Sample records for modeling plasma facing

  1. RACLETTE: a model for evaluating the thermal response of plasma facing components to slow high power plasma transients. Part I: Theory and description of model capabilities

    NASA Astrophysics Data System (ADS)

    Raffray, A. René; Federici, Gianfranco

    1997-04-01

    RACLETTE (Rate Analysis Code for pLasma Energy Transfer Transient Evaluation), a comprehensive but relatively simple and versatile model, was developed to help in the design analysis of plasma facing components (PFCs) under 'slow' high power transients, such as those associated with plasma vertical displacement events. The model includes all the key surface heat transfer processes such as evaporation, melting, and radiation, and their interaction with the PFC block thermal response and the coolant behaviour. This paper represents part I of two sister and complementary papers. It covers the model description, calibration and validation, and presents a number of parametric analyses shedding light on and identifying trends in the PFC armour block response to high plasma energy deposition transients. Parameters investigated include the plasma energy density and deposition time, the armour thickness and the presence of vapour shielding effects. Part II of the paper focuses on specific design analyses of ITER plasma facing components (divertor, limiter, primary first wall and baffle), including improvements in the thermal-hydraulic modeling required for better understanding the consequences of high energy deposition transients in particular for the ITER limiter case.

  2. Tritium saturation in plasma-facing materials surfaces1

    NASA Astrophysics Data System (ADS)

    Longhurst, Glen R.; Anderl, Robert A.; Causey, Rion A.; Federici, Gianfranco; Haasz, Anthony A.; Pawelko, Robert J.

    1998-10-01

    Plasma-facing components in the International Thermonuclear Experimental Reactor (ITER) will experience high heat loads and intense plasma fluxes of order 10 20-10 23 particles/m 2s. Experiments on Be and W, two of the materials considered for use in ITER, have revealed that a tritium saturation phenomenon can take place under these conditions in which damage to the surface results that enhances the return of implanted tritium to the plasma and inhibits uptake of tritium. This phenomenon is important because it implies that tritium inventories due to implantation in these plasma-facing materials will probably be lower than was previously estimated using classical recombination-limited release at the plasma surface. Similarly, permeation through these components to the coolant streams should be reduced. In this paper we discuss evidences for the existence of this phenomenon, describe techniques for modeling it, and present results of the application of such modeling to prior experiments.

  3. Analytical method for thermal stress analysis of plasma facing materials

    NASA Astrophysics Data System (ADS)

    You, J. H.; Bolt, H.

    2001-10-01

    The thermo-mechanical response of plasma facing materials (PFMs) to heat loads from the fusion plasma is one of the crucial issues in fusion technology. In this work, a fully analytical description of the thermal stress distribution in armour tiles of plasma facing components is presented which is expected to occur under typical high heat flux (HHF) loads. The method of stress superposition is applied considering the temperature gradient and thermal expansion mismatch. Several combinations of PFMs and heat sink metals are analysed and compared. In the framework of the present theoretical model, plastic flow and the effect of residual stress can be quantitatively assessed. Possible failure features are discussed.

  4. Analysis of singular interface stresses in dissimilar material joints for plasma facing components

    NASA Astrophysics Data System (ADS)

    You, J. H.; Bolt, H.

    2001-10-01

    Duplex joint structures are typical material combinations for the actively cooled plasma facing components of fusion devices. The structural integrity under the incident heat loads from the plasma is one of the most crucial issues in the technology of these components. The most critical domain in a duplex joint component is the free surface edge of the bond interface between heterogeneous materials. This is due to the fact that the thermal stress usually shows a singular intensification in this region. If the plasma facing armour tile consists of a brittle material, the existence of the stress singularity can be a direct cause of failure. The present work introduces a comprehensive analytical tool to estimate the impact of the stress singularity for duplex PFC design and quantifies the relative stress intensification in various materials joints by use of a model formulated by Munz and Yang. Several candidate material combinations of plasma facing armour and metallic heat sink are analysed and the results are compared with each other.

  5. Cellulose microfibrils: visualization of biosynthetic and orienting complexes in association with the plasma membrane.

    PubMed

    Brown, R M; Montezinos, D

    1976-01-01

    Cellulose microfibril biosynthesis, assembly, and orientation in the unicellular green alga, Oocystis, is visualized in association with a linear enzyme complex embedded in the B face of the plasma membrane. Granule bands of the A face and complementary ridges of the B face are postulated to assist in the orientation of recently synthesized microfibrils. A model for microfibril synthesis and orientation is proposed and correlated with current hypotheses regarding cellulose biosynthesis in higher plants.

  6. Design of a Microwave Assisted Discharge Inductive Plasma Accelerator

    NASA Technical Reports Server (NTRS)

    Hallock, Ashley K.; Polzin, Kurt A.

    2010-01-01

    A new plasma accelerator concept that employs electrodeless plasma preionization and pulsed inductive acceleration is presented. Preionization is achieved through an electron cyclotron resonance discharge that produces a weakly-ionized plasma at the face of a conical theta pinch-shaped inductive coil. The presence of the preionized plasma allows for current sheet formation at lower discharge voltages than those found in other pulsed inductive accelerators. The location of an electron cyclotron resonance discharge can be controlled through the design of the applied magnetic field in the thruster. A finite-element model of the magnetic field was used as a design tool, allowing for the implementation of an arrangement of permanent magnets that yields a small volume of preionized propellant at the coil face. This allows for current sheet formation at the face of the inductive coil, minimizing the initial inductance of the pulse circuit and maximizing the potential efficiency of the new accelerator.

  7. High-Performance Computational Modeling of ICRF Physics and Plasma-Surface Interactions in Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Jenkins, Thomas; Smithe, David

    2016-10-01

    Inefficiencies and detrimental physical effects may arise in conjunction with ICRF heating of tokamak plasmas. Large wall potential drops, associated with sheath formation near plasma-facing antenna hardware, give rise to high-Z impurity sputtering from plasma-facing components and subsequent radiative cooling. Linear and nonlinear wave excitations in the plasma edge/SOL also dissipate injected RF power and reduce overall antenna efficiency. Recent advances in finite-difference time-domain (FDTD) modeling techniques allow the physics of localized sheath potentials, and associated sputtering events, to be modeled concurrently with the physics of antenna near- and far-field behavior and RF power flow. The new methods enable time-domain modeling of plasma-surface interactions and ICRF physics in realistic experimental configurations at unprecedented spatial resolution. We present results/animations from high-performance (10k-100k core) FDTD/PIC simulations spanning half of Alcator C-Mod at mm-scale resolution, exploring impurity production due to localized sputtering (in response to self-consistent sheath potentials at antenna surfaces) and the physics of parasitic slow wave excitation near the antenna hardware and SOL. Supported by US DoE (Award DE-SC0009501) and the ALCC program.

  8. A computer model of solar panel-plasma interactions

    NASA Technical Reports Server (NTRS)

    Cooke, D. L.; Freeman, J. W.

    1980-01-01

    High power solar arrays for satellite power systems are presently being planned with dimensions of kilometers, and with tens of kilovolts distributed over their surface. Such systems face many plasma interaction problems, such as power leakage to the plasma, particle focusing, and anomalous arcing. These effects cannot be adequately modeled without detailed knowledge of the plasma sheath structure and space charge effects. Laboratory studies of 1 by 10 meter solar array in a simulated low Earth orbit plasma are discussed. The plasma screening process is discussed, program theory is outlined, and a series of calibration models is presented. These models are designed to demonstrate that PANEL is capable of accurate self consistant space charge calculations. Such models include PANEL predictions for the Child-Langmuir diode problem.

  9. Hydrogen isotope retention in beryllium for tokamak plasma-facing applications

    NASA Astrophysics Data System (ADS)

    Anderl, R. A.; Causey, R. A.; Davis, J. W.; Doerner, R. P.; Federici, G.; Haasz, A. A.; Longhurst, G. R.; Wampler, W. R.; Wilson, K. L.

    Beryllium has been used as a plasma-facing material to effect substantial improvements in plasma performance in the Joint European Torus (JET), and it is planned as a plasma-facing material for the first wall (FW) and other components of the International Thermonuclear Experimental Reactor (ITER). The interaction of hydrogenic ions, and charge-exchange neutral atoms from plasmas, with beryllium has been studied in recent years with widely varying interpretations of results. In this paper we review experimental data regarding hydrogenic atom inventories in experiments pertinent to tokamak applications and show that with some very plausible assumptions, the experimental data appear to exhibit rather predictable trends. A phenomenon observed in high ion-flux experiments is the saturation of the beryllium surface such that inventories of implanted particles become insensitive to increased flux and to continued implantation fluence. Methods for modeling retention and release of implanted hydrogen in beryllium are reviewed and an adaptation is suggested for modeling the saturation effects. The TMAP4 code used with these modifications has succeeded in simulating experimental data taken under saturation conditions where codes without this feature have not. That implementation also works well under more routine conditions where the conventional recombination-limited release model is applicable. Calculations of tritium inventory and permeation in the ITER FW during the basic performance phase (BPP) using both the conventional recombination model and the saturation effects assumptions show a difference of several orders of magnitude in both inventory and permeation rate to the coolant.

  10. Spacecraft Charging Modeling -- Nascap-2k 2014 Annual Report

    DTIC Science & Technology

    2014-09-19

    i ) ’ "’"’ 2rrm" T (2) For a surface directly facing the .ram at a typical low- Earth - orbit speed of 7.500 m/ s in a 0.1 eV plasma . the surface is...of modeling the charging of spacecraft with a low- Earth -orbit plasma within Nascap-2k. This work resulted in a paper presented at the Spacecraft...approaches used to model spacecraft charging in cold. dense plasma . such as found in low- Earth -orbit The range of plasma properties under

  11. Experiment attributes to establish tube with twisted tape insert performance cooling plasma facing components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, Emily; Ramirez, Emilio; Ruggles, Art E.

    The modeling capability for tubes with twisted tape inserts is reviewed with reference to the application of cooling plasma facing components in magnetic confinement fusion devices. The history of experiments examining the cooling performance of tubes with twisted tape inserts is reviewed with emphasis on the manner of heating, flow stability limits and the details of the test section and fluid delivery system. Models for heat transfer, burnout, and onset of net vapor generation in straight tube flows and tube with twisted tape are compared. As a result, the gaps in knowledge required to establish performance limits of the plasmamore » facing components are identified and attributes of an experiment to close those gaps are presented.« less

  12. Experiment attributes to establish tube with twisted tape insert performance cooling plasma facing components

    DOE PAGES

    Clark, Emily; Ramirez, Emilio; Ruggles, Art E.; ...

    2015-08-18

    The modeling capability for tubes with twisted tape inserts is reviewed with reference to the application of cooling plasma facing components in magnetic confinement fusion devices. The history of experiments examining the cooling performance of tubes with twisted tape inserts is reviewed with emphasis on the manner of heating, flow stability limits and the details of the test section and fluid delivery system. Models for heat transfer, burnout, and onset of net vapor generation in straight tube flows and tube with twisted tape are compared. As a result, the gaps in knowledge required to establish performance limits of the plasmamore » facing components are identified and attributes of an experiment to close those gaps are presented.« less

  13. Modelling deuterium release from tungsten after high flux high temperature deuterium plasma exposure

    NASA Astrophysics Data System (ADS)

    Grigorev, Petr; Matveev, Dmitry; Bakaeva, Anastasiia; Terentyev, Dmitry; Zhurkin, Evgeny E.; Van Oost, Guido; Noterdaeme, Jean-Marie

    2016-12-01

    Tungsten is a primary candidate for plasma facing materials for future fusion devices. An important safety concern in the design of plasma facing components is the retention of hydrogen isotopes. Available experimental data is vast and scattered, and a consistent physical model of retention of hydrogen isotopes in tungsten is still missing. In this work we propose a model of non-equilibrium hydrogen isotopes trapping under fusion relevant plasma exposure conditions. The model is coupled to a diffusion-trapping simulation tool and is used to interpret recent experiments involving high plasma flux exposures. From the computational analysis performed, it is concluded that high flux high temperature exposures (T = 1000 K, flux = 1024 D/m2/s and fluence of 1026 D/m2) result in generation of sub-surface damage and bulk diffusion, so that the retention is driven by both sub-surface plasma-induced defects (bubbles) and trapping at natural defects. On the basis of the non-equilibrium trapping model we have estimated the amount of H stored in the sub-surface region to be ∼10-5 at-1, while the bulk retention is about 4 × 10-7 at-1, calculated by assuming the sub-surface layer thickness of about 10 μm and adjusting the trap concentration to comply with the experimental results for the integral retention.

  14. RF models for plasma-surface interactions

    NASA Astrophysics Data System (ADS)

    Jenkins, Thomas; Smithe, David; Lin, Ming-Chieh; Kruger, Scott; Stoltz, Peter

    2013-09-01

    Computational models for DC and oscillatory (RF-driven) sheath potentials, arising at metal or dielectric-coated surfaces in contact with plasma, are developed within the VSim code and applied in parameter regimes characteristic of fusion plasma experiments and plasma processing scenarios. Results from initial studies quantifying the effects of various dielectric wall coating materials and thicknesses on these sheath potentials, as well as on the ensuing flux of plasma particles to the wall, are presented. As well, the developed models are used to model plasma-facing ICRF antenna structures in the ITER device; we present initial assessments of the efficacy of dielectric-coated antenna surfaces in reducing sputtering-induced high-Z impurity contamination of the fusion reaction. Funded by U.S. DoE via a Phase I SBIR grant, award DE-SC0009501.

  15. Synergistic effects of surface erosion on tritium inventory and permeation in metallic plasma facing armours

    NASA Astrophysics Data System (ADS)

    Federici, G.; Holland, D. F.; Matera, R.

    1996-10-01

    In the next generation of DT fuelled tokamaks, i.e., the International Thermonuclear Experimental Reactor (ITER) implantation of energetic DT particles on some portions of the plasma facing components (PFCs) will take place along with significant erosion of the armour surfaces. As a result of the simultaneous removal of material from the front surface, the build-up of tritium inventory and the start of permeation originating in the presence of large densities of neutron-induced traps is expected to be influenced considerably and special provisions could be required to minimise the consequences on the design. This paper reports on the results of a tritium transport modelling study based on a new model which describes the migration of implanted tritium across the bulk of metallic plasma facing materials containing neutron-induced traps which can capture it and includes the synergistic effects of surface erosion. The physical basis of the model is summarised, but emphasis is on the discussion of the results of a comparative study performed for beryllium and tungsten armours for ranges of design and operation conditions similar to those anticipated in the divertor of ITER.

  16. RACLETTE: a model for evaluating the thermal response of plasma facing components to slow high power plasma transients. Part II: Analysis of ITER plasma facing components

    NASA Astrophysics Data System (ADS)

    Federici, Gianfranco; Raffray, A. René

    1997-04-01

    The transient thermal model RACLETTE (acronym of Rate Analysis Code for pLasma Energy Transfer Transient Evaluation) described in part I of this paper is applied here to analyse the heat transfer and erosion effects of various slow (100 ms-10 s) high power energy transients on the actively cooled plasma facing components (PFCs) of the International Thermonuclear Experimental Reactor (ITER). These have a strong bearing on the PFC design and need careful analysis. The relevant parameters affecting the heat transfer during the plasma excursions are established. The temperature variation with time and space is evaluated together with the extent of vaporisation and melting (the latter only for metals) for the different candidate armour materials considered for the design (i.e., Be for the primary first wall, Be and CFCs for the limiter, Be, W, and CFCs for the divertor plates) and including for certain cases low-density vapour shielding effects. The critical heat flux, the change of the coolant parameters and the possible severe degradation of the coolant heat removal capability that could result under certain conditions during these transients, for example for the limiter, are also evaluated. Based on the results, the design implications on the heat removal performance and erosion damage of the variuos ITER PFCs are critically discussed and some recommendations are made for the selection of the most adequate protection materials and optimum armour thickness.

  17. US-Japan workshop Q-181 on high heat flux components and plasma-surface interactions for next devices: Proceedings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGrath, R.T.; Yamashina, T.

    This report contain viewgraphs of papers from the following sessions: plasma facing components issues for future machines; recent PMI results from several tokamaks; high heat flux technology; plasma facing components design and applications; plasma facing component materials and irradiation damage; boundary layer plasma; plasma disruptions; conditioning and tritium; and erosion/redeposition.

  18. Experimental Validation Plan for the Xolotl Plasma-Facing Component Simulator Using Tokamak Sample Exposures

    NASA Astrophysics Data System (ADS)

    Chan, V. S.; Wong, C. P. C.; McLean, A. G.; Luo, G. N.; Wirth, B. D.

    2013-10-01

    The Xolotl code under development by PSI-SciDAC will enhance predictive modeling capability of plasma-facing materials under burning plasma conditions. The availability and application of experimental data to compare to code-calculated observables are key requirements to validate the breadth and content of physics included in the model and ultimately gain confidence in its results. A dedicated effort has been in progress to collect and organize a) a database of relevant experiments and their publications as previously carried out at sample exposure facilities in US and Asian tokamaks (e.g., DIII-D DiMES, and EAST MAPES), b) diagnostic and surface analysis capabilities available at each device, and c) requirements for future experiments with code validation in mind. The content of this evolving database will serve as a significant resource for the plasma-material interaction (PMI) community. Work supported in part by the US Department of Energy under GA-DE-SC0008698, DE-AC52-07NA27344 and DE-AC05-00OR22725.

  19. Design of a Microwave Assisted Discharge Inductive Plasma Accelerator

    NASA Technical Reports Server (NTRS)

    Hallock, Ashley K.; Polzin, Kurt A.

    2010-01-01

    The design and construction of a thruster that employs electrodeless plasma preionization and pulsed inductive acceleration is described. Preionization is achieved through an electron cyclotron resonance discharge that produces a weakly-ionized plasma at the face of a conical theta pinch-shaped inductive coil. The presence of the preionized plasma allows for current sheet formation at lower discharge voltages than those employed in other pulsed inductive accelerators that do not employ preionization. The location of the electron cyclotron resonance discharge is controlled through the design of the applied magnetic field in the thruster. Finite element analysis shows that there is an arrangement of permanent magnets that yields a small volume of resonant magnetic field at the coil face. Preionization in the resonant zone leads to current sheet formation at the coil face, which minimizes the initial inductance of the pulse circuit and maximizes the potential electrical efficiency of the accelerator. A magnet assembly was constructed around an inductive coil to provide structural support to the selected arrangement of neodymium magnets. Measured values of the resulting magnetic field compare favorably with the finite element model.

  20. Modeling Electrothermal Plasma with Boundary Layer Effects

    NASA Astrophysics Data System (ADS)

    AlMousa, Nouf Mousa A.

    Electrothermal plasma sources produce high-density (1023-10 28 /m3) and high temperature (1-5 eV) plasmas that are of interest for a variety of applications such as hypervelocity launch devices, fusion reactor pellet injectors, and pulsed thrusters for small satellites. Also, the high heat flux (up to 100 GW/m2) and high pressure (100s MPa) of electrothermal (ET) plasmas allow for the use of such facilities as a source of high heat flux to simulate off-normal events in Tokamak fusion reactors. Off-normal events like disruptions, thermal and current quenches, are the perfect recipes for damage of plasma facing components (PFC). Successful operation of a fusion reactor requires comprehensive understanding of material erosion behavior. The extremely high heat fluxes deposited in PFCs melt and evaporate or directly sublime the exposed surfaces, which results in a thick vapor/melt boundary layer adjacent to the solid wall structure. The accumulating boundary layers provide a self-protecting nature by attenuating the radiant energy transport to the PFCs. The ultimate goal of this study is to develop a reliable tool to adequately simulate the effect of the boundary layers on the formation and flow of the energetic ET plasma and its impact on exposed surfaces erosion under disruption like conditions. This dissertation is a series of published journals/conferences papers. The first paper verified the existence of the vapor shield that evolved at the boundary layer under the typical operational conditions of the NC State University ET plasma facilities PIPE and SIRENS. Upon the verification of the vapor shield, the second paper proposed novel model to simulate the evolution of the boundary layer and its effectiveness in providing a self-protecting nature for the exposed plasma facing surfaces. The developed models simulate the radiant heat flux attenuation through an optically thick boundary layer. The models were validated by comparing the simulation results to experimental data taken from the ET plasma facilities. Upon validation of the boundary layer models, computational experiments were conducted with the purpose of evaluation the PFCs' erosion during plasma disruption in Tokamak fusion reactors. Erosion of a set of selected low-Z and high-Z materials were analyzed and discussed. For metallic plasma facing materials under the impact of hard and long time-scale disruption events, melting and melt-layer splashing become dominate erosion mechanisms during plasma-material interaction. In order to realistically assess the erosion of the metallic fusion reactor components, the fourth paper accounts for the various mechanisms by which material evolved from PFCs due to melting and vaporization, with a developed melting and splattering/splashing model incorporated in the ET plasma code. Also, the shielding effect associated with melt-layer and vapor-layer is investigated. The quantitative results of material erosion with the boundary layer effects including a vapor layer, melt layer and splashing effects is a new model and an important step towards achieving a better understanding of plasma-material interactions under exposure to such high heat flux conditions.

  1. Addressing the challenges of plasma-surface interactions in NSTX-U*

    DOE PAGES

    Kaita, Robert; Abrams, Tyler; Jaworski, Michael; ...

    2015-04-01

    The importance of conditioning plasma-facing components (PFCs) has long been recognized as a critical element in obtaining high-performance plasmas in magnetic confinement devices. Lithium coatings, for example, have been used for decades for conditioning PFCs. Since the initial studies on the Tokamak Fusion Test Reactor, experiments on devices with different aspect ratios and magnetic geometries like the National Spherical Torus Experiment (NSTX) continue to show the relationship between lithium PFCs and good confinement and stability. While such results are promising, their empirical nature do not reflect the detailed relationship between PFCs and the dynamic conditions that occur in the tokamakmore » environment. A first step developing an understanding such complexity will be taken in the upgrade to NSTX (NSTX-U) that is nearing completion. New measurement capabilities include the Materials Analysis and Particle Probe (MAPP) for in situ surface analysis of samples exposed to tokamak plasmas. The OEDGE suite of codes, for example, will provide a new way to model the underlying mechanisms for such material migration in NSTX-U. This will lead to a better understanding of how plasma-facing surfaces evolve during a shot, and how the composition of the plasma facing surface influences the discharge performance we observe. This paper will provide an overview of these capabilities, and highlight their importance for NSTX-U plans to transition from carbon to high-Z PFCs.« less

  2. The Challenges of Plasma Material Interactions in Nuclear Fusion Devices and Potential Solutions

    DOE PAGES

    Rapp, J.

    2017-07-12

    Plasma Material Interactions in future fusion reactors have been identified as a knowledge gap to be dealt with before any next step device past ITER can be built. The challenges are manifold. They are related to power dissipation so that the heat fluxes to the plasma facing components can be kept at technologically feasible levels; maximization of the lifetime of divertor plasma facing components that allow for steady-state operation in a reactor to reach the neutron fluences required; the tritium inventory (storage) in the plasma facing components, which can lead to potential safety concerns and reduction in the fuel efficiency;more » and it is related to the technology of the plasma facing components itself, which should demonstrate structural integrity under the high temperatures and neutron fluence. This contribution will give an overview and summary of those challenges together with some discussion of potential solutions. New linear plasma devices are needed to investigate the PMI under fusion reactor conditions and test novel plasma facing components. The Material Plasma Exposure eXperiment MPEX will be introduced and a status of the current R&D towards MPEX will be summarized.« less

  3. The Challenges of Plasma Material Interactions in Nuclear Fusion Devices and Potential Solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rapp, J.

    Plasma Material Interactions in future fusion reactors have been identified as a knowledge gap to be dealt with before any next step device past ITER can be built. The challenges are manifold. They are related to power dissipation so that the heat fluxes to the plasma facing components can be kept at technologically feasible levels; maximization of the lifetime of divertor plasma facing components that allow for steady-state operation in a reactor to reach the neutron fluences required; the tritium inventory (storage) in the plasma facing components, which can lead to potential safety concerns and reduction in the fuel efficiency;more » and it is related to the technology of the plasma facing components itself, which should demonstrate structural integrity under the high temperatures and neutron fluence. This contribution will give an overview and summary of those challenges together with some discussion of potential solutions. New linear plasma devices are needed to investigate the PMI under fusion reactor conditions and test novel plasma facing components. The Material Plasma Exposure eXperiment MPEX will be introduced and a status of the current R&D towards MPEX will be summarized.« less

  4. Dust-wall and dust-plasma interaction in the MIGRAINe code

    NASA Astrophysics Data System (ADS)

    Vignitchouk, L.; Tolias, P.; Ratynskaia, S.

    2014-09-01

    The physical models implemented in the recently developed dust dynamics code MIGRAINe are described. A major update of the treatment of secondary electron emission, stemming from models adapted to typical scrape-off layer temperatures, is reported. Sputtering and plasma species backscattering are introduced from fits of available experimental data and their relative importance to dust charging and heating is assessed in fusion-relevant scenarios. Moreover, the description of collisions between dust particles and plasma-facing components, based on the approximation of elastic-perfectly plastic adhesive spheres, has been upgraded to take into account the effects of particle size and temperature.

  5. Counter-facing plasma guns for efficient extreme ultra-violet plasma light source

    NASA Astrophysics Data System (ADS)

    Kuroda, Yusuke; Yamamoto, Akiko; Kuwabara, Hajime; Nakajima, Mitsuo; Kawamura, Tohru; Horioka, Kazuhiko

    2013-11-01

    A plasma focus system composed of a pair of counter-facing coaxial guns was proposed as a long-pulse and/or repetitive high energy density plasma source. We applied Li as the source of plasma for improvement of the conversion efficiency, the spectral purity, and the repetition capability. For operation of the system with ideal counter-facing plasma focus mode, we changed the system from simple coaxial geometry to a multi-channel configuration. We applied a laser trigger to make synchronous multi-channel discharges with low jitter. The results indicated that the configuration is promising to make a high energy density plasma with high spectral efficiency.

  6. OEDGE Modeling of Collector Probe measurements in L-mode from the DIII-D tungsten ring campaign

    NASA Astrophysics Data System (ADS)

    Elder, J. D.; Stangeby, P. C.; Unterberg, Z.; Donovan, D.; Wampler, W. R.; Watkins, J.; Abrams, T.; McLean, A. G.

    2017-10-01

    During the tungsten ring campaign on DIII-D, a collector probe system with multiple diameter, dual-facing collector rods was inserted into the far scrape off layer (SOL) near the outer midplane to measure the plasma tungsten content. For most probes more tungsten was observed on the side connected along field lines to the inner divertor, with the larger probes showing largest divertor-facing asymmetries The OEDGE code is used to model the tungsten erosion, transport and deposition. It has been enhanced with (i) a peripheral particle transport and deposition model to record the impurity content in the peripheral region outside the regular mesh, and (ii) a collector probe model. The OEDGE results approximately reproduce both the divertor-facing asymmetries and the radial decay of each collector probe profile. The effect of changing impurity transport assumptions and wall location are examined. The measured divertor-facing asymmetries imply a higher tungsten density in the plasma upstream of the probe; this was expected theoretically from the effect of the parallel ion temperature gradient force driving upstream transport of tungsten from the outer divertor and was also found in the code analysis. Work supported by the US Department of Energy under DE-FC02-04ER54698, DE-NA0003525, DE-AC05-00OR22725, and DE-AC52-07NA27344.

  7. Measurement of erosion in helicon plasma thrusters using the VASIMR® VX-CR device

    NASA Astrophysics Data System (ADS)

    Del Valle Gamboa, Juan Ignacio; Castro-Nieto, Jose; Squire, Jared; Carter, Mark; Chang-Diaz, Franklin

    2015-09-01

    The helicon plasma source is one of the principal stages of the high-power VASIMR® electric propulsion system. The VASIMR® VX-CR experiment focuses solely on this stage, exploring the erosion and long-term operation effects of the VASIMR helicon source. We report on the design and operational parameters of the VX-CR experiment, and the development of modeling tools and characterization techniques allowing the study of erosion phenomena in helicon plasma sources in general, and stand-alone helicon plasma thrusters (HPTs) in particular. A thorough understanding of the erosion phenomena within HPTs will enable better predictions of their behavior as well as more accurate estimations of their expected lifetime. We present a simplified model of the plasma-wall interactions within HPTs based on current models of the plasma density distributions in helicon discharges. Results from this modeling tool are used to predict the erosion within the plasma-facing components of the VX-CR device. Experimental techniques to measure actual erosion, including the use of coordinate-measuring machines and microscopy, will be discussed.

  8. Sensitivity of WallDYN material migration modeling to uncertainties in mixed-material surface binding energies

    DOE PAGES

    Nichols, J. H.; Jaworski, M. A.; Schmid, K.

    2017-03-09

    The WallDYN package has recently been applied to a number of tokamaks to self-consistently model the evolution of mixed-material plasma facing surfaces. A key component of the WallDYN model is the concentration-dependent surface sputtering rate, calculated using SDTRIM.SP. This modeled sputtering rate is strongly influenced by the surface binding energies (SBEs) of the constituent materials, which are well known for pure elements but often are poorly constrained for mixed-materials. This work examines the sensitivity of WallDYN surface evolution calculations to different models for mixed-material SBEs, focusing on the carbon/lithium/oxygen/deuterium system present in NSTX. A realistic plasma background is reconstructed frommore » a high density, H-mode NSTX discharge, featuring an attached outer strike point with local density and temperature of 4 × 10 20 m -3 and 4 eV, respectively. It is found that various mixed-material SBE models lead to significant qualitative and quantitative changes in the surface evolution profile at the outer divertor, with the highest leverage parameter being the C-Li binding model. Uncertainties of order 50%, appearing on time scales relevant to tokamak experiments, highlight the importance of choosing an appropriate mixed-material sputtering representation when modeling the surface evolution of plasma facing components. Lastly, these results are generalized to other fusion-relevant materials with different ranges of SBEs.« less

  9. Sensitivity of WallDYN material migration modeling to uncertainties in mixed-material surface binding energies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nichols, J. H.; Jaworski, M. A.; Schmid, K.

    The WallDYN package has recently been applied to a number of tokamaks to self-consistently model the evolution of mixed-material plasma facing surfaces. A key component of the WallDYN model is the concentration-dependent surface sputtering rate, calculated using SDTRIM.SP. This modeled sputtering rate is strongly influenced by the surface binding energies (SBEs) of the constituent materials, which are well known for pure elements but often are poorly constrained for mixed-materials. This work examines the sensitivity of WallDYN surface evolution calculations to different models for mixed-material SBEs, focusing on the carbon/lithium/oxygen/deuterium system present in NSTX. A realistic plasma background is reconstructed frommore » a high density, H-mode NSTX discharge, featuring an attached outer strike point with local density and temperature of 4 × 10 20 m -3 and 4 eV, respectively. It is found that various mixed-material SBE models lead to significant qualitative and quantitative changes in the surface evolution profile at the outer divertor, with the highest leverage parameter being the C-Li binding model. Uncertainties of order 50%, appearing on time scales relevant to tokamak experiments, highlight the importance of choosing an appropriate mixed-material sputtering representation when modeling the surface evolution of plasma facing components. Lastly, these results are generalized to other fusion-relevant materials with different ranges of SBEs.« less

  10. Estimates of RF-induced erosion at antenna-connected beryllium plasma-facing components in JET

    DOE PAGES

    Klepper, C. C.; Borodin, D.; Groth, M.; ...

    2016-01-18

    Radio-frequency (RF)-enhanced surface erosion of beryllium (Be) plasma-facing components is explored, for the first time, using the ERO code. We applied the code in order to measure the RF-enhanced edge Be line emission at JET Be outboard limiters, in the presence of high-power, ion cyclotronresonance heating (ICRH) in L-mode discharges. In this first modelling study, the RF sheath effect from an ICRH antenna on a magnetically connected, limiter region is simulated by adding a constant potential to the local sheath, in an attempt to match measured increases in local Be I and Be II emission of factors of 2 3.more » It was found that such increases are readily simulated with added potentials in the range of 100 200 V, which is compatible with expected values for potentials arising from rectification of sheath voltage oscillations from ICRH antennas in the scrape-off layer plasma. We also estimated absolute erosion values within the uncertainties in local plasma conditions.« less

  11. Addressing Research and Development Gaps for Plasma-Material Interactions with Linear Plasma Devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rapp, Juergen

    Plasma-material interactions in future fusion reactors have been identified as a knowledge gap to be dealt with before any next step device past ITER can be built. The challenges are manifold. They are related to power dissipation so that the heat fluxes to the plasma-facing components can be kept at technologically feasible levels; maximization of the lifetime of divertor plasma-facing components that allow for steadystate operation in a reactor to reach the neutron fluence required; the tritium inventory (storage) in the plasma-facing components, which can lead to potential safety concerns and reduction in the fuel efficiency; and it is relatedmore » to the technology of the plasma-facing components itself, which should demonstrate structural integrity under the high temperatures and high neutron fluence. While the dissipation of power exhaust can and should be addressed in high power toroidal devices, the interaction of the plasma with the materials can be best addressed in dedicated linear devices due to their cost effectiveness and ability to address urgent research and development gaps more timely. However, new linear plasma devices are needed to investigate the PMI under fusion reactor conditions and test novel plasma-facing components. Existing linear devices are limited either in their flux, their reactor-relevant plasma transport regimes in front of the target, their fluence, or their ability to test material samples a priori exposed to high neutron fluence. The proposed Material Plasma Exposure eXperiment (MPEX) is meant to address those deficiencies and will be designed to fulfill the fusion reactor-relevant plasma parameters as well as the ability to expose a priori neutron activated materials to plasmas.« less

  12. Mechanism for Plasma Etching of Shallow Trench Isolation Features in an Inductively Coupled Plasma

    NASA Astrophysics Data System (ADS)

    Agarwal, Ankur; Rauf, Shahid; He, Jim; Choi, Jinhan; Collins, Ken

    2011-10-01

    Plasma etching for microelectronics fabrication is facing extreme challenges as processes are developed for advanced technological nodes. As device sizes shrink, control of shallow trench isolation (STI) features become more important in both logic and memory devices. Halogen-based inductively coupled plasmas in a pressure range of 20-60 mTorr are typically used to etch STI features. The need for improved performance and shorter development cycles are placing greater emphasis on understanding the underlying mechanisms to meet process specifications. In this work, a surface mechanism for STI etch process will be discussed that couples a fundamental plasma model to experimental etch process measurements. This model utilizes ion/neutral fluxes and energy distributions calculated using the Hybrid Plasma Equipment Model. Experiments are for blanket Si wafers in a Cl2/HBr/O2/N2 plasma over a range of pressures, bias powers, and flow rates of feedstock gases. We found that kinetic treatment of electron transport was critical to achieve good agreement with experiments. The calibrated plasma model is then coupled to a string-based feature scale model to quantify the effect of varying process parameters on the etch profile. We found that the operating parameters strongly influence critical dimensions but have only a subtle impact on the etch depths.

  13. Elastic-plastic adhesive impacts of tungsten dust with metal surfaces in plasma environments

    NASA Astrophysics Data System (ADS)

    Ratynskaia, S.; Tolias, P.; Shalpegin, A.; Vignitchouk, L.; De Angeli, M.; Bykov, I.; Bystrov, K.; Bardin, S.; Brochard, F.; Ripamonti, D.; den Harder, N.; De Temmerman, G.

    2015-08-01

    Dust-surface collisions impose size selectivity on the ability of dust grains to migrate in scrape-off layer and divertor plasmas and to adhere to plasma-facing components. Here, we report first experimental evidence of dust impact phenomena in plasma environments concerning low-speed collisions of tungsten dust with tungsten surfaces: re-bouncing, adhesion, sliding and rolling. The results comply with the predictions of the model of elastic-perfectly plastic adhesive spheres employed in the dust dynamics code MIGRAINe for sub- to several meters per second impacts of micrometer-range metal dust.

  14. Helium segregation on surfaces of plasma-exposed tungsten

    DOE PAGES

    Maroudas, Dimitrios; Blondel, Sophie; Hu, Lin; ...

    2016-01-21

    Here we report a hierarchical multi-scale modeling study of implanted helium segregation on surfaces of tungsten, considered as a plasma facing component in nuclear fusion reactors. We employ a hierarchy of atomic-scale simulations based on a reliable interatomic interaction potential, including molecular-statics simulations to understand the origin of helium surface segregation, targeted molecular-dynamics (MD) simulations of near-surface cluster reactions, and large-scale MD simulations of implanted helium evolution in plasma-exposed tungsten. We find that small, mobile He-n (1 <= n <= 7) clusters in the near-surface region are attracted to the surface due to an elastic interaction force that provides themore » thermodynamic driving force for surface segregation. Elastic interaction force induces drift fluxes of these mobile Hen clusters, which increase substantially as the migrating clusters approach the surface, facilitating helium segregation on the surface. Moreover, the clusters' drift toward the surface enables cluster reactions, most importantly trap mutation, in the near-surface region at rates much higher than in the bulk material. Moreover, these near-surface cluster dynamics have significant effects on the surface morphology, near-surface defect structures, and the amount of helium retained in the material upon plasma exposure. We integrate the findings of such atomic-scale simulations into a properly parameterized and validated spatially dependent, continuum-scale reaction-diffusion cluster dynamics model, capable of predicting implanted helium evolution, surface segregation, and its near-surface effects in tungsten. This cluster-dynamics model sets the stage for development of fully atomistically informed coarse-grained models for computationally efficient simulation predictions of helium surface segregation, as well as helium retention and surface morphological evolution, toward optimal design of plasma facing components.« less

  15. Helium segregation on surfaces of plasma-exposed tungsten

    NASA Astrophysics Data System (ADS)

    Maroudas, Dimitrios; Blondel, Sophie; Hu, Lin; Hammond, Karl D.; Wirth, Brian D.

    2016-02-01

    We report a hierarchical multi-scale modeling study of implanted helium segregation on surfaces of tungsten, considered as a plasma facing component in nuclear fusion reactors. We employ a hierarchy of atomic-scale simulations based on a reliable interatomic interaction potential, including molecular-statics simulations to understand the origin of helium surface segregation, targeted molecular-dynamics (MD) simulations of near-surface cluster reactions, and large-scale MD simulations of implanted helium evolution in plasma-exposed tungsten. We find that small, mobile He n (1  ⩽  n  ⩽  7) clusters in the near-surface region are attracted to the surface due to an elastic interaction force that provides the thermodynamic driving force for surface segregation. This elastic interaction force induces drift fluxes of these mobile He n clusters, which increase substantially as the migrating clusters approach the surface, facilitating helium segregation on the surface. Moreover, the clusters’ drift toward the surface enables cluster reactions, most importantly trap mutation, in the near-surface region at rates much higher than in the bulk material. These near-surface cluster dynamics have significant effects on the surface morphology, near-surface defect structures, and the amount of helium retained in the material upon plasma exposure. We integrate the findings of such atomic-scale simulations into a properly parameterized and validated spatially dependent, continuum-scale reaction-diffusion cluster dynamics model, capable of predicting implanted helium evolution, surface segregation, and its near-surface effects in tungsten. This cluster-dynamics model sets the stage for development of fully atomistically informed coarse-grained models for computationally efficient simulation predictions of helium surface segregation, as well as helium retention and surface morphological evolution, toward optimal design of plasma facing components.

  16. Theoretical investigation of crack formation in tungsten after heat loads

    NASA Astrophysics Data System (ADS)

    Arakcheev, A. S.; Huber, A.; Wirtz, M.; Sergienko, G.; Steudel, I.; Burdakov, A. V.; Coenen, J. W.; Kreter, A.; Linke, J.; Mertens, Ph.; Shoshin, A. A.; Unterberg, B.; Vasilyev, A. A.

    2015-08-01

    Transient events such as ELMs in large plasma devices lead to significant heat load on plasma-facing components (PFCs). ELMs cause mechanical damage of PFCs (e.g. cracks). The cracks appear due to stresses caused by thermal extension. Analytical calculations of the stresses are carried out for tungsten. The model only takes into account the basic features of solid body mechanics without material modifications (e.g. fatigue or recrystallization). The numerical results of the model demonstrate good agreement with experimental data obtained at the JUDITH-1, PSI-2 and GOL-3 facilities.

  17. Integrated Prediction and Mitigation Methods of Materials Damage and Lifetime Assessment during Plasma Operation and Various Instabilities in Fusion Devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hassanein, Ahmed

    2015-03-31

    This report describes implementation of comprehensive and integrated models to evaluate plasma material interactions during normal and abnormal plasma operations. The models in full3D simulations represent state-of-the art worldwide development with numerous benchmarking of various tokamak devices and plasma simulators. In addition, significant number of experimental work has been performed in our center for materials under extreme environment (CMUXE) at Purdue to benchmark the effect of intense particle and heat fluxes on plasma-facing components. This represents one-year worth of work and resulted in more than 23 Journal Publications and numerous conferences presentations. The funding has helped several students to obtainmore » their M.Sc. and Ph.D. degrees and many of them are now faculty members in US and around the world teaching and conducting fusion research. Our work has also been recognized through many awards.« less

  18. Entire plasmas can be restructured when electrons are emitted from the boundaries

    DOE PAGES

    Campanell, M. D.

    2015-04-14

    It is well known that electron emission can restructure the thin sheaths at plasma-facing surfaces. But conventional models assume that the plasma's structure negligibly changes (the “presheath” is still thought to be governed by ion acceleration to the Bohm speed). Here, it is shown by theory and simulation that the presheath can take a fundamentally different structure where the emitted electrons entering the quasineutral region cause numerous changes. As a result, gradients of total plasma density, ion and electron pressures, and electric potential throughout the “inverted” presheath can carry different magnitudes, and opposite signs, from Bohm presheaths.

  19. Global modeling of wall material migration following boronization in NSTX-U

    NASA Astrophysics Data System (ADS)

    Nichols, J. H.; Jaworski, M. A.; Skinner, C. H.; Bedoya, F.; Scotti, F.; Soukhanovskii, V. A.; Schmid, K.

    2017-10-01

    NSTX-U operated in 2016 with graphite plasma facing components, periodically conditioned with boron to improve plasma performance. Following each boronization, spectroscopic diagnostics generally observed a decrease in oxygen influx from the walls, and an in-vacuo material probe (MAPP) observed a corresponding decrease in surface oxygen concentration at the lower divertor. However, oxygen levels tended to return to a pre-boronization state following repeated plasma exposure. This behavior is interpretively modeled using the WallDYN mixed-material migration code, which couples local erosion and deposition processes with plasma impurity transport in a non-iterative, self-consistent manner that maintains overall material balance. A spatially inhomogenous model of the thin films produced by the boronization process is presented. Plasma backgrounds representative of NSTX-U conditions are reconstructed from a combination of NSTX-U and NSTX datasets. Low-power NSTX-U fiducial discharges, which led to less apparent surface degradation than normal operations, are also modeled with WallDYN. Likely mechanisms driving the observed evolution of surface oxygen are examined, as well as remaining discrepancies between model and experiment and potential improvements to the model. Work supported by US DOE contract DE-AC02-09CH11466.

  20. Sputtering, Plasma Chemistry, and RF Sheath Effects in Low-Temperature and Fusion Plasma Modeling

    NASA Astrophysics Data System (ADS)

    Jenkins, Thomas G.; Kruger, Scott E.; McGugan, James M.; Pankin, Alexei Y.; Roark, Christine M.; Smithe, David N.; Stoltz, Peter H.

    2016-09-01

    A new sheath boundary condition has been implemented in VSim, a plasma modeling code which makes use of both PIC/MCC and fluid FDTD representations. It enables physics effects associated with DC and RF sheath formation - local sheath potential evolution, heat/particle fluxes, and sputtering effects on complex plasma-facing components - to be included in macroscopic-scale plasma simulations that need not resolve sheath scale lengths. We model these effects in typical ICRF antenna operation scenarios on the Alcator C-Mod fusion device, and present comparisons of our simulation results with experimental data together with detailed 3D animations of antenna operation. Complex low-temperature plasma chemistry modeling in VSim is facilitated by MUNCHKIN, a standalone python/C++/SQL code that identifies possible reaction paths for a given set of input species, solves 1D rate equations for the ensuing system's chemical evolution, and generates VSim input blocks with appropriate cross-sections/reaction rates. These features, as well as principal path analysis (to reduce the number of simulated chemical reactions while retaining accuracy) and reaction rate calculations from user-specified distribution functions, will also be demonstrated. Supported by the U.S. Department of Energy's SBIR program, Award DE-SC0009501.

  1. Formation of He-Rich Layers Observed by Neutron Reflectometry in the He-Ion-Irradiated Cr/W Multilayers: Effects of Cr/W Interfaces on the He-Trapping Behavior.

    PubMed

    Chen, Feida; Tang, Xiaobin; Huang, Hai; Li, Xinxi; Wang, Yan; Huang, Chaoqiang; Liu, Jian; Li, Huan; Chen, Da

    2016-09-21

    Cr/W multilayer nanocomposites were presented in the paper as potential candidate materials for the plasma facing components in fusion reactors. We used neutron reflectometry to measure the depth profile of helium in the multienergy He ions irradiated [Cr/W (50 nm)]3 multilayers. Results showed that He-rich layers with low neutron scattering potential energy form at the Cr/W interfaces, which is in great agreement with previous modeling results of other multilayers. This phenomenon provided a strong evidence for the He trapping effects of Cr/W interfaces and implied the possibility of using the Cr/W multilayer nanocomposites as great He-tolerant plasma facing materials.

  2. Measurement of the surface morphology of plasma facing components on the EAST tokamak by a laser speckle interferometry approach

    NASA Astrophysics Data System (ADS)

    Hongbei, WANG; Xiaoqian, CUI; Yuanbo, LI; Mengge, ZHAO; Shuhua, LI; Guangnan, LUO; Hongbin, DING

    2018-03-01

    The laser speckle interferometry approach provides the possibility of an in situ optical non-contacted measurement for the surface morphology of plasma facing components (PFCs), and the reconstruction image of the PFC surface morphology is computed by a numerical model based on a phase unwrapping algorithm. A remote speckle interferometry measurement at a distance of three meters for real divertor tiles retired from EAST was carried out in the laboratory to simulate a real detection condition on EAST. The preliminary surface morphology of the divertor tiles was well reproduced by the reconstructed geometric image. The feasibility and reliability of this approach for the real-time measurement of PFCs have been demonstrated.

  3. DUCTILE-PHASE TOUGHENED TUNGSTEN FOR PLASMA-FACING MATERIALS IN FUSION REACTORS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henager, Charles H.; Setyawan, Wahyu; Roosendaal, Timothy J.

    2017-05-01

    Tungsten (W) and W-alloys are the leading candidates for plasma-facing components in nuclear fusion reactor designs because of their high melting point, strength retention at high temperatures, high thermal conductivity, and low sputtering yield. However, tungsten is brittle and does not exhibit the required fracture toughness for licensing in nuclear applications. A promising approach to increasing fracture toughness of W-alloys is by ductile-phase toughening (DPT). In this method, a ductile phase is included in a brittle matrix to prevent on inhibit crack propagation by crack blunting, crack bridging, crack deflection, and crack branching. Model examples of DPT tungsten are exploredmore » in this study, including W-Cu and W-Ni-Fe powder product composites. Three-point and four-point notched and/or pre-cracked bend samples were tested at several strain rates and temperatures to help understand deformation, cracking, and toughening in these materials. Data from these tests are used for developing and calibrating crack-bridging models. Finite element damage mechanics models are introduced as a modeling method that appears to capture the complexity of crack growth in these materials.« less

  4. Developing and validating advanced divertor solutions on DIII-D for next-step fusion devices

    NASA Astrophysics Data System (ADS)

    Guo, H. Y.; Hill, D. N.; Leonard, A. W.; Allen, S. L.; Stangeby, P. C.; Thomas, D.; Unterberg, E. A.; Abrams, T.; Boedo, J.; Briesemeister, A. R.; Buchenauer, D.; Bykov, I.; Canik, J. M.; Chrobak, C.; Covele, B.; Ding, R.; Doerner, R.; Donovan, D.; Du, H.; Elder, D.; Eldon, D.; Lasa, A.; Groth, M.; Guterl, J.; Jarvinen, A.; Hinson, E.; Kolemen, E.; Lasnier, C. J.; Lore, J.; Makowski, M. A.; McLean, A.; Meyer, B.; Moser, A. L.; Nygren, R.; Owen, L.; Petrie, T. W.; Porter, G. D.; Rognlien, T. D.; Rudakov, D.; Sang, C. F.; Samuell, C.; Si, H.; Schmitz, O.; Sontag, A.; Soukhanovskii, V.; Wampler, W.; Wang, H.; Watkins, J. G.

    2016-12-01

    A major challenge facing the design and operation of next-step high-power steady-state fusion devices is to develop a viable divertor solution with order-of-magnitude increases in power handling capability relative to present experience, while having acceptable divertor target plate erosion and being compatible with maintaining good core plasma confinement. A new initiative has been launched on DIII-D to develop the scientific basis for design, installation, and operation of an advanced divertor to evaluate boundary plasma solutions applicable to next step fusion experiments beyond ITER. Developing the scientific basis for fusion reactor divertor solutions must necessarily follow three lines of research, which we plan to pursue in DIII-D: (1) Advance scientific understanding and predictive capability through development and comparison between state-of-the art computational models and enhanced measurements using targeted parametric scans; (2) Develop and validate key divertor design concepts and codes through innovative variations in physical structure and magnetic geometry; (3) Assess candidate materials, determining the implications for core plasma operation and control, and develop mitigation techniques for any deleterious effects, incorporating development of plasma-material interaction models. These efforts will lead to design, installation, and evaluation of an advanced divertor for DIII-D to enable highly dissipative divertor operation at core density (n e/n GW), neutral fueling and impurity influx most compatible with high performance plasma scenarios and reactor relevant plasma facing components (PFCs). This paper highlights the current progress and near-term strategies of boundary/PMI research on DIII-D.

  5. Developing and validating advanced divertor solutions on DIII-D for next-step fusion devices

    DOE PAGES

    Guo, H. Y.; Hill, D. N.; Leonard, A. W.; ...

    2016-09-14

    A major challenge facing the design and operation of next-step high-power steady-state fusion devices is to develop a viable divertor solution with order-of-magnitude increases in power handling capability relative to present experience, while having acceptable divertor target plate erosion and being compatible with maintaining good core plasma confinement. A new initiative has been launched on DIII-D to develop the scientific basis for design, installation, and operation of an advanced divertor to evaluate boundary plasma solutions applicable to next step fusion experiments beyond ITER. Developing the scientific basis for fusion reactor divertor solutions must necessarily follow three lines of research, whichmore » we plan to pursue in DIII-D: (1) Advance scientific understanding and predictive capability through development and comparison between state-of-the art computational models and enhanced measurements using targeted parametric scans; (2) Develop and validate key divertor design concepts and codes through innovative variations in physical structure and magnetic geometry; (3) Assess candidate materials, determining the implications for core plasma operation and control, and develop mitigation techniques for any deleterious effects, incorporating development of plasma-material interaction models. These efforts will lead to design, installation, and evaluation of an advanced divertor for DIII-D to enable highly dissipative divertor operation at core density (n e/n GW), neutral fueling and impurity influx most compatible with high performance plasma scenarios and reactor relevant plasma facing components (PFCs). In conclusion, this paper highlights the current progress and near-term strategies of boundary/PMI research on DIII-D.« less

  6. Recent advances in modeling and simulation of the exposure and response of tungsten to fusion energy conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marian, Jaime; Becquart, Charlotte S.; Domain, Christophe

    2017-06-09

    Under the anticipated operating conditions for demonstration magnetic fusion reactors beyond ITER, structural materials will be exposed to unprecedented conditions of irradiation, heat flux, and temperature. While such extreme environments remain inaccessible experimentally, computational modeling and simulation can provide qualitative and quantitative insights into materials response and complement the available experimental measurements with carefully validated predictions. For plasma facing components such as the first wall and the divertor, tungsten (W) has been selected as the best candidate material due to its superior high-temperature and irradiation properties. In this paper we provide a review of recent efforts in computational modeling ofmore » W both as a plasma-facing material exposed to He deposition as well as a bulk structural material subjected to fast neutron irradiation. We use a multiscale modeling approach –commonly used as the materials modeling paradigm– to define the outline of the paper and highlight recent advances using several classes of techniques and their interconnection. We highlight several of the most salient findings obtained via computational modeling and point out a number of remaining challenges and future research directions« less

  7. Plasma-wall interaction studies within the EUROfusion consortium: progress on plasma-facing components development and qualification

    NASA Astrophysics Data System (ADS)

    Brezinsek, S.; Coenen, J. W.; Schwarz-Selinger, T.; Schmid, K.; Kirschner, A.; Hakola, A.; Tabares, F. L.; van der Meiden, H. J.; Mayoral, M.-L.; Reinhart, M.; Tsitrone, E.; Ahlgren, T.; Aints, M.; Airila, M.; Almaviva, S.; Alves, E.; Angot, T.; Anita, V.; Arredondo Parra, R.; Aumayr, F.; Balden, M.; Bauer, J.; Ben Yaala, M.; Berger, B. M.; Bisson, R.; Björkas, C.; Bogdanovic Radovic, I.; Borodin, D.; Bucalossi, J.; Butikova, J.; Butoi, B.; Čadež, I.; Caniello, R.; Caneve, L.; Cartry, G.; Catarino, N.; Čekada, M.; Ciraolo, G.; Ciupinski, L.; Colao, F.; Corre, Y.; Costin, C.; Craciunescu, T.; Cremona, A.; De Angeli, M.; de Castro, A.; Dejarnac, R.; Dellasega, D.; Dinca, P.; Dittmar, T.; Dobrea, C.; Hansen, P.; Drenik, A.; Eich, T.; Elgeti, S.; Falie, D.; Fedorczak, N.; Ferro, Y.; Fornal, T.; Fortuna-Zalesna, E.; Gao, L.; Gasior, P.; Gherendi, M.; Ghezzi, F.; Gosar, Ž.; Greuner, H.; Grigore, E.; Grisolia, C.; Groth, M.; Gruca, M.; Grzonka, J.; Gunn, J. P.; Hassouni, K.; Heinola, K.; Höschen, T.; Huber, S.; Jacob, W.; Jepu, I.; Jiang, X.; Jogi, I.; Kaiser, A.; Karhunen, J.; Kelemen, M.; Köppen, M.; Koslowski, H. R.; Kreter, A.; Kubkowska, M.; Laan, M.; Laguardia, L.; Lahtinen, A.; Lasa, A.; Lazic, V.; Lemahieu, N.; Likonen, J.; Linke, J.; Litnovsky, A.; Linsmeier, Ch.; Loewenhoff, T.; Lungu, C.; Lungu, M.; Maddaluno, G.; Maier, H.; Makkonen, T.; Manhard, A.; Marandet, Y.; Markelj, S.; Marot, L.; Martin, C.; Martin-Rojo, A. B.; Martynova, Y.; Mateus, R.; Matveev, D.; Mayer, M.; Meisl, G.; Mellet, N.; Michau, A.; Miettunen, J.; Möller, S.; Morgan, T. W.; Mougenot, J.; Mozetič, M.; Nemanič, V.; Neu, R.; Nordlund, K.; Oberkofler, M.; Oyarzabal, E.; Panjan, M.; Pardanaud, C.; Paris, P.; Passoni, M.; Pegourie, B.; Pelicon, P.; Petersson, P.; Piip, K.; Pintsuk, G.; Pompilian, G. O.; Popa, G.; Porosnicu, C.; Primc, G.; Probst, M.; Räisänen, J.; Rasinski, M.; Ratynskaia, S.; Reiser, D.; Ricci, D.; Richou, M.; Riesch, J.; Riva, G.; Rosinski, M.; Roubin, P.; Rubel, M.; Ruset, C.; Safi, E.; Sergienko, G.; Siketic, Z.; Sima, A.; Spilker, B.; Stadlmayr, R.; Steudel, I.; Ström, P.; Tadic, T.; Tafalla, D.; Tale, I.; Terentyev, D.; Terra, A.; Tiron, V.; Tiseanu, I.; Tolias, P.; Tskhakaya, D.; Uccello, A.; Unterberg, B.; Uytdenhoven, I.; Vassallo, E.; Vavpetič, P.; Veis, P.; Velicu, I. L.; Vernimmen, J. W. M.; Voitkans, A.; von Toussaint, U.; Weckmann, A.; Wirtz, M.; Založnik, A.; Zaplotnik, R.; PFC contributors, WP

    2017-11-01

    The provision of a particle and power exhaust solution which is compatible with first-wall components and edge-plasma conditions is a key area of present-day fusion research and mandatory for a successful operation of ITER and DEMO. The work package plasma-facing components (WP PFC) within the European fusion programme complements with laboratory experiments, i.e. in linear plasma devices, electron and ion beam loading facilities, the studies performed in toroidally confined magnetic devices, such as JET, ASDEX Upgrade, WEST etc. The connection of both groups is done via common physics and engineering studies, including the qualification and specification of plasma-facing components, and by modelling codes that simulate edge-plasma conditions and the plasma-material interaction as well as the study of fundamental processes. WP PFC addresses these critical points in order to ensure reliable and efficient use of conventional, solid PFCs in ITER (Be and W) and DEMO (W and steel) with respect to heat-load capabilities (transient and steady-state heat and particle loads), lifetime estimates (erosion, material mixing and surface morphology), and safety aspects (fuel retention, fuel removal, material migration and dust formation) particularly for quasi-steady-state conditions. Alternative scenarios and concepts (liquid Sn or Li as PFCs) for DEMO are developed and tested in the event that the conventional solution turns out to not be functional. Here, we present an overview of the activities with an emphasis on a few key results: (i) the observed synergistic effects in particle and heat loading of ITER-grade W with the available set of exposition devices on material properties such as roughness, ductility and microstructure; (ii) the progress in understanding of fuel retention, diffusion and outgassing in different W-based materials, including the impact of damage and impurities like N; and (iii), the preferential sputtering of Fe in EUROFER steel providing an in situ W surface and a potential first-wall solution for DEMO.

