil about the rhizosphere. We asked the question: At what distance away from root surfaces do the specific structural features of root-hair and soil aggregate morphology not matter because average properties start dominating the nutrient transport? The resulting model was used to capture bulk and rhizosphere soil properties by considering representative volumes of soil far from the root and adjacent to the root, respectively. By increasing the size of the volumes that we considered, the diffusive impedance of the bulk soil and root uptake were seen to converge. We did this for two different values of water content. We found that the size of region for which the nutrient uptake properties converged to a fixed value was dependent on the water saturation. In the fully saturated case, the region of soil we needed to consider was only of radius 1.1mm for poorly soil-mobile species such as phosphate. However, in the case of a partially saturated medium (relative saturation 0.3), we found that a radius of 1.4mm was necessary. This suggests that, in addition to the geometrical properties of the rhizosphere, there is an additional effect of soil moisture properties, which extends further from the root and may relate to other chemical changes in the rhizosphere. The latter were not explicitly included in our model. PMID:26739861

  15. Global patterns of phytoplankton nutrient and light colimitation inferred from an optimality-based model

    NASA Astrophysics Data System (ADS)

    Arteaga, Lionel; Pahlow, Markus; Oschlies, Andreas

    2014-07-01

    The widely used concept of constant "Redfield" phytoplankton stoichiometry is often applied for estimating which nutrient limits phytoplankton growth in the surface ocean. Culture experiments, in contrast, show strong relations between growth conditions and cellular stoichiometry with often substantial deviations from Redfield stoichiometry. Here we investigate to what extent both views agree by analyzing remote sensing and in situ data with an optimality-based model of nondiazotrophic phytoplankton growth in order to infer seasonally varying patterns of colimitation by light, nitrogen (N), and phosphorus (P) in the global ocean. Our combined model-data analysis suggests strong N and N-P colimitation in the tropical ocean, seasonal light, and N-P colimitation in the Northern Hemisphere, and strong light limitation only during winter in the Southern Ocean. The eastern equatorial Pacific appears as the only ocean area that is essentially not limited by N, P, or light. Even though our optimality-based approach specifically accounts for flexible stoichiometry, inferred patterns of N and P limitation are to some extent consistent with those obtained from an analysis of surface inorganic nutrients with respect to the Redfield N:P ratio. Iron is not part of our analysis, implying that we cannot accurately predict N cell quotas in high-nutrient, low-chlorophyll regions. Elsewhere, we do not expect a major effect of iron on the relative distribution of N, P, and light colimitation areas. The relative importance of N, P, and light in limiting phytoplankton growth diagnosed here by combining observations and an optimal growth model provides a useful constraint for models used to predict future marine biological production under changing environmental conditions. 2014. American Geophysical Union. All Rights Reserved.

  16. Fresh pear consumption is associated with better nutrient intake, diet quality, and weight parameters in adults: National Health and Nutrition Examination Survey 2001-2010

    Technology Transfer Automated Retrieval System (TEKTRAN)

    No studies have examined the association of consuming fresh pears on nutrient intake or adequacy, diet quality, and cardiovascular risk factors (CVRF). The purpose of this study was to examine these association in adults (n=24,808) participating the NHANES 2001-2010. Covariate adjusted linear regres...

  17. [Construction of conceptual model of data management for nutrient cycling research].

    PubMed

    Shi, Jianping; Sun, Bo; Yang, Linzhang

    2003-11-01

    A large amount of data have been accumulated from the agro-ecosystem nutrient cycling research during recent years. It is necessary to develop a data management system for global decision-making and for preserving from loss. This paper outlined a conceptual model design based on Entity-Relation (E-R) model, presented the model constructing process from user query, and demonstrated a database system using a given model. The results showed that the database implemented from the designed model could provide the function of querying in terms of time, location and theme, and management of various types of data, such as field observation, theme map and research report, and fast extracting and analysis data with spatio-temporal characteristic.

  18. NEW FEATURES OF SIMSAFADIM NUMERICAL MODEL: inclusion of nutrients as a carbonate production factor and sediment compaction

    NASA Astrophysics Data System (ADS)

    Clavera-Gispert, R.; Carmona, A.; Tolosana-Delgado, R.; Gratacós, O.; Bitzer, K.

    2009-04-01

    Carbonate-sedimentary environments are characterized by different groups of organisms living together and competing for space, nutrients and other life-determining factors. The 3D simulation model SIMSAFADIM is used to simulate these environments. In its original state, SIMSAFADIM was a 3D forward process-based model for simulation of stratigraphic architecture and facies distribution in sedimentary basins. It was developed by Bitzer, Salas and Gratacós and considers clastic and carbonate sediments. In a first step, the model simulated carbonate production and sedimentation controlled by water depth, presence of clastic sediments, carbonate mud and predator-prey factors among three species. However other factors are important in carbonate producer species like nutrient supply, which is included in the new version of this code. Nutrients play an important role in species life, because nutrients control which species can appear and how do they grow. Each species needs a specific range of nutrient concentration to grow. Then marine environments are classified in three main groups, depending on their nutrients concentration: oligotrophic, mesotrophic and eutrophic. To model the new environmental variable, the code works with nutrients like any other 'sediment'. These are incorporated into the fluid and flow like clastic sediments, but nutrients are consumed by species and not settled down. The code considers a special situation, when a marine transgression occurs. In this case, when the sea level rises and floods new areas, these flooded areas contribute with an extra concentration of nutrients inflow. Furthermore the program adds a new module to calculate compaction of clastic and carbonate sediments using the deMarsily formulation that follows Terzaghi's consolidation theory.

  19. Dynamics of a producer-grazer model incorporating the effects of excess food nutrient content on grazer's growth.

    PubMed

    Peace, Angela; Wang, Hao; Kuang, Yang

    2014-09-01

    Modeling under the framework of ecological stoichiometric allows the investigation of the effects of food quality on food web population dynamics. Recent discoveries in ecological stoichiometry suggest that grazer dynamics are affected by insufficient food nutrient content (low phosphorus (P)/carbon (C) ratio) as well as excess food nutrient content (high P:C). This phenomenon is known as the "stoichiometric knife edge." While previous models have captured this phenomenon, they do not explicitly track P in the producer or in the media that supports the producer, which brings questions to the validity of their predictions. Here, we extend a Lotka-Volterra-type stoichiometric model by mechanistically deriving and tracking P in the producer and free P in the environment in order to investigate the growth response of Daphnia to algae of varying P:C ratios. Bifurcation analysis and numerical simulations of the full model, that explicitly tracks phosphorus, lead to quantitative different predictions than previous models that neglect to track free nutrients. The full model shows that the fate of the grazer population can be very sensitive to excess nutrient concentrations. Dynamical free nutrient pool seems to induce extreme grazer population density changes when total nutrient is in an intermediate range.

  20. Global solutions to a chemotaxis model with consumption of chemoattractant

    NASA Astrophysics Data System (ADS)

    Wang, Liangchen; Mu, Chunlai; Hu, Xuegang

    2016-08-01

    This paper is devoted to the following chemotaxis system u_t=nabla\\cdot(D(u)nabla u)-nabla\\cdot(S(u)nabla v),quad &xin Ω,quad t>0, v_t=Δ v-uv,quad &xinΩ,quad t>0, under homogeneous Neumann boundary conditions in a smooth bounded domain {Ωsubset {R}^n} ({n≥2}), not necessarily being convex. There are some constants {c_D > 0}, {c_S > 0}, {min{R}} and {qin{R}} such that D(u) ≥ c_D(u+1)^{m-1} quad{and} quad S(u)≤ c_S(u+1)^{q-1}quad for all u≥0. If {q < m+n+2/2n}, it is shown that the model possesses a unique global classical solution which is uniformly bounded; if {q < m/2+n+2/2n}, the global existence of solution is established.

  1. Memantine reduces consumption of highly palatable food in a rat model of binge eating

    PubMed Central

    Kos, Tomasz; Zhang, Yulei; Bisaga, Adam

    2010-01-01

    Excessive consumption of highly palatable food has been linked to the development of eating disorders and obesity, and can be modeled in non-food-deprived rats by offering them a limited (2-h daily) access to an optional dietary fat. Since the glutamatergic system has recently emerged as a viable target for binge-eating medication development, we compared the effects of subchronic treatment with glutamatergic receptor antagonists to the effects of a reference appetite-suppressing agent sibutramine on highly palatable food (lard) and normal chow intake. In three separate experiments, the consumption of a standard laboratory chow and lard were measured during 12 days of medication treatment and for 6 days afterwards. Generalized estimating equations analysis demonstrated that sibutramine (7.5 mg/kg, PO) significantly decreased lard consumption, with a concurrent increase in chow consumption. Sibutramine effects disappeared after treatment discontinuation. The NMDA receptor antagonist memantine (5 mg/kg, IP) significantly decreased lard consumption and increased chow consumption, comparable to effects of sibutramine; however, memantine’s effects persisted after treatment discontinuation. The effects of the mGluR5 antagonist MTEP (7.5 mg/kg, IP) on food consumption were in the same direction as seen with memantine, but the observed differences were not significant. In an additional control experiment, sibutramine and memantine reduced unlimited (24 h) chow intake during the treatment phase. Present results provide evidence that glutamatergic neurotransmission might be involved in the regulation of excessive consumption of highly palatable foods, and suggest that NMDA receptor may be an attractive target for developing obesity and disordered eating pharmacotherapies. PMID:20571841

  2. Modeling nutrient cycling in the North Pacific Subtropical Gyre using an eddy-resolving ocean ecosystem model

    NASA Astrophysics Data System (ADS)

    Hiraike, Yuri; Hasumi, Hiroyasu; Itoh, Sachihiko

    2013-04-01

    An eddy-resolving ecosystem model of the North Pacific is used to investigate the impact of mesoscale eddies on the basin-scale nitrate circulation and supply to the euphotic zone. A simple lower trophic level NPZD ecosystem model with iron limitation on nutrient uptake is coupled to a three dimensional off-line ocean circulation model. The model horizontal resolution is 1/10° × 1/10° cosθ. The focus is on the North Pacific Subtropical Gyre (NPSG) where nitrate in the euphotic zone is low by downwelling due to the Ekman convergence. Recent observational and model studies reveal that the mesoscale eddies have significant impact on oceanic biological production in subtropical gyres. Although there are many studies on mesoscale eddies, a basin-scale picture of impact of mesoscale eddies on nitrate circulation and supply to the euphotic zone is presently poorly known. In the Kuroshio Extension (KE) region, the mesoscale eddies exchange water across the front and affect the biological production. In addition, recent model studies show that the mesoscale eddies contribute to the formation and transport of the Subtropical Model Water (STMW). Although it is suggested that the STMW forms in the KE region and is transported to the NPSG, the effect of the STMW on the nitrate circulation and impact on the biological production in the NPSG is not clear. In addition, the STMW is thought to be important in forming of the Subtropical Countercurrent (STCC) which has large mesoscale eddy activities in the NPSG. It is expected that the seasonal variability of the STCC dominates the seasonal variability of biological production. The results from the eddy-resolving model are compared with results from a low-resolution model. The results of sensitivity experiments to model parameters model parameters are also shown. It is expected that tracer experiments and analysis of nutrient budged reveal eddy effect on the basin-scale nutrient circulation and supply to the euphotic zone in the

  3. Quantifying nutrient export and deposition with a dynamic landscape evolution model for the lake Bolsena watershed, Italy

    NASA Astrophysics Data System (ADS)

    Pelorosso, Raffaele; Temme, Arnoud; Gobattoni, Federica; Leone, Antonio

    2010-05-01

    Excessive nutrient loads from upstream watershed activities such as agriculture, hydrological modifications, and urban runoff, have been identified as the leading cause of deterioration in assessed lakes and reservoirs (USEPA, 2000; Leone et al., 2001; Leone et al., 2003). Excessive nutrient transport into lakes and reservoirs may accelerate eutrophication rates, causing negative impacts on aesthetic and water quality. As reservoirs become eutrophic, they are depleted in oxygen and enriched in suspended solids, with heavy consequences for ecosystems and natural habitats. Management of nutrient loads into reservoirs requires knowledge of nutrient transport and delivery from the watershed-stream system (Ripa, 2003). Managing uncultivated lands in watersheds may be a cost effective way to improve water quality in agricultural landscapes, and recent advances in landscape ecology highlight important relationships between the structural configuration of these lands and nutrient redistribution (e.g., Forman 1987; Barrett and others 1990). Many studies have been carried out to underline and explain how landscape characteristics and structure may affect these processes. In these studies, relations between land cover and nutrient storage were analyzed using geographic information systems (GIS) (e.g. Lucas, 2002). Nutrients are generally transported from the landscape into streams during runoff events; however, they may also enter stream flow from other sources such as groundwater recharge and point source effluent discharges (Lucas, 2002; Nielsen, 2007; Waldron, 2008; Castillo, 2009). Water moves nutrients and delivers them to downstream water bodies such as lakes and reservoirs so that erosion phenomena play an essential role in determining nutrients fluxes and deposition. On the one hand, several hydrological models take into account nutrients reactions, movements and deposition - coupling soil erosion processes with transport equations (Bartley, 2004; Lű, 2010). On the

  4. Consumption of various forms of apples is associated with a better nutrient intake and improved nutrient adequacy in diets of children: National Health and Nutrition Examination Survey 2003-2010

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Consumption of fruit has been associated with a variety of health benefits, yet, 75% of children have usual intakes of total fruit below minimum recommended amounts. Apples are the second most commonly consumed fruit in the United States; however, no studies have examined the impact of apple consump...

  5. Modeling greenhouse gas emissions and nutrient transport in managed arable soils with a fully coupled hydrology-biogeochemical modeling system

    NASA Astrophysics Data System (ADS)

    Haas, Edwin; Klatt, Steffen; Kiese, Ralf; Butterbach-Bahl, Klaus; Kraft, Philipp; Breuer, Lutz

    2015-04-01

    The use of mineral nitrogen fertilizer sustains the global food production and therefore the livelihood of human kind. The rise in world population will put pressure on the global agricultural system to increase its productivity leading most likely to an intensification of mineral nitrogen fertilizer use. The fate of excess nitrogen and its distribution within landscapes is manifold. Process knowledge on the site scale has rapidly grown in recent years and models have been developed to simulate carbon and nitrogen cycling in managed ecosystems on the site scale. Despite first regional studies, the carbon and nitrogen cycling on the landscape or catchment scale is not fully understood. In this study we present a newly developed modelling approach by coupling the fully distributed hydrology model CMF (catchment modelling framework) to the process based regional ecosystem model LandscapeDNDC for the investigation of hydrological processes and carbon and nitrogen transport and cycling, with a focus on nutrient displacement and resulting greenhouse gas emissions in various virtual landscapes / catchment to demonstrate the capabilities of the modelling system. The modelling system was applied to simulate water and nutrient transport at the at the Yanting Agro-ecological Experimental Station of Purple Soil, Sichuan province, China. The catchment hosts cypress forests on the outer regions, arable fields on the sloping croplands cultivated with wheat-maize rotations and paddy rice fields in the lowland. The catchment consists of 300 polygons vertically stratified into 10 soil layers. Ecosystem states (soil water content and nutrients) and fluxes (evapotranspiration) are exchanged between the models at high temporal scales (hourly to daily) forming a 3-dimensional model application. The water flux and nutrients transport in the soil is modelled using a 3D Richards/Darcy approach for subsurface fluxes with a kinematic wave approach for surface water runoff and the

  6. Identification of a nutrient-sensing transcriptional network in monocytes by using inbred rat models on a cafeteria diet

    PubMed Central

    Martínez-Micaelo, Neus; González-Abuín, Noemi; Terra, Ximena; Ardévol, Ana; Pinent, Montserrat; Petretto, Enrico; Blay, Mayte

    2016-01-01

    ABSTRACT Obesity has reached pandemic levels worldwide. The current models of diet-induced obesity in rodents use predominantly high-fat based diets that do not take into account the consumption of variety of highly palatable, energy-dense foods that are prevalent in Western society. We and others have shown that the cafeteria (CAF) diet is a robust and reproducible model of human metabolic syndrome with tissue inflammation in the rat. We have previously shown that inbred rat strains such as Wistar Kyoto (WKY) and Lewis (LEW) show different susceptibilities to CAF diets with distinct metabolic and morphometric profiles. Here, we show a difference in plasma MCP-1 levels and investigate the effect of the CAF diet on peripheral blood monocyte transcriptome, as powerful stress-sensing immune cells, in WKY and LEW rats. We found that 75.5% of the differentially expressed transcripts under the CAF diet were upregulated in WKY rats and were functionally related to the activation of the immune response. Using a gene co-expression network constructed from the genes differentially expressed between CAF diet-fed LEW and WKY rats, we identified acyl-CoA synthetase short-chain family member 2 (Acss2) as a hub gene for a nutrient-sensing cluster of transcripts in monocytes. The Acss2 genomic region is significantly enriched for previously established metabolism quantitative trait loci in the rat. Notably, monocyte expression levels of Acss2 significantly correlated with plasma glucose, triglyceride, leptin and non-esterified fatty acid (NEFA) levels as well as morphometric measurements such as body weight and the total fat following feeding with the CAF diet in the rat. These results show the importance of the genetic background in nutritional genomics and identify inbred rat strains as potential models for CAF-diet-induced obesity. PMID:27483348

  7. Identification of a nutrient-sensing transcriptional network in monocytes by using inbred rat models on a cafeteria diet.

    PubMed

    Martínez-Micaelo, Neus; González-Abuín, Noemi; Terra, Ximena; Ardévol, Ana; Pinent, Montserrat; Petretto, Enrico; Behmoaras, Jacques; Blay, Mayte

    2016-10-01

    Obesity has reached pandemic levels worldwide. The current models of diet-induced obesity in rodents use predominantly high-fat based diets that do not take into account the consumption of variety of highly palatable, energy-dense foods that are prevalent in Western society. We and others have shown that the cafeteria (CAF) diet is a robust and reproducible model of human metabolic syndrome with tissue inflammation in the rat. We have previously shown that inbred rat strains such as Wistar Kyoto (WKY) and Lewis (LEW) show different susceptibilities to CAF diets with distinct metabolic and morphometric profiles. Here, we show a difference in plasma MCP-1 levels and investigate the effect of the CAF diet on peripheral blood monocyte transcriptome, as powerful stress-sensing immune cells, in WKY and LEW rats. We found that 75.5% of the differentially expressed transcripts under the CAF diet were upregulated in WKY rats and were functionally related to the activation of the immune response. Using a gene co-expression network constructed from the genes differentially expressed between CAF diet-fed LEW and WKY rats, we identified acyl-CoA synthetase short-chain family member 2 (Acss2) as a hub gene for a nutrient-sensing cluster of transcripts in monocytes. The Acss2 genomic region is significantly enriched for previously established metabolism quantitative trait loci in the rat. Notably, monocyte expression levels of Acss2 significantly correlated with plasma glucose, triglyceride, leptin and non-esterified fatty acid (NEFA) levels as well as morphometric measurements such as body weight and the total fat following feeding with the CAF diet in the rat. These results show the importance of the genetic background in nutritional genomics and identify inbred rat strains as potential models for CAF-diet-induced obesity.

  8. Modeling nutrient retention in the coastal zone of an eutrophic sea - a model study in the Stockholm Archipelago, Sweden

    NASA Astrophysics Data System (ADS)

    Almroth-Rosell, Elin; Edman, Moa; Eilola, Kari; Meier, Markus; Sahlberg, Jörgen

    2016-04-01

    This study shows that the Stockholm archipelago works as a filter for nutrients that enters the coastal zone from land. The filter capacity is high, but not effective enough to take care of all the nutrients that the system receives. At least 65 % and 72 % of the phosphorus (P) and nitrogen (N), respectively, is retained. The multi-basin one dimensional Swedish Coastal zone Model (SCM) that was used is based on the Swedish Coastal and Ocean Biogeochemical model (SCOBI) coupled to the equation solver PROgram for Boundary layers in the Environment (PROBE). An evaluation of model results showed that the nutrient, salinity and temperature dynamics in the SCM model are of good quality. To analyse the results the Stockholm archipelago was divided into three sub-areas: the inner, the intermediate and the outer archipelago. The analysis showed that the highest total amounts of P and N are retained in the outer archipelago where the surface area is largest. The area weighted retention of P and N, however, is highest in the smaller inner archipelago and decreases towards the open sea. A major part of the retention is permanent. For P sediment burial is the only permanent retention mechanism, but for N almost 92 % of the permanent retention is caused by benthic denitrification, less than 8 % by burial, while pelagic denitrification is below 1%. A reduction of the land load of nutrients (P reduced with 13 % and N with 20%) resulted in increased retention capacity of N and P and lowered the transport of N out from the archipelago. About 15 years after the reduction P is imported into the archipelago instead of being exported.

  9. Underestimation of boreal soil carbon stocks by mathematical soil carbon models linked to soil nutrient status

    NASA Astrophysics Data System (ADS)

    Ťupek, Boris; Ortiz, Carina A.; Hashimoto, Shoji; Stendahl, Johan; Dahlgren, Jonas; Karltun, Erik; Lehtonen, Aleksi

    2016-08-01

    Inaccurate estimate of the largest terrestrial carbon pool, soil organic carbon (SOC) stock, is the major source of uncertainty in simulating feedback of climate warming on ecosystem-atmosphere carbon dioxide exchange by process-based ecosystem and soil carbon models. Although the models need to simplify complex environmental processes of soil carbon sequestration, in a large mosaic of environments a missing key driver could lead to a modeling bias in predictions of SOC stock change.We aimed to evaluate SOC stock estimates of process-based models (Yasso07, Q, and CENTURY soil sub-model v4) against a massive Swedish forest soil inventory data set (3230 samples) organized by a recursive partitioning method into distinct soil groups with underlying SOC stock development linked to physicochemical conditions.For two-thirds of measurements all models predicted accurate SOC stock levels regardless of the detail of input data, e.g., whether they ignored or included soil properties. However, in fertile sites with high N deposition, high cation exchange capacity, or moderately increased soil water content, Yasso07 and Q models underestimated SOC stocks. In comparison to Yasso07 and Q, accounting for the site-specific soil characteristics (e. g. clay content and topsoil mineral N) by CENTURY improved SOC stock estimates for sites with high clay content, but not for sites with high N deposition.Our analysis suggested that the soils with poorly predicted SOC stocks, as characterized by the high nutrient status and well-sorted parent material, indeed have had other predominant drivers of SOC stabilization lacking in the models, presumably the mycorrhizal organic uptake and organo-mineral stabilization processes. Our results imply that the role of soil nutrient status as regulator of organic matter mineralization has to be re-evaluated, since correct SOC stocks are decisive for predicting future SOC change and soil CO2 efflux.

  10. Modeling of Nutrient Transport and the Onset of Hypoxia in a Microfluidic Cell Culture Environment

    NASA Astrophysics Data System (ADS)

    Morshed, Adnan; Dutta, Prashanta

    2016-11-01

    Transport of essential nutrients such as oxygen and ascorbate plays a critical role in dictating tumor growth. For example, hypoxia, the depletion of intracellular oxygen levels below 6%, initiates major changes in cellular dynamics causing tumor cell survival. The intercapillary distance (distance between blood vessels) across a colony of growing tumor cells and the flow around the colony are important factors for the initiation of hypoxia. In this study, the dynamics of intracellular species inside a colony of tumor cells are investigated by varying the flow and unsteady permeation in a microfluidic cell culture device. The oxygen transport across the cell membrane is modeled through diffusion, while ascorbate transport from plasma is addressed by a concentration dependent uptake model. Our model shows that the onset of hypoxia is possible in HeLa cell within the first minute of total extracellular oxygen deprivation. This eventually leads to anoxia inside the cell block representing the development of a necrotic core that maintains a dynamic balance with growing cells and scarce supply. Results also indicate that the intercapillary distance and flow rate of nutrients can alter this balance, which has implications in the progression of hypoxic response. This work was supported in part by the U.S. National Science Foundation under Grant No. DMS 1317671.

  11. Modeling of rotary cement kilns: Applications to reduction in energy consumption

    SciTech Connect

    Mujumdar, K.S.; Arora, A.; Ranade, V.V.

    2006-03-29

    We discuss and evaluate possible ways of reducing energy consumption in rotary cement kilns. A comprehensive one-dimensional model was developed to simulate complex processes occurring in rotary cement kilns. A modeling strategy comprising three submodels, viz. a model for simulating the variation of bed height in the kiln, a model for simulating reactions and heat transfer in the bed region, and a model for simulating coal combustion and heat transfer in the freeboard region, was developed. Melting and formation of coating within the kiln were accounted for. Combustion of coal in the freeboard region was modeled by accounting for devolatilization, finite-rate gas-phase combustion, and char reaction. The simulated results were validated with the available data from three industrial kilns. The model was then used to understand the influence of various design and operating parameters on kiln performance. Several ways of reducing energy consumption in kilns were then computationally investigated. The model was also used to propose and to evaluate a practical solution of using a secondary shell to reduce energy consumption in rotary cement kilns. Simulation results indicate that varying kiln operating variables, viz. solid flow rate or RPM, can result only in small changes in kiln energetics. Use of a secondary shell over the kiln and energy recovery by passing air through the annular gap between the two appears to be a promising way to achieve significant energy savings. The developed model and the presented results will be useful for enhancing the performance of rotary cement kilns.

  12. Factors affecting stream nutrient loads: A synthesis of regional SPARROW model results for the continental United States

    USGS Publications Warehouse

    Preston, Stephen D.; Alexander, Richard B.; Schwarz, Gregory E.; Crawford, Charles G.

    2011-01-01

    We compared the results of 12 recently calibrated regional SPARROW (SPAtially Referenced Regressions On Watershed attributes) models covering most of the continental United States to evaluate the consistency and regional differences in factors affecting stream nutrient loads. The models - 6 for total nitrogen and 6 for total phosphorus - all provide similar levels of prediction accuracy, but those for major river basins in the eastern half of the country were somewhat more accurate. The models simulate long-term mean annual stream nutrient loads as a function of a wide range of known sources and climatic (precipitation, temperature), landscape (e.g., soils, geology), and aquatic factors affecting nutrient fate and transport. The results confirm the dominant effects of urban and agricultural sources on stream nutrient loads nationally and regionally, but reveal considerable spatial variability in the specific types of sources that control water quality. These include regional differences in the relative importance of different types of urban (municipal and industrial point vs. diffuse urban runoff) and agriculture (crop cultivation vs. animal waste) sources, as well as the effects of atmospheric deposition, mining, and background (e.g., soil phosphorus) sources on stream nutrients. Overall, we found that the SPARROW model results provide a consistent set of information for identifying the major sources and environmental factors affecting nutrient fate and transport in United States watersheds at regional and subregional scales. ?? 2011 American Water Resources Association. This article is a U.S. Government work and is in the public domain in the USA.

  13. Alcohol advertising, consumption and abuse: a covariance-structural modelling look at Strickland's data.

    PubMed

    Adlaf, E M; Kohn, P M

    1989-07-01

    Re-analysis employing covariance-structural models was conducted on Strickland's (1983) survey data on 772 drinking students from Grades 7, 9 and 11. These data bear on the relations among alcohol consumption, alcohol abuse, association with drinking peers and exposure to televised alcohol advertising. Whereas Strickland used a just-identified model which, therefore, could not be tested for goodness of fit, our re-analysis tested several alternative models, which could be contradicted by the data. One model did fit his data particularly well. Its major implications are as follows: (1) Symptomatic consumption, negative consequences and self-rated severity of alcohol-related problems apparently reflect a common underlying factor, namely alcohol abuse. (2) Use of alcohol to relieve distress and frequency of intoxication, however, appear not to reflect abuse, although frequent intoxication contributes substantially to it. (3). Alcohol advertising affects consumption directly and abuse indirectly, although peer association has far greater impact on both consumption and abuse. These findings are interpreted as lending little support to further restrictions on advertising.

  14. MODELING NITROGEN-CARBON CYCLING AND OXYGEN CONSUMPTION IN BOTTOM SEDIMENTS

    EPA Science Inventory

    A model framework is presented for simulating nitrogen and carbon cycling at the sediment–water interface, and predicting oxygen consumption by oxidation reactions inside the sediments. Based on conservation of mass and invoking simplifying assumptions, a coupled system of diffus...

  15. Data-driven behavioural modelling of residential water consumption to inform water demand management strategies

    NASA Astrophysics Data System (ADS)

    Giuliani, Matteo; Cominola, Andrea; Alshaf, Ahmad; Castelletti, Andrea; Anda, Martin

    2016-04-01

    The continuous expansion of urban areas worldwide is expected to highly increase residential water demand over the next few years, ultimately challenging the distribution and supply of drinking water. Several studies have recently demonstrated that actions focused only on the water supply side of the problem (e.g., augmenting existing water supply infrastructure) will likely fail to meet future demands, thus calling for the concurrent deployment of effective water demand management strategies (WDMS) to pursue water savings and conservation. However, to be effective WDMS do require a substantial understanding of water consumers' behaviors and consumption patterns at different spatial and temporal resolutions. Retrieving information on users' behaviors, as well as their explanatory and/or causal factors, is key to spot potential areas for targeting water saving efforts and to design user-tailored WDMS, such as education campaigns and personalized recommendations. In this work, we contribute a data-driven approach to identify household water users' consumption behavioural profiles and model their water use habits. State-of-the-art clustering methods are coupled with big data machine learning techniques with the aim of extracting dominant behaviors from a set of water consumption data collected at the household scale. This allows identifying heterogeneous groups of consumers from the studied sample and characterizing them with respect to several consumption features. Our approach is validated onto a real-world household water consumption dataset associated with a variety of demographic and psychographic user data and household attributes, collected in nine towns of the Pilbara and Kimberley Regions of Western Australia. Results show the effectiveness of the proposed method in capturing the influence of candidate determinants on residential water consumption profiles and in attaining sufficiently accurate predictions of users' consumption behaviors, ultimately providing

  16. Internal cycling, not external loading, decides the nutrient limitation in eutrophic lake: A dynamic model with temporal Bayesian hierarchical inference.

    PubMed

    Wu, Zhen; Liu, Yong; Liang, Zhongyao; Wu, Sifeng; Guo, Huaicheng

    2017-03-19

    Lake eutrophication is associated with excessive anthropogenic nutrients (mainly nitrogen (N) and phosphorus (P)) and unobserved internal nutrient cycling. Despite the advances in understanding the role of external loadings, the contribution of internal nutrient cycling is still an open question. A dynamic mass-balance model was developed to simulate and measure the contributions of internal cycling and external loading. It was based on the temporal Bayesian Hierarchical Framework (BHM), where we explored the seasonal patterns in the dynamics of nutrient cycling processes and the limitation of N and P on phytoplankton growth in hyper-eutrophic Lake Dianchi, China. The dynamic patterns of the five state variables (Chla, TP, ammonia, nitrate and organic N) were simulated based on the model. Five parameters (algae growth rate, sediment exchange rate of N and P, nitrification rate and denitrification rate) were estimated based on BHM. The model provided a good fit to observations. Our model results highlighted the role of internal cycling of N and P in Lake Dianchi. The internal cycling processes contributed more than external loading to the N and P changes in the water column. Further insights into the nutrient limitation analysis indicated that the sediment exchange of P determined the P limitation. Allowing for the contribution of denitrification to N removal, N was the more limiting nutrient in most of the time, however, P was the more important nutrient for eutrophication management. For Lake Dianchi, it would not be possible to recover solely by reducing the external watershed nutrient load; the mechanisms of internal cycling should also be considered as an approach to inhibit the release of sediments and to enhance denitrification.

  17. The impact of dairy and sweetened beverage consumption on diet quality, nutrient intake, and weight of a multi-ethnic population of Head Start mothers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To assess the impact of milk and sweetened beverage (SwB) intake on diet and weight in Head Start mothers, three 24-hour dietary recalls were collected on 609 Black (43%), Hispanic (33%), or White (24%) women in AL and TX. Women were divided into four beverage consumption groups: low milk/high SwB, ...

  18. Improvement in fruit and vegetable consumption associated with more favorable energy density and nutrient and food group intake, but not kilocalories

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Children generally do not consume adequate amounts of fruits and vegetables (F/V). Eating more F/V can improve energy density and overall diet quality. Our aim was to investigate whether improvements in F/V consumption were associated with improvements in energy density, total calories, and dietary ...

  19. Incorporating uncertainty into the ranking of SPARROW model nutrient yields from Mississippi/Atchafalaya River basin watersheds

    USGS Publications Warehouse

    Robertson, Dale M.; Schwarz, Gregory E.; Saad, David A.; Alexander, Richard B.

    2009-01-01

    Excessive loads of nutrients transported by tributary rivers have been linked to hypoxia in the Gulf of Mexico. Management efforts to reduce the hypoxic zone in the Gulf of Mexico and improve the water quality of rivers and streams could benefit from targeting nutrient reductions toward watersheds with the highest nutrient yields delivered to sensitive downstream waters. One challenge is that most conventional watershed modeling approaches (e.g., mechanistic models) used in these management decisions do not consider uncertainties in the predictions of nutrient yields and their downstream delivery. The increasing use of parameter estimation procedures to statistically estimate model coefficients, however, allows uncertainties in these predictions to be reliably estimated. Here, we use a robust bootstrapping procedure applied to the results of a previous application of the hybrid statistical/mechanistic watershed model SPARROW (Spatially Referenced Regression On Watershed attributes) to develop a statistically reliable method for identifying “high priority” areas for management, based on a probabilistic ranking of delivered nutrient yields from watersheds throughout a basin. The method is designed to be used by managers to prioritize watersheds where additional stream monitoring and evaluations of nutrient-reduction strategies could be undertaken. Our ranking procedure incorporates information on the confidence intervals of model predictions and the corresponding watershed rankings of the delivered nutrient yields. From this quantified uncertainty, we estimate the probability that individual watersheds are among a collection of watersheds that have the highest delivered nutrient yields. We illustrate the application of the procedure to 818 eight-digit Hydrologic Unit Code watersheds in the Mississippi/Atchafalaya River basin by identifying 150 watersheds having the highest delivered nutrient yields to the Gulf of Mexico. Highest delivered yields were from

  20. CO2 enrichment and N addition increase nutrient loss from decomposing leaf litter in subtropical model forest ecosystems

    PubMed Central

    Liu, Juxiu; Fang, Xiong; Deng, Qi; Han, Tianfeng; Huang, Wenjuan; Li, Yiyong

    2015-01-01

    As atmospheric CO2 concentration increases, many experiments have been carried out to study effects of CO2 enrichment on litter decomposition and nutrient release. However, the result is still uncertain. Meanwhile, the impact of CO2 enrichment on nutrients other than N and P are far less studied. Using open-top chambers, we examined effects of elevated CO2 and N addition on leaf litter decomposition and nutrient release in subtropical model forest ecosystems. We found that both elevated CO2 and N addition increased nutrient (C, N, P, K, Ca, Mg and Zn) loss from the decomposing litter. The N, P, Ca and Zn loss was more than tripled in the chambers exposed to both elevated CO2 and N addition than those in the control chambers after 21 months of treatment. The stimulation of nutrient loss under elevated CO2 was associated with the increased soil moisture, the higher leaf litter quality and the greater soil acidity. Accelerated nutrient release under N addition was related to the higher leaf litter quality, the increased soil microbial biomass and the greater soil acidity. Our results imply that elevated CO2 and N addition will increase nutrient cycling in subtropical China under the future global change. PMID:25608664

  1. CO2 enrichment and N addition increase nutrient loss from decomposing leaf litter in subtropical model forest ecosystems.

    PubMed

    Liu, Juxiu; Fang, Xiong; Deng, Qi; Han, Tianfeng; Huang, Wenjuan; Li, Yiyong

    2015-01-22

    As atmospheric CO2 concentration increases, many experiments have been carried out to study effects of CO2 enrichment on litter decomposition and nutrient release. However, the result is still uncertain. Meanwhile, the impact of CO2 enrichment on nutrients other than N and P are far less studied. Using open-top chambers, we examined effects of elevated CO2 and N addition on leaf litter decomposition and nutrient release in subtropical model forest ecosystems. We found that both elevated CO2 and N addition increased nutrient (C, N, P, K, Ca, Mg and Zn) loss from the decomposing litter. The N, P, Ca and Zn loss was more than tripled in the chambers exposed to both elevated CO2 and N addition than those in the control chambers after 21 months of treatment. The stimulation of nutrient loss under elevated CO2 was associated with the increased soil moisture, the higher leaf litter quality and the greater soil acidity. Accelerated nutrient release under N addition was related to the higher leaf litter quality, the increased soil microbial biomass and the greater soil acidity. Our results imply that elevated CO2 and N addition will increase nutrient cycling in subtropical China under the future global change.

  2. CO2 enrichment and N addition increase nutrient loss from decomposing leaf litter in subtropical model forest ecosystems

    NASA Astrophysics Data System (ADS)

    Liu, Juxiu; Fang, Xiong; Deng, Qi; Han, Tianfeng; Huang, Wenjuan; Li, Yiyong

    2015-01-01

    As atmospheric CO2 concentration increases, many experiments have been carried out to study effects of CO2 enrichment on litter decomposition and nutrient release. However, the result is still uncertain. Meanwhile, the impact of CO2 enrichment on nutrients other than N and P are far less studied. Using open-top chambers, we examined effects of elevated CO2 and N addition on leaf litter decomposition and nutrient release in subtropical model forest ecosystems. We found that both elevated CO2 and N addition increased nutrient (C, N, P, K, Ca, Mg and Zn) loss from the decomposing litter. The N, P, Ca and Zn loss was more than tripled in the chambers exposed to both elevated CO2 and N addition than those in the control chambers after 21 months of treatment. The stimulation of nutrient loss under elevated CO2 was associated with the increased soil moisture, the higher leaf litter quality and the greater soil acidity. Accelerated nutrient release under N addition was related to the higher leaf litter quality, the increased soil microbial biomass and the greater soil acidity. Our results imply that elevated CO2 and N addition will increase nutrient cycling in subtropical China under the future global change.

  3. Testing an agent-based model of bacterial cell motility: How nutrient concentration affects speed distribution

    NASA Astrophysics Data System (ADS)

    Garcia, V.; Birbaumer, M.; Schweitzer, F.

    2011-08-01

    We revisit a recently proposed agent-based model of active biological motion and compare its predictions with own experimental findings for the speed distribution of bacterial cells, Salmonella typhimurium. Agents move according to a stochastic dynamics and use energy stored in an internal depot for metabolism and active motion. We discuss different assumptions of how the conversion from internal to kinetic energy d( v) may depend on the actual speed, to conclude that d 2 v ξ with either ξ = 2 or 1 < ξ < 2 are promising hypotheses. To test these, we compare the model's prediction with the speed distribution of bacteria which were obtained in media of different nutrient concentration and at different times. We find that both hypotheses are in line with the experimental observations, with ξ between 1.67 and 2.0. Regarding the influence of a higher nutrient concentration, we conclude that the take-up of energy by bacterial cells is indeed increased. But this energy is not used to increase the speed, with 40 μm/s as the most probable value of the speed distribution, but is rather spend on metabolism and growth.

  4. Quantifying Groundwater Nutrient Discharge to a Large Glacial Lake using a Watershed Loading Model

    NASA Astrophysics Data System (ADS)

    Schilling, K. E.

    2015-12-01

    Groundwater discharge to a lake is an important, if often neglected, component to water and nutrient budgets. Point measurements of groundwater discharge into a lake are prone to error, so in this study of 15.57 km2 West Lake Okoboji, Iowa, a watershed-based groundwater loading model was developed. Located in northwest Iowa, West Lake Okoboji is considered one of Iowa's premier tourist destinations but is threatened by eutrophication. A network of 21 observation wells was installed in the watershed to evaluate groundwater recharge and quality under representative land cover types in a range of landscape positions. Our objective was to develop typical groundwater responses from various land cover-landscape associations for scaling up to unmonitored areas in the watershed. Results indicated substantial variation in groundwater recharge and quality in the 3847 ha watershed. Recharge was similar among land covers under vegetation but was much lower under urban pavement. Nitrate-nitrogen concentrations were highest under cropped fields and lowest under perennial grassland and golf courses, whereas dissolved phosphorus was highest under residential and urban areas, including an engineered bioswale. A groundwater load allocation model indicated 91% of the nitrate load was from cropped areas and 7% from residential areas. In contrast, P loads were more equally divided among cropped fields (43%), perennial grass (36%) and residential (19%) areas. Based on the mass of nitrate and P in the lake, groundwater accounts for 71% and 18% of the nutrient inputs, respectively.

  5. Annual nutrients export modelling by analysis of landuse and topographic information: case of a small Mediterranean catchment.

    PubMed

    Payraudeau, S; Tournoud, M G; Cernesson, F; Picot, B

    2001-01-01

    The preservation of water bodies from eutrophication implies accurate estimation of phosphorus and nitrogen loads and the control of nutrient production on a catchment scale. In this paper, a simple tool for the modelling of annual nutrient loads is presented. It is implemented in ARC/INFO GIS using Arc Macro Language (AML). The use of a GIS is justified as the spatial characteristics of the catchment area (land use, industrial wastewater location) dictate water quality. The annual nutrient loads are worked out on the catchment scale, using existing GIS routines together with specific routines developed in AML for hydrological and water quality modelling purposes. The catchment area is divided into hydrological subcatchments with relatively homogeneous spatial characteristics. Each subcatchment is linked to a specific nutrient export potential. These nutrient loads, calculated on a subcatchment-by-subcatchment basis, are conveyed to the outlet of the catchment and allow annual nutrient load estimation. A comparison with a water monitoring study is conducted to verify the adequation of modelling results for phosphorus and nitrogen loads.

  6. Modeling energy flow and nutrient cycling in natural semiarid grassland ecosystems with the aid of thematic mapper data

    NASA Technical Reports Server (NTRS)

    Lewis, James K.

    1987-01-01

    Energy flow and nutrient cycling were modeled as affected by herbivory on selected intensive sites along gradients of precipitation and soils, validating the model output by monitoring selected parameters with data derived from the Thematic Mapper (TM). Herbivore production was modeled along the gradient of soils and herbivory, and validated with data derived from TM in a spatial data base.

  7. Glutamate prevents intestinal atrophy via luminal nutrient sensing in a mouse model of total parenteral nutrition.

    PubMed

    Xiao, Weidong; Feng, Yongjia; Holst, Jens J; Hartmann, Bolette; Yang, Hua; Teitelbaum, Daniel H

    2014-05-01

    Small intestine luminal nutrient sensing may be crucial for modulating physiological functions. However, its mechanism of action is incompletely understood. We used a model of enteral nutrient deprivation, or total parenteral nutrition (TPN), resulting in intestinal mucosal atrophy and decreased epithelial barrier function (EBF). We examined how a single amino acid, glutamate (GLM), modulates intestinal epithelial cell (IEC) growth and EBF. Controls were chow-fed mice, T1 receptor-3 (T1R3)-knockout (KO) mice, and treatment with the metabotropic glutamate receptor (mGluR)-5 antagonist MTEP. TPN significantly changed the amount of T1Rs, GLM receptors, and transporters, and GLM prevented these changes. GLM significantly prevented TPN-associated intestinal atrophy (2.5-fold increase in IEC proliferation) and was dependent on up-regulation of the protein kinase pAkt, but independent of T1R3 and mGluR5 signaling. GLM led to a loss of EBF with TPN (60% increase in FITC-dextran permeability, 40% decline in transepithelial resistance); via T1R3, it protected EBF, whereas mGluR5 was associated with EBF loss. GLM led to a decline in circulating glucagon-like peptide 2 (GLP-2) during TPN. The decline was regulated by T1R3 and mGluR5, suggesting a novel negative regulator pathway for IEC proliferation not previously described. Loss of luminal nutrients with TPN administration may widely affect intestinal taste sensing. GLM has previously unrecognized actions on IEC growth and EBF. Restoring luminal sensing via GLM could be a strategy for patients on TPN.

  8. Estimating Summer Nutrient Concentrations in Northeastern Lakes from SPARROW Load Predictions and Modeled Lake Depth and Volume

    PubMed Central

    Milstead, W. Bryan; Hollister, Jeffrey W.; Moore, Richard B.; Walker, Henry A.

    2013-01-01

    Global nutrient cycles have been altered by the use of fossil fuels and fertilizers resulting in increases in nutrient loads to aquatic systems. In the United States, excess nutrients have been repeatedly reported as the primary cause of lake water quality impairments. Setting nutrient criteria that are protective of a lakes ecological condition is one common solution; however, the data required to do this are not always easily available. A useful solution for this is to combine available field data (i.e., The United States Environmental Protection Agency (USEPA) National Lake Assessment (NLA)) with average annual nutrient load models (i.e., USGS SPARROW model) to estimate summer concentrations across a large number of lakes. In this paper we use this combined approach and compare the observed total nitrogen (TN) and total phosphorus (TN) concentrations in Northeastern lakes from the 2007 National Lake Assessment to those predicted by the Northeast SPARROW model. We successfully adjusted the SPARROW predictions to the NLA observations with the use of Vollenweider equations, simple input-output models that predict nutrient concentrations in lakes based on nutrient loads and hydraulic residence time. This allows us to better predict summer concentrations of TN and TP in Northeastern lakes and ponds. On average we improved our predicted concentrations of TN and TP with Vollenweider models by 18.7% for nitrogen and 19.0% for phosphorus. These improved predictions are being used in other studies to model ecosystem services (e.g., aesthetics) and dis-services (e.g. cyanobacterial blooms) for ~18,000 lakes in the Northeastern United States. PMID:24260579

  9. Estimating summer nutrient concentrations in Northeastern lakes from SPARROW load predictions and modeled lake depth and volume.

    PubMed

    Milstead, W Bryan; Hollister, Jeffrey W; Moore, Richard B; Walker, Henry A

    2013-01-01

    Global nutrient cycles have been altered by the use of fossil fuels and fertilizers resulting in increases in nutrient loads to aquatic systems. In the United States, excess nutrients have been repeatedly reported as the primary cause of lake water quality impairments. Setting nutrient criteria that are protective of a lakes ecological condition is one common solution; however, the data required to do this are not always easily available. A useful solution for this is to combine available field data (i.e., The United States Environmental Protection Agency (USEPA) National Lake Assessment (NLA)) with average annual nutrient load models (i.e., USGS SPARROW model) to estimate summer concentrations across a large number of lakes. In this paper we use this combined approach and compare the observed total nitrogen (TN) and total phosphorus (TN) concentrations in Northeastern lakes from the 2007 National Lake Assessment to those predicted by the Northeast SPARROW model. We successfully adjusted the SPARROW predictions to the NLA observations with the use of Vollenweider equations, simple input-output models that predict nutrient concentrations in lakes based on nutrient loads and hydraulic residence time. This allows us to better predict summer concentrations of TN and TP in Northeastern lakes and ponds. On average we improved our predicted concentrations of TN and TP with Vollenweider models by 18.7% for nitrogen and 19.0% for phosphorus. These improved predictions are being used in other studies to model ecosystem services (e.g., aesthetics) and dis-services (e.g. cyanobacterial blooms) for ~18,000 lakes in the Northeastern United States.

  10. Multiple soil nutrient competition between plants, microbes, and mineral surfaces: model development, parameterization, and example applications in several tropical forests

    NASA Astrophysics Data System (ADS)

    Zhu, Q.; Riley, W. J.; Tang, J.; Koven, C. D.

    2015-03-01

    Soil is a complex system where biotic (e.g., plant roots, micro-organisms) and abiotic (e.g., mineral surfaces) consumers compete for resources necessary for life (e.g., nitrogen, phosphorus). This competition is ecologically significant, since it regulates the dynamics of soil nutrients and controls aboveground plant productivity. Here we develop, calibrate, and test a nutrient competition model that accounts for multiple soil nutrients interacting with multiple biotic and abiotic consumers. As applied here for tropical forests, the Nutrient COMpetition model (N-COM) includes three primary soil nutrients (NH4+, NO3-, and POx (representing the sum of PO43-, HPO42-, and H2PO4-)) and five potential competitors (plant roots, decomposing microbes, nitrifiers, denitrifiers, and mineral surfaces). The competition is formulated with a quasi-steady-state chemical equilibrium approximation to account for substrate (multiple substrates share one consumer) and consumer (multiple consumers compete for one substrate) effects. N-COM successfully reproduced observed soil heterotrophic respiration, N2O emissions, free phosphorus, sorbed phosphorus, and free NH4+ at a tropical forest site (Tapajos). The overall model posterior uncertainty was moderately well constrained. Our sensitivity analysis revealed that soil nutrient competition was primarily regulated by consumer-substrate affinity rather than environmental factors such as soil temperature or soil moisture. Our results imply that the competitiveness (from most to least competitive) followed this order: (1) for NH4+, nitrifiers ~ decomposing microbes > plant roots, (2) for NO3-, denitrifiers ~ decomposing microbes > plant roots, (3) for POx, mineral surfaces > decomposing microbes ~ plant roots. Although smaller, plant relative competitiveness is of the same order of magnitude as microbes. We then applied the N-COM model to analyze field nitrogen and phosphorus perturbation experiments in two tropical forest sites (in Hawaii

  11. Modeling changes in red spruce carbon balance and allocation in response to interacting ozone and nutrient stresses.

    PubMed

    Weinstein, David A.; Beloin, Ronald M.; Yanai, Ruth D.

    1991-01-01

    The simulation model TREGRO was developed to analyze the response of red spruce saplings to multiple stresses, such as drought, nutrient deficiency, and exposure to pollutants. The model provides a method of identifying changes in structural and non-structural carbon resources in the tree that may become measurable only after many years of exposure. The model is based on the assumption that the ability of plants to take up and use carbon, water, and nutrients depends on the interrelationships in availability among the three resources. Consequently, the model simulates the simultaneous cycling of these resources. In the model, the tree is divided into the following compartments: a canopy of leaves grouped by age class, branches, stem, and coarse and fine roots in a number of soil horizons. In each of these compartments we track three carbon pools: living structure, dead structure or wood, and total non-structural carbohydrate. The model calculates the photosynthesis of an entire red spruce tree each hour as a function of ambient environmental conditions and the availability of light, water, and nutrients; the daily redistribution of carbon throughout the plant; and the loss of carbon by respiration and senescence. To accomplish this task, the model tracks the flow of carbon dioxide to the sites of fixation within the leaves, the availability of light in the canopy, water and nutrient resources in each of three soil horizons, and the amounts of these resources taken up by the tree. Soil and plant water potentials, photosynthesis, and leaf respiration are simulated on an hourly timestep; nutrient uptake, allocation and growth are computed on a daily timestep. Through a set of example simulations, we demonstrate how the model can be used to examine the mechanisms by which plants respond to stresses experienced alone and in combination. The model was used to predict the growth decrease and the shifting pattern of carbon allocation expected for an isolated tree exposed

  12. Application of the SPARROW model to assess surface-water nutrient conditions and sources in the United States Pacific Northwest

    USGS Publications Warehouse

    Wise, Daniel R.; Johnson, Henry M.

    2013-01-01

    The watershed model SPARROW (Spatially Referenced Regressions on Watershed attributes) was used to estimate mean annual surface-water nutrient conditions (total nitrogen and total phosphorus) and to identify important nutrient sources in catchments of the Pacific Northwest region of the United States for 2002. Model-estimated nutrient yields were generally higher in catchments on the wetter, western side of the Cascade Range than in catchments on the drier, eastern side. The largest source of locally generated total nitrogen stream load in most catchments was runoff from forestland, whereas the largest source of locally generated total phosphorus stream load in most catchments was either geologic material or livestock manure (primarily from grazing livestock). However, the highest total nitrogen and total phosphorus yields were predicted in the relatively small number of catchments where urban sources were the largest contributor to local stream load. Two examples are presented that show how SPARROW results can be applied to large rivers—the relative contribution of different nutrient sources to the total nitrogen load in the Willamette River and the total phosphorus load in the Snake River. The results from this study provided an understanding of the regional patterns in surface-water nutrient conditions and should be useful to researchers and water-quality managers performing local nutrient assessments.

  13. Experimental manipulation of breakfast in normal and overweight/obese participants is associated with changes to nutrient and energy intake consumption patterns.

    PubMed

    Reeves, Sue; Huber, Jörg W; Halsey, Lewis G; Horabady-Farahani, Yasmin; Ijadi, Mehrnaz; Smith, Tina

    2014-06-22

    The effect of breakfast and breakfast omission on daily food intake in normal and overweight participants was investigated. 37 participants were recruited for this experimental study and assigned to one of four groups on the basis of their body mass index (BMI) (normal weight BMI <25 kg/m(2) or overweight/obese BMI >25 kg/m(2)) and breakfast habits (breakfast eater or breakfast omitter). All participants were requested to eat breakfast for an entire week, and then following a washout period, omit breakfast for an entire week, or vice versa. Seven-day food diaries reporting what was consumed and the timing of consumption were completed for each breakfast condition. Overall more energy was consumed during the breakfast than the no breakfast week. The present study revealed significant effects of timing on energy intakes; more energy was consumed during the afternoon in the no breakfast week compared to the breakfast week. Overweight participants consumed greater amounts of energy than normal weight participants in the early evening. Breakfast omitters consumed more than did breakfast eaters later in the evening. All groups consumed significantly less energy, carbohydrate and fibre in the no breakfast week; however, overweight participants increased their sugar intakes. Consumption of the micronutrients iron and folate was reduced in the no breakfast week. The findings highlight that the timing of food intake and habitual breakfast eating behaviour are important factors when investigating why breakfast consumption may be associated with BMI.

  14. A Preliminary Model of Motivation for Pornography Consumption Among Men Participating in Zoophilic Virtual Environments.

    PubMed

    de Souza Aranha E Silva, Renata Almeida; Baltieri, Danilo Antonio

    2016-01-01

    Although zoophilic blogs and websites attract the attention of zoophiles and others who are curious about this sexual activity, the motivations for consuming this type of pornography are not clear. This study aimed to confirm the factorial validity of the Pornography Consumption Inventory in an online sample of men with sexual interest in animals, and to construct an association model between motivations for pornography consumption and the following psychological variables: depression, sexual impulsiveness, and strength of sexual interest in animals. In this cross-sectional study, we located a website that catered to a network of people with a sexual interest in animals. Subsequently, a questionnaire was made available online to members of this network. Results support the 4-factor model of the Pornography Consumption Inventory. Depression and strength of sexual interest in animals were negatively and positively correlated with the sexual curiosity factor, respectively. Sexual impulsiveness was positively associated with the emotional avoidance, excitement seeking, and sexual pleasure factors. Depression and sexual impulsiveness were positively correlated. Psychological factors can differently motivate the consumption of pornography among men who visit zoophilic blogs and websites. With these preliminary data, we can identify some characteristics of this population.

  15. Modeling climate change impact in hospitality sector, using building resources consumption signature

    NASA Astrophysics Data System (ADS)

    Pinto, Armando; Bernardino, Mariana; Silva Santos, António; Pimpão Silva, Álvaro; Espírito Santo, Fátima

    2016-04-01

    Hotels are one of building types that consumes more energy and water per person and are vulnerable to climate change because in the occurrence of extreme events (heat waves, water stress) same failures could compromise the hotel services (comfort) and increase energy cost or compromise the landscape and amenities due to water use restrictions. Climate impact assessments and the development of adaptation strategies require the knowledge about critical climatic variables and also the behaviour of building. To study the risk and vulnerability of buildings and hotels to climate change regarding resources consumption (energy and water), previous studies used building energy modelling simulation (BEMS) tools to study the variation in energy and water consumption. In general, the climate change impact in building is evaluated studying the energy and water demand of the building for future climate scenarios. But, hotels are complex buildings, quite different from each other and assumption done in simplified BEMS aren't calibrated and usually neglect some important hotel features leading to projected estimates that do not usually match hotel sector understanding and practice. Taking account all uncertainties, the use of building signature (statistical method) could be helpful to assess, in a more clear way, the impact of Climate Change in the hospitality sector and using a broad sample. Statistical analysis of the global energy consumption obtained from bills shows that the energy consumption may be predicted within 90% confidence interval only with the outdoor temperature. In this article a simplified methodology is presented and applied to identify the climate change impact in hospitality sector using the building energy and water signature. This methodology is applied to sixteen hotels (nine in Lisbon and seven in Algarve) with four and five stars rating. The results show that is expect an increase in water and electricity consumption (manly due to the increase in

  16. ANIMO 3.5: User`s guide for the ANIMO version 3.5 nutrient leaching model

    SciTech Connect

    Kroes, J.; Roelsma, J.

    1998-12-31

    This document presents a description of the use of the nutrient leaching model ANIMO (Agricultural Nutrient Model) version 3.5 with special emphasis for input instructions. Each input parameter is characterized by its unit, range, data type, variable name in computer code and symbol in theoretical description, Program outputs and program execution are briefly given. An example is presented with values of input parameters and model results. A technical program description is given as a brief description of program structure, nomenclature, and source code.

  17. Re-estimating temperature-dependent consumption parameters in bioenergetics models for juvenile Chinook salmon

    USGS Publications Warehouse

    Plumb, John M.; Moffitt, Christine M.

    2015-01-01

    Researchers have cautioned against the borrowing of consumption and growth parameters from other species and life stages in bioenergetics growth models. In particular, the function that dictates temperature dependence in maximum consumption (Cmax) within the Wisconsin bioenergetics model for Chinook Salmon Oncorhynchus tshawytscha produces estimates that are lower than those measured in published laboratory feeding trials. We used published and unpublished data from laboratory feeding trials with subyearling Chinook Salmon from three stocks (Snake, Nechako, and Big Qualicum rivers) to estimate and adjust the model parameters for temperature dependence in Cmax. The data included growth measures in fish ranging from 1.5 to 7.2 g that were held at temperatures from 14°C to 26°C. Parameters for temperature dependence in Cmax were estimated based on relative differences in food consumption, and bootstrapping techniques were then used to estimate the error about the parameters. We found that at temperatures between 17°C and 25°C, the current parameter values did not match the observed data, indicating that Cmax should be shifted by about 4°C relative to the current implementation under the bioenergetics model. We conclude that the adjusted parameters for Cmax should produce more accurate predictions from the bioenergetics model for subyearling Chinook Salmon.

  18. Transient Thermo-fluid Model of Meniscus Behavior and Slag Consumption in Steel Continuous Casting

    NASA Astrophysics Data System (ADS)

    Jonayat, A. S. M.; Thomas, Brian G.

    2014-10-01

    The behavior of the slag layer between the oscillating mold wall, the slag rim, the slag/liquid steel interface, and the solidifying steel shell, is of immense importance for the surface quality of continuous-cast steel. A computational model of the meniscus region has been developed, that includes transient heat transfer, multi-phase fluid flow, solidification of the slag, and movement of the mold during an oscillation cycle. First, the model is applied to a lab experiment done with a "mold simulator" to verify the transient temperature-field predictions. Next, the model is verified by matching with available literature and plant measurements of slag consumption. A reasonable agreement has been observed for both temperature and flow-field. The predictions show that transient temperature behavior depends on the location of the thermocouple during the oscillation relative to the meniscus. During an oscillation cycle, heat transfer variations in a laboratory frame of reference are more severe than experienced by the moving mold thermocouples, and the local heat transfer rate is increased greatly when steel overflows the meniscus. Finally, the model is applied to conduct a parametric study on the effect of casting speed, stroke, frequency, and modification ratio on slag consumption. Slag consumption per unit area increases with increase of stroke and modification ratio, and decreases with increase of casting speed while the relation with frequency is not straightforward. The match between model predictions and literature trends suggests that this methodology can be used for further investigations.

  19. A Coupled Ocean General Circulation, Biogeochemical, and Radiative Model of the Global Oceans: Seasonal Distributions of Ocean Chlorophyll and Nutrients

    NASA Technical Reports Server (NTRS)

    Gregg, Watson W.; Busalacchi, Antonio (Technical Monitor)

    2000-01-01

    A coupled ocean general circulation, biogeochemical, and radiative model was constructed to evaluate and understand the nature of seasonal variability of chlorophyll and nutrients in the global oceans. Biogeochemical processes in the model are determined from the influences of circulation and turbulence dynamics, irradiance availability. and the interactions among three functional phytoplankton groups (diatoms. chlorophytes, and picoplankton) and three nutrients (nitrate, ammonium, and silicate). Basin scale (greater than 1000 km) model chlorophyll results are in overall agreement with CZCS pigments in many global regions. Seasonal variability observed in the CZCS is also represented in the model. Synoptic scale (100-1000 km) comparisons of imagery are generally in conformance although occasional departures are apparent. Model nitrate distributions agree with in situ data, including seasonal dynamics, except for the equatorial Atlantic. The overall agreement of the model with satellite and in situ data sources indicates that the model dynamics offer a reasonably realistic simulation of phytoplankton and nutrient dynamics on synoptic scales. This is especially true given that initial conditions are homogenous chlorophyll fields. The success of the model in producing a reasonable representation of chlorophyll and nutrient distributions and seasonal variability in the global oceans is attributed to the application of a generalized, processes-driven approach as opposed to regional parameterization and the existence of multiple phytoplankton groups with different physiological and physical properties. These factors enable the model to simultaneously represent many aspects of the great diversity of physical, biological, chemical, and radiative environments encountered in the global oceans.

  20. Estimating catchment nutrient flow with the HBV-NP model: sensitivity to input data.

    PubMed

    Andersson, Lotta; Rosberg, Jörgen; Pers, B Charlotta; Olsson, Jonas; Arheimer, Berit

    2005-11-01

    The dynamic catchment model HBV-N has been further developed by adding routines for phosphorus transport and is now called the HBV-NP model. The model was shown to satisfactorily simulate nutrient dynamics in the Rönneå catchment (1,900 km2). Its sensitivity to input data was tested, and results demonstrated the increased sensitivity to the selection of input data on a subcatchment scale when compared with the catchment scale. Selection of soil and land use databases was found to be critical in some subcatchments but did not have a significant impact on a catchment scale. Although acceptable on a catchment scale, using templates and generalization, with regards to emissions from point sources and rural households, significantly decreased model performance in certain subcatchments when compared with using more detailed local information. A division into 64 subcatchments resulted in similar model performance at the catchment outlet when compared with a lumped approach. Adjusting the imported matrixes of the regional leaching of nitrogen, from agricultural land, against mean subcatchment water percolation did not have a significant impact on the model performance.

  1. A stoichiometric producer-grazer model incorporating the effects of excess food-nutrient content on consumer dynamics.

    PubMed

    Peace, Angela; Zhao, Yuqin; Loladze, Irakli; Elser, James J; Kuang, Yang

    2013-08-01

    There has been important progress in understanding ecological dynamics through the development of the theory of ecological stoichiometry. For example, modeling under this framework allows food quality to affect consumer dynamics. While the effects of nutrient deficiency on consumer growth are well understood, recent discoveries in ecological stoichiometry suggest that consumer dynamics are not only affected by insufficient food nutrient content (low phosphorus (P): carbon (C) ratio) but also by excess food nutrient content (high P:C). This phenomenon is known as the stoichiometric knife edge, in which animal growth is reduced not only by food with low P content but also by food with high P content, and needs to be incorporated into mathematical models. Here we present a Lotka-Volterra type model to investigate the growth response of Daphnia to algae of varying P:C ratios capturing the mechanism of the stoichiometric knife edge.

  2. Sexual Preferences in Nutrient Utilization Regulate Oxygen Consumption and Reactive Oxygen Species Generation in Schistosoma mansoni: Potential Implications for Parasite Redox Biology

    PubMed Central

    Oliveira, Matheus P.; Correa Soares, Juliana B. R.; Oliveira, Marcus F.

    2016-01-01

    Schistosoma mansoni, one of the causative agents of human schistosomiasis, has a unique antioxidant network that is key to parasite survival and a valuable chemotherapeutic target. The ability to detoxify and tolerate reactive oxygen species increases along S. mansoni development in the vertebrate host, suggesting that adult parasites are more exposed to redox challenges than young stages. Indeed, adult parasites are exposed to multiple redox insults generated from blood digestion, activated immune cells, and, potentially, from their own parasitic aerobic metabolism. However, it remains unknown how reactive oxygen species are produced by S. mansoni metabolism, as well as their biological effects on adult worms. Here, we assessed the contribution of nutrients and parasite gender to oxygen utilization pathways, and reactive oxygen species generation in whole unpaired adult S. mansoni worms. We also determined the susceptibilities of both parasite sexes to a pro-oxidant challenge. We observed that glutamine and serum importantly contribute to both respiratory and non-respiratory oxygen utilization in adult worms, but with different proportions among parasite sexes. Analyses of oxygen utilization pathways revealed that respiratory rates were high in male worms, which contrast with high non-respiratory rates in females, regardless nutritional sources. Interestingly, mitochondrial complex I-III activity was higher than complex IV specifically in females. We also observed sexual preferences in substrate utilization to sustain hydrogen peroxide production towards glucose in females, and glutamine in male worms. Despite strikingly high oxidant levels and hydrogen peroxide production rates, female worms were more resistant to a pro-oxidant challenge than male parasites. The data presented here indicate that sexual preferences in nutrient metabolism in adult S. mansoni worms regulate oxygen utilization and reactive oxygen species production, which may differently contribute

  3. Benchmarking biological nutrient removal in wastewater treatment plants: influence of mathematical model assumptions.

    PubMed

    Flores-Alsina, Xavier; Gernaey, Krist V; Jeppsson, Ulf

    2012-01-01

    This paper examines the effect of different model assumptions when describing biological nutrient removal (BNR) by the activated sludge models (ASM) 1, 2d & 3. The performance of a nitrogen removal (WWTP1) and a combined nitrogen and phosphorus removal (WWTP2) benchmark wastewater treatment plant was compared for a series of model assumptions. Three different model approaches describing BNR are considered. In the reference case, the original model implementations are used to simulate WWTP1 (ASM1 & 3) and WWTP2 (ASM2d). The second set of models includes a reactive settler, which extends the description of the non-reactive TSS sedimentation and transport in the reference case with the full set of ASM processes. Finally, the third set of models is based on including electron acceptor dependency of biomass decay rates for ASM1 (WWTP1) and ASM2d (WWTP2). The results show that incorporation of a reactive settler: (1) increases the hydrolysis of particulates; (2) increases the overall plant's denitrification efficiency by reducing the S(NOx) concentration at the bottom of the clarifier; (3) increases the oxidation of COD compounds; (4) increases X(OHO) and X(ANO) decay; and, finally, (5) increases the growth of X(PAO) and formation of X(PHA,Stor) for ASM2d, which has a major impact on the whole P removal system. Introduction of electron acceptor dependent decay leads to a substantial increase of the concentration of X(ANO), X(OHO) and X(PAO) in the bottom of the clarifier. The paper ends with a critical discussion of the influence of the different model assumptions, and emphasizes the need for a model user to understand the significant differences in simulation results that are obtained when applying different combinations of 'standard' models.

  4. Oxygen consumption rates in subseafloor basaltic crust derived from a reaction transport model.

    PubMed

    Orcutt, Beth N; Wheat, C Geoffrey; Rouxel, Olivier; Hulme, Samuel; Edwards, Katrina J; Bach, Wolfgang

    2013-01-01

    Oceanic crust is the largest potential habitat for life on Earth and may contain a significant fraction of Earth's total microbial biomass; yet, empirical analysis of reaction rates in basaltic crust is lacking. Here we report the first assessment of oxygen consumption in young (~8 Ma) and cool (<25 °C) basaltic crust, which we calculate from modelling dissolved oxygen and strontium pore water gradients in basal sediments collected during Integrated Ocean Drilling Program Expedition 336 to 'North Pond' on the western flank of the Mid-Atlantic Ridge. Dissolved oxygen is completely consumed within the upper to middle section of the sediment column, with an increase in concentration towards the sediment-basement interface, indicating an upward supply from oxic fluids circulating within the crust. A parametric reaction transport model of oxygen behaviour in upper basement suggests oxygen consumption rates of 1 nmol  cm(-3)ROCK d(-1) or less in young and cool basaltic crust.

  5. Is the stokeslet model sufficient for finding nutrient uptake of microscopic suspension feeders?

    NASA Astrophysics Data System (ADS)

    Lutton, Alexander T.; Pepper, Rachel E.

    2016-11-01

    Microscopic sessile suspension feeders are part of many aquatic ecosystems. They are single-celled, vary in size from a few to about 100 microns in length, live attached to substrates, and serve important ecological roles as both food for larger organisms and consumers of bacteria and other small particles. These organisms create currents in order to bring food toward them. Understanding these currents may allow us not only deeper insight into the ecology of aquatic ecosystems, but also may enable innovation in water treatment. Simulations of the feeding currents of these organisms typically use a simple model that places a stokeslet above an infinite plane boundary representing the surface of attachment. This model produces a useful approximation for the flow field of the organism, but may be of limited accuracy when the organism is near the boundary. We create a different model composed of a stokeslet and a potential dipole, which form a sphere. This sphere has a sin(θ) tangential velocity boundary condition, accounting for the cell body. Using nutrient flux to the organism as our metric, we investigate the discrepancy between the spherical and stokeslet models in order to determine the efficacy of the stokeslet model as an approximation of single-celled suspension feeders.

  6. Modelling water discharges and nutrient inputs into a Mediterranean lagoon (Thau, France). Impact on phytoplankton production.

    NASA Astrophysics Data System (ADS)

    Plus, M.; La Jeunesse, I.; Bouraoui, F.

    2003-04-01

    The lagoon of Thau (French Mediterranean coast), is a large (75 km2) and rather deep coastal lagoon (mean depth 4 m), connected to the sea by its two extremities (residence time: about 3 months). Besides its ecological interest as a breeding and transit zone for some sea fish species, the lagoon has a notable economic importance due to shellfish cultivation with an annual oyster production of about 15 000 tons. This considerable production depends to a large extent on nutrient inputs into the ecosystem, supplied mainly from fresh water. The catchment area is about 280 Km2, including agriculture (mainly vineyards), industrial activities and urban waste. Due to the low water renewal and to the intensive shellfish farming activities the Thau lagoon is particularly sensitive to any modification in watershed outputs. The aim of this study is to assess the impact of watershed outputs on the lagoon ecosystem. The Soil and Water Assessment Tool (SWAT model) has been applied to the Thau lagoon catchment area in order to simulate water discharges and nutrients (ammonium, nitrate, and phosphates) inputs into the lagoon on a 10 years period (1989-1999). The model has been calibrated and validated using measured data available for the two main rivers of the watershed, representing about 50% of total freshwater inputs. The model predictions compared favourably with the measurements concerning water quantity as well as major water quality determinants (ammonium, nitrate, phosphates, and suspended matter). Then, several scenarios (e. g. changes in agricultural practices) have been run and the simulated results were used as forcing variables in a lagoon ecosystem model, previously developed for Thau. The latter is a three-dimensional model coupling both hydrodynamical and biological processes. The following state variables are simulated in the model biological part: ammonia, nitrates, phytoplankton, zooplankton, detritus, oyster biodeposits and oxygen. In addition to the inputs

  7. Modeling controlled nutrient release from polymer coated fertilizers: diffusion release from single granules.

    PubMed

    Shaviv, Avi; Raban, Smadar; Zaidel, Elina

    2003-05-15

    A comprehensive model describing the complex and "non-Fickian" (mathematically nonlinear) nature of the release from single granules of membrane coated, controlled release fertilizers (CRFs) is proposed consisting of three stages: i. a lag period during which water penetrates the coating of the granule dissolving part of the solid fertilizer in it ii. a period of linear release during which water penetration into and release out occur concomitantly while the total volume of the granules remains practically constant; and iii. a period of "decaying release", starting as the concentration inside the granule starts to decrease. A mathematical model was developed based on vapor and nutrient diffusion equations. The model predicts the release stages in terms of measurable geometrical and chemophysical parameters such as the following: the product of granule radius and coating thickness, water and solute permeability, saturation concentration of the fertilizer, and its density. The model successfully predicts the complex and "sigmoidal" pattern of release that is essential for matching plant temporal demand to ensure high agronomic and environmental effectiveness. It also lends itself to more complex statistical formulations which account for the large variability within large populations of coated CRFs and can serve for further improving CRF production and performance.

  8. Modeled diversity effects on microbial ecosystem functions of primary production, nutrient uptake, and remineralization.

    PubMed

    Goebel, Nicole L; Edwards, Christopher A; Follows, Michael J; Zehr, Jonathan P

    2014-01-01

    Ecosystem-wide primary productivity generally increases with primary producer diversity, emphasizing the importance of diversity for ecosystem function. However, most studies that demonstrate this positive relationship have focused on terrestrial and aquatic benthic systems, with little attention to the diverse marine pelagic primary producers that play an important role in regulating global climate. Here we show how phytoplankton biodiversity enhances overall marine ecosystem primary productivity and other ecosystem functions using a self-organizing ecosystem model. Diversity manipulation numerical experiments reveal positive, asymptotically saturating relationships between ecosystem-wide phytoplankton diversity and functions of productivity, nutrient uptake, remineralization, and diversity metrics used to identify mechanisms shaping these relationships. Increase in productivity with increasing diversity improves modeled ecosystem stability and model robustness and leads to productivity rates that exceed expected yields primarily through niche complementarity and facilitative interactions between coexisting phytoplankton types; the composition of traits in assemblages determines the magnitude of complementarity and selection effects. While findings based on these aggregate measures of diversity effects parallel those from the majority of experimental outcomes of terrestrial and benthic biodiversity-ecosystem function studies, we combine analyses of community diversity effects and investigations of the underlying interactions among phytoplankton types to demonstrate how an increase in recycled production of non-diatoms through an increase in new production of diatoms drives this diversity-cosystem function response. We demonstrate the important role that facilitation plays in the modeled marine plankton and how this facilitative interaction could amplify future climate-driven changes in ocean ecosystem productivity.

  9. Modelling of multi-nutrient interactions in growth of the dinoflagellate microalga Protoceratium reticulatum using artificial neural networks.

    PubMed

    López-Rosales, L; Gallardo-Rodríguez, J J; Sánchez-Mirón, A; Contreras-Gómez, A; García-Camacho, F; Molina-Grima, E

    2013-10-01

    This study examines the use of artificial neural networks as predictive tools for the growth of the dinoflagellate microalga Protoceratium reticulatum. Feed-forward back-propagation neural networks (FBN), using Levenberg-Marquardt back-propagation or Bayesian regularization as training functions, offered the best results in terms of representing the nonlinear interactions among all nutrients in a culture medium containing 26 different components. A FBN configuration of 26-14-1 layers was selected. The FBN model was trained using more than 500 culture experiments on a shake flask scale. Garson's algorithm provided a valuable means of evaluating the relative importance of nutrients in terms of microalgal growth. Microelements and vitamins had a significant importance (approximately 70%) in relation to macronutrients (nearly 25%), despite their concentrations in the culture medium being various orders of magnitude smaller. The approach presented here may be useful for modelling multi-nutrient interactions in photobioreactors.