  8. Modeling of surface temperature effects on mixed material migration in NSTX-U

    NASA Astrophysics Data System (ADS)

    Nichols, J. H.; Jaworski, M. A.; Schmid, K.

    2016-10-01

    NSTX-U will initially operate with graphite walls, periodically coated with thin lithium films to improve plasma performance. However, the spatial and temporal evolution of these films during and after plasma exposure is poorly understood. The WallDYN global mixed-material surface evolution model has recently been applied to the NSTX-U geometry to simulate the evolution of poloidally inhomogenous mixed C/Li/O plasma-facing surfaces. The WallDYN model couples local erosion and deposition processes with plasma impurity transport in a non-iterative, self-consistent manner that maintains overall material balance. Temperature-dependent sputtering of lithium has been added to WallDYN, utilizing an adatom sputtering model developed from test stand experimental data. Additionally, a simplified temperature-dependent diffusion model has been added to WallDYN so as to capture the intercalation of lithium into a graphite bulk matrix. The sensitivity of global lithium migration patterns to changes in surface temperature magnitude and distribution will be examined. The effect of intra-discharge increases in surface temperature due to plasma heating, such as those observed during NSTX Liquid Lithium Divertor experiments, will also be examined. Work supported by US DOE contract DE-AC02-09CH11466.

  9. Time-Domain Modeling of RF Antennas and Plasma-Surface Interactions

    NASA Astrophysics Data System (ADS)

    Jenkins, Thomas G.; Smithe, David N.

    2017-10-01

    Recent advances in finite-difference time-domain (FDTD) modeling techniques allow plasma-surface interactions such as sheath formation and sputtering to be modeled concurrently with the physics of antenna near- and far-field behavior and ICRF power flow. Although typical sheath length scales (micrometers) are much smaller than the wavelengths of fast (tens of cm) and slow (millimeter) waves excited by the antenna, sheath behavior near plasma-facing antenna components can be represented by a sub-grid kinetic sheath boundary condition, from which RF-rectified sheath potential variation over the surface is computed as a function of current flow and local plasma parameters near the wall. These local time-varying sheath potentials can then be used, in tandem with particle-in-cell (PIC) models of the edge plasma, to study sputtering effects. Particle strike energies at the wall can be computed more accurately, consistent with their passage through the known potential of the sheath, such that correspondingly increased accuracy of sputtering yields and heat/particle fluxes to antenna surfaces is obtained. The new simulation capabilities enable time-domain modeling of plasma-surface interactions and ICRF physics in realistic experimental configurations at unprecedented spatial resolution. We will present results/animations from high-performance (10k-100k core) FDTD/PIC simulations of Alcator C-Mod antenna operation.

  10. Plasma facing materials and components for future fusion devices—development, characterization and performance under fusion specific loading conditions

    NASA Astrophysics Data System (ADS)

    Linke, J.

    2006-04-01

    The plasma exposed components in existing and future fusion devices are strongly affected by the plasma material interaction processes. These mechanisms have a strong influence on the plasma performance; in addition they have major impact on the lifetime of the plasma facing armour and the joining interface between the plasma facing material (PFM) and the heat sink. Besides physical and chemical sputtering processes, high heat quasi-stationary fluxes during normal and intense thermal transients are of serious concern for the engineers who develop reliable wall components. In addition, the material and component degradation due to intense fluxes of energetic neutrons is another critical issue in D-T-burning fusion devices which requires extensive R&D. This paper presents an overview on the materials development and joining, the testing of PFMs and components, and the analysis of the neutron irradiation induced degradation.

  11. Coupled two-dimensional edge plasma and neutral gas modeling of tokamak scrape-off-layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maingi, Rajesh

    1992-08-01

    The objective of this study is to devise a detailed description of the tokamak scrape-off-layer (SOL), which includes the best available models of both the plasma and neutral species and the strong coupling between the two in many SOL regimes. A good estimate of both particle flux and heat flux profiles at the limiter/divertor target plates is desired. Peak heat flux is one of the limiting factors in determining the survival probability of plasma-facing-components at high power levels. Plate particle flux affects the neutral flux to the pump, which determines the particle exhaust rate. A technique which couples a two-dimensionalmore » (2-D) plasma and a 2-D neutral transport code has been developed (coupled code technique), but this procedure requires large amounts of computer time. Relevant physics has been added to an existing two-neutral-species model which takes the SOL plasma/neutral coupling into account in a simple manner (molecular physics model), and this model is compared with the coupled code technique mentioned above. The molecular physics model is benchmarked against experimental data from a divertor tokamak (DIII-D), and a similar model (single-species model) is benchmarked against data from a pump-limiter tokamak (Tore Supra). The models are then used to examine two key issues: free-streaming-limits (ion energy conduction and momentum flux) and the effects of the non-orthogonal geometry of magnetic flux surfaces and target plates on edge plasma parameter profiles.« less

  12. PRELIMINARY PROGRESS IN THE DEVELOPMENT OF DUCTILE-PHASE TOUGHENED TUNGSTEN FOR PLASMA-FACING MATERIALS: DUAL-PHASE FINITE ELEMENT DAMAGE MODELS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henager, Charles H.; Nguyen, Ba Nghiep; Kurtz, Richard J.

    The objective of this study is to develop a finite element continuum damage model suitable for modeling deformation, cracking, and crack bridging for W-Cu, W-Ni-Fe, and other ductile phase toughened W-composites, or more generally, any multi-phase composite structure where two or more phases undergo cooperative deformation in a composite system.

  13. A multiscale microstructural approach to ductile-phase toughened tungsten for plasma-facing materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Ba Nghiep; Henager, Jr., Charles H.; Overman, Nicole R.

    Increasing fracture toughness and modifying the ductile-brittle transition temperature of a tungsten-alloy relative to pure tungsten has been shown to be feasible by ductile-phase toughening (DPT) of tungsten for future plasma-facing materials for fusion energy. In DPT, a ductile phase is included in a brittle tungsten matrix to increase the overall work of fracture for the material. This research models the deformation behavior of DPT tungsten materials, such as tungsten-copper composites, using a multiscale modeling approach that involves a microstructural dual-phase (copper-tungsten) region of interest where the constituent phases are finely discretized and are described by a continuum damage mechanicsmore » model. Large deformation, damage, and fracture are allowed to occur and are modeled in a region that is connected to adjacent homogenized elastic regions to form a macroscopic structure, such as a test specimen. The present paper illustrates this multiscale modeling approach to analyze unnotched and single-edge notched (SENB) tungsten-copper composite specimens subjected to three-point bending. The predicted load-displacement responses and crack propagation patterns are compared to the corresponding experimental results to validate the model. Furthermore, such models may help design future DPT composite configurations for fusion materials, including volume fractions of ductile phase and microstructural optimization.« less

  14. A multiscale microstructural approach to ductile-phase toughened tungsten for plasma-facing materials

    DOE PAGES

    Nguyen, Ba Nghiep; Henager, Jr., Charles H.; Overman, Nicole R.; ...

    2018-05-23

    Increasing fracture toughness and modifying the ductile-brittle transition temperature of a tungsten-alloy relative to pure tungsten has been shown to be feasible by ductile-phase toughening (DPT) of tungsten for future plasma-facing materials for fusion energy. In DPT, a ductile phase is included in a brittle tungsten matrix to increase the overall work of fracture for the material. This research models the deformation behavior of DPT tungsten materials, such as tungsten-copper composites, using a multiscale modeling approach that involves a microstructural dual-phase (copper-tungsten) region of interest where the constituent phases are finely discretized and are described by a continuum damage mechanicsmore » model. Large deformation, damage, and fracture are allowed to occur and are modeled in a region that is connected to adjacent homogenized elastic regions to form a macroscopic structure, such as a test specimen. The present paper illustrates this multiscale modeling approach to analyze unnotched and single-edge notched (SENB) tungsten-copper composite specimens subjected to three-point bending. The predicted load-displacement responses and crack propagation patterns are compared to the corresponding experimental results to validate the model. Furthermore, such models may help design future DPT composite configurations for fusion materials, including volume fractions of ductile phase and microstructural optimization.« less

  15. Electromagnetic analysis of the plasma chamber of an ECR-based charge breeder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galatà, A., E-mail: alessio.galata@lnl.infn.it; Patti, G.; Celona, L.

    2016-02-15

    The optimization of the efficiency of an ECR-based charge breeder is a twofold task: efforts must be paid to maximize the capture of the injected 1+ ions by the confined plasma and to produce high charge states to allow post-acceleration at high energies. Both tasks must be faced by studying in detail the electrons heating dynamics, influenced by the microwave-to-plasma coupling mechanism. Numerical simulations are a powerful tools for obtaining quantitative information about the wave-to-plasma interaction process: this paper presents a numerical study of the microwaves propagation and absorption inside the plasma chamber of the PHOENIX charge breeder, which themore » selective production of exotic species project, under construction at Legnaro National Laboratories, will adopt as charge breeder. Calculations were carried out with a commercial 3D FEM solver: first, all the resonant frequencies were determined by considering a simplified plasma chamber; then, the realistic geometry was taken into account, including a cold plasma model of increasing complexity. The results gave important information about the power absorption and losses and will allow the improvement of the plasma model to be used in a refined step of calculation reproducing the breeding process itself.« less

  16. Electromagnetic analysis of the plasma chamber of an ECR-based charge breeder

    NASA Astrophysics Data System (ADS)

    Galatà, A.; Patti, G.; Celona, L.; Mascali, D.; Neri, L.; Torrisi, G.

    2016-02-01

    The optimization of the efficiency of an ECR-based charge breeder is a twofold task: efforts must be paid to maximize the capture of the injected 1+ ions by the confined plasma and to produce high charge states to allow post-acceleration at high energies. Both tasks must be faced by studying in detail the electrons heating dynamics, influenced by the microwave-to-plasma coupling mechanism. Numerical simulations are a powerful tools for obtaining quantitative information about the wave-to-plasma interaction process: this paper presents a numerical study of the microwaves propagation and absorption inside the plasma chamber of the PHOENIX charge breeder, which the selective production of exotic species project, under construction at Legnaro National Laboratories, will adopt as charge breeder. Calculations were carried out with a commercial 3D FEM solver: first, all the resonant frequencies were determined by considering a simplified plasma chamber; then, the realistic geometry was taken into account, including a cold plasma model of increasing complexity. The results gave important information about the power absorption and losses and will allow the improvement of the plasma model to be used in a refined step of calculation reproducing the breeding process itself.

  17. Latitudinal oscillations of plasma within the Io torus

    NASA Technical Reports Server (NTRS)

    Cummings, W. D.; Dessler, A. J.; Hill, T. W.

    1980-01-01

    The equilibrium latitude and the period of oscillations about this equilibrium latitude are calculated for a plasma in a centrifugally dominated tilted dipole magnetic field representing Jupiter's inner magnetosphere. It is found that for a hot plasma the equilibrium latitude in the magnetic equator, for a cold plasma it is the centrifugal equator, and for a warm plasma it is somewhere in between. An illustrative model is adopted in which atoms are sputtered from the Jupiter-facing hemisphere of Io and escape Io's gravity to be subsequently ionized some distance from Io. Finally, it is shown that ionization generally does not occur at the equilibrium altitude, and that the resulting latitudinal oscillations provide an explanation for the irregularities in electron concentration within the torus, as reported by the radioastronomy experiment aboard Voyager I.

  18. Modeling of high-Z materials erosion and its suppression in DIII-D

    NASA Astrophysics Data System (ADS)

    Ding, Rui; Guo, H. Y.; Chan, V. S.; Snyder, P. B.; Rudakov, D. L.; Stangeby, P. C.; Elder, J. D.; Tskhakaya, D.; Wampler, W. R.; Kirschner, A.; McLean, A. G.

    2015-11-01

    Erosion of plasma facing components is a key issue for high-power, long pulse operation. The 3D Monte Carlo code ERO has been used to simulate the erosion/redeposition of Mo and W samples exposed to DIII-D divertor plasma using the DiMES. The net erosion rate is significantly reduced due to the high local re-deposition ratio of eroded materials, which is mainly controlled by the electric field and plasma density within the Chodura sheath as indicated by ERO modeling. Similar re-deposition ratios were obtained from the modeling using three sheath models for small inclined magnetic field angle, all being close to the measured value. ERO modeling shows that local CH4 injection can create a carbon coating on the Mo sample to mitigate Mo erosion; the local decrease of electron temperature due to gas injection also suppresses net erosion, consistent with experimental observation. Supported by the US DOE under DE-FC02-04ER54698 and PSI-SciDAC project.

  19. Oscillatory vapour shielding of liquid metal walls in nuclear fusion devices.

    PubMed

    van Eden, G G; Kvon, V; van de Sanden, M C M; Morgan, T W

    2017-08-04

    Providing an efficacious plasma facing surface between the extreme plasma heat exhaust and the structural materials of nuclear fusion devices is a major challenge on the road to electricity production by fusion power plants. The performance of solid plasma facing surfaces may become critically reduced over time due to progressing damage accumulation. Liquid metals, however, are now gaining interest in solving the challenge of extreme heat flux hitting the reactor walls. A key advantage of liquid metals is the use of vapour shielding to reduce the plasma exhaust. Here we demonstrate that this phenomenon is oscillatory by nature. The dynamics of a Sn vapour cloud are investigated by exposing liquid Sn targets to H and He plasmas at heat fluxes greater than 5 MW m -2 . The observations indicate the presence of a dynamic equilibrium between the plasma and liquid target ruled by recombinatory processes in the plasma, leading to an approximately stable surface temperature.Vapour shielding is one of the interesting mechanisms for reducing the heat load to plasma facing components in fusion reactors. Here the authors report on the observation of a dynamic equilibrium between the plasma and the divertor liquid Sn surface leading to an overall stable surface temperature.

  20. Protection of tokamak plasma facing components by a capillary porous system with lithium

    NASA Astrophysics Data System (ADS)

    Lyublinski, I.; Vertkov, A.; Mirnov, S.; Lazarev, V.

    2015-08-01

    Development of plasma facing material (PFM) based on the Capillary-Porous System (CPS) with lithium and activity on realization of lithium application strategy are addressed to meet the challenges under the creation of steady-state tokamak fusion reactor and fusion neutron source. Presented overview of experimental study of lithium CPS in plasma devices demonstrates the progress in protection of tokamak plasma facing components (PFC) from damage, stabilization and self-renewal of liquid lithium surface, elimination of plasma pollution and lithium accumulation in tokamak chamber. The possibility of PFC protection from the high power load related to cooling of the tokamak boundary plasma by radiation of non-fully stripped lithium ions supported by experimental results. This approach demonstrated in scheme of closed loops of Li circulation in the tokamak vacuum chamber and realized in a series of design of tokamak in-vessel elements.

  1. Digital Holography for in Situ Real-Time Measurement of Plasma-Facing-Component Erosion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ThomasJr., C. E.; Granstedt, E. M.; Biewer, Theodore M

    2014-01-01

    In situ, real time measurement of net plasma-facing-component (PFC) erosion/deposition in a real plasma device is challenging due to the need for good spatial and temporal resolution, sufficient sensitivity, and immunity to fringe-jump errors. Design of a high-sensitivity, potentially high-speed, dual-wavelength CO2 laser digital holography system (nominally immune to fringe jumps) for PFC erosion measurement is discussed.

  2. Plasma treatment of fiber facets for increased (de)mating endurance in physical contact fiber connectors

    NASA Astrophysics Data System (ADS)

    Van Erps, Jürgen; Voss, Kevin; De Witte, Martijn; Radulescu, Radu; Beri, Stefano; Watté, Jan; Thienpont, Hugo

    2016-04-01

    It is known that cleaving an optical fiber introduces a number of irregularities and defects to the fiber's end-face, such as hackles and shockwaves. These defects can act as failure initiators when stress is applied to the end-face. Given the fiber's small diameter of 125 ffm, a large amount of mechanical stress can be expected to be applied on its end-face during the mating-demating cycle. In addition, a connector in a fiber-to-the-home (FTTH) network can be expected to be mated and demated more than 30 times during its lifetime for purposes such as testing, churning, or provisioning. For this reason, the performance of a connector that displays low optical loss when first installed can dramatically degrade after few mating-demating cycles and catastrophic connector failure due to end-face breakage is likely. We present plasma discharge shaping of cleaved fiber tips to strongly improve the endurance of the fibers to repeated mating-demating cycles. We quantify the dependency of the plasma-induced surface curvature of the fiber tip on the plasma duration and on the position of the fiber tip within the plasma cloud. Finally we present data showing the improved endurance of fibers that are exposed to plasma compared to conventional as-cleaved fibers.

  3. Implementation of a diffusion convection surface evolution model in WallDYN

    NASA Astrophysics Data System (ADS)

    Schmid, K.

    2013-07-01

    In thermonuclear fusion experiments with multiple plasma facing materials the formation of mixed materials is inevitable. The formation of these mixed material layers is a dynamic process driven the tight interaction between transport in the plasma scrape off layer and erosion/(re-) deposition at the surface. To track this global material erosion/deposition balance and the resulting formation of mixed material layers the WallDYN code has been developed which couples surface processes and plasma transport. The current surface model in WallDYN cannot fully handle the growth of layers nor does it include diffusion. However at elevated temperatures diffusion is a key process in the formation of mixed materials. To remedy this shortcoming a new surface model has been developed which, for the first time, describes both layer growth/recession and diffusion in a single continuous diffusion/convection equation. The paper will detail the derivation of the new surface model and compare it to TRIDYN calculations.

  4. Redefinition of the self-bias voltage in a dielectrically shielded thin sheath RF discharge

    NASA Astrophysics Data System (ADS)

    Ho, Teck Seng; Charles, Christine; Boswell, Rod

    2018-05-01

    In a geometrically asymmetric capacitively coupled discharge where the powered electrode is shielded from the plasma by a layer of dielectric material, the self-bias manifests as a nonuniform negative charging in the dielectric rather than on the blocking capacitor. In the thin sheath regime where the ion transit time across the powered sheath is on the order of or less than the Radiofrequency (RF) period, the plasma potential is observed to respond asymmetrically to extraneous impedances in the RF circuit. Consequently, the RF waveform on the plasma-facing surface of the dielectric is unknown, and the behaviour of the powered sheath is not easily predictable. Sheath circuit models become inadequate for describing this class of discharges, and a comprehensive fluid, electrical, and plasma numerical model is employed to accurately quantify this behaviour. The traditional definition of the self-bias voltage as the mean of the RF waveform is shown to be erroneous in this regime. Instead, using the maxima of the RF waveform provides a more rigorous definition given its correlation with the ion dynamics in the powered sheath. This is supported by a RF circuit model derived from the computational fluid dynamics and plasma simulations.

  5. Using the tritium plasma experiment to evaluate ITER PFC safety

    NASA Astrophysics Data System (ADS)

    Longhurst, Glen R.; Anderl, Robert A.; Bartlit, John R.; Causey, Rion A.; Haines, John R.

    1993-06-01

    The Tritium Plasma Experiment was assembled at Sandia National Laboratories, Livermore and is being moved to the Tritium Systems Test Assembly facility at Los Alamos National Laboratory to investigate interactions between dense plasmas at low energies and plasma-facing component materials. This apparatus has the unique capabilty of replicating plasma conditions in a tokamak divertor with particle flux densities of 2 × 1023 ions/m2.s and a plasma temperature of about 15 eV using a plasma that includes tritium. An experimental program has been initiated using the Tritium Plasma Experiment to examine safety issues related to tritium in plasma-facing components, particularly the ITER divertor. Those issues include tritium retention and release characteristics, tritium permeation rates and transient times to coolant streams, surface modification and erosion by the plasma, the effects of thermal loads and cycling, and particulate production. An industrial consortium led by McDonnell Douglas will design and fabricate the test fixtures.

  6. Plasma–wall interaction studies within the EUROfusion consortium: progress on plasma-facing components development and qualification

    DOE PAGES

    Brezinsek, S.; Coenen, J. W.; Schwarz-Selinger, T.; ...

    2017-06-14

    The provision of a particle and power exhaust solution which is compatible with first-wall components and edge-plasma conditions is a key area of present-day fusion research and mandatory for a successful operation of ITER and DEMO. The work package plasma-facing components (WP PFC) within the European fusion programme complements with laboratory experiments, i.e. in linear plasma devices, electron and ion beam loading facilities, the studies performed in toroidally confined magnetic devices, such as JET, ASDEX Upgrade, WEST etc. The connection of both groups is done via common physics and engineering studies, including the qualification and specification of plasma-facing components, andmore » by modelling codes that simulate edge-plasma conditions and the plasma–material interaction as well as the study of fundamental processes. WP PFC addresses these critical points in order to ensure reliable and efficient use of conventional, solid PFCs in ITER (Be and W) and DEMO (W and steel) with respect to heat-load capabilities (transient and steady-state heat and particle loads), lifetime estimates (erosion, material mixing and surface morphology), and safety aspects (fuel retention, fuel removal, material migration and dust formation) particularly for quasi-steady-state conditions. Alternative scenarios and concepts (liquid Sn or Li as PFCs) for DEMO are developed and tested in the event that the conventional solution turns out to not be functional. Here, we present an overview of the activities with an emphasis on a few key results: (i) the observed synergistic effects in particle and heat loading of ITER-grade W with the available set of exposition devices on material properties such as roughness, ductility and microstructure; (ii) the progress in understanding of fuel retention, diffusion and outgassing in different W-based materials, including the impact of damage and impurities like N; and (iii), the preferential sputtering of Fe in EUROFER steel providing an in situ W surface and a potential first-wall solution for DEMO.« less

  7. Plasma–wall interaction studies within the EUROfusion consortium: progress on plasma-facing components development and qualification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brezinsek, S.; Coenen, J. W.; Schwarz-Selinger, T.

    The provision of a particle and power exhaust solution which is compatible with first-wall components and edge-plasma conditions is a key area of present-day fusion research and mandatory for a successful operation of ITER and DEMO. The work package plasma-facing components (WP PFC) within the European fusion programme complements with laboratory experiments, i.e. in linear plasma devices, electron and ion beam loading facilities, the studies performed in toroidally confined magnetic devices, such as JET, ASDEX Upgrade, WEST etc. The connection of both groups is done via common physics and engineering studies, including the qualification and specification of plasma-facing components, andmore » by modelling codes that simulate edge-plasma conditions and the plasma–material interaction as well as the study of fundamental processes. WP PFC addresses these critical points in order to ensure reliable and efficient use of conventional, solid PFCs in ITER (Be and W) and DEMO (W and steel) with respect to heat-load capabilities (transient and steady-state heat and particle loads), lifetime estimates (erosion, material mixing and surface morphology), and safety aspects (fuel retention, fuel removal, material migration and dust formation) particularly for quasi-steady-state conditions. Alternative scenarios and concepts (liquid Sn or Li as PFCs) for DEMO are developed and tested in the event that the conventional solution turns out to not be functional. Here, we present an overview of the activities with an emphasis on a few key results: (i) the observed synergistic effects in particle and heat loading of ITER-grade W with the available set of exposition devices on material properties such as roughness, ductility and microstructure; (ii) the progress in understanding of fuel retention, diffusion and outgassing in different W-based materials, including the impact of damage and impurities like N; and (iii), the preferential sputtering of Fe in EUROFER steel providing an in situ W surface and a potential first-wall solution for DEMO.« less

  8. Plasma source development for fusion-relevant material testing

    DOE PAGES

    Caughman, John B. O.; Goulding, Richard H.; Biewer, Theodore M.; ...

    2017-05-01

    Plasma facing materials in the divertor of a magnetic fusion reactor will have to tolerate steady-state plasma heat fluxes in the range of 10 MW/m2 for ~107 sec, in addition to fusion neutron fluences, which can damage the plasma facing materials to high displacements per atom (dpa) of ~50 dpa . Material solutions needed for the plasma facing components are yet to be developed and tested. The Materials Plasma Exposure eXperiment (MPEX) is a newly proposed steady state linear plasma device that is designed to deliver the necessary plasma heat flux to a target for this material testing, including themore » capability to expose a-priori neutron damaged material samples to those plasmas. The requirements of the plasma source needed to deliver this plasma heat flux are being developed on the Proto-MPEX device, which is a linear high-intensity radio frequency (RF) plasma source that combines a high-density helicon plasma generator with electron and ion heating sections. It is being used to study the physics of heating over-dense plasmas in a linear configuration. The helicon plasma is operated at 13.56 MHz with RF power levels up to 120 kW. Microwaves at 28 GHz (~30 kW) are coupled to the electrons in the over-dense helicon plasma via Electron Bernstein Waves (EBW), and ion cyclotron heating at 7-9 MHz (~30 kW) is via a magnetic beach approach. High plasma densities >6x1019/m3 have been produced in deuterium, with electron temperatures that can range from 2 to >10 eV. Operation with on-axis magnetic field strengths between 0.6 and 1.4 T is typical. The plasma heat flux delivered to a target can be > 10 MW/m2, depending on the operating conditions.« less

  9. Plasma source development for fusion-relevant material testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caughman, John B. O.; Goulding, Richard H.; Biewer, Theodore M.

    Plasma facing materials in the divertor of a magnetic fusion reactor will have to tolerate steady-state plasma heat fluxes in the range of 10 MW/m2 for ~107 sec, in addition to fusion neutron fluences, which can damage the plasma facing materials to high displacements per atom (dpa) of ~50 dpa . Material solutions needed for the plasma facing components are yet to be developed and tested. The Materials Plasma Exposure eXperiment (MPEX) is a newly proposed steady state linear plasma device that is designed to deliver the necessary plasma heat flux to a target for this material testing, including themore » capability to expose a-priori neutron damaged material samples to those plasmas. The requirements of the plasma source needed to deliver this plasma heat flux are being developed on the Proto-MPEX device, which is a linear high-intensity radio frequency (RF) plasma source that combines a high-density helicon plasma generator with electron and ion heating sections. It is being used to study the physics of heating over-dense plasmas in a linear configuration. The helicon plasma is operated at 13.56 MHz with RF power levels up to 120 kW. Microwaves at 28 GHz (~30 kW) are coupled to the electrons in the over-dense helicon plasma via Electron Bernstein Waves (EBW), and ion cyclotron heating at 7-9 MHz (~30 kW) is via a magnetic beach approach. High plasma densities >6x1019/m3 have been produced in deuterium, with electron temperatures that can range from 2 to >10 eV. Operation with on-axis magnetic field strengths between 0.6 and 1.4 T is typical. The plasma heat flux delivered to a target can be > 10 MW/m2, depending on the operating conditions.« less

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bourham, Mohamed A.; Gilligan, John G.

    Safety considerations in large future fusion reactors like ITER are important before licensing the reactor. Several scenarios are considered hazardous, which include safety of plasma-facing components during hard disruptions, high heat fluxes and thermal stresses during normal operation, accidental energy release, and aerosol formation and transport. Disruption events, in large tokamaks like ITER, are expected to produce local heat fluxes on plasma-facing components, which may exceed 100 GW/m{sup 2} over a period of about 0.1 ms. As a result, the surface temperature dramatically increases, which results in surface melting and vaporization, and produces thermal stresses and surface erosion. Plasma-facing componentsmore » safety issues extends to cover a wide range of possible scenarios, including disruption severity and the impact of plasma-facing components on disruption parameters, accidental energy release and short/long term LOCA's, and formation of airborne particles by convective current transport during a LOVA (water/air ingress disruption) accident scenario. Study, and evaluation of, disruption-induced aerosol generation and mobilization is essential to characterize database on particulate formation and distribution for large future fusion tokamak reactor like ITER. In order to provide database relevant to ITER, the SIRENS electrothermal plasma facility at NCSU has been modified to closely simulate heat fluxes expected in ITER.« less

  11. Tungsten dust remobilization under steady-state and transient plasma conditions

    DOE PAGES

    Ratynskaia, S.; Tolias, P.; De Angeli, M.; ...

    2016-11-22

    Remobilization is one of the most prominent unresolved fusion dust-relevant issues, strongly related to the lifetime of dust in plasma-wetted regions, the survivability of dust on hot plasma-facing surfaces and the formation of dust accumulation sites. A systematic cross-machine study has been initiated to investigate the remobilization of tungsten micron-size dust from tungsten surfaces implementing a newly developed technique based on controlled pre-adhesion by gas dynamics methods. It has been utilized in a number of devices and has provided new insights on remobilization under steady-state and transient conditions. In conclusion, the experiments are interpreted with contact mechanics theory and heatmore » conduction models.« less

  12. Damage of actively cooled plasma facing components of magnetic confinement controlled fusion machines

    NASA Astrophysics Data System (ADS)

    Chevet, G.; Schlosser, J.; Martin, E.; Herb, V.; Camus, G.

    2009-03-01

    Plasma facing components (PFCs) of magnetic fusion machines have high manufactured residual stresses and have to withstand important stress ranges during operation. These actively cooled PFCs have a carbon fibre composite (CFC) armour and a copper alloy heat sink. Cracks mainly appear in the CFC near the composite/copper interface. In order to analyse damage mechanisms, it is important to well simulate the damage mechanisms both of the CFC and the CFC/Cu interface. This study focuses on the mechanical behaviour of the N11 material for which the scalar ONERA damage model was used. The damage parameters of this model were identified by similarity to a neighbour material, which was extensively analysed, according to the few characterization test results available for the N11. The finite elements calculations predict a high level of damage of the CFC at the interface zone explaining the encountered difficulties in the PFCs fabrication. These results suggest that the damage state of the CFC cells is correlated with a conductivity decrease to explain the temperature increase of the armour surface under fatigue heat load.

  13. Major Disruptions and Other Issues Driving the Design of the Ignitor Plasma Chamber

    NASA Astrophysics Data System (ADS)

    Ramogida, G.; Frosi, P.; Coppi, B.

    2012-10-01

    The Plasma Chamber of the Ignitor machine is designed according to the information available about electromagnetic loads coming from the experimental knowledge and the increasingly accurate numerical models of the eddy and halo currents resulting from the worst disruption events in existing machines. The developed models deal with static, dynamic and modal analysis. The loads during nominal operations and also those arising from plasma disruptions, by far the most important ones, have been taken into account, as well as the design problems arising from the Mo tiles in the inboard edge of the vacuum vessel, the Faraday shields covering the 6 ports devoted to the ICRH system and, finally, the reaction forces coming from the regions of constraints with the C-Clamps (the retaining structure that support the plasma chamber both statically and dynamically). The plasma chamber has to perform several additional functions, such as to keep the vacuum, be bakeable, and support the set of plates that carry the Mo tiles facing the plasma column. According to the present design the chamber is made of Inconel and has a thickness varying from 26 to 52 mm.

  14. High heat flux composites for plasma-facing materials

    NASA Astrophysics Data System (ADS)

    Ting, J.-M.; Lake, M. L.

    1994-09-01

    Vapor grown carbon fiber (VGCF) has been shown to have the highest thermal conductivity of all carbon fiber currently available. This property holds potential of increasing the thickness and longevity of fusion reactor plasma-facing materials. The use of VGCF as a reinforcement in carbon/carbon composites has been explored, as well as methods of joining these plasma-facing materials to copper alloy heat pipes. In extensive study of VGCF/carbon matrix composites, the influence of fiber volume fraction, density, densification method, and heat treatment on composite properties were investigated. Joining of VGCF/carbon composites to copper and beryllium to copper using a novel alloying method was studied. The joint interface was examined by RBS analysis and thermal conductance.

  15. Tungsten-microdiamond composites for plasma facing components

    NASA Astrophysics Data System (ADS)

    Livramento, V.; Nunes, D.; Correia, J. B.; Carvalho, P. A.; Mardolcar, U.; Mateus, R.; Hanada, K.; Shohoji, N.; Fernandes, H.; Silva, C.; Alves, E.

    2011-09-01

    Tungsten is considered as one of promising candidate materials for plasma facing component in nuclear fusion reactors due to its resistance to sputtering and high melting point. High thermal conductivity is also a prerequisite for plasma facing components under the unique service environment of fusion reactor characterised by the massive heat load, especially in the divertor area. The feasibility of mechanical alloying of nanodiamond and tungsten, and the consolidation of the composite powders with Spark Plasma Sintering (SPS) was previously demonstrated. In the present research we report on the use of microdiamond instead of nanodiamond in such composites. Microdiamond is more favourable than nanodiamond in view of phonon transport performance leading to better thermal conductivity. However, there is a trade off between densification and thermal conductivity as the SPS temperature increases tungsten carbide formation from microdiamond is accelerated inevitably while the consolidation density would rise.

  16. Scaling mechanisms of vapour/plasma shielding from laser-produced plasmas to magnetic fusion regimes

    NASA Astrophysics Data System (ADS)

    Sizyuk, Tatyana; Hassanein, Ahmed

    2014-02-01

    The plasma shielding effect is a well-known mechanism in laser-produced plasmas (LPPs) reducing laser photon transmission to the target and, as a result, significantly reducing target heating and erosion. The shielding effect is less pronounced at low laser intensities, when low evaporation rate together with vapour/plasma expansion processes prevent establishment of a dense plasma layer above the surface. Plasma shielding also loses its effectiveness at high laser intensities when the formed hot dense plasma plume causes extensive target erosion due to radiation fluxes back to the surface. The magnitude of emitted radiation fluxes from such a plasma is similar to or slightly higher than the laser photon flux in the low shielding regime. Thus, shielding efficiency in LPPs has a peak that depends on the laser beam parameters and the target material. A similar tendency is also expected in other plasma-operating devices such as tokamaks of magnetic fusion energy (MFE) reactors during transient plasma operation and disruptions on chamber walls when deposition of the high-energy transient plasma can cause severe erosion and damage to the plasma-facing and nearby components. A detailed analysis of these abnormal events and their consequences in future power reactors is limited in current tokamak reactors. Predictions for high-power future tokamaks are possible only through comprehensive, time-consuming and rigorous modelling. We developed scaling mechanisms, based on modelling of LPP devices with their typical temporal and spatial scales, to simulate tokamak abnormal operating regimes to study wall erosion, plasma shielding and radiation under MFE reactor conditions. We found an analogy in regimes and results of carbon and tungsten erosion of the divertor surface in ITER-like reactors with erosion due to laser irradiation. Such an approach will allow utilizing validated modelling combined with well-designed and well-diagnosed LPP experimental studies for predicting consequences of plasma instabilities in complex fusion environment, which are of serious concern for successful energy production.

  17. Mitigation of divertor heat loads by strike point sweeping in high power JET discharges

    NASA Astrophysics Data System (ADS)

    Silburn, S. A.; Matthews, G. F.; Challis, C. D.; Frigione, D.; Graves, J. P.; Mantsinen, M. J.; Belonohy, E.; Hobirk, J.; Iglesias, D.; Keeling, D. L.; King, D.; Kirov, K.; Lennholm, M.; Lomas, P. J.; Moradi, S.; Sips, A. C. C.; Tsalas, M.; Contributors, JET

    2017-12-01

    Deliberate periodic movement (sweeping) of the high heat flux divertor strike lines in tokamak plasmas can be used to manage the heat fluxes experienced by exhaust handling plasma facing components, by spreading the heat loads over a larger surface area. Sweeping has recently been adopted as a routine part of the main high performance plasma configurations used on JET, and has enabled pulses with 30 MW plasma heating power and 10 MW radiation to run for 5 s without overheating the divertor tiles. We present analysis of the effectiveness of sweeping for divertor temperature control on JET, using infrared camera data and comparison with a simple 2D heat diffusion model. Around 50% reduction in tile temperature rise is obtained with 5.4 cm sweeping compared to the un-swept case, and the temperature reduction is found to scale slower than linearly with sweeping amplitude in both experiments and modelling. Compatibility of sweeping with high fusion performance is demonstrated, and effects of sweeping on the edge-localised mode behaviour of the plasma are reported and discussed. The prospects of using sweeping in future JET experiments with up to 40 MW heating power are investigated using a model validated against existing experimental data.

  18. Enhanced erosion of tungsten plasma-facing components subject to simultaneous heat pulses and deuterium plasma

    NASA Astrophysics Data System (ADS)

    Umstadter, K. R.; Doerner, R.; Tynan, G.

    2009-04-01

    When an ELM occurs in tokamaks, up to 30% of the pedestal energy can be deposited on the wall of the tokamak causing heating and material loss due to sublimation/evaporation and melt layer splashing of plasma-facing components (PFCs) and expansion of the ejected material into the plasma. A short-pulse laser system capable of reproducing the thermal load of an ELM heat pulse has been integrated into the existing PFC research program in PISCES, a laboratory facility capable of reproducing plasma-materials interactions expected during normal operation of large tokamaks. An Nd:YAG laser capable of delivering up to 1 J of energy over a 7 ns pulsewidth is used for the experiments. Laser heat pulse only, H +/D + plasma only, and laser plus plasma experiments were conducted and initial results indicate enhanced erosion of tungsten exposed to simultaneous plasma and heat pulses, as compared to exposure to separate plasma-only or heat pulse-only conditions.

  19. Effect of ELMs on deuterium-loaded-tungsten plasma facing components

    NASA Astrophysics Data System (ADS)

    Umstadter, K. R.; Rudakov, D. L.; Wampler, W.; Watkins, J. G.; Wong, C. P. C.

    2011-08-01

    Prior heat pulse testing of plasma facing components (PFCs) has been completed in vacuum environments without the presence of background plasma. Edge localized modes (ELMs) will not be this kind of isolated event and one should know the effect of a plasma background during these transients. Heat-pulse experiments have been conducted in the PISCES-A device utilizing laser heating in a divertor-like plasma background. Initial results indicate that the erosion of PFCs is enhanced as compared to heat pulse or plasma only tests. To determine if the enhanced erosion effect is a phenomena only witnessed in the laboratory PISCES device, tungsten and graphite samples were exposed to plasmas in the lower divertor of the DIII-D tokamak using the Divertor Material Evaluation System (DiMES). Mass loss analysis indicates that materials that contain significant deuterium prior to experiencing a transient heating event will erode faster than those that have no or little retained deuterium.

  20. Dependence of LTX plasma performance on surface conditions as determined by in situ analysis of plasma facing components

    NASA Astrophysics Data System (ADS)

    Lucia, M.; Kaita, R.; Majeski, R.; Bedoya, F.; Allain, J. P.; Abrams, T.; Bell, R. E.; Boyle, D. P.; Jaworski, M. A.; Schmitt, J. C.

    2015-08-01

    The Materials Analysis and Particle Probe (MAPP) diagnostic has been implemented on the Lithium Tokamak Experiment (LTX) at PPPL, providing the first in situ X-ray photoelectron spectroscopy (XPS) surface characterization of tokamak plasma facing components (PFCs). MAPP samples were exposed to argon glow discharge conditioning (GDC), lithium evaporations, and hydrogen tokamak discharges inside LTX. Samples were analyzed with XPS, and alterations to surface conditions were correlated against observed LTX plasma performance changes. Argon GDC caused the accumulation of nm-scale metal oxide layers on the PFC surface, which appeared to bury surface carbon and oxygen contamination and thus improve plasma performance. Lithium evaporation led to the rapid formation of a lithium oxide (Li2O) surface; plasma performance was strongly improved for sufficiently thick evaporative coatings. Results indicate that a 5 h argon GDC or a 50 nm evaporative lithium coating will both significantly improve LTX plasma performance.

  1. Computational Modeling in Plasma Processing for 300 mm Wafers

    NASA Technical Reports Server (NTRS)

    Meyyappan, Meyya; Arnold, James O. (Technical Monitor)

    1997-01-01

    Migration toward 300 mm wafer size has been initiated recently due to process economics and to meet future demands for integrated circuits. A major issue facing the semiconductor community at this juncture is development of suitable processing equipment, for example, plasma processing reactors that can accomodate 300 mm wafers. In this Invited Talk, scaling of reactors will be discussed with the aid of computational fluid dynamics results. We have undertaken reactor simulations using CFD with reactor geometry, pressure, and precursor flow rates as parameters in a systematic investigation. These simulations provide guidelines for scaling up in reactor design.

  2. Linear facing target sputtering of the epitaxial Ga-doped ZnO transparent contact layer on GaN-based light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Shin, Hyun-Su; Lee, Ju-Hyun; Kwak, Joon-Seop; Lee, Hyun Hwi; Kim, Han-Ki

    2013-10-01

    In this study, we reported on the plasma damage-free sputtering of epitaxial Ga-doped ZnO (GZO) films on the p-GaN layer for use as a transparent contact layer (TCL) for GaN-based light-emitting diodes (LEDs) using linear facing target sputtering (LFTS). Effective confinement of high-density plasma between faced GZO targets and the substrate position located outside of the plasma region led to the deposition of the epitaxial GZO TCL with a low sheet resistance of 25.7 Ω/s and a high transmittance of 84.6% on a p-GaN layer without severe plasma damage, which was found using the conventional dc sputtering process. The low turn-on voltage of the GaN-based LEDs with an LFTS-grown GZO TCL layer that was grown at a longer target-to-substrate distance (TSD) indicates that the plasma damage of the GaN-LED could be effectively reduced by adjusting the TSD during the LFTS process.

  3. Analysis of heat transfer and erosion effects on ITER divertor plasma facing components induced by slow high-power transients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Federici, G.; Raffray, A.R.; Chiocchio, S.

    1995-12-31

    This paper presents the results of an analysis carried out to investigate the thermal response of ITER divertor plasma facing components (PFC`s) clad with Be, W, and CFC, to high-recycling, high-power thermal transients (i.e. 10--30 MW/m{sup 2}) which are anticipated to last up to a few seconds. The armour erosion and surface melting are estimated for the different plasma facing materials (PFM`s) together with the maximum heat flux to the coolant, and armour/heat-sink interface temperature. The analysis assumes that intense target evaporation will lead to high radiative power losses in the plasma in front of the target which self-protects themore » target. The cases analyzed clarify the influence of several key parameters such as the plasma heat flux to the target, the loss of the melt layer, the duration of the event, the thickness of the armour, and comparison is made with cases without vapor shielding. Finally, some implications for the performance and lifetime of divertor PFC`s clad with different PFM`s are discussed.« less

  4. Edge and divertor plasma: detachment, stability, and plasma-wall interactions

    NASA Astrophysics Data System (ADS)

    Krasheninnikov, S. I.; Kukushkin, A. S.; Lee, Wonjae; Phsenov, A. A.; Smirnov, R. D.; Smolyakov, A. I.; Stepanenko, A. A.; Zhang, Yanzeng

    2017-10-01

    The paper presents an overview of the results of studies on a wide range of the edge plasma related issues. The rollover of the plasma flux to the target during progressing detachment process is shown to be caused by the increase of the impurity radiation loss and volumetric plasma recombination, whereas the ion-neutral friction, although important for establishing the necessary edge plasma conditions, does not contribute per se to the rollover of the plasma flux to the target. The processes limiting the power loss by impurity radiation are discussed and a simple estimate of this limit is obtained. Different mechanisms of meso-scale thermal instabilities driven by impurity radiation and resulting in self-sustained oscillations in the edge plasma are identified. An impact of sheared magnetic field on the dynamics of the blobs and ELM filaments playing an important role in the edge and SOL plasma transport is discussed. Trapping of He, which is an intrinsic impurity for the fusion plasmas, in the plasma-facing tungsten material is considered. A newly developed model, accounting for the generation of additional He traps caused by He bubble growth, fits all the available experimental data on the layer of nano-bubbles observed in W under irradiation by low energy He plasma.

  5. Failure study of helium-cooled tungsten divertor plasma-facing units tested at DEMO relevant steady-state heat loads

    NASA Astrophysics Data System (ADS)

    Ritz, G.; Hirai, T.; Norajitra, P.; Reiser, J.; Giniyatulin, R.; Makhankov, A.; Mazul, I.; Pintsuk, G.; Linke, J.

    2009-12-01

    Tungsten was selected as armor material for the helium-cooled divertor in future DEMO-type fusion reactors and fusion power plants. After realizing the design and testing of them under cyclic thermal loads of up to ~14 MW m-2, the tungsten divertor plasma-facing units were examined by metallography; they revealed failures such as cracks at the thermal loaded and as-machined surfaces, as well as degradation of the brazing layers. Furthermore, in order to optimize the machining processes, the quality of tungsten surfaces prepared by turning, milling and using a diamond cutting wheel were examined. This paper presents a metallographic examination of the tungsten plasma-facing units as well as technical studies and the characterization on machining of tungsten and alternative brazing joints.

  6. TOPICA/TORIC integration for self-consistent antenna and plasma analysis

    NASA Astrophysics Data System (ADS)

    Maggiora, Riccardo; Lancellotti, Vito; Milanesio, Daniele; Kyrytsya, Volodymyr; Vecchi, Giuseppe; Bonoli, Paul T.; Wright, John C.

    2006-10-01

    TOPICA [1] is a numerical suite conceived for prediction and analysis of plasma-facing antennas. It can handle real-life 3D antenna geometries (with housing, Faraday screen, etc.) as well as a realistic plasma model, including measured density and temperature profiles. TORIC [2] solves the finite Larmor radius wave equations in the ICRF regime in arbitrary axisymmetric toroidal plasmas. Due to the approach followed in developing TOPICA (i.e. the formal splitting of the problem in the vacuum region around the antenna and the plasma region inside the toroidal chamber), the code lends itself to handle toroidal plasmas, provided TORIC is run independently to yield the plasma surface admittance tensorsY (m,m',n). The latter enter directly into the integral equations solved by TOPICA, thus allowing a far more accurate plasma description that accounts for curvature effects. TOPICA outputs comprise, among others, the EM fields in front of the plasma: these can in turn be input to TORIC, in order to self-consistently determine the EM field propagation in the plasma. In this work, we report on the theory underlying the TOPICA/TORIC integration and the ongoing evolution of the two codes. [1] V. Lancellotti et al., Nucl. Fusion, 46 (2006) S476 [2] M. Brambilla, Plasma Phys. Contr. Fusion (1999) 41 1

  7. Biologically Complex Planar Cell Plasma Membranes Supported on Polyelectrolyte Cushions Enhance Transmembrane Protein Mobility and Retain Native Orientation.

    PubMed

    Liu, Han-Yuan; Chen, Wei-Liang; Ober, Christopher K; Daniel, Susan

    2018-01-23

    Reconstituted supported lipid bilayers (SLB) are widely used as in vitro cell-surface models because they are compatible with a variety of surface-based analytical techniques. However, one of the challenges of using SLBs as a model of the cell surface is the limited complexity in membrane composition, including the incorporation of transmembrane proteins and lipid diversity that may impact the activity of those proteins. Additionally, it is challenging to preserve the transmembrane protein native orientation, function, and mobility in SLBs. Here, we leverage the interaction between cell plasma membrane vesicles and polyelectrolyte brushes to create planar bilayers from cell plasma membrane vesicles that have budded from the cell surface. This approach promotes the direct incorporation of membrane proteins and other species into the planar bilayer without using detergent or reconstitution and preserves membrane constituents. Furthermore, the structure of the polyelectrolyte brush serves as a cushion between the planar bilayer and rigid supporting surface, limiting the interaction of the cytosolic domains of membrane proteins with this surface. Single particle tracking was used to analyze the motion of GPI-linked yellow fluorescent proteins (GPI-YFP) and neon-green fused transmembrane P2X2 receptors (P2X2-neon) and shows that this platform retains over 75% mobility of multipass transmembrane proteins in its native membrane environment. An enzyme accessibility assay confirmed that the protein orientation is preserved and results in the extracellular domain facing toward the bulk phase and the cytosolic side facing the support. Because the platform presented here retains the complexity of the cell plasma membrane and preserves protein orientation and mobility, it is a better representative mimic of native cell surfaces, which may find many applications in biological assays aimed at understanding cell membrane phenomena.

  8. To Demonstrate an Integrated Solution for Plasma-Material Interfaces Compatible with an Optimized Core Plasma

    NASA Astrophysics Data System (ADS)

    Goldston, Robert; Brooks, Jeffrey; Hubbard, Amanda; Leonard, Anthony; Lipschultz, Bruce; Maingi, Rajesh; Ulrickson, Michael; Whyte, Dennis

    2009-11-01

    The plasma facing components in a Demo reactor will face much more extreme boundary plasma conditions and operating requirements than any present or planned experiment. These include 1) Power density a factor of four or more greater than in ITER, 2) Continuous operation resulting in annual energy and particle throughput 100-200 times larger than ITER, 3) Elevated surface operating temperature for efficient electricity production, 4) Tritium fuel cycle control for safety and breeding requirements, and 5) Steady state plasma confinement and control. Consistent with ReNeW Thrust 12, design options are being explored for a new moderate-scale facility to assess core-edge interaction issues and solutions. Key desired features include high power density, sufficient pulse length and duty cycle, elevated wall temperature, steady-state control of an optimized core plasma, and flexibility in changing boundary components as well as access for comprehensive measurements.

  9. Characterization and damaging law of CFC for high heat flux actively cooled plasma facing components

    NASA Astrophysics Data System (ADS)

    Chevet, G.; Martin, E.; Boscary, J.; Camus, G.; Herb, V.; Schlosser, J.; Escourbiac, F.; Missirlian, M.

    2011-10-01

    The carbon fiber reinforced carbon composite (CFC) Sepcarb N11 has been used in the Tore Supra (TS) tokamak (Cadarache, France) as armour material for the plasma facing components. For the fabrication of the Wendelstein 7-X (W7-X) divertor (Greifswald, Germany), the NB31 material was chosen. For the fabrication of the ITER divertor, two potential CFC candidates are the NB31 and NB41 materials. In the case of Tore Supra, defects such as microcracks or debonding were found at the interface between CFC tile and copper heat sink. A mechanical characterization of the behaviour of N11 and NB31 was undertaken, allowing the identification of a damage model and finite element calculations both for flat tiles (TS and W7-X) and monoblock (ITER) armours. The mechanical responses of these CFC materials were found almost linear under on-axis tensile tests but highly nonlinear under shear tests or off-axis tensile tests. As a consequence, damage develops within the high shear-stress zones.

  10. Laboratory-Model Integrated-System FARAD Thruster

    NASA Technical Reports Server (NTRS)

    Polzin, K.A.; Best, S.; Miller, R.; Rose, M.F.; Owens, T.

    2008-01-01

    Pulsed inductive plasma accelerators are spacecraft propulsion devices in which energy is stored in a capacitor and then discharged through an inductive coil. The device is electrodeless, inducing a plasma current sheet in propellant located near the face of the coil. The propellant is accelerated and expelled at a high exhaust velocity (order of 10 km/s) through the interaction of the plasma current with an induced magnetic field. The Faraday Accelerator with RF-Assisted Discharge (FARAD) thruster [1,2] is a type of pulsed inductive plasma accelerator in which the plasma is preionized by a mechanism separate from that used to form the current sheet and accelerate the gas. Employing a separate preionization mechanism in this manner allows for the formation of an inductive current sheet at much lower discharge energies and voltages than those found in previous pulsed inductive accelerators like the Pulsed Inductive Thruster (PIT). In a previous paper [3], the authors presented a basic design for a 100 J/pulse FARAD laboratory-version thruster. The design was based upon guidelines and performance scaling parameters presented in Refs. [4, 5]. In this paper, we expand upon the design presented in Ref. [3] by presenting a fully-assembled and operational FARAD laboratory-model thruster and addressing system and subsystem-integration issues (concerning mass injection, preionization, and acceleration) that arose during assembly. Experimental data quantifying the operation of this thruster, including detailed internal plasma measurements, are presented by the authors in a companion paper [6]. The thruster operates by first injecting neutral gas over the face of a flat, inductive acceleration coil and at some later time preionizing the gas. Once the gas is preionized current is passed through the acceleration coil, inducing a plasma current sheet in the propellant that is accelerated away from the coil through electromagnetic interaction with the time-varying magnetic field. Neutral gas is injected over the face of the acceleration coil through a fast-acting valve that feeds a central distribution manifold. The thruster is designed to preionize the gas using an RF-frequency ringing signal produced by a discharging Vector Inversion Generator (VIG). The acceleration stage consists of a multiple-turn, multiple-strand spiral induction coil (see Fig. 1, left panel) and is designed for operation at discharge energies on the order of 100 J/pulse. Several different pulsed power train modules can be used to drive current through the acceleration coil. One such power train is based upon the Bernardes and Merryman circuit topology, which restricts voltage reversal on the capacitor banks and can be clamped to eliminate current reversal in the coil. A second option is a pulse-compression-ring power train (see Fig. 1, right panel), which takesa temporally broad, low current pulse and transforms it into a short, high current pulse.

  11. Graphene as a Coating for Plasma Facing Components

    NASA Astrophysics Data System (ADS)

    Navarro, Marcos; Zamiri, Marziyeh; Kulcinski, Gerald; Lagally, Max; Santarius, John

    2017-10-01

    This research explores the protection by graphene of plasma facing materials bombarded with energetic ions of helium. Few studies have shown that graphene can act as a protective layer against sputtering due to energetic ions. In the presence of such irradiation, plasma facing components (PFC's) tend to develop surface morphologies that lead to the sputtering of wall material, potentially diminishing the lifetime of the PFC's and plasma performance. Since plasmas have broad applications and the quality of transferred and grown graphene is different, we have used a chemical vapor deposition method to grow on other substrates. We have also shown that graphene can reduce changes on surface morphology due to energetic helium. After irradiation, in the case of graphene-covered tungsten, our results show that, compared to the uncovered W, graphene suppresses these morphologies that form on the surface of hot W. Using Raman spectroscopy as a diagnostic, the graphene coating shows little sign of damage after being irradiated, indicating that there is little to no sputtering of carbon impurities from the surface. We have determined that the mass losses in W have been reduced significantly, which may lead to an improved plasma performance and longer PFC lifetimes. Supported by DHS Project 2015-DN-077-ARI095 and the Grainger Foundation.

  12. Comparison of tokamak behaviour with tungsten and low-Z plasma facing materials

    NASA Astrophysics Data System (ADS)

    Philipps, V.; Neu, R.; Rapp, J.; Samm, U.; Tokar, M.; Tanabe, T.; Rubel, M.

    2000-12-01

    Graphite wall materials are used in present day fusion devices in order to optimize plasma core performance and to enable access to a large operational space. A large physics database exists for operation with these plasma facing materials, which also indicate their use in future devices with extended burn times. The radiation from carbon impurities in the edge and divertor regions strongly helps to reduce the peak power loads on the strike areas, but carbon radiation also supports the formation of MARFE instabilities which can hinder access to high densities. The main concerns with graphite are associated with its strong chemical affinity to hydrogen, which leads to chemical erosion and to the formation of hydrogen-rich carbon layers. These layers can store a significant fraction of the total tritium fuel, which might prevent the use of these materials in future tritium devices. High-Z plasma facing materials are much more advantageous in this sense, but these advantages compete with the strong poisoning of the plasma if they enter the plasma core. New promising experiences have been obtained with high-Z wall materials in several devices, about which a survey is given in this paper and which also addresses open questions for future research and development work.

  13. Modeling of material erosion and redeposition for dedicated DiMES experiments on DIII-D

    NASA Astrophysics Data System (ADS)

    Ding, R.; Abrams, T.; Chrobak, C. P.; Guo, H. Y.; Snyder, P. B.; Chan, V. S.; Rudakov, D. L.; Stangeby, P. C.; Elder, J. D.; Tskhakaya, D.; Wampler, W. R.; Kirschner, A.; McLean, A. G.