  10. Pyruvate modifies metabolic flux and nutrient sensing during extracorporeal membrane oxygenation in an immature swine model

    PubMed Central

    Ledee, Dolena R.; Kajimoto, Masaki; O'Kelly Priddy, Colleen M.; Olson, Aaron K.; Isern, Nancy; Robillard-Frayne, Isabelle; Des Rosiers, Christine

    2015-01-01

    Extracorporeal membrane oxygenation (ECMO) provides mechanical circulatory support for infants and children with postoperative cardiopulmonary failure. Nutritional support is mandatory during ECMO although specific actions for substrates on the heart have not been delineated. Prior work shows that enhancing pyruvate oxidation promotes successful weaning from ECMO. Accordingly, we tested the hypothesis that prolonged systemic pyruvate supplementation activates pyruvate oxidation in an immature swine model in vivo. Twelve male mixed-breed Yorkshire piglets (age 30–49 days) received systemic infusion of either normal saline (group C) or pyruvate (group P) during the final 6 h of 8 h of ECMO. Over the final hour, piglets received [2-13C] pyruvate, as a reference substrate for oxidation, and [13C6]-l-leucine, as an indicator for amino acid oxidation and protein synthesis. A significant increase in lactate and pyruvate concentrations occurred, along with an increase in the absolute concentration of the citric acid cycle intermediates. An increase in anaplerotic flux through pyruvate carboxylation in group P occurred compared with no change in pyruvate oxidation. Additionally, pyruvate promoted an increase in the phosphorylation state of several nutrient-sensitive enzymes, like AMP-activated protein kinase and acetyl CoA carboxylase, suggesting activation for fatty acid oxidation. Pyruvate also promoted O-GlcNAcylation through the hexosamine biosynthetic pathway. In conclusion, although prolonged pyruvate supplementation did not alter pyruvate oxidation, it did elicit changes in nutrient- and energy-sensitive pathways. Therefore, the observed results support the further study of pyruvate and its downstream effect on cardiac function. PMID:25910802

  11. Out-of-hand nut consumption is associated with improved nutrient intake and health risk markers in US children and adults: National Health and Nutrition Examination Survey 1999-2004.

    PubMed

    O'Neil, Carol E; Keast, Debra R; Nicklas, Theresa A; Fulgoni, Victor L

    2012-03-01

    The purpose of this study was to determine the association of out-of-hand nut (OOHN) consumption with nutrient intake, diet quality, and the prevalence of risk factors for cardiovascular disease and metabolic syndrome. Data from 24-hour recalls from individuals aged 2+ years (n = 24,385) participating in the 1999-2004 National Health and Nutrition Examination Survey were used. The population was divided into children aged 2 to 11, 12 to 18, and adults 19+ years, and each group was dichotomized into OOHN consumers and nonconsumers. Out-of-hand nut consumers were defined as those individuals consuming ¼ oz of nuts or more per d. Means, standard errors, and covariate-adjusted analyses of variance were determined using appropriate sample weights. Diet quality was determined using the Healthy Eating Index-2005. Significance was set at P < .05. The percent of OOHN consumers increased with age: 2.1% ± 0.3%, 2.6% ± 0.3%, 6.5% ± 0.5%, and 9.6% ± 0.5% those aged 2 to 11, 12 to 18, 19 to 50, and 51+ years, respectively. The 2 latter groups were combined into a single group of consumers aged 19+ years for subsequent analyses. Consumers of OOHN from all age groups had higher intakes of energy, monounsaturated and polyunsaturated fatty acids, dietary fiber, copper, and magnesium and lower intakes of carbohydrates, cholesterol, and sodium than did nonconsumers. Diet quality was higher in OOHN consumers of all age groups. In children aged 2 to 11 years, consumers had a higher prevalence of overweight/obesity. In those aged 12 to 18 years, weight and percent overweight were lower in consumers. Adult consumers had higher high-density lipoprotein cholesterol, red blood cell folate, and serum folate levels and lower insulin, glycohemoglobin, and C-reactive protein levels than did nonconsumers. Adult consumers also had a 19% decreased risk of hypertension and a 21% decreased risk of low high-density lipoprotein cholesterol levels. Data suggested that OOHN consumption was

  12. SPARROW models used to understand nutrient sources in the Mississippi/Atchafalaya River Basin

    USGS Publications Warehouse

    Robertson, Dale M.; Saad, David A.

    2013-01-01

    Nitrogen (N) and phosphorus (P) loading from the Mississippi/Atchafalaya River Basin (MARB) has been linked to hypoxia in the Gulf of Mexico. To describe where and from what sources those loads originate, SPAtially Referenced Regression On Watershed attributes (SPARROW) models were constructed for the MARB using geospatial datasets for 2002, including inputs from wastewater treatment plants (WWTPs), and calibration sites throughout the MARB. Previous studies found that highest N and P yields were from the north-central part of the MARB (Corn Belt). Based on the MARB SPARROW models, highest N yields were still from the Corn Belt but centered over Iowa and Indiana, and highest P yields were widely distributed throughout the center of the MARB. Similar to that found in other studies, agricultural inputs were found to be the largest N and P sources throughout most of the MARB: farm fertilizers were the largest N source, whereas farm fertilizers, manure, and urban inputs were dominant P sources. The MARB models enable individual N and P sources to be defined at scales ranging from SPARROW catchments (∼50 km2) to the entire area of the MARB. Inputs of P from WWTPs and urban areas were more important than found in most other studies. Information from this study will help to reduce nutrient loading from the MARB by providing managers with a description of where each of the sources of N and P are most important, thus providing a basis for prioritizing management actions and ultimately reducing the extent of Gulf hypoxia.

  13. SPARROW Models Used to Understand Nutrient Sources in the Mississippi/Atchafalaya River Basin.

    PubMed

    Robertson, Dale M; Saad, David A

    2013-09-01

    Nitrogen (N) and phosphorus (P) loading from the Mississippi/Atchafalaya River Basin (MARB) has been linked to hypoxia in the Gulf of Mexico. To describe where and from what sources those loads originate, SPAtially Referenced Regression On Watershed attributes (SPARROW) models were constructed for the MARB using geospatial datasets for 2002, including inputs from wastewater treatment plants (WWTPs), and calibration sites throughout the MARB. Previous studies found that highest N and P yields were from the north-central part of the MARB (Corn Belt). Based on the MARB SPARROW models, highest N yields were still from the Corn Belt but centered over Iowa and Indiana, and highest P yields were widely distributed throughout the center of the MARB. Similar to that found in other studies, agricultural inputs were found to be the largest N and P sources throughout most of the MARB: farm fertilizers were the largest N source, whereas farm fertilizers, manure, and urban inputs were dominant P sources. The MARB models enable individual N and P sources to be defined at scales ranging from SPARROW catchments (∼50 km) to the entire area of the MARB. Inputs of P from WWTPs and urban areas were more important than found in most other studies. Information from this study will help to reduce nutrient loading from the MARB by providing managers with a description of where each of the sources of N and P are most important, thus providing a basis for prioritizing management actions and ultimately reducing the extent of Gulf hypoxia.

  14. Modeling of Current Consumption in 802.15.4/ZigBee Sensor Motes

    PubMed Central

    Casilari, Eduardo; Cano-García, Jose M.; Campos-Garrido, Gonzalo

    2010-01-01

    Battery consumption is a key aspect in the performance of wireless sensor networks. One of the most promising technologies for this type of networks is 802.15.4/ZigBee. This paper presents an empirical characterization of battery consumption in commercial 802.15.4/ZigBee motes. This characterization is based on the measurement of the current that is drained from the power source under different 802.15.4 communication operations. The measurements permit the definition of an analytical model to predict the maximum, minimum and mean expected battery lifetime of a sensor networking application as a function of the sensor duty cycle and the size of the sensed data. PMID:22219671

  15. Modeling of current consumption in 802.15.4/ZigBee sensor motes.

    PubMed

    Casilari, Eduardo; Cano-García, Jose M; Campos-Garrido, Gonzalo

    2010-01-01

    Battery consumption is a key aspect in the performance of wireless sensor networks. One of the most promising technologies for this type of networks is 802.15.4/ZigBee. This paper presents an empirical characterization of battery consumption in commercial 802.15.4/ZigBee motes. This characterization is based on the measurement of the current that is drained from the power source under different 802.15.4 communication operations. The measurements permit the definition of an analytical model to predict the maximum, minimum and mean expected battery lifetime of a sensor networking application as a function of the sensor duty cycle and the size of the sensed data.

  16. Optimizing Energy Consumption in Building Designs Using Building Information Model (BIM)

    NASA Astrophysics Data System (ADS)

    Egwunatum, Samuel; Joseph-Akwara, Esther; Akaigwe, Richard

    2016-09-01

    Given the ability of a Building Information Model (BIM) to serve as a multi-disciplinary data repository, this paper seeks to explore and exploit the sustainability value of Building Information Modelling/models in delivering buildings that require less energy for their operation, emit less CO2 and at the same time provide a comfortable living environment for their occupants. This objective was achieved by a critical and extensive review of the literature covering: (1) building energy consumption, (2) building energy performance and analysis, and (3) building information modeling and energy assessment. The literature cited in this paper showed that linking an energy analysis tool with a BIM model helped project design teams to predict and create optimized energy consumption. To validate this finding, an in-depth analysis was carried out on a completed BIM integrated construction project using the Arboleda Project in the Dominican Republic. The findings showed that the BIM-based energy analysis helped the design team achieve the world's first 103% positive energy building. From the research findings, the paper concludes that linking an energy analysis tool with a BIM model helps to expedite the energy analysis process, provide more detailed and accurate results as well as deliver energy-efficient buildings. The study further recommends that the adoption of a level 2 BIM and the integration of BIM in energy optimization analyse should be made compulsory for all projects irrespective of the method of procurement (government-funded or otherwise) or its size.

  17. Identification of spatiotemporal nutrient patterns in a coastal bay via an integrated k-means clustering and gravity model.

    PubMed

    Chang, Ni-Bin; Wimberly, Brent; Xuan, Zhemin

    2012-03-01

    This study presents an integrated k-means clustering and gravity model (IKCGM) for investigating the spatiotemporal patterns of nutrient and associated dissolved oxygen levels in Tampa Bay, Florida. By using a k-means clustering analysis to first partition the nutrient data into a user-specified number of subsets, it is possible to discover the spatiotemporal patterns of nutrient distribution in the bay and capture the inherent linkages of hydrodynamic and biogeochemical features. Such patterns may then be combined with a gravity model to link the nutrient source contribution from each coastal watershed to the generated clusters in the bay to aid in the source proportion analysis for environmental management. The clustering analysis was carried out based on 1 year (2008) water quality data composed of 55 sample stations throughout Tampa Bay collected by the Environmental Protection Commission of Hillsborough County. In addition, hydrological and river water quality data of the same year were acquired from the United States Geological Survey's National Water Information System to support the gravity modeling analysis. The results show that the k-means model with 8 clusters is the optimal choice, in which cluster 2 at Lower Tampa Bay had the minimum values of total nitrogen (TN) concentrations, chlorophyll a (Chl-a) concentrations, and ocean color values in every season as well as the minimum concentration of total phosphorus (TP) in three consecutive seasons in 2008. The datasets indicate that Lower Tampa Bay is an area with limited nutrient input throughout the year. Cluster 5, located in Middle Tampa Bay, displayed elevated TN concentrations, ocean color values, and Chl-a concentrations, suggesting that high values of colored dissolved organic matter are linked with some nutrient sources. The data presented by the gravity modeling analysis indicate that the Alafia River Basin is the major contributor of nutrients in terms of both TP and TN values in all seasons

  18. Nutrient-induced modulation of gene expression and cellular functions: modeling epigenetic regulation in bovine cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Volatile fatty acids (VFA), especially butyrate, participate in metabolism both as nutrients and as regulators of histone deacetylation. The major biochemical change that occurs in cells treated with butyrate is the global hyperacetylation of histones. One paradigmatic example of the nutrient-epige...

  19. How much certainty is enough? Validation of a nutrient retention model for prioritizing watershed conservation in North Carolina

    NASA Astrophysics Data System (ADS)

    Hamel, P.; Chaplin-Kramer, R.; Benner, R.

    2013-12-01

    Context Quantifying ecosystems services, nature's benefits to people, is an area of active research in water resource management. Increasingly, water utilities and basin management authorities are interested in optimizing watershed scale conservation strategies to mitigate the economic and environmental impacts of land-use and hydrological changes. While many models are available to represent hydrological processes in a spatially explicit way, large uncertainties remain associated with i) the biophysical outputs of these models (e.g., nutrient concentration at a given location), and ii) the service valuation method to support specific decisions (e.g., targeting conservation areas based on their contribution to retaining nutrient). Better understanding these uncertainties and their impact on the decision process is critical for establishing credibility of such models in a planning context. Methods To address this issue in an emerging payments for watershed services program in the Cape Fear watershed, North Carolina, USA, we tested and validated the use of a nutrient retention model (InVEST) for targeting conservation activities. Specifically, we modeled water yield and nutrient transport throughout the watershed and valued the retention service provided by forested areas. Observed flow and water quality data at multiple locations allowed calibration of the model at the watershed level as well as the subwatershed level. By comparing the results from each model parameterization, we were able to assess the uncertainties related to both the model structure and parameter estimation. Finally, we assessed the use of the model for climate scenario simulation by characterizing its ability to represent inter-annual variability. Results and discussion The spatial analyses showed that the two calibration approaches could yield distinct parameter sets, both for the water yield and the nutrient model. These results imply a difference in the absolute nutrient concentration

  20. Do gamblers eat more salt? Testing a latent trait model of covariance in consumption

    PubMed Central

    Goodwin, Belinda C.; Browne, Matthew; Rockloff, Matthew; Donaldson, Phillip

    2015-01-01

    A diverse class of stimuli, including certain foods, substances, media, and economic behaviours, may be described as ‘reward-oriented’ in that they provide immediate reinforcement with little initial investment. Neurophysiological and personality concepts, including dopaminergic dysfunction, reward sensitivity and rash impulsivity, each predict the existence of a latent behavioural trait that leads to increased consumption of all stimuli in this class. Whilst bivariate relationships (co-morbidities) are often reported in the literature, to our knowledge, a multivariate investigation of this possible trait has not been done. We surveyed 1,194 participants (550 male) on their typical weekly consumption of 11 types of reward-oriented stimuli, including fast food, salt, caffeine, television, gambling products, and illicit drugs. Confirmatory factor analysis was used to compare models in a 3×3 structure, based on the definition of a single latent factor (none, fixed loadings, or estimated loadings), and assumed residual covariance structure (none, a-priori / literature based, or post-hoc / data-driven). The inclusion of a single latent behavioural ‘consumption’ factor significantly improved model fit in all cases. Also confirming theoretical predictions, estimated factor loadings on reward-oriented indicators were uniformly positive, regardless of assumptions regarding residual covariances. Additionally, the latent trait was found to be negatively correlated with the non-reward-oriented indicators of fruit and vegetable consumption. The findings support the notion of a single behavioural trait leading to increased consumption of reward-oriented stimuli across multiple modalities. We discuss implications regarding the concentration of negative lifestyle-related health behaviours. PMID:26551907

  1. IMPACT OF IMPROVED FAT-MEAT PRODUCTS CONSUMPTION ON ANTHROPOMETRIC MARKERS AND NUTRIENT INTAKES OF MALE VOLUNTEERS AT INCREASED CARDIOVASCULAR RISK.

    PubMed

    Celada, Paloma; Delgado-Pando, Gonzalo; Olmedilla-Alonso, Begoña; Jiménez-Colmenero, Francisco; Ruperto, Mar; Sánchez-Muniz, Francisco J

    2015-08-01

    Introducción: la carne es una matriz adecuada para la inclusión de ingredientes funcionales. En un estudio no secuencial controlado y aleatorio se evaluó el impacto del consumo de productos cárnicos, en los que se sustituyó la grasa animal por una combinación de aceite de oliva, de linaza y de pescado, sobre la ingesta de energía y nutrientes y sobre los marcadores antropométricos. Métodos: dieciocho voluntarios con elevado riesgo cardiovascular consumieron semanalmente 200 g de salchichas tipo frankfurt y 250 g de paté durante tres períodos sucesivos de 4 semanas (bajo en grasa (RF); enriquecidos en n-3 (n-3RF), y grasa normal (NF)), separados por un lavado de 4 semanas. Se evaluó la ingesta de nutrientes y energía, el índice de alimentación saludable (HEI) y los cambios antropométricos. Resultados: hubo diferencias significativas entre períodos para las tasas de cambio de la grasa corporal y de la relación cintura/cadera (p = 0,018 y p = 0,031, respectivamente), disminuyendo la masa grasa, el perímetro de la cintura y la relación cintura/cadera en el periodo RF, e incrementándose la grasa corporal en el periodo NF (todos p = 0,05). En el período n-3RF las tasas de cambio de IMC y del peso ideal correlacionaron inversa y significativamente (p = 0.003 y p = 0.006, respectivamente) con el cociente hidratos de carbono/AGS. El HEI inicial de las dietas fue muy bajo (valor medio < 60). La contribución energética de carbohidratos, grasa y proteínas fue 40%, 41% y 16%, respectivamente. Más del 33% de los voluntarios no cubrían al inicio el 70% de las RDA para minerales y vitaminas. La intervención mejoró en todos los períodos la ingesta de Zn, Ca, equivalentes de retinol, folatos y vitamina B12. En el período n-3RF incrementó los AGPn-3 y redujo el cociente n-6/n-3. Conclusión: los productos cárnicos con menos grasa o enriquecidos en AGP n-3 son alimentos funcionales para personas con sobrepeso/obesidad, ya que su consumo mejora los

  2. Good oral health, adequate nutrient consumption and family support are associated with a reduced risk of being underweight amongst older Malaysian residents of publicly funded shelter homes.

    PubMed

    Visvanathan, Renuka; Ahmad, Zaiton

    2006-01-01

    A low body mass index in older people has been associated with increased mortality. The main objective of this study was to identify factors associated with low body mass indices [ BMIs] (< 18.5 kg/m2) in older residents of shelter care facilities in Peninsular Malaysia. 1081 elderly people (59% M) over the age of 60 years were surveyed using questionnaires determining baseline demographics, nutritional and cognitive status, physical function and psychological well being. Body mass index was also determined. Subjects were recruited from publicly funded shelter homes in Peninsular Malaysia. 14.3% of residents had BMIs < 18.5 kg/m2. Multivariate analyses (adjusted for age and sex) revealed that having no family (RR 1.98[95%CI 1.40-2.82], p<0.001) and negative responses to statement 3 [I eat few fruits or vegetables or milk products] (RR 0.62 [95% CI 0.42-0.90]; P= 0.013) and statement 5 [I have tooth or mouth problems that make it hard for me to eat] (RR 0.69 [95%CI 0.50-0.96]; P= 0.023) of the ' Determine Your Nutritional Health Checklist' were independently associated with low BMIs (<18.5 kg/m2). Older people with no family support were at risk of becoming underweight. Older people who consumed fruits, vegetables or milk or had good oral health were less likely to be underweight. Nutrient intake, oral health and social support were important in ensuring healthy body weight in older Malaysians.

  3. Agriculture and future riverine nitrogen export to US coastal regions: Insights from the Nutrient Export from WaterSheds Model

    EPA Science Inventory

    We examine contemporary (2000) and future (2030) estimates of coastal N loads in the continental US by the Nutrient Export from WaterSheds (NEWS) model. Future estimates are based on Millennium Ecosystem Assessment (MEA) scenarios and two additional scenarios that reflect “...

  4. A Method for Modeling Household Occupant Behavior to Simulate Residential Energy Consumption

    SciTech Connect

    Johnson, Brandon J; Starke, Michael R; Abdelaziz, Omar; Jackson, Roderick K; Tolbert, Leon M

    2014-01-01

    This paper presents a statistical method for modeling the behavior of household occupants to estimate residential energy consumption. Using data gathered by the U.S. Census Bureau in the American Time Use Survey (ATUS), actions carried out by survey respondents are categorized into ten distinct activities. These activities are defined to correspond to the major energy consuming loads commonly found within the residential sector. Next, time varying minute resolution Markov chain based statistical models of different occupant types are developed. Using these behavioral models, individual occupants are simulated to show how an occupant interacts with the major residential energy consuming loads throughout the day. From these simulations, the minimum number of occupants, and consequently the minimum number of multiple occupant households, needing to be simulated to produce a statistically accurate representation of aggregate residential behavior can be determined. Finally, future work will involve the use of these occupant models along side residential load models to produce a high-resolution energy consumption profile and estimate the potential for demand response from residential loads.

  5. Maternal Nutrient Restriction in Guinea Pigs as an Animal Model for Inducing Fetal Growth Restriction.

    PubMed

    Elias, Alexander A; Ghaly, Andrew; Matushewski, Brad; Regnault, Timothy R H; Richardson, Bryan S

    2016-02-01

    We determined the impact of moderate maternal nutrient restriction (MNR) in guinea pigs on pregnancy outcomes, maternal/fetal growth parameters, and blood analytes to further characterize the utility of this model for inducing fetal growth restriction (FGR). Thirty guinea pig sows were fed ad libitum (Control) or 70% of the control diet prepregnant switching to 90% at midpregnancy (MNR). Animals were necropsied near term with weights obtained on all sows, fetuses, and placenta. Fetal blood sampling and organ dissection were undertaken in appropriate for gestational age (AGA) fetuses from Control litters and FGR fetuses from MNR litters using > or < 80 g which approximated the 10th percentile for the population weight distribution of the Control fetuses. MNR fetal demise rates (1/43) were extremely low in contrast to that seen with uterine artery ligation/ablation models, albeit with increased preterm delivery in MNR sows (3 of 15). We confirm that MNR fetuses are smaller and have increased placental/fetal weight ratios as often seen in human FGR infants. We provide justification for using a fetal weight threshold for categorizing AGA Control and FGR-MNR cohorts reducing population variance, and show that FGR-MNR fetuses have asymmetrical organ growth, and are polycythemic and hypoglycemic which are also well associated with moderate FGR in humans. These findings further support the utility of moderate MNR in guinea pigs for inducing FGR with many similarities to that in humans with moderate growth restriction whether resulting from maternal undernourishment or placental insufficiency.

  6. Hydrological improvements for nutrient and pollutant emission modeling in large scale catchments

    NASA Astrophysics Data System (ADS)

    Höllering, S.; Ihringer, J.

    2012-04-01

    An estimation of emissions and loads of nutrients and pollutants into European water bodies with as much accuracy as possible depends largely on the knowledge about the spatially and temporally distributed hydrological runoff patterns. An improved hydrological water balance model for the pollutant emission model MoRE (Modeling of Regionalized Emissions) (IWG, 2011) has been introduced, that can form an adequate basis to simulate discharge in a hydrologically differentiated, land-use based way to subsequently provide the required distributed discharge components. First of all the hydrological model had to comply both with requirements of space and time in order to calculate sufficiently precise the water balance on the catchment scale spatially distributed in sub-catchments and with a higher temporal resolution. Aiming to reproduce seasonal dynamics and the characteristic hydrological regimes of river catchments a daily (instead of a yearly) time increment was applied allowing for a more process oriented simulation of discharge dynamics, volume and therefore water balance. The enhancement of the hydrological model became also necessary to potentially account for the hydrological functioning of catchments in regard to scenarios of e.g. a changing climate or alterations of land use. As a deterministic, partly physically based, conceptual hydrological watershed and water balance model the Precipitation Runoff Modeling System (PRMS) (USGS, 2009) was selected to improve the hydrological input for MoRE. In PRMS the spatial discretization is implemented with sub-catchments and so called hydrologic response units (HRUs) which are the hydrotropic, distributed, finite modeling entities each having a homogeneous runoff reaction due to hydro-meteorological events. Spatial structures and heterogeneities in sub-catchments e.g. urbanity, land use and soil types were identified to derive hydrological similarities and classify in different urban and rural HRUs. In this way the

  7. Modelling fuel consumption in kerbside source segregated food waste collection: separate collection and co-collection.

    PubMed

    Chu, T W; Heaven, S; Gredmaier, L

    2015-01-01

    Source separated food waste is a valuable feedstock for renewable energy production through anaerobic digestion, and a variety of collection schemes for this material have recently been introduced. The aim of this study was to identify options that maximize collection efficiency and reduce fuel consumption as part of the overall energy balance. A mechanistic model was developed to calculate the fuel consumption of kerbside collection of source segregated food waste, co-mingled dry recyclables and residual waste. A hypothetical city of 20,000 households was considered and nine scenarios were tested with different combinations of collection frequencies, vehicle types and waste types. The results showed that the potential fuel savings from weekly and fortnightly co-collection of household waste range from 7.4% to 22.4% and 1.8% to 26.6%, respectively, when compared to separate collection. A compartmentalized vehicle split 30:70 always performed better than one with two compartments of equal size. Weekly food waste collection with alternate weekly collection of the recyclables and residual waste by two-compartment collection vehicles was the best option to reduce the overall fuel consumption.

  8. Moderate consumption of Cabernet Sauvignon attenuates Abeta neuropathology in a mouse model of Alzheimer's disease.

    PubMed

    Wang, Jun; Ho, Lap; Zhao, Zhong; Seror, Ilana; Humala, Nelson; Dickstein, Dara L; Thiyagarajan, Meenakshisundaram; Percival, Susan S; Talcott, Stephen T; Pasinetti, Giulio Maria

    2006-11-01

    Recent studies suggest that moderate red wine consumption reduces the incidence of Alzheimer's disease (AD) clinical dementia. Using Tg2576 mice, which model AD-type amyloid beta-protein (Abeta) neuropathology, we tested whether moderate consumption of the red wine Cabernet Sauvignon modulates AD-type neuropathology and cognitive deterioration. The wine used in the study was generated using Cabernet Sauvignon grapes from Fresno, California, and was delivered to Tg2576 in a final concentration of approximately 6% ethanol. We found that Cabernet Sauvignon significantly attenuated AD-type deterioration of spatial memory function and Abeta neuropathology in Tg2576 mice relative to control Tg2576 mice that were treated with either a comparable amount of ethanol or water alone. Chemical analysis showed the Cabernet Sauvignon used in this study contains a very low content of resveratrol (0.2 mg/L), 10-fold lower than the minimal effective concentration shown to promote Abeta clearance in vitro. Our studies suggest Cabernet Sauvignon exerts a beneficial effect by promoting nonamyloidogenic processing of amyloid precursor protein, which ultimately prevents the generation of Abeta peptides. This study supports epidemiological evidence indicating that moderate wine consumption, within the range recommended by the FDA dietary guidelines of one drink per day for women and two for men, may help reduce the relative risk for AD clinical dementia.

  9. Can nutrient pathways and biotic interactions control eutrophication in riverine ecosystems? Evidence from a model driven mesocosm experiment.

    PubMed

    Jäger, Christoph G; Hagemann, Jeske; Borchardt, Dietrich

    2017-05-15

    Ecological theory predicts that the relative importance of benthic to planktonic primary production usually changes along the rivers' continuum from a predomination of benthic algae in lower stream orders to a predomination of planktonic algae at higher orders. Underlying mechanisms driving the interaction between algae in these habitats, its controlling factors and consequences for riverine ecosystems are, however, only partly understood. We present a mechanistic analysis of the governing ecological processes using a simplified, numerical model and examine how abiotic factors and biotic interactions influence benthic and planktonic algae by changing resource competition. We compare the outcome of the model with the results of a factorial mesocosm experiment mimicking the parameter spaces of the model. The results show a remarkable similarity with regard to the temporal development of benthic and pelagic algal biomass and shifting dominance patterns. In particular we analyse the effects of the pathways of nutrient supply (upwelling from the hyporheic zone, direct supply to the surface water, or via both pathways) and grazing in a gradient of river depths. Our results show that detachment of benthic algae, sinking of planktonic algae and the pathway of nutrient supply are key processes determining the respective algal biomass distributions particularly in shallow and intermediate deep systems. Increasing nutrient supply increases algal biomasses, but does not change the general pattern of the interactions. Decreasing light supply decreases the dominance of planktonic algae, but increases dissolved nutrients. At intermediate to high grazing rates algal biomass can be controlled by grazers, but however, at high grazing rates, dissolved nutrients accumulate in the surface water. Our results indicate that nutrient pathways, resource competition and internal control by grazing need to be considered explicitly for the understanding and explanation of eutrophication

  10. Influence of nutrient utilization and remineralization stoichiometry on phytoplankton species and carbon export: A modeling study at BATS

    NASA Astrophysics Data System (ADS)

    Salihoglu, B.; Garçon, V.; Oschlies, A.; Lomas, M. W.

    2008-01-01

    The primary objective of this research is to understand the underlying mechanisms of the time-varying flux of carbon in the Sargasso Sea. To address this objective, a one-dimensional multi-component lower trophic level ecosystem model that includes detailed algal physiology as well as nutrient cycles is used at the Bermuda Atlantic Time-series Study (BATS, 31∘40'N, 64∘10'W) site. In this model autotrophic growth is represented by three algal groups and the cell quota approach is used to estimate algal growth and nutrient uptake. This model is tested and evaluated for year 1998 using the bimonthly BATS cruise data. Results show that phosphorus and dissolved organic matter (DOM) are necessary compartments to correctly simulate organic elemental cycles at the BATS site. Model results show that autotrophic eukaryotes and cyanobacteria (i.e. Prochlorococcus and Synechococcus) are the most abundant algal groups and are responsible for 63% and 33% of carbon production in the region, respectively. Sensitivity analyses show that the annual contribution of nitrogen fixation and atmospheric nitrogen deposition to new production is approximately 9% and 3%, respectively. However, the recycled nitrogen and phosphorus are important components of the ecosystem dynamics because sustained growth of algal groups depends on remineralized nutrients which accounts for 75% of the annual carbon production. Nutrient uptake and remineralization stoichiometry can play an important role in determining the surface ocean nutrient distribution. Model results suggest phosphate limitation even during the spring bloom. Phosphate may thus limit the growth of all algal groups throughout the year.

  11. Modeling biogeochemical processes in subterranean estuaries: Effect of flow dynamics and redox conditions on submarine groundwater discharge of nutrients

    NASA Astrophysics Data System (ADS)

    Spiteri, Claudette; Slomp, Caroline P.; Tuncay, Kagan; Meile, Christof

    2008-02-01

    A two-dimensional density-dependent reactive transport model, which couples groundwater flow and biogeochemical reactions, is used to investigate the fate of nutrients (NO3-, NH4+, and PO4) in idealized subterranean estuaries representing four end-members of oxic/anoxic aquifer and seawater redox conditions. Results from the simplified model representations show that the prevalent flow characteristics and redox conditions in the freshwater-seawater mixing zone determine the extent of nutrient removal and the input of nitrogen and phosphorus to coastal waters. At low to moderate groundwater velocities, simultaneous nitrification and denitrification can lead to a reversal in the depth of freshwater NO3- and NH4+-PO4 plumes, compared to their original positions at the landward source. Model results suggest that autotrophic denitrification pathways with Fe2+ or FeS2 may provide an important, often overlooked link between nitrogen and phosphorus biogeochemistry through the precipitation of iron oxides and subsequent binding of phosphorus. Simulations also highlight that deviations of nutrient data from conservative mixing curves do not necessarily indicate nutrient removal.

  12. Modeling external carbon addition in biological nutrient removal processes with an extension of the international water association activated sludge model.

    PubMed

    Swinarski, M; Makinia, J; Stensel, H D; Czerwionka, K; Drewnowski, J

    2012-08-01

    The aim of this study was to expand the International Water Association Activated Sludge Model No. 2d (ASM2d) to account for a newly defined readily biodegradable substrate that can be consumed by polyphosphate-accumulating organisms (PAOs) under anoxic and aerobic conditions, but not under anaerobic conditions. The model change was to add a new substrate component and process terms for its use by PAOs and other heterotrophic bacteria under anoxic and aerobic conditions. The Gdansk (Poland) wastewater treatment plant (WWTP), which has a modified University of Cape Town (MUCT) process for nutrient removal, provided field data and mixed liquor for batch tests for model evaluation. The original ASM2d was first calibrated under dynamic conditions with the results of batch tests with settled wastewater and mixed liquor, in which nitrate-uptake rates, phosphorus-release rates, and anoxic phosphorus uptake rates were followed. Model validation was conducted with data from a 96-hour measurement campaign in the full-scale WWTP. The results of similar batch tests with ethanol and fusel oil as the external carbon sources were used to adjust kinetic and stoichiometric coefficients in the expanded ASM2d. Both models were compared based on their predictions of the effect of adding supplemental carbon to the anoxic zone of an MUCT process. In comparison with the ASM2d, the new model better predicted the anoxic behaviors of carbonaceous oxygen demand, nitrate-nitrogen (NO3-N), and phosphorous (PO4-P) in batch experiments with ethanol and fusel oil. However, when simulating ethanol addition to the anoxic zone of a full-scale biological nutrient removal facility, both models predicted similar effluent NO3-N concentrations (6.6 to 6.9 g N/m3). For the particular application, effective enhanced biological phosphorus removal was predicted by both models with external carbon addition but, for the new model, the effluent PO4-P concentration was approximately one-half of that found from

  13. Seasonal Distributions of Global Ocean Chlorophyll and Nutrients: Analysis with a Coupled Ocean General Circulation Biogeochemical, and Radiative Model

    NASA Technical Reports Server (NTRS)

    Gregg, Watson W.

    1999-01-01

    A coupled general ocean circulation, biogeochemical, and radiative model was constructed to evaluate and understand the nature of seasonal variability of chlorophyll and nutrients in the global oceans. The model is driven by climatological meteorological conditions, cloud cover, and sea surface temperature. Biogeochemical processes in the model are determined from the influences of circulation and turbulence dynamics, irradiance availability, and the interactions among three functional phytoplankton groups (diatoms, chorophytes, and picoplankton) and three nutrient groups (nitrate, ammonium, and silicate). Phytoplankton groups are initialized as homogeneous fields horizontally and vertically, and allowed to distribute themselves according to the prevailing conditions. Basin-scale model chlorophyll results are in very good agreement with CZCS pigments in virtually every global region. Seasonal variability observed in the CZCS is also well represented in the model. Synoptic scale (100-1000 km) comparisons of imagery are also in good conformance, although occasional departures are apparent. Agreement of nitrate distributions with in situ data is even better, including seasonal dynamics, except for the equatorial Atlantic. The good agreement of the model with satellite and in situ data sources indicates that the model dynamics realistically simulate phytoplankton and nutrient dynamics on synoptic scales. This is especially true given that initial conditions are homogenous chlorophyll fields. The success of the model in producing a reasonable representation of chlorophyll and nutrient distributions and seasonal variability in the global oceans is attributed to the application of a generalized, processes-driven approach as opposed to regional parameterization, and the existence of multiple phytoplankton groups with different physiological and physical properties. These factors enable the model to simultaneously represent the great diversity of physical, biological

  14. Data to support statistical modeling of instream nutrient load based on watershed attributes, southeastern United States, 2002

    USGS Publications Warehouse

    Hoos, Anne B.; Terziotti, Silvia; McMahon, Gerard; Savvas, Katerina; Tighe, Kirsten C.; Alkons-Wolinsky, Ruth

    2008-01-01

    This report presents and describes the digital datasets that characterize nutrient source inputs, environmental characteristics, and instream nutrient loads for the purpose of calibrating and applying a nutrient water-quality model for the southeastern United States for 2002. The model area includes all of the river basins draining to the south Atlantic and the eastern Gulf of Mexico, as well as the Tennessee River basin (referred to collectively as the SAGT area). The water-quality model SPARROW (SPAtially-Referenced Regression On Watershed attributes), developed by the U.S. Geological Survey, uses a regression equation to describe the relation between watershed attributes (predictors) and measured instream loads (response). Watershed attributes that are considered to describe nutrient input conditions and are tested in the SPARROW model for the SAGT area as source variables include atmospheric deposition, fertilizer application to farmland, manure from livestock production, permitted wastewater discharge, and land cover. Watershed and channel attributes that are considered to affect rates of nutrient transport from land to water and are tested in the SAGT SPARROW model as nutrient-transport variables include characteristics of soil, landform, climate, reach time of travel, and reservoir hydraulic loading. Datasets with estimates of each of these attributes for each individual reach or catchment in the reach-catchment network are presented in this report, along with descriptions of methods used to produce them. Measurements of nutrient water quality at stream monitoring sites from a combination of monitoring programs were used to develop observations of the response variable - mean annual nitrogen or phosphorus load - in the SPARROW regression equation. Instream load of nitrogen and phosphorus was estimated using bias-corrected log-linear regression models using the program Fluxmaster, which provides temporally detrended estimates of long-term mean load well

  15. Comparison of Real World Energy Consumption to Models and Department of Energy Test Procedures

    SciTech Connect

    Goetzler, William; Sutherland, Timothy; Kar, Rahul; Foley, Kevin

    2011-09-01

    This study investigated the real-world energy performance of appliances and equipment as it compared with models and test procedures. The study looked to determine whether the U.S. Department of Energy and industry test procedures actually replicate real world conditions, whether performance degrades over time, and whether installation patterns and procedures differ from the ideal procedures. The study first identified and prioritized appliances to be evaluated. Then, the study determined whether real world energy consumption differed substantially from predictions and also assessed whether performance degrades over time. Finally, the study recommended test procedure modifications and areas for future research.

  16. Analyzing the Energy and Power Consumption of Remote Memory Accesses in the OpenSHMEM Model

    SciTech Connect

    Jana, Siddhartha; Hernandez, Oscar R; Poole, Stephen W; Hsu, Chung-Hsing; Chapman, Barbara

    2014-01-01

    PGAS models like OpenSHMEM provide interfaces to explicitly initiate one-sided remote memory accesses among processes. In addition, the model also provides synchronizing barriers to ensure a consistent view of the distributed memory at different phases of an application. The incorrect use of such interfaces affects the scalability achievable while using a parallel programming model. This study aims at understanding the effects of these constructs on the energy and power consumption behavior of OpenSHMEM applications. Our experiments show that cost incurred in terms of the total energy and power consumed depends on multiple factors across the software and hardware stack. We conclude that there is a significant impact on the power consumed by the CPU and DRAM due to multiple factors including the design of the data transfer patterns within an application, the design of the communication protocols within a middleware, the architectural constraints laid by the interconnect solutions, and also the levels of memory hierarchy within a compute node. This work motivates treating energy and power consumption as important factors while designing compute solutions for current and future distributed systems.

  17. Quantitative Models for Ecosystem Assessment in Narragansett Bay: Response to Nutrient Loading and Other Stressors

    EPA Science Inventory

    Multiple drivers, including nutrient loading and climate change, affect the Narragansett Bay ecosystem. Managers are interested in understanding the timing and magnitude of these effects, as well as ecosystem responses to restoration actions, such as the capacity and potential fo...

  18. Bayesian Modeling of the Assimilative Capacity Component of Stream Nutrient Export

    EPA Science Inventory

    Implementing stream restoration techniques and best management practices to reduce nonpoint source nutrients implies enhancement of the assimilative capacity for the stream system. In this paper, a Bayesian method for evaluating this component of a TMDL load capacity is developed...

  19. Tree species identity and interactions with neighbors determine nutrient leaching in model tropical forests.

    PubMed

    Ewel, John J; Bigelow, Seth W

    2011-12-01

    An ecosystem containing a mixture of species that differ in phenology, morphology, and physiology might be expected to resist leaching of soil nutrients to a greater extent than one composed of a single species. We tested the effects of species identity and plant-life-form richness on nutrient leaching at a lowland tropical site where deep infiltration averages >2 m year(-1). Three indigenous tree species with contrasting leafing phenologies (evergreen, dry-season deciduous, and wet-season deciduous) were grown in monoculture and together with two other life-forms with which they commonly occur in tropical forests: a palm and a giant, perennial herb. To calculate nutrient leaching over an 11-year period, concentrations of nutrients in soil water were multiplied by drainage rates estimated from a water balance. The effect of plant-life-form richness on retention differed according to tree species identity and nutrient. Nitrate retention was greater in polycultures of the dry-season deciduous tree species (mean of 7.4 kg ha(-1) year(-1) of NO(3)-N lost compared to 12.7 in monoculture), and calcium and magnesium retention were greater in polycultures of the evergreen and wet-season deciduous tree species. Complementary use of light led to intensification of soil exploitation by roots, the main agent responsible for enhanced nutrient retention in some polycultures. Other mechanisms included differences in nutrient demand among species, and avoidance of catastrophic failure due to episodic weather events or pest outbreaks. Even unrealistically simple multi-life-form mimics of tropical forest can safeguard a site's nutrient capital if careful attention is paid to species' characteristics and temporal changes in interspecific interactions.

  20. The Good, the Bad, and the Tiny: A Simple, Mechanistic-Probabilistic Model of Virus-Nutrient Colimitation in Microbes

    PubMed Central

    Cael, B. B.

    2015-01-01

    For phytoplankton and other microbes, nutrient receptors are often the passages through which viruses invade. This presents a bottom-up vs. top-down, co-limitation scenario; how do these would-be-hosts balance minimizing viral susceptibility with maximizing uptake of limiting nutrient(s)? This question has been addressed in the biological literature on evolutionary timescales for populations, but a shorter timescale, mechanistic perspective is lacking, and marine viral literature suggests the strong influence of additional factors, e.g. host size; while the literature on both nutrient uptake and host-virus interactions is expansive, their intersection, of ubiquitous relevance to marine environments, is understudied. I present a simple, mechanistic model from first principles to analyze the effect of this co-limitation scenario on individual growth, which suggests that in environments with high risk of viral invasion or spatial/temporal heterogeneity, an individual host’s growth rate may be optimized with respect to receptor coverage, producing top-down selective pressure on short timescales. The model has general applicability, is suggestive of hypotheses for empirical exploration, and can be extended to theoretical studies of more complex behaviors and systems. PMID:26600042

  1. Temperature effects on stocks and stability of a phytoplankton-zooplankton model and the dependence on light and nutrients

    USGS Publications Warehouse

    Norberg, J.; DeAngelis, D.L.

    1997-01-01

    A model of a closed phytoplankton—zooplankton ecosystem was analyzed for effects of temperature on stocks and stability and the dependence of these effects on light and total nutrient concentration of the system. An analysis of the steady state equations showed that the effect of temperature on zooplankton and POM biomass was levelled when primary production is nutrient limited. Temperature increase had a generally negative effect on all biomasses at high nutrient levels due to increased maintenance costs. Nutrient limitation of net primary production is the main factor governing the effect of stocks and flows as well as the stability of the system. All components of the system, except for phytoplankton biomass, are proportional to net production and thus to the net effect of light on photosynthesis. However, temperature determines the slope of that relationship. The resilience of the system was measured by calculating the eigenvalues of the steady state. Under oligotrophic conditions, the system can be stable, but an increase in temperature can cause instability or a decrease in resilience. This conclusion is discussed in the face of recent models that take spatial heterogeneity into account and display far more stable behavior, in better agreement to empirical data. Using simulations, we found that the amplitude of fluctuations of the herbivore stock increases with temperature while the mean biomass and minimum values decrease in comparison with steady state predictions

  2. Nutrient delivery to Lake Winnipeg from the Red-Assiniboine River Basin – A binational application of the SPARROW model

    USGS Publications Warehouse

    Benoy, Glenn A; Jenkinson, R. Wayne; Robertson, Dale; Saad, David A.

    2016-01-01

    Excessive phosphorus (TP) and nitrogen (TN) inputs from the Red–Assiniboine River Basin (RARB) have been linked to eutrophication of Lake Winnipeg; therefore, it is important for the management of water resources to understand where and from what sources these nutrients originate. The RARB straddles the Canada–United States border and includes portions of two provinces and three states. This study represents the first binationally focused application of SPAtially Referenced Regressions on Watershed attributes (SPARROW) models to estimate loads and sources of TP and TN by jurisdiction and basin at multiple spatial scales. Major hurdles overcome to develop these models included: (1) harmonization of geospatial data sets, particularly construction of a contiguous stream network; and (2) use of novel calibration steps to accommodate limitations in spatial variability across the model extent and in the number of calibration sites. Using nutrient inputs for a 2002 base year, a RARB TP SPARROW model was calibrated that included inputs from agriculture, forests and wetlands, wastewater treatment plants (WWTPs) and stream channels, and a TN model was calibrated that included inputs from agriculture, WWTPs and atmospheric deposition. At the RARB outlet, downstream from Winnipeg, Manitoba, the majority of the delivered TP and TN came from the Red River Basin (90%), followed by the Upper Assiniboine River and Souris River basins. Agriculture was the single most important TP and TN source for each major basin, province and state. In general, stream channels (historically deposited nutrients and from bank erosion) were the second most important source of TP. Performance metrics for the RARB SPARROW model are similarly robust compared to other, larger US SPARROW models making it a potentially useful tool to address questions of where nutrients originate and their relative contributions to loads delivered to Lake Winnipeg.

  3. Microsensors to the Model Forecasts: Multiscale Embedded Networked Sensing of Nutrients in the Watershed

    NASA Astrophysics Data System (ADS)

    Harmon, T. C.

    2005-12-01

    Hydrologic and water quality observatories are being planned with a vision of enhancing our ability to better understand, forecast and adaptively manage both water quantity and quality. To adequately cover these spatially and temporally variable systems, distributed, embedded sensor networks must be designed with the proper mix (multimodality) of sensors to quantify key system properties, including temperature and chemical distributions, as well as mass and energy fluxes, and to do so across multiple scales. Given resource limitations, process models need to be coupled to the sensor network to interpolate between sensor data. This work focuses on the spatially distributed flux of nutrients, specifically nitrate, in surface-subsurface environments. It begins at the sensor level, describing the development and testing of nitrate microsensors that are scaleable to large, dense sensor networks required to cover heterogeneous watersheds, including associated soil and sediment systems. First and second generation miniature and inexpensive nitrate sensors (ion selective electrodes) fabricated by depositing conducting polymers on carbon substrates are presented in the context of laboratory and field tests. While these sensors are limited to relatively short deployments (4-8 weeks), there are potential strategies for overcoming this problem. Scale-up to one- and three-dimensional soil/sediment sensor arrays is discussed in the context of two deployments: (1) a groundwater quality protection network, where recycled wastewater that is potentially high in nitrate is being used for agricultural irrigation, and (2) nonpoint source nitrate pollution in rivers and groundwater in agricultural watersheds. Recent hardware (wireless transceivers) and software advancements (e.g., network topology design and debugging, energy management) intended for networks spanning 100s of m in space are outlined in these examples. The discussion extends to sensor form factor, in situ calibration

  4. FEM-based oxygen consumption and cell viability models for avascular pancreatic islets

    PubMed Central

    Buchwald, Peter

    2009-01-01

    Background The function and viability of cultured, transplanted, or encapsulated pancreatic islets is often limited by hypoxia because these islets have lost their vasculature during the isolation process and have to rely on gradient-driven passive diffusion, which cannot provide adequate oxygen transport. Pancreatic islets (islets of Langerhans) are particularly susceptible due to their relatively large size, large metabolic demand, and increased sensitivity to hypoxia. Here, finite element method (FEM) based multiphysics models are explored to describe oxygen transport and cell viability in avascular islets both in static and in moving culture media. Methods Two- and three-dimensional models were built in COMSOL Multiphysics using the convection and diffusion as well as the incompressible Navier-Stokes fluid dynamics application modes. Oxygen consumption was assumed to follow Michaelis-Menten-type kinetics and to cease when local concentrations fell below a critical threshold; in a dynamic model, it was also allowed to increase with increasing glucose concentration. Results Partial differential equation (PDE) based exploratory cellular-level oxygen consumption and cell viability models incorporating physiologically realistic assumptions have been implemented for fully scaled cell culture geometries with 100, 150, and 200 μm diameter islets as representative. Calculated oxygen concentrations and intra-islet regions likely to suffer from hypoxia-related necrosis obtained for traditional flask-type cultures, oxygen-permeable silicone-rubber membrane bottom cultures, and perifusion chambers with flowing media and varying incoming glucose levels are presented in detail illustrated with corresponding colour-coded figures and animations. Conclusion Results of the computational models are, as a first estimate, in good quantitative agreement with existing experimental evidence, and they confirm that during culture, hypoxia is often a problem for non-vascularised islet

  5. Modeling the Effects of Climate Change on Water, Sediment, and Nutrient Discharge from the Maumee River Watershed

    NASA Astrophysics Data System (ADS)

    Cousino, L. K.; Becker, R.; Zmijewski, K. A.

    2013-12-01

    A hydrologic model of the Maumee River watershed in NW Ohio, USA was constructed to test the effects of climate change on water flow and sediment and nutrient loading within the drainage basin. The Maumee River drains a larger area (17,100 km2) than any other watershed in the Great Lakes region before discharging into the Western Basin (WB) of Lake Erie. Approximately 70% of the land within the watershed is agricultural, resulting in excess sediment and nutrient loading in the WB. High nutrient concentrations, especially phosphate concentrations, contribute to harmful algal blooms (HABs) in Lake Erie, which is the source of drinking water for approximately 11 million people. After a decrease in Lake Erie HABs in the late 1980s and early 1990s, toxic cyanobacteria blooms have been prevalent in the WB every summer since 1995. To determine the effects of climate change on streamflow and sediment and nutrient loading in the Maumee River watershed, a Soil and Water Assessment Tool (SWAT) hydrologic model was constructed. Flow and suspended sediment calibrations were performed for 1995-1999 using observed data from four USGS gauging stations. Suspended sediment concentration, which correlates highly with total phosphorus concentration, was used as a proxy for total phosphorus loads. Downscaled climate projections from the World Climate Research Programme's (WCRP's) Coupled Model Intercomparison Project phase 3 (CMIP3) were inputted into the model to test the effects of climate change on the flow and suspended sediment discharge of the Maumee River. Validation was performed by inputting downscaled climate data for 1975-1999 and comparing the output to observed flow and suspended sediment data from the USGS gauging station at Waterville, Ohio. Model outputs for A1B, A2, and B1 climate scenarios indicate an overall decrease in annual flow over the next century, with higher flow in the winter and spring and lower total flow in the summer. However, model outputs also indicate

  6. Sex differences in mania phenotype and ethanol consumption in the lateral hypothalamic kindled rat model

    PubMed Central

    Abulseoud, O A; Gawad, N A; Mohamed, K; Vadnie, C; Camsari, U M; Karpyak, V; Frye, M A; Choi, D-S

    2015-01-01

    Sex differences have been observed in mania phenotypes in humans. However the mechanisms underlying this difference are poorly understood. Activating the lateral hypothalamus is implicated in manic-like behaviors in rodents. Using newly established lateral hypothalamus kindled (LHK) rat mania model, we investigated sex differences of manic-like behaviors and its correlation with voluntary ethanol intake. We stimulated the lateral hypothalamus bilaterally in the male and female Wistar rats over five consecutive days. We recorded and quantified kindling-induced behaviors for each individual animal. We also assessed ethanol consumption using a two-bottle choice ethanol drinking as well as circadian locomotor activity counts daily throughout the experiment. We found notable sex differences in several aspects of manic-like behaviors during kindling. Males exhibited a significantly increased locomotor activity during the light phase, and reduced rest interval. On the other hand, females displayed significantly higher ethanol consumption and more frequent rearing behavior. However, no sex differences were present in the duration of sexual, feeding or grooming behaviors or in dark-phase activity counts. The excessive alcohol intake in LHK female rats is reminiscent of clinically reported sex differences in bipolar patients while the other phenotypic sex differences such as rearing and locomotor activity are less clearly described in clinical studies. Overall, our results lend further evidence for the validity of the LHK rat as a useful model to study brain region-specific molecular changes during mania and its correlation with alcohol use disorders. PMID:25803497

  7. Novel anticonvulsants for reducing alcohol consumption: A review of evidence from preclinical rodent drinking models.

    PubMed

    Padula, Ae; McGuier, Ns; Griffin, Wc; Lopez, Mf; Becker, Hc; Mulholland, Pj

    2013-02-01

    Alcohol use disorders (AUDs) are a major public health issue and have an enormous social and economic burden in developed, developing, and third-world countries. Current pharmacotherapies for treating AUDs suffer from deleterious side effects and are only effective in preventing relapse in a subset of individuals. This signifies an essential need for improved medications to reduce heavy episodic drinking and alcohol-related problems. Growing literature has provided support for the use of anticonvulsants in suppressing symptoms induced by alcohol withdrawal. Emerging clinical and preclinical evidence suggests that a number of well-tolerated anticonvulsants may also decrease alcohol drinking. This review will focus on recent evidence supporting the efficacy of novel anticonvulsants in reducing voluntary alcohol consumption in rodent models. The data demonstrate that anticonvulsants reduce drinking in standard home cage two-bottle choice paradigms, self-administration of alcohol in operant chambers, and cue- and stress-induced reinstatement of alcohol seeking behaviors in rats and mice. This review also highlights evidence that some anticonvulsants were only moderately effective in reducing drinking in select strains of rodents or models. This suggests that genetics, possible neuroadaptations, or the pharmacological target affect the ability of anticonvulsants to attenuate alcohol consumption. Nonetheless, anticonvulsants are relatively safe, have little abuse potential, and can work in combination with other drugs. The results from these preclinical and clinical studies provide compelling evidence that anticonvulsants are a promising class of medication for the treatment of AUDs.

  8. Novel anticonvulsants for reducing alcohol consumption: A review of evidence from preclinical rodent drinking models

    PubMed Central

    Griffin, WC; Lopez, MF; Becker, HC; Mulholland, PJ

    2013-01-01

    Alcohol use disorders (AUDs) are a major public health issue and have an enormous social and economic burden in developed, developing, and third-world countries. Current pharmacotherapies for treating AUDs suffer from deleterious side effects and are only effective in preventing relapse in a subset of individuals. This signifies an essential need for improved medications to reduce heavy episodic drinking and alcohol-related problems. Growing literature has provided support for the use of anticonvulsants in suppressing symptoms induced by alcohol withdrawal. Emerging clinical and preclinical evidence suggests that a number of well-tolerated anticonvulsants may also decrease alcohol drinking. This review will focus on recent evidence supporting the efficacy of novel anticonvulsants in reducing voluntary alcohol consumption in rodent models. The data demonstrate that anticonvulsants reduce drinking in standard home cage two-bottle choice paradigms, self-administration of alcohol in operant chambers, and cue- and stress-induced reinstatement of alcohol seeking behaviors in rats and mice. This review also highlights evidence that some anticonvulsants were only moderately effective in reducing drinking in select strains of rodents or models. This suggests that genetics, possible neuroadaptations, or the pharmacological target affect the ability of anticonvulsants to attenuate alcohol consumption. Nonetheless, anticonvulsants are relatively safe, have little abuse potential, and can work in combination with other drugs. The results from these preclinical and clinical studies provide compelling evidence that anticonvulsants are a promising class of medication for the treatment of AUDs. PMID:24432188

  9. MELODIE: a whole-farm model to study the dynamics of nutrients in dairy and pig farms with crops.

    PubMed

    Chardon, X; Rigolot, C; Baratte, C; Espagnol, S; Raison, C; Martin-Clouaire, R; Rellier, J-P; Le Gall, A; Dourmad, J Y; Piquemal, B; Leterme, P; Paillat, J M; Delaby, L; Garcia, F; Peyraud, J L; Poupa, J C; Morvan, T; Faverdin, P

    2012-10-01

    In regions of intensive pig and dairy farming, nutrient losses to the environment at farm level are a source of concern for water and air quality. Dynamic models are useful tools to evaluate the effects of production strategies on nutrient flows and losses to the environment. This paper presents the development of a new whole-farm model upscaling dynamic models developed at the field or animal scale. The model, called MELODIE, is based on an original structure with interacting biotechnical and decisional modules. Indeed, it is supported by an ontology of production systems and the associated programming platform DIESE. The biotechnical module simulates the nutrient flows in the different animal, soil and crops and manure sub-models. The decision module relies on an annual optimization of cropping and spreading allocation plans, and on the flexible execution of activity plans for each simulated year. These plans are examined every day by an operational management sub-model and their application is context dependent. As a result, MELODIE dynamically simulates the flows of carbon, nitrogen, phosphorus, copper, zinc and water within the whole farm over the short and long-term considering both the farming system and its adaptation to climatic conditions. Therefore, it is possible to study both the spatial and temporal heterogeneity of the environmental risks, and to test changes of practices and innovative scenarios. This is illustrated with one example of simulation plan on dairy farms to interpret the Nitrogen farm-gate budget indicator. It shows that this indicator is able to reflect small differences in Nitrogen losses between different systems, but it can only be interpreted using a mobile average, not on a yearly basis. This example illustrates how MELODIE could be used to study the dynamic behaviour of the system and the dynamic of nutrient flows. Finally, MELODIE can also be used for comprehensive multi-criterion assessments, and it also constitutes a generic

  10. Rodent Working Heart Model for the Study of Myocardial Performance and Oxygen Consumption

    PubMed Central

    Kheir, John N.

    2016-01-01

    Isolated working heart models have been used to understand the effects of loading conditions, heart rate and medications on myocardial performance in ways that cannot be accomplished in vivo. For example, inotropic medications commonly also affect preload and afterload, precluding load-independent assessments of their myocardial effects in vivo. Additionally, this model allows for sampling of coronary sinus effluent without contamination from systemic venous return, permitting assessment of myocardial oxygen consumption. Further, the advent of miniaturized pressure-volume catheters has allowed for the precise quantification of markers of both systolic and diastolic performance. We describe a model in which the left ventricle can be studied while performing both volume and pressure work under controlled conditions. In this technique, the heart and lungs of a Sprague-Dawley rat (weight 300-500 g) are removed en bloc under general anesthesia. The aorta is dissected free and cannulated for retrograde perfusion with oxygenated Krebs buffer. The pulmonary arteries and veins are ligated and the lungs removed from the preparation. The left atrium is then incised and cannulated using a separate venous cannula, attached to a preload block. Once this is determined to be leak-free, the left heart is loaded and retrograde perfusion stopped, creating the working heart model. The pulmonary artery is incised and cannulated for collection of coronary effluent and determination of myocardial oxygen consumption. A pressure-volume catheter is placed into the left ventricle either retrograde or through apical puncture. If desired, atrial pacing wires can be placed for more precise control of heart rate. This model allows for precise control of preload (using a left atrial pressure block), afterload (using an afterload block), heart rate (using pacing wires) and oxygen tension (using oxygen mixtures within the perfusate). PMID:27584550

  11. Development and Application of Regression Models for Estimating Nutrient Concentrations in Streams of the Conterminous United States, 1992-2001

    USGS Publications Warehouse

    Spahr, Norman E.; Mueller, David K.; Wolock, David M.; Hitt, Kerie J.; Gronberg, JoAnn M.

    2010-01-01

    Data collected for the U.S. Geological Survey National Water-Quality Assessment program from 1992-2001 were used to investigate the relations between nutrient concentrations and nutrient sources, hydrology, and basin characteristics. Regression models were developed to estimate annual flow-weighted concentrations of total nitrogen and total phosphorus using explanatory variables derived from currently available national ancillary data. Different total-nitrogen regression models were used for agricultural (25 percent or more of basin area classified as agricultural land use) and nonagricultural basins. Atmospheric, fertilizer, and manure inputs of nitrogen, percent sand in soil, subsurface drainage, overland flow, mean annual precipitation, and percent undeveloped area were significant variables in the agricultural basin total nitrogen model. Significant explanatory variables in the nonagricultural total nitrogen model were total nonpoint-source nitrogen input (sum of nitrogen from manure, fertilizer, and atmospheric deposition), population density, mean annual runoff, and percent base flow. The concentrations of nutrients derived from regression (CONDOR) models were applied to drainage basins associated with the U.S. Environmental Protection Agency (USEPA) River Reach File (RF1) to predict flow-weighted mean annual total nitrogen concentrations for the conterminous United States. The majority of stream miles in the Nation have predicted concentrations less than 5 milligrams per liter. Concentrations greater than 5 milligrams per liter were predicted for a broad area extending from Ohio to eastern Nebraska, areas spatially associated with greater application of fertilizer and manure. Probabilities that mean annual total-nitrogen concentrations exceed the USEPA regional nutrient criteria were determined by incorporating model prediction uncertainty. In all nutrient regions where criteria have been established, there is at least a 50 percent probability of exceeding

  12. Estimating the input of submarine groundwater discharge (SGD) and SGD-derived nutrients in Geoje Bay, Korea using (222)Rn-Si mass balance model.

    PubMed

    Hwang, Dong-Woon; Lee, In-Seok; Choi, Minkyu; Kim, Tae-Hoon

    2016-09-15

    In order to evaluate the main source of nutrients for maintaining the high production in shellfish farming bay, we have measured (222)Rn activities and the concentrations of nutrients in stream water, seawater, and coastal groundwater around Geoje Bay, one of the largest cultivation areas of oyster in the southern sea of Korea in April 2013. Using the (222)Rn and Si mass balance model, the residence time of bay seawater was about 5days and the submarine groundwater discharge (SGD) into the bay was estimated to be approximately 1.8×10(6)m(3) d(-1). The SGD-derived nutrient fluxes contributed approximately 54% for DIN, 5% for DIP, and 50% for DSi of total nutrient input entering into the bay. Thus, our results suggest that SGD is the major source of nutrients in Geoje Bay, and SGD-derived nutrients are very important to support the biological production of this shellfish farming bay.

  13. 21 CFR 101.69 - Petitions for nutrient content claims.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... (CONTINUED) FOOD FOR HUMAN CONSUMPTION FOOD LABELING Specific Requirements for Nutrient Content Claims § 101... claim on food consumption and of any corresponding changes in nutrient intake. The latter item shall... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Petitions for nutrient content claims....

  14. Coupling ANIMO and MT3DMS for 3D regional-scale modeling of nutrient transport in soil and groundwater

    NASA Astrophysics Data System (ADS)

    Janssen, G.; Del Val Alonso, L.; Groenendijk, P.; Griffioen, J.

    2012-12-01

    We developed an on-line coupling between the 1D/quasi-2D nutrient transport model ANIMO and the 3D groundwater transport model code MT3DMS. ANIMO is a detailed, process-oriented model code for the simulation of nitrate leaching to groundwater, N- and P-loads on surface waters and emissions of greenhouse gasses. It is the leading nutrient fate and transport code in the Netherlands where it is used primarily for the evaluation of fertilization related legislation. In addition, the code is applied frequently in international research projects. MT3DMS is probably the most commonly used groundwater solute transport package worldwide. The on-line model coupling ANIMO-MT3DMS combines the state-of-the-art descriptions of the biogeochemical cycles in ANIMO with the advantages of using a 3D approach for the transport through the saturated domain. These advantages include accounting for regional lateral transport, considering groundwater-surface water interactions more explicitly, and the possibility of using MODFLOW to obtain the flow fields. An additional merit of the on-line coupling concept is that it preserves feedbacks between the saturated and unsaturated zone. We tested ANIMO-MT3DMS by simulating nutrient transport for the period 1970-2007 in a Dutch agricultural polder catchment covering an area of 118 km2. The transient groundwater flow field had a temporal resolution of one day and was calculated with MODFLOW-MetaSWAP. The horizontal resolution of the model grid was 100x100m and consisted of 25 layers of varying thickness. To keep computation times manageable, we prepared MT3DMS for parallel computing, which in itself is a relevant development for a large community of groundwater transport modelers. For the parameterization of the soil, we applied a standard classification approach, representing the area by 60 units with unique combinations of soil type, land use and geohydrological setting. For the geochemical parameterization of the deeper subsurface, however, we

  15. Modeling the Seasonal and Interannual Variability of Nutrients, Biomass, and Carbon Species in the Subtropical North Atlantic and North Pacific

    NASA Astrophysics Data System (ADS)

    Signorini, S. R.; McClain, C. R.; Christian, J. R.

    2002-12-01

    A one dimensional, coupled ecosystem/carbon cycle model is used to analyze the biogeochemical-physical interactions and carbon fluxes at two time-series study sites: the Bermuda Atlantic Time-series Study (BATS) site, and the Hawaii Ocean Time-series (HOT) site. Physical forcing and biogeochemical boundary conditions are derived from the comprehensive BATS and HOT data sets. The observed parameters not used for model forcing and boundary conditions are used to verify model performance. The seasonal and interannual variability of biomass, nutrients, and carbon species of these two sites are investigated and compared, and the long-term (decadal) trends of carbon stocks (DIC, DOC, and CO2) are analyzed in the context of climate variability. The two sites have very distinct physical forcing characteristics. At BATS, the winter mixed layer can reach 300 meters, while at HOT it rarely exceeds 100 meters. Also, the BATS region is affected by a pervasive translation of strong mesoscale eddies that promote large vertical excursions of the thermocline/nutricline. In the HOT region the mesoscale variability is more episodical such that the vertical transport of nutrients is achieved predominantly by vertical mixing. These differences in physical forcing have an impact on the nutrient and carbon balances of the two regions, which is clearly demonstrated by the model results.

  16. Assessing the fate of nutrients and carbon in the bioenergy chain through the modeling of biomass growth and conversion.

    PubMed

    François, Jessica; Fortin, Mathieu; Patisson, Fabrice; Dufour, Anthony

    2014-12-02

    A forest growth model was coupled to a model of combined heat and power (CHP) production in a gasification plant developed in Aspen Plus. For a given production, this integrated forest-to-energy model made it possible to predict the annual flows in wood biomass, carbon, and nutrients, including N, S, P, and K, from the forest to the air emissions (NOx, SOx, PAH, etc.) and ash flows. We simulated the bioenergy potential of pure even-aged high-forest stands of European beech, an abundant forest type in Northeastern France. Two forest management practices were studied, a standard-rotation and a shorter-rotation scenario, along with two wood utilizations: with or without fine woody debris (FWD) harvesting. FWD harvesting tended to reduce the forested area required to supply the CHP by 15–22% since larger amounts of energy wood were available for the CHP process, especially in the short-rotation scenario. Because less biomass was harvested, the short-rotation scenario with FWD decreased the nutrient exports per hectare and year by 4–21% compared to standard practices but increased the amount of N, S, and P in the CHP process by 2–9%. This increase in the input nutrient flows had direct consequences on the inorganic air emissions, thus leading to additional NOx and SO2 emissions. This model is a valuable tool for assessing the life cycle inventories of the entire bioenergy chain.

  17. Developing a model of limited-access nicotine consumption in C57Bl/6J mice.

    PubMed

    Kasten, C R; Frazee, A M; Boehm, S L

    2016-09-01

    Although United States smoking rates have been on the decline over the past few decades, cigarette smoking still poses a critical health and economic threat. Very few treatment options for smoking exist, and many of them do not lead to long-term abstinence. Preclinical models are necessary for understanding the effects of nicotine and developing treatments. Current self-administration models of nicotine intake may require surgical procedures and often result in low levels of intake. Further, they do not lend themselves to investigating treatments. The current study sought to develop a limited-access model of nicotine intake using the Drinking-in-the-Dark paradigm, which results in high levels of binge-like ethanol consumption that can be pharmacologically manipulated. The present study found that mice will consume nicotine under a range of parameters. Intakes under the preferred condition of 0.14mg/ml nicotine in 0.2% saccharin reached over 6mg/kg in two hours and were reduced by an injection of R(+)-baclofen. Mecamylamine did not significantly affect nicotine consumption. As nicotine and ethanol are often co-abused, nicotine intake was also tested in the presence of ethanol. When presented in the same bottle, mice altered nicotine intake under various concentrations to maintain consistent levels of ethanol intake. When nicotine and ethanol were presented in separate bottles, mice greatly reduced their nicotine intake while maintaining ethanol intake. In conclusion, these studies characterize a novel model of limited-access nicotine intake that can be pharmacologically manipulated.

  18. Lean consumption.

    PubMed

    Womack, James P; Jones, Daniel T

    2005-03-01

    During the past 20 years, the real price of most consumer goods has fallen worldwide, the variety of goods and the range of sales channels offering them have continued to grow, and product quality has steadily improved. So why is consumption often so frustrating? It doesn't have to be--and shouldn't be--the authors say. They argue that it's time to apply lean thinking to the processes of consumption--to give consumers the full value they want from goods and services with the greatest efficiency and the least pain. Companies may think they save time and money by off-loading work to the consumer but, in fact, the opposite is true. By streamlining their systems for providing goods and services, and by making it easier for customers to buy and use those products and services, a growing number of companies are actually lowering costs while saving everyone time. In the process, these businesses are learning more about their customers, strengthening consumer loyalty, and attracting new customers who are defecting from less user-friendly competitors. The challenge lies with the retailers, service providers, manufacturers, and suppliers that are not used to looking at total cost from the standpoint of the consumer and even less accustomed to working with customers to optimize the consumption process. Lean consumption requires a fundamental shift in the way companies think about the relationship between provision and consumption, and the role their customers play in these processes. It also requires consumers to change the nature of their relationships with the companies they patronize. Lean production has clearly triumphed over similar obstacles in recent years to become the dominant global manufacturing model. Lean consumption, its logical companion, can't be far behind.

  19. Multiple regression analysis in modelling of carbon dioxide emissions by energy consumption use in Malaysia

    NASA Astrophysics Data System (ADS)

    Keat, Sim Chong; Chun, Beh Boon; San, Lim Hwee; Jafri, Mohd Zubir Mat

    2015-04-01

    Climate change due to carbon dioxide (CO2) emissions is one of the most complex challenges threatening our planet. This issue considered as a great and international concern that primary attributed from different fossil fuels. In this paper, regression model is used for analyzing the causal relationship among CO2 emissions based on the energy consumption in Malaysia using time series data for the period of 1980-2010. The equations were developed using regression model based on the eight major sources that contribute to the CO2 emissions such as non energy, Liquefied Petroleum Gas (LPG), diesel, kerosene, refinery gas, Aviation Turbine Fuel (ATF) and Aviation Gasoline (AV Gas), fuel oil and motor petrol. The related data partly used for predict the regression model (1980-2000) and partly used for validate the regression model (2001-2010). The results of the prediction model with the measured data showed a high correlation coefficient (R2=0.9544), indicating the model's accuracy and efficiency. These results are accurate and can be used in early warning of the population to comply with air quality standards.

  20. Developing of discrimination experiment to find most adequate model of plant’s multi-nutrient functional response

    NASA Astrophysics Data System (ADS)

    Saltykov, M. Yu; Bartsev, S. I.

    2017-02-01

    To create reliable Closed Ecological Life Support Systems (CELSS) it is necessary to have models which can predict CELSS dynamic with good accuracy. However it was shown that conventional ecological models cannot describe CELSS correctly if it is closed by more than one element. This problem can be solved by means more complex models than conventional ones - so called flexible metabolism models. However it is possible that CELSS also can be described correctly in “semi-conventional” framework – when only one trophic level is described by flexible metabolism model. Another problem in CELSS modeling is existence of different and incompatible hypotheses about relationships between plants growth rate and amounts of nutrients (functional responses). Difficulty of testing these hypotheses is associated with multi-nutrient dependency of growth rate and comprehensive experimental studies are expensive and time-consuming. This work is devoted to testing the hypothesis that “semi-conventional” approach is enough to describe CELSS, and to planning the discrimination experiment on selecting correct type of the plant’s functional response. To do that three different models of plants (one flexible and two conventional) were investigated both in the scope of CELSS model, and in hemostat model. Numerical simulations show that each of the models has typical patterns which can be determined in experiment with real plants.

  1. A model linking video gaming, sleep quality, sweet drinks consumption and obesity among children and youth.

    PubMed

    Turel, O; Romashkin, A; Morrison, K M

    2017-03-20

    There is a growing need to curb paediatric obesity. The aim of this study is to untangle associations between video-game-use attributes and obesity as a first step towards identifying and examining possible interventions. Cross-sectional time-lagged cohort study was employed using parent-child surveys (t1) and objective physical activity and physiological measures (t2) from 125 children/adolescents (mean age = 13.06, 9-17-year-olds) who play video games, recruited from two clinics at a Canadian academic children's hospital. Structural equation modelling and analysis of covariance were employed for inference. The results of the study are as follows: (i) self-reported video-game play duration in the 4-h window before bedtime is related to greater abdominal adiposity (waist-to-height ratio) and this association may be mediated through reduced sleep quality (measured with the Pittsburgh Sleep Quality Index); and (ii) self-reported average video-game session duration is associated with greater abdominal adiposity and this association may be mediated through higher self-reported sweet drinks consumption while playing video games and reduced sleep quality. Video-game play duration in the 4-h window before bedtime, typical video-game session duration, sweet drinks consumption while playing video games and poor sleep quality have aversive associations with abdominal adiposity. Paediatricians and researchers should further explore how these factors can be altered through behavioural or pharmacological interventions as a means to reduce paediatric obesity.

  2. A rodent model of low- to moderate-dose ethanol consumption during pregnancy: patterns of ethanol consumption and effects on fetal and offspring growth.

    PubMed

    Probyn, Megan E; Zanini, Simone; Ward, Leigh C; Bertram, John F; Moritz, Karen M

    2012-01-01

    It is unknown whether low to moderate maternal alcohol consumption adversely affects postnatal health. The aim of the present study was to develop a rodent model of low-moderate-dose prenatal ethanol (EtOH) exposure. Sprague-Dawley rats were fed a liquid diet with or without 6% v/v EtOH throughout gestation and the pattern of dietary consumption determined. Fetal bodyweights and hepatic alcohol-metabolising gene expression were measured on embryonic Day (E) 20 and offspring growth studied until 1 year. At E8 the plasma EtOH concentration was 0.03%. There was little difference in dietary consumption between the two treatment groups. At E20, EtOH-exposed fetuses were significantly lighter than controls and had significantly decreased ADH4 and increased CYP2E1 gene expression. Offspring killed on postnatal Day (PN) 30 did not exhibit any growth deficits. Longitudinal repeated measures of offspring growth demonstrated slower growth in males from EtOH-fed dams between 7 and 12 months of age; a cohort of male pups killed at 8 months of age had a reduced crown-rump length and kidney weight. In conclusion, a liquid diet of 6% v/v EtOH fed to pregnant dams throughout gestation caused a 3-8% reduction in fetal growth and brain sparing, with growth differences observed in male offspring later in life. This model will be useful for future studies on the effects of low-moderate EtOH on the developmental origins of health and disease.

  3. A new model of reaction-driven cracking: fluid volume consumption and tensile failure during serpentinization

    NASA Astrophysics Data System (ADS)

    Eichenbaum-Pikser, J. M.; Spiegelman, M. W.; Kelemen, P. B.; Wilson, C. R.

    2013-12-01

    Reactive fluid flow plays an important role in a wide range of geodynamic processes, such as melt migration, formation of hydrous minerals on fault surfaces, and chemical weathering. These processes are governed by the complex coupling between fluid transport, reaction, and solid deformation. Reaction-driven cracking is a potentially critical feedback mechanism, by which volume change associated with chemical reaction drives fracture in the surrounding rock. It has been proposed to play a role in both serpentinization and carbonation of peridotite, motivating consideration of its application to mineral carbon sequestration. Previous studies of reactive cracking have focused on the increase in solid volume, and as such, have considered failure in compression. However, if the consumption of fluid is considered in the overall volume budget, the reaction can be net volume reducing, potentially leading to failure in tension. To explore these problems, we have formulated and solved a 2-D model of coupled porous flow, reaction kinetics, and elastic deformation using the finite element model assembler TerraFERMA (Wilson et al, G3 2013 submitted). The model is applied to the serpentinization of peridotite, which can be reasonably approximated as the transfer of a single reactive component (H2O) between fluid and solid phases, making it a simple test case to explore the process. The behavior of the system is controlled by the competition between the rate of volume consumption by the reaction, and the rate of volume replacement by fluid transport, as characterized by a nondimensional parameter χ, which depends on permeability, reaction rate, and the bulk modulus of the solid. Large values of χ correspond to fast fluid transport relative to reaction rate, resulting in a low stress, volume replacing regime. At smaller values of χ, fluid transport cannot keep up with the reaction, resulting in pore fluid under-pressure and tensile solid stresses. For the range of χ relevant

  4. A decision support model for improving a multi-family housing complex based on CO2 emission from electricity consumption.