    2015-11-01

    Erosion and redeposition of plasma facing materials is a key issue for high-power, long pulse tokamak operation. A series of experiments has been carried out on DIII-D in which well-characterized samples of different materials were exposed to divertor plasma using DiMES. Such experiments provide a good benchmark for PMI codes, such as ERO. It was found that the erosion and redeposition are strongly determined by the impurity content in the plasma and sheath properties near the surface. The principal experimental results (net erosion rate and profile, net/gross erosion ratio) are reproduced by ERO simulations to within the uncertainties, indicating that the controlling physics has likely been identified. New techniques suggested by modeling such as external biasing and local gas injection for suppressing material erosion are planned to be tested in DiMES/DIII-D experiments. Work supported by US DOE DE-FC02-04ER54698, DE-AC52-07NA27344, DE-AC04-94AL85000, DE-AC52-07NA27344.

  14. Measurement and modeling of surface temperature dynamics of the NSTX liquid lithium divertor

    NASA Astrophysics Data System (ADS)

    McLean, A. G.; Gan, K. F.; Ahn, J.-W.; Gray, T. K.; Maingi, R.; Abrams, T.; Jaworski, M. A.; Kaita, R.; Kugel, H. W.; Nygren, R. E.; Skinner, C. H.; Soukhanovskii, V. A.

    2013-07-01

    Dual-band infrared (IR) measurements of the National Spherical Torus eXperiment (NSTX) Liquid Lithium Divertor (LLD) are reported that demonstrate liquid Li is more effective at removing plasma heat flux than Li-conditioned graphite. Extended dwell of the outer strike point (OSP) on the LLD caused an incrementally larger area to be heated above the Li melting point through the discharge leading to enhanced D retention and plasma confinement. Measurement of Tsurface near the OSP demonstrates a significant reduction of the LLD surface temperature compared to that of Li-coated graphite at the same major radius. Modeling of these data with a 2-D simulation of the LLD structure in the DFLUX code suggests that the structure of the LLD was successful at handling up to q⊥,peak = 5 MW/m2 inter-ELM and up to 10 MW/m2 during ELMs from its plasma-facing surface as intended, and provide an innovative method for inferring the Li layer thickness.

  15. OFF-Stagnation point testing in plasma facility

    NASA Astrophysics Data System (ADS)

    Viladegut, A.; Chazot, O.

    2015-06-01

    Reentry space vehicles face extreme conditions of heat flux when interacting with the atmosphere at hypersonic velocities. Stagnation point heat flux is normally used as a reference for Thermal Protection Material (TPS) design; however, many critical phenomena also occur at off-stagnation point. This paper adresses the implementation of an offstagnation point methodology able to duplicate in ground facility the hypersonic boundary layer over a flat plate model. The first analysis using two-dimensional (2D) computational fluid dynamics (CFD) simulations is carried out to understand the limitations of this methodology when applying it in plasma wind tunnel. The results from the testing campaign at VKI Plasmatron are also presented.

  16. Exploring magnetized liner inertial fusion with a semi-analytic model

    DOE PAGES

    McBride, Ryan D.; Slutz, Stephen A.; Vesey, Roger A.; ...

    2016-01-01

    In this study, we explore magnetized liner inertial fusion (MagLIF) [S. A. Slutz et al., Phys. Plasmas 17, 056303 (2010)] using a semi-analytic model [R. D. McBride and S. A. Slutz, Phys. Plasmas 22, 052708 (2015)]. Specifically, we present simulation results from this model that: (a) illustrate the parameter space, energetics, and overall system efficiencies of MagLIF; (b) demonstrate the dependence of radiative loss rates on the radial fraction of the fuel that is preheated; (c) explore some of the recent experimental results of the MagLIF program at Sandia National Laboratories [M. R. Gomez et al., Phys. Rev. Lett. 113,more » 155003 (2014)]; (d) highlight the experimental challenges presently facing the MagLIF program; and (e) demonstrate how increases to the preheat energy, fuel density, axial magnetic field, and drive current could affect future MagLIF performance.« less

  17. Exploring magnetized liner inertial fusion with a semi-analytic model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McBride, R. D.; Slutz, S. A.; Vesey, R. A.

    In this paper, we explore magnetized liner inertial fusion (MagLIF) [S. A. Slutz et al., Phys. Plasmas 17, 056303 (2010)] using a semi-analytic model [R. D. McBride and S. A. Slutz, Phys. Plasmas 22, 052708 (2015)]. Specifically, we present simulation results from this model that: (a) illustrate the parameter space, energetics, and overall system efficiencies of MagLIF; (b) demonstrate the dependence of radiative loss rates on the radial fraction of the fuel that is preheated; (c) explore some of the recent experimental results of the MagLIF program at Sandia National Laboratories [M. R. Gomez et al., Phys. Rev. Lett. 113,more » 155003 (2014)]; (d) highlight the experimental challenges presently facing the MagLIF program; and (e) demonstrate how increases to the preheat energy, fuel density, axial magnetic field, and drive current could affect future MagLIF performance.« less

  18. Exploring magnetized liner inertial fusion with a semi-analytic model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McBride, Ryan D.; Slutz, Stephen A.; Vesey, Roger A.

    In this study, we explore magnetized liner inertial fusion (MagLIF) [S. A. Slutz et al., Phys. Plasmas 17, 056303 (2010)] using a semi-analytic model [R. D. McBride and S. A. Slutz, Phys. Plasmas 22, 052708 (2015)]. Specifically, we present simulation results from this model that: (a) illustrate the parameter space, energetics, and overall system efficiencies of MagLIF; (b) demonstrate the dependence of radiative loss rates on the radial fraction of the fuel that is preheated; (c) explore some of the recent experimental results of the MagLIF program at Sandia National Laboratories [M. R. Gomez et al., Phys. Rev. Lett. 113,more » 155003 (2014)]; (d) highlight the experimental challenges presently facing the MagLIF program; and (e) demonstrate how increases to the preheat energy, fuel density, axial magnetic field, and drive current could affect future MagLIF performance.« less

  19. Integration of uncooled scraper elements and its diagnostics into Wendelstein 7-X

    DOE PAGES

    Fellinger, Joris; Loesser, Doug; Neilson, Hutch; ...

    2017-08-08

    The modular stellarator Wendelstein 7-X in Greifswald (Germany) successfully started operation in 2015 with short pulse limiter plasmas. In 2017, the next operation phase (OP) OP1.2 will start once 10 uncooled test divertor units (TDU) with graphite armor will be installed. The TDUs allow for plasma pulses of 10 s with 8 MW heating. OP2, allowing for steady state operation, is planned for 2020 after the TDUs will be replaced by 10 water cooled CFC armored divertors. Due to the development of plasma currents like bootstrap currents in long pulse plasmas in OP2, the plasma could hit the edge ofmore » the divertor targets which has a reduced cooling capacity compared to the central part of the target tiles. To prevent overloading of these edges, a so-called scraper element can be positioned in front of the divertor, intersecting those strike lines that would otherwise hit the divertor edges. As a result, these edges are protected but as a drawback the pumping efficiency of neutrals is also reduced. As a test an uncooled scraper element with graphite tiles will be placed in two out of ten half modules in OP1.2. A decision to install ten water cooled scraper elements for OP2 is pending on the results of this test in OP1.2. To monitor the impact of the scraper element on the plasma, Langmuir probes are integrated in the plasma facing surface, and a neutral gas manometer measures the neutral density directly behind the plasma facing surface. Moreover, IR and VIS cameras observe the plasma facing surface and thermocouples monitor the temperatures of the graphite tiles and underlying support structure. This paper describes the integration of the scraper element and its diagnostics in Wendelstein 7-X.« less

  20. Neutron irradiation effects on plasma facing materials

    NASA Astrophysics Data System (ADS)

    Barabash, V.; Federici, G.; Rödig, M.; Snead, L. L.; Wu, C. H.

    2000-12-01

    This paper reviews the effects of neutron irradiation on thermal and mechanical properties and bulk tritium retention of armour materials (beryllium, tungsten and carbon). For each material, the main properties affected by neutron irradiation are described and the specific tests of neutron irradiated armour materials under thermal shock and disruption conditions are summarized. Based on current knowledge, the expected thermal and structural performance of neutron irradiated armour materials in the ITER plasma facing components are analysed.

  1. Evaluation of runaway-electron effects on plasma-facing components for NET

    NASA Astrophysics Data System (ADS)

    Bolt, H.; Calén, H.

    1991-03-01

    Runaway electrons which are generated during disruptions can cause serious damage to plasma facing components in a next generation device like NET. A study was performed to quantify the response of NET plasma facing components to runaway-electron impact. For the determination of the energy deposition in the component materials Monte Carlo computations were performed. Since the subsurface metal structures can be strongly heated under runaway-electron impact from the computed results damage threshold values for the thermal excursions were derived. These damage thresholds are strongly dependent on the materials selection and the component design. For a carbonmolybdenum divertor with 10 and 20 mm carbon armour thickness and 1 degree electron incidence the damage thresholds are 100 MJ/m 2 and 220 MJ/m 2. The thresholds for a carbon-copper divertor under the same conditions are about 50% lower. On the first wall damage is anticipated for energy depositions above 180 MJ/m 2.

  2. Baseline high heat flux and plasma facing materials for fusion

    NASA Astrophysics Data System (ADS)

    Ueda, Y.; Schmid, K.; Balden, M.; Coenen, J. W.; Loewenhoff, Th.; Ito, A.; Hasegawa, A.; Hardie, C.; Porton, M.; Gilbert, M.

    2017-09-01

    In fusion reactors, surfaces of plasma facing components (PFCs) are exposed to high heat and particle flux. Tungsten and Copper alloys are primary candidates for plasma facing materials (PFMs) and coolant tube materials, respectively, mainly due to high thermal conductivity and, in the case of tungsten, its high melting point. In this paper, recent understandings and future issues on responses of tungsten and Cu alloys to fusion environments (high particle flux (including T and He), high heat flux, and high neutron doses) are reviewed. This review paper includes; Tritium retention in tungsten (K. Schmid and M. Balden), Impact of stationary and transient heat loads on tungsten (J.W. Coenen and Th. Loewenhoff), Helium effects on surface morphology of tungsten (Y. Ueda and A. Ito), Neutron radiation effects in tungsten (A. Hasegawa), and Copper and copper alloys development for high heat flux components (C. Hardie, M. Porton, and M. Gilbert).

  3. Plasma facing components: a conceptual design strategy for the first wall in FAST tokamak

    NASA Astrophysics Data System (ADS)

    Labate, C.; Di Gironimo, G.; Renno, F.

    2015-09-01

    Satellite tokamaks are conceived with the main purpose of developing new or alternative ITER- and DEMO-relevant technologies, able to contribute in resolving the pending issues about plasma operation. In particular, a high criticality needs to be associated to the design of plasma facing components, i.e. first wall (FW) and divertor, due to physical, topological and thermo-structural reasons. In such a context, the design of the FW in FAST fusion plant, whose operational range is close to ITER’s one, takes place. According to the mission of experimental satellites, the FW design strategy, which is presented in this paper relies on a series of innovative design choices and proposals with a particular attention to the typical key points of plasma facing components design. Such an approach, taking into account a series of involved physical constraints and functional requirements to be fulfilled, marks a clear borderline with the FW solution adopted in ITER, in terms of basic ideas, manufacturing aspects, remote maintenance procedure, manifolds management, cooling cycle and support system configuration.

  4. Commissioning and experimental validation of SST-1 plasma facing components

    NASA Astrophysics Data System (ADS)

    Paravastu, Yuvakiran; Raval, Dilip; Khan, Ziauddin; Patel, Hitesh; Biswas, Prabal; Parekh, Tejas; George, Siju; Santra, Prosenjit; Ramesh, Gattu; ArunPrakash, A.; Thankey, Prashant; Semwal, Pratibha; Dhanani, Kalpeshkumar R.; Jaiswal, Snehal; Chauhan, Pradeep; Pradhan, Subrata

    2017-04-01

    Plasma facing components of SST-1 are designed to withstand an input heat load of 1.0 MW/m2. They protect vacuum vessel, auxiliary heating source i.e. RF antennas, NBI and other in-vessel diagnostic from the plasma particles and high radiative heat loads. PFC’s are positioned symmetric to mid-plane to accommodate with circular, single and double null configuration. Graphite is used as plasma facing material, back made of copper alloy and SS cooling/baking tubes are brazed on copper alloy back plates for efficient heat removal of incident heat flux. Benchmarking of PFC assembly was first carried out in prototype vacuum vessel of SST-1 to develop understanding and methodology of co-ordinate measurements. Based on such hands-on-experience, the final assembly of PFC’s in vacuum vessel of SST-1 was carried out. Initially, PFC’s are to be baked at 250 °C for wall conditioning followed with cooling for heat removal of incident heat flux during long pulse plasma operation. For this purpose, the supply and return headers are designed and installed inside the vacuum vessel in such a way that it will cater water as well as hot nitrogen gas depending up on the cycle. This paper will discuss the successful installation of PFC’s and its plasma operation respecting all design criteria.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaita, Robert; Boyle, Dennis; Gray, Timothy

    Liquid metal walls have been proposed to address the first wall challenge for fusion reactors. The Lithium Tokamak Experiment (LTX) at the Princeton Plasma Physics Laboratory (PPPL) is the first magnetic confinement device to have liquid metal plasma-facing components (PFC's) that encloses virtually the entire plasma. In the Current Drive Experiment-Upgrade (CDX-U), a predecessor to LTX at PPPL, the highest improvement in energy confinement ever observed in Ohmically-heated tokamak plasmas was achieved with a toroidal liquid lithium limiter. The LTX extends this liquid lithium PFC by using a conducting conformal shell that almost completely surrounds the plasma. By heating themore » shell, a lithium coating on the plasma-facing side can be kept liquefied. A consequence of the low-recycling conditions from liquid lithium walls is the need for efficient plasma fueling. For this purpose, a molecular cluster injector is being developed. Future plans include the installation of a neutral beam for core plasma fueling, and also ion temperature measurements using charge-exchange recombination spectroscopy. Low edge recycling is also predicted to reduce temperature gradients that drive drift wave turbulence. Gyrokinetic simulations are in progress to calculate fluctuation levels and transport for LTX plasmas, and new fluctuation diagnostics are under development to test these predictions. __________________________________________________« less

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruzic, David

    The Thermoelectric-Driven Liquid-Metal Plasma-Facing Structures (TELS) project was able to establish the experimental conditions necessary for flowing liquid metal surfaces in order to be utilized as surfaces facing fusion relevant energetic plasma flux. The work has also addressed additional developments along with progressing along the timeline detailed in the proposal. A no-cost extension was requested to conduct other relevant experiment- specifically regarding the characterization droplet ejection during energetic plasma flux impact. A specially designed trench module, which could accommodate trenches with different aspect ratios was fabricated and installed in the TELS setup and plasma gun experiments were performed. Droplet ejectionmore » was characterized using high speed image acquisition and also surface mounted probes were used to characterize the plasma. The Gantt chart below had been provided with the original proposal, indicating the tasks to be performed in the third year of funding. These tasks are listed above in the progress report outline, and their progress status is detailed below.« less

  7. Isolation of Plasma Membrane Vesicles from Mouse Placenta at Term and Measurement of System A and System β Amino Acid Transporter Activity

    PubMed Central

    Kusinski, L.C.; Jones, C.J.P.; Baker, P.N.; Sibley, C.P.; Glazier, J.D.

    2010-01-01

    Placental amino acid transport is essential for optimal fetal growth and development, with a reduced fetal provision of amino acids being implicated as a potential cause of fetal growth restriction (FGR). Understanding placental insufficiency related FGR has been aided by the development of mouse models that have features of the human disease. However, to take maximal advantage of these, methods are required to study placental function in the mouse. Here, we report a method to isolate plasma membrane vesicles from mouse placenta near-term and have used these to investigate two amino acid transporters, systems A and β, the activities of which are reduced in human placental microvillous plasma membrane (MVM) vesicles from FGR pregnancies. Plasma membrane vesicles were isolated at embryonic day 18 by a protocol involving homogenisation, MgCl2 precipitation and centrifugation. Vesicles were enriched 11.3 ± 0.5-fold in alkaline phosphatase activity as compared to initial homogenate, with minimal intracellular organelle contamination as judged by marker analyses. Cytochemistry revealed alkaline phosphatase was localised between trophoblast layers I and II, with intense reaction product deposited on the maternal-facing plasma membrane of layer II, suggesting that vesicles were derived from this trophoblast membrane. System A and system β activity in mouse placental vesicles, measured as Na+-dependent uptake of 14C-methylaminoisobutyric acid (MeAIB) and 3H-taurine respectively confirmed localisation of these transporters to the maternal-facing plasma membrane of layer II. Comparison to human placental MVM showed that system A activity was comparable at initial rate between species whilst system β activity was significantly lower in mouse. This mirrored the lower expression of TAUT observed in mouse placental vesicles. We conclude that syncytiotrophoblast layer II-derived plasma membrane vesicles can be isolated and used to examine transporter function. PMID:19954844

  8. Liquid surfaces for fusion plasma facing components—A critical review. Part I: Physics and PSI

    DOE PAGES

    Nygren, R. E.; Tabares, F. L.

    2016-12-01

    This review of the potential of robust plasma facing components (PFCs) with liquid surfaces for applications in future D/T fusion device summarizes the critical issues for liquid surfaces and research being done worldwide in confinement facilities, and supporting R&D in plasma surface interactions. In the paper are a set of questions and related criteria by which we will judge the progress and readiness of liquid surface PFCs. Part-II (separate paper) will cover R&D on the technology-oriented aspects of liquid surfaces including the liquid surfaces as integrated first walls in tritium breeding blankets, tritium retention and recovery, and safety.

  9. High-Z material erosion and its control in DIII-D carbon divertor

    DOE PAGES

    Ding, Rui; Rudakov, Dimitry L.; Stangeby, Peter C.; ...

    2017-03-16

    It is expected that high-Z materials will be used as plasma-facing components (PFCs) in future fusion devices, making the erosion of high-Z material a key issue for high-power, long pulse operation. High-Z material erosion and redeposition have been studied using tungsten and molybdenum coated samples exposed in well-diagnosed DIII-D divertor plasma discharges. By coupling dedicated experiments and modelling using the 3D Monte Carlo code ERO, the roles of sheath potential and background carbon impurities in determining high-Z material erosion are identified. Different methods suggested by modelling have been investigated to control high-Z material erosion in DIII-D experiments. The erosion ofmore » Mo and W are found to be strongly suppressed by local injection of methane and deuterium gases. The 13C deposition resulting from local 13CH 4 injection also provides information on radial transport due to E×B drifts and cross field diffusion. Finally, D 2 gas puffing is found to cause 2 local plasma perturbation, suppressing W erosion because of the lower effective sputtering yield of W at lower plasma temperature and for higher carbon concentration in the mixed surface layer.« less

  10. Real-time radiative divertor feedback control development for the NSTX-U tokamak using a vacuum ultraviolet spectrometer

    DOE PAGES

    Soukhanovskii, V. A.; Kaita, R.; Stratton, B.

    2016-08-04

    Here, a radiative divertor technique is planned for the NSTX-U tokamak to prevent excessive erosion and thermal damage of divertor plasma-facing components in H-mode plasma discharges with auxiliary heating up to 12 MW. In the radiative (partially detached) divertor, extrinsically seeded deuterium or impurity gases are used to increase plasma volumetric power and momentum losses. A real-time feedback control of the gas seeding rate is planned for discharges of up to 5 s duration. The outer divertor leg plasma electron temperature T e estimated spectroscopically in real time will be used as a control parameter. A vacuum ultraviolet spectrometer McPhersonmore » Model 251 with a fast charged-coupled device detector is developed for temperature monitoring between 5 and 30 eV, based on the Δn = 0, 1 line intensity ratios of carbon, nitrogen, or neon ion lines in the spectral range 300–1600 Å. A collisional-radiative model-based line intensity ratio will be used for relative calibration. A real-time T e-dependent signal within a characteristic divertor detachment equilibration time of ~10–15 ms is expected.« less

  11. PLASMA DEVICE

    DOEpatents

    Baker, W.R.; Brathenahl, A.; Furth, H.P.

    1962-04-10

    A device for producing a confined high temperature plasma is described. In the device the concave inner surface of an outer annular electrode is disposed concentrically about and facing the convex outer face of an inner annular electrode across which electrodes a high potential is applied to produce an electric field there between. Means is provided to create a magnetic field perpendicular to the electric field and a gas is supplied at reduced pressure in the area therebetween. Upon application of the high potential, the gas between the electrodes is ionized, heated, and under the influence of the electric and magnetic fields there is produced a rotating annular plasma disk. The ionized plasma has high dielectric constant properties. The device is useful as a fast discharge rate capacitor, in controlled thermonuclear research, and other high temperature gas applications. (AEC)

  12. Prediction of plasma-facing ICRH antenna behavior via a Finite-Element solution of coupled Integral Equations

    NASA Astrophysics Data System (ADS)

    Lancellotti, V.; Milanesio, D.; Maggiora, R.; Vecchi, G.; Kyrytsya, V.

    2005-09-01

    The demand for a predictive tool to help designing ICRH antennas for fusion experiments has driven the development of codes like ICANT, RANT3D, and the early developments and further upgrades of TOPICA code. Currently, TOPICA handles the actual geometry of ICRH antennas (with their housing, etc.) as well as a realistic plasma model, including density and temperature profiles and FLR effects. Both goals have been attained by formally splitting the problem into two parts: the vacuum region around the antenna, and the plasma region inside the toroidal chamber. Field continuity and boundary conditions allow writing a set of coupled integral equations for the unknown equivalent (current) sources; finite elements are used on a triangular-cell mesh and a linear system is obtained on application of the weighted-residual solution scheme. In the vacuum region calculations are done in the spatial domain, whereas in the plasma region a spectral (wavenumber) representation of fields and currents is adopted, thus allowing a description of the plasma by a surface impedance matrix. Thanks to this approach, any plasma model can be used in principle, and at present Brambilla's FELICE code has been employed. The natural outputs of TOPICA are the induced currents on the conductors and the electric field in front of the plasma, whence the antenna circuit parameters (impedance/scattering matrices), the radiated power and the fields (at locations other than the chamber aperture) are then obtained. An accurate model of the feeding coaxial lines is also included. This paper is precisely devoted to the description of TOPICA, whereas examples of results for real-life antennas are reported in a companion paper [1] in this proceedings.

  13. Prediction of plasma-facing ICRH antenna behavior via a Finite-Element solution of coupled Integral Equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lancellotti, V.; Milanesio, D.; Maggiora, R.

    2005-09-26

    The demand for a predictive tool to help designing ICRH antennas for fusion experiments has driven the development of codes like ICANT, RANT3D, and the early developments and further upgrades of TOPICA code. Currently, TOPICA handles the actual geometry of ICRH antennas (with their housing, etc.) as well as a realistic plasma model, including density and temperature profiles and FLR effects. Both goals have been attained by formally splitting the problem into two parts: the vacuum region around the antenna, and the plasma region inside the toroidal chamber. Field continuity and boundary conditions allow writing a set of coupled integralmore » equations for the unknown equivalent (current) sources; finite elements are used on a triangular-cell mesh and a linear system is obtained on application of the weighted-residual solution scheme. In the vacuum region calculations are done in the spatial domain, whereas in the plasma region a spectral (wavenumber) representation of fields and currents is adopted, thus allowing a description of the plasma by a surface impedance matrix. Thanks to this approach, any plasma model can be used in principle, and at present Brambilla's FELICE code has been employed. The natural outputs of TOPICA are the induced currents on the conductors and the electric field in front of the plasma, whence the antenna circuit parameters (impedance/scattering matrices), the radiated power and the fields (at locations other than the chamber aperture) are then obtained. An accurate model of the feeding coaxial lines is also included. This paper is precisely devoted to the description of TOPICA, whereas examples of results for real-life antennas are reported in a companion paper in this proceedings.« less

  14. High heat flux issues for plasma-facing components in fusion reactors

    NASA Astrophysics Data System (ADS)

    Watson, Robert D.

    1993-02-01

    Plasma facing components in tokamak fusion reactors are faced with a number of difficult high heat flux issues. These components include: first wall armor tiles, pumped limiters, diverter plates, rf antennae structure, and diagnostic probes. Peak heat fluxes are 15 - 30 MW/m2 for diverter plates, which will operate for 100 - 1000 seconds in future tokamaks. Disruption heat fluxes can approach 100,000 MW/m2 for 0.1 ms. Diverter plates are water-cooled heat sinks with armor tiles brazed on to the plasma facing side. Heat sink materials include OFHC, GlidcopTM, TZM, Mo-41Re, and niobium alloys. Armor tile materials include: carbon fiber composites, beryllium, silicon carbide, tungsten, and molybdenum. Tile thickness range from 2 - 10 mm, and heat sinks are 1 - 3 mm. A twisted tape insert is used to enhance heat transfer and increase the burnout safety margin from critical heat flux limits to 50 - 60 MW/m2 with water at 10 m/s and 4 MPa. Tests using rastered electron beams have shown thermal fatigue failures from cracks at the brazed interface between tiles and the heat sink after only 1000 cycles at 10 - 15 MW/m2. These fatigue lifetimes need to be increased an order of magnitude to meet future requirements. Other critical issues for plasma facing components include: surface erosion from sputtering and disruption erosion, eddy current forces and runaway electron impact from disruptions, neutron damage, tritium retention and release, remote maintenance of radioactive components, corrosion-erosion, and loss-of-coolant accidents.

  15. Analysis of the interaction of deuterium plasmas with tungsten in the Fuego-Nuevo II device

    NASA Astrophysics Data System (ADS)

    Ramos, Gonzalo; Castillo, Fermín; Nieto, Martín; Martínez, Marco; Rangel, José; Herrera-Velázquez, Julio

    2012-10-01

    Tungsten is one of the main candidate materials for plasma-facing components in future fusion power plants. The Fuego-Nuevo II, a plasma focus device, which can produce dense magnetized helium and deuterium plasmas, has been adapted to address plasma-facing materials questions. In this paper we present results of tungsten targets exposed to deuterium plasmas in the Fuego Nuevo II device, using different experimental conditions. The plasma generated and accelerated in the coaxial gun is expected to have, before the pinch, energies of the order of hundreds eV and velocities of the order of 40,000 m s-1. At the pinch, the ions are reported to have energies of the order of 1.5 keV at most. The samples, analysed with a scanning electron microscope (SEM) in cross section show a damage profile to depths of the order of 580 nm, which are larger than those expected for ions with 1.5 keV, and may be evidence of ion acceleration. An analysis with the SRIM (Stopping Range of Ions in Matter) package calculations is shown.

  16. New steady-state quiescent high-confinement plasma in an experimental advanced superconducting tokamak.

    PubMed

    Hu, J S; Sun, Z; Guo, H Y; Li, J G; Wan, B N; Wang, H Q; Ding, S Y; Xu, G S; Liang, Y F; Mansfield, D K; Maingi, R; Zou, X L; Wang, L; Ren, J; Zuo, G Z; Zhang, L; Duan, Y M; Shi, T H; Hu, L Q

    2015-02-06

    A critical challenge facing the basic long-pulse high-confinement operation scenario (H mode) for ITER is to control a magnetohydrodynamic (MHD) instability, known as the edge localized mode (ELM), which leads to cyclical high peak heat and particle fluxes at the plasma facing components. A breakthrough is made in the Experimental Advanced Superconducting Tokamak in achieving a new steady-state H mode without the presence of ELMs for a duration exceeding hundreds of energy confinement times, by using a novel technique of continuous real-time injection of a lithium (Li) aerosol into the edge plasma. The steady-state ELM-free H mode is accompanied by a strong edge coherent MHD mode (ECM) at a frequency of 35-40 kHz with a poloidal wavelength of 10.2 cm in the ion diamagnetic drift direction, providing continuous heat and particle exhaust, thus preventing the transient heat deposition on plasma facing components and impurity accumulation in the confined plasma. It is truly remarkable that Li injection appears to promote the growth of the ECM, owing to the increase in Li concentration and hence collisionality at the edge, as predicted by GYRO simulations. This new steady-state ELM-free H-mode regime, enabled by real-time Li injection, may open a new avenue for next-step fusion development.

  17. RECENT PROGRESS IN THE FABRICATION AND CHARACTERIZATION OF DUCTILE-PHASE-TOUGHENED TUNGSTEN LAMINATES FOR PLASMA-FACING MATERIALS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cunningham, Kevin; Odette, G Robert; Fields, Kirk A.

    2015-09-23

    A promising approach to increasing the fracture toughness of W-alloys is ductile-phase toughening (DPT). A ductile phase reinforcement in a brittle matrix increases toughness primarily by crack bridging. A W-Cu laminate was fabricated and the properties of the constituent metals were characterized along with those for the composite. Development of a design model for large-scale crack bridging continued.

  18. A successful experience of the Iranian blood transfusion organization in improving accessibility and affordability of plasma derived medicine.

    PubMed

    Chegini, Azita; Torab, Seyed Ardeshir; Pourfatollah, Ali Akbar

    2017-02-01

    Plasma is the liquid part of blood. It is estimated 21.6 million liters of plasma collect from Whole blood annually. From these plasma, 4.2 million liters transfuse, 8.1 million liters fractionate, 9.3 million liters waste. Nowadays, blood products and PDM (plasma derived medicine) consider as essential medicine in modern health care and transfusion medicine. Iranian blood transfusion organization as a non-profit organization was established in 1974 in order to centralize all blood transfusion activities from donor recruitment to distribution of blood components to hospitals. Iran is the only country in EMR region with the rate of 20-29.9 blood donations per 1000 population and reached 100% voluntary non-remunerated blood donation in 2007. RBCs and platelets demand are much more than FFPs so the IBTO was faced the surplus plasma that could cause surplus plasma wastage. Simultaneously, hospitals need more plasma derived medicine especially albumin, IVIG, factor VIII, factor IX. IBTO was faced the challenges such as Fractionators selection, Plasma volume shipment, Contract duration, Product profile, Multiple External audits, Cold chain maintenance, Transporting plasma across international borders, NAT test. To overcome plasma wastage and storage of PDM. IBTO involved toll manufacturing in 2005 and not only prevents plasma wastage but also save MOH (ministry of health) budget. Copyright © 2016. Published by Elsevier Ltd.

  19. Optical Characterization of Component Wear and Near-Field Plasma of the Hermes Thruster

    NASA Technical Reports Server (NTRS)

    Williams, George J., Jr.; Kamhawi, Hani

    2015-01-01

    Optical emission spectral (OES) data are presented which correlate trends in sputtered species and the near-field plasma with the Hall-Effect Rocket with Magnetic Shielding (HERMeS) thruster operating condition. The relative density of singly-ionized xenon (Xe II) is estimated using a collisional-radiative model. OES data were collected at three radial and several axial locations downstream of the thruster's exit plane. These data were deconvolved to show the structure for the near-field plasma as a function of thruster operating condition. The magnetic field is shown to have a much greater affect on plasma structure than the discharge voltage with the primary ionization/acceleration zone boundary being similar for all nominal operating voltages at constant power. OES measurement of sputtered boron shows that the HERMeS thruster is magnetically shielded across its operating envelope. Preliminary assessment of carbon sputtered from the keeper face suggest it increases significantly with operating voltage, but the uncertainty associated with these measurements is very high.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Filippov, A. V., E-mail: fav@triniti.ru

    The interaction of two charged point macroparticles located in Wigner–Seitz cells of simple cubic (SC), body-centered cubic (BCC), or face-centered cubic (FCC) lattices in an equilibrium plasma has been studied within the Debye approximation or, more specifically, based on the linearized Poisson–Boltzmann model. The shape of the outer boundary is shown to exert a strong influence on the pattern of electrostatic interaction between the two macroparticles, which transforms from repulsion at small interparticle distances to attraction as the interparticle distance approaches half the length of the computational cell. The macroparticle pair interaction potential in an equilibrium plasma is shown tomore » be nevertheless the Debye one and purely repulsive for likely charged macroparticles.« less

  1. Modeling of combined effects of divertor closure and advanced magnetic configuration on detachment in DIII-D by SOLPS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Si, Hang; Guo, Houyang Y.; Covele, Brent

    One of the major challenges facing the design and operation of next-step high-power steady-state fusion devices is to develop a divertor solution for handling power exhaust, while ensuring acceptable divertor target plate erosion, which necessitates access to divertor detachment at relative low main plasma densities compatible with current drive and high plasma confinement. Detailed modeling with SOLPS is carried out to examine the effect of divertor closure on detachment with the normal single null divertor (SD) configuration, as well as one of the advanced divertor configurations, such as x-divertor (XD) respectively. The SOLPS modeling for a high confinement plasma in DIII-D finds that increasing divertor closure with SD reduces the upstream separatrix density at the onset of detachment frommore » $$1.18\\times {{10}^{19}}\\,{{{\\rm m}}^{-3}}$$ to $$0.88\\times {{10}^{19}}\\,{{{\\rm m}}^{-3}}$$. Furthermore, coupling the divertor closure with XD further promotes the onset of divertor detachment at a still lower upstream separatrix density, down to the value of $$0.67\\times {{10}^{19}}\\,{{{\\rm m}}^{-3}}$$, thus, showing that divertor closure and advanced magnetic configuration can work synergistically to facilitate divertor detachment.« less

  2. Modeling of combined effects of divertor closure and advanced magnetic configuration on detachment in DIII-D by SOLPS

    DOE PAGES

    Si, Hang; Guo, Houyang Y.; Covele, Brent; ...

    2018-04-04

    One of the major challenges facing the design and operation of next-step high-power steady-state fusion devices is to develop a divertor solution for handling power exhaust, while ensuring acceptable divertor target plate erosion, which necessitates access to divertor detachment at relative low main plasma densities compatible with current drive and high plasma confinement. Detailed modeling with SOLPS is carried out to examine the effect of divertor closure on detachment with the normal single null divertor (SD) configuration, as well as one of the advanced divertor configurations, such as x-divertor (XD) respectively. The SOLPS modeling for a high confinement plasma in DIII-D finds that increasing divertor closure with SD reduces the upstream separatrix density at the onset of detachment frommore » $$1.18\\times {{10}^{19}}\\,{{{\\rm m}}^{-3}}$$ to $$0.88\\times {{10}^{19}}\\,{{{\\rm m}}^{-3}}$$. Furthermore, coupling the divertor closure with XD further promotes the onset of divertor detachment at a still lower upstream separatrix density, down to the value of $$0.67\\times {{10}^{19}}\\,{{{\\rm m}}^{-3}}$$, thus, showing that divertor closure and advanced magnetic configuration can work synergistically to facilitate divertor detachment.« less

  3. Modeling of combined effects of divertor closure and advanced magnetic configuration on detachment in DIII-D by SOLPS

    NASA Astrophysics Data System (ADS)

    Si, H.; Guo, H. Y.; Covele, B.; Leonard, A. W.; Watkins, J. G.; Thomas, D.; Ding, R.

    2018-05-01

    One of the major challenges facing the design and operation of next-step high-power steady-state fusion devices is to develop a divertor solution for handling power exhaust, while ensuring acceptable divertor target plate erosion, which necessitates access to divertor detachment at relative low main plasma densities compatible with current drive and high plasma confinement. Detailed modeling with SOLPS is carried out to examine the effect of divertor closure on detachment with the normal single null divertor (SD) configuration, as well as one of the advanced divertor configurations, such as x-divertor (XD) respectively. The SOLPS modeling for a high confinement plasma in DIII-D finds that increasing divertor closure with SD reduces the upstream separatrix density at the onset of detachment from 1.18× {{10}19} {{m}-3} to 0.88× {{10}19} {{m}-3} . Moreover, coupling the divertor closure with XD further promotes the onset of divertor detachment at a still lower upstream separatrix density, down to the value of 0.67× {{10}19} {{m}-3} , thus, showing that divertor closure and advanced magnetic configuration can work synergistically to facilitate divertor detachment.

  4. Erosion and re-deposition of lithium and boron coatings under high-flux plasma bombardment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abrams, Tyler Wayne

    2015-01-01

    Lithium and boron coatings are applied to the walls of many tokamaks to enhance performance and protect the underlying substrates. Li and B-coated high-Z substrates are planned for use in NSTX-U and are a candidate plasma-facing component (PFC) for DEMO. However, previous measurements of Li evaporation and thermal sputtering on low-flux devices indicate that the Li temperature permitted on such devices may be unacceptably low. Thus it is crucial to characterize gross and net Li erosion rates under high-flux plasma bombardment. Additionally, no quantitative measurements have been performed of the erosion rate of a boron-coated PFC during plasma bombardment. Amore » realistic model for the compositional evolution of a Li layer under D bombardment was developed that incorporates adsorption, implantation, and diffusion. A model was developed for temperature-dependent mixed-material Li-D erosion that includes evaporation, physical sputtering, chemical sputtering, preferential sputtering, and thermal sputtering. The re-deposition fraction of a Li coating intersecting a linear plasma column was predicted using atomic physics information and by solving the Li continuity equation. These models were tested in the Magnum-PSI linear plasma device at ion fluxes of 10^23-10^24 m^-2 s^-1 and Li surface temperatures less than 800 degrees C. Li erosion was measured during bombardment with a neon plasma that will not chemically react with Li and the results agreed well with the erosion model. Next the ratio of the total D fluence to the areal density of the Li coating was varied to quantify differences in Li erosion under D plasma bombardment as a function of the D concentration. The ratio of D/Li atoms was calculated using the results of MD simulations and good agreement is observed between measurements and the predictions of the mixed-material erosion model. Li coatings are observed to disappear from graphite much faster than from TZM Mo, indicating that fast Li diffusion into the bulk graphite substrate occurred, as predicted. Li re-deposition fractions very close to unity are observed in Magnum-PSI, as predicted by modeling. Finally, predictions of Li coating lifetimes in the NSTX-U divertor are calculated. The gross erosion rate of boron coatings was also measured for the first time in a high-flux plasma device.« less

  5. Benchmarking atomic physics models for magnetically confined fusion plasma physics experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    May, M.J.; Finkenthal, M.; Soukhanovskii, V.

    In present magnetically confined fusion devices, high and intermediate {ital Z} impurities are either puffed into the plasma for divertor radiative cooling experiments or are sputtered from the high {ital Z} plasma facing armor. The beneficial cooling of the edge as well as the detrimental radiative losses from the core of these impurities can be properly understood only if the atomic physics used in the modeling of the cooling curves is very accurate. To this end, a comprehensive experimental and theoretical analysis of some relevant impurities is undertaken. Gases (Ne, Ar, Kr, and Xe) are puffed and nongases are introducedmore » through laser ablation into the FTU tokamak plasma. The charge state distributions and total density of these impurities are determined from spatial scans of several photometrically calibrated vacuum ultraviolet and x-ray spectrographs (3{endash}1600 {Angstrom}), the multiple ionization state transport code transport code (MIST) and a collisional radiative model. The radiative power losses are measured with bolometery, and the emissivity profiles were measured by a visible bremsstrahlung array. The ionization balance, excitation physics, and the radiative cooling curves are computed from the Hebrew University Lawrence Livermore atomic code (HULLAC) and are benchmarked by these experiments. (Supported by U.S. DOE Grant No. DE-FG02-86ER53214 at JHU and Contract No. W-7405-ENG-48 at LLNL.) {copyright} {ital 1999 American Institute of Physics.}« less

  6. Flexible Al-doped ZnO films grown on PET substrates using linear facing target sputtering for flexible OLEDs

    NASA Astrophysics Data System (ADS)

    Jeong, Jin-A.; Shin, Hyun-Su; Choi, Kwang-Hyuk; Kim, Han-Ki

    2010-11-01

    We report the characteristics of flexible Al-doped zinc oxide (AZO) films prepared by a plasma damage-free linear facing target sputtering (LFTS) system on PET substrates for use as a flexible transparent conducting electrode in flexible organic light-emitting diodes (OLEDs). The electrical, optical and structural properties of LFTS-grown flexible AZO electrodes were investigated as a function of dc power. We obtained a flexible AZO film with a sheet resistance of 39 Ω/squ and an average transmittance of 84.86% in the visible range although it was sputtered at room temperature without activation of the Al dopant. Due to the effective confinement of the high-density plasma between the facing AZO targets, the AZO film was deposited on the PET substrate without plasma damage and substrate heating caused by bombardment of energy particles. Moreover, the flexible OLED fabricated on the AZO/PET substrate showed performance similar to the OLED fabricated on a ITO/PET substrate in spite of a lower work function. This indicates that LFTS is a promising plasma damage-free and low-temperature sputtering technique for deposition of flexible and indium-free AZO electrodes for use in cost-efficient flexible OLEDs.

  7. Power handling of a segmented bulk W tile for JET under realistic plasma scenarios

    NASA Astrophysics Data System (ADS)

    Jet-Efda Contributors Mertens, Ph.; Coenen, J. W.; Eich, T.; Huber, A.; Jachmich, S.; Nicolai, D.; Riccardo, V.; Senik, K.; Samm, U.

    2011-08-01

    A solid tungsten divertor row has been designed for JET in the frame of the ITER-like Wall project (ILW). The plasma-facing tiles are segmented in four stacks of tungsten lamellae oriented in the toroidal direction. Earlier estimations of the expected tile performance were carried out mostly for engineering purposes, to compare the permissible heat load with the power density of 7 MW/m2 originally specified for the ILW as a uniform load for 10 s.The global thermal model developed for the W modules delivers results for more realistic plasma footprints: the poloidal extension of the outer strike point was reduced from the full lamella width of 62 mm to ⩾15 mm. Model validation is given by the experimental exposure of a 1:1 prototype stack in the ion beam facility MARION (incidence ˜6°, load E ⩽ 66 MJ/m2 on the wetted surface). Spreading the deposited energy by appropriate sweeping over one or several stacks in the torus is beneficial for the tungsten lamellae and for the support structure.

  8. An Overview of Recent PISCES Program PMI Results

    NASA Astrophysics Data System (ADS)

    Tynan, George; Doerner, Russell; Abe, Shota; Baldwin, Matthew; Barton, Joseph; Chen, Renkun; Gosselin, Jordan; Hollmann, Eric; Nishijima, Daisuke; Simmonds, Michael; Wang, Yong; Yu, Jonathan

    2015-11-01

    The PISCES Program is focused on fundamental PMI studies of Be and W-based solid plasma facing components under steady-state and transient conditions. We will show results from studies in W, Be and mixed W-Be material systems. Topics of investigation include formation of near-surface nanobubbles from He plasma ion implantation, growth of W-fuzz from these bubbles in steady-state and transient conditions, D retention in Be and W and development of a D-retention model for both H/D isotope exchange and displacement damage experiments. Initial studies of PMI in displacement damaged W are also presented, showing the effect of damage and exposure temperature on D retention, D diffusion, W thermal conductivity. Be-based results include morphology evolution under high plasma flux exposure, Be erosion mechanisms, and retention in Be-based materials. Future plans and connections to fusion energy system requirements will be discussed. This work supported by grant DE-FG02-07ER54912.

  9. Design and Demonstration of a Material-Plasma Exposure Target Station for Neutron Irradiated Samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rapp, Juergen; Aaron, A. M.; Bell, Gary L.

    2015-10-20

    Fusion energy is the most promising energy source for the future, and one of the most important problems to be solved progressing to a commercial fusion reactor is the identification of plasma-facing materials compatible with the extreme conditions in the fusion reactor environment. The development of plasma–material interaction (PMI) science and the technology of plasma-facing components are key elements in the development of the next step fusion device in the United States, the so-called Fusion Nuclear Science Facility (FNSF). All of these PMI issues and the uncertain impact of the 14-MeV neutron irradiation have been identified in numerous expert panelmore » reports to the fusion community. The 2007 Greenwald report classifies reactor plasma-facing materials (PFCs) and materials as the only Tier 1 issues, requiring a “. . . major extrapolation from the current state of knowledge, need for qualitative improvements and substantial development for both the short and long term.” The Greenwald report goes on to list 19 gaps in understanding and performance related to the plasma–material interface for the technology facilities needed for DEMO-oriented R&D and DEMO itself. Of the 15 major gaps, six (G7, G9, G10, G12, G13) can possibly be addressed with ORNL’s proposal of an advanced Material Plasma Exposure eXperiment. Establishing this mid-scale plasma materials test facility at ORNL is a key element in ORNL’s strategy to secure a leadership role for decades of fusion R&D. That is to say, our end goal is to bring the “signature facility” FNSF home to ORNL. This project is related to the pre-conceptual design of an innovative target station for a future Material–Plasma Exposure eXperiment (MPEX). The target station will be designed to expose candidate fusion reactor plasma-facing materials and components (PFMs and PFCs) to conditions anticipated in fusion reactors, where PFCs will be exposed to dense high-temperature hydrogen plasmas providing steady-state heat fluxes of 5–20 MW/m 2 and ion fluxes up to 10 24 m -2s -1. Since PFCs will have to withstand neutron irradiation displacement damage up to 50 dpa, the target station design must accommodate radioactive specimens (materials to be irradiated in HFIR or at SNS) to enable investigations of the impact of neutron damage on materials. Therefore, the system will have to be able to install and extract irradiated specimens using equipment and methods to avoid sample modification, control contamination, and minimize worker dose. Included in the design considerations will be an assessment of all the steps between neutron irradiation and post-exposure materials examination/characterization, as well as an evaluation of the facility hazard categorization. In particular, the factors associated with the acquisition of radioactive specimens and their preparation, transportation, experimental configuration at the plasma-specimen interface, post-plasma-exposure sample handling, and specimen preparation will be evaluated. Neutronics calculations to determine the dose rates of the samples were carried out for a large number of potential plasma-facing materials.« less

  10. Hydrogen transport behavior of metal coatings for plasma-facing components

    NASA Astrophysics Data System (ADS)

    Anderl, R. A.; Holland, D. F.; Longhurst, G. R.

    1990-12-01

    Plasma-facing components for experimental and commercial fusion reactor studies may include cladding or coatings of refractory metals like tungsten on metallic structural substrates such as copper, vanadium alloys and austenitic stainless steel. Issues of safety and fuel economy include the potential for inventory buildup and permeation of tritium implanted into the plasma-facing surface. This paper reports on laboratory-scale studies with 3 keV D +3 ion beams to investigate the hydrogen transport behavior in tungsten coatings on substrates of copper. These experiments entailed measurements of the deuterium re-emission and permeation rates for tungsten, copper, and tungsten-coated copper specimens at temperatures ranging from 638 to 825 K and implanting particle fluxes of approximately 5 × 10 19 D/m 2 s. Diffusion constants and surface recombination coefficients with enhancement factors due to sputtering were obtained from these measurements. These data may be used in calculations to estimate permeation rates and inventory buildups for proposed diverter designs.

  11. Non-uniform Erosion and Surface Evolution of Plasma-Facing Materials for Electric Propulsion

    NASA Astrophysics Data System (ADS)

    Matthes, Christopher Stanley Rutter

    A study regarding the surface evolution of plasma-facing materials is presented. Experimental efforts were performed in the UCLA Pi Facility, designed to explore the physics of plasma-surface interactions. The influence of micro-architectured surfaces on the effects of plasma sputtering is compared with the response of planar samples. Ballistic deposition of sputtered atoms as a result of geometric re-trapping is observed. This provides a self-healing mechanism of micro-architectured surfaces during plasma exposure. This result is quantified using a QCM to demonstrate the evolution of surface features and the corresponding influence on the instantaneous sputtering yield. The sputtering yield of textured molybdenum samples exposed to 300 eV Ar plasma is found to be roughly 1 of the 2 corresponding value of flat samples, and increases with ion fluence. Mo samples exhibited a sputtering yield initially as low as 0.22+/-8%, converging to 0.4+/-8% at high fluence. Although the yield is dependent on the initial surface structure, it is shown to be transient, reaching a steady-state value that is independent of initial surface conditions. A continuum model of surface evolution resulting from sputtering, deposition and surface diffusion is also derived to resemble the damped Kuramoto-Sivashinsky (KS) equation of non-linear dynamics. Linear stability analysis of the evolution equation provides an estimate of the selected wavelength, and its dependence on the ion energy and angle of incidence. The analytical results are confirmed by numerical simulations of the equation with a Fast Fourier Transform method. It is shown that for an initially flat surface, small perturbations lead to the evolution of a selected surface pattern that has nano- scale wavelength. When the surface is initially patterned by other means, the final resulting pattern is a competition between the "templated" pattern and the "self-organized" structure. Potential future routes of research are also discussed, corresponding to a design analysis of the current experimental study.

  12. New oxidation-resistant tungsten alloys for use in the nuclear fusion reactors

    NASA Astrophysics Data System (ADS)

    Litnovsky, A.; Wegener, T.; Klein, F.; Linsmeier, Ch; Rasinski, M.; Kreter, A.; Tan, X.; Schmitz, J.; Coenen, J. W.; Mao, Y.; Gonzalez-Julian, J.; Bram, M.

    2017-12-01

    Smart tungsten-based alloys are under development as plasma-facing components for a future fusion power plant. Smart alloys are planned to adjust their properties depending on environmental conditions: acting as a sputter-resistant plasma-facing material during plasma operation and suppressing the sublimation of radioactive tungsten oxide in case of an accident on the power plant. New smart alloys containing yttrium are presently in the focus of research. Thin film smart alloys are featuring an remarkable 105-fold suppression of mass increase due to an oxidation as compared to that of pure tungsten at 1000 °C. Newly developed bulk smart tungsten alloys feature even better oxidation resistance compared to that of thin films. First plasma test of smart alloys under DEMO-relevant conditions revealed the same mass removal as for pure tungsten due to sputtering by plasma ions. Exposed smart alloy samples demonstrate the superior oxidation performance as compared to tungsten-chromium-titanium systems developed earlier.

  13. Limiter

    DOEpatents

    Cohen, Samuel A.; Hosea, Joel C.; Timberlake, John R.

    1986-01-01

    A limiter with a specially contoured front face accommodates the various power scrape-off distances .lambda..sub.p, which depend on the parallel velocity, V.sub..parallel., of the impacting particles. The front face of the limiter (the plasma-side face) is flat with a central indentation. In addition, the limiter shape is cylindrically symmetric so that the limiter can be rotated for greater heat distribution.

  14. Response of plasma facing components in Tokamaks due to intense energy deposition using Particle-In-Cell (PIC) methods

    NASA Astrophysics Data System (ADS)

    Genco, Filippo

    Damage to plasma-facing components (PFC) due to various plasma instabilities is still a major concern for the successful development of fusion energy and represents a significant research obstacle in the community. It is of great importance to fully understand the behavior and lifetime expectancy of PFC under both low energy cycles during normal events and highly energetic events as disruptions, Edge-Localized Modes (ELM), Vertical Displacement Events (VDE), and Run-away electron (RE). The consequences of these high energetic dumps with energy fluxes ranging from 10 MJ/m2 up to 200 MJ/m 2 applied in very short periods (0.1 to 5 ms) can be catastrophic both for safety and economic reasons. Those phenomena can cause a) large temperature increase in the target material b) consequent melting, evaporation and erosion losses due to the extremely high heat fluxes c) possible structural damage and permanent degradation of the entire bulk material with probable burnout of the coolant tubes; d) plasma contamination, transport of target material into the chamber far from where it was originally picked. The modeling of off-normal events such as Disruptions and ELMs requires the simultaneous solution of three main problems along time: a) the heat transfer in the plasma facing component b) the interaction of the produced vapor from the surface with the incoming plasma particles c) the transport of the radiation produced in the vapor-plasma cloud. In addition the moving boundaries problem has to be considered and solved at the material surface. Considering the carbon divertor as target, the moving boundaries are two since for the given conditions, carbon doesn't melt: the plasma front and the moving eroded material surface. The current solution methods for this problem use finite differences and moving coordinates system based on the Crank-Nicholson method and Alternating Directions Implicit Method (ADI). Currently Particle-In-Cell (PIC) methods are widely used for solving complex dynamics problems involving distorted plasma hydrodynamic problems and plasma physics. The PIC method solves the hydrodynamic equations solving all field equations tracking at the same time "sample particles" or pseudo-particles (representative of the much more numerous real ones) as the move under the influence of diffusion or magnetic force. The superior behavior of the PIC techniques over the more classical Lagrangian finite difference methods stands in the fact that detailed information about the particles are available at all times as well as mass and momentum transport values are constantly provided. This allows with a relative small number of particles to well describe the behavior of plasma even in presence of highly distorted flows without losing accuracy. The radiation transport equation is solved at each time step calculating for each cell the opacity and emissivity coefficients. Photon radiation continuum and line fluxes are also calculated per the entire domain and provide useful information for the entire energetic calculation of the system which in the end provides the total values of erosion and lifetime of the target material. In this thesis, a new code named HEIGHTS-PIC code has been created and modified using a new approach of the PIC technique to solve the three physics problems involved integrating each of them as a continuum providing insight on the plasma behavior, evolution along time and physical understanding of the very complex phenomena taking place. The results produced with the models are compared with the well-known and benchmarked HEIGHTS package and also with existing experimental results especially produced in Russia at the TRINITI facility. Comparisons with LASER experiments are also discussed.

  15. Fuel Retention Improvement at High Temperatures in Tungsten-Uranium Dioxide Dispersion Fuel Elements by Plasma-Spray Cladding

    NASA Technical Reports Server (NTRS)

    Grisaffe, Salvatore J.; Caves, Robert M.

    1964-01-01

    An investigation was undertaken to determine the feasibility of depositing integrally bonded plasma-sprayed tungsten coatings onto 80-volume-percent tungsten - 20-volume-percent uranium dioxide composites. These composites were face clad with thin tungsten foil to inhibit uranium dioxide loss at elevated temperatures, but loss at the unclad edges was still significant. By preheating the composite substrates to approximately 3700 degrees F in a nitrogen environment, metallurgically bonded tungsten coatings could be obtained directly by plasma spraying. Furthermore, even though these coatings were thin and somewhat porous, they greatly inhibited the loss of uranium dioxide. For example, a specimen that was face clad but had no edge cladding lost 5.8 percent uranium dioxide after 2 hours at 4750 dgrees F in flowing hydrogen. A similar specimen with plasma-spray-coated edges, however, lost only 0.75 percent uranium dioxide under the same testing conditions.

  16. High heat-flux self-rotating plasma-facing component: Concept and loading test in TEXTOR

    NASA Astrophysics Data System (ADS)

    Terra, A.; Sergienko, G.; Hubeny, M.; Huber, A.; Mertens, Ph.; Philipps, V.; The Textor Team

    2015-08-01

    This contribution reports on the concept of a circular self-rotating and temperature self-stabilising plasma-facing component (PFC), and test of a related prototype in TEXTOR tokamak. This PFC uses the Lorentz force induced by plasma current and magnet field (J × B) to create a torque applied on metallic discs which produce a rotational movement. Additional thermionic current, present at high operation temperatures, brings additional temperature stabilisation ability. This self-rotating disk limiter was exposed to plasma in the TEXTOR tokamak under different radial positions to vary the heat flux. This disk structure shows the interesting ability to stabilise its maximum temperature through the fact that the self-induced rotation is modulated by the thermal emission current. It was observed that the rotation speed increased following both the current collected by the limiter, and the temperature of the tungsten disks.

  17. Modeling of large amplitude plasma blobs in three-dimensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Angus, Justin R.; Umansky, Maxim V.