    PubMed

    Hong, Taehoon; Koo, Choongwan; Kim, Hyunjoong

    2012-12-15

    The number of deteriorated multi-family housing complexes in South Korea continues to rise, and consequently their electricity consumption is also increasing. This needs to be addressed as part of the nation's efforts to reduce energy consumption. The objective of this research was to develop a decision support model for determining the need to improve multi-family housing complexes. In this research, 1664 cases located in Seoul were selected for model development. The research team collected the characteristics and electricity energy consumption data of these projects in 2009-2010. The following were carried out in this research: (i) using the Decision Tree, multi-family housing complexes were clustered based on their electricity energy consumption; (ii) using Case-Based Reasoning, similar cases were retrieved from the same cluster; and (iii) using a combination of Multiple Regression Analysis, Artificial Neural Network, and Genetic Algorithm, the prediction performance of the developed model was improved. The results of this research can be used as follows: (i) as basic research data for continuously managing several energy consumption data of multi-family housing complexes; (ii) as advanced research data for predicting energy consumption based on the project characteristics; (iii) as practical research data for selecting the most optimal multi-family housing complex with the most potential in terms of energy savings; and (iv) as consistent and objective criteria for incentives and penalties.

  5. A mesoscopic stochastic model for the specific consumption rate in substrate-limited microbial growth

    PubMed Central

    2017-01-01

    The specific consumption rate of substrate, as well as the associated specific growth rate, is an essential parameter in the mathematical description of substrate-limited microbial growth. In this paper we develop a completely new kinetic model of substrate transport, based on recent knowledge on the structural biology of transport proteins, which correctly describes very accurate experimental results at near-zero substrate concentration values found in the literature, where the widespread Michaelis-Menten model fails. Additionally, our model converges asymptotically to Michaelis-Menten predictions as substrate concentration increases. Instead of the single active site enzymatic reaction of Michaelis-Menten type, the proposed model assumes a multi-site kinetics, simplified as an apparent all-or-none mechanism for the transport, which is controlled by means of the local substrate concentration in the close vicinity of the transport protein. Besides, the model also assumes that this local concentration is not equal to the mean substrate concentration experimentally determined in the culture medium. Instead, we propose that it fluctuates with a mostly exponential distribution of Weibull type. PMID:28187189

  6. Ocean nutrients

    NASA Astrophysics Data System (ADS)

    Boyd, Philip W.; Hurd, Catriona L.

    Nutrients provide the chemical life-support system for phytoplankton in the ocean. Together with the carbon fixed during photosynthesis, nutrients provide the other elements, such as N and P, needed to synthesize macromolecules to build cellular constituents such as ribosomes. The makeup of these various biochemicals, such as proteins, pigments, and nucleic acids, together determine the elemental stoichiometry of an individual phytoplankton cell. The stoichiometry of different phytoplankton species or groups will vary depending on the proportions of distinct cellular machinery, such as for growth or resource acquisition, they require for their life strategies. The uptake of nutrients by phytoplankton helps to set the primary productivity, and drives the biological pump, of the global ocean. In the case of nitrogen, the supply of nutrients is categorized as either new or regenerated. The supply of new nitrogen, such as nitrate upwelled from the ocean' interior or biological nitrogen fixation, is equal to the vertical export of particular organic matter from the upper ocean on a timescale of years. Nutrients such as silica can also play a structural role in some phytoplankton groups, such as diatoms, where they are used to synthesize a siliceous frustule that offers some mechanical protection from grazers. In this chapter, we also explore nutrient uptake kinetics, patterns in nutrient distributions in space and time, the biogeochemical cycle of nitrogen, the atmospheric supply of nutrients, departures from the Redfield ratio, and whether nutrient distributions and cycling will be altered in the future

  7. A dynamic growth model for prediction of nutrient partitioning and manure production in growing-finishing pigs: Model development and evaluation.

    PubMed

    Strathe, A B; Danfær, A; Jørgensen, H; Kebreab, E

    2015-03-01

    Nutrient loading and air emissions from swine operations raise environmental concerns. The objective of the study was to describe and evaluate a mathematical model (Davis Swine Model) of nutrient partitioning and predict manure excretion and composition on a daily basis. State variables of the model were AA, fatty acids, and a central pool of metabolites that supplied substrate for lipid synthesis and oxidation. The model traced the fate of ingested nutrients and water through digestion and intermediary metabolism into body protein, fat, water, and ash, where body protein and fat represented the body constituent pools. It was assumed that fluxes of metabolites follow saturation kinetics, depending on metabolite concentrations. The main inputs to the model were diet nutrient composition, feed intake, water-to-feed ratio, and initial BW. First, the model was challenged with nutrient partitioning data and then with excretion data. The data had 48 different feeding regimes with contrasting energy and lysine intakes at 2 different stages of growth. The overall observed and predicted mean were 109 and 112 g/d for protein deposition and 132 and 136 g/d for lipid deposition respectively, suggesting minor mean bias. Root mean square prediction error (RMSPE) was used in evaluation of the model for its predictive power. The overall RMSPE was 2.2 and 4.1 g/d for protein and lipid deposition, respectively. The excretion database used for evaluation of the model was constructed from 150 digestibility trials using growing-finishing pig diets that had a wide range of nutrient chemical composition. Nutrient and water excretion were quantified using the principle of mass conservation. The average daily observed and predicted manure production was 3.79 and 3.99 kg/d, respectively, with a RMSPE of 0.49 kg/d. There was a good agreement between observed and predicted mean fecal N output (9.9 and 9.8 g/d, respectively). Similarly, the overall observed and predicted mean urine N output

  8. The Thermodynamic Flow-Force Interpretation of Root Nutrient Uptake Kinetics: A Powerful Formalism for Agronomic and Phytoplanktonic Models.

    PubMed

    Le Deunff, Erwan; Tournier, Pierre-Henri; Malagoli, Philippe

    2016-01-01

    The ion influx isotherms obtained by measuring unidirectional influx across root membranes with radioactive or stable tracers are mostly interpreted by enzyme-substrate-like modeling. However, recent analyses from ion transporter mutants clearly demonstrate the inadequacy of the conventional interpretation of ion isotherms. Many genetically distinct carriers are involved in the root catalytic function. Parameters Vmax and Km deduced from this interpretation cannot therefore be regarded as microscopic parameters of a single transporter, but are instead macroscopic parameters (V[Formula: see text] and K[Formula: see text], apparent maximum velocity and affinity constant) that depend on weighted activities of multiple transporters along the root. The flow-force interpretation based on the thermodynamic principle of irreversible processes is an alternative macroscopic modeling approach for ion influx isotherms in which macroscopic parameters Lj (overall conductance of the root system for the substrate j) and πj (thermodynamic parameter when Jj = 0) have a straightforward meaning with respect to the biological sample studied. They characterize the efficiency of the entire root catalytic structure without deducing molecular characteristics. Here we present the basic principles of this theory and how its use can be tested and improved by changing root pre- and post-wash procedures before influx measurements in order to come as close as possible to equilibrium conditions. In addition, the constant values of Vm and Km in the Michaelis-Menten (MM) formalism of enzyme-substrate interpretation do not reflect variations in response to temperature, nutrient status or nutrient regimes. The linear formalism of the flow-force approach, which integrates temperature effect on nutrient uptake, could usefully replace MM formalism in the 1-3-dimension models of plants and phytoplankton. This formalism offers a simplification of parametrization to help find more realistic analytical

  9. The Thermodynamic Flow-Force Interpretation of Root Nutrient Uptake Kinetics: A Powerful Formalism for Agronomic and Phytoplanktonic Models

    PubMed Central

    Le Deunff, Erwan; Tournier, Pierre-Henri; Malagoli, Philippe

    2016-01-01

    The ion influx isotherms obtained by measuring unidirectional influx across root membranes with radioactive or stable tracers are mostly interpreted by enzyme-substrate-like modeling. However, recent analyses from ion transporter mutants clearly demonstrate the inadequacy of the conventional interpretation of ion isotherms. Many genetically distinct carriers are involved in the root catalytic function. Parameters Vmax and Km deduced from this interpretation cannot therefore be regarded as microscopic parameters of a single transporter, but are instead macroscopic parameters (Vmapp and Kmapp, apparent maximum velocity and affinity constant) that depend on weighted activities of multiple transporters along the root. The flow-force interpretation based on the thermodynamic principle of irreversible processes is an alternative macroscopic modeling approach for ion influx isotherms in which macroscopic parameters Lj (overall conductance of the root system for the substrate j) and πj (thermodynamic parameter when Jj = 0) have a straightforward meaning with respect to the biological sample studied. They characterize the efficiency of the entire root catalytic structure without deducing molecular characteristics. Here we present the basic principles of this theory and how its use can be tested and improved by changing root pre- and post-wash procedures before influx measurements in order to come as close as possible to equilibrium conditions. In addition, the constant values of Vm and Km in the Michaelis-Menten (MM) formalism of enzyme-substrate interpretation do not reflect variations in response to temperature, nutrient status or nutrient regimes. The linear formalism of the flow-force approach, which integrates temperature effect on nutrient uptake, could usefully replace MM formalism in the 1-3-dimension models of plants and phytoplankton. This formalism offers a simplification of parametrization to help find more realistic analytical expressions and numerical

  10. Identification of nutrient and physical seed trait QTLs in the model legume, Lotus japonicus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Legume seeds have the potential to provide a significant portion of essential micronutrients to the human diet. To identify the genetic basis for seed nutrient density, quantitative trait locus (QTL) analysis was conducted with the Gifu B-129 x Miyakojima MG-20 recombinant inbred population from th...

  11. 78 FR 13874 - Watershed Modeling To Assess the Sensitivity of Streamflow, Nutrient, and Sediment Loads to...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-01

    ... Climate Change and Urban Development in 20 U.S. Watersheds AGENCY: Environmental Protection Agency (EPA... Streamflow, Nutrient, and Sediment Loads to Climate Change and Urban Development in 20 U.S. Watersheds (EPA... phosphorus), and sediment loading to a range of plausible mid-21st century climate change and...

  12. Recommendations from Friends Anytime and Anywhere: Toward a Model of Contextual Offer and Consumption Values

    PubMed Central

    Shen, Xiao-Liang; Wang, Nan

    2013-01-01

    Abstract The ubiquity and portability of mobile devices provide additional opportunities for information retrieval. People can easily access mobile applications anytime and anywhere when they need to acquire specific context-aware recommendations (contextual offer) from their friends. This study, thus, represents an initial attempt to understand users' acceptance of a mobile-based social reviews platform, where recommendations from friends can be obtained with mobile devices. Based on the consumption value theory, a theoretical model is proposed and empirically examined using survey data from 218 mobile users. The findings demonstrate that contextual offers based on users' profiles, access time, and geographic positions significantly predict their value perceptions (utilitarian, hedonic, and social), which, in turn, affect their intention to use a mobile social reviews platform. This study is also believed to provide some useful insights to both research and practice. PMID:23530548

  13. Recommendations from friends anytime and anywhere: toward a model of contextual offer and consumption values.

    PubMed

    Shen, Xiao-Liang; Sun, Yongqiang; Wang, Nan

    2013-05-01

    The ubiquity and portability of mobile devices provide additional opportunities for information retrieval. People can easily access mobile applications anytime and anywhere when they need to acquire specific context-aware recommendations (contextual offer) from their friends. This study, thus, represents an initial attempt to understand users' acceptance of a mobile-based social reviews platform, where recommendations from friends can be obtained with mobile devices. Based on the consumption value theory, a theoretical model is proposed and empirically examined using survey data from 218 mobile users. The findings demonstrate that contextual offers based on users' profiles, access time, and geographic positions significantly predict their value perceptions (utilitarian, hedonic, and social), which, in turn, affect their intention to use a mobile social reviews platform. This study is also believed to provide some useful insights to both research and practice.

  14. Comparison of nutrient density and nutrient-to-cost between cooked and canned beans

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Consumption of nutrient rich foods such as beans and peas is recommended because these foods provide key nutrients and relatively little energy. Many consumers are unfamiliar with dried beans or do not have the time to prepare them. The purpose of this study was to compare nutrient density and nutri...

  15. A Model of U.S. Army Materiel Command (AMC) Energy Consumption. Volume 2. Installation Equations and Related Statistics.

    DTIC Science & Technology

    1986-03-01

    AD-AU? 32? A MODEL OF US ARMY MATERIEL COMND (ASI) ENERGY 1/3 CONSUMPTION VOLUME 2 INS.. (U) CONSTRUCTION ENGINEERING RESEARCH LAB (ARMY) CHAMPAIGN...02Research Laboratory March 1986DARCOM Energy System Modernization A Model of U.S. Army Materiel Command (AMC) Energy Consumption, Volume II: Installation...ACCES.SION NO. 3. RECIPIENT’S CATALOG NUMBER CERI TR E-86/02 4TITLE (end Subtitle) STYPE OF REPORT A PIERIOD COVERED A MODEL OF U.S. ARMY MATERIEL

  16. Modeling Heavy/Medium-Duty Fuel Consumption Based on Drive Cycle Properties

    SciTech Connect

    Wang, Lijuan; Duran, Adam; Gonder, Jeffrey; Kelly, Kenneth

    2015-10-13

    This paper presents multiple methods for predicting heavy/medium-duty vehicle fuel consumption based on driving cycle information. A polynomial model, a black box artificial neural net model, a polynomial neural network model, and a multivariate adaptive regression splines (MARS) model were developed and verified using data collected from chassis testing performed on a parcel delivery diesel truck operating over the Heavy Heavy-Duty Diesel Truck (HHDDT), City Suburban Heavy Vehicle Cycle (CSHVC), New York Composite Cycle (NYCC), and hydraulic hybrid vehicle (HHV) drive cycles. Each model was trained using one of four drive cycles as a training cycle and the other three as testing cycles. By comparing the training and testing results, a representative training cycle was chosen and used to further tune each method. HHDDT as the training cycle gave the best predictive results, because HHDDT contains a variety of drive characteristics, such as high speed, acceleration, idling, and deceleration. Among the four model approaches, MARS gave the best predictive performance, with an average absolute percent error of -1.84% over the four chassis dynamometer drive cycles. To further evaluate the accuracy of the predictive models, the approaches were first applied to real-world data. MARS outperformed the other three approaches, providing an average absolute percent error of -2.2% of four real-world road segments. The MARS model performance was then compared to HHDDT, CSHVC, NYCC, and HHV drive cycles with the performance from Future Automotive System Technology Simulator (FASTSim). The results indicated that the MARS method achieved a comparative predictive performance with FASTSim.

  17. Soils, slopes and source rocks: Application of a soil chemistry model to nutrient delivery to rift lakes

    NASA Astrophysics Data System (ADS)

    Harris, Nicholas B.; Tucker, Gregory E.

    2015-06-01

    The topographic evolution of rift basins may be critical to the deposition of lacustrine source rocks such as the organic-rich Lower Cretaceous shales of the South Atlantic margin. Soils have been proposed as a key link between topography and source rock deposition by providing nutrients for the algae growth in rift lakes. Decreasing topographic relief from active rift to late rift has several effects on soils: soils become thicker and finer, erosion of dead surface and soil organic matter decreases, and the fractionation of precipitation between runoff and infiltration may favor increased infiltration. This hypothesis is tested by application of CENTURY, a complex box model that simulates transfer of nutrients within soil pools. The model is first applied to a rainforest soil, with several parameters individually varied. Infiltration experiments show that the concentrations of C, N and P in groundwater decrease rapidly as infiltration decreases, whether due to increased slope or to decreased precipitation. Increased erosion of surface plant litter and topsoil results in substantially decreased nutrient concentrations in groundwater. Increased sand content in soil causes an increase in nutrient concentration. We integrate these variables in analyzing topographic swathes from the Rio Grande Rift, comparing the southern part of the rift, where topography is relatively old and reduced, to the northern rift. C and P concentrations in groundwater increase as slope gradient decreases, resulting in substantially larger C and P concentrations in groundwater in the southern rift than the northern rift. Nitrogen concentrations in groundwater depends on whether infiltration varies as a function of slope gradient; in experiments where the fraction of infiltrated precipitation decreased with increasing slope, N concentrations was also substantially higher in the southern rift; but in experiments where that fraction was held constant, N concentrations was lower in the southern

  18. Numeric model of the normative consumption of heat for the colour homogenisation of wood in pressure autoclaves

    NASA Astrophysics Data System (ADS)

    Dzurenda, Ladislav

    2016-06-01

    This paper presents a numeric model of the normative consumption of heat for the colour homogenisation of unfrozen wood using saturated steam in pressure autoclaves, in the form of a technically feasible standard. For more effective determination of the objectively necessary consumption of heat for steaming non-frozen wood in a steam autoclave, a program was prepared in EXCEL in the form of a numeric table. Based on the technical and technological data on machinery, the range of colour homogenised wood and the colour-homogenisation regime, the program provides information about normative - the consumption of heat per 1 mł - of colour homogenised wood as well as about the consumption of heat for individual items of the thermal balance off the process of colour homogenisation in a pressure autoclave.

  19. A QMRA Model for Salmonella in Pork Products During Preparation and Consumption.

    PubMed

    Swart, A N; van Leusden, F; Nauta, M J

    2016-03-01

    As part of a quantitative microbiological risk assessment (QMRA) food chain model, this article describes a model for the consumer phase for Salmonella-contaminated pork products. Three pork products were chosen as a proxy for the entire pork product spectrum: pork cuts, minced meat patties, and fermented sausages. For pork cuts cross-contamination is considered the most important process and therefore it is modeled in detail. For minced meat, both cross-contamination and undercooking are the relevant processes. For those commodities bacterial growth during transport and storage is also modeled. Fermented sausages are eaten raw and the production may be defective. Variability between consumers' behavior and the impact of variability between production processes at the farm and abattoir are taken into account. Results indicate that Salmonella levels on products may increase significantly during transport and storage. Heating is very efficient at lowering concentrations, yet cross-contamination plays an important role in products that remain contaminated. For fermented sausage it is found that drying is important for Salmonella reduction. Sensitivity analysis revealed that cross- contamination factors "knife cleaning" and "preparation of a salad" are important parameters for pork cuts. For minced meat cleaning of the board, salad consumption, refrigerator temperature, and storage time were significant.

  20. Atmospheric nutrient input to the Baltic sea from 1850 to 2006: a reconstruction from modeling results and historical data.

    PubMed

    Ruoho-Airola, Tuija; Eilola, Kari; Savchuk, Oleg P; Parviainen, Maija; Tarvainen, Virpi

    2012-09-01

    In this study, a consistent basin-wise monthly time series of the atmospheric nutrient load to the Baltic Sea during 1850-2006 was compiled. Due to the lack of a long time series (1850-1960) of nutrient deposition to the Baltic Sea, the data set was compiled by combining a time series of deposition data at the Baltic Nest Institute from 1970 to 2006, published historical monitoring data and deposition estimates, as well as recent modeled Representative Concentration Pathways (RCP) emission estimates. The procedure for nitrogen compounds included estimation of the deposition in a few intermediate reference years, linear interpolation between them, and the decomposition of annual deposition into a seasonal deposition pattern. As no reliable monitoring results were found for the atmospheric deposition of phosphorus during the early period of our study, we used published estimates for the temporal and spatial pattern of the phosphorus load.

  1. Modeling of the impact of Rhone River nutrient inputs on the dynamics of planktonic diversity

    NASA Astrophysics Data System (ADS)

    Alekseenko, Elena; Baklouti, Melika; Garreau, Pierre; Guyennon, Arnaud; Carlotti, François

    2014-05-01

    conditions (for which the sea surface layer is well mixed). As a first step, these scenarios will allow to investigate the impact of changes in the N:P ratios of the Rhone River on the structure of the planktonic community at short time scale (two years). Acknowledgements The present research is a contribution to the Labex OT-Med (n° ANR-11-LABX-0061) funded by the French Government «Investissements d'Avenir» program of the French National Research Agency (ANR) through the A*MIDEX project (n° ANR-11-IDEX-0001-02). We thank our collegue P. Raimbault for the access to the MOOSE project dataset about the nutrient composition of the Rhone River . References Alekseenko E., Raybaud V., Espinasse B., Carlotti F., Queguiner B., Thouvenin B., Garreau P., Baklouti M. (2014) Seasonal dynamics and stoichiometry of the planktonic community in the NW Mediterranean Sea: a 3D modeling approach. Ocean Dynamics IN PRESS. http://dx.doi.org/10.1007/s10236-013-0669-2 Baklouti M, Diaz F, Pinazo C, Faure V, Quequiner B (2006a) Investigation of mechanistic formulations depicting phytoplankton dynamics for models of marine pelagic ecosystems and description of a new model. Prog Oceanogr 71:1-33 Baklouti M, Faure V, Pawlowski L, Sciandra A (2006b) Investigation and sensitivity analysis of a mechanistic phytoplankton model implemented in a new modular tool (Eco3M) dedicated to biogeochemical modelling. Prog Oceanogr 71:34-58 Lazure P, Dumas F (2008) An external-internal mode coupling for a 3D hydrodynamical model for applications at regional scale (MARS). Adv Water Resour 31(2):233-250 Ludwig, W., Dumont, E., Meybeck, M., Heussner, S. (2009). River discharges of water and nutrients to the Mediterranean and Black Sea: Major drivers for ecosystem changes during past and future decades? Progress in Oceanography 80, pp. 199-217 Malanotte-Rizoli, P. and Pan-Med Group. (2012) Physical forcing and physical/biochemical variability of the Mediterranean Sea : A review of unresolved issues and directions of

  2. Nutrient management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nutrient management has been defined as “the science and art directed to link soil, crop, weather and hydrologic factors with cultural, irrigation and soil and water conservation practices to achieve the goals of optimizing nutrient use efficiency, yields, crop quality, and economic returns, while r...

  3. Available nutrients

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biochar technology may contribute to the recovery and recycling of plant nutrients and thus add a fertilizer value to the biochar. Total nutrient content in biochars varies greatly and is mainly dependent on feedstock elemental composition and to a lesser extent on pyrolysis conditions. Availability...

  4. Protective Effects of Dietary Supplementation with a Combination of Nutrients in a Transgenic Mouse Model of Alzheimer’s Disease

    PubMed Central

    Wang, Chao; Xie, Wei; Ma, Lan; Zhu, Jinfeng; Zhang, Yan; Dang, Rui; Wang, Decai; Wu, Yonghui; Wu, Qunhong

    2015-01-01

    Objective This study investigated the effects of intervention with a combination of nutrients in the amyloid precursor protein-presenilin (APP-PSN) C57BL/6J double transgenic mouse model of Alzheimer’s disease (AD). Methods A total of 72 2-month-old APP-PSN mice were randomly assigned to three groups. The model group (MG) was fed regular, unsupplemented chow, while the low- and high-dose treatment groups (LG and HG, respectively) were given a combination of nutrients that included phosphatidylserine, blueberry extracts, docosahexaenoic acid, and eicosapentaenoic acid as part of their diet. An additional 24 wild-type littermates that were fed unsupplemented chow served as the negative control group (NG). After 3 and 7 months of treatment, the cognitive performance was assessed with the Morris water maze and the shuttle box escape/avoidance task, and the biochemical parameters and oxidative stress were evaluated in both the blood and brain. Results An improvement in antioxidant capacity was observed in the treatment groups relative to the MG at 3 months, while superior behavioral test results were observed in the mice of the HG and NG groups. In the MG, pycnosis was detected in neuronal nuclei, and a loss of neurons was observed in the cerebral cortex and the hippocampus. At 7 months, the β-amyloid1–42 peptide accumulation was significantly elevated in the MG but was markedly lower in the mice fed the nutrient combination. The antioxidant capacity and behavioral test scores were also higher in these mice. Conclusions Early intervention with a combination of nutrients should be considered as a strategy for preventing cognitive decline and other symptoms associated with AD. PMID:26606074

  5. Assessing winter cover crop nutrient uptake efficiency using a water quality simulation model

    USGS Publications Warehouse

    Yeo, In-Young; Lee, Sangchui; Sadeghi, Ali M.; Beeson, Peter C.; Hively, W. Dean; McCarty, Greg W.; Lang, Megan W.

    2013-01-01

    Winter cover crops are an effective conservation management practice with potential to improve water quality. Throughout the Chesapeake Bay Watershed (CBW), which is located in the Mid-Atlantic US, winter cover crop use has been emphasized and federal and state cost-share programs are available to farmers to subsidize the cost of winter cover crop establishment. The objective of this study was to assess the long-term effect of planting winter cover crops at the watershed scale and to identify critical source areas of high nitrate export. A physically-based watershed simulation model, Soil and Water Assessment Tool (SWAT), was calibrated and validated using water quality monitoring data and satellite-based estimates of winter cover crop species performance to simulate hydrological processes and nutrient cycling over the period of 1991–2000. Multiple scenarios were developed to obtain baseline information on nitrate loading without winter cover crops planted and to investigate how nitrate loading could change with different winter cover crop planting scenarios, including different species, planting times, and implementation areas. The results indicate that winter cover crops had a negligible impact on water budget, but significantly reduced nitrate leaching to groundwater and delivery to the waterways. Without winter cover crops, annual nitrate loading was approximately 14 kg ha−1, but it decreased to 4.6–10.1 kg ha−1 with winter cover crops resulting in a reduction rate of 27–67% at the watershed scale. Rye was most effective, with a potential to reduce nitrate leaching by up to 93% with early planting at the field scale. Early planting of winter cover crops (~30 days of additional growing days) was crucial, as it lowered nitrate export by an additional ~2 kg ha−1 when compared to late planting scenarios. The effectiveness of cover cropping increased with increasing extent of winter cover crop implementation. Agricultural fields with well-drained soils

  6. Assessing winter cover crop nutrient uptake efficiency using a water quality simulation model

    NASA Astrophysics Data System (ADS)

    Yeo, I.-Y.; Lee, S.; Sadeghi, A. M.; Beeson, P. C.; Hively, W. D.; McCarty, G. W.; Lang, M. W.

    2014-12-01

    Winter cover crops are an effective conservation management practice with potential to improve water quality. Throughout the Chesapeake Bay watershed (CBW), which is located in the mid-Atlantic US, winter cover crop use has been emphasized, and federal and state cost-share programs are available to farmers to subsidize the cost of cover crop establishment. The objective of this study was to assess the long-term effect of planting winter cover crops to improve water quality at the watershed scale (~ 50 km2) and to identify critical source areas of high nitrate export. A physically based watershed simulation model, Soil and Water Assessment Tool (SWAT), was calibrated and validated using water quality monitoring data to simulate hydrological processes and agricultural nutrient cycling over the period of 1990-2000. To accurately simulate winter cover crop biomass in relation to growing conditions, a new approach was developed to further calibrate plant growth parameters that control the leaf area development curve using multitemporal satellite-based measurements of species-specific winter cover crop performance. Multiple SWAT scenarios were developed to obtain baseline information on nitrate loading without winter cover crops and to investigate how nitrate loading could change under different winter cover crop planting scenarios, including different species, planting dates, and implementation areas. The simulation results indicate that winter cover crops have a negligible impact on the water budget but significantly reduce nitrate leaching to groundwater and delivery to the waterways. Without winter cover crops, annual nitrate loading from agricultural lands was approximately 14 kg ha-1, but decreased to 4.6-10.1 kg ha-1 with cover crops resulting in a reduction rate of 27-67% at the watershed scale. Rye was the most effective species, with a potential to reduce nitrate leaching by up to 93% with early planting at the field scale. Early planting of cover crops (~ 30

  7. Determining the best population-level alcohol consumption model and its impact on estimates of alcohol-attributable harms

    PubMed Central

    2012-01-01

    Background The goals of our study are to determine the most appropriate model for alcohol consumption as an exposure for burden of disease, to analyze the effect of the chosen alcohol consumption distribution on the estimation of the alcohol Population- Attributable Fractions (PAFs), and to characterize the chosen alcohol consumption distribution by exploring if there is a global relationship within the distribution. Methods To identify the best model, the Log-Normal, Gamma, and Weibull prevalence distributions were examined using data from 41 surveys from Gender, Alcohol and Culture: An International Study (GENACIS) and from the European Comparative Alcohol Study. To assess the effect of these distributions on the estimated alcohol PAFs, we calculated the alcohol PAF for diabetes, breast cancer, and pancreatitis using the three above-named distributions and using the more traditional approach based on categories. The relationship between the mean and the standard deviation from the Gamma distribution was estimated using data from 851 datasets for 66 countries from GENACIS and from the STEPwise approach to Surveillance from the World Health Organization. Results The Log-Normal distribution provided a poor fit for the survey data, with Gamma and Weibull distributions providing better fits. Additionally, our analyses showed that there were no marked differences for the alcohol PAF estimates based on the Gamma or Weibull distributions compared to PAFs based on categorical alcohol consumption estimates. The standard deviation of the alcohol distribution was highly dependent on the mean, with a unit increase in alcohol consumption associated with a unit increase in the mean of 1.258 (95% CI: 1.223 to 1.293) (R2 = 0.9207) for women and 1.171 (95% CI: 1.144 to 1.197) (R2 = 0. 9474) for men. Conclusions Although the Gamma distribution and the Weibull distribution provided similar results, the Gamma distribution is recommended to model alcohol consumption from population

  8. Policy Effects in Hyperbolic vs. Exponential Models of Consumption and Retirement.

    PubMed

    Gustman, Alan L; Steinmeier, Thomas L

    2012-06-01

    This paper constructs a structural retirement model with hyperbolic preferences and uses it to estimate the effect of several potential Social Security policy changes. Estimated effects of policies are compared using two models, one with hyperbolic preferences and one with standard exponential preferences. Sophisticated hyperbolic discounters may accumulate substantial amounts of wealth for retirement. We find it is frequently difficult to distinguish empirically between models with the two types of preferences on the basis of asset accumulation paths or consumption paths around the period of retirement. Simulations suggest that, despite the much higher initial time preference rate, individuals with hyperbolic preferences may actually value a real annuity more than individuals with exponential preferences who have accumulated roughly equal amounts of assets. This appears to be especially true for individuals with relatively high time preference rates or who have low assets for whatever reason. This affects the tradeoff between current benefits and future benefits on which many of the retirement incentives of the Social Security system rest.Simulations involving increasing the early entitlement age and increasing the delayed retirement credit do not show a great deal of difference whether exponential or hyperbolic preferences are used, but simulations for eliminating the earnings test show a non-trivially greater effect when exponential preferences are used.

  9. Neural Energy Supply-Consumption Properties Based on Hodgkin-Huxley Model

    PubMed Central

    2017-01-01

    Electrical activity is the foundation of the neural system. Coding theories that describe neural electrical activity by the roles of action potential timing or frequency have been thoroughly studied. However, an alternative method to study coding questions is the energy method, which is more global and economical. In this study, we clearly defined and calculated neural energy supply and consumption based on the Hodgkin-Huxley model, during firing action potentials and subthreshold activities using ion-counting and power-integral model. Furthermore, we analyzed energy properties of each ion channel and found that, under the two circumstances, power synchronization of ion channels and energy utilization ratio have significant differences. This is particularly true of the energy utilization ratio, which can rise to above 100% during subthreshold activity, revealing an overdraft property of energy use. These findings demonstrate the distinct status of the energy properties during neuronal firings and subthreshold activities. Meanwhile, after introducing a synapse energy model, this research can be generalized to energy calculation of a neural network. This is potentially important for understanding the relationship between dynamical network activities and cognitive behaviors. PMID:28316842

  10. Translational models of interactions between stress and alcohol consumption: strengths and limitations.

    PubMed

    Hopf, F Woodward; Sparta, Dennis R; Bonci, Antonello

    2011-01-01

    Much has been written about the interaction of stressors (physical, social, and psychological) and alcohol addiction based on studies in humans and preclinical models. We begin by considering the significance and complexity of alcoholism and the options for effectively modeling it in animals, particularly rodents. We then focus on the following aspects of stress-alcohol interactions: (1) compulsive alcohol consumption, characterized by continued intake despite the presence of stressful or aversive consequences; (2) the possible relationship between acute stress and increased alcohol intake; (3) an apparent cross sensitization of stress and alcohol exposure, which increases both future reactivity to stress and the risk of developing alcohol addiction; and (4) efforts to target stress in therapeutic interventions for alcoholism. We also describe possible neuroadaptations and genetic factors that may interact with stress to increase susceptibility to alcoholism. Throughout, we describe the challenges and inconsistencies inherent in both human and animal studies of alcoholism, its etiology, and its impacts. We believe the relationship between preclinical and human studies is of paramount importance to understand addiction-related behavior in humans and to direct, improve, and expand animal models. It is our hope that a full understanding of the mechanistic bases of pathological alcohol intake will have translational benefits for the development of behavioral and pharmacological therapies.

  11. Neural Energy Supply-Consumption Properties Based on Hodgkin-Huxley Model.

    PubMed

    Wang, Yihong; Wang, Rubin; Xu, Xuying

    2017-01-01

    Electrical activity is the foundation of the neural system. Coding theories that describe neural electrical activity by the roles of action potential timing or frequency have been thoroughly studied. However, an alternative method to study coding questions is the energy method, which is more global and economical. In this study, we clearly defined and calculated neural energy supply and consumption based on the Hodgkin-Huxley model, during firing action potentials and subthreshold activities using ion-counting and power-integral model. Furthermore, we analyzed energy properties of each ion channel and found that, under the two circumstances, power synchronization of ion channels and energy utilization ratio have significant differences. This is particularly true of the energy utilization ratio, which can rise to above 100% during subthreshold activity, revealing an overdraft property of energy use. These findings demonstrate the distinct status of the energy properties during neuronal firings and subthreshold activities. Meanwhile, after introducing a synapse energy model, this research can be generalized to energy calculation of a neural network. This is potentially important for understanding the relationship between dynamical network activities and cognitive behaviors.

  12. Nutrient and plankton dynamics in an intermittently closed/open lagoon, Smiths Lake, south-eastern Australia: An ecological model

    NASA Astrophysics Data System (ADS)

    Everett, Jason D.; Baird, Mark E.; Suthers, Iain M.

    2007-05-01

    A spatially resolved, eleven-box ecological model is presented for an Intermittently Closed and Open Lake or Lagoon (ICOLL), configured for Smiths Lake, NSW Australia. ICOLLs are characterised by low flow from the catchment and a dynamic sand bar blocking oceanic exchange, which creates two distinct phases - open and closed. The process descriptions in the ecological model are based on a combination of physical and physiological limits to the processes of nutrient uptake, light capture by phytoplankton and predator-prey interactions. An inverse model is used to calculate mixing coefficients from salinity observations. When compared to field data, the ecological model obtains a fit for salinity, nitrogen, phosphorus, chlorophyll a and zooplankton which is within 1.5 standard deviations of the mean of the field data. Simulations show that nutrient limitation (nitrogen and phosphorus) is the dominant factor limiting growth of the autotrophic state variables during both the open and closed phases of the lake. The model is characterised by strong oscillations in phytoplankton and zooplankton abundance, typical of predator-prey cycles. There is an increase in the productivity of phytoplankton and zooplankton during the open phase. This increased productivity is exported out of the lagoon with a net nitrogen export from water column variables of 489 and 2012 mol N d -1 during the two studied openings. The model is found to be most sensitive to the mortality and feeding efficiency of zooplankton.

  13. A multidimensional ambivalence model of chocolate craving: construct validity and associations with chocolate consumption and disordered eating.

    PubMed

    Cartwright, Fiona; Stritzke, Werner G K

    2008-01-01

    This study tested the construct validity of a multidimensional ambivalence model of chocolate craving, and examined the concurrent and discriminant validity of the model with respect to chocolate consumption and disordered eating behaviors. The Orientation to Chocolate Questionnaire (OCQ) was administered to 312 university students (79.5% female) along with measures of chocolate consumption and disordered eating. Results supported a three-factor model of chocolate craving incorporating approach and avoidance inclinations and feelings of guilt. These craving dimensions differentially predicted frequency and quantity of chocolate consumption as well as a range of disordered eating behaviors. Chocolate-related guilt was a consistent indicator of dysfunctional eating patterns, but was unrelated to external or functional eating. Approach inclinations positively predicted consumption-oriented eating behaviors and negatively predicted avoidance-oriented behaviors. Active avoidance inclinations facilitated restraint and inhibited frequency of consumption, but were unrelated to quantity consumed. In line with contemporary theories of substance craving, chocolate craving can be conceptualized as a net action disposition resulting from the relative strength of the competing processes underlying indulgence and restraint.

  14. A mathematical model of the link between growth and L-malic acid consumption for five strains of Oenococcus oeni.

    PubMed

    Fahimi, N; Brandam, C; Taillandier, P

    2014-12-01

    In winemaking, after the alcoholic fermentation of red wines and some white wines, L-malic acid must be converted into L-lactic acid to reduce the acidity. This malolactic fermentation (MLF) is usually carried out by the lactic acid bacteria Oenococcus oeni. Depending on the level of process control, selected O. oeni is inoculated or the natural microbiota of the cellar is used. This study considers the link between growth and MLF for five strains of O. oeni species. The kinetics of growth and L-malic acid consumption were followed in modified MRS medium (20 °C, pH 3.5, and 10 % ethanol) in anaerobic conditions. A large variability was found among the strains for both their growth and their consumption of L-malic acid. There was no direct link between biomass productivities and consumption of L-malic acid among strains but there was a link of proportionality between the specific growth of a strain and its specific consumption of L-malic acid. Experiments with and without malic acid clearly demonstrated that malic acid consumption improved the growth of strains. This link was quantified by a mathematical model comparing the intrinsic malic acid consumption capacity of the strains.