    2014-01-15

    Fluctuations in fusion boundary and similar plasmas often have the form of filamentary structures, or blobs, that convectively propagate radially. This may lead to the degradation of plasma facing components as well as plasma confinement. Theoretical analysis of plasma blobs usually takes advantage of the so-called Boussinesq approximation of the potential vorticity equation, which greatly simplifies the treatment analytically and numerically. This approximation is only strictly justified when the blob density amplitude is small with respect to that of the background plasma. However, this is not the case for typical plasma blobs in the far scrape-off layer region, where themore » background density is small compared to that of the blob, and results obtained based on the Boussinesq approximation are questionable. In this report, the solution of the full vorticity equation, without the usual Boussinesq approximation, is proposed via a novel numerical approach. The method is used to solve for the evolution of 2D and 3D plasma blobs in a regime where the Boussinesq approximation is not valid. The Boussinesq solution under predicts the cross field transport in 2D. However, in 3D, for parameters typical of current tokamaks, the disparity between the radial cross field transport from the Boussinesq approximation and full solution is virtually non-existent due to the effects of the drift wave instability.« less

  18. Electromagnetic Torque in Tokamaks with Toroidal Asymmetries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Logan, Nikolas Christopher

    2015-01-01

    Lithium and boron coatings are applied to the walls of many tokamaks to enhance performance and protect the underlying substrates. Li and B-coated high-Z substrates are planned for use in NSTX-U and are a candidate plasma-facing component (PFC) for DEMO. However, previous measurements of Li evaporation and thermal sputtering on low-flux devices indicate that the Li temperature permitted on such devices may be unacceptably low. Thus it is crucial to characterize gross and net Li erosion rates under high-flux plasma bombardment. Additionally, no quantitative measurements have been performed of the erosion rate of a boron-coated PFC during plasma bombardment. Amore » realistic model for the compositional evolution of a Li layer under D bombardment was developed that incorporates adsorption, implantation, and diffusion. A model was developed for temperature-dependent mixed-material Li-D erosion that includes evaporation, physical sputtering, chemical sputtering, preferential sputtering, and thermal sputtering. The re-deposition fraction of a Li coating intersecting a linear plasma column was predicted using atomic physics information and by solving the Li continuity equation. These models were tested in the Magnum-PSI linear plasma device at ion fluxes of 10^23-10^24 m^-2 s^-1 and Li surface temperatures less than 800 degrees C. Li erosion was measured during bombardment with a neon plasma that will not chemically react with Li and the results agreed well with the erosion model. Next the ratio of the total D fluence to the areal density of the Li coating was varied to quantify differences in Li erosion under D plasma bombardment as a function of the D concentration. The ratio of D/Li atoms was calculated using the results of MD simulations and good agreement is observed between measurements and the predictions of the mixed-material erosion model. Li coatings are observed to disappear from graphite much faster than from TZM Mo, indicating that fast Li diffusion into the bulk graphite substrate occurred, as predicted. Li re-deposition fractions very close to unity are observed in Magnum-PSI, as predicted by modeling. Finally, predictions of Li coating lifetimes in the NSTX-U divertor are calculated. The gross erosion rate of boron coatings was also measured for the first time in a high-flux plasma device.« less

  19. Using the Tritium Plasma Experiment to evaluate ITER PFC safety

    NASA Astrophysics Data System (ADS)

    Longhurst, Glen R.; Anderl, Robert A.; Bartlit, John R.; Causey, Rion A.; Haines, John R.

    The Tritium Plasma Experiment was assembled at Sandia National Laboratories, Livermore to investigate interactions between dense plasmas at low energies and plasma-facing component materials. This apparatus has the unique capability of replicating plasma conditions in a tokamak divertor with particle flux densities of 2 x 10(exp 19) ions/((sq cm)(s)) and a plasma temperature of about 15 eV using a plasma that includes tritium. With the closure of the Tritium Research Laboratory at Livermore, the experiment was moved to the Tritium Systems Test Assembly facility at Los Alamos National Laboratory. An experimental program has been initiated there using the Tritium Plasma Experiment to examine safety issues related to tritium in plasma-facing components, particularly the ITER divertor. Those issues include tritium retention and release characteristics, tritium permeation rates and transient times to coolant streams, surface modification and erosion by the plasma, the effects of thermal loads and cycling, and particulate production. A considerable lack of data exists in these areas for many of the materials, especially beryllium, being considered for use in ITER. Not only will basic material behavior with respect to safety issues in the divertor environment be examined, but innovative techniques for optimizing performance with respect to tritium safety by material modification and process control will be investigated. Supplementary experiments will be carried out at the Idaho National Engineering Laboratory and Sandia National Laboratory to expand and clarify results obtained on the Tritium Plasma Experiment.

  20. Investigation of Plasma Facing Components in Plasma Focus Operation

    NASA Astrophysics Data System (ADS)

    Roshan, M. V.; Babazadeh, A. R.; Kiai, S. M. Sadat; Habibi, H.; Mamarzadeh, M.

    2007-09-01

    Both aspects of the plasma-wall interactions, counter effect of plasma and materials, have been considered in our experiments. The AEOI plasma focus, Dena, has Filippov-type electrodes. The experimental results verify that neutron production increases using tungsten as an anode insert material, compared to the copper one. The experiments show decrement of the hardness of Aluminum targets outward the sides, from 135 to 78 in Vickers scale. The sputtering yield is about 0.0065 for deuteron energy of 50 keV.

  1. Validation of a model for investigating red cell mass changes during weightlessness

    NASA Technical Reports Server (NTRS)

    Leonard, J. I.

    1976-01-01

    The model, both the conceptual model and simulation model, provided a convenient framework on which to demonstrate the commonality between such diverse stresses as descent from altitude, red cell infusions, bed rest, and weightlessness. The results suggest that all of these stresses induce an increased blood hematocrit leading to tissue hyperoxia and eventual inhibition of the erythyocyte producing circuit until the hyperoxic condition is relieved. The erythropoietic system was acting, in these situations, as if it were an hematocrit sensor and regulator. In these terms the decreases in red cell mass during Skylab may be explained in terms of normal feedback regulation of the erythropoietic system in the face of sustained decreases in plasma colume.

  2. Tritium permeation model for plasma facing components

    NASA Astrophysics Data System (ADS)

    Longhurst, G. R.

    1992-12-01

    This report documents the development of a simplified one-dimensional tritium permeation and retention model. The model makes use of the same physical mechanisms as more sophisticated, time-transient codes such as implantation, recombination, diffusion, trapping and thermal gradient effects. It takes advantage of a number of simplifications and approximations to solve the steady-state problem and then provides interpolating functions to make estimates of intermediate states based on the steady-state solution. The model is developed for solution using commercial spread-sheet software such as Lotus 123. Comparison calculations are provided with the verified and validated TMAP4 transient code with good agreement. Results of calculations for the ITER CDA diverter are also included.

  3. Limiter

    DOEpatents

    Cohen, S.A.; Hosea, J.C.; Timberlake, J.R.

    1984-10-19

    A limiter with a specially contoured front face is provided. The front face of the limiter (the plasma-side face) is flat with a central indentation. In addition, the limiter shape is cylindrically symmetric so that the limiter can be rotated for greater heat distribution. This limiter shape accommodates the various power scrape-off distances lambda p, which depend on the parallel velocity, V/sub parallel/, of the impacting particles.

  4. High-Z plasma facing components in fusion devices: boundary conditions and operational experiences

    NASA Astrophysics Data System (ADS)

    Neu, R.

    2006-04-01

    In present day fusion devices optimization of the performance and experimental freedom motivates the use of low-Z plasma facing materials (PFMs). However, in a future fusion reactor, for economic reasons, a sufficient lifetime of the first wall components is essential. Additionally, tritium retention has to be small to meet safety requirements. Tungsten appears to be the most realistic material choice for reactor plasma facing components (PFCs) because it exhibits the lowest erosion. But besides this there are a lot of criteria which have to be fulfilled simultaneously in a reactor. Results from present day devices and from laboratory experiments confirm the advantages of high-Z PFMs but also point to operational restrictions, when using them as PFCs. These are associated with the central impurity concentration, which is determined by the sputtering yield, the penetration of the impurities and their transport within the confined plasma. The restrictions could exclude successful operation of a reactor, but concomitantly there exist remedies to ameliorate their impact. Obviously some price has to be paid in terms of reduced performance but lacking of materials or concepts which could substitute high-Z PFCs, emphasis has to be put on the development and optimization of reactor-relevant scenarios which incorporate the experiences and measures.

  5. Studies of RF sheaths and diagnostics on IShTAR

    NASA Astrophysics Data System (ADS)

    Crombé, K.; Devaux, S.; D'Inca, R.; Faudot, E.; Faugel, H.; Fünfgelder, H.; Heuraux, S.; Jacquot, J.; Louche, F.; Moritz, J.; Ochoukov, R.; Tripsky, M.; Van Eester, D.; Wauters, T.; Noterdaeme, J.-M.

    2015-12-01

    IShTAR (Ion cyclotron Sheath Test ARrangement) is a linear magnetised plasma test facility for RF sheaths studies at the Max-Planck-Institut für Plasmaphysik in Garching. In contrast to a tokamak, a test stand provides more liberty to impose the parameters and gives better access for the instrumentation and antennas. The project will support the development of diagnostic methods for characterising RF sheaths and validate and improve theoretical predictions. The cylindrical vacuum vessel has a diameter of 1 m and is 1.1 m long. The plasma is created by an external cylindrical plasma source equipped with a helical antenna that has been designed to excite the m=1 helicon mode. In inductive mode, plasma densities and electron temperatures have been characterised with a planar Langmuir probe as a function of gas pressure and input RF power. A 2D array of RF compensated Langmuir probes and a spectrometer are planned. A single strap RF antenna has been designed; the plasma-facing surface is aligned to the cylindrical plasma to ease the modelling. The probes will allow direct measurements of plasma density profiles in front of the RF antenna, and thus a detailed study of the density modifications induced by RF sheaths, which influences the coupling. The RF antenna frequency has been chosen to study different plasma wave interactions: the accessible plasma density range includes an evanescent and propagative behaviour of slow or fast waves, and allows the study of the effect of the lower hybrid resonance layer.

  6. FOREWORD: 13th International Workshop on Plasma-Facing Materials and Components for Fusion Applications/1st International Conference on Fusion Energy Materials Science 13th International Workshop on Plasma-Facing Materials and Components for Fusion Applications/1st International Conference on Fusion Energy Materials Science

    NASA Astrophysics Data System (ADS)

    Jacob, Wolfgang; Linsmeier, Christian; Rubel, Marek

    2011-12-01

    The 13th International Workshop on Plasma-Facing Materials and Components (PFMC-13) jointly organized with the 1st International Conference on Fusion Energy Materials Science (FEMaS-1) was held in Rosenheim (Germany) on 9-13 May 2011. PFMC-13 is a successor of the International Workshop on Carbon Materials for Fusion Applications series. Between 1985 and 2003 ten 'Carbon Workshops' were organized in Jülich, Stockholm and Hohenkammer. Then it was time for a change and redefinition of the scope of the symposium to reflect the new requirements of ITER and the ongoing evolution in the field. Under the new name (PFMC-11), the workshop was first organized in 2006 in Greifswald, Germany and PFMC-12 took place in Jülich in 2009. Initially starting in 1985 with about 40 participants as a 1.5 day workshop, the event has continuously grown to about 220 participants at PFMC-12. Due to the joint organization with FEMaS-1, PFMC-13 set a new record with more than 280 participants. The European project Fusion Energy Materials Science, FEMaS, coordinated by the Max-Planck-Institut für Plasmaphysik (IPP), organizes and stimulates cooperative research activities which involve large-scale research facilities as well as other top-level materials characterization laboratories. Five different fields are addressed: benchmarking experiments for radiation damage modelling, the application of micro-mechanical characterization methods, synchrotron and neutron radiation-based techniques and advanced nanoscopic analysis based on transmission electron microscopy. All these fields need to be exploited further by the fusion materials community for timely materials solutions for a DEMO reactor. In order to integrate these materials research fields, FEMaS acted as a co-organizer for the 2011 workshop and successfully introduced a number of participants from research labs and universities into the PFMC community. Plasma-facing materials experience particularly hostile conditions as they are subjected to extremely high heat loads and very high particle and neutron fluxes. They must have high thermal conductivity for efficient heat transport, high cohesive energy for low erosion by particle bombardment and low atomic number to minimize plasma cooling. These contradictory requirements make the development of plasma-facing materials one of the greatest challenges ever faced by materials scientists. The erosion of plasma-facing materials is one of the main factors influencing the operational schedule of experimental fusion reactors and future power plants. A number of materials selected for current designs cannot withstand the presently foreseen plasma scenarios of a power plant for a commercially viable period of time. Therefore, further coordinated development of plasma scenarios and materials is essential for the realization of fusion as an energy source. The design and development of plasma-facing materials requires a detailed understanding of the processes that occur when a material surface is bombarded with an intense flux of heat, particles and neutrons simultaneously. These materials-related topics are the focus of this series of workshops which has established itself as a discussion forum for experts from research institutions and industry dealing with materials for plasma-facing components in present and future thermonuclear fusion devices. During the joint conference PFMC-13/FEMaS-1 recent developments and research results in the following fields were addressed: carbon, beryllium, and tungsten based materials mixed materials erosion and redeposition high heat flux component development benchmarking of radiation damage modelling synchrotron and neutron based characterization techniques application of advanced transmission electron microscopy and micro-/nano-mechanical testing. With the approaching technical realization of ITER, the ITER-related PFMC topics are naturally the main focus of research. In this respect the start of the ITER-like wall experiment at JET is of paramount importance for our community and several presentations were devoted to this topic. The start of the experimental campaign shortly after PFMC-13/FEMaS-1 will most probably bring about many exciting new results and leaves us eagerly awaiting the next PFMC conference. Several other topics which are of significant relevance for the preparation of ITER were addressed. Among them were dust detection and analysis which is a safety concern and the behaviour of beryllium. Due to the toxicity of beryllium dust, great care has to be taken in the handling of beryllium-containing samples and, as a consequence, only a very limited number of places are available worldwide where such samples can be prepared and investigated. For a solid database and a sound understanding of beryllium and beryllium-containing mixed materials much more effort is necessary in the near future. Naturally, traditional PFMC topics such as first-wall lifetime, testing and characterization of plasma-facing components and hydrogen inventory had their appropriate share of the programme. Not to forget carbon, the nucleating material for this workshop series. Although it will, according to present planning, play only a minor role towards the realization of a DEMO reactor, it is still of importance for current machines and was covered in a large number of poster contributions. Topics receiving continuously increasing attention are those related to devices beyond ITER. Such topics are the development of advanced materials, their behaviour under high heat loads and, in particular, the consequences of neutron damage. The issue which was treated in quite a number of contributions was the simulation of neutron damage by implantation of heavy ions and its influence on hydrogen retention. This is presumably a topic which will receive continuous attention in the years to come. As a consequence of the joint organization with the FEMaS project, several presentations addressed advanced characterization techniques. Remarkable examples of 3D tomography images of plasma-facing components using x-ray- or neutron-based techniques were shown. Such methods allow non-destructive and element-resolved analyses of buried interfaces and are therefore a very promising tool for future investigations of plasma-facing components. It would be desirable that many colleagues of the FEMaS community who attended PFMC-13/FEMaS-1 for the first time would also participate in future events of this series. Thirty five invited lectures and oral contributions and 192 posters were presented by participants coming from research laboratories and industrial companies. Two hundered and eighty two researchers from 27 countries from all over the world participated in the lively and intense exchange of results and new ideas. An additional objective of the series of PFMC workshops was and is to encourage the participation of young talented scientists and to spark their interest in this field. For that reason, the workshop started on its first day with a tutorial session. Experts in their respective fields presented in total eight introductory lectures ranging from the basics of plasma-wall interactions to the engineering of plasma-facing components for ITER. Although originally intended for students and newcomers to the field, these tutorial lectures also enjoy great popularity among senior scientist and are in the meantime an indispensable ingredient and a trademark of this workshop series. The event was organized by the IPP, Garching and received substantial financial support from the European Commission through FEMaS. We are very thankful to the staff of IPP who helped with the organization. Our most cordial thanks and gratitude go to Mrs Christina Stahlberg and Mrs Jutta Koser for their help in the organization and at the front desk. Our most sincere words of appreciation go to our colleague Elmar Neitzert who was in charge of administrative organization. The present proceedings of PFMC-13/FEMaS-1 contain in total 83 peer-reviewed publications covering the contents of most of the oral presentations and of a number of poster contributions which were pre-selected by the programme committee. The papers reflect the development and actual status of the field. We thank all participants for their contributions and we particularly thank the referees for their systematic and diligent reviews of the submitted articles. It is due to their commitment and punctual return of reviews that the proceedings can appear in this relative short time after the meeting. In a meeting of the programme committee during the conferences a few changes in the committee composition were decided. Paul Coad retired and has left the programme committee. We cordially thank Paul Coad for his long-time service as a committee member and wish him the very best for the future. We are very happy that Guy Matthews (CCFE, Culham, UK) accepted the invitation to be his successor. Furthermore, to strengthen the international character of the event, it was decided to invite an additional representative from Japan to the programme committee. Noriyasu Ohno from Nagoya University accepted the invitation. To maintain close contact to the FEMaS community the programme committee further decided to invite Christian Linsmeier from IPP, Garching. Another important decision was taken: in view of the size that the event has reached it was decided to change the name from 'workshop' to 'conference'. So the next event in this series will be the PFMC-14 conference. It will be organized by FZ Jülich and most probably take place in spring 2013.

  7. Investigation of hydrogen recycling in long-duration discharges and its modification with a hot wall in the spherical tokamak QUEST

    NASA Astrophysics Data System (ADS)

    Hanada, K.; Yoshida, N.; Honda, T.; Wang, Z.; Kuzmin, A.; Takagi, I.; Hirata, T.; Oya, Y.; Miyamoto, M.; Zushi, H.; Hasegawa, M.; Nakamura, K.; Fujisawa, A.; Idei, H.; Nagashima, Y.; Watanabe, O.; Onchi, T.; Kuroda, K.; Long, H.; Watanabe, H.; Tokunaga, K.; Higashijima, A.; Kawasaki, S.; Nagata, T.; Takase, Y.; Fukuyama, A.; Mitarai, O.

    2017-12-01

    Fully non-inductive plasma maintenance was achieved by a microwave of 8.2 GHz and 40 kW for more than 1 h 55 min with a well-controlled plasma-facing wall (PFW) temperature of 393 K, using a hot wall in the middle-sized spherical tokamak QUEST, until the discharge was finally terminated by the uncontrollability of the density. The PFW was composed of atmospheric plasma-sprayed tungsten and stainless steel. The hot wall plays an essential role in reducing the amount of wall-stored hydrogen and facilitates hydrogen recycling. The behaviour of fuel hydrogen in the PFW was investigated by monitoring the injection and evacuation of hydrogen into and from the plasma-producing vessel. A fuel particle balance equation based on the presence of a hydrogen transport barrier between the deposited layer and the substrate was applied to the long-duration discharges. It was found that the model could readily predict the observed behaviour in which a higher wall temperature likely gives rise to faster wall saturation.

  8. Development of a plasma driven permeation experiment for TPE

    DOE PAGES

    Buchenauer, Dean; Kolasinski, Robert; Shimada, Masa; ...

    2014-04-18

    Experiments on retention of hydrogen isotopes (including tritium) at temperatures less than 800 ?C have been carried out in the Tritium Plasma Experiment (TPE) at Idaho National Laboratory [1,2]. To provide a direct measurement of plasma driven permeation in plasma facing materials at temperatures reaching 1000 ?C, a new TPE membrane holder has been built to hold test specimens (=1 mm in thickness) at high temperature while measuring tritium permeating through the membrane from the plasma facing side. This measurement is accomplished by employing a carrier gas that transports the permeating tritium from the backside of the membrane to ionmore » chambers giving a direct measurement of the plasma driven tritium permeation rate. Isolation of the membrane cooling and sweep gases from TPE’s vacuum chamber has been demonstrated by sealing tests performed up to 1000 ?C of a membrane holder design that provides easy change out of membrane specimens between tests. Simulations of the helium carrier gas which transports tritium to the ion chamber indicate a very small pressure drop (~700 Pa) with good flow uniformity (at 1000 sccm). Thermal transport simulations indicate that temperatures up to 1000 ?C are expected at the highest TPE fluxes.« less

  9. Design, Analysis and R&D of the EAST In-Vessel Components

    NASA Astrophysics Data System (ADS)

    Yao, Damao; Bao, Liman; Li, Jiangang; Song, Yuntao; Chen, Wenge; Du, Shijun; Hu, Qingsheng; Wei, Jing; Xie, Han; Liu, Xufeng; Cao, Lei; Zhou, Zibo; Chen, Junling; Mao, Xinqiao; Wang, Shengming; Zhu, Ning; Weng, Peide; Wan, Yuanxi

    2008-06-01

    In-vessel components are important parts of the EAST superconducting tokamak. They include the plasma facing components, passive plates, cryo-pumps, in-vessel coils, etc. The structural design, analysis and related R&D have been completed. The divertor is designed in an up-down symmetric configuration to accommodate both double null and single null plasma operation. Passive plates are used for plasma movement control. In-vessel coils are used for the active control of plasma vertical movements. Each cryo-pump can provide an approximately 45 m3/s pumping rate at a pressure of 10-1 Pa for particle exhaust. Analysis shows that, when a plasma current of 1 MA disrupts in 3 ms, the EM loads caused by the eddy current and the halo current in a vertical displacement event (VDE) will not generate an unacceptable stress on the divertor structure. The bolted divertor thermal structure with an active cooling system can sustain a load of 2 MW/m2 up to a 60 s operation if the plasma facing surface temperature is limited to 1500 °C. Thermal testing and structural optimization testing were conducted to demonstrate the analysis results.

  10. Thermal modeling of W rod armor.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nygren, Richard Einar

    2004-09-01

    Sandia has developed and tested mockups armored with W rods over the last decade and pioneered the initial development of W rod armor for International Thermonuclear Experimental Reactor (ITER) in the 1990's. We have also developed 2D and 3D thermal and stress models of W rod-armored plasma facing components (PFCs) and test mockups and are applying the models to both short pulses, i.e. edge localized modes (ELMs), and thermal performance in steady state for applications in C-MOD, DiMES testing and ITER. This paper briefly describes the 2D and 3D models and their applications with emphasis on modeling for an ongoingmore » test program that simulates repeated heat loads from ITER ELMs.« less

  11. Optimisation and characterisation of tungsten thick coatings on copper based alloy substrates

    NASA Astrophysics Data System (ADS)

    Riccardi, B.; Montanari, R.; Casadei, M.; Costanza, G.; Filacchioni, G.; Moriani, A.

    2006-06-01

    Tungsten is a promising armour material for plasma facing components of nuclear fusion reactors because of its low sputter rate and favourable thermo-mechanical properties. Among all the techniques able to realise W armours, plasma spray looks particularly attractive owing to its simplicity and low cost. The present work concerns the optimisation of spraying parameters aimed at 4-5 mm thick W coating on copper-chromium-zirconium (Cu,Cr,Zr) alloy substrates. Characterisation of coatings was performed in order to assess microstructure, impurity content, density, tensile strength, adhesion strength, thermal conductivity and thermal expansion coefficient. The work performed has demonstrated the feasibility of thick W coatings on flat and curved geometries. These coatings appear as a reliable armour for medium heat flux plasma facing component.

  12. Impact of gyro-motion and sheath acceleration on the flux distribution on rough surfaces

    NASA Astrophysics Data System (ADS)

    Schmid, K.; Mayer, M.; Adelhelm, C.; Balden, M.; Lindig, S.; ASDEX Upgrade Team

    2010-10-01

    As was already observed experimentally, the erosion of tungsten (W) coated graphite (C) tiles in ASDEX-Upgrade (AUG) exhibits regular erosion patterns on the micrometre rough surfaces whose origin is not fully understood: surfaces inclined towards the magnetic field direction show strong net W erosion while surfaces facing away from the magnetic field are shadowed from erosion and may even exhibit net W deposition. This paper presents a model which explains the observed erosion/deposition pattern. It is based on the calculation of ion trajectories dropping through the plasma sheath region to the rough surface with combined magnetic and electrical fields. The surface topography used in the calculations is taken from atomic force microscope measurement of real AUG tiles. The calculated erosion patterns are directly compared with secondary electron microscopy images of the erosion zones from the same location. The erosion on surfaces inclined towards the magnetic field is due to ions from the bulk plasma which enter the sheath gyrating along the magnetic field lines, while the deposition of W on surfaces facing away from the magnetic field is due to promptly re-deposited W that is ionized still within the magnetic pre-sheath.

  13. A Multi-ring Ionospheric Plasma Probe

    NASA Technical Reports Server (NTRS)

    Sheldon, J. W.

    1972-01-01

    An ionospheric plasma probe was constructed which consists of a long cylinder with the end facing the flow closed by an end plate made up of multiple annular rings and a center disk. A theoretical argument is given which yields the plasma potential and electron temperature in terms of known plasma parameters and the currents to the various rings of the end plate. This probe was successfully operated in an ionospheric flow simulation facility and the resulting plasma potential is in excellent agreement with the traditional Langmuir analysis (1.22 volts).

  14. Erosion resistant nozzles for laser plasma extreme ultraviolet (EUV) sources

    DOEpatents

    Kubiak, Glenn D.; Bernardez, II, Luis J.

    2000-01-04

    A gas nozzle having an increased resistance to erosion from energetic plasma particles generated by laser plasma sources. By reducing the area of the plasma-facing portion of the nozzle below a critical dimension and fabricating the nozzle from a material that has a high EUV transmission as well as a low sputtering coefficient such as Be, C, or Si, it has been shown that a significant reduction in reflectance loss of nearby optical components can be achieved even after exposing the nozzle to at least 10.sup.7 Xe plasma pulses.

  15. The Effect of Ion Energy and Substrate Temperature on Deuterium Trapping in Tungsten

    NASA Astrophysics Data System (ADS)

    Roszell, John Patrick Town

    Tungsten is a candidate plasma facing material for next generation magnetic fusion devices such as ITER and there are major operational and safety issues associated with hydrogen (tritium) retention in plasma facing components. An ion gun was used to simulate plasma-material interactions under various conditions in order to study hydrogen retention characteristics of tungsten thus enabling better predictions of hydrogen retention in ITER. Thermal Desorption Spectroscopy (TDS) was used to measure deuterium retention from ion irradiation while modelling of TDS spectra with the Tritium Migration Analysis Program (TMAP) was used to provide information about the trapping mechanisms involved in deuterium retention in tungsten. X-ray Photoelectron Spectroscopy (XPS) and Secondary Ion Mass Spectrometry (SIMS) were used to determine the depth resolved composition of specimens used for irradiation experiments. Carbon and oxygen atoms will be among the most common contaminants within ITER. C and O contamination in polycrystalline tungsten (PCW) specimens even at low levels (˜0.1%) was shown to reduce deuterium retention by preventing diffusion of deuterium into the bulk of the specimen. This diffusion barrier was also responsible for the inhibition of blister formation during irradiations at 500 K. These observations may provide possible mitigation techniques for problems associated with tritium retention and mechanical damage to plasma facing components caused by hydrogen implantation. Deuterium trapping in PCW and single crystal tungsten (SCW) was studied as a function of ion energy and substrate temperature. Deuterium retention was shown to decrease with decreasing ion energy below 100 eV/D+. Irradiation of tungsten specimens with 10 eV/D+ ions was shown to retain up to an order of magnitude less deuterium than irradiation with 500 eV/D+ ions. Furthermore, the retention mechanism for deuterium was shown to be consistent across the entire energy range studied (10-500 eV) with the shallow penetration depth of low energy ions being the major factor in the reduction in retention. A change in retention mechanism was observed as tungsten temperature during irradiation was increased from 300 to 500 K. Modelling of deuterium retention in 300 and 500 K SCW specimens revealed that two traps, 1.0 and 1.3 eV, are involved in retention for irradiations performed at 300K while a single 2.1 eV trap is present for 500 K irradiations. Experiments suggest that the 2.1 eV trap is created during irradiation of tungsten at 500 K and this process also involves the annihilation of the 1.3 and 1.0 eV traps.

  16. Simulations of thermionic suppression during tungsten transient melting experiments

    NASA Astrophysics Data System (ADS)

    Komm, M.; Tolias, P.; Ratynskaia, S.; Dejarnac, R.; Gunn, J. P.; Krieger, K.; Podolnik, A.; Pitts, R. A.; Panek, R.

    2017-12-01

    Plasma-facing components receive enormous heat fluxes under steady state and especially during transient conditions that can even lead to tungsten (W) melting. Under these conditions, the unimpeded thermionic current density emitted from the W surfaces can exceed the incident plasma current densities by several orders of magnitude triggering a replacement current which drives melt layer motion via the {\\boldsymbol{J}}× {\\boldsymbol{B}} force. However, in tokamaks, the thermionic current is suppressed by space-charge effects and prompt re-deposition due to gyro-rotation. We present comprehensive results of particle-in-cell modelling using the 2D3V code SPICE2 for the thermionic emissive sheath of tungsten. Simulations have been performed for various surface temperatures and selected inclinations of the magnetic field corresponding to the leading edge and sloped exposures. The surface temperature dependence of the escaping thermionic current and its limiting value are determined for various plasma parameters; for the leading edge geometry, the results agree remarkably well with the Takamura analytical model. For the sloped geometry, the limiting value is observed to be proportional to the thermal electron current and a simple analytical expression is proposed that accurately reproduces the numerical results.

  17. Molecular Dynamics Simulation of Hydrogen Trapping on Sigma 5 Tungsten Grain Boundaries

    NASA Astrophysics Data System (ADS)

    Al-Shalash, Aws Mohammed Taha

    Tungsten as a plasma facing material is the predominant contender for future Tokamak reactor environments. The interaction between the plasma particles and tungsten is crucial to be studied for successful usage and design of tungsten in the plasma facing components ensuring the reliability and longevity of the fusion reactors. The bombardment of the sigma 5 polycrystalline tungsten was modeled using the molecular dynamics simulation through the large-scale atomic/molecular massively parallel simulator (LAMMPS) code and Tersoff type interatomic potential. By simulating the operational conditions of the Tokamak reactors, the hydrogen trapping rate, implantation distribution, and bubble formation was investigated at various temperatures (300-1200 K) and various hydrogen incident energy (20-100 eV). The substrate's temperature increases the deflected H atoms, and increases the penetration depth for the ones that go through. As well, the lower temperature tungsten substrates retain more H atoms. Increasing the bombarded hydrogen's energy increases the trapping and retention rate and the depth of penetration. Another experiments were conducted to determine whether the Sigma5 grain boundary's (GB) location affects the trapping profiles in H. The findings are ranges from small effect on deflection rates at low H energies to no effect at high H energies. However, there is a considerable effect on shifting the trapping depth profile upward toward the surface when raising the GB closer to the surface. Hydrogen atoms are highly mobile on tungsten substrate, yet no bubble formation was witnessed.

  18. Effect of the relative shift between the electron density and temperature pedestal position on the pedestal stability in JET-ILW and comparison with JET-C

    NASA Astrophysics Data System (ADS)

    Stefanikova, E.; Frassinetti, L.; Saarelma, S.; Loarte, A.; Nunes, I.; Garzotti, L.; Lomas, P.; Rimini, F.; Drewelow, P.; Kruezi, U.; Lomanowski, B.; de la Luna, E.; Meneses, L.; Peterka, M.; Viola, B.; Giroud, C.; Maggi, C.; contributors, JET

    2018-05-01

    The electron temperature and density pedestals tend to vary in their relative radial positions, as observed in DIII-D (Beurskens et al 2011 Phys. Plasmas 18 056120) and ASDEX Upgrade (Dunne et al 2017 Plasma Phys. Control. Fusion 59 14017). This so-called relative shift has an impact on the pedestal magnetohydrodynamic (MHD) stability and hence on the pedestal height (Osborne et al 2015 Nucl. Fusion 55 063018). The present work studies the effect of the relative shift on pedestal stability of JET ITER-like wall (JET-ILW) baseline low triangularity (δ) unseeded plasmas, and similar JET-C discharges. As shown in this paper, the increase of the pedestal relative shift is correlated with the reduction of the normalized pressure gradient, therefore playing a strong role in pedestal stability. Furthermore, JET-ILW tends to have a larger relative shift compared to JET carbon wall (JET-C), suggesting a possible role of the plasma facing materials in affecting the density profile location. Experimental results are then compared with stability analysis performed in terms of the peeling-ballooning model and with pedestal predictive model EUROPED (Saarelma et al 2017 Plasma Phys. Control. Fusion). Stability analysis is consistent with the experimental findings, showing an improvement of the pedestal stability, when the relative shift is reduced. This has been ascribed mainly to the increase of the edge bootstrap current, and to minor effects related to the increase of the pedestal pressure gradient and narrowing of the pedestal pressure width. Pedestal predictive model EUROPED shows a qualitative agreement with experiment, especially for low values of the relative shift.

  19. Advanced simulation of mixed-material erosion/evolution and application to low and high-Z containing plasma facing components

    NASA Astrophysics Data System (ADS)

    Brooks, J. N.; Hassanein, A.; Sizyuk, T.

    2013-07-01

    Plasma interactions with mixed-material surfaces are being analyzed using advanced modeling of time-dependent surface evolution/erosion. Simulations use the REDEP/WBC erosion/redeposition code package coupled to the HEIGHTS package ITMC-DYN mixed-material formation/response code, with plasma parameter input from codes and data. We report here on analysis for a DIII-D Mo/C containing tokamak divertor. A DIII-D/DiMES probe experiment simulation predicts that sputtered molybdenum from a 1 cm diameter central spot quickly saturates (˜4 s) in the 5 cm diameter surrounding carbon probe surface, with subsequent re-sputtering and transport to off-probe divertor regions, and with high (˜50%) redeposition on the Mo spot. Predicted Mo content in the carbon agrees well with post-exposure probe data. We discuss implications and mixed-material analysis issues for Be/W mixing at the ITER outer divertor, and Li, C, Mo mixing at an NSTX divertor.

  20. Study of BenW (n = 1-12) clusters: An electron collision perspective

    NASA Astrophysics Data System (ADS)

    Modak, Paresh; Kaur, Jaspreet; Antony, Bobby

    2017-08-01

    This article explores electron scattering cross sections by Beryllium-Tungsten clusters (BenW). Beryllium and tungsten are important elements for plasma facing wall components, especially for the deuterium/tritium phase of ITER and in the recently installed JET. The present study focuses on different electron impact interactions in terms of elastic cross section (Qel), inelastic cross section (Qinel), ionization cross section (Qion), and momentum transfer cross section (Qmtcs) for the first twelve clusters belonging to the BenW family. It also predicts the evolution of the cross section with the size of the cluster. These cross sections are used as an input to model processes in plasma. The ionization cross section presented here is compared with the available reported data. This is the first comprehensive report on cross section data for all the above-mentioned scattering channels, to the best of our knowledge. Such broad analysis of cross section data gives vital insight into the study of local chemistry of electron interactions with BenW (n = 1-12) clusters in plasma.

  1. Interaction of plasmas with lithium and tungsten fusion plasma facing components

    NASA Astrophysics Data System (ADS)

    Fiflis, Peter Robert

    One of the largest outstanding issues in magnetic confinement fusion is the interaction of the fusion plasma with the first wall of the device; an interaction which is strongest in the divertor region. Erosion, melting, sputtering, and deformation are all concerns which inform choices of divertor material. Of the many materials proposed for use in the divertor, only a few remain as promising choices. Tungsten has been chosen as the material for the ITER divertor, and liquid lithium stands poised as its replacement in higher heat flux devices. As a refractory metal, tungsten's large melting point and thermal conductivity as well as its low sputtering yield have led to its selection as the material of choice of the ITER divertor. Experiments have reinforced this choice demonstrating tungsten's ability to withstand large heat fluxes when adequately cooled. However, tungsten has shown a propensity to nanostructure under exposure within a certain temperature range to large fluxes of helium ions. These nanostructures if disrupted into the plasma as dust by an off-normal event would cause quenching of the plasma from the generated dust. Liquid lithium, meanwhile, has gathered growing interest within the fusion community in recent years as a divertor, limiter, and alternative first wall material. Liquid lithium is attractive as a low-Z material replacement for refractory metals due to its ability to getter impurities, while also being self-healing in nature. However, concerns exist about the stability of a liquid metal surface at the edge of a fusion device. Liquid metal pools, such as the Li-DiMes probe, have shown evidence of macroscopic lithium displacement as well as droplet formation and ejection into the plasma. These issues must be mitigated in future implementations of liquid lithium divertor concepts. Rayleigh-Taylor-like (RT) and Kelvin-Helmholtz-like (KH) instabilities have been claimed as the initiators of droplet ejection, yet not enough data exists to delineate a stability boundary. The influences of plasma pressure and current driven instabilities on lithium surfaces that lead to droplet ejection are investigated to determine which of the two effects is dominant for a given set of plasma conditions. This work studies the influence of large plasma fluxes on these two materials to better inform the selection and design of plasma facing components (PFCs). The nanostructuring of tungsten was investigated to determine the mechanisms by which tungsten nanostructures so that its formation may be mitigated. Experiments investigated the dependence of nanostructuring on temperature, looked at the morphological evolution, and grew nanostructures on a variety of metals to examine their similarity to tungsten. Additionally, a computational model is presented for the initial stages of fuzz formation showing good quantitative and qualitative agreement with experimental observations. The influences of RT and KH instabilities on the surface of liquid lithium were experimentally observed and quantified on the ThermoElectric-driven Liquid-metal plasma-facing Structures (TELS) chamber at the University of Illinois at Urbana-Champaign and the stabilizing effect of surface tension, an effect employed by the LiMIT concept as well as other liquid lithium concepts, was studied, and the stability boundary afforded by surface tension was compared between experiment, computational simulation, and theory.

  2. Efficacy of autologous platelet-rich plasma combined with fractional ablative carbon dioxide resurfacing laser in treatment of facial atrophic acne scars: A split-face randomized clinical trial.

    PubMed

    Faghihi, Gita; Keyvan, Shima; Asilian, Ali; Nouraei, Saeid; Behfar, Shadi; Nilforoushzadeh, Mohamad Ali

    2016-01-01

    Autologous platelet-rich plasma has recently attracted significant attention throughout the medical field for its wound-healing ability. This study was conducted to investigate the potential of platelet-rich plasma combined with fractional laser therapy in the treatment of acne scarring. Sixteen patients (12 women and 4 men) who underwent split-face therapy were analyzed in this study. They received ablative fractional carbon dioxide laser combined with intradermal platelet-rich plasma treatment on one half of their face and ablative fractional carbon dioxide laser with intradermal normal saline on the other half. The injections were administered immediately after laser therapy. The treatment sessions were repeated after an interval of one month. The clinical response was assessed based on patient satisfaction and the objective evaluation of serial photographs by two blinded dermatologists at baseline, 1 month after the first treatment session and 4 months after the second. The adverse effects including erythema and edema were scored by participants on days 0, 2, 4, 6, 8, 15 and 30 after each session. Overall clinical improvement of acne scars was higher on the platelet-rich plasma-fractional carbon dioxide laser treated side but the difference was not statistically significant either 1 month after the first treatment session (P = 0.15) or 4 months after the second (P = 0.23). In addition, adverse effects (erythema and edema) on the platelet-rich plasma-fractional carbon dioxide laser-treated side were more severe and of longer duration. Small sample size, absence of all skin phototypes within the study group and lack of objective methods for the evaluation of response to treatment and adverse effects were the limitations. This study demonstrated that adding platelet-rich plasma to fractional carbon dioxide laser treatment did not produce any statistically significant synergistic effects and also resulted in more severe side effects and longer downtime.

  3. Reactor plasma facing component designs based on liquid metal concepts supported in porous systems

    NASA Astrophysics Data System (ADS)

    Tabarés, F. L.; Oyarzabal, E.; Martin-Rojo, A. B.; Tafalla, D.; de Castro, A.; Soleto, A.

    2017-01-01

    The use of liquid metals (LMs) as plasma facing components in fusion devices was proposed as early as 1970 for a field reversed concept and inertial fusion reactors. The idea was extensively developed during the APEX Project, at the turn of the century, and it is the subject at present of the biennial International Symposium on Lithium Applications (ISLA), whose fourth meeting took place in Granada, Spain at the end of September 2015. While liquid metal flowing concepts were specially addressed in USA research projects, the idea of embedding the metal in a capillary porous system (CPS) was put forwards by Russian teams in the 1990s, thus opening the possibility of static concepts. Since then, many ideas and accompanying experimental tests in fusion devices and laboratories have been produced, involving a large fraction of countries within the international fusion community. Within the EUROFusion Roadmap, these activities are encompassed into the working programs of the plasma facing components (PFC) and divertor tokamak test (DTT) packages. In this paper, a review of the state of the art in concepts based on the CPS set-up for a fusion reactor divertor target, aimed at preventing the ejection of the liquid metal by electro-magnetic (EM) forces generated under plasma operation, is described and required R+D activities on the topic, including ongoing work at CIEMAT specifically oriented to filling the remaining gaps, are stressed.

  4. The measurement of the intrinsic impurities of molybdenum and carbon in the Alcator C-Mod tokamak plasma using low resolution spectroscopy

    NASA Astrophysics Data System (ADS)

    May, M. J.; Finkenthal, M.; Regan, S. P.; Moos, H. W.; Terry, J. L.; Goetz, J. A.; Graf, M. A.; Rice, J. E.; Marmar, E. S.; Fournier, K. B.; Goldstein, W. H.

    1997-06-01

    The intrinsic impurity content of molybdenum and carbon was measured in the Alcator C-Mod tokamak using low resolution, multilayer mirror (MLM) spectroscopy ( Delta lambda ~1-10 AA). Molybdenum was the dominant high-Z impurity and originated from the molybdenum armour tiles covering all of the plasma facing surfaces (including the inner column, the poloidal divertor plates and the ion cyclotron resonant frequency (ICRF) limiter) at Alcator C-Mod. Despite the all metal first wall, a carbon concentration of 1 to 2% existed in the plasma and was the major low-Z impurity in Alcator C-Mod. Thus, the behaviour of intrinsic molybdenum and carbon penetrating into the main plasma and the effect on the plasma must be measured and characterized during various modes of Alcator C-Mod operation. To this end, soft X-ray extreme ultraviolet (XUV) emission lines of charge states, ranging from hydrogen-like to helium-like lines of carbon (radius/minor radius, r/a~1) at the plasma edge to potassium to chlorine-like (0.4

  5. Comparison of Computed and Measured Performance of a Pulsed Inductive Thruster Operating on Argon Propellant

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.; Sankaran, Kameshwaran; Ritchie, Andrew G.; Peneau, Jarred P.

    2012-01-01

    Pulsed inductive plasma accelerators are electrodeless space propulsion devices where a capacitor is charged to an initial voltage and then discharged through a coil as a high-current pulse that inductively couples energy into the propellant. The field produced by this pulse ionizes the propellant, producing a plasma near the face of the coil. Once a plasma is formed if can be accelerated and expelled at a high exhaust velocity by the Lorentz force arising from the interaction of an induced plasma current and the magnetic field. A recent review of the developmental history of planar-geometry pulsed inductive thrusters, where the coil take the shape of a flat spiral, can be found in Ref. [1]. Two concepts that have employed this geometry are the Pulsed Inductive Thruster (PIT)[2, 3] and the Faraday Accelerator with Radio-frequency Assisted Discharge (FARAD)[4]. There exists a 1-D pulsed inductive acceleration model that employs a set of circuit equations coupled to a one-dimensional momentum equation. The model was originally developed and used by Lovberg and Dailey[2, 3] and has since been nondimensionalized and used by Polzin et al.[5, 6] to define a set of scaling parameters and gain general insight into their effect on thruster performance. The circuit presented in Fig. 1 provides a description of the electrical coupling between the current flowing in the thruster I1 and the plasma current I2. Recently, the model was upgraded to include an equation governing the deposition of energy into various modes present in a pulsed inductive thruster system (acceleration, magnetic flux generation, resistive heating, etc.)[7]. An MHD description of the plasma energy density evolution was tailored to the thruster geometry by assuming only one-dimensional motion and averaging the plasma properties over the spatial dimensions of the current sheet to obtain an equation for the time-evolution of the total energy. The equation set governing the dynamics of the coupled electrodynamic-current sheet system is composed of first-order, coupled ordinary differential equations that can be easily solved numerically without having to resort to much more complex 2-D finite element plasma simulations.

  6. Studies of RF sheaths and diagnostics on IShTAR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crombé, K., E-mail: Kristel.Crombe@UGent.be; LPP-ERM/KMS, Royal Military Academy, Brussels; Devaux, S.

    2015-12-10

    IShTAR (Ion cyclotron Sheath Test ARrangement) is a linear magnetised plasma test facility for RF sheaths studies at the Max-Planck-Institut für Plasmaphysik in Garching. In contrast to a tokamak, a test stand provides more liberty to impose the parameters and gives better access for the instrumentation and antennas. The project will support the development of diagnostic methods for characterising RF sheaths and validate and improve theoretical predictions. The cylindrical vacuum vessel has a diameter of 1 m and is 1.1 m long. The plasma is created by an external cylindrical plasma source equipped with a helical antenna that has been designed tomore » excite the m=1 helicon mode. In inductive mode, plasma densities and electron temperatures have been characterised with a planar Langmuir probe as a function of gas pressure and input RF power. A 2D array of RF compensated Langmuir probes and a spectrometer are planned. A single strap RF antenna has been designed; the plasma-facing surface is aligned to the cylindrical plasma to ease the modelling. The probes will allow direct measurements of plasma density profiles in front of the RF antenna, and thus a detailed study of the density modifications induced by RF sheaths, which influences the coupling. The RF antenna frequency has been chosen to study different plasma wave interactions: the accessible plasma density range includes an evanescent and propagative behaviour of slow or fast waves, and allows the study of the effect of the lower hybrid resonance layer.« less

  7. Glancing angle RF sheaths

    NASA Astrophysics Data System (ADS)

    D'Ippolito, D. A.; Myra, J. R.

    2013-10-01

    RF sheaths occur in tokamaks when ICRF waves encounter conducting boundaries. The sheath plays an important role in determining the efficiency of ICRF heating, the impurity influxes from the edge plasma, and the plasma-facing component damage. An important parameter in sheath theory is the angle θ between the equilibrium B field and the wall. Recent work with 1D and 2D sheath models has shown that the rapid variation of θ around a typical limiter can lead to enhanced sheath potentials and localized power deposition (hot spots) when the B field is near glancing incidence. The physics model used to obtain these results does not include some glancing-angle effects, e.g. possible modification of the angular dependence of the Child-Langmuir law and the role of the magnetic pre-sheath. Here, we report on calculations which explore these effects, with the goal of improving the fidelity of the rf sheath BC used in analytical and numerical calculations. Work supported by US DOE grants DE-FC02-05ER54823 and DE-FG02-97ER54392.

  8. Relativistic electron beam device

    DOEpatents

    Freeman, J.R.; Poukey, J.W.; Shope, S.L.; Yonas, G.

    1975-07-01

    A design is given for an electron beam device for irradiating spherical hydrogen isotope bearing targets. The accelerator, which includes hollow cathodes facing each other, injects an anode plasma between the cathodes and produces an approximately 10 nanosecond, megajoule pulse between the anode plasma and the cathodes. Targets may be repetitively positioned within the plasma between the cathodes, and accelerator diode arrangement permits materials to survive operation in a fusion power source. (auth)

  9. Polarized lactate transporter activity and expression in the syncytiotrophoblast of the term human placenta.

    PubMed

    Settle, P; Mynett, K; Speake, P; Champion, E; Doughty, I M; Sibley, C P; D'Souza, S W; Glazier, J

    2004-07-01

    We investigated the polarization of l-lactate transport in human syncytiotrophoblast by measuring uptake of [(14)C] l-lactate by both microvillous (maternal-facing; MVM) and basal (fetal-facing; BM) plasma membranes. [(14)C] l-lactate uptake by MVM and BM was stimulated in the presence of an inwardly directed H(+)gradient, with a significantly higher uptake in MVM than in BM at initial rate (15.4+/-2.3 vs 5.6+/-0.6 pmol/mg protein/20 sec). Stereospecific inhibition was observed in MVM, with a higher affinity for l-lactate compared with d-lactate. In BM, there was no difference in the inhibition by these two stereoisomers. Inhibition of lactate uptake in both MVM and BM by 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS), an inhibitor of monocarboxylate transporter (MCT) activity, indicated MCT-mediated mechanisms across both membranes. Kinetic modelling supported a two-transporter model as the best fit for both MVM and BM, the K(m)of the major component being 6.21 mm and 25.01 mm in MVM and BM respectively. Western blotting and immunolocalization examining the distribution of MCT1 and MCT4, showed that MCT expression was polarized, MCT1 being predominantly localized to BM and MCT4 showing greater abundance on MVM. CD147, a chaperone protein for MCT1 and MCT4, was equally expressed by both membranes. These studies demonstrate that the opposing plasma membranes of human syncytiotrophoblast are polarized with respect to both MCT activity and expression.

  10. The Sheath-less Planar Langmuir Probe

    NASA Astrophysics Data System (ADS)

    Cooke, D. L.

    2017-12-01

    The Langmuir probe is one of the oldest plasma diagnostics, provided the plasma density and species temperature from analysis of a current-voltage curve as the voltage is swept over a practically chosen range. The analysis depends on a knowledge or theory of the many factors that influence the current-voltage curve including, probe shape, size, nearby perturbations, and the voltage reference. For applications in Low Earth Orbit, the Planar Langmuir Probe, PLP, is an attractive geometry because the ram ion current is very constant over many Volts of a sweep, allowing the ion density and electron temperature to be determined independently with the same instrument, at different points on the sweep. However, when the physical voltage reference is itself small and electrically floating as with a small spacecraft, the spacecraft and probe system become a double probe where the current collection theory depends on the interaction of the spacecraft with the plasma which is generally not as simple as the probe itself. The Sheath-less PLP, SPLP, interlaces on a single ram facing surface, two variably biased probe elements, broken into many small and intertwined segments on a scale smaller than the plasma Debye length. The SPLP is electrically isolated from the rest of the spacecraft. For relative bias potentials of a few volts, the ion current to all segments of each element will be constant, while the electron currents will vary as a function of the element potential and the electron temperature. Because the segments are small, intertwined, and floating, the assembly will always present the same floating potential to the plasma, with minimal growth as a function of voltage, thus sheath-less and still planar. This concept has been modelled with Nascap, and tested with a physical model inserted into a Low Earth Orbit-like chamber plasma. Results will be presented.

  11. Particle-In-Cell Analysis of an Electric Antenna for the BepiColombo/MMO spacecraft

    NASA Astrophysics Data System (ADS)

    Miyake, Yohei; Usui, Hideyuki; Kojima, Hirotsugu

    The BepiColombo/MMO spacecraft is planned to provide a first electric field measurement in Mercury's magnetosphere by mounting two types of the electric antennas: WPT and MEFISTO. The sophisticated calibration of such measurements should be performed based on precise knowledge of the antenna characteristics in space plasma. However, it is difficult to know prac-tical antenna characteristics considering the plasma kinetics and spacecraft-plasma interactions by means of theoretical approaches. Furthermore, some modern antenna designing techniques such as a "hockey puck" principle is applied to MEFISTO, which introduces much complexity in its overall configuration. Thus a strong demand arises regarding the establishment of a nu-merical method that can solve the complex configuration and plasma dynamics for evaluating the electric properties of the modern instrument. For the self-consistent antenna analysis, we have developed a particle simulation code named EMSES based on the particle-in-cell technique including a treatment antenna conductive sur-faces. In this paper, we mainly focus on electrostatic (ES) features and photoelectron distri-bution in the vicinity of MEFISTO. Our simulation model includes (1) a photoelectron guard electrode, (2) a bias current provided from the spacecraft body to the sensing element, (3) a floating potential treatment for the spacecraft body, and (4) photoelectron emission from sunlit surfaces of the conductive bodies. Of these, the photoelectron guard electrode is a key technol-ogy for producing an optimal condition of plasma environment around MEFISTO. Specifically, we introduced a pre-amplifier housing called puck located between the conductive boom and the sensor wire. The photoelectron guard is then simulated by forcibly fixing the potential difference between the puck surface and the spacecraft body. For the modeling, we use the Capacity Matrix technique in order to assure the conservation condition of total charge owned by the entire spacecraft body. We report some numerical analyses on the influence of the guard electrode on the surrounding plasma environment by using the developed model.

  12. Edge properties with the liquid lithium limiter in FTU—experiment and transport modelling

    NASA Astrophysics Data System (ADS)

    Pericoli-Ridolfini, V.; Apicella, M. L.; Mazzitelli, G.; Tudisco, O.; Zagórski, R.; FTU Team

    2007-07-01

    Liquid lithium as a plasma-facing material was tested for the first time on a high field medium size tokamak, FTU. A liquid Li reservoir supplies a mesh of capillaries that is movable from shot to shot in the scrape-off layer (SOL) plasma to act as a secondary limiter. An almost complete lithization of the vacuum vessel walls is obtained in about three discharges. Plasmas cleaner than boronization and titanization, with lower radiation losses and smaller impurity content are produced. The SOL electron temperature increases, ΔTe ~ 10 eV, while density (ne) is less affected. The 2D multifluid code TECXY explains this only if a strong reduction of plasma recycling on the walls and main limiter occurs, consistent with the high Li hydrogen pumping capability. This property also permits a much tighter control of the plasma density. With the Li limiter inserted inside the vessel poloidal asymmetries develop in the SOL that TECXY explains with a local increase of radiation, caused by enhanced evaporation/sputtering of Li. New regimes can be produced in such conditions with a clear increase in |∇ne/ne| and of the peaking factor ne0/

  13. Monte Carlo simulation of ion-material interactions in nuclear fusion devices

    NASA Astrophysics Data System (ADS)

    Nieto Perez, M.; Avalos-Zuñiga, R.; Ramos, G.

    2017-06-01

    One of the key aspects regarding the technological development of nuclear fusion reactors is the understanding of the interaction between high-energy ions coming from the confined plasma and the materials that the plasma-facing components are made of. Among the multiple issues important to plasma-wall interactions in fusion devices, physical erosion and composition changes induced by energetic particle bombardment are considered critical due to possible material flaking, changes to surface roughness, impurity transport and the alteration of physicochemical properties of the near surface region due to phenomena such as redeposition or implantation. A Monte Carlo code named MATILDA (Modeling of Atomic Transport in Layered Dynamic Arrays) has been developed over the years to study phenomena related to ion beam bombardment such as erosion rate, composition changes, interphase mixing and material redeposition, which are relevant issues to plasma-aided manufacturing of microelectronics, components on object exposed to intense solar wind, fusion reactor technology and other important industrial fields. In the present work, the code is applied to study three cases of plasma material interactions relevant to fusion devices in order to highlight the code's capabilities: (1) the Be redeposition process on the ITER divertor, (2) physical erosion enhancement in castellated surfaces and (3) damage to multilayer mirrors used on EUV diagnostics in fusion devices due to particle bombardment.

  14. Retention and release of hydrogen isotopes in tungsten plasma-facing components: the role of grain boundaries and the native oxide layer from a joint experiment-simulation integrated approach

    NASA Astrophysics Data System (ADS)

    Hodille, E. A.; Ghiorghiu, F.; Addab, Y.; Založnik, A.; Minissale, M.; Piazza, Z.; Martin, C.; Angot, T.; Gallais, L.; Barthe, M.-F.; Becquart, C. S.; Markelj, S.; Mougenot, J.; Grisolia, C.; Bisson, R.

    2017-07-01

    Fusion fuel retention (trapping) and release (desorption) from plasma-facing components are critical issues for ITER and for any future industrial demonstration reactors such as DEMO. Therefore, understanding the fundamental mechanisms behind the retention of hydrogen isotopes in first wall and divertor materials is necessary. We developed an approach that couples dedicated experimental studies with modelling at all relevant scales, from microscopic elementary steps to macroscopic observables, in order to build a reliable and predictive fusion reactor wall model. This integrated approach is applied to the ITER divertor material (tungsten), and advances in the development of the wall model are presented. An experimental dataset, including focused ion beam scanning electron microscopy, isothermal desorption, temperature programmed desorption, nuclear reaction analysis and Auger electron spectroscopy, is exploited to initialize a macroscopic rate equation wall model. This model includes all elementary steps of modelled experiments: implantation of fusion fuel, fuel diffusion in the bulk or towards the surface, fuel trapping on defects and release of trapped fuel during a thermal excursion of materials. We were able to show that a single-trap-type single-detrapping-energy model is not able to reproduce an extended parameter space study of a polycrystalline sample exhibiting a single desorption peak. It is therefore justified to use density functional theory to guide the initialization of a more complex model. This new model still contains a single type of trap, but includes the density functional theory findings that the detrapping energy varies as a function of the number of hydrogen isotopes bound to the trap. A better agreement of the model with experimental results is obtained when grain boundary defects are included, as is consistent with the polycrystalline nature of the studied sample. Refinement of this grain boundary model is discussed as well as the inclusion in the model of a thin defective oxide layer following the experimental observation of the presence of an oxygen layer on the surface even after annealing to 1300 K.