  15. Modeling oxygen consumption in the proximal tubule: effects of NHE and SGLT2 inhibition

    PubMed Central

    Vallon, Volker; Edwards, Aurélie

    2015-01-01

    The objective of this study was to investigate how physiological, pharmacological, and pathological conditions that alter sodium reabsorption (TNa) in the proximal tubule affect oxygen consumption (QO2) and Na+ transport efficiency (TNa/QO2). To do so, we expanded a mathematical model of solute transport in the proximal tubule of the rat kidney. The model represents compliant S1, S2, and S3 segments and accounts for their specific apical and basolateral transporters. Sodium is reabsorbed transcellularly, via apical Na+/H+ exchangers (NHE) and Na+-glucose (SGLT) cotransporters, and paracellularly. Our results suggest that TNa/QO2 is 80% higher in S3 than in S1–S2 segments, due to the greater contribution of the passive paracellular pathway to TNa in the former segment. Inhibition of NHE or Na-K-ATPase reduced TNa and QO2, as well as Na+ transport efficiency. SGLT2 inhibition also reduced proximal tubular TNa but increased QO2; these effects were relatively more pronounced in the S3 vs. the S1–S2 segments. Diabetes increased TNa and QO2 and reduced TNa/QO2, owing mostly to hyperfiltration. Since SGLT2 inhibition lowers diabetic hyperfiltration, the net effect on TNa, QO2, and Na+ transport efficiency in the proximal tubule will largely depend on the individual extent to which glomerular filtration rate is lowered. PMID:25855513

  16. A numerical modeling analysis of the phytoplankton and nutrients dynamics for Todos Santos Bay and northwestern Baja California

    NASA Astrophysics Data System (ADS)

    Cruz Rico, J. E., Sr.; Rivas, D.

    2015-12-01

    A tridimensional physical-biological numerical model is implemented for the Todos Santos Bay and the northwest of Baja California to investigate the mechanics and ecological processes associated with the regional plankton dynamics. An NPZD (Nitrate, Phytoplankton, Zooplankton, and Detritus) ecosystem simple model is used to describe the distribution and evolution of the lower trophic levels in the area of study. The model adequately reproduces the spatial distribution of the concentration of chlorophyll for the different seasons of the year. In general, the distribution of the subsurface chlorophyll maximum (SCM) depends primarily on the seasonal circulation patterns, the total solar irradiance, and the vertical flux of nutrients. Interannual variability shows two extreme years in the analyzed period: 2006 and 2007. Year 2006 was an anomalous warm year, with a weak upwelling activity and low chlorophyll concentrations compared to year 2011. These anomalies are related to the activity of the Pacific Decadal Oscillation, the El Niño+3, and the regional Outgoing Longwave Radiation. Thus, in spite of the simplicity of the NPZD model, both temporal and spatial patterns of distribution of chlorophyll and nutrients are generally reproduced.

  17. Nutrient absorption.

    PubMed

    Rubin, Deborah C

    2004-03-01

    Our understanding of nutrient absorption continues to grow, from the development of unique animal models and from studies in which cutting-edge molecular and cellular biologic approaches have been used to analyze the structure and function of relevant molecules. Studies of the molecular genetics of inherited disorders have also provided many new insights into these processes. A major advance in lipid absorption has been the cloning and characterization of several intestinal acyl CoA:monoacylglycerol acyltransferases; these may provide new targets for antiobesity drug therapy. Studies of intestinal cholesterol absorption and reverse cholesterol transport have encouraged the development of novel potential treatments for hyperlipidemia. Observations in genetically modified mice and in humans with mutations in glucose transporter 2 suggest the importance of a separate microsomal membrane transport pathway for glucose transport. The study of iron metabolism has advanced greatly with the identification of the hemochromatosis gene and the continued examination of the genetic regulation of iron absorptive pathways. Several human thiamine transporters have been identified, and their specific roles in different tissues are being explored.

  18. Rodent models and mechanisms of voluntary binge-like ethanol consumption: Examples, opportunities, and strategies for preclinical research

    PubMed Central

    Fritz, Brandon M; Boehm, Stephen L

    2015-01-01

    Binge ethanol consumption has widespread negative consequences for global public health. Rodent models offer exceptional power to explore the neurobiology underlying and affected by binge-like drinking as well as target potential prevention, intervention, and treatment strategies. An important characteristic of these models is their ability to consistently produce pharmacologically-relevant blood ethanol concentration. This review examines the current available rodent models of voluntary, pre-dependent binge-like ethanol consumption and their utility in various research strategies. Studies have demonstrated that a diverse array of neurotransmitters regulate binge-like drinking, resembling some findings from other drinking models. Furthermore, repeated binge-like drinking recruits neuroadaptive mechanisms in mesolimbocortical reward circuitry. New opportunities that these models offer in the current context of mechanistic research are also discussed. PMID:26021391

  19. A model to determine the lake nutrient standards for drinking water sources in Yunnan-Guizhou Plateau Ecoregion, China.

    PubMed

    Ji, Danfeng; Xi, Beidou; Su, Jing; Huo, Shouliang; He, Li; Liu, Hongliang; Yang, Queping

    2013-09-01

    Lake eutrophication (LE) has become an increasingly severe environmental problem recently. However, there has been no nutrient standard established for LE control in many developing countries such as China. This study proposes a structural equation model to assist in the establishment of a lake nutrient standard for drinking water sources in Yunnan-Guizhou Plateau Ecoregion (Yungui Ecoregion), China. The modeling results indicate that the most predictive indicator for designated use-attainment is total phosphorus (TP) (total effect = -0.43), and chlorophyll a (Chl-a) is recommended as the second important indicator (total effect = -0.41). The model is further used for estimating the probability of use-attainment associated with lake water as a drinking water source and various levels of candidate criteria (based on the reference conditions and the current environmental quality standards for surface water). It is found that these candidate criteria cannot satisfy the designated 100% use-attainment. To achieve the short-term target (85% attainment of the designated use), TP and Chl-a values ought to be less than 0.02 mg/L and 1.4 microg/L, respectively. When used as a long-term target (90% or greater attainment of the designated use), the TP and Chl-a values are suggested to be less than 0.018 mg/L and 1 microg/L, respectively.

  20. Evaluation of fuel consumption potential of medium and heavy duty vehicles through modeling and simulation.

    SciTech Connect

    Delorme, A.; Karbowski, D.; Sharer, P.; Energy Systems

    2010-03-31

    The main objective of this report is to provide quantitative data to support the Committee in its task of establishing a report to support rulemaking on medium- and heavy-duty fuel efficiency improvement. In particular, it is of paramount importance for the Committee to base or illustrate their conclusions on established models and actual state-of-the art data. The simulations studies presented in the report have been defined and requested by the members of the National Academy committee to provide quantitative inputs to support their recommendations. As such, various technologies and usage scenarios were considered for several applications. One of the objective is to provide the results along with their associated assumptions (both vehicle and drive cycles), information generally missing from public discussions on literature search. Finally, the advantages and limitations of using simulation will be summarized. The study addresses several of the committee tasks, including: (1) Discussion of the implication of metric selection; (2) Assessing the impact of existing technologies on fuel consumption through energy balance analysis (both steady-state and standard cycles) as well as real world drive cycles; and (3) Impact of future technologies, both individually and collectively.

  1. A model for water discharge based on energy consumption data (WATEN).

    NASA Astrophysics Data System (ADS)

    Moyano, María Carmen; Tornos, Lucía; Juana, Luis

    2014-05-01

    As the need for water conservation is becoming a major water concern, a lumped model entitled WATEN has been proposed to analyse the water balance in the B-XII Irrigation Sector of the Lower Guadalquivir Irrigated Area, one of the largest irrigated areas in Spain. The aim of this work is to approach the hydrological study of an irrigation district lacking of robust data in such a manner that the water balance is performed from less to more process complexity. WATEN parameters are the total and readily available moisture in the soil, a fix percentage for effective precipitation, and the irrigation efficiency. The Sector presents six different drainage pumping stations, with particular pumping groups and with no water flow measurement devices. Energy consumption depends on the working pumping stations and groups, and on the variable water level to discharge. Energy consumed in the drainage pumping stations has been used for calibration The study has relied on two monthly series of data: the volume of drainage obtained from the model and the energy consumed in the pumping stations. A double mass analysis has permitted the detection of data tendencies. The two resulting series of data have been compared to assess model performance, particularly the Pearson's product moment correlation coefficient and the Nash-Sutcliffe coefficient of efficiency, e2, determined for monthly data and for annual and monthly average data. For model calibration, we have followed a classical approach based on objective functions optimization, and a robust approach based on Markov chain Monte Carlo simulation process, driven in a similar manner to genetic algorithms, entitled Parameters Estimation on Driven Trials (PEDT), and aiming to reduce computational requirements. WATEN has been parameterised maintaining its physical and conceptual rationality. The study approach is outlined as a progressive introduction of data. In this manner, we can observe its effect on the studied objective

  2. Modeling Household Water Consumption in a Hydro-Institutional System - The Case of Jordan

    NASA Astrophysics Data System (ADS)

    Klassert, C. J. A.; Gawel, E.; Klauer, B.; Sigel, K.

    2014-12-01

    Jordan faces an archetypal combination of high water scarcity, with a per capita water availability of around 150 CM per year significantly below the absolute scarcity threshold of 500 CM, and strong population growth, especially due to the Syrian refugee crisis. This poses a severe challenge to the already strained institutions in the Jordanian water sector. The Stanford-led G8 Belmont Forum project "Integrated Analysis of Freshwater Resources Sustainability in Jordan" aims at analyzing the potential role of water sector institutions in the pursuit of a sustainable freshwater system performance. In order to do so, the project develops a coupled hydrological and agent-based model, allowing for the exploration of physical as well as socio-economic and institutional scenarios for Jordan's water sector. The part of this integrated model in focus here is the representation of household behavior in Jordan's densely populated capital Amman. Amman's piped water supply is highly intermittent, which also affects its potability. Therefore, Amman's citizens rely on various decentralized modes of supply, depending on their socio-economic characteristics. These include water storage in roof-top and basement tanks, private tanker supply, and the purchase of bottled water. Capturing this combination of centralized and decentralized supply modes is important for an adequate representation of water consumption behavior: Firstly, it will affect the impacts of supply-side and demand-side policies, such as reductions of non-revenue water (including illegal abstractions), the introduction of continuous supply, support for storage enhancements, and water tariff reforms. Secondly, it is also necessary to differentiate the impacts of any policy on the different socio-economic groups in Amman. In order to capture the above aspects of water supply, our model is based on the tiered supply curve approach, developed by Srinivasan et al. in 2011 to model a similar situation in Chennai, India

  3. Spatial Differentiation of Arable Land and Permanent Grasslands to Improve a Regional Land Management Model for Nutrient Balancing

    NASA Astrophysics Data System (ADS)

    Gómez Giménez, M.; Della Peruta, R.; de Jong, R.; Keller, A.; Schaepman, M. E.

    2015-12-01

    Agroecosystems play an important role providing economic and ecosystem services, which directly impact society. Inappropriate land use and unsustainable agricultural management with associated nutrient cycles can jeopardize important soil functions such as food production, livestock feeding and conservation of biodiversity. The objective of this study was to integrate remotely sensed land cover information into a regional Land Management Model (LMM) to improve the assessment of spatial explicit nutrient balances for agroecosystems. Remotely sensed data as well as an optimized parameter set contributed to feed the LMM providing a better spatial allocation of agricultural data aggregated at farm level. The integration of land use information in the land allocation process relied predominantly on three factors: i) spatial resolution, ii) classification accuracy and iii) parcels definition. The best-input parameter combination resulted in two different land cover classifications with overall accuracies of 98%, improving the LMM performance by 16% as compared to using non-spatially explicit input. Firstly, the use of spatial explicit information improved the spatial allocation output resulting in a pattern that better followed parcel boundaries (Figure 1). Second, the high classification accuracies ensured consistency between the datasets used. Third, the use of a suitable spatial unit to define the parcels boundaries influenced the model in terms of computational time and the amount of farmland allocated. We conclude that the combined use of remote sensing (RS) data with the LMM has the potential to provide highly accurate information of spatial explicit nutrient balances that are crucial for policy options concerning sustainable management of agricultural soils. Figure 1. Details of the spatial pattern obtained: a) Using only the farm census data, b) using also land use information. Framed in black in the left image (a), examples of artifacts that disappeared when

  4. Dual permeability modeling of tile drain management influences on hydrologic and nutrient transport characteristics in macroporous soil

    NASA Astrophysics Data System (ADS)

    Frey, Steven K.; Hwang, Hyoun-Tae; Park, Young-Jin; Hussain, Syed I.; Gottschall, Natalie; Edwards, Mark; Lapen, David R.

    2016-04-01

    Tile drainage management is considered a beneficial management practice (BMP) for reducing nutrient loads in surface water. In this study, 2-dimensional dual permeability models were developed to simulate flow and transport following liquid swine manure and rhodamine WT (strongly sorbing) tracer application on macroporous clay loam soils under controlled (CD) and free drainage (FD) tile management. Dominant flow and transport characteristics were successfully replicated, including higher and more continuous tile discharge and lower peak rhodamine WT concentrations in FD tile effluent; in relation to CD, where discharge was intermittent, peak rhodamine concentrations higher, and mass exchange from macropores into the soil matrix greater. Explicit representation of preferential flow was essential, as macropores transmitted >98% of surface infiltration, tile flow, and tile solute loads for both FD and CD. Incorporating an active 3rd type lower boundary condition that facilitated groundwater interaction was imperative for simulating CD, as the higher (relative to FD) water table enhanced water and soluble nutrient movement from the soil profile into deeper groundwater. Scenario analysis revealed that in conditions where slight upwards hydraulic gradients exist beneath tiles, groundwater upwelling can influence the concentration of surface derived solutes in tile effluent under FD conditions; whereas the higher and flatter CD water table can restrict groundwater upwelling. Results show that while CD can reduce tile discharge, it can also lead to an increase in surface-application derived nutrient concentrations in tile effluent and hence surface water receptors, and it can promote NO3 loading into groundwater. This study demonstrates dual permeability modeling as a tool for increasing the conceptual understanding of tile drainage BMPs.

  5. [The effects of manpower emigration on income distribution and consumption models in the Egyptian economy].

    PubMed

    Abdel Fadil, M

    1985-01-01

    This work analyzes the effects of emigration from Egypt on the distribution of income and the consumption model of the Egyptian economy. The increasing role of remittances as a principal source of household income has disturbed the old division of income among socioeconomic groups. It is difficult to estimate the volume of remittances with any precision because of the variety of ways in which they can be made. Official statistics tend to underestimate their value by ignoring black market transactions, remittances of merchandise, and other forms. An estimate was made of the value of remittances in 1980 taking account of wage levels of 5 different types of workers in the principal employing countries, their average propensities to save, and the employment structure of migrants by socioprofessional groups. The average educational level of emigrants appears to have declined somewhat between 1972-78. Average monthly income for emigrants was estimated to range from 792 Egyptian pounds for technical and professional workers to 252 for unskilled workers and the propensity to save was estimated to range from 40% for technical and scientific workers to 15% for unskilled workers. The total income remitted in 1980 in millions of Egyptian pounds was estimated at 912 for 240,000 technical and scienfific workers, 739 for 360,000 intermediate level workers, 415 for 300,000 artisans and workers, 60 for 60,000 chauffeurs, and 109 for 240,000 unskilled workers. Although remittances have elevated the per capita income of the low income groups, their impact has been diminished by severe inflationary pressures which have led to a decline in living levels and a less complete satisfaction of basic needs. Salary levels of construction workers were 7-9 times higher in Egyptian pounds in 1977 in 3 countries of immigration than in Egypt, while they were 7-10 times higher in 4 countries for university professors. Remittances are used by families receiving them for subsistence or investment

  6. Quantitative microbial risk assessment models for consumption of raw vegetables irrigated with reclaimed water.

    PubMed

    Hamilton, Andrew J; Stagnitti, Frank; Premier, Robert; Boland, Anne-Maree; Hale, Glenn

    2006-05-01

    Quantitative microbial risk assessment models for estimating the annual risk of enteric virus infection associated with consuming raw vegetables that have been overhead irrigated with nondisinfected secondary treated reclaimed water were constructed. We ran models for several different scenarios of crop type, viral concentration in effluent, and time since last irrigation event. The mean annual risk of infection was always less for cucumber than for broccoli, cabbage, or lettuce. Across the various crops, effluent qualities, and viral decay rates considered, the annual risk of infection ranged from 10(-3) to 10(-1) when reclaimed-water irrigation ceased 1 day before harvest and from 10(-9) to 10(-3) when it ceased 2 weeks before harvest. Two previously published decay coefficients were used to describe the die-off of viruses in the environment. For all combinations of crop type and effluent quality, application of the more aggressive decay coefficient led to annual risks of infection that satisfied the commonly propounded benchmark of < or =10(-4), i.e., one infection or less per 10,000 people per year, providing that 14 days had elapsed since irrigation with reclaimed water. Conversely, this benchmark was not attained for any combination of crop and water quality when this withholding period was 1 day. The lower decay rate conferred markedly less protection, with broccoli and cucumber being the only crops satisfying the 10(-4) standard for all water qualities after a 14-day withholding period. Sensitivity analyses on the models revealed that in nearly all cases, variation in the amount of produce consumed had the most significant effect on the total uncertainty surrounding the estimate of annual infection risk. The models presented cover what would generally be considered to be worst-case scenarios: overhead irrigation and consumption of vegetables raw. Practices such as subsurface, furrow, or drip irrigation and postharvest washing/disinfection and food

  7. Quantitative Microbial Risk Assessment Models for Consumption of Raw Vegetables Irrigated with Reclaimed Water

    PubMed Central

    Hamilton, Andrew J.; Stagnitti, Frank; Premier, Robert; Boland, Anne-Maree; Hale, Glenn

    2006-01-01

    Quantitative microbial risk assessment models for estimating the annual risk of enteric virus infection associated with consuming raw vegetables that have been overhead irrigated with nondisinfected secondary treated reclaimed water were constructed. We ran models for several different scenarios of crop type, viral concentration in effluent, and time since last irrigation event. The mean annual risk of infection was always less for cucumber than for broccoli, cabbage, or lettuce. Across the various crops, effluent qualities, and viral decay rates considered, the annual risk of infection ranged from 10−3 to 10−1 when reclaimed-water irrigation ceased 1 day before harvest and from 10−9 to 10−3 when it ceased 2 weeks before harvest. Two previously published decay coefficients were used to describe the die-off of viruses in the environment. For all combinations of crop type and effluent quality, application of the more aggressive decay coefficient led to annual risks of infection that satisfied the commonly propounded benchmark of ≤10−4, i.e., one infection or less per 10,000 people per year, providing that 14 days had elapsed since irrigation with reclaimed water. Conversely, this benchmark was not attained for any combination of crop and water quality when this withholding period was 1 day. The lower decay rate conferred markedly less protection, with broccoli and cucumber being the only crops satisfying the 10−4 standard for all water qualities after a 14-day withholding period. Sensitivity analyses on the models revealed that in nearly all cases, variation in the amount of produce consumed had the most significant effect on the total uncertainty surrounding the estimate of annual infection risk. The models presented cover what would generally be considered to be worst-case scenarios: overhead irrigation and consumption of vegetables raw. Practices such as subsurface, furrow, or drip irrigation and postharvest washing/disinfection and food preparation

  8. Examining soil carbon uncertainty in a global model: response of microbial decomposition to temperature, moisture and nutrient limitation

    NASA Astrophysics Data System (ADS)

    Exbrayat, J.-F.; Pitman, A. J.; Zhang, Q.; Abramowitz, G.; Wang, Y.-P.

    2013-06-01

    Reliable projections of future climate require land-atmosphere carbon (C) fluxes to be represented realistically in Earth System Models. There are several sources of uncertainty in how carbon is parameterized in these models. First, while interactions between the C, nitrogen (N) and phosphorus (P) cycles have been implemented in some models, these lead to diverse changes in land-atmosphere fluxes. Second, while the parameterization of soil organic matter decomposition is similar between models, formulations of the control of the soil physical state on microbial activity vary widely. We address these sources uncertainty by implementing three soil moisture (SMRF) and three soil temperature (STRF) respiration functions in an Earth System Model that can be run with three degrees of biogeochemical nutrient limitation (C-only, C and N, and C and N and P). All 27 possible combinations of a SMRF with a STRF and a biogeochemical mode are equilibrated before transient historical (1850-2005) simulations are performed. As expected, implementing N and P limitation reduces the land carbon sink, transforming some regions from net sinks to net sources over the historical period (1850-2005). Differences in the soil C balance implied by the various SMRFs and STRFs also change the sign of some regional sinks. Further, although the absolute uncertainty in global carbon uptake is reduced, the uncertainty due to the SMRFs and STRFs grows relative to the inter-annual variability in net uptake when N and P limitations are added. We also demonstrate that the equilibrated soil C also depend on the shape of the SMRF and STRF. Equilibration using different STRFs and SMRFs and nutrient limitation generates a six-fold range of global soil C that largely mirrors the range in available (17) CMIP5 models. Simulating the historical change in soil carbon therefore critically depends on the choice of STRF, SMRF and nutrient limitation, as it controls the equilibrated state to which transient

  9. Effect of chronic coffee consumption on weight gain and glycaemia in a mouse model of obesity and type 2 diabetes

    PubMed Central

    Rustenbeck, I; Lier-Glaubitz, V; Willenborg, M; Eggert, F; Engelhardt, U; Jörns, A

    2014-01-01

    Objective: Epidemiological evidence shows that chronic coffee consumption in humans is correlated with a lower incidence of type 2 diabetes mellitus. For the experimental exploration of the underlying mechanisms, this effect needs to be replicated in an animal model of type 2 diabetes with a short lifespan. Design: Male C57BL/6 mice consumed regular coffee or water ad libitum and the development of obesity and diabetes caused by high-fat diet (55% lipids, HFD) was observed from week 10 on for 35 weeks in comparison with mice feeding on a defined normal diet (9% lipids, ND). Results: The massive weight gain in HFD mice was dose-dependently retarded (P=0.034), the moderate weight gain in ND mice was abolished (P<0.001) by coffee consumption, probably because of a lower feeding efficiency. The consumption of fluid (water or coffee) was significantly diminished by HFD (P<0.001), resulting in a higher coffee exposure of ND mice. On week 21 intraperitoneal glucose tolerance tests (IPGTT) showed a dose-dependent faster decline of elevated glucose levels in coffee-consuming HFD mice (P=0.016), but not in ND mice. Remarkably, a spontaneous decrease in non-fasting glycaemia occurred after week 21 in all treatment groups (P<0.001). On week 39 the IPGTT showed diminished peak of glucose levels in coffee-consuming HFD mice (P<0.05). HFD mice were hyperinsulinaemic and had significantly (P<0.001) enlarged islets. Coffee consumption did not affect islet size or parameters of beta-cell apoptosis, proliferation and insulin granule content. Conclusion: Coffee consumption retarded weight gain and improved glucose tolerance in a mouse model of type 2 diabetes and corresponding controls. This gives rise to the expectation that further insight into the mechanism of the diabetes-preventive effect of coffee consumption in humans may be gained by this approach. PMID:24979152

  10. A modified exponential behavioral economic demand model to better describe consumption data.

    PubMed

    Koffarnus, Mikhail N; Franck, Christopher T; Stein, Jeffrey S; Bickel, Warren K

    2015-12-01

    Behavioral economic demand analyses that quantify the relationship between the consumption of a commodity and its price have proven useful in studying the reinforcing efficacy of many commodities, including drugs of abuse. An exponential equation proposed by Hursh and Silberberg (2008) has proven useful in quantifying the dissociable components of demand intensity and demand elasticity, but is limited as an analysis technique by the inability to correctly analyze consumption values of zero. We examined an exponentiated version of this equation that retains all the beneficial features of the original Hursh and Silberberg equation, but can accommodate consumption values of zero and improves its fit to the data. In Experiment 1, we compared the modified equation with the unmodified equation under different treatments of zero values in cigarette consumption data collected online from 272 participants. We found that the unmodified equation produces different results depending on how zeros are treated, while the exponentiated version incorporates zeros into the analysis, accounts for more variance, and is better able to estimate actual unconstrained consumption as reported by participants. In Experiment 2, we simulated 1,000 datasets with demand parameters known a priori and compared the equation fits. Results indicated that the exponentiated equation was better able to replicate the true values from which the test data were simulated. We conclude that an exponentiated version of the Hursh and Silberberg equation provides better fits to the data, is able to fit all consumption values including zero, and more accurately produces true parameter values.

  11. Nonhuman primate model of alcohol abuse: effects of early experience, personality, and stress on alcohol consumption.

    PubMed

    Higley, J D; Hasert, M F; Suomi, S J; Linnoila, M

    1991-08-15

    Twenty-two 50-month-old rhesus monkeys were provided concurrent free access to an aspartame-sweetened 7% ethanol solution and an aspartame-sweetened vehicle before, during, and after social separation. Subjects had been reared for their first 6 months of life either without access to adults but with constant access to age mates (peer reared), a condition producing reduced exploration and increased fear-related behaviors, or as controls with their mothers; thereafter, all subjects received identical treatment. During home-cage periods, for 1 hr each day, 4 days a week, when the ethanol solution and vehicle were freely available, peer-reared subjects consumed significantly more alcohol than mother-reared subjects. When stress was increased via social separation, mother-reared animals increased their alcohol consumption to a level nearly as high as that of peer-reared monkeys. Average individual differences in alcohol consumption were markedly stable over time. In addition, there were strong positive correlations between alcohol consumption and distress behaviors. Biological indices of increased stress, such as plasma cortisol and corticotropin, were higher in peer-reared subjects. Within the peer- and mother-reared groups, these indices were positively correlated with alcohol consumption. The results suggest that early rearing experiences that predispose monkeys to increased fear-related behaviors produce excessive alcohol consumption under normal living conditions. Furthermore, a major challenge such as social separation increases alcohol consumption to levels producing intoxication even in monkeys not particularly vulnerable to stress.

  12. Combined use of stable isotopes and hydrologic modeling to better understand nutrient sources and cycling in highly altered systems (Invited)

    NASA Astrophysics Data System (ADS)

    Young, M. B.; Kendall, C.; Guerin, M.; Stringfellow, W. T.; Silva, S. R.; Harter, T.; Parker, A.

    2013-12-01

    The Sacramento and San Joaquin Rivers provide the majority of freshwater for the San Francisco Bay Delta. Both rivers are important sources of drinking and irrigation water for California, and play critical roles in the health of California fisheries. Understanding the factors controlling water quality and primary productivity in these rivers and the Delta is essential for making sound economic and environmental water management decisions. However, these highly altered surface water systems present many challenges for water quality monitoring studies due to factors such as multiple potential nutrient and contaminant inputs, dynamic source water inputs, and changing flow regimes controlled by both natural and engineered conditions. The watersheds for both rivers contain areas of intensive agriculture along with many other land uses, and the Sacramento River receives significant amounts of treated wastewater from the large population around the City of Sacramento. We have used a multi-isotope approach combined with mass balance and hydrodynamic modeling in order to better understand the dominant nutrient sources for each of these rivers, and to track nutrient sources and cycling within the complex Delta region around the confluence of the rivers. High nitrate concentrations within the San Joaquin River fuel summer algal blooms, contributing to low dissolved oxygen conditions. High δ15N-NO3 values combined with the high nitrate concentrations suggest that animal manure is a significant source of nitrate to the San Joaquin River. In contrast, the Sacramento River has lower nitrate concentrations but elevated ammonium concentrations from wastewater discharge. Downstream nitrification of the ammonium can be clearly traced using δ15N-NH4. Flow conditions for these rivers and the Delta have strong seasonal and inter-annual variations, resulting in significant changes in nutrient delivery and cycling. Isotopic measurements and estimates of source water contributions

  13. The effect of vertical advection and diffusion on nutrient supply to the euphotic zone: a model study of the Iceland-Faeroes Front

    NASA Astrophysics Data System (ADS)

    Popova, E.; Srokosz, M.

    2006-12-01

    This paper examines the effect of vertical advection and vertical diffusion on the supply of nutrients to the euphotic zone. This is done using a high resolution coupled biological-physical model, that has previously been used to reproduce in situ and satellite observations of physical and biological variability at the Iceland Faeroes Front (IFF). Oligotrophic conditions are imposed in the model in order to examine the vertical flux of nutrients.The results show that, while instantaneous vertical advective fluxes of nutrients can be much larger than vertical diffusive ones, over a period of days the latter act consistently to supply nutrients to the euphotic zone. In contrast, the spatially and temporally varying nature of the vertical velocity field means that there is no consistent vertical advective flux of nutrients. This suggests that for real "messy" complex flows, such as the one modelled here, ageostrophic vertical velocities induced by eddies and frontal meanders may not play as important a role in supplying nutrient to the euphotic zone, and in enhancing biological production there, as has previously been thought.

  14. Development of urban water consumption models for the City of Los Angeles

    NASA Astrophysics Data System (ADS)

    Mini, C.; Hogue, T. S.; Pincetl, S.

    2011-12-01

    water use patterns across the City. The performance of the linear regression model is being tested and compared with other algorithm-based simulations for improved modeling of urban water consumption in the region. Ultimately, projects results will contribute to the implementation of sustainable strategies targeted to specific urban areas for a growing population under uncertain climate variability.

  15. Evaluation of a nutrient-rich food index score in the Netherlands.

    PubMed

    Sluik, Diewertje; Streppel, Martinette T; van Lee, Linde; Geelen, Anouk; Feskens, Edith J M

    2015-01-01

    Nutrient-rich food (NRF) index scores are dietary quality indices based on nutrient density. We studied the design aspects involved in the development and validation of NRF index scores, using the Dutch consumption data and guidelines as an example. We evaluated fifteen NRF index scores against the Dutch Healthy Diet Index (DHD-index), a measure of adherence to the Dutch dietary guidelines, and against energy density. The study population included 2106 adults from the Dutch National Food Consumption Survey 2007-2010. The index scores were composed of beneficial nutrients (protein, fibre, fatty acids, vitamins, minerals), nutrients to limit (saturated fat, sugar, Na) or a combination. Moreover, the influence of methodological decisions was studied, such as the choice of calculation basis (100 g or 100 kcal (418 kJ)). No large differences existed in the prediction of the DHD-index by the fifteen NRF index scores. The score that best predicted the DHD-index included nine beneficial nutrients and three nutrients to limit on a 100-kcal basis, the NRF9.3 with a model R (2) of 0·34. The scores were quite robust with respect to sex, BMI and differences in calculation methods. The NRF index scores were correlated with energy density, but nutrient density better predicted the DHD-index than energy density. Consumption of vegetables, cereals and cereal products, and dairy products contributed most to the individual NRF9.3 scores. In conclusion, many methodological considerations underlie the development and evaluation of nutrient density models. These decisions may depend upon the purpose of the model, but should always be based upon scientific, objective and transparent criteria.

  16. Pyruvate modifies metabolic flux and nutrient sensing during extracorporeal membrane oxygenation in an immature swine model

    SciTech Connect

    Ledee, Dolena R.; Kajimoto, Masaki; O'Kelly-Priddy, Colleen M.; Olson, Aaron; Isern, Nancy G.; Robillard Frayne, Isabelle; Des Rosiers, Christine; Portman, Michael A.

    2015-07-01

    Extracorporeal membrane oxygenation (ECMO) provides mechanical circulatory support for infants and children with postoperative cardiopulmonary failure. Nutritional support is mandatory during ECMO, although specific actions for substrates on the heart have not been delineated. Prior work shows that enhancing pyruvate oxidation promotes successful weaning from ECMO. Accordingly, we closely examined the role of prolonged systemic pyruvate supplementation in modifying metabolic parameters during the unique conditions of ventricular unloading provided by ECMO. Twelve male mixed breed Yorkshire piglets (age 30-49 days) received systemic infusion of either normal saline (Group C) or pyruvate (Group P) during ECMO for 8 hours. Over the final hour piglets received [2-13C] pyruvate, and [13C6]-L-leucine, as an indicator for oxidation and protein synthesis. A significant increase in lactate and pyruvate concentrations occurred, along with an increase in the absolute concentration of all measured CAC intermediates. Group P showed greater anaplerotic flux through pyruvate carboxylation although pyruvate oxidation relative to citrate synthase flux was similar to Group C. The groups demonstrated similar leucine fractional contributions to acetyl-CoA and fractional protein synthesis rates. Pyruvate also promoted an increase in the phosphorylation state of several nutrient sensitive enzymes, such as AMPK and ACC, and promoted O-GlcNAcylation through the hexosamine biosynthetic pathway (HBP). In conclusion, prolonged pyruvate supplementation during ECMO modified anaplerotic pyruvate flux and elicited changes in important nutrient and energy sensitive pathways, while preserving protein synthesis. Therefore, the observed results support the further study of nutritional supplementation and its downstream effects on cardiac adaptation during ventricular unloading.

  17. Scaling up food production in the Upper Mississippi river basin: modeling impacts on water quality and nutrient cycling

    NASA Astrophysics Data System (ADS)

    Bowen, E. E.; Martin, P. A.; Schuble, T. J.; Yan, E.; Demissie, Y.

    2010-12-01

    Agricultural production imposes significant environmental stress on the landscape, both in the intensity and extent of agricultural activities. Among the most significant impacts, agriculture dominates the natural reactive nitrogen cycle, with excess reactive nitrogen leading to the degraded quality of inland and coastal waters. In the U.S., policymakers and stakeholders nationwide continue to debate strategies for decreasing environmental degradation from agricultural lands. Such strategies aim to optimize the balance among competing demands for food, fuel and ecosystem services. One such strategy increasingly discussed in the national debate is that of localizing food production around urban areas, developing what some have recently called “foodsheds”. However, the environmental impacts of localizing food production around population centers are not well-understood given the hard-to-generalize variety seen in management practices currently employed among local farms marketing food crops directly to consumers. As a first, landscape level study of potential impacts from scaling up this type of agriculture, we use the USDA Soil and Water Assessment Tool (SWAT) model to quantify environmental impacts from developing foodsheds for all population centers in the Upper Mississippi river basin. Specifically, we focus on nutrient cycling and water quality impacts determining direct greenhouse gas emissions and changes to nutrient runoff from increased food production in this watershed. We investigate a variety of scenarios in which food production is scaled up to the regional level using different types of farm management practices, ranging from conventional production of fruits and vegetables, to production of these products from small-scale, diversified systems integrating conservation easements. In addition to impacts on nutrient cycling and water quality, we also characterize relative levels of productivity in conjunction with overall demand for food associated

  18. Estimating Summer Nutrient Concentrations in Northeastern Lakes from SPARROW Load Predictions and Modeled Lake Depth and Volume

    EPA Science Inventory

    Global nutrient cycles have been altered by use of fossil fuels and fertilizers resulting in increases in nutrient loads to aquatic systems. In the United States, excess nutrients have been repeatedly reported as the primary cause of lake water quality impairments. Setting nutr...

  19. Quantifying consumption rates of dissolved oxygen along bed forms

    NASA Astrophysics Data System (ADS)

    Boano, Fulvio; De Falco, Natalie; Arnon, Shai

    2016-04-01

    Streambed interfaces represent hotspots for nutrient transformations because they host different microbial species, and the evaluation of these reaction rates is important to assess the fate of nutrients in riverine environments. In this work we analyze a series of flume experiments on oxygen demand in dune-shaped hyporheic sediments under losing and gaining flow conditions. We employ a new modeling code to quantify oxygen consumption rates from observed vertical profiles of oxygen concentration. The code accounts for transport by molecular diffusion and water advection, and automatically determines the reaction rates that provide the best fit between observed and modeled concentration values. The results show that reaction rates are not uniformly distributed across the streambed, in agreement with the expected behavior predicted by hyporheic exchange theory. Oxygen consumption was found to be highly influenced by the presence of gaining or losing flow conditions, which controlled the delivery of labile DOC to streambed microorganisms.

  20. Evaluating the Effectiveness of Fish Consumption Advisories: Modeling Prenatal, Postnatal, and Childhood Exposures to Persistent Organic Pollutants

    PubMed Central

    Binnington, Matthew J.; Quinn, Cristina L.; McLachlan, Michael S.

    2013-01-01

    Background: Because human exposure to persistent organic pollutants (POPs) occurs mainly through ingestion of contaminated food, regulatory bodies issue dietary consumption advisories to describe safe intake levels for food items of concern, particularly fish. Objectives: Our study goal was to estimate the effectiveness of fish consumption advisories in reducing exposure of infants and children to POPs. Methods: We used the time-variant mechanistic model CoZMoMAN to estimate and compare prenatal, postnatal, and childhood exposure to polychlorinated biphenyl congener PCB-153 under different scenarios of maternal guideline adherence for both hypothetical constant and realistic time-variant chemical emissions. The scenarios differed in terms of length of compliance (1 vs. 5 years), extent of fish substitution (all vs. half), and replacement diet (uncontaminated produce vs. beef). We also estimated potential exposure reductions for a range of theoretical chemicals to explore how guideline effectiveness varies with a chemical’s partitioning and degradation properties. Results: When assuming realistic time periods of advisory compliance, our findings suggest that temporarily eliminating or reducing maternal fish consumption is largely ineffective in reducing pre- and postnatal exposure to substances with long elimination half-lives in humans, especially during periods of decreasing environmental emissions. Substituting fish with beef may actually result in higher exposure to certain groups of environmental contaminants. On the other hand, advisories may be highly effective in reducing exposure to substances with elimination half-lives in humans shorter than the length of compliance. Conclusions: Our model estimates suggest that fish consumption advisories are unlikely to be effective in reducing prenatal, postnatal, and childhood exposures to compounds with long elimination half-lives in humans. Citation: Binnington MJ, Quinn CL, McLachlan MS, Wania F. 2014. Evaluating

  1. Mathematical model to isolate the effect of the temperature in the electrical consumption of residential customers

    SciTech Connect

    Niembro, G.R.; Acosta, R.D.

    1997-09-01

    Daylight Savings Time (DST) is one of the Demand-Side Management (DSM) programs, which permits electrical energy savings in both consumption and demand, in all residential customers. In the literature many studies are reported, which indicate that electrical energy savings due to DST is about the 1% of the total electrical energy consumption. Those reports present different alternatives of analysis: (1) comparison between the differences among the average consumption some days before and during the DST; (2) analysis of demand curves of the electrical network some days before and during the DST; and (3) empirical studies based on the equipment of users, basically those associated with artificial lighting, and considering the reduction in artificial lighting minutes due to the DST. In order to evaluate the applicability of the methodology, the consumption of several residential customers in Mexicali BC were measured, where DST is already implemented, due to the commercial exchange with the south of California, USA. The measurements, were accomplished only in residential customers, because it is in this sector where the DST has more impact. In the study the principal four factors which have influence in the residential consumption were examined: environment, hour of the day, day of the week and type of schedule (DST).

  2. Variations in source apportionments of nutrient load among seasons and hydrological years in a semi-arid watershed: GWLF model results.

    PubMed

    Du, Xinzhong; Li, Xuyong; Zhang, Wangshou; Wang, Huiliang

    2014-05-01

    Quantifying source apportionments of nutrient load and their variations among seasons and hydrological years can provide useful information for watershed nutrient load reduction programs. There are large seasonal and inter-annual variations in nutrient loads and their sources in semi-arid watersheds that have a monsoon climate. The Generalized Watershed Loading Function model was used to simulate monthly nutrient loads from 2004 to 2011 in the Liu River watershed, Northern China. Model results were used to investigate nutrient load contributions from different sources, temporal variations of source apportionments and the differences in the behavior of total nitrogen (TN) and total phosphorus (TP). Examination of source apportionments for different seasons showed that point sources were the main source of TN and TP in the non-flood season, whereas contributions from diffuse sources, such as rural runoff, soil erosion, and urban areas, were much higher in the flood season. Furthermore, results for three typical hydrological years showed that the contribution ratios of nutrient loads from point sources increased as streamflow decreased, while contribution ratios from rural runoff and urban area increased as streamflow increased. Further, there were significant differences between TN and TP sources on different time scales. Our findings suggest that priority actions and management measures should be changed for different time periods and hydrological conditions, and that different strategies should be used to reduce loads of nitrogen and phosphorus effectively.

  3. Bidirectional enantioselective effects of the GABAB receptor agonist baclofen in two mouse models of excessive ethanol consumption.

    PubMed

    Kasten, Chelsea R; Blasingame, Shelby N; Boehm, Stephen L

    2015-02-01

    The GABAB receptor agonist baclofen has been studied extensively in preclinical models of alcohol-use disorders, yet results on its efficacy have been uncertain. Racemic baclofen, which is used clinically, can be broken down into separate enantiomers of the drug. Baclofen has been shown to produce enantioselective effects in behavioral assays, including those modeling reflexive and sexual behavior. The current studies sought to characterize the enantioselective effects of baclofen in two separate models of ethanol consumption. The first was a Drinking-in-the-Dark procedure that provides "binge-like" ethanol access to mice by restricting access to a 2-h period, 3 h into the dark cycle. The second was a two-bottle choice procedure that utilized selectively bred High Alcohol Preferring 1 (HAP1) mice to model chronic ethanol access. HAP1 mice are selectively bred to consume pharmacologically relevant amounts of ethanol in a 24-h two-bottle choice paradigm. The results showed that baclofen yields enantioselective effects on ethanol intake in both models, and that these effects are bidirectional. Total ethanol intake was decreased by R(+)-baclofen, while total intake was increased by S(-)-baclofen in the binge-like and chronic drinking models. Whereas overall binge-like saccharin intake was significantly reduced by R(+)-baclofen, chronic intake was not significantly altered. S(-)-baclofen did not significantly alter saccharin intake. Neither enantiomer significantly affected locomotion during binge-like reinforcer consumption. Collectively, these results demonstrate that baclofen produces enantioselective effects on ethanol consumption. More importantly, the modulation of consumption is bidirectional. The opposing enantioselective effects may explain some of the variance seen in published baclofen literature.

  4. A review of sediment and nutrient concentration data from Australia for use in catchment water quality models.

    PubMed

    Bartley, Rebecca; Speirs, William J; Ellis, Tim W; Waters, David K

    2012-01-01

    Land use (and land management) change is seen as the primary factor responsible for changes in sediment and nutrient delivery to water bodies. Understanding how sediment and nutrient (or constituent) concentrations vary with land use is critical to understanding the current and future impact of land use change on aquatic ecosystems. Access to appropriate land-use based water quality data is also important for calculating reliable load estimates using water quality models. This study collated published and unpublished runoff, constituent concentration and load data for Australian catchments. Water quality data for total suspended sediments (TSS), total nitrogen (TN) and total phosphorus (TP) were collated from runoff events with a focus on catchment areas that have a single or majority of the contributing area under one land use. Where possible, information on the dissolved forms of nutrients were also collated. For each data point, information was included on the site location, land use type and condition, contributing catchment area, runoff, laboratory analyses, the number of samples collected over the hydrograph and the mean constituent concentration calculation method. A total of ∼750 entries were recorded from 514 different geographical sites covering 13 different land uses. We found that the nutrient concentrations collected using "grab" sampling (without a well defined hydrograph) were lower than for sites with gauged auto-samplers although this data set was small and no statistical analysis could be undertaken. There was no statistically significant difference (p<0.05) between data collected at plot and catchment scales for the same land use. This is most likely due to differences in land condition over-shadowing the effects of spatial scale. There was, however, a significant difference in the concentration value for constituent samples collected from sites where >90% of the catchment was represented by a single land use, compared to sites with <90% of the

  5. Key Nutrients.

    ERIC Educational Resources Information Center

    Federal Extension Service (USDA), Washington, DC.

    Lessons written to help trainer agents prepare aides for work with families in the Food and Nutrition Program are presented in this booklet. The key nutrients discussed in the 10 lessons are protein, carbohydrates, fat, calcium, iron, iodine, and Vitamins A, B, C, and D. the format of each lesson is as follows: Purpose, Presentation, Application…

  6. Cash and in-kind transfers in poor rural communities in Mexico increase household fruit, vegetable, and micronutrient consumption but also lead to excess energy consumption.

    PubMed

    Leroy, Jef L; Gadsden, Paola; Rodríguez-Ramírez, Sonia; de Cossío, Teresa González

    2010-03-01

    Conditional transfer programs are increasingly popular, but the impact on household nutrient consumption has not been studied. We evaluated the impact of the Programa de Apoyo Alimentario (PAL), a cash and in-kind transfer program, on the energy and nutrient consumption of poor rural households in Mexico. The program has been shown to reduce poverty. Beneficiary households received either a food basket (including micronutrient-fortified milk) or cash. A random sample of 206 rural communities in Southern Mexico was randomly assigned to 1 of 4 groups: a monthly food basket with or without health and nutrition education, a cash transfer with a cost to the government equivalent to the food basket (14 USD/mo) with education, or control. The impact after 14 mo of exposure was estimated in a panel of 5823 households using a double difference regression model with household fixed effects. PAL was associated with increases (P < 0.01) in the consumption of total energy (5-9%), energy from fruits and vegetables (24-28%), and energy from animal source foods (24-39%). It also affected iron, zinc, and vitamin A and C consumption (P < 0.05). The consumption of energy and all nutrients was greater in the food basket group (P < 0.05). Cash and in-kind transfers in populations that are not energy-deficient should be carefully redesigned to ensure that pulling poor families out of poverty leads to improved micronutrient intake but not to increased energy consumption.

  7. Modeling Stochastic Energy and Water Consumption to Manage Residential Water Uses

    NASA Astrophysics Data System (ADS)

    Abdallah, A. M.; Rosenberg, D. E.; Water; Energy Conservation

    2011-12-01

    Water energy linkages have received growing attention from the water and energy utilities as utilities recognize that collaborative efforts can implement more effective conservation and efficiency improvement programs at lower cost with less effort. To date, limited energy-water household data has allowed only deterministic analysis for average, representative households and required coarse assumptions - like the water heater (the primary energy use in a home apart from heating and cooling) be a single end use. Here, we use recent available disaggregated hot and cold water household end-use data to estimate water and energy consumption for toilet, shower, faucet, dishwasher, laundry machine, leaks, and other household uses and savings from appliance retrofits. The disaggregated hot water and bulk water end-use data was previously collected by the USEPA for 96 single family households in Seattle WA and Oakland CA, and Tampa FL between the period from 2000 and 2003 for two weeks before and four weeks after each household was retrofitted with water efficient appliances. Using the disaggregated data, we developed a stochastic model that represents factors that influence water use for each appliance: behavioral (use frequency and duration), demographical (household size), and technological (use volume or flowrate). We also include stochastic factors that govern energy to heat hot water: hot water fraction (percentage of hot water volume to total water volume used in a certain end-use event), heater water intake and dispense temperatures, and energy source for the heater (gas, electric, etc). From the empirical household end-use data, we derive stochastic probability distributions for each water and energy factor where each distribution represents the range and likelihood of values that the factor may take. The uncertainty of the stochastic water and energy factors is propagated using Monte Carlo simulations to calculate the composite probability distribution for water

  8. The Regionalization of National-Scale SPARROW Models for Stream Nutrients1

    PubMed Central

    Schwarz, Gregory E; Alexander, Richard B; Smith, Richard A; Preston, Stephen D

    2011-01-01

    Abstract This analysis modifies the parsimonious specification of recently published total nitrogen (TN) and total phosphorus (TP) national-scale SPAtially Referenced Regressions On Watershed attributes models to allow each model coefficient to vary geographically among three major river basins of the conterminous United States. Regionalization of the national models reduces the standard errors in the prediction of TN and TP loads, expressed as a percentage of the predicted load, by about 6 and 7%. We develop and apply a method for combining national-scale and regional-scale information to estimate a hybrid model that imposes cross-region constraints that limit regional variation in model coefficients, effectively reducing the number of free model parameters as compared to a collection of independent regional models. The hybrid TN and TP regional models have improved model fit relative to the respective national models, reducing the standard error in the prediction of loads, expressed as a percentage of load, by about 5 and 4%. Only 19% of the TN hybrid model coefficients and just 2% of the TP hybrid model coefficients show evidence of substantial regional specificity (more than ±100% deviation from the national model estimate). The hybrid models have much greater precision in the estimated coefficients than do the unconstrained regional models, demonstrating the efficacy of pooling information across regions to improve regional models. PMID:22457586

  9. Diffusion and Monod kinetics model to determine in vivo human corneal oxygen-consumption rate during soft contact lens wear

    PubMed Central

    Del Castillo, Luis F.; da Silva, Ana R. Ferreira; Hernández, Saul I.; Aguilella, M.; Andrio, Andreu; Mollá, Sergio; Compañ, Vicente

    2014-01-01

    Purpose We present an analysis of the corneal oxygen consumption Qc from non-linear models, using data of oxygen partial pressure or tension (pO2) obtained from in vivo estimation previously reported by other authors.1 Methods Assuming that the cornea is a single homogeneous layer, the oxygen permeability through the cornea will be the same regardless of the type of lens that is available on it. The obtention of the real value of the maximum oxygen consumption rate Qc,max is very important because this parameter is directly related with the gradient pressure profile into the cornea and moreover, the real corneal oxygen consumption is influenced by both anterior and posterior oxygen fluxes. Results Our calculations give different values for the maximum oxygen consumption rate Qc,max, when different oxygen pressure values (high and low pO2) are considered at the interface cornea-tears film. Conclusion Present results are relevant for the calculation on the partial pressure of oxygen, available at different depths into the corneal tissue behind contact lenses of different oxygen transmissibility. PMID:25649636

  10. Consumption of lycopene inhibits the growth and progression of colon cancer in a mouse xenograft model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A previous study indicated that lycopene could significantly inhibit the proliferation of human colon cancer cells in vitro. However, the in vivo anticancer effects of lycopene against colon cancer have not been demonstrated yet. Therefore, this study investigated whether consumption of lycopene cou...

  11. Increasing Fruit and Vegetable Consumption during Elementary School Snack Periods Using Incentives, Prompting and Role Modeling

    ERIC Educational Resources Information Center

    Bica, Lori A.; Jamelske, Eric M.; Lagorio, Carla H.

    2016-01-01

    Purpose/Objectives: American children's consumption of fruits and vegetables (FVs) does not meet current recommendations. Hence, several federally funded, school-based programs have been initiated over the last several years. One such program is the United States Department of Agriculture Fresh Fruit and Vegetable Program (FFVP), which provides…

  12. Modelling potential ß-carotene intake and cyanide exposure from consumption of biofortified cassava

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Vitamin A (VA) deficiency causes disability and mortality. Cassava, a staple crop in Africa, can be crossbred to improve its pro-vitamin A (PVA) content and used as an alternative to capsule supplementation. However it contains cyanide and its continued consumption may lead to chronic...

  13. Experimental Models of Foamy Macrophages and Approaches for Dissecting the Mechanisms of Lipid Accumulation and Consumption during Dormancy and Reactivation of Tuberculosis

    PubMed Central

    Santucci, Pierre; Bouzid, Feriel; Smichi, Nabil; Poncin, Isabelle; Kremer, Laurent; De Chastellier, Chantal; Drancourt, Michel; Canaan, Stéphane

    2016-01-01

    Despite a slight decline since 2014, tuberculosis (TB) remains the major deadly infectious disease worldwide with about 1.5 million deaths each year and with about one-third of the population being latently infected with Mycobacterium tuberculosis, the etiologic agent of TB. During primo-infection, the recruitment of immune cells leads to the formation of highly organized granulomas. Among the different cells, one outstanding subpopulation is the foamy macrophage (FM), characterized by the abundance of triacylglycerol-rich lipid bodies (LB). M. tuberculosis can reside in FM, where it acquires, from host LB, the neutral lipids which are subsequently processed and stored by the bacilli in the form of intracytosolic lipid inclusions (ILI). Although host LB can be viewed as a reservoir of nutrients for the pathogen during latency, the molecular mechanisms whereby intraphagosomal mycobacteria interact with LB and assimilate the LB-derived lipids are only beginning to be understood. Past studies have emphasized that these physiological processes are critical to the M. tuberculosis infectious-life cycle, for propagation of the infection, establishment of the dormancy state and reactivation of the disease. In recent years, several animal and cellular models have been developed with the aim of dissecting these complex processes and of determining the nature and contribution of their key players. Herein, we review some of the in vitro and in vivo models which allowed to gain significant insight into lipid accumulation and consumption in M. tuberculosis, two important events that are directly linked to pathogenicity, granuloma formation/maintenance and survival of the tubercle bacillus under non-replicative conditions. We also discuss the advantages and limitations of each model, hoping that this will serve as a guide for future investigations dedicated to persistence and innovative therapeutic approaches against TB. PMID:27774438

  14. Watershed Modeling to Assess the Sensitivity of Streamflow, Nutrient, and Sediment Loads to Potential Climate Change and Urban Development in 20 U.S. Watersheds (Final Report)

    EPA Science Inventory

    In September 2013, EPA announced the release of the final report, Watershed Modeling to Assess the Sensitivity of Streamflow, Nutrient, and Sediment Loads to Potential Climate Change and Urban Development in 20 U.S. Watersheds.

    Watershed modeling was conducted in ...

  15. MODELING THE IMPACTS OF DECADAL CHANGES IN RIVERINE NUTRIENT FLUXES ON COASTAL EUTROPHICATION NEAR THE MISSISSIPPI RIVER DELTA. (R827785E02)

    EPA Science Inventory

    A mathematical model was used to link decadal changes in the Mississippi River nutrient flux to coastal eutrophication near the Mississippi River Delta. Model simulations suggest that bottom water hypoxia intensified about 30 years ago, as a probable consequence of increased n...

  16. Modeling the combined impact of changing climate and changing nutrient loads on the Baltic Sea environment in an ensemble of transient simulations for 1961-2099

    NASA Astrophysics Data System (ADS)

    Meier, H. E. M.; Hordoir, R.; Andersson, H. C.; Dieterich, C.; Eilola, K.; Gustafsson, B. G.; Höglund, A.; Schimanke, S.

    2012-11-01

    The combined future impacts of climate change and industrial and agricultural practices in the Baltic Sea catchment on the Baltic Sea ecosystem were assessed. For this purpose 16 transient simulations for 1961-2099 using a coupled physical-biogeochemical model of the Baltic Sea were performed. Four climate scenarios were combined with four nutrient load scenarios ranging from a pessimistic business-as-usual to a more optimistic case following the Baltic Sea Action Plan (BSAP). Annual and seasonal mean changes of climate parameters and ecological quality indicators describing the environmental status of the Baltic Sea like bottom oxygen, nutrient and phytoplankton concentrations and Secchi depths were studied. Assuming present-day nutrient concentrations in the rivers, nutrient loads from land increase during the twenty first century in all investigated scenario simulations due to increased volume flows caused by increased net precipitation in the Baltic catchment area. In addition, remineralization rates increase due to increased water temperatures causing enhanced nutrient flows from the sediments. Cause-and-effect studies suggest that both processes may play an important role for the biogeochemistry of eutrophicated seas in future climate partly counteracting nutrient load reduction efforts like the BSAP.

  17. Cost assessment and ecological effectiveness of nutrient reduction options for mitigating Phaeocystis colony blooms in the Southern North Sea: an integrated modeling approach.

    PubMed

    Lancelot, Christiane; Thieu, Vincent; Polard, Audrey; Garnier, Josette; Billen, Gilles; Hecq, Walter; Gypens, Nathalie

    2011-05-01

    Nutrient reduction measures have been already taken by wealthier countries to decrease nutrient loads to coastal waters, in most cases however, prior to having properly assessed their ecological effectiveness and their economic costs. In this paper we describe an original integrated impact assessment methodology to estimate the direct cost and the ecological performance of realistic nutrient reduction options to be applied in the Southern North Sea watershed to decrease eutrophication, visible as Phaeocystis blooms and foam deposits on the beaches. The mathematical tool couples the idealized biogeochemical GIS-based model of the river system (SENEQUE-RIVERSTRAHLER) implemented in the Eastern Channel/Southern North Sea watershed to the biogeochemical MIRO model describing Phaeocystis blooms in the marine domain. Model simulations explore how nutrient reduction options regarding diffuse and/or point sources in the watershed would affect the Phaeocystis colony spreading in the coastal area. The reference and prospective simulations are performed for the year 2000 characterized by mean meteorological conditions, and nutrient reduction scenarios include and compare upgrading of wastewater treatment plants and changes in agricultural practices including an idealized shift towards organic farming. A direct cost assessment is performed for each realistic nutrient reduction scenario. Further the reduction obtained for Phaeocystis blooms is assessed by comparison with ecological indicators (bloom magnitude and duration) and the cost for reducing foam events on the beaches is estimated. Uncertainty brought by the added effect of meteorological conditions (rainfall) on coastal eutrophication is discussed. It is concluded that the reduction obtained by implementing realistic environmental measures on the short-term is costly and insufficient to restore well-balanced nutrient conditions in the coastal area while the replacement of conventional agriculture by organic farming

  18. Modeling and CFD simulation of nutrient distribution in picoliter bioreactors for bacterial growth studies on single-cell level.

    PubMed

    Westerwalbesloh, Christoph; Grünberger, Alexander; Stute, Birgit; Weber, Sophie; Wiechert, Wolfgang; Kohlheyer, Dietrich; von Lieres, Eric

    2015-11-07

    A microfluidic device for microbial single-cell cultivation of bacteria was modeled and simulated using COMSOL Multiphysics. The liquid velocity field and the mass transfer within the supply channels and cultivation chambers were calculated to gain insight in the distribution of supplied nutrients and metabolic products secreted by the cultivated bacteria. The goal was to identify potential substrate limitations or product accumulations within the cultivation device. The metabolic uptake and production rates, colony size, and growth medium composition were varied covering a wide range of operating conditions. Simulations with glucose as substrate did not show limitations within the typically used concentration range, but for alternative substrates limitations could not be ruled out. This lays the foundation for further studies and the optimization of existing picoliter bioreactor systems.

  19. Dissolved nutrients and atrazine removal by column-scale monophasic and biphasic rain garden model systems.

    PubMed

    Yang, Hanbae; McCoy, Edward L; Grewal, Parwinder S; Dick, Warren A

    2010-08-01

    Rain gardens are bioretention systems that have the potential to reduce peak runoff flow and improve water quality in a natural and aesthetically pleasing manner. We compared hydraulic performance and removal efficiencies of nutrients and atrazine in a monophasic rain garden design versus a biphasic design at a column-scale using simulated runoff. The biphasic rain garden was designed to increase retention time and removal efficiency of runoff pollutants by creating a sequence of water saturated to unsaturated conditions. We also evaluated the effect of C substrate availability on pollutant removal efficiency in the biphasic rain garden. Five simulated runoff events with various concentrations of runoff pollutants (i.e. nitrate, phosphate, and atrazine) were applied to the monophasic and biphasic rain gardens once every 5d. Hydraulic performance was consistent over the five simulated runoff events. Peak flow was reduced by approximately 56% for the monophasic design and 80% for the biphasic design. Both rain garden systems showed excellent removal efficiency of phosphate (89-100%) and atrazine (84-100%). However, significantly (p<0.001) higher removal of nitrate was observed in the biphasic (42-63%) compared to the monophasic rain garden (29-39%). Addition of C substrate in the form of glucose increased removal efficiency of nitrate significantly (p<0.001), achieving up to 87% removal at a treatment C/N ratio of 2.0. This study demonstrates the importance of retention time, environmental conditions (i.e. saturated/unsaturated conditions), and availability of C substrate for bioremediation of pollutants, especially nitrates, in rain gardens.

  20. Recent Advances in Modeling Phosphorus and Nitrogen Delivery to the Gulf of Mexico and Implications for Managing Nutrients n the Mississippi River Basin

    NASA Astrophysics Data System (ADS)

    Alexander, R. B.; Smith, R. A.; Schwarz, G. E.; Boyer, E. W.; Nolan, J. V.; Brakebill, J. W.

    2008-12-01

    Although the increased availability of reactive nutrients in past decades has benefited society via food and energy production, the corresponding rise in nutrient loadings to aquatic ecosystems is of particular concern, especially in many estuaries globally where increased nutrient loads have contributed to eutrophic conditions. In the United States, elevated riverine nutrients have contributed to stressed trophic conditions in a majority of estuaries, including the shallow coastal waters of the Louisiana shelf in the northern Gulf of Mexico, where both nitrogen and phosphorus loadings are recognized as contributing to seasonal hypoxic conditions. Advances in geospatial modeling of nitrogen and phosphorus sources and transport in the Mississippi and Atchafalaya River Basins (MARB), as reported in a recent U.S. Geological Survey (USGS) study, provide important information to support improved assessments and management of nutrient loadings to the northern Gulf of Mexico. We summarize the findings of this study and discuss the implications for managing nutrient sources in the MARB. The study reveals important differences in the sources and aquatic transport of nitrogen and phosphorus that affect delivery to the Gulf. Although agricultural sources contribute a majority of the delivered nutrients to the Gulf, corn and soybean cultivation is the largest contributor of nitrogen whereas phosphorus originates primarily from animal manure on pasture and rangelands. Atmospheric deposition is the second leading source of nitrogen, with urban sources contributing relatively small quantities of both nutrients. Furthermore, we find that both nitrogen and phosphorus delivery to the Gulf is controlled by hydrological and biogeochemical processes (e.g., water travel time, denitrification, storage) that scale with stream size, although phosphorus also displays large local- and regional-scale differences in delivery caused by reservoir trapping. The importance of these processes

  1. Ruminal Degradability and Summative Models Evaluation for Total Digestible Nutrients Prediction of Some Forages and Byproducts in Goats

    PubMed Central

    López, Rafael

    2013-01-01

    In in vitro true dry matter degradability (IVTDMD), in situ dry matter degradability, and neutral detergent fiber degradability, both in vitro (IVNDFD) and in situ (ISNDFD) techniques were used with crossbred goats to determine dry matter and neutral detergent fiber (NDF) ruminal degradability in eight forages and four industrial byproducts. Total digestible nutrients (TDN) content obtained with five different summative models (summative equations) were studied to compare the precision of estimates. All these models included digestible fractions of crude protein, ether extract, and nonfiber carbohydrates that were calculated from chemical composition, but digestible NDF (dNDF) was obtained from IVNDFD (IVdNDF), ISNDFD (ISdNDF), or by using the Surface Law approach. On the basis of the coefficient of determination (R2) of the simple lineal regression of predicted TDN (y-axes) and observed IVTDMD (x-axes), the precision of models was tested. The predicted TDN by the National Research Council model exclusively based on chemical composition only explains up to 41% of observed IVTDMD values, whereas the model based on IVdNDF had a high precision (96%) to predict TDN from forage and byproducts fiber when used in goats. PMID:23762592

  2. 21 CFR 101.69 - Petitions for nutrient content claims.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Petitions for nutrient content claims. 101.69... (CONTINUED) FOOD FOR HUMAN CONSUMPTION FOOD LABELING Specific Requirements for Nutrient Content Claims § 101.69 Petitions for nutrient content claims. (a) This section pertains to petitions for...

  3. 21 CFR 101.69 - Petitions for nutrient content claims.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Petitions for nutrient content claims. 101.69... (CONTINUED) FOOD FOR HUMAN CONSUMPTION FOOD LABELING Specific Requirements for Nutrient Content Claims § 101.69 Petitions for nutrient content claims. (a) This section pertains to petitions for...

  4. 21 CFR 101.69 - Petitions for nutrient content claims.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Petitions for nutrient content claims. 101.69... (CONTINUED) FOOD FOR HUMAN CONSUMPTION FOOD LABELING Specific Requirements for Nutrient Content Claims § 101.69 Petitions for nutrient content claims. (a) This section pertains to petitions for...

  5. Using multi-theory model to predict initiation and sustenance of small portion size consumption among college students

    PubMed Central

    Sharma, Manoj; Catalano, Hannah Priest; Nahar, Vinayak K.; Lingam, Vimala; Johnson, Paul; Ford, M. Allison

    2016-01-01

    Background: Consumption of large portion sizes is contributing to overweight and obesity.College students are a vulnerable group in this regard. The purpose of this study was to use multi-theory model (MTM) to predict initiation and sustenance of small portion size consumption in college students. Methods: A total of 135 students at a large Southern US University completed a 35-item valid (face, content, and construct) and reliable (internally consistent) survey electronically in a cross-sectional design. The main outcome measures were intention to start eating small portion sizes and continuing to eat small portion sizes. Only those students who ate large portion sizes during the past 24 hours were included. Results: Step wise multiple regression showed that initiation of small portion size consumption was explained by participatory dialogue (advantages outweighing disadvantages), behavioral confidence, age, and gender (adjusted R2 = 0.37, P < 0.001). Males were less likely to initiate small portion size consumption than females (β = -0.185, 95% CI = -0.71– -0.11). Regarding sustenance, emotional transformation, changes in social environment, and race were the significant predictors (adjusted R2 = 0.20, P < 0.001). Whites were less likely to sustain small portion size change than other races (β = -0.269, 95% CI = -0.97 – -0.26). Conclusion: Based on this study’s findings, MTM appears to be a robust theoretical framework for predicting small portion size consumption behavior change. Interventions in this regard need to be designed. PMID:27579257

  6. A Model-Based Approach for Joint Analysis of Pain Intensity and Opioid Consumption in Postoperative Pain.

    PubMed

    Juul, Rasmus V; Knøsgaard, Katrine R; Olesen, Anne E; Pedersen, Katja V; Kreilgaard, Mads; Christrup, Lona L; Osther, Palle J; Drewes, Asbjørn M; Lund, Trine M

    2016-07-01

    Joint analysis of pain intensity and opioid consumption is encouraged in trials of postoperative pain. However, previous approaches have not appropriately addressed the complexity of their interrelation in time. In this study, we applied a non-linear mixed effects model to simultaneously study pain intensity and opioid consumption in a 4-h postoperative period for 44 patients undergoing percutaneous kidney stone surgery. Analysis was based on 748 Numerical Rating Scale (NRS) scores of pain intensity and 51 observed morphine and oxycodone dosing events. A joint model was developed to describe the recurrent pattern of four key phases determining the development of pain intensity and opioid consumption in time; (A) Distribution of pain intensity scores which followed a truncated Poisson distribution with time-dependent mean score ranging from 0.93 to 2.45; (B) Probability of transition to threshold pain levels (NRS ≥ 3) which was strongly dependent on previous pain levels ranging from 2.8-15.2% after NRS of 0-2; (C) Probability of requesting opioid when allowed (NRS ≥ 3) which was strongly correlated with the number of previous doses, ranging from 89.8% for requesting the first dose to 26.1% after three previous doses; (D) Reduction in pain scores after opioid dosing which was significantly related to the pain intensity at time of opioid request (P < 0.001). This study highlights the importance of analyzing pain intensity and opioid consumption in an integrated manner. Non-linear mixed effects modeling proved a valuable tool for analysis of interventions that affect pain intensity, probability of rescue dosing or the effect of opioids in the postoperative pain period.

  7. Modelling water, sediment and nutrient fluxes from a mixed land-use catchment in New Zealand: effects of hydrologic conditions on SWAT model performance

    NASA Astrophysics Data System (ADS)

    Me, W.; Abell, J. M.; Hamilton, D. P.

    2015-04-01

    The Soil Water Assessment Tool (SWAT) was configured for the Puarenga Stream catchment (77 km2), Rotorua, New Zealand. The catchment land use is mostly plantation forest, some of which is spray-irrigated with treated wastewater. A Sequential Uncertainty Fitting (SUFI-2) procedure was used to auto-calibrate unknown parameter values in the SWAT model which was applied to the Puarenga catchment. Discharge, sediment, and nutrient variables were then partitioned into two components (base flow and quick flow) based on hydrograph separation. A manual procedure (one-at a-time sensitivity analysis) was then used to quantify parameter sensitivity for the two hydrologically-separated regimes. Comparison of simulated daily mean discharge, sediment and nutrient concentrations with high-frequency, event-based measurements allowed the error in model predictions to be quantified. This comparison highlighted the potential for model error associated with quick-flow fluxes in flashy lower-order streams to be underestimated compared with low-frequency (e.g. monthly) measurements derived predominantly from base flow measurements. To overcome this problem we advocate the use of high-frequency, event-based monitoring data during calibration and dynamic parameter values with some dependence on discharge regime. This study has important implications for quantifying uncertainty in hydrological models, particularly for studies where model simulations are used to simulate responses of stream discharge and composition to changes in irrigation and land management.

  8. Growth and food consumption by tiger muskellunge: Effects of temperature and ration level on bioenergetic model predictions

    USGS Publications Warehouse

    Chipps, S.R.; Einfalt, L.M.; Wahl, David H.

    2000-01-01

    We measured growth of age-0 tiger muskellunge as a function of ration size (25, 50, 75, and 100% C(max))and water temperature (7.5-25??C) and compared experimental results with those predicted from a bioenergetic model. Discrepancies between actual and predicted values varied appreciably with water temperature and growth rate. On average, model output overestimated winter consumption rates at 10 and 7.5??C by 113 to 328%, respectively, whereas model predictions in summer and autumn (20-25??C) were in better agreement with actual values (4 to 58%). We postulate that variation in model performance was related to seasonal changes in esocid metabolic rate, which were not accounted for in the bioenergetic model. Moreover, accuracy of model output varied with feeding and growth rate of tiger muskellunge. The model performed poorly for fish fed low rations compared with estimates based on fish fed ad libitum rations and was attributed, in part, to the influence of growth rate on the accuracy of bioenergetic predictions. Based on modeling simulations, we found that errors associated with bioenergetic parameters had more influence on model output when growth rate was low, which is consistent with our observations. In addition, reduced conversion efficiency at high ration levels may contribute to variable model performance, thereby implying that waste losses should be modeled as a function of ration size for esocids. Our findings support earlier field tests of the esocid bioenergetic model and indicate that food consumption is generally overestimated by the model, particularly in winter months and for fish exhibiting low feeding and growth rates.

  9. Modeling Oceanic Primary Production: Photoacclimation and Nutrient Effects on Light-saturated Photosynthesis

    NASA Technical Reports Server (NTRS)

    Behrenfeld, Michael J.; Maranon, Emilio; Siegel, David A.; Hooker, Stanford B.

    2000-01-01

    In this report, we describe a new model (the 'PhotoAcc' model) for estimating changes in the light-saturated rate of chlorophyll-normalized phytoplankton carbon fixation (Pbmax). The model is based on measurements conducted during the Atlantic Meridional Transect studies and the Bermuda Time Series program. The PhotoAcc model explained 64% to 82% of the observed variability in Pbmax for our data set, whereas none of the previously published Pbmax models described over the past 44 years explained any of the variance. The significance of this result is that a primary limiting factor for extracting ocean carbon fixation rates from satellite measurements of near surface chlorophyll has been errors in the estimate of Pbmax. Our new model should thus result in much improved calculations of oceanic photosynthesis and thus the role of the oceans in the global carbon cycle.

  10. Energy consumption program: A computer model simulating energy loads in buildings

    NASA Technical Reports Server (NTRS)

    Stoller, F. W.; Lansing, F. L.; Chai, V. W.; Higgins, S.

    1978-01-01

    The JPL energy consumption computer program developed as a useful tool in the on-going building modification studies in the DSN energy conservation project is described. The program simulates building heating and cooling loads and computes thermal and electric energy consumption and cost. The accuracy of computations are not sacrificed, however, since the results lie within + or - 10 percent margin compared to those read from energy meters. The program is carefully structured to reduce both user's time and running cost by asking minimum information from the user and reducing many internal time-consuming computational loops. Many unique features were added to handle two-level electronics control rooms not found in any other program.

  11. A fast predicting neural fuzzy model for on-line estimation of nutrient dynamics in an anoxic/oxic process.

    PubMed

    Huang, Ming-zhi; Wan, Jin-quan; Ma, Yong-wen; Li, Wei-jiang; Sun, Xiao-fei; Wan, Yan

    2010-03-01

    In this paper a software sensor based on a fuzzy neural network approach was proposed for real-time estimation of nutrient concentrations. In order to improve the network performance, fuzzy subtractive clustering was used to identify model architecture, extract and optimize fuzzy rule of the model. A split network structure was applied separately for anaerobic and aerobic conditions was employed with dynamic modeling methods such as autoregressive with exogenous inputs and multi-way principal component analysis (MPCA). The proposed methodology was applied to a bench-scale anoxic/oxic process for biological nitrogen removal. The simulative results indicate that the learning ability and generalization of the model performed well and also worked well for normal batch operations corresponding to three data points inside the confidence limit determined by MPCA. Real-time estimation of NO(3)(-), NH(4)(+) and PO(4)(3-) concentration based on fuzzy neural network analysis were successfully carried out with the simple on-line information regarding the anoxic/oxic system.

  12. Oxygen consumption by oak chips in a model wine solution; Influence of the botanical origin, toast level and ellagitannin content.

    PubMed

    Navarro, María; Kontoudakis, Nikolaos; Giordanengo, Thomas; Gómez-Alonso, Sergio; García-Romero, Esteban; Fort, Francesca; Canals, Joan Miquel; Hermosín-Gutíerrez, Isidro; Zamora, Fernando

    2016-05-15

    The botanical origin, toast level and ellagitannin content of oak chips in a model wine solution have been studied in terms of their influence on oxygen consumption. French oak chips released significantly higher amounts of ellagitannins than American oak chips at any toast level. The release of ellagitannins by oak chips decreased as the toast level increased in the French oak but this trend was not so clear in American oak. Oxygen consumption rate was clearly related to the level of released ellagitannins. Therefore, oak chips should be chosen for their potential to release ellagitannins release should be considered, not only because they can have a direct impact on the flavor and body of the wine, but also because they can protect against oxidation.

  13. Adenosine 5'-triphosphate consumption by smooth muscle as predicted by the coupled four-state crossbridge model.

    PubMed Central

    Hai, C M; Murphy, R A

    1992-01-01

    We have proposed a four-state crossbridge model to explain contraction and the latch state in arterial smooth muscle. Ca(2+)-dependent crossbridge phosphorylation was the only postulated regulatory mechanism and the latchbridge (a dephosphorylated, attached crossbridge) was the only novel element in the model. In this study, we used the model to predict rates of ATP consumption by crossbridge phosphorylation (JPhos) and cycling (JCycle) during isometric and isotonic contractions in arterial smooth muscle; then we compared model predictions with experimental data. The model predicted that JPhos and JCycle were similar in magnitude in isometric contractions, and both increased almost linearly with myosin phosphorylation. The predicted relationship between isometric stress and ATP consumption was quasihyperbolic, but approximately linear when myosin phosphorylation was below 35%, in agreement with most of the available data. Muscle shortening increased the predicted values of JCycle up to 3.7-fold depending on shortening velocity and the level of myosin phosphorylation. The predicted maximum work output per ATP was 7.4-7.8 kJ/mol ATP and was relatively insensitive to changes in myosin phosphorylation. The predicted increase in JCycle with shortening was in agreement with available data, but the model prediction that work output per ATP was insensitive to changes in myosin phosphorylation was unexpected and remains to be tested in future experiments. PMID:1547336

  14. Object-Oriented Agricultural System Modeling: Component-Driven Nutrient Dynamics and Crop Yield Simulations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Challenges in agro-ecosystem conservation management have created demand for state-of-the-art, integrated, and flexible modeling tools. For example, agricultural system modeling tools are needed which are robust and fast enough to be applied on large watershed scales, but which are also able to sim...