  15. Armour Materials for the ITER Plasma Facing Components

    NASA Astrophysics Data System (ADS)

    Barabash, V.; Federici, G.; Matera, R.; Raffray, A. R.; ITER Home Teams,

    The selection of the armour materials for the Plasma Facing Components (PFCs) of the International Thermonuclear Experimental Reactor (ITER) is a trade-off between multiple requirements derived from the unique features of a burning fusion plasma environment. The factors that affect the selection come primarily from the requirements of plasma performance (e.g., minimise impurity contamination in the confined plasma), engineering integrity, component lifetime (e.g., withstand thermal stresses, acceptable erosion, etc.) and safety (minimise tritium and radioactive dust inventories). The current selection in ITER is to use beryllium on the first-wall, upper baffle and on the port limiter surfaces, carbon fibre composites near the strike points of the divertor vertical target and tungsten elsewhere in the divertor and lower baffle modules. This paper provides the background for this selection vis-à-vis the operating parameters expected during normal and off-normal conditions. The reasons for the selection of the specific grades of armour materials are also described. The effects of the neutron irradiation on the properties of Be, W and carbon fibre composites at the expected ITER conditions are briefly reviewed. Critical issues are discussed together with the necessary future R&D.

  16. Nuclear Fusion Blast and Electrode Lifetimes in a PJMIF Reactor

    NASA Astrophysics Data System (ADS)

    Thio, Y. C. Francis; Witherspoon, F. D.; Case, A.; Brockington, S.; Cruz, E.; Luna, M.; Hsu, S. C.

    2017-10-01

    We present an analysis and numerical simulation of the nuclear blast from the micro-explosion following the completion of the fusion burn for a baseline design of a PJMIF fusion reactor with a fusion gain of 20. The stagnation pressure from the blast against the chamber wall defines the engineering requirement for the structural design of the first wall and the plasma guns. We also present an analysis of the lifetimes of the electrodes of the plasma guns which are exposed to (1) the high current, and (2) the neutron produced by the fusion reactions. We anticipate that the gun electrodes are made of tungsten alloys as plasma facing components reinforced structurally by appropriate steel alloys. Making reasonable assumptions about the electrode erosion rate (100 ng/C transfer), the electrode lifetime limited by the erosion rate is estimated to be between 19 and 24 million pulses before replacement. Based on known neutron radiation effects on structural materials such as steel alloys and plasma facing component materials such as tungsten alloys, the plasma guns are expected to survive some 22 million shots. At 1 Hz, this equal to about 6 months of continuous operation before they need to be replaced. Work supported by Strong Atomics, LLC.

  17. Innovative divertor concept development on DIII-D and EAST

    DOE PAGES

    Guo, H. Y.; Allen, S.; Canik, J.; ...

    2016-06-02

    A critical issue facing the design and operation of next-step high-power steady-state fusion devices is the control of heat fluxes and erosion at the plasma-facing components, in particular, the divertor target plates. A new initiative has been launched on DIII-D to develop and demonstrate innovative boundary plasma-materials interface solutions. The central purposes of this new initiative are to advance scientific understanding in this critical area and develop an advanced divertor concept for application to next-step fusion devices. Finally, DIII-D will leverage strong collaborative efforts on the EAST superconducting tokamak for extending integrated high performance advanced divertor solutions to true steady-state.

  18. Ring-Opening Polymerization of Cyclic Hemiacetal Esters for the Preparation of Hydrolytically and Thermally Degradable Polymers

    NASA Astrophysics Data System (ADS)

    Neitzel, Angelika Susanne Elisabeth

    During the course of tokamak operation, material is routinely eroded from plasma facing components and transported to other regions of the machine. This net-reshaping process will lead to many challenges in a high duty cycle magnetic fusion reactor, and is also highly relevant to the wall conditioning process in current experiments. Proper modeling of this mechanism requires a global treatment of the entire tokamak, and integration of tightly coupled plasma and surface processes. This thesis focuses on extending and applying the WallDYN mixed-material migration code [1] [2], which couples local erosion and deposition processes with plasma impurity transport in a non-iterative, self-consistent manner that maintains overall material balance. NSTX-U operated in 2016 with carbon PFCs, periodically conditioned with boron-containing films to suppress oxygen impurities. However, oxygen levels tended to return to a pre-conditioned state following repeated plasma exposure, and this occurred on a faster time scale when conditioning with less boron. This C/B/O migration is interpretively modeled with WallDYN, which successfully reproduces observed trends in oxygen evolution. A new model for spatially inhomogenous mixed material films has been developed for WallDYN, which allows for the differentiation between conditioning films of varying thicknesses. A boron coverage model for the NSTX-U glow discharge boronization process is also developed. These new capabilities improve WallDYN agreement with observed NSTX-U spectroscopic data by at least a factor of 2. As part of the integrated model, plasma backgrounds representing NSTX-U H-modes and L-modes are calculated using OSM-EIRENE, constrained by a combination of NSTX-U data and NSTX SOLPS calculations. The effect of modifying the assumed parallel SOL profile is examined, with the result that inner divertor-directed flows turn the outer divertor from a region of net boron deposition to one of net boron erosion. Plasma impurity transport calculations are carried out with DIVIMP, and mixed-material sputtering calculations are carried out for a range of possible surfaces with SDTRIMSP. WallDYN modeling of C/Li/O migration in NSTX is presented, utilizing OSM-EIRENE calculations of lithiated NSTX plasmas. An adatom model of temperature-enhanced sputtering has been added to WallDYN, and the effect of various surface temperature scenarios is examined. A sensitivity study of surface binding energies used in WallDYN sputtering calculations is carried out, finding that mixed material effects become dominant when the system contains both tightly- and weakly- bound elements (such as C and Li).

  19. Investigation of plasma-induced erosion of multilayer condenser optics

    NASA Astrophysics Data System (ADS)

    Anderson, Richard J.; Buchenauer, Dean A.; Williams, K. A.; Clift, W. M.; Klebanoff, L. E.; Edwards, N. V.; Wood, O. R., II; Wurm, S.

    2005-05-01

    Experiments are presented that investigate the mechanistic cause of multilayer erosion observed from condenser optics exposed to EUV laser-produced plasma (LPP) sources. Using a Xe filament jet source excited with Nd-YAG laser radiation (300 mJ/pulse), measurements were made of material erosion from Au, Mo, Si and C using coated quartz microbalances located 127 mm from the plasma. The observed erosion rates were as follows: Au=99nm/106 shots, Mo= 26nm/106 shots, Si=19nm/106 shots, and C=6nm/106 shots. The relative ratio Au:Mo:Si:C of erosion rates observed experimentally, 16:4:3:1 compares favorably with that predicted from an atomic sputtering model assuming 20 kV Xe ions, 16:6:4:1. The relative agreement indicates that Xe-substrate sputtering is largely responsible for the erosion of Mo/Si multilayers on condenser optics that directly face the plasma. Time-of-flight Faraday cup measurements reveal the emission of high energy Xe ions from the Xe-filament jet plasma. The erosion rate does not depend on the repetition rate of the laser, suggesting a thermal mechanism is not operative. The Xe-filament jet erosion is ~20x that observed from a Xe spray jet. Since the long-lived (millisecond time scale) plasma emanating from these two sources are the same to within ~30%, sputtering from this long-lived plasma can be ruled out as an erosion agent.

  20. Elimination of columnar microstructure in N-face InAlN, lattice-matched to GaN, grown by plasma-assisted molecular beam epitaxy in the N-rich regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmadi, Elaheh; Wienecke, Steven; Keller, Stacia

    2014-02-17

    The microstructure of N-face InAlN layers, lattice-matched to GaN, was investigated by scanning transmission electron microscopy and atom probe tomography. These layers were grown by plasma-assisted molecular beam epitaxy (PAMBE) in the N-rich regime. Microstructural analysis shows an absence of the lateral composition modulation that was previously observed in InAlN films grown by PAMBE. A room temperature two-dimensional electron gas (2DEG) mobility of 1100 cm{sup 2}/V s and 2DEG sheet charge density of 1.9 × 10{sup 13} cm{sup −2} was measured for N-face GaN/AlN/GaN/InAlN high-electron-mobility transistors with lattice-matched InAlN back barriers.

  1. Real-time radiative divertor feedback control development for the NSTX-U tokamak using a vacuum ultraviolet spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soukhanovskii, V. A., E-mail: vlad@llnl.gov; Kaita, R.; Stratton, B.

    2016-11-15

    A radiative divertor technique is planned for the NSTX-U tokamak to prevent excessive erosion and thermal damage of divertor plasma-facing components in H-mode plasma discharges with auxiliary heating up to 12 MW. In the radiative (partially detached) divertor, extrinsically seeded deuterium or impurity gases are used to increase plasma volumetric power and momentum losses. A real-time feedback control of the gas seeding rate is planned for discharges of up to 5 s duration. The outer divertor leg plasma electron temperature T{sub e} estimated spectroscopically in real time will be used as a control parameter. A vacuum ultraviolet spectrometer McPherson Modelmore » 251 with a fast charged-coupled device detector is developed for temperature monitoring between 5 and 30 eV, based on the Δn = 0, 1 line intensity ratios of carbon, nitrogen, or neon ion lines in the spectral range 300–1600 Å. A collisional-radiative model-based line intensity ratio will be used for relative calibration. A real-time T{sub e}-dependent signal within a characteristic divertor detachment equilibration time of ∼10–15 ms is expected.« less

  2. Waveguide to Core: A New Approach to RF Modelling

    NASA Astrophysics Data System (ADS)

    Wright, John; Shiraiwa, Syunichi; Rf-Scidac Team

    2017-10-01

    A new technique for the calculation of RF waves in toroidal geometry enables the simultaneous incorporation of antenna geometry, plasma facing components (PFCs), the scrape off-layer (SOL) and core propagation [Shiraiwa, NF 2017]. Calculations with this technique naturally capture wave propagation in the SOL and its interactions with non-conforming PFCs permitting self-consistent calculation of core absorption and edge power loss. The main motivating insight is that the core plasma region having closed flux surfaces requires a hot plasma dielectric while the open field line region in the scrape-off layer needs only a cold plasma dielectric. Spectral approaches work well for the former and finite elements work well for the latter. The validity of this process follows directly from the superposition principle of Maxwell's equations making this technique exact. The method is independent of the codes or representations used and works for any frequency regime. Applications to minority heating in Alcator C-Mod and ITER and high harmonic heating in NSTX-U will be presented in single pass and multi-pass regimes. Support from DoE Grant Number DE-FG02-91-ER54109 (theory and computer resources) and DE-FC02-01ER54648 (RF SciDAC).

  3. Final case for a stainless steel diagnostic first wall on ITER

    NASA Astrophysics Data System (ADS)

    Pitts, R. A.; Bazylev, B.; Linke, J.; Landman, I.; Lehnen, M.; Loesser, D.; Loewenhoff, Th.; Merola, M.; Roccella, R.; Saibene, G.; Smith, M.; Udintsev, V. S.

    2015-08-01

    In 2010 the ITER Organization (IO) proposed to eliminate the beryllium armour on the plasma-facing surface of the diagnostic port plugs and instead to use bare stainless steel (SS), simplifying the design and providing significant cost reduction. Transport simulations at the IO confirmed that charge-exchange sputtering of the SS surfaces would not affect burning plasma operation through core impurity contamination, but a second key issue is the potential melt damage/material loss inflicted by the intense photon radiation flashes expected at the thermal quench of disruptions mitigated by massive gas injection. This paper addresses this second issue through a combination of ITER relevant experimental heat load tests and qualitative theoretical arguments of melt layer stability. It demonstrates that SS can be employed as material for the port plug plasma-facing surface and this has now been adopted into the ITER baseline.

  4. Carbon fiber composites application in ITER plasma facing components

    NASA Astrophysics Data System (ADS)

    Barabash, V.; Akiba, M.; Bonal, J. P.; Federici, G.; Matera, R.; Nakamura, K.; Pacher, H. D.; Rödig, M.; Vieider, G.; Wu, C. H.

    1998-10-01

    Carbon Fiber Composites (CFCs) are one of the candidate armour materials for the plasma facing components of the International Thermonuclear Experimental Reactor (ITER). For the present reference design, CFC has been selected as armour for the divertor target near the plasma strike point mainly because of unique resistance to high normal and off-normal heat loads. It does not melt under disruptions and might have higher erosion lifetime in comparison with other possible armour materials. Issues related to CFC application in ITER are described in this paper. They include erosion lifetime, tritium codeposition with eroded material and possible methods for the removal of the codeposited layers, neutron irradiation effect, development of joining technologies with heat sink materials, and thermomechanical performance. The status of the development of new advanced CFCs for ITER application is also described. Finally, the remaining R&D needs are critically discussed.

  5. Deuterium sputtering of Li and Li-O films

    NASA Astrophysics Data System (ADS)

    Nelson, Andrew; Buzi, Luxherta; Kaita, Robert; Koel, Bruce

    2017-10-01

    Lithium wall coatings have been shown to enhance the operational plasma performance of many fusion devices, including NSTX and other tokamaks, by reducing the global wall recycling coefficient. However, pure lithium surfaces are extremely difficult to maintain in experimental fusion devices due to both inevitable oxidation and codeposition from sputtering of hot plasma facing components. Sputtering of thin lithium and lithium oxide films on a molybdenum target by energetic deuterium ion bombardment was studied in laboratory experiments conducted in a surface science apparatus. A Colutron ion source was used to produce a monoenergetic, mass-selected ion beam. Measurements were made under ultrahigh vacuum conditions as a function of surface temperature (90-520 K) using x-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES) and temperature programmed desorption (TPD). Results are compared with computer simulations conducted on a temperature-dependent data-calibrated (TRIM) model.

  6. Plasma-material Interactions in Current Tokamaks and their Implications for Next-step Fusion Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Federici, G.; Skinner, C.H.; Brooks, J.N.

    2001-01-10

    The major increase in discharge duration and plasma energy in a next-step DT [deuterium-tritium] fusion reactor will give rise to important plasma-material effects that will critically influence its operation, safety, and performance. Erosion will increase to a scale of several centimeters from being barely measurable at a micron scale in today's tokamaks. Tritium co-deposited with carbon will strongly affect the operation of machines with carbon plasma-facing components. Controlling plasma wall interactions is critical to achieving high performance in present-day tokamaks and this is likely to continue to be the case in the approach to practical fusion reactors. Recognition of themore » important consequences of these phenomena has stimulated an internationally coordinated effort in the field of plasma-surface interactions supporting the Engineering Design Activities of the International Thermonuclear Experimental Reactor (ITER) project and significant progress has been made in better under standing these issues. This paper reviews the underlying physical processes and the existing experimental database of plasma-material interactions both in tokamaks and laboratory simulation facilities for conditions of direct relevance to next-step fusion reactors. Two main topical groups of interactions are considered: (i) erosion/redeposition from plasma sputtering and disruptions, including dust and flake generation, (ii) tritium retention and removal. The use of modeling tools to interpret the experimental results and make projections for conditions expected in future devices is explained. Outstanding technical issues and specific recommendations on potential R and D [Research and Development] avenues for their resolution are presented.« less

  7. Residual gas analysis for long-pulse, advanced tokamak operation.

    PubMed

    Klepper, C C; Hillis, D L; Bucalossi, J; Douai, D; Oddon, P; Vartanian, S; Colas, L; Manenc, L; Pégourié, B

    2010-10-01

    A shielded residual gas analyzer (RGA) system on Tore Supra can function during plasma operation and is set up to monitor the composition of the neutral gas in one of the pumping ducts of the toroidal pumped limited. This "diagnostic RGA" has been used in long-pulse (up to 6 min) discharges for continuous monitoring of up to 15 masses simultaneously. Comparison of the RGA-measured evolution of the H(2)/D(2) isotopic ratio in the exhaust gas to that measured by an energetic neutral particle analyzer in the plasma core provides a way to monitor the evolution of particle balance. RGA monitoring of corrective H(2) injection to maintain proper minority heating is providing a database for improved ion cyclotron resonance heating, potentially with RGA-base feedback control. In very long pulses (>4 min) absence of significant changes in the RGA-monitored, hydrocarbon particle pressures is an indication of proper operation of the actively cooled, carbon-based plasma facing components. Also H(2) could increase due to thermodesorption of overheated plasma facing components.

  8. POD analysis of flow over a backward-facing step forced by right-angle-shaped plasma actuator.

    PubMed

    Wang, Bin; Li, Huaxing

    2016-01-01

    This study aims to present flow control over the backward-facing step with specially designed right-angle-shaped plasma actuator and analyzed the influence of various scales of flow structures on the Reynolds stress through snapshot proper orthogonal decomposition (POD). 2D particle image velocimetry measurements were conducted on region (x/h = 0-2.25) and reattachment zone in the x-y plane over the backward-facing step at a Reynolds number of Re h  = 27,766 (based on step height [Formula: see text] and free stream velocity [Formula: see text]. The separated shear layer was excited by specially designed right-angle-shaped plasma actuator under the normalized excitation frequency St h  ≈ 0.345 along the 45° direction. The spatial distribution of each Reynolds stress component was reconstructed using an increasing number of POD modes. The POD analysis indicated that the flow dynamic downstream of the step was dominated by large-scale flow structures, which contributed to streamwise Reynolds stress and Reynolds shear stress. The intense Reynolds stress localized to a narrow strip within the shear layer was mainly affected by small-scale flow structures, which were responsible for the recovery of the Reynolds stress peak. With plasma excitation, a significant increase was obtained in the vertical Reynolds stress peak. Under the dimensionless frequencies St h  ≈ 0.345 and [Formula: see text] which are based on the step height and momentum thickness, the effectiveness of the flow control forced by the plasma actuator along the 45° direction was ordinary. Only the vertical Reynolds stress was significantly affected.

  9. TOPICA: an accurate and efficient numerical tool for analysis and design of ICRF antennas

    NASA Astrophysics Data System (ADS)

    Lancellotti, V.; Milanesio, D.; Maggiora, R.; Vecchi, G.; Kyrytsya, V.

    2006-07-01

    The demand for a predictive tool to help in designing ion-cyclotron radio frequency (ICRF) antenna systems for today's fusion experiments has driven the development of codes such as ICANT, RANT3D, and the early development of TOPICA (TOrino Polytechnic Ion Cyclotron Antenna) code. This paper describes the substantive evolution of TOPICA formulation and implementation that presently allow it to handle the actual geometry of ICRF antennas (with curved, solid straps, a general-shape housing, Faraday screen, etc) as well as an accurate plasma description, accounting for density and temperature profiles and finite Larmor radius effects. The antenna is assumed to be housed in a recess-like enclosure. Both goals have been attained by formally separating the problem into two parts: the vacuum region around the antenna and the plasma region inside the toroidal chamber. Field continuity and boundary conditions allow formulating of a set of two coupled integral equations for the unknown equivalent (current) sources; then the equations are reduced to a linear system by a method of moments solution scheme employing 2D finite elements defined over a 3D non-planar surface triangular-cell mesh. In the vacuum region calculations are done in the spatial (configuration) domain, whereas in the plasma region a spectral (wavenumber) representation of fields and currents is adopted, thus permitting a description of the plasma by a surface impedance matrix. Owing to this approach, any plasma model can be used in principle, and at present the FELICE code has been employed. The natural outcomes of TOPICA are the induced currents on the conductors (antenna, housing, etc) and the electric field in front of the plasma, whence the antenna circuit parameters (impedance/scattering matrices), the radiated power and the fields (at locations other than the chamber aperture) are then obtained. An accurate model of the feeding coaxial lines is also included. The theoretical model and its TOPICA implementation have been fully validated against measured data both in vacuo and in plasma-facing conditions for real-life structures.

  10. Recovery from Bell Palsy after Transplantation of Peripheral Blood Mononuclear Cells and Platelet-Rich Plasma.

    PubMed

    Seffer, Istvan; Nemeth, Zoltan

    2017-06-01

    Peripheral blood mononuclear cells (PBMCs) are multipotent, and plasma contains growth factors involving tissue regeneration. We hypothesized that transplantation of PBMC-plasma will promote the recovery of paralyzed facial muscles in Bell palsy. This case report describes the effects of PBMC-plasma transplantations in a 27-year-old female patient with right side Bell palsy. On the affected side of the face, the treatment resulted in both morphological and functional recovery including voluntary facial movements. These findings suggest that PBMC-plasma has the capacity of facial muscle regeneration and provides a promising treatment strategy for patients suffering from Bell palsy or other neuromuscular disorders.

  11. Effects of 2D and 3D Error Fields on the SAS Divertor Magnetic Topology

    NASA Astrophysics Data System (ADS)

    Trevisan, G. L.; Lao, L. L.; Strait, E. J.; Guo, H. Y.; Wu, W.; Evans, T. E.

    2016-10-01

    The successful design of plasma-facing components in fusion experiments is of paramount importance in both the operation of future reactors and in the modification of operating machines. Indeed, the Small Angle Slot (SAS) divertor concept, proposed for application on the DIII-D experiment, combines a small incident angle at the plasma strike point with a progressively opening slot, so as to better control heat flux and erosion in high-performance tokamak plasmas. Uncertainty quantification of the error fields expected around the striking point provides additional useful information in both the design and the modeling phases of the new divertor, in part due to the particular geometric requirement of the striking flux surfaces. The presented work involves both 2D and 3D magnetic error field analysis on the SAS strike point carried out using the EFIT code for 2D equilibrium reconstruction, V3POST for vacuum 3D computations and the OMFIT integrated modeling framework for data analysis. An uncertainty in the magnetic probes' signals is found to propagate non-linearly as an uncertainty in the striking point and angle, which can be quantified through statistical analysis to yield robust estimates. Work supported by contracts DE-FG02-95ER54309 and DE-FC02-04ER54698.

  12. Control of three dimensional particle flux to divertor using rotating RMP in the EAST tokamak

    NASA Astrophysics Data System (ADS)

    Jia, M.; Sun, Y.; Liang, Y.; Wang, L.; Xu, J.; Gu, S.; Lyu, B.; Wang, H. H.; Yang, X.; Zhong, F.; Chu, N.; Feng, W.; He, K.; Liu, Y. Q.; Qian, J.; Shi, T.; Shen, B.

    2018-04-01

    Controlling the steady state particle and heat flux impinging on the plasma facing components, as one of the main concerns of future fusion reactors, is still necessary when the transient power loads induced by edge localized modes (ELMs) have been eliminated by resonant magnetic perturbations (RMPs) in high confinement tokamak experiments. This is especially true for long pulse operation. One promising solution is to use the rotating perturbed field. Recently rotating and differential phase scans of n  =  1 and 2 RMP fields have been operated for the first time in EAST discharges. The particle flux patterns on the divertor targets change synchronously with both rotating and phasing RMP fields as predicted by the modeled magnetic footprint patterns. The modeling with plasma response, which is calculated by MARS-F, is also carried out. The plasma response shows amplifying or screening effect to n  =  2 perturbations with different spectra. This changes the field line penetration depth rather than the general footprint shape. This has been verified by experimental observations on EAST. These experiments motivate further study of reducing both transient and steady state local power load and particle flux with the help of rotating RMPs in long pulse operation.

  13. GITR Simulation of Helium Exposed Tungsten Erosion and Redistribution in PISCES-A

    NASA Astrophysics Data System (ADS)

    Younkin, T. R.; Green, D. L.; Doerner, R. P.; Nishijima, D.; Drobny, J.; Canik, J. M.; Wirth, B. D.

    2017-10-01

    The extreme heat, charged particle, and neutron flux / fluence to plasma facing materials in magnetically confined fusion devices has motivated research to understand, predict, and mitigate the associated detrimental effects. Of relevance to the ITER divertor is the helium interaction with the tungsten divertor, the resulting erosion and migration of impurities. The linear plasma device PISCES A has performed dedicated experiments for high (4x10-22 m-2s-1) and low (4x10-21 m-2s-1) flux, 250 eV He exposed tungsten targets to assess the net and gross erosion of tungsten and volumetric transport. The temperature of the target was held between 400 and 600 degrees C. We present results of the erosion / migration / re-deposition of W during the experiment from the GITR (Global Impurity Transport) code coupled to materials response models. In particular, the modeled and experimental W I emission spectroscopy data for the 429.4 nm wavelength and net erosion through target and collector mass difference measurements are compared. Overall, the predictions are in good agreement with experiments. This material is supported by the US DOE, Office of Science, Office of Fusion Energy Sciences and Office of Advanced Scientific Computing Research through the SciDAC program on Plasma-Surface Interactions.

  14. Investigation of tin-lithium eutectic as a liquid plasma facing material

    NASA Astrophysics Data System (ADS)

    Ruzic, David; Szott, Matthew; Christenson, Michael; Shchelkanov, Ivan; Kalathiparambil, Kishor Kumar

    2016-10-01

    Innovative materials and techniques need to be utilized to address the high heat and particle flux incident on plasma facing components in fusion reactors. A liquid metal diverter module developed at UIUC with self circulating lithium has been successfully demonstrated to be capable of handling the relevant heat flux in plasma gun based tests and on operational tokamaks. The proper geometry of the liquid lithium trenches to minimize droplet ejection during transient plasma events have also been identified. Although lithium has proven to be effective in improved plasma performance and contributes to other advantageous factors like reduction in the fuel recycling, impurity gettering and, owing to the low Z, a significantly reduced impact on plasma as compared to the solid wall materials, it still poses several drawbacks related to its high reactivity and high vapor pressure at the relevant tokamak wall temperatures. The evaporation properties of a new eutectic mixture of tin and lithium (20% Sn) shows that lithium segregates to the surface at melting temperatures and hence is an effective replacement for pure lithium. Also, the vapor from the eutectic is dominated by lithium, minimizing the entry of high Z Sn into the plasma. At UIUC experiments for the synthesis and characterization of the eutectic - measurement of the critical wetting parameters and Seebeck coefficients with respect to the trench materials have been performed to ensure lithium wetting and flow in the trenches. The results will be presented. DOE project DEFG02- 99ER54515.

  15. Developing a compact toroid injector in the ThermoElectric driven Liquid metal plasma facing Structures device

    NASA Astrophysics Data System (ADS)

    Christenson, Michael; Szott, Matthew; Kalathiparambil, Kishor; Sovinec, Carl; Ruzic, David

    2016-10-01

    The ThermoElectric-driven Liquid-metal plasma-facing Structures (TELS) device at the University of Illinois is a theta-pinched, plasma-material interaction test stand used to simulate extreme events in the edge and divertor regions of a tokamak plasma. Previous measurements of the electron and ion temperatures have shown that the isotropic heat load on target ranges between 0.1 and 0.2 MJ m-2 over a pulse lasting 0.2 ms. While this compares well to the heat loads from Type 1 ELMs in larger toroidal devices, it is still much less than the energy deposition from Type 1 ELMs expected in ITER, which are in excess of 1 MJ m-2. To this end, a compact toroid (CT) injector has been proposed as a modification to the existing TELS device. By using an externally applied bias field to force reconnection at the muzzle of the coaxial plasma accelerator source that drives ionization, NIMROD MHD simulations have shown a peak magnetic flux of 3.5 mWb is reached 0.025 ms into the pulse - more than sufficient to form a CT. Early calorimetry and magnetic field measurements indicate that a new plasma structure has been formed in the magnetized coaxial plasma source. This work presents the current results of CT generation with respect to the bias field strength as well as the coaxial source geometry. DOE OFES DE-SC0008587, DE-SC0008658, DE-FG02-99ER54515.

  16. The effect of MTHFR(C677T) genotype on plasma homocysteine concentrations in healthy children is influenced by gender.

    PubMed

    Papoutsakis, C; Yiannakouris, N; Manios, Y; Papaconstantinou, E; Magkos, F; Schulpis, K H; Zampelas, A; Matalas, A L

    2006-02-01

    To explore the influence of gender, together with folate status, on the relation between the common methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism and plasma total homocysteine (tHcy) concentrations in healthy children. Cross-sectional study by face-to-face interview. A total of 186 sixth-grade students participated from twelve randomly selected primary schools in Volos, Greece. Fasting tHcy, folate, and vitamin B(12) were measured in plasma. The MTHFR genotypes were determined. Anthropometric and dietary intake data by 24-h recall were collected. Geometric means for plasma tHcy, plasma folate and energy-adjusted dietary folate did not differ between females and males. The homozygous mutant TT genotype was associated with higher tHcy only in children with lower plasma folate concentrations (<19.9 nmol/l, P = 0.012). As a significant gender interaction was observed (P = 0.050), we stratified the lower plasma folate group by gender and found that the association between the genotype and tHcy was restricted to males (P = 0.026). Similar results were obtained when folate status was based on estimated dietary folate. Specifically, only TT males that reported lower dietary folate consumption (<37 microg/MJ/day) had tHcy that was significantly higher than tHcy levels of C-allele carriers (P = 0.001). Under conditions of lower folate status (as estimated by either plasma concentration or reported dietary consumption), gender modifies the association of the MTHFR(C677T) polymorphism with tHcy concentrations in healthy children. Kellog Europe.

  17. Development of lithium and tungsten limiters for test on T-10 tokamak at high heat load condition

    NASA Astrophysics Data System (ADS)

    Lyublinski, I. E.; Vertkov, A. V.; Zharkov, M. Yu; Vershkov, V. A.; Mirnov, S. V.

    2016-04-01

    Application of a complex of powerful (up to 3 MW) ECR plasma heating in T-10 tokamak is pulled down with a problem of the strong plasma pollution at power input more than 2 MW. For the solution of these problems the new W and Li limiters is developed and prepared to implementation. As it is supposed, application of W as a plasma facing material will allow excluding carbon influx into vacuum chamber. An additional Li limiter arranged in a shadow of W one will be used as a Li source for plasma periphery cooling due to a reradiation on Li that will lead to decrease in power deposition on W limiters. Parameters and design of limiters are presented. Plasma facing surface of a limiter is made of capillary-porous system (CPS) with Li. Porous matrix of CPS (W felt) provides stability of liquid Li surface under MHD force effect and an opportunity of its constant renewal due to capillary forces. The necessary Li flux from a Li limiter surface is estimated for maintenance of normal operation mode of W limiters at ECRH power of 3 MW during 400 ms. It is shown, that upgrade of limiters in tokamak T-10 will allow providing of ECR plasma heating with power up to 3 MW at reasonable Li flux.

  18. Development of high energy pulsed plasma simulator for plasma-lithium trench experiment

    NASA Astrophysics Data System (ADS)

    Jung, Soonwook

    To simulate detrimental events in a tokamak and provide a test-stand for a liquid lithium infused trench (LiMIT) device, a pulsed plasma source utilizing a theta pinch in conjunction with a coaxial plasma accelerator has been developed. An overall objective of the project is to develop a compact device that can produce 100 MW/m2 to 1 GW/m2 of plasma heat flux (a typical heat flux level in a major fusion device) in ~ 100 mus (≤ 0.1 MJ/m2) for a liquid lithium plasma facing component research. The existing theta pinch device, DEVeX, was built and operated for study on lithium vapor shielding effect. However, a typical plasma energy of 3 - 4 kJ/m2 is too low to study an interaction of plasma and plasma facing components in fusion devices. No or little preionized plasma, ringing of magnetic field, collisions of high energy particles with background gas have been reported as the main issues. Therefore, DEVeX is reconfigured to mitigate these issues. The new device is mainly composed of a plasma gun for a preionization source, a theta pinch for heating, and guiding magnets for a better plasma transportation. Each component will be driven by capacitor banks and controlled by high voltage / current switches. Several diagnostics including triple Langmuir probe, calorimeter, optical emission measurement, Rogowski coil, flux loop, and fast ionization gauge are used to characterize the new device. A coaxial plasma gun is manufactured and installed in the previous theta pinch chamber. The plasma gun is equipped with 500 uF capacitor and a gas puff valve. The increase of the plasma velocity with the plasma gun capacitor voltage is consistent with the theoretical predictions and the velocity is located between the snowplow model and the weak - coupling limit. Plasma energies measured with the calorimeter ranges from 0.02 - 0.065 MJ/m2 and increases with the voltage at the capacitor bank. A cross-check between the plasma energy measured with the calorimeter and the triple probe / optics shows that the plasma energies are in agreement with each other. The effect of theta pinch on preionized plasma has been investigated when operated in conjunction with the coaxial plasma gun. The previous theta coil (1 turn, 40 nH) is connected with 72 muF capacitor bank to handle more energy. The theta coil is reconfigured as a two - turn coil (160 nH) to facilitate the operation of a crowbar. The two-turn coil achieves a maximum current of 300 kA (= 1.2 T) at 20 kV of the main capacitor bank voltage and the operation of the crowbar allows for a monotonically decreasing current. With the 2-turn theta coil, a maximum plasma energy of ~ 0.08 MJ/m2 is achieved with 6 kV at the plasma gun and 20 kV at the theta pinch. Plasma velocities of 34 - 74 km/s are observed at the first few peaks of theta pinch current. A problem of plasma transport with short delay times is observed. Finally, the dissertation concludes with a few ways to further improve the device and increase the plasma heat flux. A change in the system design as well as a compact toroid generation are proposed and preliminary results are presented. The dissertation also suggests hardware upgrades which include an increase in the energy at the plasma gun / the theta pinch capacitor banks. At the same time, additional diagnostics will allow to further investigate the effect of pinching on the plasma from the plasma gun as well as determine the overall effect of the guiding magnetic field. (Abstract shortened by UMI.).

  19. 3D toroidal physics: testing the boundaries of symmetry breaking

    NASA Astrophysics Data System (ADS)

    Spong, Don

    2014-10-01

    Toroidal symmetry is an important concept for plasma confinement; it allows the existence of nested flux surface MHD equilibria and conserved invariants for particle motion. However, perfect symmetry is unachievable in realistic toroidal plasma devices. For example, tokamaks have toroidal ripple due to discrete field coils, optimized stellarators do not achieve exact quasi-symmetry, the plasma itself continually seeks lower energy states through helical 3D deformations, and reactors will likely have non-uniform distributions of ferritic steel near the plasma. Also, some level of designed-in 3D magnetic field structure is now anticipated for most concepts in order to lead to a stable, steady-state fusion reactor. Such planned 3D field structures can take many forms, ranging from tokamaks with weak 3D ELM-suppression fields to stellarators with more dominant 3D field structures. There is considerable interest in the development of unified physics models for the full range of 3D effects. Ultimately, the questions of how much symmetry breaking can be tolerated and how to optimize its design must be addressed for all fusion concepts. Fortunately, significant progress is underway in theory, computation and plasma diagnostics on many issues such as magnetic surface quality, plasma screening vs. amplification of 3D perturbations, 3D transport, influence on edge pedestal structures, MHD stability effects, modification of fast ion-driven instabilities, prediction of energetic particle heat loads on plasma-facing materials, effects of 3D fields on turbulence, and magnetic coil design. A closely coupled program of simulation, experimental validation, and design optimization is required to determine what forms and amplitudes of 3D shaping and symmetry breaking will be compatible with future fusion reactors. The development of models to address 3D physics and progress in these areas will be described. This work is supported both by the US Department of Energy under Contract DE-AC05-00OR22725 with UT-Battelle, LLC and under the US DOE SciDAC GSEP Center.

  20. Numerical analysis of electronegative plasma in the extraction region of negative hydrogen ion sources

    NASA Astrophysics Data System (ADS)

    Kuppel, S.; Matsushita, D.; Hatayama, A.; Bacal, M.

    2011-01-01

    This numerical study focuses on the physical mechanisms involved in the extraction of volume-produced H- ions from a steady state laboratory negative hydrogen ion source with one opening in the plasma electrode (PE) on which a dc-bias voltage is applied. A weak magnetic field is applied in the source plasma transversely to the extracted beam. The goal is to highlight the combined effects of the weak magnetic field and the PE bias voltage (upon the extraction process of H- ions and electrons). To do so, we focus on the behavior of electrons and volume-produced negative ions within a two-dimensional model using the particle-in-cell method. No collision processes are taken into account, except for electron diffusion across the magnetic field using a simple random-walk model at each time step of the simulation. The results show first that applying the magnetic field (without PE bias) enhances H- ion extraction, while it drastically decreases the extracted electron current. Secondly, the extracted H- ion current has a maximum when the PE bias is equal to the plasma potential, while the extracted electron current is significantly reduced by applying the PE bias. The underlying mechanism leading to the above results is the gradual opening by the PE bias of the equipotential lines towards the parts of the extraction region facing the PE. The shape of these lines is due originally to the electron trapping by the magnetic field.

  1. Silicon Carbide as a tritium permeation barrier in tungsten plasma-facing components

    NASA Astrophysics Data System (ADS)

    Wright, G. M.; Durrett, M. G.; Hoover, K. W.; Kesler, L. A.; Whyte, D. G.

    2015-03-01

    The control of tritium inventory is of great importance in future fusion reactors, not only from a safety standpoint but also to maximize a reactor's efficiency. Due to the high mobility of hydrogenic species in tungsten (W) one concern is the loss of tritium from the system via permeation through the tungsten plasma-facing components (PFC). This can lead to loss of tritium through the cooling channels of the wall thereby mandating tritium monitoring and recovery methods for the cooling system of the first wall. The permeated tritium is then out of the fuel cycle and cannot contribute to energy production until it is recovered and recycled into the system.

  2. Hydrogen transport behavior of beryllium

    NASA Astrophysics Data System (ADS)

    Anderl, R. A.; Hankins, M. R.; Longhurst, G. R.; Pawelko, R. J.; Macaulay-Newcombe, R. G.

    1992-12-01

    Beryllium is being evaluated for use as a plasma-facing material in the International Thermonuclear Experimental Reactor (ITER). One concern in the evaluation is the retention and permeation of tritium implanted into the plasma-facing surface. We performed laboratory-scale studies to investigate mechanisms that influence hydrogen transport and retention in beryllium foil specimens of rolled powder metallurgy product and rolled ingot cast beryllium. Specimen characterization was accomplished using scanning electron microscopy, Auger electron spectroscopy, and Rutherford backscattering spectrometry (RBS) techniques. Hydrogen transport was investigated using ion-beam permeation experiments and nuclear reaction analysis (NRA). Results indicate that trapping plays a significant role in permeation, re-emission, and retention, and that surface processes at both upstream and downstream surfaces are also important.

  3. Modelling structural and plasma facing materials for fusion power plants: Recent advances and outstanding issues in the EURATOM fusion materials programme

    NASA Astrophysics Data System (ADS)

    Boutard, Jean-Louis; Dudarev, Sergei; Rieth, Michael

    2011-10-01

    EFDA Fusion Materials Topical Group was established at the end of 2007 to coordinate the EU effort on the development of structural and protection materials able to withstand the very demanding operating conditions of a future DEMO power plant. Focusing on a selection of well identified materials issues, including the behaviour of Reduced Activation Ferritic-Martensitic steels, and W-alloys under the foreseen operation conditions in a future DEMO, this paper describes recent advances in physical modelling and experimental validation, contributing to the definition of chemical composition and microstructure of materials with improved in-service stability at high temperature, high neutron flux and intense ion bombardment.

  4. 29 CFR 1910.133 - Eye and face protection.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... side shields) meeting the pertinent requirements of this section are acceptable. (3) The employer shall...) less than 500 10 Arc cutting (Heavy) 500-1000 11 Plasma arc welding less than 20 6 20-100 8 100-400 10 400-800 11 Plasma arc cutting (light)** less than 300 8 (medium)** 300-400 9 (heavy)** 400-800 10...

  5. 29 CFR 1910.133 - Eye and face protection.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... side shields) meeting the pertinent requirements of this section are acceptable. (3) The employer shall...) less than 500 10 Arc cutting (Heavy) 500-1000 11 Plasma arc welding less than 20 6 20-100 8 100-400 10 400-800 11 Plasma arc cutting (light)** less than 300 8 (medium)** 300-400 9 (heavy)** 400-800 10...

  6. 29 CFR 1910.133 - Eye and face protection.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... side shields) meeting the pertinent requirements of this section are acceptable. (3) The employer shall...) less than 500 10 Arc cutting (Heavy) 500-1000 11 Plasma arc welding less than 20 6 20-100 8 100-400 10 400-800 11 Plasma arc cutting (light)** less than 300 8 (medium)** 300-400 9 (heavy)** 400-800 10...

  7. 29 CFR 1910.133 - Eye and face protection.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... side shields) meeting the pertinent requirements of this section are acceptable. (3) The employer shall...) less than 500 10 Arc cutting (Heavy) 500-1000 11 Plasma arc welding less than 20 6 20-100 8 100-400 10 400-800 11 Plasma arc cutting (light)** less than 300 8 (medium)** 300-400 9 (heavy)** 400-800 10...

  8. 29 CFR 1910.133 - Eye and face protection.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... side shields) meeting the pertinent requirements of this section are acceptable. (3) The employer shall...) less than 500 10 Arc cutting (Heavy) 500-1000 11 Plasma arc welding less than 20 6 20-100 8 100-400 10 400-800 11 Plasma arc cutting (light)** less than 300 8 (medium)** 300-400 9 (heavy)** 400-800 10...

  9. Phase Evolution and Mechanical Properties of AlCoCrFeNiSi x High-Entropy Alloys Synthesized by Mechanical Alloying and Spark Plasma Sintering

    NASA Astrophysics Data System (ADS)

    Kumar, Anil; Swarnakar, Akhilesh Kumar; Chopkar, Manoj

    2018-05-01

    In the current investigation, AlCoCrFeNiSi x (x = 0, 0.3, 0.6 and 0.9 in atomic ratio) high-entropy alloy systems are prepared by mechanical alloying and subsequently consolidated by spark plasma sintering. The microstructural and mechanical properties were analyzed to understand the effect of Si addition in AlCoCrFeNi alloy. The x-ray diffraction analysis reveals the supersaturated solid solution of the body-centered cubic structure after 20 h of ball milling. However, the consolidation promotes the transformation of body-centered phases partially into the face-centered cubic structure and sigma phases. A recently proposed geometric model based on the atomic stress theory has been extended for the first time to classify single phase and multi-phases on the high-entropy alloys prepared by mechanical alloying and spark plasma sintering process. Improved microhardness and better wear resistance were achieved as the Si content increased from 0 to 0.9 in the present high-entropy alloy.

  10. Isomer and Fluorination Effects among Fluorine Substituted Hydrocarbon C3/C4 Molecules in Electron Impact Ionization

    NASA Astrophysics Data System (ADS)

    Patel, U. R.; Joshipura, K. N.

    2015-05-01

    Electron collision processes are very important in both man-made and natural plasmas, for determining the energy balances and transport properties of electrons. Electron -molecule scattering leading to ionization represents one of the most fundamental processes in collision physics. In the gas phase, the total efficiency of the process is described by the absolute total electron impact ionization cross section. Carbon based materials are some of the widely used materials for a divertor plate and magnetically confined fusion devices. In the ``ITER,'' it is very important for steady state operation to have an estimate of the lifetime of carbon plasma facing components. Apart from fusion plasma relevance, the present theoretical study is very important in modeling and controlling other electron assisted processes in many areas. Hydrocarbons play an important role for plasma diagnostics as impurities in the Tokamak fusion divertor, as seed gases for the production of radicals and ions in low temperature plasma processing. Fluorine substituted hydrocarbons (perfluorocarbons) are important as reactants in plasma assisted fabrication processes. In the present work, we have calculated total ionization cross sections Qion for C3/C4 Hydrocarbon isomers by electron impact, and comparisons are made mutually to observe isomer effect. Comparisons are also made by substituting H atom by F atom and revealing fluorination effect. The present calculations are quite significant owing to the lack of experimental data, with just an isolated previous theoretical work in some cases.

  11. Preparation of erosion and deposition investigations on plasma facing components in Wendelstein 7-X

    NASA Astrophysics Data System (ADS)

    Dhard, C. P.; Balden, M.; Braeuer, T.; Brezinsek, S.; Coenen, J. W.; Dudek, A.; Ehrke, G.; Hathiramani, D.; Klose, S.; König, R.; Laux, M.; Linsmeier, Ch; Manhard, A.; Masuzaki, S.; Mayer, M.; Motojima, G.; Naujoks, D.; Neu, R.; Neubauer, O.; Rack, M.; Ruset, C.; Schwarz-Selinger, T.; Pedersen, T. Sunn; Tokitani, M.; Unterberg, B.; Yajima, M.; W7-X Team1, The

    2017-12-01

    In the Wendelstein 7-X stellarator with its twisted magnetic geometry the investigation of plasma wall interaction processes in 3D plasma configurations is an important research subject. For the upcoming operation phase i.e. OP1.2, three different types of material probes have been installed within the plasma vessel for the erosion/deposition investigations in selected areas with largely different expected heat load levels, namely, ≤10 MW m-2 at the test divertor units (TDU), ≤500 kW m-2 at the baffles, heat shields and toroidal closures and ≤100 kW m-2 at the stainless steel wall panels. These include 18 exchangeable target elements at TDU, about 30 000 screw heads at graphite tiles and 44 wafer probes on wall panels, coated with marker layers. The layer thicknesses, surface morphologies and the impurity contents were pre-characterized by different techniques and subjected to various qualification tests. The positions of these probes were fixed based on the strike line locations on the divertor predicted by field line diffusion and EMC3/EIRENE modeling calculations for the OP1.2 plasma configurations and availability of locations on panels in direct view of the plasma. After the first half of the operation phase i.e. OP1.2a the probes will be removed to determine the erosion/deposition pattern by post-mortem analysis and replaced by a new set for the second half of the operation phase, OP1.2b.

  12. [Sequential preparation of microvlllous and basal membranes from human placenta].

    PubMed

    Long, Ning; Xing, Ai-yun; Yang, Xiao-hua; Zhang, Rong; Wu, Lin

    2010-03-01

    To improve the technology of isolating paired fractions of the maternal-facing membranes (MVM) and fetal-facing plasma membranes (BM) from a term placenta. The component of buffer was improved based on Illsley method. The time of Mg2+ -aggregated basal membranes was extended. MVM were obtained from the supernatant of low speed centrifugation while BM were further purified on a sucrose step gradient. Yield for MVM and BM prepared by the method were (0.55 +/- 10.10) mg/g and (0.54 +/- 0.02) mg/g wet weight of placenta. They were enriched 16.87-fold and 11.19-fold as determined by the membrane marker enzymes, alkaline phosphatase (MVM) and adenylate cyclase (BM). The modified Illsley method can easily produce both MVM and BM of satisfied quantity from human placenta. It could be applied as a cell molecular model of maternal-fetal exchange interface.

  13. Hydrogen in tungsten as plasma-facing material

    NASA Astrophysics Data System (ADS)

    Roth, Joachim; Schmid, Klaus

    2011-12-01

    Materials facing plasmas in fusion experiments and future reactors are loaded with high fluxes (1020-1024 m-2 s-1) of H, D and T fuel particles at energies ranging from a few eV to keV. In this respect, the evolution of the radioactive T inventory in the first wall, the permeation of T through the armour into the coolant and the thermo-mechanical stability after long-term exposure are key parameters determining the applicability of a first wall material. Tungsten exhibits fast hydrogen diffusion, but an extremely low solubility limit. Due to the fast diffusion of hydrogen and the short ion range, most of the incident ions will quickly reach the surface and recycle into the plasma chamber. For steady-state operation the solute hydrogen for the typical fusion reactor geometry and wall conditions can reach an inventory of about 1 kg. However, in short-pulse operation typical of ITER, solute hydrogen will diffuse out after each pulse and the remaining inventory will consist of hydrogen trapped in lattice defects, such as dislocations, grain boundaries and irradiation-induced traps. In high-flux areas the hydrogen energies are too low to create displacement damage. However, under these conditions the solubility limit will be exceeded within the ion range and the formation of gas bubbles and stress-induced damage occurs. In addition, simultaneous neutron fluxes from the nuclear fusion reaction D(T,n)α will lead to damage in the materials and produce trapping sites for diffusing hydrogen atoms throughout the bulk. The formation and diffusive filling of these different traps will determine the evolution of the retained T inventory. This paper will concentrate on experimental evidence for the influence different trapping sites have on the hydrogen inventory in W as studied in ion beam experiments and low-temperature plasmas. Based on the extensive experimental data, models are validated and applied to estimate the contribution of different traps to the tritium inventory in future fusion reactors.

  14. Plasma soluble prion protein, a potential biomarker for sport-related concussions: a pilot study.

    PubMed

    Pham, Nam; Akonasu, Hungbo; Shishkin, Rhonda; Taghibiglou, Changiz

    2015-01-01

    Sport-related mild traumatic brain injury (mTBI) or concussion is a significant health concern to athletes with potential long-term consequences. The diagnosis of sport concussion and return to sport decision making is one of the greatest challenges facing health care clinicians working in sports. Blood biomarkers have recently demonstrated their potential in assisting the detection of brain injury particularly, in those cases with no obvious physical injury. We have recently discovered plasma soluble cellular prion protein (PrP(C)) as a potential reliable biomarker for blast induced TBI (bTBI) in a rodent animal model. In order to explore the application of this novel TBI biomarker to sport-related concussion, we conducted a pilot study at the University of Saskatchewan (U of S) by recruiting athlete and non-athlete 18 to 30 year-old students. Using a modified quantitative ELISA method, we first established normal values for the plasma soluble PrP(C) in male and female students. The measured plasma soluble PrP(C) in confirmed concussion cases demonstrated a significant elevation of this analyte in post-concussion samples. Data collected from our pilot study indicates that the plasma soluble PrP(C) is a potential biomarker for sport-related concussion, which may be further developed into a clinical diagnostic tool to assist clinicians in the assessment of sport concussion and return-to-play decision making.

  15. Anticipated Electrical Environment Within Permanently Shadowed Lunar Craters

    NASA Technical Reports Server (NTRS)

    Farrell, W. M.; Stubbs, T. J.; Halekas, J. S.; Killen, R. M.; Delory, G. T.; Collier, M. R.; Vondrak, R. R.

    2010-01-01

    Shadowed locations ncar the lunar poles arc almost certainly electrically complex regions. At these locations near the terminator, the local solar wind flows nearly tangential to the surface and interacts with large-scale topographic features such as mountains and deep large craters, In this work, we study the solar wind orographic effects from topographic obstructions along a rough lunar surface, On the leeward side of large obstructions, plasma voids are formed in the solar wind because of the absorption of plasma on the upstream surface of these obstacles, Solar wind plasma expands into such voids) producing an ambipolar potential that diverts ion flow into the void region. A surface potential is established on these leeward surfaces in order to balance the currents from the expansion-limited electron and ion populations, Wc find that there arc regions ncar the leeward wall of the craters and leeward mountain faces where solar wind ions cannot access the surface, leaving an electron-rich plasma previously identified as an "electron cloud." In this case, some new current is required to complete the closure for current balance at the surface, and we propose herein that lofted negatively charged dust is one possible (nonunique) compensating current source. Given models for both ambipolar and surface plasma processes, we consider the electrical environment around the large topographic features of the south pole (including Shoemaker crater and the highly varied terrain near Nobile crater), as derived from Goldstone radar data, We also apply our model to moving and stationary objects of differing compositions located on the surface and consider the impact of the deflected ion flow on possible hydrogen resources within the craters

  16. Circuit model of the ITER-like antenna for JET and simulation of its control algorithms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Durodié, Frédéric, E-mail: frederic.durodie@rma.ac.be; Křivská, Alena; Dumortier, Pierre

    2015-12-10

    The ITER-like Antenna (ILA) for JET [1] is a 2 toroidal by 2 poloidal array of Resonant Double Loops (RDL) featuring in-vessel matching capacitors feeding RF current straps in conjugate-T manner, a low impedance quarter-wave impedance transformer, a service stub allowing hydraulic actuator and water cooling services to reach the aforementioned capacitors and a 2nd stage phase-shifter-stub matching circuit allowing to correct/choose the conjugate-T working impedance. Toroidally adjacent RDLs are fed from a 3dB hybrid splitter. It has been operated at 33, 42 and 47MHz on plasma (2008-2009) while it presently estimated frequency range is from 29 to 49MHz. Atmore » the time of the design (2001-2004) as well as the experiments the circuit models of the ILA were quite basic. The ILA front face and strap array Topica model was relatively crude and failed to correctly represent the poloidal central septum, Faraday Screen attachment as well as the segmented antenna central septum limiter. The ILA matching capacitors, T-junction, Vacuum Transmission Line (VTL) and Service Stubs were represented by lumped circuit elements and simple transmission line models. The assessment of the ILA results carried out to decide on the repair of the ILA identified that achieving routine full array operation requires a better understanding of the RF circuit, a feedback control algorithm for the 2nd stage matching as well as tighter calibrations of RF measurements. The paper presents the progress in modelling of the ILA comprising a more detailed Topica model of the front face for various plasma Scrape Off Layer profiles, a comprehensive HFSS model of the matching capacitors including internal bellows and electrode cylinders, 3D-EM models of the VTL including vacuum ceramic window, Service stub, a transmission line model of the 2nd stage matching circuit and main transmission lines including the 3dB hybrid splitters. A time evolving simulation using the improved circuit model allowed to design and simulate the effectiveness of a feedback control algorithm for the 2nd stage matching and demonstrates the simultaneous matching and control of the 4 RDLs: 11 feedback loops control 21 actuators (8 capacitors, 4 phase shifters and 4 stubs for the 2nd stage matching, 4 main phase shifters controlling of the toroidal phasing and the electronically controlled phase between RF sources feeding top and bottom parts of the array and determines the poloidal phasing of the array which is solved explicitly at each time step) on (simulated) ELMy plasmas.« less

  17. Modeling Ductile-Phase Toughened Tungsten for Plasma-Facing Materials: Progress in Damage Finite Element Analysis of the Tungsten-Copper Bend Bar Tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Ba Nghiep; Henager, Charles H.; Kurtz, Richard J.

    The objective of this study is to investigate the deformation behavior of ductile phase toughened W-composites such as W-Cu and W-Ni-Fe by means of a multiscale finite element model that involves a microstructural dual-phase model where the constituent phases (i.e., W, Cu, Ni-Fe) are finely discretized and are described by a continuum damage model. Such a model is suitable for modeling deformation, cracking, and crack bridging for W-Cu, W-Ni-Fe, and other ductile phase toughened W-composites, or more generally, any multi-phase composite structure where two or more phases undergo cooperative deformation in a composite system. Our current work focuses on simulatingmore » the response and damage development of the W-Cu specimen subjected to three-point bending.« less

  18. Suppression of tritium retention in remote areas of ITER by nonperturbative reactive gas injection.

    PubMed

    Tabarés, F L; Ferreira, J A; Ramos, A; van Rooij, G; Westerhout, J; Al, R; Rapp, J; Drenik, A; Mozetic, M

    2010-10-22

    A technique based on reactive gas injection in the afterglow region of the divertor plasma is proposed for the suppression of tritium-carbon codeposits in remote areas of ITER when operated with carbon-based divertor targets. Experiments in a divertor simulator plasma device indicate that a 4  nm/min deposition can be suppressed by addition of 1  Pa·m³ s⁻¹ ammonia flow at 10 cm from the plasma. These results bolster the concept of nonperturbative scavenger injection for tritium inventory control in carbon-based fusion plasma devices, thus paving the way for ITER operation in the active phase under a carbon-dominated, plasma facing component background.

  19. Multi-scale modeling to relate Be surface temperatures, concentrations and molecular sputtering yields

    NASA Astrophysics Data System (ADS)

    Lasa, Ane; Safi, Elnaz; Nordlund, Kai

    2015-11-01

    Recent experiments and Molecular Dynamics (MD) simulations show erosion rates of Be exposed to deuterium (D) plasma varying with surface temperature and the correlated D concentration. Little is understood how these three parameters relate for Be surfaces, despite being essential for reliable prediction of impurity transport and plasma facing material lifetime in current (JET) and future (ITER) devices. A multi-scale exercise is presented here to relate Be surface temperatures, concentrations and sputtering yields. Kinetic Monte Carlo (MC) code MMonCa is used to estimate equilibrium D concentrations in Be at different temperatures. Then, mixed Be-D surfaces - that correspond to the KMC profiles - are generated in MD, to calculate Be-D molecular erosion yields due to D irradiation. With this new database implemented in the 3D MC impurity transport code ERO, modeling scenarios studying wall erosion, such as RF-induced enhanced limiter erosion or main wall surface temperature scans run at JET, can be revisited with higher confidence. Work supported by U.S. DOE under Contract DE-AC05-00OR22725.

  20. EU Development of High Heat Flux Components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Linke, J.; Lorenzetto, P.; Majerus, P.

    2005-04-15

    The development of plasma facing components for next step fusion devices in Europe is strongly focused to ITER. Here a wide spectrum of different design options for the divertor target and the first wall have been investigated with tungsten, CFC, and beryllium armor. Electron beam simulation experiments have been used to determine the performance of high heat flux components under ITER specific thermal loads. Beside thermal fatigue loads with power density levels up to 20 MWm{sup -2}, off-normal events are a serious concern for the lifetime of plasma facing components. These phenomena are expected to occur on a time scalemore » of a few milliseconds (plasma disruptions) or several hundred milliseconds (vertical displacement events) and have been identified as a major source for the production of neutron activated metallic or tritium enriched carbon dust which is of serious importance from a safety point of view.The irradiation induced material degradation is another critical concern for future D-T-burning fusion devices. In ITER the integrated neutron fluence to the first wall and the divertor armour will remain in the order of 1 dpa and 0.7 dpa, respectively. This value is low compared to future commercial fusion reactors; nevertheless, a nonnegligible degradation of the materials has been detected, both for mechanical and thermal properties, in particular for the thermal conductivity of carbon based materials. Beside the degradation of individual material properties, the high heat flux performance of actively cooled plasma facing components has been investigated under ITER specific thermal and neutron loads.« less

  1. Platelet-Rich Plasma with Basic Fibroblast Growth Factor for Treatment of Wrinkles and Depressed Areas of the Skin.

    PubMed

    Kamakura, Tatsuro; Kataoka, Jiro; Maeda, Kazuhiko; Teramachi, Hideaki; Mihara, Hisayuki; Miyata, Kazuhiro; Ooi, Kouichi; Sasaki, Naomi; Kobayashi, Miyuki; Ito, Kouhei

    2015-11-01

    There are several treatments for wrinkles and depressed areas of the face, hands, and body. Hyaluronic acid is effective, but only for 6 months to 1 year. Autologous fat grafting may cause damage during tissue harvest. In this study, patients were injected with platelet-rich plasma plus basic fibroblast growth factor (bFGF). Platelet-rich plasma was prepared by collecting blood and extracting platelets using double centrifugation. Basic fibroblast growth factor diluted with normal saline was added to platelet-rich plasma. There were 2005 patients who received platelet-rich plasma plus bFGF therapy. Of the 2005 patients treated, 1889 were female and 116 were male patients; patients had a mean age of 48.2 years. Treated areas inlcuded 1461 nasolabial folds, 437 marionette lines, 1413 nasojugal grooves, 148 supraorbital grooves, 253 midcheek grooves, 304 foreheads, 49 temples, and 282 glabellae. Results on the Global Aesthetic Improvement Scale indicated that the level of patient satisfaction was 97.3 percent and the level of investigator satisfaction was 98.4 percent. The period for the therapy's effectiveness to become apparent was an average of 65.4 days. Platelet-rich plasma plus bFGF therapy resulted in an improved grade on the Wrinkle Severity Rating Scale. Improvement was 0.55 for a Wrinkle Severity Rating Scale grade of 2, 1.13 for a Wrinkle Severity Rating Scale grade of 3, 1.82 for a Wrinkle Severity Rating Scale grade of 4, and 2.23 for a Wrinkle Severity Rating Scale grade of 5. Platelet-rich plasma plus bFGF is effective in treating wrinkles and depressed areas of the skin of the face and body. The study revealed that platelet-rich plasma plus bFGF is an innovative therapy that causes minimal complications. Therapeutic, IV.

  2. Plasma-Facing Component and Materials Testing for the NSTX-U

    NASA Astrophysics Data System (ADS)

    Jaworski, Michael; Brooks, A.; Gerhardt, S.; Loesser, D.; Mardenfeld, M.; Menard, J.; Gray, T.; Reinke, M.

    2017-10-01

    The NSTX-U Recovery Project is developing plasma-facing components for use in the divertor of NSTX-U. The extreme conditions of the NSTX-U divertor make it possible to stress even graphite surfaces to the material limits leading to the possibility of component failures. In addition, the complex, mixed-material environment of the NSTX-U due to the use of boron and lithium wall conditioning techniques creates significant uncertainties in the monitoring of the PFCs. A testing program has been developed to inform on the material and design limitations of the NSTX-U high-heat flux components. These tests include high-heat flux testing in electron beam facilities as well as plasma-based testing. The NSTX-U components could experience perpendicular heat fluxes as high as 45 MW/m2. Parallel heat fluxes onto leading edges could reach 475 MW/m2. The testing program and material survey plan will be presented. Work supported by DOE contract DE-AC02-09CH11466 and DE-AC05-00OR22725.

  3. Cutaneous plasmacytosis: A rare entity with unique presentation.

    PubMed

    Dhar, Subhra; Liani, Lalthleng; Patole, Kamlakar; Dhar, Sandipan

    2017-01-01

    Primary cutaneous plasmacytosis is a rare cutaneous disorder with extensive cutaneous plaques/papules mainly on the trunk and face. Cases have mostly been documented from Japan. We present here a rare case of cutaneous plasmacytosis from India of Mongolian descent. This 50-year-old female from Mizoram had extensive maculo-papular violaceous plaques distributed on the face, axillae, trunk and lower extremities. Initial and repeat skin biopsy revealed dense perivascular and periadnexal mature plasma cells. She also had lymphadenopathy. Serum protein electrophoresis did not reveal any M band and the Bence Jones protein was negative in urine. The patient had multiple superficial lymph nodes and a biopsy from the cervical lymph node showed effacement of normal nodal architecture by sheets of plasma cells. Immuno histochemistry was done from both skin and lymph node biopsies. The kappa and lambda tight chains were not restricted; there by proving the polyclonal nature of the plasma cells. The novelty of the case lies in its classical clinical presentation with histopathological documentation.

  4. Scanning retarding field analyzer for plasma profile measurements in the boundary of the Alcator C-Mod tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brunner, D.; LaBombard, B.; Ochoukov, R.

    2013-03-15

    A new Retarding Field Analyzer (RFA) head has been created for the outer-midplane scanning probe system on the Alcator C-Mod tokamak. The new probe head contains back-to-back retarding field analyzers aligned with the local magnetic field. One faces 'upstream' into the field-aligned plasma flow and the other faces 'downstream' away from the flow. The RFA was created primarily to benchmark ion temperature measurements of an ion sensitive probe; it may also be used to interrogate electrons. However, its construction is robust enough to be used to measure ion and electron temperatures up to the last-closed flux surface in C-Mod. Amore » RFA probe of identical design has been attached to the side of a limiter to explore direct changes to the boundary plasma due to lower hybrid heating and current drive. Design of the high heat flux (>100 MW/m{sup 2}) handling probe and initial results are presented.« less

  5. Coating materials for fusion application in China

    NASA Astrophysics Data System (ADS)

    Luo, G.-N.; Li, Q.; Liu, M.; Zheng, X. B.; Chen, J. L.; Guo, Q. G.; Liu, X.

    2011-10-01

    Thick SiC coatings of ˜100 μm on graphite tiles, prepared by chemical vapor infiltration of Si into the tiles and the following reactions between Si and C, are used as plasma facing material (PFM) on HT-7 superconducting tokamak and Experimental Advanced Superconducting Tokamak (EAST). With increase in the heating and driving power in EAST, the present plasma facing component (PFC) of the SiC/C tiles bolted to heat sink will be replaced by W coatings on actively cooled Cu heat sink, prepared by vacuum plasma spraying (VPS) adopting different interlayer. The VPS-W/Cu PFC with built-in cooling channels were prepared and mounted into the HT-7 acting as a movable limiter. Behavior of heat load onto the limiter and the material was studied. The Cu coatings on the Inconel 625 tubes were successfully prepared by high velocity air-fuel (HVAF) thermal spraying, being used as the liquid nitrogen (LN2) shields of the in-vessel cryopump for divertor pumping in EAST.

  6. Divertor power load feedback with nitrogen seeding in ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Kallenbach, A.; Dux, R.; Fuchs, J. C.; Fischer, R.; Geiger, B.; Giannone, L.; Herrmann, A.; Lunt, T.; Mertens, V.; McDermott, R.; Neu, R.; Pütterich, T.; Rathgeber, S.; Rohde, V.; Schmid, K.; Schweinzer, J.; Treutterer, W.; ASDEX Upgrade Team

    2010-05-01

    Feedback control of the divertor power load by means of nitrogen seeding has been developed into a routine operational tool in the all-tungsten clad ASDEX Upgrade tokamak. For heating powers above about 12 MW, its use has become inevitable to protect the divertor tungsten coating under boronized conditions. The use of nitrogen seeding is accompanied by improved energy confinement due to higher core plasma temperatures, which more than compensates the negative effect of plasma dilution by nitrogen on the neutron rate. This paper describes the technical details of the feedback controller. A simple model for its underlying physics allows the prediction of its behaviour and the optimization of the feedback gain coefficients used. Storage and release of nitrogen in tungsten surfaces were found to have substantial impact on the behaviour of the seeded plasma, resulting in increased nitrogen consumption with unloaded walls and a latency of nitrogen release over several discharges after its injection. Nitrogen is released from tungsten plasma facing components with moderate surface temperature in a sputtering-like process; therefore no uncontrolled excursions of the nitrogen wall release are observed. Overall, very stable operation of the high-Z tokamak is possible with nitrogen seeding, where core radiative losses are avoided due to its low atomic charge Z and a high ELM frequency is maintained.

  7. Measurement of He neutral temperature in detached plasmas using laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Aramaki, M.; Tsujihara, T.; Kajita, S.; Tanaka, H.; Ohno, N.

    2018-01-01

    The reduction of the heat load onto plasma-facing components by plasma detachment is an inevitable scheme in future nuclear fusion reactors. Since the control of the plasma and neutral temperatures is a key issue to the detached plasma generation, we have developed a laser absorption spectroscopy system for the metastable helium temperature measurements and used together with a previously developed laser Thomson scattering system for the electron temperature and density measurements. The thermal relaxation process between the neutral and the electron in the detached plasma generated in the linear plasma device, NAGDIS-II was studied. It is shown that the electron temperature gets close to the neutral temperature by increasing the electron density. On the other hand, the pressure dependence of electron and neutral temperatures shows the cooling effect by the neutrals. The possibility of the plasma fluctuation measurement using the fluctuation in the absorption signal is also shown.

  8. Fully implicit adaptive mesh refinement MHD algorithm

    NASA Astrophysics Data System (ADS)

    Philip, Bobby

    2005-10-01

    In the macroscopic simulation of plasmas, the numerical modeler is faced with the challenge of dealing with multiple time and length scales. The former results in stiffness due to the presence of very fast waves. The latter requires one to resolve the localized features that the system develops. Traditional approaches based on explicit time integration techniques and fixed meshes are not suitable for this challenge, as such approaches prevent the modeler from using realistic plasma parameters to keep the computation feasible. We propose here a novel approach, based on implicit methods and structured adaptive mesh refinement (SAMR). Our emphasis is on both accuracy and scalability with the number of degrees of freedom. To our knowledge, a scalable, fully implicit AMR algorithm has not been accomplished before for MHD. As a proof-of-principle, we focus on the reduced resistive MHD model as a basic MHD model paradigm, which is truly multiscale. The approach taken here is to adapt mature physics-based technologyootnotetextL. Chac'on et al., J. Comput. Phys. 178 (1), 15- 36 (2002) to AMR grids, and employ AMR-aware multilevel techniques (such as fast adaptive composite --FAC-- algorithms) for scalability. We will demonstrate that the concept is indeed feasible, featuring optimal scalability under grid refinement. Results of fully-implicit, dynamically-adaptive AMR simulations will be presented on a variety of problems.

  9. Fully implicit adaptive mesh refinement algorithm for reduced MHD

    NASA Astrophysics Data System (ADS)

    Philip, Bobby; Pernice, Michael; Chacon, Luis

    2006-10-01

    In the macroscopic simulation of plasmas, the numerical modeler is faced with the challenge of dealing with multiple time and length scales. Traditional approaches based on explicit time integration techniques and fixed meshes are not suitable for this challenge, as such approaches prevent the modeler from using realistic plasma parameters to keep the computation feasible. We propose here a novel approach, based on implicit methods and structured adaptive mesh refinement (SAMR). Our emphasis is on both accuracy and scalability with the number of degrees of freedom. As a proof-of-principle, we focus on the reduced resistive MHD model as a basic MHD model paradigm, which is truly multiscale. The approach taken here is to adapt mature physics-based technology to AMR grids, and employ AMR-aware multilevel techniques (such as fast adaptive composite grid --FAC-- algorithms) for scalability. We demonstrate that the concept is indeed feasible, featuring near-optimal scalability under grid refinement. Results of fully-implicit, dynamically-adaptive AMR simulations in challenging dissipation regimes will be presented on a variety of problems that benefit from this capability, including tearing modes, the island coalescence instability, and the tilt mode instability. L. Chac'on et al., J. Comput. Phys. 178 (1), 15- 36 (2002) B. Philip, M. Pernice, and L. Chac'on, Lecture Notes in Computational Science and Engineering, accepted (2006)

  10. 29 CFR 1915.153 - Eye and face protection.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... flying objects. Detachable side protectors (e.g., a clip-on or slide-on side shield) meeting the... (Light) Less than 10 Arc cutting (Heavy) 500 11 500-1000 Plasma arc welding Less than 6 20 8 20− 10 100 11 100− 400 400− 800 Plasma arc cutting (light)** Less than 300 8 (medium)** 300-400 9 (heavy)** 400...

  11. 29 CFR 1915.153 - Eye and face protection.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... flying objects. Detachable side protectors (e.g., a clip-on or slide-on side shield) meeting the... (Light) Less than 10 Arc cutting (Heavy) 500 11 500-1000 Plasma arc welding Less than 6 20 8 20− 10 100 11 100− 400 400− 800 Plasma arc cutting (light)** Less than 300 8 (medium)** 300-400 9 (heavy)** 400...

  12. 29 CFR 1915.153 - Eye and face protection.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... flying objects. Detachable side protectors (e.g., a clip-on or slide-on side shield) meeting the... (Light) Less than 10 Arc cutting (Heavy) 500 11 500-1000 Plasma arc welding Less than 6 20 8 20− 10 100 11 100− 400 400− 800 Plasma arc cutting (light)** Less than 300 8 (medium)** 300-400 9 (heavy)** 400...

  13. 29 CFR 1915.153 - Eye and face protection.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... flying objects. Detachable side protectors (e.g., a clip-on or slide-on side shield) meeting the... (Light) Less than 10 Arc cutting (Heavy) 500 11 500-1000 Plasma arc welding Less than 6 20 8 20− 10 100 11 100− 400 400− 800 Plasma arc cutting (light)** Less than 300 8 (medium)** 300-400 9 (heavy)** 400...

  14. 29 CFR 1915.153 - Eye and face protection.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... flying objects. Detachable side protectors (e.g., a clip-on or slide-on side shield) meeting the... (Light) Less than 10 Arc cutting (Heavy) 500 11 500-1000 Plasma arc welding Less than 6 20 8 20− 10 100 11 100− 400 400− 800 Plasma arc cutting (light)** Less than 300 8 (medium)** 300-400 9 (heavy)** 400...

  15. Deuterium retention and surface modification of tungsten macrobrush samples exposed in FTU Tokamak

    NASA Astrophysics Data System (ADS)

    Maddaluno, G.; Giacomi, G.; Rufoloni, A.; Verdini, L.

    2007-06-01

    The effect of discrete structures such as macrobrush or castellated surfaces on power handling and deuterium retention of plasma facing components is to be assessed since such geometrical configurations are needed for increasing the lifetime of the armour to heat-sink joint. Four small macrobrush W and W + 1%La2O3 samples have been exposed in the Frascati Tokamak Upgrade (FTU) scrape-off layer up to the last closed flux surface by means of the Sample Introduction System. FTU is an all metal machine with no carbon source inside vacuum vessel; it exhibits ITER relevant energy and particle fluxes on the plasma facing components. Here, results on morphological surface changes (SEM), chemical composition (EDX) and deuterium retention (TDS) are reported.

  16. Preparation of tungsten fiber reinforced-tungsten/copper composite for plasma facing component

    NASA Astrophysics Data System (ADS)

    He, Gang; Xu, Kunyuan; Guo, Shibin; Qian, Xueqiang; Yang, Zengchao; Liu, Guanghua; Li, Jiangtao

    2014-12-01

    W fiber reinforced-W/Cu composite is designed as a transition layer between CuCrZr heat sink material and W plasma facing material. A novel method was developed for the preparation of W fiber reinforced-W/Cu composite by combining combustion synthesis with centrifugal infiltration. Cu melt with a transient temperature over 2000 °C produced by the thermite reaction was infiltrated into the W powder and fiber bed with the assistance of a high gravity field. It was found that the W particles were sintered and bonded to the W fibers due to the high temperature produced by the thermite reaction. The bending strength of W/Cu composite improved 12.7% through W fibers reinforcement.

  17. Plasma-surface interaction in the Be/W environment: Conclusions drawn from the JET-ILW for ITER

    NASA Astrophysics Data System (ADS)

    Brezinsek, S.; JET-EFDA contributors

    2015-08-01

    The JET ITER-Like Wall experiment (JET-ILW) provides an ideal test bed to investigate plasma-surface interaction (PSI) and plasma operation with the ITER plasma-facing material selection employing beryllium in the main chamber and tungsten in the divertor. The main PSI processes: material erosion and migration, (b) fuel recycling and retention, (c) impurity concentration and radiation have be1en studied and compared between JET-C and JET-ILW. The current physics understanding of these key processes in the JET-ILW revealed that both interpretation of previously obtained carbon results (JET-C) and predictions to ITER need to be revisited. The impact of the first-wall material on the plasma was underestimated. Main observations are: (a) low primary erosion source in H-mode plasmas and reduction of the material migration from the main chamber to the divertor (factor 7) as well as within the divertor from plasma-facing to remote areas (factor 30 - 50). The energetic threshold for beryllium sputtering minimises the primary erosion source and inhibits multi-step re-erosion in the divertor. The physical sputtering yield of tungsten is low as 10-5 and determined by beryllium ions. (b) Reduction of the long-term fuel retention (factor 10 - 20) in JET-ILW with respect to JET-C. The remaining retention is caused by implantation and co-deposition with beryllium and residual impurities. Outgassing has gained importance and impacts on the recycling properties of beryllium and tungsten. (c) The low effective plasma charge (Zeff = 1.2) and low radiation capability of beryllium reveal the bare deuterium plasma physics. Moderate nitrogen seeding, reaching Zeff = 1.6 , restores in particular the confinement and the L-H threshold behaviour. ITER-compatible divertor conditions with stable semi-detachment were obtained owing to a higher density limit with ILW. Overall JET demonstrated successful plasma operation in the Be/W material combination and confirms its advantageous PSI behaviour and gives strong support to the ITER material selection.

  18. Improving plasma actuator performance at low pressure, and an analysis of the pointing capabilities of cubeSats using Plasmonic Force Propulsion (PFP) thrusters

    NASA Astrophysics Data System (ADS)

    Friz, Paul Daniel

    This thesis details the work done on two unrelated projects, plasma actuators, an aerodynamic flow control device, and Plasmonic Force Propulsion (PFP) thrusters, a space propulsion system for small satellites. The first half of the thesis is a paper published in the International Journal of Flow Control on plasma actuators. In this paper the thrust and power consumption of plasma actuators with varying geometries was studied at varying pressure. It was found that actuators with longer buried electrodes produce the most thrust over all and that they substantially improved thrust at low pressure. In particular actuators with 75 mm buried electrodes produced 26% more thrust overall and 34% more thrust at low pressure than the standard 15 mm design. The second half details work done modeling small satellite attitude and reaction control systems in order to compare the use of Plasmonic Force Propulsion thrusters with other state of the art reaction control systems. The model uses bang bang control algorithms and assumes the worst case scenario solar radiation pressure is the only disturbing force. It was found that the estimated 50-500 nN of thrust produced by PFP thrusters would allow the spacecraft which use them extremely high pointing and positioning accuracies (<10-9 degrees and 3 pm). PFP thrusters still face many developmental challenges such as increasing specific impulse which require more research, however, they have great potential to be an enabling technology for future NASA missions such as the Laser Interferometer Space Antenna, and The Stellar Imager.

  19. Suppressed gross erosion of high-temperature lithium via rapid deuterium implantation

    DOE PAGES

    Abrams, T.; Jaworski, M. A.; Chen, M.; ...

    2015-12-17

    Lithium-coated high-Z substrates are planned for use in the NSTX-U divertor and are a candidate plasma facing component (PFC) for reactors, but it remains necessary to characterize the gross Li erosion rate under high plasma fluxes (>10 23 m -2 s -1), typical for the divertor region. In this work, a realistic model for the compositional evolution of a Li/D layer is developed that incorporates first principles molecular dynamics (MD) simulations of D diffusion in liquid Li. Predictions of Li erosion from a mixed Li/D material are also developed that include formation of lithium deuteride (LiD). The erosion rate ofmore » Li from LiD is predicted to be significantly lower than from pure Li. This prediction is tested in the Magnum-PSI linear plasma device at ion fluxes of 10 23-10 24 m -2 s -1 and Li surface temperatures. ≤800 °C. Li/LiD coatings ranging in thickness from 0.2 to 500 μm are studied. The dynamic D/Li concentrations are inferred via diffusion simulations. The pure Li erosion rate remains greater than Langmuir Law evaporation, as expected. For mixed-material Li/LiD surfaces, the erosion rates are reduced, in good agreement with modelling in almost all cases. Lastly, these results imply that the temperature limit for a Li-coated PFC may be significantly higher than previously imagined.« less

  20. Dust particles in controlled fusion devices: morphology, observations in the plasma and influence on the plasma performance

    NASA Astrophysics Data System (ADS)

    Rubel, M.; Cecconello, M.; Malmberg, J. A.; Sergienko, G.; Biel, W.; Drake, J. R.; Hedqvist, A.; Huber, A.; Philipps, V.

    2001-08-01

    The formation and release of particle agglomerates, i.e. debris and dusty objects, from plasma facing components and the impact of such materials on plasma operation in controlled fusion devices has been studied in the Extrap T2 reversed field pinch and the TEXTOR tokamak. Several plasma diagnostic techniques, camera observations and surface analysis methods were applied for in situ and ex situ investigation. The results are discussed in terms of processes that are decisive for dust transfer: localized power deposition connected with wall locked modes causing emission of carbon granules, brittle destruction of graphite and detachment of thick flaking co-deposited layers. The consequences for large next step devices are also addressed.

  1. Liquid Metals as Plasma-facing Materials for Fusion Energy Systems: From Atoms to Tokamaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stone, Howard A.; Koel, Bruce E.; Bernasek, Steven L.

    The objective of our studies was to advance our fundamental understanding of liquid metals as plasma-facing materials for fusion energy systems, with a broad scope: from atoms to tokamaks. The flow of liquid metals offers solutions to significant problems of the plasma-facing materials for fusion energy systems. Candidate metals include lithium, tin, gallium, and their eutectic combinations. However, such liquid metal solutions can only be designed efficiently if a range of scientific and engineering issues are resolved that require advances in fundamental fluid dynamics, materials science and surface science. In our research we investigated a range of significant and timelymore » problems relevant to current and proposed engineering designs for fusion reactors, including high-heat flux configurations that are being considered by leading fusion energy groups world-wide. Using experimental and theoretical tools spanning atomistic to continuum descriptions of liquid metals, and bridging surface chemistry, wetting/dewetting and flow, our research has advanced the science and engineering of fusion energy materials and systems. Specifically, we developed a combined experimental and theoretical program to investigate flows of liquid metals in fusion-relevant geometries, including equilibrium and stability of thin-film flows, e.g. wetting and dewetting, effects of electromagnetic and thermocapillary fields on liquid metal thin-film flows, and how chemical interactions and the properties of the surface are influenced by impurities and in turn affect the surface wetting characteristics, the surface tension, and its gradients. Because high-heat flux configurations produce evaporation and sputtering, which forces rearrangement of the liquid, and any dewetting exposes the substrate to damage from the plasma, our studies addressed such evaporatively driven liquid flows and measured and simulated properties of the different bulk phases and material interfaces. The range of our studies included (i) quantum mechanical calculations that allow inclusion of many thousands of atoms for the characterization of the interface of liquid metals exposed to continuous bombardment by deuterium and tritium as expected in fusion, (ii) molecular dynamics studies of the phase behavior of liquid metals, which (a) utilize thermodynamic properties computed using our quantum mechanical calculations and (b) establish material and wetting properties of the liquid metals, including relevant eutectics, (iii) experimental investigations of the surface science of liquid metals, interacting both with the solid substrate as well as gaseous species, and (iv) fluid dynamical studies that incorporate the material and surface science results of (ii) and (iii) in order to characterize flow in capillary porous materials and the thin-film flow along curved boundaries, both of which are potentially major components of plasma-facing materials. The outcome of these integrated studies was new understanding that enables developing design rules useful for future developments of the plasma-facing components critical to the success of fusion energy systems.« less

  2. Full toroidal imaging of non-axisymmetric plasma material interaction in the National Spherical Torus Experiment divertor.

    PubMed

    Scotti, Filippo; Roquemore, A L; Soukhanovskii, V A

    2012-10-01

    A pair of two dimensional fast cameras with a wide angle view (allowing a full radial and toroidal coverage of the lower divertor) was installed in the National Spherical Torus Experiment in order to monitor non-axisymmetric effects. A custom polar remapping procedure and an absolute photometric calibration enabled the easier visualization and quantitative analysis of non-axisymmetric plasma material interaction (e.g., strike point splitting due to application of 3D fields and effects of toroidally asymmetric plasma facing components).

  3. Development of advanced high heat flux and plasma-facing materials

    NASA Astrophysics Data System (ADS)

    Linsmeier, Ch.; Rieth, M.; Aktaa, J.; Chikada, T.; Hoffmann, A.; Hoffmann, J.; Houben, A.; Kurishita, H.; Jin, X.; Li, M.; Litnovsky, A.; Matsuo, S.; von Müller, A.; Nikolic, V.; Palacios, T.; Pippan, R.; Qu, D.; Reiser, J.; Riesch, J.; Shikama, T.; Stieglitz, R.; Weber, T.; Wurster, S.; You, J.-H.; Zhou, Z.

    2017-09-01

    Plasma-facing materials and components in a fusion reactor are the interface between the plasma and the material part. The operational conditions in this environment are probably the most challenging parameters for any material: high power loads and large particle and neutron fluxes are simultaneously impinging at their surfaces. To realize fusion in a tokamak or stellarator reactor, given the proven geometries and technological solutions, requires an improvement of the thermo-mechanical capabilities of currently available materials. In its first part this article describes the requirements and needs for new, advanced materials for the plasma-facing components. Starting points are capabilities and limitations of tungsten-based alloys and structurally stabilized materials. Furthermore, material requirements from the fusion-specific loading scenarios of a divertor in a water-cooled configuration are described, defining directions for the material development. Finally, safety requirements for a fusion reactor with its specific accident scenarios and their potential environmental impact lead to the definition of inherently passive materials, avoiding release of radioactive material through intrinsic material properties. The second part of this article demonstrates current material development lines answering the fusion-specific requirements for high heat flux materials. New composite materials, in particular fiber-reinforced and laminated structures, as well as mechanically alloyed tungsten materials, allow the extension of the thermo-mechanical operation space towards regions of extreme steady-state and transient loads. Self-passivating tungsten alloys, demonstrating favorable tungsten-like plasma-wall interaction behavior under normal operation conditions, are an intrinsic solution to otherwise catastrophic consequences of loss-of-coolant and air ingress events in a fusion reactor. Permeation barrier layers avoid the escape of tritium into structural and cooling materials, thereby minimizing the release of tritium under normal operation conditions. Finally, solutions for the unique bonding requirements of dissimilar material used in a fusion reactor are demonstrated by describing the current status and prospects of functionally graded materials.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    M. Ono; Jaworski, M.; Kaita, R.

    Developing a reactor compatible divertor and managing the associated plasma material interaction (PMI) has been identified as a high priority research area for magnetic confinement fusion. Accordingly on NSTX-U, the PMI research has received a strong emphasis. Moreover, with ˜15 MW of auxiliary heating power, NSTX-U will be able to test the PMI physics with the peak divertor plasma facing component (PFC) heat loads of up to 40-60 MW/m 2.

  5. Towards a Predictive Capability for Local Helicity Injection Startup

    NASA Astrophysics Data System (ADS)

    Barr, J. L.; Bongard, M. W.; Burke, M. G.; Fonck, R. J.; Hinson, E. T.; Lewicki, B. T.; Perry, J. M.; Redd, A. J.; Schlossberg, D. J.

    2014-10-01

    Local helicity injection (LHI) is a non-solenoidal tokamak startup technique under development on the Pegasus ST. New designs of the injector cathode geometry and plasma-facing shield rings support high-voltage operation up to 1.5 kV. This leads to reduced requirements in injector area for a given helicity input rate. Near-term experiments in Pegasus are testing the gain in Ip obtained with a 1 . 5 × increase in the helicity input rate and the efficacy of helicity injection in the lower divertor region. A predictive model for LHI is needed to project scalable scenarios for larger devices. A lumped-parameter circuit model using power and helicity balance is being developed for LHI on Pegasus-U and NSTX-U. The model indicates that MA-class startup on NSTX-U will require operating in a regime where the drive from LHI dominates the inductive effects arising from dynamically evolving plasma geometry. The physics of this new regime can be tested in Pegasus-U at Ip ~ 0 . 3 MA. The LHI systems on the proposed Pegasus-U will be expanded to provide 3 - 4 × helicity injection rate and the toroidal field doubled to reach this regime. Predictive models to be validated on Pegasus-U include the 0-D power balance model, NIMROD, and TSC. Work supported by US DOE Grants DE-FG02-96ER54375 and DE-SC0006928.

  6. Final Progress Report The U.S. Department of Energy Research Grant No. DE-SC0008660 Plasma Surface Interactions: Bridging from the Surface to the Micron Frontier through Leadership Class Computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krasheninnikov, Sergei; Smirnov, Roman; Guterl, Jerome

    The choice of material for the plasma facing components (PFC), in particular, for divertor targets, is one of the main issues for future tokamak reactors. There are two major requirements for the PFC’s material: acceptable level of tritium retention and durability in a harsh environment of fusion grade plasma. Based on these criteria, some years ago it was decided that tungsten is an acceptable material for divertor targets in ITER. However, further experimental studies reveal that the irradiation of tungsten even with low energetic (well below sputtering threshold!) He containing plasma causes significant modification of surface morphology, formation of themore » layer of He nano-bubbles (in the temperature range T<1000 K), “fuzz” (for 1000 K2000 K) (e.g. see Fig. 1). Recall that He, being an ash of D-T fusion reactions, is an inherent impurity in fusion plasma. The goals of the UCSD Applied Plasma Theory Group was: i) investigate the mechanisms of the formation of He nano-bubble layer and fuzz growth under He irradiation, as well as the physics of transport of hydrogen species in tungsten lattice, and ii) develop physics understanding of the models suitable for the incorporation into the Xolotl-PSI code based on the reaction-diffusion approach, which is the flagship of the whole SciDAC project [8], which can guide both numerical simulations and experimental studies. Here we just highlight our major accomplishments.« less

  7. Experimental investigation of supersonic low pressure air plasma flows obtained with different arc-jet operating conditions

    NASA Astrophysics Data System (ADS)

    Lago, Viviana; Ndiaye, Abdoul-Aziz

    2012-11-01

    A stationary arc-jet plasma flow at low pressure is used to simulate some properties of the gas flow surrounding a vehicle during its entry into celestial body's atmospheres. This paper presents an experimental study concerning plasmas simulating a re-entry into our planet. Optical measurements have been carried out for several operating plasma conditions in the free stream, and in the shock layer formed in front of a flat cylindrical plate, placed in the plasma jet. The analysis of the spectral radiation enabled the identification of the emitting species, the determination of the rotational and vibrational temperatures in the free-stream and in the shock layer and the determination of the distance of the shock to the flat plate face. Some plasma fluid parameters like, stagnation pressure, specific enthalpy and heat flux have been determined experimentally along the plasma-jet axis.

  8. III-nitrides on oxygen- and zinc-face ZnO substrates

    NASA Astrophysics Data System (ADS)

    Namkoong, Gon; Burnham, Shawn; Lee, Kyoung-Keun; Trybus, Elaissa; Doolittle, W. Alan; Losurdo, Maria; Capezzuto, Pio; Bruno, Giovanni; Nemeth, Bill; Nause, Jeff

    2005-10-01

    The characteristics of III-nitrides grown on zinc- and oxygen-face ZnO by plasma-assisted molecular beam epitaxy were investigated. The reflection high-energy electron diffraction pattern indicates formation of a cubic phase at the interface between III-nitride and both Zn- and O-face ZnO. The polarity indicates that Zn-face ZnO leads to a single polarity, while O-face ZnO forms mixed polarity of III-nitrides. Furthermore, by using a vicinal ZnO substrate, the terrace-step growth of GaN was realized with a reduction by two orders of magnitude in the dislocation-related etch pit density to ˜108cm-2, while a dislocation density of ˜1010cm-2 was obtained on the on-axis ZnO substrates.

  9. Fuel inventory and deposition in castellated structures in JET-ILW

    NASA Astrophysics Data System (ADS)

    Rubel, M.; Petersson, P.; Zhou, Y.; Coad, J. P.; Lungu, C.; Jepu, I.; Porosnicu, C.; Matveev, D.; Kirschner, A.; Brezinsek, S.; Widdowson, A.; Alves, E.; Contributors, JET

    2017-06-01

    Since 2011 the JET tokamak has been operated with a metal ITER-like wall (JET-ILW) including castellated beryllium limiters and lamellae-type bulk tungsten tiles in the divertor. This has allowed for a large scale test of castellated plasma-facing components (PFC). Procedures for sectioning the limiters into single blocks of castellation have been developed. This facilitated morphology studies of morphology of surfaces inside the grooves for limiters after experimental campaigns 2011-2012 and 2013-2014. The deposition in the 0.4-0.5 mm wide grooves of the castellation is ‘shallow’. It reaches 1-2 mm into the 12 mm deep gap. Deuterium concentrations are small (mostly below 1  ×  1018 cm-2). The estimated total amount of deuterium in all the castellated limiters does not exceed the inventory of the plasma-facing surfaces (PFS) of the limiters. There are only traces of Ni, Cr and Fe deposited in the castellation gaps. The same applies to the carbon content. Also low deposition of D, Be and C has been measured on the sides of the bulk tungsten lamellae pieces. Modelling clearly reflects: (a) a sharp decrease in the measured deposition profiles and(b) an increase in deposition with the gap width. Both experimental and modelling data give a strong indication and information to ITER that narrow gaps in the castellated PFC are essential. X-ray diffraction on PFS has clearly shown two distinct composition patterns: Be with an admixture of Be-W intermetallic compounds (e.g. Be22W) in the deposition zone, whilst only pure Be has been detected in the erosion zone. The lack of compound formation in the erosion zone indicates that no distinct changes in the thermo-mechanical properties of the Be PFC might be expected.

  10. Liquid-metal plasma-facing component research on the National Spherical Torus Experiment

    NASA Astrophysics Data System (ADS)

    Jaworski, M. A.; Khodak, A.; Kaita, R.

    2013-12-01

    Liquid metal plasma-facing components (PFCs) have been proposed as a means of solving several problems facing the creation of economically viable fusion power reactors. Liquid metals face critical issues in three key areas: free-surface stability, material migration and demonstration of integrated scenarios. To date, few demonstrations exist of this approach in a diverted tokamak and we here provide an overview of such work on the National Spherical Torus Experiment (NSTX). The liquid lithium divertor (LLD) was installed and operated for the 2010 run campaign using evaporated coatings as the filling method. Despite a nominal liquid level exceeding the capillary structure and peak current densities into the PFCs exceeding 100 kA m-2, no macroscopic ejection events were observed. The stability can be understood from a Rayleigh-Taylor instability analysis. Capillary restraint and thermal-hydraulic considerations lead to a proposed liquid-metal PFCs scheme of actively-supplied, capillary-restrained systems. Even with state-of-the-art cooling techniques, design studies indicate that the surface temperature with divertor-relevant heat fluxes will still reach temperatures above 700 °C. At this point, one would expect significant vapor production from a liquid leading to a continuously vapor-shielded regime. Such high-temperature liquid lithium PFCs may be possible on the basis of momentum-balance arguments.

  11. Evaluation of Cooling Conditions for a High Heat Flux Testing Facility Based on Plasma-Arc Lamps

    DOE PAGES

    Charry, Carlos H.; Abdel-khalik, Said I.; Yoda, Minami; ...

    2015-07-31

    The new Irradiated Material Target Station (IMTS) facility for fusion materials at Oak Ridge National Laboratory (ORNL) uses an infrared plasma-arc lamp (PAL) to deliver incident heat fluxes as high as 27 MW/m 2. The facility is being used to test irradiated plasma-facing component materials as part of the joint US-Japan PHENIX program. The irradiated samples are to be mounted on molybdenum sample holders attached to a water-cooled copper rod. Depending on the size and geometry of samples, several sample holders and copper rod configurations have been fabricated and tested. As a part of the effort to design sample holdersmore » compatible with the high heat flux (HHF) testing to be conducted at the IMTS facility, numerical simulations have been performed for two different water-cooled sample holder designs using the ANSYS FLUENT 14.0 commercial computational fluid dynamics (CFD) software package. The primary objective of this work is to evaluate the cooling capability of different sample holder designs, i.e. to estimate their maximum allowable incident heat flux values. 2D axisymmetric numerical simulations are performed using the realizable k-ε turbulence model and the RPI nucleate boiling model within ANSYS FLUENT 14.0. The results of the numerical model were compared against the experimental data for two sample holder designs tested in the IMTS facility. The model has been used to parametrically evaluate the effect of various operational parameters on the predicted temperature distributions. The results were used to identify the limiting parameter for safe operation of the two sample holders and the associated peak heat flux limits. The results of this investigation will help guide the development of new sample holder designs.« less

  12. Kinetic Modeling of Human Hepatic Glucose Metabolism in Type 2 Diabetes Mellitus Predicts Higher Risk of Hypoglycemic Events in Rigorous Insulin Therapy*

    PubMed Central

    König, Matthias; Holzhütter, Hermann-Georg

    2012-01-01

    A major problem in the insulin therapy of patients with diabetes type 2 (T2DM) is the increased occurrence of hypoglycemic events which, if left untreated, may cause confusion or fainting and in severe cases seizures, coma, and even death. To elucidate the potential contribution of the liver to hypoglycemia in T2DM we applied a detailed kinetic model of human hepatic glucose metabolism to simulate changes in glycolysis, gluconeogenesis, and glycogen metabolism induced by deviations of the hormones insulin, glucagon, and epinephrine from their normal plasma profiles. Our simulations reveal in line with experimental and clinical data from a multitude of studies in T2DM, (i) significant changes in the relative contribution of glycolysis, gluconeogenesis, and glycogen metabolism to hepatic glucose production and hepatic glucose utilization; (ii) decreased postprandial glycogen storage as well as increased glycogen depletion in overnight fasting and short term fasting; and (iii) a shift of the set point defining the switch between hepatic glucose production and hepatic glucose utilization to elevated plasma glucose levels, respectively, in T2DM relative to normal, healthy subjects. Intriguingly, our model simulations predict a restricted gluconeogenic response of the liver under impaired hormonal signals observed in T2DM, resulting in an increased risk of hypoglycemia. The inability of hepatic glucose metabolism to effectively counterbalance a decline of the blood glucose level becomes even more pronounced in case of tightly controlled insulin treatment. Given this Janus face mode of action of insulin, our model simulations underline the great potential that normalization of the plasma glucagon profile may have for the treatment of T2DM. PMID:22977253

  13. Power exhaust scenarios and control for projected high-power NSTX-U operation

    NASA Astrophysics Data System (ADS)

    Menard, Jonathan; Gerhardt, S. P.; Myers, C. E.; Reinke, M. L.; Brooks, A.; Mardenfeld, M.; NSTX Upgrade Team

    2017-10-01

    An important goal of the NSTX Upgrade (NSTX-U) research program is to characterize energy confinement in the low-aspect-ratio spherical tokamak configuration over a significantly expanded range of plasma current, toroidal field, and heating power, while increasing flattop durations up to 5 seconds. However, the narrowing of the scrape-off layer at higher current combined with an improved understanding of expected halo-current loads has motivated a significant re-design of NSTX-U plasma facing components in the high-heat-flux regions of the divertor. In order to reduce the expected divertor heat flux to acceptable levels, a combination of mitigation techniques will be used: increased divertor poloidal flux expansion, increased divertor radiation, and controlled strike-point sweeping. The machine requirements for these various mitigation techniques are studied here using a newly implemented reduced heat-flux model. Systematic equilibrium scans are used to quantify the required divertor coil currents and to verify vertical stability for a range of plasma shapes. Free-boundary control schemes to constrain the strike-point location and field-line angle-of-incidence will also be discussed. Work supported by DOE contract DE-AC02- 09CH11466.

  14. Testosterone-mediated sex differences in the face shape during adolescence: subjective impressions and objective features.

    PubMed

    Marečková, Klára; Weinbrand, Zohar; Chakravarty, M Mallar; Lawrence, Claire; Aleong, Rosanne; Leonard, Gabriel; Perron, Michel; Pike, G Bruce; Richer, Louis; Veillette, Suzanne; Pausova, Zdenka; Paus, Tomáš

    2011-11-01

    Sex identification of a face is essential for social cognition. Still, perceptual cues indicating the sex of a face, and mechanisms underlying their development, remain poorly understood. Previously, our group described objective age- and sex-related differences in faces of healthy male and female adolescents (12-18 years of age), as derived from magnetic resonance images (MRIs) of the adolescents' heads. In this study, we presented these adolescent faces to 60 female raters to determine which facial features most reliably predicted subjective sex identification. Identification accuracy correlated highly with specific MRI-derived facial features (e.g. broader forehead, chin, jaw, and nose). Facial features that most reliably cued male identity were associated with plasma levels of testosterone (above and beyond age). Perceptible sex differences in face shape are thus associated with specific facial features whose emergence may be, in part, driven by testosterone. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Multi-scale modelling to relate beryllium surface temperature, deuterium concentration and erosion in fusion reactor environment

    DOE PAGES

    Safi, E.; Valles, G.; Lasa, A.; ...

    2017-03-27

    Beryllium (Be) has been chosen as the plasma-facing material for the main wall of ITER, the next generation fusion reactor. Identifying the key parameters that determine Be erosion under reactor relevant conditions is vital to predict the ITER plasma-facing component lifetime and viability. To date, a certain prediction of Be erosion, focusing on the effect of two such parameters, surface temperature and D surface content, has not been achieved. In this paper, we develop the first multi-scale KMC-MD modeling approach for Be to provide a more accurate database for its erosion, as well as investigating parameters that affect erosion. First,more » we calculate the complex relationship between surface temperature and D concentration precisely by simulating the time evolution of the system using an object kinetic Monte Carlo (OKMC) technique. These simulations provide a D surface concentration profile for any surface temperature and incoming D energy. We then describe how this profile can be implemented as a starting configuration in molecular dynamics (MD) simulations. We finally use MD simulations to investigate the effect of temperature (300–800 K) and impact energy (10–200 eV) on the erosion of Be due to D plasma irradiations. The results reveal a strong dependency of the D surface content on temperature. Increasing the surface temperature leads to a lower D concentration at the surface, because of the tendency of D atoms to avoid being accommodated in a vacancy, and de-trapping from impurity sites diffuse fast toward bulk. At the next step, total and molecular Be erosion yields due to D irradiations are analyzed using MD simulations. The results show a strong dependency of erosion yields on surface temperature and incoming ion energy. The total Be erosion yield increases with temperature for impact energies up to 100 eV. However, increasing temperature and impact energy results in a lower fraction of Be atoms being sputtered as BeD molecules due to the lower D surface concentrations at higher temperatures. Finally, these findings correlate well with different experiments performed at JET and PISCES-B devices.« less

  16. Multi-scale modelling to relate beryllium surface temperature, deuterium concentration and erosion in fusion reactor environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Safi, E.; Valles, G.; Lasa, A.

    Beryllium (Be) has been chosen as the plasma-facing material for the main wall of ITER, the next generation fusion reactor. Identifying the key parameters that determine Be erosion under reactor relevant conditions is vital to predict the ITER plasma-facing component lifetime and viability. To date, a certain prediction of Be erosion, focusing on the effect of two such parameters, surface temperature and D surface content, has not been achieved. In this paper, we develop the first multi-scale KMC-MD modeling approach for Be to provide a more accurate database for its erosion, as well as investigating parameters that affect erosion. First,more » we calculate the complex relationship between surface temperature and D concentration precisely by simulating the time evolution of the system using an object kinetic Monte Carlo (OKMC) technique. These simulations provide a D surface concentration profile for any surface temperature and incoming D energy. We then describe how this profile can be implemented as a starting configuration in molecular dynamics (MD) simulations. We finally use MD simulations to investigate the effect of temperature (300–800 K) and impact energy (10–200 eV) on the erosion of Be due to D plasma irradiations. The results reveal a strong dependency of the D surface content on temperature. Increasing the surface temperature leads to a lower D concentration at the surface, because of the tendency of D atoms to avoid being accommodated in a vacancy, and de-trapping from impurity sites diffuse fast toward bulk. At the next step, total and molecular Be erosion yields due to D irradiations are analyzed using MD simulations. The results show a strong dependency of erosion yields on surface temperature and incoming ion energy. The total Be erosion yield increases with temperature for impact energies up to 100 eV. However, increasing temperature and impact energy results in a lower fraction of Be atoms being sputtered as BeD molecules due to the lower D surface concentrations at higher temperatures. Finally, these findings correlate well with different experiments performed at JET and PISCES-B devices.« less

  17. Multi-scale modelling to relate beryllium surface temperature, deuterium concentration and erosion in fusion reactor environment

    NASA Astrophysics Data System (ADS)

    Safi, E.; Valles, G.; Lasa, A.; Nordlund, K.

    2017-05-01

    Beryllium (Be) has been chosen as the plasma-facing material for the main wall of ITER, the next generation fusion reactor. Identifying the key parameters that determine Be erosion under reactor relevant conditions is vital to predict the ITER plasma-facing component lifetime and viability. To date, a certain prediction of Be erosion, focusing on the effect of two such parameters, surface temperature and D surface content, has not been achieved. In this work, we develop the first multi-scale KMC-MD modeling approach for Be to provide a more accurate database for its erosion, as well as investigating parameters that affect erosion. First, we calculate the complex relationship between surface temperature and D concentration precisely by simulating the time evolution of the system using an object kinetic Monte Carlo (OKMC) technique. These simulations provide a D surface concentration profile for any surface temperature and incoming D energy. We then describe how this profile can be implemented as a starting configuration in molecular dynamics (MD) simulations. We finally use MD simulations to investigate the effect of temperature (300-800 K) and impact energy (10-200 eV) on the erosion of Be due to D plasma irradiations. The results reveal a strong dependency of the D surface content on temperature. Increasing the surface temperature leads to a lower D concentration at the surface, because of the tendency of D atoms to avoid being accommodated in a vacancy, and de-trapping from impurity sites diffuse fast toward bulk. At the next step, total and molecular Be erosion yields due to D irradiations are analyzed using MD simulations. The results show a strong dependency of erosion yields on surface temperature and incoming ion energy. The total Be erosion yield increases with temperature for impact energies up to 100 eV. However, increasing temperature and impact energy results in a lower fraction of Be atoms being sputtered as BeD molecules due to the lower D surface concentrations at higher temperatures. These findings correlate well with different experiments performed at JET and PISCES-B devices.

  18. Calibration procedures of the Tore-Supra infrared endoscopes

    NASA Astrophysics Data System (ADS)

    Desgranges, C.; Jouve, M.; Balorin, C.; Reichle, R.; Firdaouss, M.; Lipa, M.; Chantant, M.; Gardarein, J. L.; Saille, A.; Loarer, T.

    2018-01-01

    Five endoscopes equipped with infrared cameras working in the medium infrared range (3-5 μm) are installed on the controlled thermonuclear fusion research device Tore-Supra. These endoscopes aim at monitoring the plasma facing components surface temperature to prevent their overheating. Signals delivered by infrared cameras through endoscopes are analysed and used on the one hand through a real time feedback control loop acting on the heating systems of the plasma to decrease plasma facing components surface temperatures when necessary, on the other hand for physics studies such as determination of the incoming heat flux . To ensure these two roles a very accurate knowledge of the absolute surface temperatures is mandatory. Consequently the infrared endoscopes must be calibrated through a very careful procedure. This means determining their transmission coefficients which is a delicate operation. Methods to calibrate infrared endoscopes during the shutdown period of the Tore-Supra machine will be presented. As they do not allow determining the possible transmittances evolution during operation an in-situ method is presented. It permits the validation of the calibration performed in laboratory as well as the monitoring of their evolution during machine operation. This is possible by the use of the endoscope shutter and a dedicated plasma scenario developed to heat it. Possible improvements of this method are briefly evoked.

  19. Baking and helium glow discharge cleaning of SST-1 Tokamak with graphite plasma facing components

    NASA Astrophysics Data System (ADS)

    Semwal, P.; Khan, Z.; Raval, D. C.; Dhanani, K. R.; George, S.; Paravastu, Y.; Prakash, A.; Thankey, P.; Ramesh, G.; Khan, M. S.; Saikia, P.; Pradhan, S.

    2017-04-01

    Graphite plasma facing components (PFCs) were installed inside the SST-1 vacuum vessel. Prior to installation, all the graphite tiles were baked at 1000 °C in a vacuum furnace operated below 1.0 × 10-5 mbar. However due to the porous structure of graphite, they absorb a significant amount of water vapour from air during the installation process. Rapid desorption of this water vapour requires high temperature bake-out of the PFCs at ≥ 250 °C. In SST-1 the PFCs were baked at 250 °C using hot nitrogen gas facility to remove the absorbed water vapour. Also device with large graphite surface area has the disadvantage that a large quantity of hydrogen gets trapped inside it during plasma discharges which makes density control difficult. Helium glow discharge cleaning (He-GDC) effectively removes this stored hydrogen as well as other impurities like oxygen and hydrocarbon within few nano-meters from the surface by particle induced desorption. Before plasma operation in SST-1 tokamak, both baking of PFCs and He-GDC were carried out so that these impurities were removed effectively. The mean desorption yield of hydrogen was found to be 0.24. In this paper the results of baking and He-GDC experiments of SST-1 will be presented in detail.

  20. Nanochannel structures in W enhance radiation tolerance

    DOE PAGES

    Qin, Wenjing; Ren, Feng; Doerner, Russell P.; ...

    2018-04-23

    Developing high performance plasma facing materials (PFMs) is one of the greatest challenges for fusion reactors, because PFMs face unprecedented harsh environments including high flux plasma exposure, fast neutron irradiation and large transmutation gas. Tungsten (W) is considered as one of the most promising PFMs. Rapid accumulation of helium (He) atoms in such environments can lead to the He bubbles nucleation and even the formation of nano- to micro-scale “fuzz” on W surface, which greatly degrade the properties of W itself. The possible ejection of large W particulates into the core plasma can cause plasma instabilities. In this paper, wemore » present a new strategy to address the root causes of bubble nucleation and “fuzz” formation by concurrently releasing He outside of W matrix through the nano-engineered channel structure (nanochannels). Comparing to ordinary bulk W, nanochannel W films with high surface-to-volume ratios are found to not only delay the growth of He bubbles, but also suppress the formation of “fuzz” (less than a half of the “fuzz” thickness formation in bulk W). Finally, molecular dynamic (MD) simulation results elucidate that low vacancy formation energy and high He binding energy in the nanochannel surface effectively help He release and affect He clusters distribution in W during He ion irradiation.« less

  1. Nanochannel structures in W enhance radiation tolerance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qin, Wenjing; Ren, Feng; Doerner, Russell P.

    Developing high performance plasma facing materials (PFMs) is one of the greatest challenges for fusion reactors, because PFMs face unprecedented harsh environments including high flux plasma exposure, fast neutron irradiation and large transmutation gas. Tungsten (W) is considered as one of the most promising PFMs. Rapid accumulation of helium (He) atoms in such environments can lead to the He bubbles nucleation and even the formation of nano- to micro-scale “fuzz” on W surface, which greatly degrade the properties of W itself. The possible ejection of large W particulates into the core plasma can cause plasma instabilities. In this paper, wemore » present a new strategy to address the root causes of bubble nucleation and “fuzz” formation by concurrently releasing He outside of W matrix through the nano-engineered channel structure (nanochannels). Comparing to ordinary bulk W, nanochannel W films with high surface-to-volume ratios are found to not only delay the growth of He bubbles, but also suppress the formation of “fuzz” (less than a half of the “fuzz” thickness formation in bulk W). Finally, molecular dynamic (MD) simulation results elucidate that low vacancy formation energy and high He binding energy in the nanochannel surface effectively help He release and affect He clusters distribution in W during He ion irradiation.« less

  2. The role and application of ion beam analysis for studies of plasma-facing components in controlled fusion devices

    NASA Astrophysics Data System (ADS)

    Rubel, Marek; Petersson, Per; Alves, Eduardo; Brezinsek, Sebastijan; Coad, Joseph Paul; Heinola, Kalle; Mayer, Matej; Widdowson, Anna

    2016-03-01

    First wall materials in controlled fusion devices undergo serious modification by several physical and chemical processes arising from plasma-wall interactions. Detailed information is required for the assessment of material lifetime and accumulation of hydrogen isotopes in wall materials. The intention of this work is to give a concise overview of key issues in the characterization of plasma-facing materials and components in tokamaks, especially in JET with an ITER-Like Wall. IBA techniques play a particularly prominent role here because of their isotope selectivity in the low-Z range (1-10), high sensitivity and combination of several methods in a single run. The role of 3He-based NRA, RBS (standard and micro-size beam) and HIERDA in fuel retention and material migration studies is presented. The use of tracer techniques with rare isotopes (e.g. 15N) or marker layers on wall diagnostic components is described. Special instrumentation, development of equipment to enhance research capabilities and issues in handling of contaminated materials are addressed.

  3. Spreading of lithium on a stainless steel surface at room temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skinner, C. H.; Capece, A. M.; Roszell, J. P.

    Lithium conditioned plasma facing surfaces have lowered recycling and enhanced plasma performance on many fusion devices and liquid lithium plasma facing components are under consideration for future machines. A key factor in the performance of liquid lithium components is the wetting by lithium of its container. We have observed the surface spreading of lithium from a mm-scale particle to adjacent stainless steel surfaces using a scanning Auger microprobe that has elemental discrimination. Here, the spreading of lithium occurred at room temperature (when lithium is a solid) from one location at a speed of 0.62 μm/day under ultrahigh vacuum conditions. Separatemore » experiments using temperature programmed desorption (TPD) investigated bonding energetics between monolayer-scale films of lithium and stainless steel. While multilayer lithium desorption from stainless steel begins to occur just above 500 K (E des = 1.54 eV), sub-monolayer Li desorption occurred in a TPD peak at 942 K (E des = 2.52 eV) indicating more energetically favorable lithium-stainless steel bonding (in the absence of an oxidation layer) than lithium lithium bonding.« less

  4. Spreading of lithium on a stainless steel surface at room temperature

    DOE PAGES

    Skinner, C. H.; Capece, A. M.; Roszell, J. P.; ...

    2015-11-10

    Lithium conditioned plasma facing surfaces have lowered recycling and enhanced plasma performance on many fusion devices and liquid lithium plasma facing components are under consideration for future machines. A key factor in the performance of liquid lithium components is the wetting by lithium of its container. We have observed the surface spreading of lithium from a mm-scale particle to adjacent stainless steel surfaces using a scanning Auger microprobe that has elemental discrimination. Here, the spreading of lithium occurred at room temperature (when lithium is a solid) from one location at a speed of 0.62 μm/day under ultrahigh vacuum conditions. Separatemore » experiments using temperature programmed desorption (TPD) investigated bonding energetics between monolayer-scale films of lithium and stainless steel. While multilayer lithium desorption from stainless steel begins to occur just above 500 K (E des = 1.54 eV), sub-monolayer Li desorption occurred in a TPD peak at 942 K (E des = 2.52 eV) indicating more energetically favorable lithium-stainless steel bonding (in the absence of an oxidation layer) than lithium lithium bonding.« less

  5. Spreading of lithium on a stainless steel surface at room temperature

    NASA Astrophysics Data System (ADS)

    Skinner, C. H.; Capece, A. M.; Roszell, J. P.; Koel, B. E.

    2016-01-01

    Lithium conditioned plasma facing surfaces have lowered recycling and enhanced plasma performance on many fusion devices and liquid lithium plasma facing components are under consideration for future machines. A key factor in the performance of liquid lithium components is the wetting by lithium of its container. We have observed the surface spreading of lithium from a mm-scale particle to adjacent stainless steel surfaces using a scanning Auger microprobe that has elemental discrimination. The spreading of lithium occurred at room temperature (when lithium is a solid) from one location at a speed of 0.62 μm/day under ultrahigh vacuum conditions. Separate experiments using temperature programmed desorption (TPD) investigated bonding energetics between monolayer-scale films of lithium and stainless steel. While multilayer lithium desorption from stainless steel begins to occur just above 500 K (Edes = 1.54 eV), sub-monolayer Li desorption occurred in a TPD peak at 942 K (Edes = 2.52 eV) indicating more energetically favorable lithium-stainless steel bonding (in the absence of an oxidation layer) than lithium-lithium bonding.