  15. A stochastic method to characterize model uncertainty for a Nutrient TMDL

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The U.S. EPA’s Total Maximum Daily Load (TMDL) program has encountered resistances in its implementation partly because of its strong dependence on mathematical models to set limitations on the release of impairing substances. The uncertainty associated with predictions of such models is often not s...

  16. Seasonal nutrient and plankton dynamics in a physical-biological model of Crater Lake

    USGS Publications Warehouse

    Fennel, K.; Collier, R.; Larson, G.; Crawford, G.; Boss, E.

    2007-01-01

    A coupled 1D physical-biological model of Crater Lake is presented. The model simulates the seasonal evolution of two functional phytoplankton groups, total chlorophyll, and zooplankton in good quantitative agreement with observations from a 10-year monitoring study. During the stratified period in summer and early fall the model displays a marked vertical structure: the phytoplankton biomass of the functional group 1, which represents diatoms and dinoflagellates, has its highest concentration in the upper 40 m; the phytoplankton biomass of group 2, which represents chlorophyta, chrysophyta, cryptomonads and cyanobacteria, has its highest concentrations between 50 and 80 m, and phytoplankton chlorophyll has its maximum at 120 m depth. A similar vertical structure is a reoccurring feature in the available data. In the model the key process allowing a vertical separation between biomass and chlorophyll is photoacclimation. Vertical light attenuation (i.e., water clarity) and the physiological ability of phytoplankton to increase their cellular chlorophyll-to-biomass ratio are ultimately determining the location of the chlorophyll maximum. The location of the particle maxima on the other hand is determined by the balance between growth and losses and occurs where growth and losses equal. The vertical particle flux simulated by our model agrees well with flux measurements from a sediment trap. This motivated us to revisit a previously published study by Dymond et al. (1996). Dymond et al. used a box model to estimate the vertical particle flux and found a discrepancy by a factor 2.5-10 between their model-derived flux and measured fluxes from a sediment trap. Their box model neglected the exchange flux of dissolved and suspended organic matter, which, as our model and available data suggests is significant for the vertical exchange of nitrogen. Adjustment of Dymond et al.'s assumptions to account for dissolved and suspended nitrogen yields a flux estimate that is

  17. Projected Impact of a Sodium Consumption Reduction Initiative in Argentina: An Analysis from the CVD Policy Model – Argentina

    PubMed Central

    Konfino, Jonatan; Mekonnen, Tekeshe A.; Coxson, Pamela G.; Ferrante, Daniel; Bibbins-Domingo, Kirsten

    2013-01-01

    Background Cardiovascular disease (CVD) is the leading cause of death in adults in Argentina. Sodium reduction policies targeting processed foods were implemented in 2011 in Argentina, but the impact has not been evaluated. The aims of this study are to use Argentina-specific data on sodium excretion and project the impact of Argentina’s sodium reduction policies under two scenarios - the 2-year intervention currently being undertaken or a more persistent 10 year sodium reduction strategy. Methods We used Argentina-specific data on sodium excretion by sex and projected the impact of the current strategy on sodium consumption and blood pressure decrease. We assessed the projected impact of sodium reduction policies on CVD using the Cardiovascular Disease (CVD) Policy Model, adapted to Argentina, modeling two alternative policy scenarios over the next decade. Results Our study finds that the initiative to reduce sodium consumption currently in place in Argentina will have substantial impact on CVD over the next 10 years. Under the current proposed policy of 2-year sodium reduction, the mean sodium consumption is projected to decrease by 319–387 mg/day. This decrease is expected to translate into an absolute reduction of systolic blood pressure from 0.93 mmHg to 1.81 mmHg. This would avert about 19,000 all-cause mortality, 13,000 total myocardial infarctions, and 10,000 total strokes over the next decade. A more persistent sodium reduction strategy would yield even greater CVD benefits. Conclusion The impact of the Argentinean initiative would be effective in substantially reducing mortality and morbidity from CVD. This paper provides evidence-based support to continue implementing strategies to reduce sodium consumption at a population level. PMID:24040085

  18. Prawn Shell Chitosan Has Anti-Obesogenic Properties, Influencing Both Nutrient Digestibility and Microbial Populations in a Pig Model

    PubMed Central

    Egan, Áine M.; Sweeney, Torres; Hayes, Maria; O’Doherty, John V.

    2015-01-01

    The potential of natural products to prevent obesity have been investigated, with evidence to suggest that chitosan has anti-obesity effects. The current experiment investigated the anti-obesity potential of prawn shell derived chitosan on a range of variables relevant to obesity in a pig model. The two dietary treatment groups included in this 63 day study were: T1) basal diet and T2) basal diet plus 1000 ppm chitosan (n = 20 gilts per group (70 ± 0.90 kg). The parameter categories which were assessed included: performance, nutrient digestibility, serum leptin concentrations, nutrient transporter and digestive enzyme gene expression and gut microbial populations. Pigs offered chitosan had reduced feed intake and final body weight (P< 0.001), lower ileal digestibility of dry matter (DM), gross energy (GE) (P< 0.05) and reduced coefficient of apparent total tract digestibility (CATTD) of gross energy and nitrogen (P<0.05) when compared to the basal group. Fatty acid binding protein 2 (FABP2) gene expression was down-regulated in pigs offered chitosan (P = 0.05) relative to the basal diet. Serum leptin concentrations increased (P< 0.05) in animals offered the chitosan diet compared to pigs offered the basal diet. Fatness traits, back-fat depth (mm), fat content (kg), were significantly reduced while lean meat (%) was increased (P<0.05) in chitosan supplemented pigs. Pigs offered chitosan had decreased numbers of Firmicutes in the colon (P <0.05), and Lactobacillus spp. in both the caecum (P <0.05) and colon (P <0.001). Bifidobacteria populations were increased in the caecum of animals offered the chitosan diet (P <0.05). In conclusion, these findings suggest that prawn shell chitosan has potent anti-obesity/body weight control effects which are mediated through multiple biological systems in vivo. PMID:26636332

  19. Prawn Shell Chitosan Has Anti-Obesogenic Properties, Influencing Both Nutrient Digestibility and Microbial Populations in a Pig Model.

    PubMed

    Egan, Áine M; Sweeney, Torres; Hayes, Maria; O'Doherty, John V

    2015-01-01

    The potential of natural products to prevent obesity have been investigated, with evidence to suggest that chitosan has anti-obesity effects. The current experiment investigated the anti-obesity potential of prawn shell derived chitosan on a range of variables relevant to obesity in a pig model. The two dietary treatment groups included in this 63 day study were: T1) basal diet and T2) basal diet plus 1000 ppm chitosan (n = 20 gilts per group (70 ± 0.90 kg). The parameter categories which were assessed included: performance, nutrient digestibility, serum leptin concentrations, nutrient transporter and digestive enzyme gene expression and gut microbial populations. Pigs offered chitosan had reduced feed intake and final body weight (P< 0.001), lower ileal digestibility of dry matter (DM), gross energy (GE) (P< 0.05) and reduced coefficient of apparent total tract digestibility (CATTD) of gross energy and nitrogen (P<0.05) when compared to the basal group. Fatty acid binding protein 2 (FABP2) gene expression was down-regulated in pigs offered chitosan (P = 0.05) relative to the basal diet. Serum leptin concentrations increased (P< 0.05) in animals offered the chitosan diet compared to pigs offered the basal diet. Fatness traits, back-fat depth (mm), fat content (kg), were significantly reduced while lean meat (%) was increased (P<0.05) in chitosan supplemented pigs. Pigs offered chitosan had decreased numbers of Firmicutes in the colon (P <0.05), and Lactobacillus spp. in both the caecum (P <0.05) and colon (P <0.001). Bifidobacteria populations were increased in the caecum of animals offered the chitosan diet (P <0.05). In conclusion, these findings suggest that prawn shell chitosan has potent anti-obesity/body weight control effects which are mediated through multiple biological systems in vivo.

  20. How important is the choice of the nutrient profile model used to regulate broadcast advertising of foods to children? A comparison using a targeted data set

    PubMed Central

    Scarborough, P; Payne, C; Agu, C G; Kaur, A; Mizdrak, A; Rayner, M; Halford, J C G; Boyland, E

    2013-01-01

    Background/Objective: The World Health Assembly recommends that children's exposure to marketing of unhealthy foods should be reduced. Nutrient profile models have been developed that define ‘unhealthy' to support regulation of broadcast advertising of foods to children. The level of agreement between these models is not clear. The objective of this study was to measure the agreement between eight nutrient profile models that have been proposed for the regulation of marketing to children over (a) how many and (b) what kind of foods should be permitted to be advertised during television viewed by children. Subjects/Methods: A representative data set of commercials for foods broadcast during television viewed by children in the UK was collected in 2008. The data set consisted of 11 763 commercials for 336 different products or brands. This data set was supplemented with nutrition data from company web sites, food packaging and a food composition table, and the nutrient profile models were applied. Results: The percentage of commercials that would be permitted by the different nutrient profile models ranged from 2.1% (0.4%, 3.7%) to 47.4% (42.1%, 52.6%). Half of the pairwise comparisons between models yielded kappa statistics less than 0.2, indicating that there was little agreement between models. Conclusions: Policy makers considering the regulation of broadcast advertising to children should carefully consider the choice of nutrient profile model to support the regulation, as this choice will have considerable influence on the outcome of the regulation. PMID:23801095

  1. Global terrestrial ecosystem models of productivity and nutrient cycling and vegetation response to climate

    SciTech Connect

    Kercher, J.R.; Chambers, J.Q.; Axelrod, M.C. )

    1993-06-01

    We are developing two global terrestrial ecosystem models (TERRA and HABITAT) to be coupled to atmospheric and oceanic models in an Earth System Model. TERRA is a model of ecosystem productivity and biogeochemical cycling covering the Earth's land surface as a grid of independent, local models. HABITAT is being designed as a gridded, dynamic model of vegetation response to climate. The TERRA grid cell models are calibrated to 17 vegetation types. The parameter for maximum gross primary productivity was found to average (2.4 +/- 1.4 s.d.) x 10[sup 4] g m[sup [minus]2] y[sup [minus]1] across the 17 types. Maximum rate of nitrogen uptake by vegetation averaged 13 +/- 3 g m[sup [minus]2] y[sup [minus]1] for all forest types, 9 +/- 3 for all woodland and savanna types, and 5 +/- 2 for all grassland, tundra, and shrubland types. Preliminary analysis for designing HABITAT suggests that total annual precipitation and average monthly temperature do not resolve vegetation types. This result emphasizes the need for constructing a set of climatic variables that simplify the biological response.

  2. A risk-benefit analysis approach to seafood intake to determine optimal consumption.

    PubMed

    Sirot, Véronique; Leblanc, Jean-Charles; Margaritis, Irène

    2012-06-01

    Seafood provides n-3 long-chain PUFA (n-3 LC-PUFA), vitamins and minerals, which are essential to maintain good health. Moreover, seafood is a source of contaminants such as methylmercury, arsenic and persistent organic pollutants that may affect health. The aim of the present study was to determine in what quantities seafood consumption would provide nutritional benefits, while minimising the risks linked to food contaminants. Seafood was grouped into clusters using a hierarchical cluster analysis. Those nutrients and contaminants were selected for which it is known that seafood is a major source. The risk-benefit analysis consisted in using an optimisation model with constraints to calculate optimum seafood cluster consumption levels. The goal was to optimise nutrient intakes as well as to limit contaminant exposure with the condition being to attain recommended nutritional intakes without exceeding tolerable upper intakes for contaminants and nutrients, while taking into account background intakes. An optimum consumption level was calculated for adults that minimises inorganic arsenic exposure and increases vitamin D intake in the general population. This consumption level guarantees that the consumer reaches the recommended intake for n-3 LC-PUFA, Se and I, while remaining below the tolerable upper intakes for methylmercury, Cd, dioxins, polychlorobiphenyls, Zn, Ca and Cu. This consumption level, which is approximately 200 g/week of certain fatty fish species and approximately 50 g/week of lean fish, molluscs and crustaceans, has to be considered in order to determine food consumption recommendations in a public health perspective.

  3. Modeling the Effect of External Carbon Source Addition under Different Electron Acceptor Conditions in Biological Nutrient Removal Activated Sludge Systems.

    PubMed

    Hu, Xiang; Wisniewski, Kamil; Czerwionka, Krzysztof; Zhou, Qi; Xie, Li; Makinia, Jacek

    2016-02-16

    The aim of this study was to expand the International Water Association Activated Sludge Model No. 2d (ASM2d) to predict the aerobic/anoxic behavior of polyphosphate accumulating organisms (PAOs) and "ordinary" heterotrophs in the presence of different external carbon sources and electron acceptors. The following new aspects were considered: (1) a new type of the readily biodegradable substrate, not available for the anaerobic activity of PAOs, (2) nitrite as an electron acceptor, and (3) acclimation of "ordinary" heterotrophs to the new external substrate via enzyme synthesis. The expanded model incorporated 30 new or modified process rate equations. The model was evaluated against data from several, especially designed laboratory experiments which focused on the combined effects of different types of external carbon sources (acetate, ethanol and fusel oil) and electron acceptors (dissolved oxygen, nitrate and nitrite) on the behavior of PAOs and "ordinary" heterotrophs. With the proposed expansions, it was possible to improve some deficiencies of the ASM2d in predicting the behavior of biological nutrient removal (BNR) systems with the addition of external carbon sources, including the effect of acclimation to the new carbon source.

  4. A grey NGM(1,1, k) self-memory coupling prediction model for energy consumption prediction.

    PubMed

    Guo, Xiaojun; Liu, Sifeng; Wu, Lifeng; Tang, Lingling

    2014-01-01

    Energy consumption prediction is an important issue for governments, energy sector investors, and other related corporations. Although there are several prediction techniques, selection of the most appropriate technique is of vital importance. As for the approximate nonhomogeneous exponential data sequence often emerging in the energy system, a novel grey NGM(1,1, k) self-memory coupling prediction model is put forward in order to promote the predictive performance. It achieves organic integration of the self-memory principle of dynamic system and grey NGM(1,1, k) model. The traditional grey model's weakness as being sensitive to initial value can be overcome by the self-memory principle. In this study, total energy, coal, and electricity consumption of China is adopted for demonstration by using the proposed coupling prediction technique. The results show the superiority of NGM(1,1, k) self-memory coupling prediction model when compared with the results from the literature. Its excellent prediction performance lies in that the proposed coupling model can take full advantage of the systematic multitime historical data and catch the stochastic fluctuation tendency. This work also makes a significant contribution to the enrichment of grey prediction theory and the extension of its application span.

  5. The relationship of breakfast skipping and type of breakfast consumption with nutrient intake and weight status in children and adolescents: the National Health and Nutrition Examination Survey 1999-2006

    Technology Transfer Automated Retrieval System (TEKTRAN)

    National data comparing nutrient intakes and anthropometric measures in children and adolescents in the United States who skip breakfast or consume different types of breakfasts are limited. The objective was to examine the relationship between breakfast skipping and type of breakfast consumed with ...

  6. Restoration of Normal Cerebral Oxygen Consumption with Rapamycin Treatment in a Rat Model of Autism–Tuberous Sclerosis

    PubMed Central

    Chi, Oak Z.; Wu, Chang-Chih; Liu, Xia; Rah, Kang H.; Jacinto, Estela

    2016-01-01

    Tuberous sclerosis (TSC) is associated with autism spectrum disorders and has been linked to metabolic dysfunction and unrestrained signaling of the mammalian target of rapamycin (mTOR). Inhibition of mTOR by rapamycin can mitigate some of the phenotypic abnormalities associated with TSC and autism, but whether this is due to the mTOR-related function in energy metabolism remains to be elucidated. In young Eker rats, an animal model of TSC and autism, which harbors a germ line heterozygous Tsc2 mutation, we previously reported that cerebral oxygen consumption was pronouncedly elevated. Young (4 weeks) male control Long–Evans and Eker rats were divided into control and rapamycin-treated (20 mg/kg once daily for 2 days) animals. Cerebral regional blood flow (14C-iodoantipyrine) and O2 consumption (cryomicrospectrophotometry) were determined in isoflurane-anesthetized rats. We found significantly increased basal O2 consumption in the cortex (8.7 ± 1.5 ml O2/min/100 g Eker vs. 2.7 ± 0.2 control), hippocampus, pons and cerebellum. Regional cerebral blood flow and cerebral O2 extractions were also elevated in all brain regions. Rapamycin had no significant effect on O2 consumption in any brain region of the control rats, but significantly reduced consumption in the cortex (4.1 ± 0.3) and all other examined regions of the Eker rats. Phosphorylation of mTOR and S6K1 was similar in the two groups and equally reduced by rapamycin. Thus, a rapamycin-sensitive, mTOR-dependent but S6K1-independent, signal led to enhanced oxidative metabolism in the Eker brain. We found decreased Akt phosphorylation in Eker but not Long–Evans rat brains, suggesting that this may be related to the increased cerebral O2 consumption in the Eker rat. Our findings suggest that rapamycin targeting of Akt to restore normal cerebral metabolism could have therapeutic potential in tuberous sclerosis and autism. PMID:26048361

  7. Restoration of Normal Cerebral Oxygen Consumption with Rapamycin Treatment in a Rat Model of Autism-Tuberous Sclerosis.

    PubMed

    Chi, Oak Z; Wu, Chang-Chih; Liu, Xia; Rah, Kang H; Jacinto, Estela; Weiss, Harvey R

    2015-09-01

    Tuberous sclerosis (TSC) is associated with autism spectrum disorders and has been linked to metabolic dysfunction and unrestrained signaling of the mammalian target of rapamycin (mTOR). Inhibition of mTOR by rapamycin can mitigate some of the phenotypic abnormalities associated with TSC and autism, but whether this is due to the mTOR-related function in energy metabolism remains to be elucidated. In young Eker rats, an animal model of TSC and autism, which harbors a germ line heterozygous Tsc2 mutation, we previously reported that cerebral oxygen consumption was pronouncedly elevated. Young (4 weeks) male control Long-Evans and Eker rats were divided into control and rapamycin-treated (20 mg/kg once daily for 2 days) animals. Cerebral regional blood flow ((14)C-iodoantipyrine) and O2 consumption (cryomicrospectrophotometry) were determined in isoflurane-anesthetized rats. We found significantly increased basal O2 consumption in the cortex (8.7 ± 1.5 ml O2/min/100 g Eker vs. 2.7 ± 0.2 control), hippocampus, pons and cerebellum. Regional cerebral blood flow and cerebral O2 extractions were also elevated in all brain regions. Rapamycin had no significant effect on O2 consumption in any brain region of the control rats, but significantly reduced consumption in the cortex (4.1 ± 0.3) and all other examined regions of the Eker rats. Phosphorylation of mTOR and S6K1 was similar in the two groups and equally reduced by rapamycin. Thus, a rapamycin-sensitive, mTOR-dependent but S6K1-independent, signal led to enhanced oxidative metabolism in the Eker brain. We found decreased Akt phosphorylation in Eker but not Long-Evans rat brains, suggesting that this may be related to the increased cerebral O2 consumption in the Eker rat. Our findings suggest that rapamycin targeting of Akt to restore normal cerebral metabolism could have therapeutic potential in tuberous sclerosis and autism.

  8. Simulation of annual biogeochemical cycles of nutrient balance, phytoplankton bloom(s), and DO in Puget Sound using an unstructured grid model

    SciTech Connect

    Khangaonkar, Tarang; Sackmann, Brandon; Long, Wen; Mohamedali, Teizeen; Roberts, Mindy

    2012-08-14

    Nutrient pollution from rivers, nonpoint source runoff, and nearly 100 wastewater discharges is a potential threat to the ecological health of Puget Sound with evidence of hypoxia in some basins. However, the relative contributions of loads entering Puget Sound from natural and anthropogenic sources, and the effects of exchange flow from the Pacific Ocean are not well understood. Development of a quantitative model of Puget Sound is thus presented to help improve our understanding of the annual biogeochemical cycles in this system using the unstructured grid Finite-Volume Coastal Ocean Model framework and the Integrated Compartment Model (CE-QUAL-ICM) water quality kinetics. Results based on 2006 data show that phytoplankton growth and die-off, succession between two species of algae, nutrient dynamics, and dissolved oxygen in Puget Sound are strongly tied to seasonal variation of temperature, solar radiation, and the annual exchange and flushing induced by upwelled Pacific Ocean waters. Concentrations in the mixed outflow surface layer occupying approximately 5–20 m of the upper water column show strong effects of eutrophication from natural and anthropogenic sources, spring and summer algae blooms, accompanied by depleted nutrients but high dissolved oxygen levels. The bottom layer reflects dissolved oxygen and nutrient concentrations of upwelled Pacific Ocean water modulated by mixing with biologically active surface outflow in the Strait of Juan de Fuca prior to entering Puget Sound over the Admiralty Inlet. The effect of reflux mixing at the Admiralty Inlet sill resulting in lower nutrient and higher dissolved oxygen levels in bottom waters of Puget Sound than the incoming upwelled Pacific Ocean water is reproduced. Finally, by late winter, with the reduction in algal activity, water column constituents of interest, were renewed and the system appeared to reset with cooler temperature, higher nutrient, and higher dissolved oxygen waters from the Pacific

  9. Simulation of annual biogeochemical cycles of nutrient balance, phytoplankton bloom(s), and DO in Puget Sound using an unstructured grid model

    NASA Astrophysics Data System (ADS)

    Khangaonkar, Tarang; Sackmann, Brandon; Long, Wen; Mohamedali, Teizeen; Roberts, Mindy

    2012-09-01

    Nutrient pollution from rivers, nonpoint source runoff, and nearly 100 wastewater discharges is a potential threat to the ecological health of Puget Sound with evidence of hypoxia in some basins. However, the relative contributions of loads entering Puget Sound from natural and anthropogenic sources, and the effects of exchange flow from the Pacific Ocean are not well understood. Development of a quantitative model of Puget Sound is thus presented to help improve our understanding of the annual biogeochemical cycles in this system using the unstructured grid Finite-Volume Coastal Ocean Model framework and the Integrated Compartment Model (CE-QUAL-ICM) water quality kinetics. Results based on 2006 data show that phytoplankton growth and die-off, succession between two species of algae, nutrient dynamics, and dissolved oxygen in Puget Sound are strongly tied to seasonal variation of temperature, solar radiation, and the annual exchange and flushing induced by upwelled Pacific Ocean waters. Concentrations in the mixed outflow surface layer occupying approximately 5-20 m of the upper water column show strong effects of eutrophication from natural and anthropogenic sources, spring and summer algae blooms, accompanied by depleted nutrients but high dissolved oxygen levels. The bottom layer reflects dissolved oxygen and nutrient concentrations of upwelled Pacific Ocean water modulated by mixing with biologically active surface outflow in the Strait of Juan de Fuca prior to entering Puget Sound over the Admiralty Inlet. The effect of reflux mixing at the Admiralty Inlet sill resulting in lower nutrient and higher dissolved oxygen levels in bottom waters of Puget Sound than the incoming upwelled Pacific Ocean water is reproduced. By late winter, with the reduction in algal activity, water column constituents of interest, were renewed and the system appeared to reset with cooler temperature, higher nutrient, and higher dissolved oxygen waters from the Pacific Ocean.

  10. Steady-state and transient modeling of tracer and nutrient distributions in the global ocean

    SciTech Connect

    Stocker, T.F.; Broecker, W.S.

    1993-03-08

    The balance of stable and decaying tracers was incorporated into a latitude-depth ocean circulation model which resolves the major ocean basin and is coupled to an atmospheric energy balance model. The modern distribution of radiocarbon and the analysis of artificial color tracers enabled the census of the deep water masses. We show that good agreement with the observation can be achieved if the surface forcing is modified. The same process could also account for long-term, large-scale changes of the global thermohaline circulation. Uptake rates of carbon are investigated using an inorganic carbon cycle model and performing 2 [times] CO[sub 2]-experiments. We prescribe the industrial evolution of pCO[sub 2] in the atmosphere from 1792 to 1988 and calculate the total flux of carbon into the world ocean. Results are in good agreement with two recent 3-dimensional model simulation. First results using an organic carbon cycle in this model are presented. Changes in the hydrological cycle can stabilize the thermohaline circulation in the Atlantic and enable simulation of climate events resembling the Younger Dryas. By adding the balance of radiocarbon the evolution of its atmospheric concentration is studied during rapid changes of deep ocean ventilation. A resumption of ventilation creates a rapid decrease of atmospheric radiocarbon which is able to mask the natural decay.

  11. Modeling of moisture diffusivity, activation energy and energy consumption in fluidized bed drying of rough rice

    NASA Astrophysics Data System (ADS)

    Khanali, Majid; Banisharif, Alireza; Rafiee, Shahin

    2016-11-01

    The present work was an attempt to assess the effective moisture diffusivity, activation energy, and energy consumption of rough rice in a batch fluidized bed dryer. Drying experiments were conducted at drying air temperatures of 50, 60, and 70 °C, superficial fluidization velocities of 2.3, 2.5, and 2.8 m/s, and solids holdup of 1.32 kg. Drying kinetics showed that the whole fluidized bed drying of rough rice occurred in the falling rate period. The effective moisture diffusivity was described by an Arrhenius equation. The evaluated effective moisture diffusivity increased with drying air temperature and superficial fluidization velocity and was found to vary from 4.78 × 10-11 to 1.364 × 10-10 m2/s with R2 higher than 0.9643. The activation energy and the pre-exponential factor of Arrhenius equation were found to be in the range of 36.59-44.31 kJ/mol and 4.71 × 10-5-7.15 × 10-4 m2/s, respectively. Both maximum values of the specific energy consumption of 74.73 MJ/kg and the total energy need of 12.43 MJ were obtained at 60 °C drying air temperature and 2.8 m/s superficial fluidization velocity. Both minimum values of the specific energy consumption of 29.98 MJ/kg and the total energy need of 4.85 MJ were obtained under drying air temperature of 70 °C and superficial fluidization velocity of 2.3 m/s.

  12. Modeling the system dynamics for nutrient removal in an innovative septic tank media filter.

    PubMed

    Xuan, Zhemin; Chang, Ni-Bin; Wanielista, Martin

    2012-05-01

    A next generation septic tank media filter to replace or enhance the current on-site wastewater treatment drainfields was proposed in this study. Unit operation with known treatment efficiencies, flow pattern identification, and system dynamics modeling was cohesively concatenated in order to prove the concept of a newly developed media filter. A multicompartmental model addressing system dynamics and feedbacks based on our assumed microbiological processes accounting for aerobic, anoxic, and anaerobic conditions in the media filter was constructed and calibrated with the aid of in situ measurements and the understanding of the flow patterns. Such a calibrated system dynamics model was then applied for a sensitivity analysis under changing inflow conditions based on the rates of nitrification and denitrification characterized through the field-scale testing. This advancement may contribute to design such a drainfield media filter in household septic tank systems in the future.

  13. Steady-state and transient modeling of tracer and nutrient distributions in the global ocean

    SciTech Connect

    Stocker, T.F.; Broecker, W.S.

    1992-03-26

    The deep circulation model developed by Wright and Stocker has been used to represent the latitude-depth distributions of temperature, salinity, radiocarbon and color'' tracers in the Pacific, Atlantic and Indian Oceans. Restoring temperature and salinity to observed surface data the model shows a global thermohaline circulation where deep water is formed in the North Atlantic and in the Southern Ocean. A parameter study reveals that the high-latitude surface salinity determines the composition of deep water and its flow in the global ocean. Increasing Southern Ocean surface salinity by 0.4 ppt the circulation changes from a present-day mode where North Atlantic Deep Water is one where Antarctic Bottom Water is dominant. An inorganic carbon cycle with surface carbonate chemistry is included, and gas exchange is parameterized in terms of pCO{sub 2} differences. Pre- industrial conditions are achieved by adjusting the basin-mean alkalinity. A classical 2{times}CO{sub 2} experiment yields the intrinsic time scales for carbon uptake of the ocean; they agree with those obtained from simple box models or 3-dimensional ocean general circulation models. Using the estimated industrial anthropogenic input of CO{sub 2} into the atmosphere the model requires, consistent with other model studies, an additional carbon flux to match the observed increase of atmospheric pCO{sub 2}. We use more realistic surface boundary conditions which reduce sensitivity to freshwater discharges into the ocean. In a glacial-to-interglacial experiment rapid transitions of the deep circulation between two different states occur in conjunction with a severe reduction of the meridional heat flux and sea surface temperature during peak melting. After the melting the conveyor belt circulation restarts.

  14. Modeling transport of nutrients & sediment loads into Lake Tahoe under climate change

    USGS Publications Warehouse

    Riverson, John; Coats, Robert; Costa-Cabral, Mariza; Dettinger, Mike; Reuter, John; Sahoo, Goloka; Schladow, Geoffrey

    2013-01-01

    The outputs from two General Circulation Models (GCMs) with two emissions scenarios were downscaled and bias-corrected to develop regional climate change projections for the Tahoe Basin. For one model—the Geophysical Fluid Dynamics Laboratory or GFDL model—the daily model results were used to drive a distributed hydrologic model. The watershed model used an energy balance approach for computing evapotranspiration and snowpack dynamics so that the processes remain a function of the climate change projections. For this study, all other aspects of the model (i.e. land use distribution, routing configuration, and parameterization) were held constant to isolate impacts of climate change projections. The results indicate that (1) precipitation falling as rain rather than snow will increase, starting at the current mean snowline, and moving towards higher elevations over time; (2) annual accumulated snowpack will be reduced; (3) snowpack accumulation will start later; and (4) snowmelt will start earlier in the year. Certain changes were masked (or counter-balanced) when summarized as basin-wide averages; however, spatial evaluation added notable resolution. While rainfall runoff increased at higher elevations, a drop in total precipitation volume decreased runoff and fine sediment load from the lower elevation meadow areas and also decreased baseflow and nitrogen loads basin-wide. This finding also highlights the important role that the meadow areas could play as high-flow buffers under climatic change. Because the watershed model accounts for elevation change and variable meteorological patterns, it provided a robust platform for evaluating the impacts of projected climate change on hydrology and water quality.

  15. Watershed Modeling to Assess the Sensitivity of Streamflow, Nutrient, and Sediment Loads to Potential Climate Change and Urban Development in 20 U.S. Watersheds (Final Report)

    EPA Science Inventory

    Watershed modeling was conducted in 20 large, U.S. watersheds to assess the sensitivity of streamflow, nutrient (nitrogen and phosphorus), and sediment loading to a range of plausible mid-21st Century climate change and urban development scenarios in different regions of the nati...

  16. Watershed Modeling to Assess the Sensitivity of Streamflow, Nutrient, and Sediment Loads to Potential Climate Change and Urban Development in 20 U.S. Watersheds (External Review Draft)

    EPA Science Inventory

    EPA has released for independent external peer review and public comment a draft report titled, Watershed Modeling to Assess the Sensitivity of Streamflow, Nutrient, and Sediment Loads to Potential Climate Change and Urban Development in 20 U.S. Watersheds. This is a draft...

  17. Does the Transtheoretical Model of Behavior Change Provide a Useful Basis for Interventions to Promote Fruit and Vegetable Consumption?

    PubMed Central

    Horwath, Caroline C.; Schembre, Susan M.; Motl, Robert W.; Dishman, Rod K.; Nigg, Claudio R.

    2013-01-01

    Purpose To determine whether Transtheoretical Model (TTM) constructs differ between individuals making successful versus unsuccessful stage transitions for consumption of five or more servings of fruit and vegetables each day and thus provide a useful basis for designing health promotion interventions. Design Longitudinal, observational study. A randomly selected, multiethnic cohort of adults assessed at 6-month intervals over 2 years. Setting General community, Hawaii. Subjects There were 700 participants (62.6% female; mean = 47 ± 17.1 years; 31.1% Asian, 22.1% Native Hawaiian/Pacific Islander, 35.0% Caucasian; 25.1% participation rate). Measures Stage of readiness, experiential and behavioral processes of change, pros, cons, self-efficacy, and self-reported fruit and vegetable consumption. Analysis The study used t-tests to determine which TTM variable scores differed consistently between those making “successful” versus “unsuccessful” stage transitions from precontemplation, preparation, and maintenance. Sample sizes for contemplation and action prohibited similar analyses. Results Compared to those remaining in precontemplation, individuals successfully progressing from precontemplation showed significantly greater use of behavioral processes (collectively and self-liberation) and consciousness raising (p < .001). However, only self-liberation demonstrated significant differences consistently over time. Conclusion This longitudinal investigation reveals that TTM behavioral processes, particularly self-liberation, predict successful transition out of precontemplation for adult fruit and vegetable consumption, suggesting that public health messages tailored according to these TTM variables may be effective for this group. However, for adults prepared to adopt or maintain fruit and vegetable consumption, tailoring based on variables from other theories is needed. PMID:23398135

  18. Riverine Nutrient Load Reductions Through Modeling/Simulation Directed Field Targeting of Best Management Practices

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increased agricultural production has led to a reduction in water quality. With the decreasing availability of funds for protection or improvement of water quality, it has become important to spend these dollars wisely. The objective of this study is to model the implementation at different location...

  19. What are the unique attributes of potassium that challenge existing nutrient uptake models?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil potassium (K) availability and acquisition by plant root systems are controlled by complex, interacting processes that make it difficult to assess their individual impacts on crop growth. Mechanistic, mathematical models provide an important tool to enhance understanding of these processes, and...

  20. Response of a One-Biosphere Nutrient Modeling System to Regional Land Use and Management Change

    EPA Science Inventory

    A multi-media system of nitrogen and co-pollutant models describing critical physical and chemical processes that cascade synergistically and competitively through the environment, the economy and society has been developed at the USEPA Office of Research and Development (see fig...

  1. Development and deployment of a water-crop-nutrient simulation model embedded in a web application

    NASA Astrophysics Data System (ADS)

    Langella, Giuliano; Basile, Angelo; Coppola, Antonio; Manna, Piero; Orefice, Nadia; Terribile, Fabio

    2016-04-01

    It is long time by now that scientific research on environmental and agricultural issues spent large effort in the development and application of models for prediction and simulation in spatial and temporal domains. This is fulfilled by studying and observing natural processes (e.g. rainfall, water and chemicals transport in soils, crop growth) whose spatiotemporal behavior can be reproduced for instance to predict irrigation and fertilizer requirements and yield quantities/qualities. In this work a mechanistic model to simulate water flow and solute transport in the soil-plant-atmosphere continuum is presented. This desktop computer program was written according to the specific requirement of developing web applications. The model is capable to solve the following issues all together: (a) water balance and (b) solute transport; (c) crop modelling; (d) GIS-interoperability; (e) embedability in web-based geospatial Decision Support Systems (DSS); (f) adaptability at different scales of application; and (g) ease of code modification. We maintained the desktop characteristic in order to further develop (e.g. integrate novel features) and run the key program modules for testing and validation purporses, but we also developed a middleware component to allow the model run the simulations directly over the web, without software to be installed. The GIS capabilities allows the web application to make simulations in a user-defined region of interest (delimited over a geographical map) without the need to specify the proper combination of model parameters. It is possible since the geospatial database collects information on pedology, climate, crop parameters and soil hydraulic characteristics. Pedological attributes include the spatial distribution of key soil data such as soil profile horizons and texture. Further, hydrological parameters are selected according to the knowledge about the spatial distribution of soils. The availability and definition in the geospatial domain

  2. Using models to guide field experiments: a priori predictions for the CO 2 response of a nutrient- and water-limited native Eucalypt woodland

    DOE PAGES

    Medlyn, Belinda E.; De Kauwe, Martin G.; Zaehle, Sönke; ...

    2016-05-09

    One major uncertainty in Earth System models is the response of terrestrial ecosystems to rising atmospheric CO2 concentration (Ca), particularly under nutrient-lim- ited conditions. The Eucalyptus Free-Air CO2 Enrichment (EucFACE) experiment, recently established in a nutrient- and water-limited woodlands, presents a unique opportunity to address this uncertainty, but can best do so if key model uncertainties have been identified in advance. Moreover, we applied seven vegetation models, which have previously been comprehensively assessed against earlier forest FACE experi- ments, to simulate a priori possible outcomes from EucFACE. Our goals were to provide quantitative projections against which to evaluate data asmore » they are collected, and to identify key measurements that should be made in the experiment to allow discrimination among alternative model assumptions in a postexperiment model intercompari- son. Simulated responses of annual net primary productivity (NPP) to elevated Ca ranged from 0.5 to 25% across models. The simulated reduction of NPP during a low-rainfall year also varied widely, from 24 to 70%. Key processes where assumptions caused disagreement among models included nutrient limitations to growth; feedbacks to nutri- ent uptake; autotrophic respiration; and the impact of low soil moisture availability on plant processes. Finally, knowledge of the causes of variation among models is now guiding data collection in the experiment, with the expectation that the experimental data can optimally inform future model improvements.« less

  3. Nutrient transfer in three contrasting NW European watersheds: the Seine, Somme, and Scheldt Rivers. A comparative application of the Seneque/Riverstrahler model.

    PubMed

    Thieu, Vincent; Billen, Gilles; Garnier, Josette

    2009-04-01

    An understanding of the ecological functioning of an aquatic continuum on a multi-regional scale relies on the ability to collect suitable descriptive information. Here, the deterministic Seneque/Riverstrahler model, linking biogeochemistry with the constraints set by geomorphology and anthropogenic activities, was fully implemented to study the Seine, Somme, and Scheldt Rivers. Reasonable agreement was found between calculated and observed nutrient fluxes for both seasonal and inter-annual variations along the networks. Nutrient budgets underline: i) a clear partition of diffuse and point sourc