  6. A flowing liquid lithium limiter for the Experimental Advanced Superconducting Tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, J.; Zuo, G. Z.; Hu, J. S.

    2015-02-15

    A program involving the extensive and systematic use of lithium (Li) as a “first,” or plasma-facing, surface in Tokamak fusion research devices located at Institute of Plasma Physics, Chinese Academy of Sciences, was started in 2009. Many remarkable results have been obtained by the application of Li coatings in Experimental Advanced Superconducting Tokamak (EAST) and liquid Li limiters in the HT-7 Tokamak—both located at the institute. In furtherance of the lithium program, a flowing liquid lithium (FLiLi) limiter system has been designed and manufactured for EAST. The design of the FLiLi limiter is based on the concept of a thinmore » flowing film which was previously tested in HT-7. Exploiting the capabilities of the existing material and plasma evaluation system on EAST, the limiter will be pre-wetted with Li and mechanically translated to the edge of EAST during plasma discharges. The limiter will employ a novel electro-magnetic pump which is designed to drive liquid Li flow from a collector at the bottom of limiter into a distributor at its top, and thus supply a continuously flowing liquid Li film to the wetted plasma-facing surface. This paper focuses on the major design elements of the FLiLi limiter. In addition, a simulation of incoming heat flux has shown that the distribution of heat flux on the limiter surface is acceptable for a future test of power extraction on EAST.« less

  7. Carbon charge exchange analysis in the ITER-like wall environment.

    PubMed

    Menmuir, S; Giroud, C; Biewer, T M; Coffey, I H; Delabie, E; Hawkes, N C; Sertoli, M

    2014-11-01

    Charge exchange spectroscopy has long been a key diagnostic tool for fusion plasmas and is well developed in devices with Carbon Plasma-Facing Components. Operation with the ITER-like wall at JET has resulted in changes to the spectrum in the region of the Carbon charge exchange line at 529.06 nm and demonstrates the need to revise the core charge exchange analysis for this line. An investigation has been made of this spectral region in different plasma conditions and the revised description of the spectral lines to be included in the analysis is presented.

  8. Material impacts and heat flux characterization of an electrothermal plasma source with an applied magnetic field

    NASA Astrophysics Data System (ADS)

    Gebhart, T. E.; Martinez-Rodriguez, R. A.; Baylor, L. R.; Rapp, J.; Winfrey, A. L.

    2017-08-01

    To produce a realistic tokamak-like plasma environment in linear plasma device, a transient source is needed to deliver heat and particle fluxes similar to those seen in an edge localized mode (ELM). ELMs in future large tokamaks will deliver heat fluxes of ˜1 GW/m2 to the divertor plasma facing components at a few Hz. An electrothermal plasma source can deliver heat fluxes of this magnitude. These sources operate in an ablative arc regime which is driven by a DC capacitive discharge. An electrothermal source was configured with two pulse lengths and tested under a solenoidal magnetic field to determine the resulting impact on liner ablation, plasma parameters, and delivered heat flux. The arc travels through and ablates a boron nitride liner and strikes a tungsten plate. The tungsten target plate is analyzed for surface damage using a scanning electron microscope.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ekedahl, Annika, E-mail: annika.ekedahl@cea.fr; Bourdelle, Clarisse; Artaud, Jean-François

    The longstanding expertise of the Tore Supra team in long pulse heating and current drive with radiofrequency (RF) systems will now be exploited in the WEST device (tungsten-W Environment in Steady-state Tokamak) [1]. WEST will allow an integrated long pulse tokamak programme for testing W-divertor components at ITER-relevant heat flux (10-20 MW/m{sup 2}), while treating crucial aspects for ITER-operation, such as avoidance of W-accumulation in long discharges, monitoring and control of heat fluxes on the metallic plasma facing components (PFCs) and coupling of RF waves in H-mode plasmas. Scenario modelling using the METIS-code shows that ITER-relevant heat fluxes are compatiblemore » with the sustainment of long pulse H-mode discharges, at high power (up to 15 MW / 30 s at I{sub P} = 0.8 MA) or high fluence (up to 10 MW / 1000 s at I{sub P} = 0.6 MA) [2], all based on RF heating and current drive using Ion Cyclotron Resonance Heating (ICRH) and Lower Hybrid Current Drive (LHCD). This paper gives a description of the ICRH and LHCD systems in WEST, together with the modelling of the power deposition of the RF waves in the WEST-scenarios.« less

  10. Design and Modeling of a Liquid Lithium LiMIT Loop

    NASA Astrophysics Data System (ADS)

    Szott, Matthew; Christenson, Michael; Stemmley, Steven; Ahn, Chisung; Andruczyk, Daniel; Ruzic, David

    2017-10-01

    The use of flowing liquid lithium in plasma facing components has been shown to reduce erosion and thermal stress damage, prolong device lifetime, decrease edge recycling, reduce impurities, and increase plasma performance, all while providing a clean and self-healing surface. The Liquid Metal Infused Trench (LiMIT) system has proven the concept of controlled thermoelectric magnetohydrodynamic-driven lithium flow for use in fusion relevant conditions, through tests at UIUC, HT-7, and Magnum PSI. As the use of liquid lithium in fusion devices progresses, emphasis must now be placed on full systems integration of flowing liquid metal concepts. The LiMIT system will be upgraded to include a full liquid lithium loop, which will pump lithium into the fusion device, utilize TEMHD to drive lithium through the vessel, and remove lithium for filtration and degassing. Flow control concepts recently developed at UIUC - including wetting control, dryout control, and flow velocity control - will be tested in conjunction in order to demonstrate a robust system. Lithium loop system requirements, designs, and modeling work will be presented, along with plans for installation and testing on the HIDRA device at UIUC. This work is supported by DOE/ALPS DE-FG02-99ER54515.

  11. Trends in Dielectric Etch for Microelectronics Processing

    NASA Astrophysics Data System (ADS)

    Hudson, Eric A.

    2003-10-01

    Dielectric etch technology faces many challenges to meet the requirements for leading-edge microelectronics processing. The move to sub 100-nm device design rules increases the aspect ratios of certain features, imposes tighter restrictions on etched features' critical dimensions, and increases the density of closely packed arrays of features. Changes in photolithography are driving transitions to new photoresist materials and novel multilayer resist methods. The increasing use of copper metallization and low-k interlayer dielectric materials has introduced dual-damascene integration methods, with specialized dielectric etch applications. A common need is the selective removal of multiple layers which have very different compositions, while maintaining close control of the etched features' profiles. To increase productivity, there is a growing trend toward in-situ processing, which allows several films to be successively etched during a single pass through the process module. Dielectric etch systems mainly utilize capacitively coupled etch reactors, operating with medium-density plasmas and low gas residence time. Commercial technology development increasingly relies upon plasma diagnostics and modeling to reduce development cycle time and maximize performance.

  12. Wintering area DDE source to migratory white-faced ibis revealed by satellite telemetry and prey sampling.

    PubMed

    Yates, Michael A; Fuller, Mark R; Henny, Charles J; Seegar, William S; Garcia, Jaqueline

    2010-01-01

    Locations of contaminant exposure for nesting migratory species are difficult to fully understand because of possible additional sources encountered during migration or on the wintering grounds. A portion of the migratory white-faced ibis (Plegadis chihi) nesting at Carson Lake, Nevada continues to be exposed to dichloro-diphenyldichloro-ethylene (DDE) with no change, which is unusual, observed in egg concentrations between 1985 and 2000. About 45-63% of the earliest nesting segment shows reduced reproductive success correlated with elevated egg concentrations of >4 microg/g wet weight (ww). Local prey (primarily earthworms) near nests contained little DDE so we tracked the migration and wintering movements of 20 adult males during 2000-2004 to determine the possible source. At various wintering sites, we found a correlation (r (2) = 0.518, P = 0.0125, N = 11) between DDE in earthworm composites and DDE in blood plasma of white-faced ibis wintering there, although the plasma was collected on their breeding grounds soon after arrival. The main source of DDE was wintering areas in the Mexicali Valley of Baja California Norte, Mexico, and probably the adjacent Imperial Valley, California, USA. This unusual continuing DDE problem for white-faced ibis is associated with: the long-term persistence in soil of DDE; the earthworms' ability to bioconcentrate DDE from soil; the proclivity of white-faced ibis to feed on earthworms in agricultural fields; the species's extreme sensitivity to DDE in their eggs; and perhaps its life history strategy of being a "capital breeder". We suggest surveying and sampling white-faced ibis eggs at nesting colonies, especially at Carson Lake, to monitor the continuing influence of DDE.

  13. Wintering area DDE source to migratory white-faced ibis revealed by satellite telemetry and prey sampling

    USGS Publications Warehouse

    Yates, M.A.; Fuller, M.R.; Henny, C.J.; Seegar, W.S.; Garcia, Jorge H.

    2010-01-01

    Locations of contaminant exposure for nesting migratory species are difficult to fully understand because of possible additional sources encountered during migration or on the wintering grounds. A portion of the migratory white-faced ibis (Plegadis chihi) nesting at Carson Lake, Nevada continues to be exposed to dichloro-diphenyldichloro-ethylene (DDE) with no change, which is unusual, observed in egg concentrations between 1985 and 2000. About 45-63% of the earliest nesting segment shows reduced reproductive success correlated with elevated egg concentrations of >4 ??g/g wet weight (ww). Local prey (primarily earthworms) near nests contained little DDE so we tracked the migration and wintering movements of 20 adult males during 2000-2004 to determine the possible source. At various wintering sites, we found a correlation (r 2 = 0.518, P = 0.0125, N = 11) between DDE in earthworm composites and DDE in blood plasma of white-faced ibis wintering there, although the plasma was collected on their breeding grounds soon after arrival. The main source of DDE was wintering areas in the Mexicali Valley of Baja California Norte, Mexico, and probably the adjacent Imperial Valley, California, USA. This unusual continuing DDE problem for white-faced ibis is associated with: the long-term persistence in soil of DDE; the earthworms' ability to bioconcentrate DDE from soil; the proclivity of white-faced ibis to feed on earthworms in agricultural fields; the species's extreme sensitivity to DDE in their eggs; and perhaps its life history strategy of being a "capital breeder". We suggest surveying and sampling white-faced ibis eggs at nesting colonies, especially at Carson Lake, to monitor the continuing influence of DDE. ?? 2009 Springer Science+Business Media, LLC.

  14. Long Duration Exposure Facility (LDEF) preliminary findings: LEO space effects on the space plasma-voltage drainage experiment

    NASA Technical Reports Server (NTRS)

    Blakkolb, Brian K.; Yaung, James Y.; Henderson, Kelly A.; Taylor, William W.; Ryan, Lorraine E.

    1992-01-01

    The Space Plasma-High Voltage Drainage Experiment (SP-HVDE) provided a unique opportunity to study long term space environmental effects on materials because it was comprised of two identical experimental trays; one tray located on the ram facing side (D-10), and the other on the wake facing side (B-4) of the LDEF. This configuration allows for the comparison of identical materials exposed to two distinctly different environments. The purpose of this work is to document an assessment of the effects of five and three quarters years of low Earth orbital space exposure on materials comprising the SP-HVDE (experiment no. A0054). The findings of the materials investigation reported focus on atomic oxygen effects, micrometeor and debris impact site documentation, thermal property measurements, and environmentally induced contamination.

  15. Anchoring plant metallothioneins to the inner face of the plasma membrane of Saccharomyces cerevisiae cells leads to heavy metal accumulation.

    PubMed

    Ruta, Lavinia Liliana; Lin, Ya-Fen; Kissen, Ralph; Nicolau, Ioana; Neagoe, Aurora Daniela; Ghenea, Simona; Bones, Atle M; Farcasanu, Ileana Cornelia

    2017-01-01

    In this study we engineered yeast cells armed for heavy metal accumulation by targeting plant metallothioneins to the inner face of the yeast plasma membrane. Metallothioneins (MTs) are cysteine-rich proteins involved in the buffering of excess metal ions, especially Cu(I), Zn(II) or Cd(II). The cDNAs of seven Arabidopsis thaliana MTs (AtMT1a, AtMT1c, AtMT2a, AtMT2b, AtMT3, AtMT4a and AtMT4b) and four Noccaea caerulescens MTs (NcMT1, NcMT2a, NcMT2b and NcMT3) were each translationally fused to the C-terminus of a myristoylation green fluorescent protein variant (myrGFP) and expressed in Saccharomyces cerevisiae cells. The myrGFP cassette introduced a yeast myristoylation sequence which allowed directional targeting to the cytosolic face of the plasma membrane along with direct monitoring of the intracellular localization of the recombinant protein by fluorescence microscopy. The yeast strains expressing plant MTs were investigated against an array of heavy metals in order to identify strains which exhibit the (hyper)accumulation phenotype without developing toxicity symptoms. Among the transgenic strains which could accumulate Cu(II), Zn(II) or Cd(II), but also non-canonical metal ions, such as Co(II), Mn(II) or Ni(II), myrGFP-NcMT3 qualified as the best candidate for bioremediation applications, thanks to the robust growth accompanied by significant accumulative capacity.

  16. MHD limits and plasma response in high-beta hybrid operations in ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Igochine, V.; Piovesan, P.; Classen, I. G. J.; Dunne, M.; Gude, A.; Lauber, P.; Liu, Y.; Maraschek, M.; Marrelli, L.; McDermott, R.; Reich, M.; Ryan, D.; Schneller, M.; Strumberger, E.; Suttrop, W.; Tardini, G.; Zohm, H.; The ASDEX Upgrade Team; The EUROfusion MST1 Team

    2017-11-01

    The improved H-mode scenario (or high β hybrid operations) is one of the main candidates for high-fusion performance tokamak operation that offers a potential steady-state scenario. In this case, the normalized pressure {{β }N} must be maximized and pressure-driven instabilities will limit the plasma performance. These instabilities could have either resistive ((m  =  2, n  =  1) and (3,2) neoclassical tearing modes (NTMs)) or ideal character (n  =  1 ideal kink mode). In ASDEX Upgrade (AUG), the first limit for maximum achievable {{β }N} is set by the NTMs. The application of pre-emptive electron cyclotron current drive at the q  =  2 and q  =  1.5 resonant surfaces reduces this problem, so that higher values of {{β }N} can be reached. AUG experiments have shown that, in spite of the fact that hybrids are mainly limited by NTMs, the proximity to the no-wall limit leads to amplification of the external fields that strongly influence the plasma profiles. For example, rotation braking is observed throughout the plasma and peaks in the core. In this situation, even small external fields are amplified and their effect becomes visible. To quantify these effects, the plasma response to the magnetic fields produced by B-coils is measured as {{β }N} approaches the no-wall limit. These experiments and corresponding modeling allow the identification of the main limiting factors, which depend on the stabilizing influence of the conducting components facing the plasma surface, the existence of external actuators, and the kinetic interaction between the plasma and the marginally stable ideal modes. Analysis of the plasma reaction to external perturbations allowed us to identify optimal correction currents for compensating the intrinsic error field in the device. Such correction, together with the analysis of kinetic effects, will help to increase {{β }N} further in future experiments.

  17. Bulk ion heating with ICRF waves in tokamaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mantsinen, M. J., E-mail: mervi.mantsinen@bsc.es; Barcelona Supercomputing Center, Barcelona; Bilato, R.

    2015-12-10

    Heating with ICRF waves is a well-established method on present-day tokamaks and one of the heating systems foreseen for ITER. However, further work is still needed to test and optimize its performance in fusion devices with metallic high-Z plasma facing components (PFCs) in preparation of ITER and DEMO operation. This is of particular importance for the bulk ion heating capabilities of ICRF waves. Efficient bulk ion heating with the standard ITER ICRF scheme, i.e. the second harmonic heating of tritium with or without {sup 3}He minority, was demonstrated in experiments carried out in deuterium-tritium plasmas on JET and TFTR andmore » is confirmed by ICRF modelling. This paper focuses on recent experiments with {sup 3}He minority heating for bulk ion heating on the ASDEX Upgrade (AUG) tokamak with ITER-relevant all-tungsten PFCs. An increase of 80% in the central ion temperature T{sub i} from 3 to 5.5 keV was achieved when 3 MW of ICRF power tuned to the central {sup 3}He ion cyclotron resonance was added to 4.5 MW of deuterium NBI. The radial gradient of the T{sub i} profile reached locally values up to about 50 keV/m and the normalized logarithmic ion temperature gradients R/LT{sub i} of about 20, which are unusually large for AUG plasmas. The large changes in the T{sub i} profiles were accompanied by significant changes in measured plasma toroidal rotation, plasma impurity profiles and MHD activity, which indicate concomitant changes in plasma properties with the application of ICRF waves. When the {sup 3}He concentration was increased above the optimum range for bulk ion heating, a weaker peaking of the ion temperature profile was observed, in line with theoretical expectations.« less

  18. Conceptual design of a pre-loaded liquid lithium divertor target for NSTX-U

    DOE PAGES

    Rindt, P.; Lopes Cardozo, N. J.; van Dommelen, J. A. W.; ...

    2016-09-03

    In this study, a conceptual design for a pre-filled liquid lithium divertor target for the National Spherical Torus Experiment Upgrade (NSTX-U) is presented. The design is aimed at facilitating experiments with high lithium flux from the plasma facing components (PFCs) in NSTX-U and investigating the potential of capillary based liquid lithium components. In the design, lithium is supplied from a reservoir in the PFC to the plasma facing surface via capillary action in a wicking structure. This working principle is also demonstrated experimentally. Next, a titanium zirconium molybdenum (TZM) prototype design is presented, required to withstand a steady state heatmore » flux peaking at 10 MW m –2 for 5 s and edge localized modes depositing (130 kJ in 2 ms at 10 Hz). The main challenge is to sufficiently reduce the thermal stresses. This is achieved by dividing the surface into brushes and filling the slots in between with liquid lithium. The principle of using this liquid “interlayer” allows for thermal expansion and simultaneously heat conduction, and could be used to significantly reduce the demands to solids in future PFCs. Lithium flow to the surface is analyzed using a novel analytical model, ideally suited for design purposes. Thermal stresses in the PFC are analyzed using the finite element method. As a result, the requirements are met, and thus a prototype will be manufactured for physical testing.« less

  19. Conceptual design of a pre-loaded liquid lithium divertor target for NSTX-U

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rindt, P.; Lopes Cardozo, N. J.; van Dommelen, J. A. W.

    In this study, a conceptual design for a pre-filled liquid lithium divertor target for the National Spherical Torus Experiment Upgrade (NSTX-U) is presented. The design is aimed at facilitating experiments with high lithium flux from the plasma facing components (PFCs) in NSTX-U and investigating the potential of capillary based liquid lithium components. In the design, lithium is supplied from a reservoir in the PFC to the plasma facing surface via capillary action in a wicking structure. This working principle is also demonstrated experimentally. Next, a titanium zirconium molybdenum (TZM) prototype design is presented, required to withstand a steady state heatmore » flux peaking at 10 MW m –2 for 5 s and edge localized modes depositing (130 kJ in 2 ms at 10 Hz). The main challenge is to sufficiently reduce the thermal stresses. This is achieved by dividing the surface into brushes and filling the slots in between with liquid lithium. The principle of using this liquid “interlayer” allows for thermal expansion and simultaneously heat conduction, and could be used to significantly reduce the demands to solids in future PFCs. Lithium flow to the surface is analyzed using a novel analytical model, ideally suited for design purposes. Thermal stresses in the PFC are analyzed using the finite element method. As a result, the requirements are met, and thus a prototype will be manufactured for physical testing.« less

  20. The role of COMT and plasma proline in the variable penetrance of autistic spectrum symptoms in 22q11.2 deletion syndrome.

    PubMed

    Hidding, E; Swaab, H; de Sonneville, L M J; van Engeland, H; Vorstman, J A S

    2016-11-01

    This paper examines how COMT 158 genotypes and plasma proline levels are associated with variable penetrance of social behavioural and social cognitive problems in 22q11.2 deletion syndrome (22q11DS). Severity of autistic spectrum symptoms of 45 participants with 22q11DS was assessed using the Autism Diagnostic Interview Revised. Face and facial emotion recognition was evaluated using standardized computer-based test-paradigms. Associations with COMT 158 genotypes and proline levels were examined. High proline levels and poor face recognition in individuals with the COMT MET allele, and poor facial emotion recognition, explained almost 50% of the variance in severity of autism symptomatology in individuals with 22q11DS. High proline levels and a decreased capacity to break down dopamine as a result of the COMT MET variant are both relevant in the expression of the social phenotype in patients. This epistatic interaction effect between the COMT 158 genotype and proline on the expression of social deficits in 22q11DS shows how factors other than the direct effects of the deletion itself can modulate the penetrance of associated cognitive and behavioural outcomes. These findings are not only relevant to our insight into 22q11DS, but also provide a model to better understand the phenomenon of variable penetrance in other pathogenic genetic variants. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Familial canine dermatomyositis. Initial characterization of the cutaneous and muscular lesions.

    PubMed Central

    Hargis, A. M.; Haupt, K. H.; Hegreberg, G. A.; Prieur, D. J.; Moore, M. P.

    1984-01-01

    Familial canine dermatomyositis is a recently identified disease of collie dogs that resembles human juvenile dermatomyositis. The lesions in the skin and muscles obtained by biopsy from two litters of dogs were characterized for the purpose of determining the similarity of the lesions to those of human dermatomyositis. The cutaneous lesions began between 7 and 11 weeks of age and were present on the face, lips, ears, and skin over bony prominences of the limbs, feet, sternum, and tip of the tail. Histologically the cutaneous lesions frequently consisted of vesicles, pustules, and ulcers on the lips, face, and ears. Neutrophils, lymphocytes, mast cells, and macrophages were present throughout the dermis. Neutrophils and lymphocytes were also present in and around vessels. Between 13 and 19 weeks of age generalized muscle atrophy was noted. The muscle lesions consisted of interstitial lymphocyte, plasma cell, macrophage, and neutrophil accumulation; myofiber degeneration, regeneration, and atrophy; and fibrosis. Perivascular neutrophils, lymphocytes, and plasma cells were also seen. Histologically, the lesions resembled those present in human juvenile dermatomyositis; and these observations, coupled with clinical, immunologic, and clinical pathologic observations presented elsewhere, suggest that familial canine dermatomyositis is an appropriate and potentially useful model for human juvenile dermatomyositis. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 Figure 12 Figure 13 Figure 14 Figure 15 Figure 16 Figure 17 PMID:6465285

  2. The ins and outs of modelling vertical displacement events

    NASA Astrophysics Data System (ADS)

    Pfefferle, David

    2017-10-01

    Of the many reasons a plasma discharge disrupts, Vertical Displacement Events (VDEs) lead to the most severe forces and stresses on the vacuum vessel and Plasma Facing Components (PFCs). After loss of positional control, the plasma column drifts across the vacuum vessel and comes in contact with the first wall, at which point the stored magnetic and thermal energy is abruptly released. The vessel forces have been extensively modelled in 2D but, with the constraint of axisymmetry, the fundamental 3D effects that lead to toroidal peaking, sideways forces, field-line stochastisation and halo current rotation have been vastly overlooked. In this work, we present the main results of an intense VDE modelling activity using the implicit 3D extended MHD code M3D-C1 and share our experience with the multi-domain and highly non-linear physics encountered. At the culmination of code development by the M3D-C1 group over the last decade, highlighted by the inclusion of a finite-thickness resistive vacuum vessel within the computational domain, a series of fully 3D non-linear simulations are performed using realistic transport coefficients based on the reconstruction of so-called NSTX frozen VDEs, where the feedback control was purposely switched off to trigger a vertical instability. The vertical drift phase, the evolution of the current quench and the onset of 3D halo/eddy currents are diagnosed and investigated in detail. The sensitivity of the current quench to parameter changes is assessed via 2D non-linear runs. The growth of individual toroidal modes is monitored via linear-complex runs. The intricate evolution of the plasma, which is decaying to large extent in force-balance with induced halo/wall currents, is carefully resolved via 3D non-linear runs. The location, amplitude and rotation of normal currents and wall forces are analysed and compared with experimental traces.

  3. Preliminary design of laser-induced breakdown spectroscopy for proto-Material Plasma Exposure eXperiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shaw, G., E-mail: shawgc@ornl.gov; University of Tennessee, Knoxville, Tennessee 37996; Martin, M. Z.

    2014-11-15

    Laser-induced breakdown spectroscopy (LIBS) is a technique for measuring surface matter composition. LIBS is performed by focusing laser radiation onto a target surface, ablating the surface, forming a plasma, and analyzing the light produced. LIBS surface analysis is a possible diagnostic for characterizing plasma-facing materials in ITER. Oak Ridge National Laboratory has enabled the initial installation of a laser-induced breakdown spectroscopy diagnostic on the prototype Material-Plasma Exposure eXperiment (Proto-MPEX), which strives to mimic the conditions found at the surface of the ITER divertor. This paper will discuss the LIBS implementation on Proto-MPEX, preliminary design of the fiber optic LIBS collectionmore » probe, and the expected results.« less

  4. The Effects of Temperature and Oxidation on Deuterium Retention in Solid and Liquid Lithium Films on Molybdenum Plasma-Facing Components

    NASA Astrophysics Data System (ADS)

    Capece, Angela

    2014-10-01

    Liquid metal plasma-facing components (PFCs) enable in-situ renewal of the surface, thereby offering a solution to neutron damage, erosion, and thermal fatigue experienced by solid PFCs. Lithium in particular has a high chemical affinity for hydrogen, which has resulted in reduced recycling and enhanced plasma performance on many fusion devices including TFTR, T11-M, FTU, CDX-U, LTX, TJ-II, and NSTX. A key component to the improvement in plasma performance is deuterium retention in Li; however, this process is not well understood in the complex tokamak environment. Recent surface science experiments conducted at the Princeton Plasma Physics Laboratory have used electron spectroscopy and temperature programmed desorption to understand the mechanisms for D retention in Li coatings on Mo substrates. The experiments were designed to give monolayer-control of Li films and were conducted in ultrahigh vacuum under controlled environments. An electron cyclotron resonance plasma source was used to deliver a beam of deuterium ions to the surface over a range of ion energies. Our work shows that D is retained as LiD in metallic Li films. However, when oxygen is present in the film, either by diffusion from the subsurface at high temperature or as a contaminant during the deposition process, Li oxides are formed that retain D as LiOD. Experiments indicate that LiD is more thermally stable than LiOD, which decomposes to liberate D2 gas and D2O at temperatures 100 K lower than the LiD decomposition temperature. Other experiments show how D retention varies with substrate temperature to provide insight into the differences between solid and liquid lithium films. This work was supported by DOE Contract No. DE AC02-09CH11466.

  5. Liquid metals as a divertor plasma-facing material explored using the Pilot-PSI and Magnum-PSI linear devices

    NASA Astrophysics Data System (ADS)

    Morgan, T. W.; Rindt, P.; van Eden, G. G.; Kvon, V.; Jaworksi, M. A.; Lopes Cardozo, N. J.

    2018-01-01

    For DEMO and beyond, liquid metal plasma-facing components are considered due to their resilience to erosion through flowed replacement, potential for cooling beyond conduction and inherent immunity to many of the issues of neutron loading compared to solid materials. The development curve of liquid metals is behind that of e.g. tungsten however, and tokamak-based research is currently somewhat limited in scope. Therefore, investigation into linear plasma devices can provide faster progress under controlled and well-diagnosed conditions in assessing many of the issues surrounding the use of liquid metals. The linear plasma devices Magnum-PSI and Pilot-PSI are capable of producing DEMO-relevant plasma fluxes, which well replicate expected divertor conditions, and the exploration of physics issues for tin (Sn) and lithium (Li) such as vapour shielding, erosion under high particle flux loading and overall power handling are reviewed here. A deeper understanding of erosion and deposition through this work indicates that stannane formation may play an important role in enhancing Sn erosion, while on the other hand the strong hydrogen isotope affinity reduces the evaporation rate and sputtering yields for Li. In combination with the strong redeposition rates, which have been observed under this type of high-density plasma, this implies that an increase in the operational temperature range, implying a power handling range of 20-25 MW m-2 for Sn and up to 12.5 MW m-2 for Li could be achieved. Vapour shielding may be expected to act as a self-protection mechanism in reducing the heat load to the substrate for off-normal events in the case of Sn, but may potentially be a continual mode of operation for Li.

  6. FOREWORD: 12th International Workshop on Plasma-Facing Materials and Components for Fusion Applications 12th International Workshop on Plasma-Facing Materials and Components for Fusion Applications

    NASA Astrophysics Data System (ADS)

    Kreter, Arkadi; Linke, Jochen; Rubel, Marek

    2009-12-01

    The 12th International Workshop on Plasma-Facing Materials and Components for Fusion Applications (PFMC-12) was held in Forschungszentrum Jülich (FZJ) in Germany in May 2009. This symposium is the successor to the International Workshop on Carbon Materials for Fusion Applications series. Between 1985 and 2003, 10 'Carbon Workshops' were organized in Jülich, Stockholm and Hohenkammer. After this time, the scope of the symposium was redefined to reflect the new requirements of ITER and the ongoing evolution of the field. The workshop was first organized under its new name in 2006 in Greifswald, Germany. The main objective of this conference series is to provide a discussion forum for experts from research institutions and industry dealing with materials for plasma-facing components in present and future controlled fusion devices. The operation of ASDEX-Upgrade with tungsten-coated wall, the fast progress of the ITER-Like Wall Project at JET, the plans for the EAST tokamak to install tungsten, the start of ITER construction and a discussion about the wall material for DEMO all emphasize the importance of plasma-wall interactions and component behaviour, and give much momentum to the field. In this context, the properties and behaviour of beryllium, carbon and tungsten under plasma impact are research topics of foremost relevance and importance. Our community realizes both the enormous advantages and serious drawbacks of all the candidate materials. As a result, discussion is in progress as to whether to use carbon in ITER during the initial phase of operation or to abandon this element and use only metal components from the start. There is broad knowledge about carbon, both in terms of its excellent power-handling capabilities and the drawbacks related to chemical reactivity with fuel species and, as a consequence, about problems arising from fuel inventory and dust formation. We are learning continuously about beryllium and tungsten under fusion conditions, but our knowledge is still limited, especially in relation to the behaviour of these metals in environments containing multiple species. There are many appealing issues related to material mixing and fuel retention that call for robust and comprehensive studies. In this sense, the aim of the workshop is not only to discuss hot topics, but also to identify the most important research areas and those that need urgent solutions. Another topic of foremost relevance to ITER is the development of plasma-facing components that are able to withstand extreme power fluxes, in particular, those during transient phases. Materials and production methods for high-heat-flux components have to be further developed and industrialized. A key requirement in this field is the development of non-destructive testing methods for the qualification of methods and quality assessment during production. Invited talks and contributed presentations therefore dealt with aspects of fundamental processes, experimental findings, advanced modelling and the technology of fusion reactor components. Several areas were selected as the major topics of PFMC-12: materials for the ITER-divertor (erosion, redeposition, fuel retention) carbon-based materials tungsten and tungsten coatings beryllium mixed materials (intentional and non-intentional) the ITER-Like Wall Project materials under high-heat-flux loads including transients (ELMs, disruptions) technology and testing of plasma-facing components neutron effects in plasma-facing materials. 26 invited lectures and oral contributions, and 131 posters were presented by participants from research laboratories and industrial companies. 210 researchers from 24 countries from all over the world participated in a lively and intense exchange of knowledge and ideas. The workshop was hosted by Forschungszentrum Jülich (FZJ), a centre where the integration of science and technology for fusion reactor materials has been a focus for decades. This is reflected by the operation of several devices vital for progress in fusion research. TEXTOR (Toroidal EXperiment for Technology Oriented Research) is a mission-oriented tokamak for the study of plasma-wall interactions and testing of materials in fusion environments. JUDITH-1 (JÜlich DIvertor Test facility in Hot-cell) and the recently started JUDITH-2 are the most powerful test beds for studies of material performance under steady-state or pulsed power loads. The results of testing in JUDITH establish the background for material qualification. The expertize of FZJ in fusion engineering is vital for the construction of the Wendelstein-7X stellarator in Greifswald and the diagnostics for the ITER plasma. Finally, there is a group of eminent theoreticians and modellers at work in FZJ. As a consequence, FZJ is the home of the supercomputer, High Performance Computing-For Fusion (HPC-FF). During the workshop, special guided laboratory tours were organized to get the participants acquainted with the experimental facilities at FZJ: TEXTOR, JUDITH and HPC-FF. The quality of the talks, posters and discussions, and the comfortable conference facilities were of great importance but activities outside fusion science also formed part of the workshop. A guided tour in the Old Town of Aachen was very much appreciated by all participants; a stroll in this beautiful place was not only a relaxing moment but also put participants in touch with a great deal of European history. Big and long-term projects always attract young, ambitious people. The recruitment of talented scientists is a conditio sine qua non for the future success and progress of fusion science and engineering. The enthusiasm of students is very important but not sufficient; it is the responsibility of older colleagues to get students acquainted with the major issues and challenges. For this reason, the workshop was preceded by a series of tutorials on plasma-wall interactions and properties, and testing of relevant materials. The lectures were met with a great response: not only did over thirty young colleagues register but also senior scientists registered for the course and were very active in discussions. The workshop was supported financially by Forschungszentrum Jülich and the ExtreMat Integrated Project, a programme for the development and study of new materials for extreme environments. We are very grateful to the staff of Forschungszentrum who helped with the organization. Our most cordial thanks and gratitude go to Yasmin Fattah, Angelika Hallmanns, Gabriele Knauf and Gerd Boeling for all their kindness and efficiency, which helped all of us to enjoy the meeting. We thank most sincerely our colleagues Gerald Pintsuk, Takeshi Hirai and Andrey Litnovsky for their most professional work in the construction and operation of the conference webpage, the preparation of the sessions and for all other elements that were vital for the smooth running of the meeting. We thank very much Marliese Felden and Ralf-Uwe Limbach who very kindly and professionally took care of the photographic documentation of the workshop. The proceedings of this workshop contains 67 peer-reviewed articles covering the contents of most of the invited presentations and a number of poster contributions which were pre-selected by the programme committee. The papers reflect the development and actual status of the field. We thank all participants for their contributions and the referees for their smooth and efficient peer-review. Thank you all for your hard work and co-operation. We are looking forward to seeing you at the next meeting; we invite you to come, though we are not yet able to say 'when' and 'where' we will meet next time. It is a special feature of this conference series that a new meeting is announced only when the community feels that there is substantial new material to be presented and discussed.

  7. Wall conditioning by ECRH discharges and He-GDC in the limiter phase of Wendelstein 7-X

    NASA Astrophysics Data System (ADS)

    Wauters, T.; Brakel, R.; Brezinsek, S.; Dinklage, A.; Goriaev, A.; Laqua, H. P.; Marsen, S.; Moseev, D.; Stange, T.; Schlisio, G.; Pedersen, T. Sunn; Volzke, O.; Wenzel, U.; the W7-X Team

    2018-06-01

    Wendelstein 7-X (W7-X) relies on wall conditioning to control the density and the impurity content of the plasma. Wall conditioning in the first operation campaign of W7-X consisted of baking at 150 °C during 1 week prior to operation, glow discharge conditioning (GDC) in helium (He) and electron cyclotron resonance heating (ECRH) discharges. Additionally, the usage of He-GDC was limited to avoid sputtering and migration of metallic plasma facing components. This presented a unique opportunity for studying the applicability of ECRH discharges for initial wall conditioning on a stellarator, albeit in the carbon limiter configuration. A single envelope curve is observed in the normalised outgassing data that takes into account all ECRH discharges. This illustrates that the majority of discharges operates at the limits of a radiative collapse. Hydrogen recycling dominated the fuelling of ECRH discharges throughout while CO outgassing was found strongest at the start of the campaign. A reduction of recycling was observed throughout the campaign. Temporarily depleting the walls from H and impurities was possible by He-GDC. It was shown that the recycling coefficient in -ECRH plasmas could be reduced and the pulse duration significantly extended by He-’recovery’ ECRH plasmas. Good wall conditions were defined by normalised outgassing values below mbar kJ‑1. In absence of -GDC, more than 311 cumulated discharge seconds of ECRH discharges are needed for obtaining lasting low outgassing levels. A release model with two trapping reservoirs could reproduce the normalised outgassing trend, including ECRH and GDC plasma wall interactions.

  8. Development of Advanced Ill-Nitride Materials

    DTIC Science & Technology

    2008-09-24

    have continued to work on InN and related materials. During the last year, we have completed many of our basic materials studies and extended our...conductivity of InN films The origin of bulk electrons in In-face InN has been studied by considering the effects of both unintentionally incorporated... studied in In- and N-face InN films grown on GaN by plasma-assisted molecular beam epitaxy. The TD densities were determined by non-destructive x-ray

  9. Not just the norm: exemplar-based models also predict face aftereffects.

    PubMed

    Ross, David A; Deroche, Mickael; Palmeri, Thomas J

    2014-02-01

    The face recognition literature has considered two competing accounts of how faces are represented within the visual system: Exemplar-based models assume that faces are represented via their similarity to exemplars of previously experienced faces, while norm-based models assume that faces are represented with respect to their deviation from an average face, or norm. Face identity aftereffects have been taken as compelling evidence in favor of a norm-based account over an exemplar-based account. After a relatively brief period of adaptation to an adaptor face, the perceived identity of a test face is shifted toward a face with attributes opposite to those of the adaptor, suggesting an explicit psychological representation of the norm. Surprisingly, despite near universal recognition that face identity aftereffects imply norm-based coding, there have been no published attempts to simulate the predictions of norm- and exemplar-based models in face adaptation paradigms. Here, we implemented and tested variations of norm and exemplar models. Contrary to common claims, our simulations revealed that both an exemplar-based model and a version of a two-pool norm-based model, but not a traditional norm-based model, predict face identity aftereffects following face adaptation.

  10. Not Just the Norm: Exemplar-Based Models also Predict Face Aftereffects

    PubMed Central

    Ross, David A.; Deroche, Mickael; Palmeri, Thomas J.

    2014-01-01

    The face recognition literature has considered two competing accounts of how faces are represented within the visual system: Exemplar-based models assume that faces are represented via their similarity to exemplars of previously experienced faces, while norm-based models assume that faces are represented with respect to their deviation from an average face, or norm. Face identity aftereffects have been taken as compelling evidence in favor of a norm-based account over an exemplar-based account. After a relatively brief period of adaptation to an adaptor face, the perceived identity of a test face is shifted towards a face with opposite attributes to the adaptor, suggesting an explicit psychological representation of the norm. Surprisingly, despite near universal recognition that face identity aftereffects imply norm-based coding, there have been no published attempts to simulate the predictions of norm- and exemplar-based models in face adaptation paradigms. Here we implemented and tested variations of norm and exemplar models. Contrary to common claims, our simulations revealed that both an exemplar-based model and a version of a two-pool norm-based model, but not a traditional norm-based model, predict face identity aftereffects following face adaptation. PMID:23690282

  11. Characterization and performance of a field aligned ion cyclotron range of frequency antenna in Alcator C-Mod

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wukitch, S. J.; Garrett, M. L.; Ochoukov, R.

    Ion cyclotron range of frequency (ICRF) heating is expected to provide auxiliary heating for ITER and future fusion reactors where high Z metallic plasma facing components (PFCs) are being considered. Impurity contamination linked to ICRF antenna operation remains a major challenge particularly for devices with high Z metallic PFCs. Here, we report on an experimental investigation to test whether a field aligned (FA) antenna can reduce impurity contamination and impurity sources. We compare the modification of the scrape of layer (SOL) plasma potential of the FA antenna to a conventional, toroidally aligned (TA) antenna, in order to explore the underlyingmore » physics governing impurity contamination linked to ICRF heating. The FA antenna is a 4-strap ICRF antenna where the current straps and antenna enclosure sides are perpendicular to the total magnetic field while the Faraday screen rods are parallel to the total magnetic field. In principle, alignment with respect to the total magnetic field minimizes integrated E|| (electric field along a magnetic field line) via symmetry. A finite element method RF antenna model coupled to a cold plasma model verifies that the integrated E|| should be reduced for all antenna phases. Monopole phasing in particular is expected to have the lowest integrated E||. Consistent with expectations, we observed that the impurity contamination and impurity source at the FA antenna are reduced compared to the TA antenna. In both L and H-mode discharges, the radiated power is 20%–30% lower for a FA-antenna heated discharge than a discharge heated with the TA-antennas. However, inconsistent with expectations, we observe RF induced plasma potentials (via gas-puff imaging and emissive probes to be nearly identical for FA and TA antennas when operated in dipole phasing). Moreover, the highest levels of RF-induced plasma potentials are observed using monopole phasing with the FA antenna. Thus, while impurity contamination and sources are indeed reduced with the FA antenna configuration, the mechanism determining the SOL plasma potential in the presence of ICRF and its impact on impurity contamination and sources remains to be understood.« less

  12. Qualification of tungsten coatings on plasma-facing components for JET

    NASA Astrophysics Data System (ADS)

    Maier, H.; Neu, R.; Greuner, H.; Böswirth, B.; Balden, M.; Lindig, S.; Matthews, G. F.; Rasinski, M.; Wienhold, P.; Wiltner, A.

    2009-12-01

    This contribution summarizes the work that has been performed to establish the industrial production of tungsten coatings on carbon fibre composite (CFC) for application within the ITER-like Wall Project at JET. This comprises the investigation of vacuum plasma-sprayed coatings, physical vapour deposited tungsten/rhenium multilayers, as well as coatings deposited by combined magnetron-sputtering and ion implantation. A variety of analysis tools were applied to investigate failures and oxide and carbide formation in these systems.

  13. Study of runaway electrons using dosimetry of hard x-ray radiations in Damavand tokamak

    NASA Astrophysics Data System (ADS)

    Rasouli, C.; Pourshahab, B.; Hosseini Pooya, S. M.; Orouji, T.; Rasouli, H.

    2014-05-01

    In this work several studies have been conducted on hard x-ray emissions of Damavand tokamak based on radiation dosimetry using the Thermoluminescence method. The goal was to understand interactions of runaway electrons with plasma particles, vessel wall, and plasma facing components. Total of 354 GR-200 (LiF:Mg,Cu,P) thermoluminescence dosimeter (TLD) crystals have been placed on 118 points - three TLDs per point - to map hard x-ray radiation doses on the exterior of the vacuum vessel. Results show two distinctive levels of x-ray radiations doses on the exterior of the vessel. The low-dose area on which measured dose is about 0.5 mSv/shot. In the low-dose area there is no particular component inside the vessel. On the contrary, on high-dose area of the vessel, x-ray radiations dose exceeds 30 mSv/shot. The high-dose area coincides with the position of limiters, magnetic probe ducts, and vacuum vessel intersections. Among the high-dose areas, the highest level of dose is measured in the position of the limiter, which could be due to its direct contact with the plasma column and with runaway electrons. Direct collisions of runaway electrons with the vessel wall and plasma facing components make a major contribution for production of hard x-ray photons in Damavand tokamak.

  14. Study of runaway electrons using dosimetry of hard x-ray radiations in Damavand tokamak.

    PubMed

    Rasouli, C; Pourshahab, B; Hosseini Pooya, S M; Orouji, T; Rasouli, H

    2014-05-01

    In this work several studies have been conducted on hard x-ray emissions of Damavand tokamak based on radiation dosimetry using the Thermoluminescence method. The goal was to understand interactions of runaway electrons with plasma particles, vessel wall, and plasma facing components. Total of 354 GR-200 (LiF:Mg,Cu,P) thermoluminescence dosimeter (TLD) crystals have been placed on 118 points--three TLDs per point--to map hard x-ray radiation doses on the exterior of the vacuum vessel. Results show two distinctive levels of x-ray radiations doses on the exterior of the vessel. The low-dose area on which measured dose is about 0.5 mSv/shot. In the low-dose area there is no particular component inside the vessel. On the contrary, on high-dose area of the vessel, x-ray radiations dose exceeds 30 mSv/shot. The high-dose area coincides with the position of limiters, magnetic probe ducts, and vacuum vessel intersections. Among the high-dose areas, the highest level of dose is measured in the position of the limiter, which could be due to its direct contact with the plasma column and with runaway electrons. Direct collisions of runaway electrons with the vessel wall and plasma facing components make a major contribution for production of hard x-ray photons in Damavand tokamak.

  15. Reconstruction of magnetic configurations in W7-X using artificial neural networks

    NASA Astrophysics Data System (ADS)

    Böckenhoff, Daniel; Blatzheim, Marko; Hölbe, Hauke; Niemann, Holger; Pisano, Fabio; Labahn, Roger; Pedersen, Thomas Sunn; The W7-X Team

    2018-05-01

    It is demonstrated that artificial neural networks can be used to accurately and efficiently predict details of the magnetic topology at the plasma edge of the Wendelstein 7-X stellarator, based on simulated as well as measured heat load patterns onto plasma-facing components observed with infrared cameras. The connection between heat load patterns and the magnetic topology is a challenging regression problem, but one that suits artificial neural networks well. The use of a neural network makes it feasible to analyze and control the plasma exhaust in real-time, an important goal for Wendelstein 7-X, and for magnetic confinement fusion research in general.

  16. On the alignment of cellulose microfibrils by cortical microtubules: a review and a model.

    PubMed

    Baskin, T I

    2001-01-01

    The hypothesis that microtubules align microfibrils, termed the alignment hypothesis, states that there is a causal link between the orientation of cortical microtubules and the orientation of nascent microfibrils. I have assessed the generality of this hypothesis by reviewing what is known about the relation between microtubules and microfibrils in a wide group of examples: in algae of the family Characeae, Closterium acerosum, Oocystis solitaria, and certain genera of green coenocytes and in land plant tip-growing cells, xylem, diffusely growing cells, and protoplasts. The salient features about microfibril alignment to emerge are as follows. Cellulose microfibrils can be aligned by cortical microtubules, thus supporting the alignment hypothesis. Alignment of microfibrils can occur independently of microtubules, showing that an alternative to the alignment hypothesis must exist. Microfibril organization is often random, suggesting that self-assembly is insufficient. Microfibril organization differs on different faces of the same cell, suggesting that microfibrils are aligned locally, not with respect to the entire cell. Nascent microfibrils appear to associate tightly with the plasma membrane. To account for these observations, I present a model that posits alignment to be mediated through binding the nascent microfibril. The model, termed templated incorporation, postulates that the nascent microfibril is incorporated into the cell wall by binding to a scaffold that is oriented; further, the scaffold is built and oriented around either already incorporated microfibrils or plasma membrane proteins, or both. The role of cortical microtubules is to bind and orient components of the scaffold at the plasma membrane. In this way, spatial information to align the microfibrils may come from either the cell wall or the cell interior, and microfibril alignment with and without microtubules are subsets of a single mechanism.

  17. Towards an Ethological Animal Model of Depression? A Study on Horses

    PubMed Central

    Fureix, Carole; Jego, Patrick; Henry, Séverine; Lansade, Léa; Hausberger, Martine

    2012-01-01

    Background Recent reviews question current animal models of depression and emphasise the need for ethological models of mood disorders based on animals living under natural conditions. Domestic horses encounter chronic stress, including potential stress at work, which can induce behavioural disorders (e.g. “apathy”). Our pioneering study evaluated the potential of domestic horses in their usual environment to become an ethological model of depression by testing this models’ face validity (i.e. behavioural similarity with descriptions of human depressive states). Methodology/Principal Findings We observed the spontaneous behaviour of 59 working horses in their home environment, focusing on immobility bouts of apparent unresponsiveness when horses displayed an atypical posture (termed withdrawn hereafter), evaluated their responsiveness to their environment and their anxiety levels, and analysed cortisol levels. Twenty-four percent of the horses presented the withdrawn posture, also characterized by gaze, head and ears fixity, a profile that suggests a spontaneous expression of “behavioural despair”. When compared with control “non-withdrawn” horses from the same stable, withdrawn horses appeared more indifferent to environmental stimuli in their home environment but reacted more emotionally in more challenging situations. They exhibited lower plasma cortisol levels. Withdrawn horses all belonged to the same breed and females were over-represented. Conclusions/Significance Horse might be a useful potential candidate for an animal model of depression. Face validity of this model appeared good, and potential genetic input and high prevalence of these disorders in females add to the convergence. At a time when current animal models of depression are questioned and the need for novel models is expressed, this study suggests that novel models and biomarkers could emerge from ethological approaches in home environments. PMID:22761752

  18. Erosion simulation of first wall beryllium armour under ITER transient heat loads

    NASA Astrophysics Data System (ADS)

    Bazylev, B.; Janeschitz, G.; Landman, I.; Pestchanyi, S.; Loarte, A.

    2009-04-01

    The beryllium is foreseen as plasma facing armour for the first wall in the ITER in form of Be-clad blanket modules in macrobrush design with brush size about 8-10 cm. In ITER significant heat loads during transient events (TE) are expected at the main chamber wall that may leads to the essential damage of the Be armour. The main mechanisms of metallic target damage remain surface melting and melt motion erosion, which determines the lifetime of the plasma facing components. Melting thresholds and melt layer depth of the Be armour under transient loads are estimated for different temperatures of the bulk Be and different shapes of transient loads. The melt motion damages of Be macrobrush armour caused by the tangential friction force and the Lorentz force are analyzed for bulk Be and different sizes of Be-brushes. The damage of FW under radiative loads arising during mitigated disruptions is numerically simulated.

  19. The heat removal capability of actively cooled plasma-facing components for the ITER divertor

    NASA Astrophysics Data System (ADS)

    Missirlian, M.; Richou, M.; Riccardi, B.; Gavila, P.; Loarer, T.; Constans, S.

    2011-12-01

    Non-destructive examination followed by high-heat-flux testing was performed for different small- and medium-scale mock-ups; this included the most recent developments related to actively cooled tungsten (W) or carbon fibre composite (CFC) armoured plasma-facing components. In particular, the heat-removal capability of these mock-ups manufactured by European companies with all the main features of the ITER divertor design was investigated both after manufacturing and after thermal cycling up to 20 MW m-2. Compliance with ITER requirements was explored in terms of bonding quality, heat flux performances and operational compatibility. The main results show an overall good heat-removal capability after the manufacturing process independent of the armour-to-heat sink bonding technology and promising behaviour with respect to thermal fatigue lifetime under heat flux up to 20 MW m-2 for the CFC-armoured tiles and 15 MW m-2 for the W-armoured tiles, respectively.

  20. Thermal shock tests to qualify different tungsten grades as plasma facing material

    NASA Astrophysics Data System (ADS)

    Wirtz, M.; Linke, J.; Loewenhoff, Th; Pintsuk, G.; Uytdenhouwen, I.

    2016-02-01

    The electron beam device JUDITH 1 was used to establish a testing procedure for the qualification of tungsten as plasma facing material. Absorbed power densities of 0.19 and 0.38 GW m-2 for an edge localized mode-like pulse duration of 1 ms were chosen. Furthermore, base temperatures of room temperature, 400 °C and 1000 °C allow investigating the thermal shock performance in the brittle, ductile and high temperature regime. Finally, applying 100 pulses under all mentioned conditions helps qualifying the general damage behaviour while with 1000 pulses for the higher power density the influence of thermal fatigue is addressed. The investigated reference material is a tungsten product produced according to the ITER material specifications. The obtained results provide a general overview of the damage behaviour with quantified damage characteristics and thresholds. In particular, it is shown that the damage strongly depends on the microstructure and related thermo-mechanical properties.

  1. Observation of Flat Electron Temperature Profiles in the Lithium Tokamak Experiment

    DOE PAGES

    Boyle, D. P.; Majeski, R.; Schmitt, J. C.; ...

    2017-07-05

    It has been predicted for over a decade that low-recycling plasma-facing components in fusion devices would allow high edge temperatures and flat or nearly flat temperature profiles. In recent experiments with lithium wall coatings in the Lithium Tokamak Experiment (LTX), a hot edge ( > 200 eV ) and flat electron temperature profiles have been measured following the termination of external fueling. In this work, reduced recycling was demonstrated by retention of ~ 60% of the injected hydrogen in the walls following the discharge. Electron energy confinement followed typical Ohmic confinement scaling during fueling, but did not decrease with densitymore » after fueling terminated, ultimately exceeding the scaling by ~ 200% . Lastly, achievement of the low-recycling, hot edge regime has been an important goal of LTX and lithium plasma-facing component research in general, as it has potentially significant implications for the operation, design, and cost of fusion devices.« less

  2. Observation of Flat Electron Temperature Profiles in the Lithium Tokamak Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyle, D. P.; Majeski, R.; Schmitt, J. C.

    It has been predicted for over a decade that low-recycling plasma-facing components in fusion devices would allow high edge temperatures and flat or nearly flat temperature profiles. In recent experiments with lithium wall coatings in the Lithium Tokamak Experiment (LTX), a hot edge ( > 200 eV ) and flat electron temperature profiles have been measured following the termination of external fueling. In this work, reduced recycling was demonstrated by retention of ~ 60% of the injected hydrogen in the walls following the discharge. Electron energy confinement followed typical Ohmic confinement scaling during fueling, but did not decrease with densitymore » after fueling terminated, ultimately exceeding the scaling by ~ 200% . Lastly, achievement of the low-recycling, hot edge regime has been an important goal of LTX and lithium plasma-facing component research in general, as it has potentially significant implications for the operation, design, and cost of fusion devices.« less

  3. Design and Test of Wendelstein 7-X Water-Cooled Divertor Scraper

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boscary, J.; Greuner, Henri; Ehrke, Gunnar

    Heat load calculations have indicated the possible overloading of the ends of the water-cooled divertor facing the pumping gap beyond their technological limit. The intention of the scraper is the interception of some of the plasma fluxes both upstream and downstream before they reach the divertor surface. The scraper is divided into six modules of four plasma facing components (PFCs); each module has four PFCs hydraulically connected in series by two water boxes (inlet and outlet). A full-scale prototype of one module has been manufactured. Development activities have been carried out to connect the water boxes to the cooling pipesmore » of the PFCs by tungsten inert gas internal orbital welding. This prototype was successfully tested in the GLADIS facility with 17 MW/m2 for 500 cycles. The results of these activities have confirmed the possible technological basis for a fabrication of the water-cooled scraper.« less

  4. Proof-of-concept experiment for on-line laser induced breakdown spectroscopy analysis of impurity layer deposited on optical window and other plasma facing components of Aditya tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maurya, Gulab Singh; Kumar, Rohit; Rai, Awadhesh Kumar, E-mail: awadheshkrai@rediffmail.com

    2015-12-15

    In the present manuscript, we demonstrate the design of an experimental setup for on-line laser induced breakdown spectroscopy (LIBS) analysis of impurity layers deposited on specimens of interest for fusion technology, namely, plasma-facing components (PFCs) of a tokamak. For investigation of impurities deposited on PFCs, LIBS spectra of a tokamak wall material like a stainless steel sample (SS304) have been recorded through contaminated and cleaned optical windows. To address the problem of identification of dust and gases present inside the tokamak, we have shown the capability of the apparatus to record LIBS spectra of gases. A new approach known asmore » “back collection method” to record LIBS spectra of impurities deposited on the inner surface of optical window is presented.« less

  5. A dynamic monitoring approach for the surface morphology evolution measurement of plasma facing components by means of speckle interferometry

    NASA Astrophysics Data System (ADS)

    Wang, Hongbei; Cui, Xiaoqian; Feng, Chunlei; Li, Yuanbo; Zhao, Mengge; Luo, Guangnan; Ding, Hongbin

    2017-11-01

    Plasma Facing Components (PFCs) in a magnetically confined fusion plasma device will be exposed to high heat load and particle fluxes, and it would cause PFCs' surface morphology to change due to material erosion and redeposition from plasma wall interactions. The state of PFCs' surface condition will seriously affect the performance of long-pulse or steady state plasma discharge in a tokamak; it will even constitute an enormous threat to the operation and the safety of fusion plasma devices. The PFCs' surface morphology evolution measurement could provide important information about PFCs' real-time status or damage situation and it would help to a better understanding of the plasma wall interaction process and mechanism. Meanwhile through monitoring the distribution of dust deposition in a tokamak and providing an upper limit on the amount of loose dust, the PFCs' surface morphology measurement could indirectly contribute to keep fusion operational limits and fusion device safety. Aiming at in situ dynamic monitoring PFCs' surface morphology evolution, a laboratory experimental platform DUT-SIEP (Dalian University of Technology-speckle interferometry experimental platform) based on the speckle interferometry technique has been constructed at Dalian University of Technology (DUT) in China. With directional specific designing and focusing on the real detection condition of EAST (Experimental Advanced Superconducting Tokamak), the DUT-SIEP could realize a variable measurement range, widely increased from 0.1 μm to 300 μm, with high spatial resolution (<1 mm) and ultra-high time resolution (<2 s for EAST measuring conditions). Three main components of the DUT-SIEP are all integrated and synchronized by a time schedule control and data acquisition terminal and coupled with a three-dimensional phase unwrapping algorithm, the surface morphology information of target samples can be obtained and reconstructed in real-time. A local surface morphology of the real divertor tiles adopted from EAST has been measured, and the feasibility and reliability of this new experimental platform have been demonstrated.

  6. Smart tungsten alloys as a material for the first wall of a future fusion power plant

    NASA Astrophysics Data System (ADS)

    Litnovsky, A.; Wegener, T.; Klein, F.; Linsmeier, Ch.; Rasinski, M.; Kreter, A.; Unterberg, B.; Coenen, J. W.; Du, H.; Mayer, J.; Garcia-Rosales, C.; Calvo, A.; Ordas, N.

    2017-06-01

    Tungsten is currently deemed as a promising plasma-facing material (PFM) for the future power plant DEMO. In the case of an accident, air can get into contact with PFMs during the air ingress. The temperature of PFMs can rise up to 1200 °C due to nuclear decay heat in the case of damaged coolant supply. Heated neutron-activated tungsten forms a volatile radioactive oxide which can be mobilized into the atmosphere. New self-passivating ‘smart’ alloys can adjust their properties to the environment. During plasma operation the preferential sputtering of lighter alloying elements will leave an almost pure tungsten surface facing the plasma. During an accident the alloying elements in the bulk are forming oxides thus protecting tungsten from mobilization. Good plasma performance and the suppression of oxidation are required for smart alloys. Bulk tungsten (W)-chroimum (Cr)-titanium (Ti) alloys were exposed together with pure tungsten (W) samples to the steady-state deuterium plasma under identical conditions in the linear plasma device PSI 2. The temperature of the samples was ~576 °C-715 °C, the energy of impinging ions was 210 eV matching well the conditions expected at the first wall of DEMO. Weight loss measurements demonstrated similar mass decrease of smart alloys and pure tungsten samples. The oxidation of exposed samples has proven no effect of plasma exposure on the oxidation resistance. The W-Cr-Ti alloy demonstrated advantageous 3-fold lower mass gain due to oxidation than that of pure tungsten. New yttrium (Y)-containing thin film systems are demonstrating superior performance in comparison to that of W-Cr-Ti systems and of pure W. The oxidation rate constant of W-Cr-Y thin film is 105 times less than that of pure tungsten. However, the detected reactivity of the bulk smart alloy in humid atmosphere is calling for a further improvement.

  7. Spatial structure of radio frequency ring-shaped magnetized discharge sputtering plasma using two facing ZnO/Al2O3 cylindrical targets for Al-doped ZnO thin film preparation

    NASA Astrophysics Data System (ADS)

    Sumiyama, Takashi; Fukumoto, Takaya; Ohtsu, Yasunori; Tabaru, Tatsuo

    2017-05-01

    Spatial structure of high-density radio frequency ring-shaped magnetized discharge plasma sputtering with two facing ZnO/Al2O3 cylindrical targets mounted in ring-shaped hollow cathode has been measured and Al-doped ZnO (AZO) thin film is deposited without substrate heating. The plasma density has a peak at ring-shaped hollow trench near the cathode. The radial profile becomes uniform with increasing the distance from the target cathode. A low ion current flowing to the substrate of 0.19 mA/cm2 is attained. Large area AZO films with a resistivity of 4.1 - 6.7×10-4 Ω cm can be prepared at a substrate room temperature. The transmittance is 84.5 % in a visible region. The surface roughnesses of AZO films are 0.86, 0.68, 0.64, 1.7 nm at radial positions of r = 0, 15, 30, 40 mm, respectively, while diffraction peak of AZO films is 34.26°. The grains exhibit a preferential orientation along (002) axis.

  8. Increase in the neutron yield from a dense plasma-focus experiment performed with a conical tip placed in the centre of the anode end

    NASA Astrophysics Data System (ADS)

    Kubes, P.; Paduch, M.; Cikhardt, J.; Cikhardtova, B.; Klir, D.; Kravarik, J.; Rezac, K.; Zielinska, E.; Sadowski, M. J.; Szymaszek, A.; Tomaszewski, K.; Zaloga, D.

    2017-09-01

    The paper describes the evolution of self-organized structures inside a pinched plasma column during the phase of the effective production of fusion neutrons, as observed in the mega-ampere plasma focus experiment performed with a conical tip placed in the centre of the anode face. In a comparison with the plane anode face configuration, the described anode shape facilitated transformations in the pinch column during the neutron production and increased the neutron yield several times. Simultaneously, it decreased the minimal diameter and the length of the pinched column, and it depressed the first neutron pulse. It also induced shorter pulses of X-rays and neutrons, which enabled the determination of a temporal difference between the emission of electron and deuteron beams. The fast electrons were produced mainly during a disruption of the pinch constriction, while the fast deuterons - during the formation and explosion of plasmoids. The paper also presents the temporal evolution of a current distribution in the plasmoid during the neutron production, as well as the appearance and stable positions of current filaments traces upon the surface of the conical anode tip.

  9. B{sub 4}C-SiC reaction-sintered coatings on graphite plasma facing components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valentine, P.G.; Trester, P.W.; Winter, J.

    1994-05-01

    Boron carbide plus silicon carbide (B{sub 4}C-SiC) reaction-sintered coatings for use on graphite plasma-facing components were developed. Such coatings are of interest in TEXTOR tokamak limiter-plasma interactions as a means of reducing carbon erosion, of providing a preferred release of boron for oxygen gettering, and of investigating silicon`s effect on radiative edge phenomena. Specimens evaluated had (a) either Ringsdorfwerke EK 98 graphite or Le Carbon Lorraine felt-type AEROLOR A05 CFC substrates; (b) multiphase coatings, comprised of B{sub 4}C, Sic, and graphite; (c) nominal coating compositions of 69 wt.-% B{sub 4}C + 31 wt.-% SiC; and (d) nominal coating thicknesses betweenmore » 250 and 775 {mu}m. Coated coupons were evaluated by high heat flux experiments in the JUDITH (electron beam) test facility at KFA. Simulated disruptions, with energy densities up to 10 MJm{sup {minus}2}, and normal operation simulations, with power densities up to 12 MWm{sup {minus}2}, were conducted. The coatings remained adherent; at the highest levels tested, minor changes occurred, including localized remelting, modification of the crystallographic phases, occasional microcracking, and erosion.« less

  10. Influence of the electron cyclotron resonance plasma confinement on reducing the bremsstrahlung production of an electron cyclotron resonance ion source with metal-dielectric structures.

    PubMed

    Schachter, L; Stiebing, K E; Dobrescu, S

    2009-01-01

    The influence of metal-dielectric (MD) layers (MD structures) inserted into the plasma chamber of an electron cyclotron resonance ion source (ECRIS) onto the production of electron bremsstrahlung radiation has been studied in a series of dedicated experiments at the 14 GHz ECRIS of the Institut für Kernphysik der Universität Frankfurt. The IKF-ECRIS was equipped with a MD liner, covering the inner walls of the plasma chamber, and a MD electrode, covering the plasma-facing side of the extraction electrode. On the basis of similar extracted currents of highly charged ions, significantly reduced yields of bremsstrahlung radiation for the "MD source" as compared to the standard (stainless steel) source have been measured and can be explained by the significantly better plasma confinement in a MD source as compared to an "all stainless steel" ECRIS.

  11. System for the production of plasma

    DOEpatents

    Bakken, George S.

    1978-01-01

    The present invention provides a system for the production of a plasma by concentrating and focusing a laser beam on the plasma-forming material with a lightfocusing member which comprises a parabolic axicon in conjunction with a coaxial conical mirror. The apex of the conical mirror faces away from the focus of the parabolic axicon such that the conical mirror serves to produce a virtual line source along the axis of the cone. Consequently, irradiation from a laser parallel to the axis toward the apex of the conical mirror will be concentrated at the focus of the parabolic axicon, impinging upon the plasma-forming material there introduced to produce a plasma. The system is adaptable to irradiation of a target pellet introduced at the focus of the parabolic axicon and offers an advantage in that the target pellet can be irradiated with a high degree of radial and spherical symmetry.

  12. Smoothing single-crystalline SiC surfaces by reactive ion etching using pure NF{sub 3} and NF{sub 3}/Ar mixture gas plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tasaka, Akimasa, E-mail: aki-tasaka-load@yahoo.co.jp; Kotaka, Yuki; Oda, Atsushi

    2014-09-01

    In pure NF{sub 3} plasma, the etching rates of four kinds of single-crystalline SiC wafer etched at NF{sub 3} pressure of 2 Pa were the highest and it decreased with an increase in NF{sub 3} pressure. On the other hand, they increased with an increase in radio frequency (RF) power and were the highest at RF power of 200 W. A smooth surface was obtained on the single-crystalline 4H-SiC after reactive ion etching at NF{sub 3}/Ar gas pressure of 2 Pa and addition of Ar to NF{sub 3} plasma increased the smoothness of SiC surface. Scanning electron microscopy observation revealed that the numbermore » of pillars decreased with an increase in the Ar-concentration in the NF{sub 3}/Ar mixture gas. The roughness factor (R{sub a}) values were decreased from 51.5 nm to 25.5 nm for the As-cut SiC, from 0.25 nm to 0.20 nm for the Epi-SiC, from 5.0 nm to 0.7 nm for the Si-face mirror-polished SiC, and from 0.20 nm to 0.16 nm for the C-face mirror-polished SiC by adding 60% Ar to the NF{sub 3} gas. Both the R{sub a} values of the Epi- and the C-face mirror-polished wafer surfaces etched using the NF{sub 3}/Ar (40:60) plasma were similar to that treated with mirror polishing, so-called the Catalyst-Referred Etching (CARE) method, with which the lowest roughness of surface was obtained among the chemical mirror polishing methods. Etching duration for smoothing the single-crystalline SiC surface using its treatment was one third of that with the CARE method.« less

  13. Operational Characteristics of Liquid Lithium Divertor in NSTX

    NASA Astrophysics Data System (ADS)

    Kaita, R.; Kugel, H.; Abrams, T.; Bell, M. G.; Bell, R. E.; Gerhardt, S.; Jaworski, M. A.; Kallman, J.; Leblanc, B.; Mansfield, D.; Mueller, D.; Paul, S.; Roquemore, A. L.; Scotti, F.; Skinner, C. H.; Timberlake, J.; Zakharov, L.; Maingi, R.; Nygren, R.; Raman, R.; Sabbagh, S.; Soukhanovskii, V.

    2010-11-01

    Lithium coatings on plasma-facing components (PFC's) have resulted in improved plasma performance on NSTX in deuterium H-mode plasmas with neutral beam heating.^ Salient results included improved electron confinement and ELM suppression. In CDX-U, the use of lithium-coated PFC's and a large-area liquid lithium limiter resulted in a six-fold increase in global energy confinement time. A Liquid Lithium Divertor (LLD) has been installed in NSTX for the 2010 run campaign. The LLD PFC consists of a thin film of lithium on a temperature-controlled substrate to keep the lithium liquefied between shots, and handle heat loads during plasmas. This capability was demonstrated when the LLD withstood a strike point on its surface during discharges with up to 4 MW of neutral beam heating.

  14. Origin of coronal mass ejection and magnetic cloud: Thermal or magnetic driven?

    NASA Technical Reports Server (NTRS)

    Zhang, Gong-Liang; Wang, Chi; He, Shuang-Hua

    1995-01-01

    A fundamental problem in Solar-Terrestrial Physics is the origin of the solar transient plasma output, which includes the coronal mass ejection and its interplanetary manifestation, e.g. the magnetic cloud. The traditional blast wave model resulted from solar thermal pressure impulse has faced with challenge during recent years. In the MHD numerical simulation study of CME, the authors find that the basic feature of the asymmetrical event on 18 August 1980 can be reproduced neither by a thermal pressure nor by a speed increment. Also, the thermal pressure model fails in simulating the interplanetary structure with low thermal pressure and strong magnetic field strength, representative of a typical magnetic cloud. Instead, the numerical simulation results are in favor of the magnetic field expansion as the likely mechanism for both the asymmetrical CME event and magnetic cloud.

  15. Performance Effects of Adding a Parallel Capacitor to a Pulse Inductive Plasma Accelerator Powertrain

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.; Sivak, Amy D.; Balla, Joseph V.

    2011-01-01

    Pulsed inductive plasma accelerators are electrodeless space propulsion devices where a capacitor is charged to an initial voltage and then discharged through a coil as a high-current pulse that inductively couples energy into the propellant. The field produced by this pulse ionizes the propellant, producing a plasma near the face of the coil. Once a plasma is formed if can be accelerated and expelled at a high exhaust velocity by the Lorentz force arising from the interaction of an induced plasma current and the magnetic field. While there are many coil geometries that can be employed to inductively accelerate a plasma, in this paper the discussion is limit to planar geometries where the coil take the shape of a flat spiral. A recent review of the developmental history of planar-geometry pulsed inductive thrusters can be found in Ref. [1]. Two concepts that have employed this geometry are the Pulsed Inductive Thruster (PIT) and the Faraday Accelerator with Radio-frequency Assisted Discharge (FARAD).

  16. Experience on divertor fuel retention after two ITER-Like Wall campaigns

    NASA Astrophysics Data System (ADS)

    Heinola, K.; Widdowson, A.; Likonen, J.; Ahlgren, T.; Alves, E.; Ayres, C. F.; Baron-Wiechec, A.; Barradas, N.; Brezinsek, S.; Catarino, N.; Coad, P.; Guillemaut, C.; Jepu, I.; Krat, S.; Lahtinen, A.; Matthews, G. F.; Mayer, M.; Contributors, JET

    2017-12-01

    The JET ITER-Like Wall experiment, with its all-metal plasma-facing components, provides a unique environment for plasma and plasma-wall interaction studies. These studies are of great importance in understanding the underlying phenomena taking place during the operation of a future fusion reactor. Present work summarizes and reports the plasma fuel retention in the divertor resulting from the two first experimental campaigns with the ITER-Like Wall. The deposition pattern in the divertor after the second campaign shows same trend as was observed after the first campaign: highest deposition of 10-15 μm was found on the top part of the inner divertor. Due to the change in plasma magnetic configurations from the first to the second campaign, and the resulted strike point locations, an increase of deposition was observed on the base of the divertor. The deuterium retention was found to be affected by the hydrogen plasma experiments done at the end of second experimental campaign.

  17. Advances in boronization on NSTX-Upgrade

    DOE PAGES

    Skinner, C. H.; Bedoya, F.; Scotti, F.; ...

    2017-01-27

    Boronization has been effective in reducing plasma impurities and enabling access to higher density, higher confinement plasmas in many magnetic fusion devices. The National Spherical Torus eXperiment, NSTX, has recently undergone a major upgrade to NSTX-U in order to develop the physics basis for a ST-based Fusion Nuclear Science Facility (FNSF) with capability for double the toroidal field, plasma current, and NBI heating power and increased pulse duration from 1–1.5 s to 5–8 s. A new deuterated tri-methyl boron conditioning system was implemented together with a novel surface analysis diagnostic. We report on the spatial distribution of the boron depositionmore » versus discharge pressure, gas injection and electrode location. The oxygen concentration of the plasma facing surface was measured by in-vacuo XPS and increased both with plasma exposure and with exposure to trace residual gases. Furthermore, this increase correlated with the rise of oxygen emission from the plasma.« less

  18. Plasma Surface Interactions Common to Advanced Fusion Wall Materials and EUV Lithography - Lithium and Tin

    NASA Astrophysics Data System (ADS)

    Ruzic, D. N.; Alman, D. A.; Jurczyk, B. E.; Stubbers, R.; Coventry, M. D.; Neumann, M. J.; Olczak, W.; Qiu, H.

    2004-09-01

    Advanced plasma facing components (PFCs) are needed to protect walls in future high power fusion devices. In the semiconductor industry, extreme ultraviolet (EUV) sources are needed for next generation lithography. Lithium and tin are candidate materials in both areas, with liquid Li and Sn plasma material interactions being critical. The Plasma Material Interaction Group at the University of Illinois is leveraging liquid metal experimental and computational facilities to benefit both fields. The Ion surface InterAction eXperiment (IIAX) has measured liquid Li and Sn sputtering, showing an enhancement in erosion with temperature for light ion bombardment. Surface Cleaning of Optics by Plasma Exposure (SCOPE) measures erosion and damage of EUV mirror samples, and tests cleaning recipes with a helicon plasma. The Flowing LIquid surface Retention Experiment (FLIRE) measures the He and H retention in flowing liquid metals, with retention coefficients varying between 0.001 at 500 eV to 0.01 at 4000 eV.

  19. Material impacts and heat flux characterization of an electrothermal plasma source with an applied magnetic field

    DOE PAGES

    Gebhart, T. E.; Martinez-Rodriguez, R. A.; Baylor, L. R.; ...

    2017-08-11

    To produce a realistic tokamak-like plasma environment in linear plasma device, a transient source is needed to deliver heat and particle fluxes similar to those seen in an edge localized mode (ELM). ELMs in future large tokamaks will deliver heat fluxes of ~1 GW/m 2 to the divertor plasma facing components at a few Hz. An electrothermal plasma source can deliver heat fluxes of this magnitude. These sources operate in an ablative arc regime which is driven by a DC capacitive discharge. An electrothermal source was configured in this paper with two pulse lengths and tested under a solenoidal magneticmore » field to determine the resulting impact on liner ablation, plasma parameters, and delivered heat flux. The arc travels through and ablates a boron nitride liner and strikes a tungsten plate. Finally, the tungsten target plate is analyzed for surface damage using a scanning electron microscope.« less

  20. Hydrogen permeation properties of plasma-sprayed tungsten*1

    NASA Astrophysics Data System (ADS)

    Anderl, R. A.; Pawelko, R. J.; Hankins, M. R.; Longhurst, G. R.; Neiser, R. A.

    1994-09-01

    Tungsten has been proposed as a plasma-facing component material for advanced fusion facilities. This paper reports on laboratory-scale studies that were done to assess the hydrogen permeation properties of plasma-sprayed tungsten for such applications. The work entailed deuterium permeation measurements for plasma-sprayed (PS) tungsten coatings, sputter-deposited (SP) tungsten coatings, and steel substrate material using a mass-analyzed, 3 keV D 3+ ion beam with fluxes of ˜6.5 × 10 19 D/m 2 s. Extensive characterization analyses for the plasma-sprayed tungsten coatings were made using Auger spectrometry and scanning electron microscopy (SEM). Observed permeation rates through composite PS-tungsten/steel specimens were several orders of magnitude below the permeation levels observed for SP-tungsten/steel composite specimens and pure steel specimens. Characterization analyses indicated that the plasma-sprayed tungsten coating had a nonhomogeneous microstructure that consisted of splats with columnar solidification, partially-melted particles with grain boundaries, and void regions. Reduced permeation levels can be attributed to the complex microstructure and a substantial surface-connected porosity.

  1. Material impacts and heat flux characterization of an electrothermal plasma source with an applied magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gebhart, T. E.; Martinez-Rodriguez, R. A.; Baylor, L. R.

    To produce a realistic tokamak-like plasma environment in linear plasma device, a transient source is needed to deliver heat and particle fluxes similar to those seen in an edge localized mode (ELM). ELMs in future large tokamaks will deliver heat fluxes of ~1 GW/m 2 to the divertor plasma facing components at a few Hz. An electrothermal plasma source can deliver heat fluxes of this magnitude. These sources operate in an ablative arc regime which is driven by a DC capacitive discharge. An electrothermal source was configured in this paper with two pulse lengths and tested under a solenoidal magneticmore » field to determine the resulting impact on liner ablation, plasma parameters, and delivered heat flux. The arc travels through and ablates a boron nitride liner and strikes a tungsten plate. Finally, the tungsten target plate is analyzed for surface damage using a scanning electron microscope.« less

  2. The 24 GHz measurements of 2.2 lambda conical horn antennas illuminating a conducting sheet

    NASA Technical Reports Server (NTRS)

    Cross, A. E.; Marshall, R. E.; Hearn, C. P.; Neece, R. T.

    1993-01-01

    Monostatic reflection-coefficient magnitude, absolute value of Gamma, measurements occurring between a radiating horn and a metal reflecting plate are presented for a family of three 2.2 lambda diameter conical horn antennas. The three horns have different aperture phase deviations: 6 deg, 22.5 deg, and 125 deg. Measurements of the magnitude of absolute value of Gamma as a function of horn-plate separation (d) extend from an effective antenna aperture short (d = O) to beyond the far-field boundary (d = 2D(sup 2)/lambda, where D is the antenna diameter). Measurement data are presented with various physical environments for each of the horns. Measured scalar data are compared with theoretical data from two models, a numerical model for a circular waveguide aperture in a ground plane and a scalar diffraction theory model. This work was conducted in support of the development effort for a spaceborne multifrequency microwave reflectometer designed to accurately determine the distance from a space vehicle's surface to a reflecting plasma boundary. The metal reflecting plate was used to simulate the RF reflectivity of a critically dense plasma. The resulting configuration, a ground plane mounted aperture facing a reflecting plane in close proximity, produces a strong interaction between the ground plane and the reflecting plate, especially at integral half-wavelength separations. The transition coefficient is characterized by large amplitude variations.

  3. Plasma Inter-Particle and Particle-Wall Interactions

    NASA Astrophysics Data System (ADS)

    Patino, Marlene Idy

    An improved understanding of plasma inter-particle and particle-wall interactions is critical to the advancement of plasma devices used for space electric propulsion, fusion, high-power communications, and next-generation energy systems. Two interactions of particular importance are (1) ion-atom collisions in the plasma bulk and (2) secondary electron emission from plasma-facing materials. For ion-atom collisions, interactions between fast ions and slow atoms are commonly dominated by charge-exchange and momentum-exchange collisions that are important to understanding the performance and behavior of many plasma devices. To investigate this behavior, this work developed a simple, well-characterized experiment that accurately measures the effects of high energy xenon ions incident on a background of xenon neutral atoms. By comparing these results to both analytical and computational models of ion-atom interactions, we discovered the importance of (1) accurately treating the differential cross-sections for momentum-exchange and charge-exchange collisions over all neutral background pressures, and (2) commonly overlooked interactions, including ion-induced electron emission and neutral-neutral ionization collisions, at high pressures. Data provide vital information on the angular scattering distributions of charge-exchange and momentum-exchange ions at 1.5 keV relevant for ion thrusters, and serve as canonical data for validation of plasma models. This work also investigates electron-induced secondary electron emission behavior relevant to materials commonly considered for plasma thrusters, fusion systems, and many other plasma devices. For such applications, secondary electron emission can alter the sheath potential, which can significantly affect device performance and life. Secondary electron emission properties were measured for materials that are critical to the efficient operation of many plasma devices, including: graphite (for tokamaks, ion thrusters, and traveling wave tubes), lithium (for tokamak walls), tungsten (the most promising material for future tokamaks such as ITER), and nickel (for plasma-enhanced chemistry). Measurements were made for incident electron energies up to 1.5 keV and angles between 0 and 78°. The most significant results from these measurements are as follows: (1) first-ever measurements of naturally-forming tungsten fuzz show a more than 40% reduction in secondary electron emission and an independence on incidence angle; (2) original measurements of lithium oxide show a 2x and 6x increase in secondary electron emission for 17% and 100% oxidation; and (3) unique measurements of Ni(110) single crystal show extrema in secondary electron emission when incidence angle is varied and an up to 36% increase at 0° over polycrystalline nickel. Each of these results are important discoveries for improving plasma devices. For example, from (1), the growth of tungsten fuzz in tokamaks is desirable for minimizing adverse secondary electron emission effects. From (2), the opposite is true for tokamaks with lithium coatings which are oxidized by typical residual gases. From (3), secondary electron emission from Ni(110) catalysts in plasma-enhanced chemistry may facilitate further reactions.

  4. Overview of the recent DiMES and MiMES experiments in DIII-D

    NASA Astrophysics Data System (ADS)

    Rudakov, D. L.; Wong, C. P. C.; Litnovsky, A.; Wampler, W. R.; Boedo, J. A.; Brooks, N. H.; Fenstermacher, M. E.; Groth, M.; Hollmann, E. M.; Jacob, W.; Krasheninnikov, S. I.; Krieger, K.; Lasnier, C. J.; Leonard, A. W.; McLean, A. G.; Marot, M.; Moyer, R. A.; Petrie, T. W.; Philipps, V.; Smirnov, R. D.; Stangeby, P. C.; Watkins, J. G.; West, W. P.; Yu, J. H.

    2009-12-01

    Divertor and midplane material evaluation systems (DiMES and MiMES) in the DIII-D tokamak are used to address a variety of plasma-material interaction (PMI) issues relevant to ITER. Among the topics studied are carbon erosion and re-deposition, hydrogenic retention in the gaps between plasma-facing components (PFCs), deterioration of diagnostic mirrors from carbon deposition and techniques to mitigate that deposition, and dynamics and transport of dust. An overview of the recent experimental results is presented.

  5. Overview of innovative PMI research on NSTX-U and associated PMI facilities at PPPL

    DOE PAGES

    M. Ono; Jaworski, M.; Kaita, R.; ...

    2013-05-01

    Developing a reactor compatible divertor and managing the associated plasma material interaction (PMI) has been identified as a high priority research area for magnetic confinement fusion. Accordingly on NSTX-U, the PMI research has received a strong emphasis. Moreover, with ˜15 MW of auxiliary heating power, NSTX-U will be able to test the PMI physics with the peak divertor plasma facing component (PFC) heat loads of up to 40-60 MW/m 2.

  6. Chapter 8: Plasma operation and control

    NASA Astrophysics Data System (ADS)

    ITER Physics Expert Group on Disruptions, Control, Plasma, and MHD; ITER Physics Expert Group on Energetic Particles, Heating, Current and Drive; ITER Physics Expert Group on Diagnostics; ITER Physics Basis Editors

    1999-12-01

    Wall conditioning of fusion devices involves removal of desorbable hydrogen isotopes and impurities from interior device surfaces to permit reliable plasma operation. Techniques used in present devices include baking, metal film gettering, deposition of thin films of low-Z material, pulse discharge cleaning, glow discharge cleaning, radio frequency discharge cleaning, and in situ limiter and divertor pumping. Although wall conditioning techniques have become increasingly sophisticated, a reactor scale facility will involve significant new challenges, including the development of techniques applicable in the presence of a magnetic field and of methods for efficient removal of tritium incorporated into co-deposited layers on plasma facing components and their support structures. The current status of various approaches is reviewed, and the implications for reactor scale devices are summarized. Creation and magnetic control of shaped and vertically unstable elongated plasmas have been mastered in many present tokamaks. The physics of equilibrium control for reactor scale plasmas will rely on the same principles, but will face additional challenges, exemplified by the ITER/FDR design. The absolute positioning of outermost flux surface and divertor strike points will have to be precise and reliable in view of the high heat fluxes at the separatrix. Long pulses will require minimal control actions, to reduce accumulation of AC losses in superconducting PF and TF coils. To this end, more complex feedback controllers are envisaged, and the experimental validation of the plasma equilibrium response models on which such controllers are designed is encouraging. Present simulation codes provide an adequate platform on which equilibrium response techniques can be validated. Burning plasmas require kinetic control in addition to traditional magnetic shape and position control. Kinetic control refers to measures controlling density, rotation and temperature in the plasma core as well as in plasma periphery and divertor. The planned diagnostics (Chapter 7) serve as sensors for kinetic control, while gas and pellet fuelling, auxiliary power and angular momentum input, impurity injection, and non-inductive current drive constitute the control actuators. For example, in an ignited plasma, core density controls fusion power output. Kinetic control algorithms vary according to the plasma state, e.g. H- or L-mode. Generally, present facilities have demonstrated the kinetic control methods required for a reactor scale device. Plasma initiation - breakdown, burnthrough and initial current ramp - in reactor scale tokamaks will not involve physics differing from that found in present day devices. For ITER, the induced electric field in the chamber will be ~0.3V· m-1 - comparable to that required by breakdown theory but somewhat smaller than in present devices. Thus, a start-up 3MW electron cyclotron heating system will be employed to assure burnthrough. Simulations show that plasma current ramp up and termination in a reactor scale device can follow procedures developed to avoid disruption in present devices. In particular, simulations remain in the stable area of the li-q plane. For design purposes, the resistive V·s consumed during initiation is found, by experiments, to follow the Ejima expression, 0.45μ0 RIp. Advanced tokamak control has two distinct goals. First, control of density, auxiliary power, and inductive current ramping to attain reverse shear q profiles and internal transport barriers, which persist until dissipated by magnetic flux diffusion. Such internal transport barriers can lead to transient ignition. Second, combined use poloidal field shape control with non-inductive current drive and NBI angular momentum injection to create and control steady state, high bootstrap fraction, reverse shear discharges. Active n = 1 magnetic feedback and/or driven rotation will be required to suppress resistive wall modes for steady state plasmas that must operate in the wall stabilized regime for reactor levels of β >= 0.03.

  7. High-flux plasma exposure of ultra-fine grain tungsten

    DOE PAGES

    Kolasinski, R. D.; Buchenauer, D. A.; Doerner, R. P.; ...

    2016-05-12

    Here we examine the response of an ultra-fine grained (UFG) tungsten material to high-flux deuterium plasma exposure. UFG tungsten has received considerable interest as a possible plasma-facing material in magnetic confinement fusion devices, in large part because of its improved resistance to neutron damage. However, optimization of the material in this manner may lead to trade-offs in other properties. Moreover, we address two aspects of the problem in this work: (a) how high-flux plasmas modify the structure of the exposed surface, and (b) how hydrogen isotopes become trapped within the material. The specific UFG tungsten considered here contains 100 nm-widthmore » Ti dispersoids (1 wt%) that limit the growth of the W grains to a median size of 960 nm. Metal impurities (Fe, Cr) as well as O were identified within the dispersoids; these species were absent from the W matrix. To simulate relevant particle bombardment conditions, we exposed specimens of the W-Ti material to low energy (100 eV), high-flux (> 10 22 m -2 s -1) deuterium plasmas in the PISCES-A facility at the University of California, San Diego. To explore different temperature-dependent trapping mechanisms, we considered a range of exposure temperatures between 200 °C and 500 °C. For comparison, we also exposed reference specimens of conventional powder metallurgy warm-rolled and ITER-grade tungsten at 300 °C. Post-mortem focused ion beam profiling and atomic force microscopy of the UFG tungsten revealed no evidence of near-surface bubbles containing high pressure D2 gas, a common surface degradation mechanism associated with plasma exposure. Thermal desorption spectrometry indicated moderately higher trapping of D in the material compared with the reference specimens, though still within the spread of values for different tungsten grades found in the literature database. Finally, for the criteria considered here, these results do not indicate any significant obstacles to the potential use of UFG tungsten as a plasma-facing material, although further experimental work is needed to assess material response to transient events and high plasma fluence.« less

  8. Coupled Dictionary Learning for the Detail-Enhanced Synthesis of 3-D Facial Expressions.

    PubMed

    Liang, Haoran; Liang, Ronghua; Song, Mingli; He, Xiaofei

    2016-04-01

    The desire to reconstruct 3-D face models with expressions from 2-D face images fosters increasing interest in addressing the problem of face modeling. This task is important and challenging in the field of computer animation. Facial contours and wrinkles are essential to generate a face with a certain expression; however, these details are generally ignored or are not seriously considered in previous studies on face model reconstruction. Thus, we employ coupled radius basis function networks to derive an intermediate 3-D face model from a single 2-D face image. To optimize the 3-D face model further through landmarks, a coupled dictionary that is related to 3-D face models and their corresponding 3-D landmarks is learned from the given training set through local coordinate coding. Another coupled dictionary is then constructed to bridge the 2-D and 3-D landmarks for the transfer of vertices on the face model. As a result, the final 3-D face can be generated with the appropriate expression. In the testing phase, the 2-D input faces are converted into 3-D models that display different expressions. Experimental results indicate that the proposed approach to facial expression synthesis can obtain model details more effectively than previous methods can.

  9. Longer habitual afternoon napping is associated with a higher risk for impaired fasting plasma glucose and diabetes mellitus in older adults: results from the Dongfeng-Tongji cohort of retired workers.

    PubMed

    Fang, Weimin; Li, Zhongliang; Wu, Li; Cao, Zhongqiang; Liang, Yuan; Yang, Handong; Wang, Youjie; Wu, Tangchun

    2013-10-01

    Afternoon napping is a common habit in China. We used data obtained from the Dongfeng-Tongji cohort to examine if duration of habitual afternoon napping was associated with risks for impaired fasting plasma glucose (IFG) and diabetes mellitus (DM) in a Chinese elderly population. A total of 27,009 participants underwent a physical examination, laboratory tests, and face-to-face interview. They were categorized into four groups according to nap duration (no napping, <30, 30 to <60, 60 to <90, and > or =90 min). Logistic regression models were used to examine the odds ratios (ORs) of napping duration with IFG and DM. Of the participants, 18,515 (68.6%) reported regularly taking afternoon naps. Those with longer nap duration had considerably higher prevalence of IFG and DM. Napping duration was associated in a dose-dependent manner with IFG and DM (P<.001). After adjusting for possible confounders, longer nap duration (>60 min; all P<.05) was still significantly associated with increased risk for IFG, and longer nap duration (>30 min) was associated with increased risk for DM; however, this finding was not significant in the group with a nap duration of 60-90 min. Longer habitual afternoon napping was associated with a moderate increase for DM risk, independent of several covariates. This finding suggests that longer nap duration may represent a novel risk factor for DM and higher blood glucose levels. Copyright © 2013. Published by Elsevier B.V.

  10. Heat loads on poloidal and toroidal edges of castellated plasma-facing components in COMPASS

    NASA Astrophysics Data System (ADS)

    Dejarnac, R.; Corre, Y.; Vondracek, P.; Gaspar, J.; Gauthier, E.; Gunn, J. P.; Komm, M.; Gardarein, J.-L.; Horacek, J.; Hron, M.; Matejicek, J.; Pitts, R. A.; Panek, R.

    2018-06-01

    Dedicated experiments have been performed in the COMPASS tokamak to thoroughly study the power deposition processes occurring on poloidal and toroidal edges of castellated plasma-facing components in tokamaks during steady-state L-mode conditions. Surface temperatures measured by a high resolution infra-red camera are compared with reconstructed synthetic data from a 2D thermal model using heat flux profiles derived from both the optical approximation and 2D particle-in-cell (PIC) simulations. In the case of poloidal leading edges, when the contribution from local radiation is taken into account, the parallel heat flux deduced from unperturbed, upstream measurements is fully consistent with the observed temperature increase at the leading edges of various heights, respecting power balance assuming simple projection of the parallel flux density. Smoothing of the heat flux deposition profile due to finite ion Larmor radius predicted by the PIC simulations is found to be weak and the power deposition on misaligned poloidal edges is better described by the optical approximation. This is consistent with an electron-dominated regime associated with a non-ambipolar parallel current flow. In the case of toroidal gap edges, the different contributions of the total incoming flux along the gap have been observed experimentally for the first time. They confirm the results of recent numerical studies performed for ITER showing that in specific cases the heat deposition does not necessarily follow the optical approximation. Indeed, ions can spiral onto the magnetically shadowed toroidal edge. Particle-in-cell simulations emphasize again the role played by local non-ambipolarity in the deposition pattern.

  11. Particle and heat flux estimates in Proto-MPEX in Helicon Mode with IR imaging

    NASA Astrophysics Data System (ADS)

    Showers, M. A.; Biewer, T. M.; Caughman, J. B. O.; Donovan, D. C.; Goulding, R. H.; Rapp, J.

    2016-10-01

    The Prototype Material Plasma Exposure eXperiment (Proto-MPEX) at Oak Ridge National Laboratory (ORNL) is a linear plasma device developing the plasma source concept for the Material Plasma Exposure eXperiment (MPEX), which will address plasma material interaction (PMI) science for future fusion reactors. To better understand how and where energy is being lost from the Proto-MPEX plasma during ``helicon mode'' operations, particle and heat fluxes are quantified at multiple locations along the machine length. Relevant diagnostics include infrared (IR) cameras, four double Langmuir probes (LPs), and in-vessel thermocouples (TCs). The IR cameras provide temperature measurements of Proto-MPEX's plasma-facing dump and target plates, located on either end of the machine. The change in surface temperature is measured over the duration of the plasma shot to determine the heat flux hitting the plates. The IR cameras additionally provide 2-D thermal load distribution images of these plates, highlighting Proto-MPEX plasma behaviors, such as hot spots. The LPs and TCs provide additional plasma measurements required to determine particle and heat fluxes. Quantifying axial variations in fluxes will help identify machine operating parameters that will improve Proto-MPEX's performance, increasing its PMI research capabilities. This work was supported by the U.S. D.O.E. contract DE-AC05-00OR22725.

  12. Summary of ECE presentations at EC-18

    DOE PAGES

    Taylor, G.

    2015-03-12

    There were nine ECE and one EBE presentation at EC-18. Four of the presentations were on various aspects of ECE on ITER. The ITER ECE diagnostic has entered an important detailed preliminary design phase and faces several design challenges in the next 2-3 years. Most of the other ECE presentations at the workshop were focused on applications of ECE diagnostics to plasma measurements, rather than improvements in technology, although it was apparent that heterodyne receiver technology continues to improve. CECE, ECE imaging and EBE imaging are increasingly providing valuable insights into plasma behavior that is important to understand if futuremore » burning plasma devices, such as ITER, FNSF and DEMO, are to be successful.« less

  13. Are two plasma equilibrium states possible when the emission coefficient exceeds unity?

    NASA Astrophysics Data System (ADS)

    Campanell, M. D.; Umansky, M. V.

    2017-05-01

    Two floating sheath solutions with strong electron emission in planar geometry have been proposed, a "space-charge limited" (SCL) sheath and an "inverse" sheath. SCL and inverse models contain different assumptions about conditions outside the sheath (e.g., the velocity of ions entering the sheath). So it is not yet clear whether both sheaths are possible in practice, or only one. Here we treat the global presheath-sheath problem for a plasma produced volumetrically between two planar walls. We show that all equilibrium requirements (a) floating condition, (b) plasma shielding, and (c) presheath force balance, can indeed be satisfied in two different ways when the emission coefficient γ > 1. There is one solution with SCL sheaths and one with inverse sheaths, each with sharply different presheath distributions. As we show for the first time in 1D-1V simulations, a SCL and inverse equilibrium are both possible in plasmas with the same upstream properties (e.g., same N and Te). However, maintaining a true SCL equilibrium requires no ionization or charge exchange collisions in the sheath, or else cold ion accumulation in the SCL's "dip" forces a transition to the inverse. This suggests that only a monotonic inverse type sheath potential should exist at any plasma-facing surface with strong emission, whether be a divertor plate, emissive probe, dust grain, Hall thruster channel wall, sunlit object in space, etc. Nevertheless, SCL sheaths might still be possible if the ions in the dip can escape. Our simulations demonstrate ways in which SCL and inverse regimes might be distinguished experimentally based on large-scale presheath effects, without having to probe inside the sheath.

  14. Are two plasma equilibrium states possible when the emission coefficient exceeds unity?

    DOE PAGES

    Campanell, Michael D.; Umansky, M. V.

    2017-02-28

    Two floating sheath solutions with strong electron emission in planar geometry have been proposed, a “space-charge limited” (SCL) sheath and an “inverse” sheath. SCL and inverse models contain different assumptions about conditions outside the sheath (e.g., the velocity of ions entering the sheath). So it is not yet clear whether both sheaths are possible in practice, or only one. Here we treat the global presheath-sheath problem for a plasma produced volumetrically between two planar walls. We show that all equilibrium requirements (a) floating condition, (b) plasma shielding, and (c) presheath force balance, can indeed be satisfied in two different waysmore » when the emission coefficient γ > 1. There is one solution with SCL sheaths and one with inverse sheaths, each with sharply different presheath distributions. As we show for the first time in 1D-1V simulations, a SCL and inverse equilibrium are both possible in plasmas with the same upstream properties (e.g., same N and Te). However, maintaining a true SCL equilibrium requires no ionization or charge exchange collisions in the sheath, or else cold ion accumulation in the SCL's “dip” forces a transition to the inverse. This suggests that only a monotonic inverse type sheath potential should exist at any plasma-facing surface with strong emission, whether be a divertor plate, emissive probe, dust grain, Hall thruster channel wall, sunlit object in space, etc. Nevertheless, SCL sheaths might still be possible if the ions in the dip can escape. Finally, our simulations demonstrate ways in which SCL and inverse regimes might be distinguished experimentally based on large-scale presheath effects, without having to probe inside the sheath.« less

  15. Fundamental Mechanisms, Predictive Modeling, and Novel Aerospace Applications of Plasma Assisted Combustion. Overview of OSU Research Plan

    DTIC Science & Technology

    2009-11-04

    air, low-temperature plasma chemistry kinetic model Nonequilibrium Thermodynamics Laboratories The Ohio State University • Air plasma model...problems require separate analysis: • Nsec pulse plasma / sheath models cannot incorporate detailed reactive plasma chemistry : too many species ( 100...and reactions ( 1 000)~ ~ , • Detailed plasma chemistry models (quasi-neutral) cannot incorporate repetitive, nsec time scale sheath dynamics and plasma

  16. Numerical study of slip system activity and crystal lattice rotation under wedge nanoindents in tungsten single crystals

    NASA Astrophysics Data System (ADS)

    Volz, T.; Schwaiger, R.; Wang, J.; Weygand, S. M.

    2018-05-01

    Tungsten is a promising material for plasma facing components in future nuclear fusion reactors. In the present work, we numerically investigate the deformation behavior of unirradiated tungsten (a body-centered cubic (bcc) single crystal) underneath nanoindents. A finite element (FE) model is presented to simulate wedge indentation. Crystal plasticity finite element (CPFE) simulations were performed for face-centered and body-centered single crystals accounting for the slip system family {110} <111> in the bcc crystal system and the {111} <110> slip family in the fcc system. The 90° wedge indenter was aligned parallel to the [1 ¯01 ]-direction and indented the crystal in the [0 1 ¯0 ]-direction up to a maximum indentation depth of 2 µm. In both, the fcc and bcc single crystals, the activity of slip systems was investigated and compared. Good agreement with the results from former investigations on fcc single crystals was observed. Furthermore, the in-plane lattice rotation in the material underneath an indent was determined and compared for the fcc and bcc single crystals.

  17. Hole Feature on Conical Face Recognition for Turning Part Model

    NASA Astrophysics Data System (ADS)

    Zubair, A. F.; Abu Mansor, M. S.

    2018-03-01

    Computer Aided Process Planning (CAPP) is the bridge between CAD and CAM and pre-processing of the CAD data in the CAPP system is essential. For CNC turning part, conical faces of part model is inevitable to be recognised beside cylindrical and planar faces. As the sinus cosines of the cone radius structure differ according to different models, face identification in automatic feature recognition of the part model need special intention. This paper intends to focus hole on feature on conical faces that can be detected by CAD solid modeller ACIS via. SAT file. Detection algorithm of face topology were generated and compared. The study shows different faces setup for similar conical part models with different hole type features. Three types of holes were compared and different between merge faces and unmerge faces were studied.

  18. A specialized face-processing model inspired by the organization of monkey face patches explains several face-specific phenomena observed in humans.

    PubMed

    Farzmahdi, Amirhossein; Rajaei, Karim; Ghodrati, Masoud; Ebrahimpour, Reza; Khaligh-Razavi, Seyed-Mahdi

    2016-04-26

    Converging reports indicate that face images are processed through specialized neural networks in the brain -i.e. face patches in monkeys and the fusiform face area (FFA) in humans. These studies were designed to find out how faces are processed in visual system compared to other objects. Yet, the underlying mechanism of face processing is not completely revealed. Here, we show that a hierarchical computational model, inspired by electrophysiological evidence on face processing in primates, is able to generate representational properties similar to those observed in monkey face patches (posterior, middle and anterior patches). Since the most important goal of sensory neuroscience is linking the neural responses with behavioral outputs, we test whether the proposed model, which is designed to account for neural responses in monkey face patches, is also able to predict well-documented behavioral face phenomena observed in humans. We show that the proposed model satisfies several cognitive face effects such as: composite face effect and the idea of canonical face views. Our model provides insights about the underlying computations that transfer visual information from posterior to anterior face patches.

  19. A specialized face-processing model inspired by the organization of monkey face patches explains several face-specific phenomena observed in humans

    PubMed Central

    Farzmahdi, Amirhossein; Rajaei, Karim; Ghodrati, Masoud; Ebrahimpour, Reza; Khaligh-Razavi, Seyed-Mahdi

    2016-01-01

    Converging reports indicate that face images are processed through specialized neural networks in the brain –i.e. face patches in monkeys and the fusiform face area (FFA) in humans. These studies were designed to find out how faces are processed in visual system compared to other objects. Yet, the underlying mechanism of face processing is not completely revealed. Here, we show that a hierarchical computational model, inspired by electrophysiological evidence on face processing in primates, is able to generate representational properties similar to those observed in monkey face patches (posterior, middle and anterior patches). Since the most important goal of sensory neuroscience is linking the neural responses with behavioral outputs, we test whether the proposed model, which is designed to account for neural responses in monkey face patches, is also able to predict well-documented behavioral face phenomena observed in humans. We show that the proposed model satisfies several cognitive face effects such as: composite face effect and the idea of canonical face views. Our model provides insights about the underlying computations that transfer visual information from posterior to anterior face patches. PMID:27113635

  20. An Overview of NSTX Research Facility and Recent Experimental Results

    NASA Astrophysics Data System (ADS)

    Ono, Masayuki

    2006-10-01

    The 2006 NSTX experimental campaign yielded significant new experimental results in many areas. Improved plasma control achieved the highest elongation of 2.9 and plasma shape factor q95Ip/aBT = 42 MA/m.T. Active feedback correction of error fields sustained the plasma rotation and increased the pulse length of high beta discharges. Active feedback stabilization of the resistive wall mode in high-beta, low-rotation plasmas was demonstrated for ˜100 resistive wall times. Operation at higher toroidal field showed favorable plasma confinement and HHFW heating efficiency trends with the field. A broader current profile, measured by the 12-channel MSE diagnostic in high beta discharges revealed an outward anomalous diffusivity of energetic ions due to the n=1 MHD modes. A tangential microwave scattering diagnostic measured localized electron gyro-scale fluctuations in L-mode, H-mode and reversed-shear plasmas. Evaporation of lithium onto plasma facing surfaces yielded lower density, higher temperature and improved confinement. A strong dependence of the divertor heat load and ELM behavior on the plasma triangularity was observed. Coaxial helicity injection produced a start-up current of 160 kA on closed flux surfaces.

  1. The materials irradiation experiment for testing plasma facing materials at fusion relevant conditions

    DOE PAGES

    Garrison, L. M.; Zenobia, Samuel J.; Egle, Brian J.; ...

    2016-08-01

    The Materials Irradiation Experiment (MITE-E) was constructed at the University of Wisconsin-Madison Inertial Electrostatic Confinement Laboratory to test materials for potential use as plasma-facing materials (PFMs) in fusion reactors. PFMs in fusion reactors will be bombarded with x-rays, neutrons, and ions of hydrogen and helium. More needs to be understood about the interactions between the plasma and the materials to validate their use for fusion reactors. The MITE-E simulates some of the fusion reactor conditions by holding samples at temperatures up to 1000°C while irradiating them with helium or deuterium ions with energies from 10 to 150 keV. The ionmore » gun can irradiate the samples with ion currents of 20 μA–500 μA; the typical current used is 72 μA, which is an average flux of 9 × 10 14 ions/(cm 2 s). The ion gun uses electrostatic lenses to extract and shape the ion beam. A variable power (1-20 W), steady-state, Nd:YAG laser provides additional heating to maintain a constant sample temperature during irradiations. The ion beam current reaching the sample is directly measured and monitored in real-time during irradiations. The ion beam profile has been investigated using a copper sample sputtering experiment. In conclusion, the MITE-E has successfully been used to irradiate polycrystalline and single crystal tungsten samples with helium ions and will continue to be a source of important data for plasma interactions with materials.« less

  2. Overview of decade-long development of plasma-facing components at ASIPP

    NASA Astrophysics Data System (ADS)

    Luo, G.-N.; Liu, G. H.; Li, Q.; Qin, S. G.; Wang, W. J.; Shi, Y. L.; Xie, C. Y.; Chen, Z. M.; Missirlian, M.; Guilhem, D.; Richou, M.; Hirai, T.; Escourbiac, F.; Yao, D. M.; Chen, J. L.; Wang, T. J.; Bucalossi, J.; Merola, M.; Li, J. G.; EAST Team

    2017-06-01

    The first EAST (Experimental Advanced Superconducting Tokamak) plasma ignited in 2006 with non-actively cooled steel plates as the plasma-facing materials and components (PFMCs) which were then upgraded into full graphite tiles bolted onto water-cooled copper heat sinks in 2008. The first wall was changed further into molybdenum alloy in 2012, while keeping the graphite for both the upper and lower divertors. With the rapid increase in heating and current driving power in EAST, the W/Cu divertor project was launched around the end of 2012, aiming at achieving actively cooled full W/Cu-PFCs for the upper divertor, with heat removal capability up to 10 MW m-2. The W/Cu upper divertor was finished in the spring of 2014, consisting of 80 cassette bodies toroidally assembled. Commissioning of the EAST upper W/Cu divertor in 2014 was unsatisfactory and then several practical measures were implemented to improve the design, welding quality and reliability, which helped us achieve successful commissioning in the 2015 Spring Campaign. In collaboration with the IO and CEA teams, we have demonstrated our technological capability to remove heat loads of 5000 cycles at 10 MW m-2 and 1000 cycles at 20 MW m-2 for the small scale monoblock mockups, and surprisingly over 300 cycles at 20 MW m-2 for the flat-tile ones. The experience and lessons we learned from batch production and commissioning are undoubtedly valuable for ITER (International Thermonuclear Experimental Reactor) engineering validation and tungsten-related plasma physics.

  3. The materials irradiation experiment for testing plasma facing materials at fusion relevant conditions.

    PubMed

    Garrison, L M; Zenobia, S J; Egle, B J; Kulcinski, G L; Santarius, J F

    2016-08-01

    The Materials Irradiation Experiment (MITE-E) was constructed at the University of Wisconsin-Madison Inertial Electrostatic Confinement Laboratory to test materials for potential use as plasma-facing materials (PFMs) in fusion reactors. PFMs in fusion reactors will be bombarded with x-rays, neutrons, and ions of hydrogen and helium. More needs to be understood about the interactions between the plasma and the materials to validate their use for fusion reactors. The MITE-E simulates some of the fusion reactor conditions by holding samples at temperatures up to 1000 °C while irradiating them with helium or deuterium ions with energies from 10 to 150 keV. The ion gun can irradiate the samples with ion currents of 20 μA-500 μA; the typical current used is 72 μA, which is an average flux of 9 × 10(14) ions/(cm(2) s). The ion gun uses electrostatic lenses to extract and shape the ion beam. A variable power (1-20 W), steady-state, Nd:YAG laser provides additional heating to maintain a constant sample temperature during irradiations. The ion beam current reaching the sample is directly measured and monitored in real-time during irradiations. The ion beam profile has been investigated using a copper sample sputtering experiment. The MITE-E has successfully been used to irradiate polycrystalline and single crystal tungsten samples with helium ions and will continue to be a source of important data for plasma interactions with materials.

  4. The materials irradiation experiment for testing plasma facing materials at fusion relevant conditions

    NASA Astrophysics Data System (ADS)

    Garrison, L. M.; Zenobia, S. J.; Egle, B. J.; Kulcinski, G. L.; Santarius, J. F.

    2016-08-01

    The Materials Irradiation Experiment (MITE-E) was constructed at the University of Wisconsin-Madison Inertial Electrostatic Confinement Laboratory to test materials for potential use as plasma-facing materials (PFMs) in fusion reactors. PFMs in fusion reactors will be bombarded with x-rays, neutrons, and ions of hydrogen and helium. More needs to be understood about the interactions between the plasma and the materials to validate their use for fusion reactors. The MITE-E simulates some of the fusion reactor conditions by holding samples at temperatures up to 1000 °C while irradiating them with helium or deuterium ions with energies from 10 to 150 keV. The ion gun can irradiate the samples with ion currents of 20 μA-500 μA; the typical current used is 72 μA, which is an average flux of 9 × 1014 ions/(cm2 s). The ion gun uses electrostatic lenses to extract and shape the ion beam. A variable power (1-20 W), steady-state, Nd:YAG laser provides additional heating to maintain a constant sample temperature during irradiations. The ion beam current reaching the sample is directly measured and monitored in real-time during irradiations. The ion beam profile has been investigated using a copper sample sputtering experiment. The MITE-E has successfully been used to irradiate polycrystalline and single crystal tungsten samples with helium ions and will continue to be a source of important data for plasma interactions with materials.

  5. 2D surface temperature measurement of plasma facing components with modulated active pyrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amiel, S.; Loarer, T.; Pocheau, C.

    2014-10-01

    In nuclear fusion devices, such as Tore Supra, the plasma facing components (PFC) are in carbon. Such components are exposed to very high heat flux and the surface temperature measurement is mandatory for the safety of the device and also for efficient plasma scenario development. Besides this measurement is essential to evaluate these heat fluxes for a better knowledge of the physics of plasma-wall interaction, it is also required to monitor the fatigue of PFCs. Infrared system (IR) is used to manage to measure surface temperature in real time. For carbon PFCs, the emissivity is high and known (ε ~more » 0.8), therefore the contribution of the reflected flux from environment and collected by the IR cameras can be neglected. However, the future tokamaks such as WEST and ITER will be equipped with PFCs in metal (W and Be/W, respectively) with low and variable emissivities (ε ~ 0.1–0.4). Consequently, the reflected flux will contribute significantly in the collected flux by IR camera. The modulated active pyrometry, using a bicolor camera, proposed in this paper allows a 2D surface temperature measurement independently of the reflected fluxes and the emissivity. Experimental results with Tungsten sample are reported and compared with simultaneous measurement performed with classical pyrometry (monochromatic and bichromatic) with and without reflective flux demonstrating the efficiency of this method for surface temperature measurement independently of the reflected flux and the emissivity.« less

  6. More Realistic Face Model Surface Improves Relevance of Pediatric In-Vitro Aerosol Studies.

    PubMed

    Amirav, Israel; Halamish, Asaf; Gorenberg, Miguel; Omar, Hamza; Newhouse, Michael T

    2015-01-01

    Various hard face models are commonly used to evaluate the efficiency of aerosol face masks. Softer more realistic "face" surface materials, like skin, deform upon mask application and should provide more relevant in-vitro tests. Studies that simultaneously take into consideration many of the factors characteristic of the in vivo face are lacking. These include airways, various application forces, comparison of various devices, comparison with a hard-surface model and use of a more representative model face based on large numbers of actual faces. To compare mask to "face" seal and aerosol delivery of two pediatric masks using a soft vs. a hard, appropriately representative, pediatric face model under various applied forces. Two identical face models and upper airways replicas were constructed, the only difference being the suppleness and compressibility of the surface layer of the "face." Integrity of the seal and aerosol delivery of two different masks [AeroChamber (AC) and SootherMask (SM)] were compared using a breath simulator, filter collection and realistic applied forces. The soft "face" significantly increased the delivery efficiency and the sealing characteristics of both masks. Aerosol delivery with the soft "face" was significantly greater for the SM compared to the AC (p< 0.01). No statistically significant difference between the two masks was observed with the hard "face." The material and pliability of the model "face" surface has a significant influence on both the seal and delivery efficiency of face masks. This finding should be taken into account during in-vitro aerosol studies.

  7. In situ measurements of fuel retention by laser induced desorption spectroscopy in TEXTOR

    NASA Astrophysics Data System (ADS)

    Zlobinski, M.; Philipps, V.; Schweer, B.; Huber, A.; Stoschus, H.; Brezinsek, S.; Samm, U.; TEXTOR Team

    2011-12-01

    In future fusion devices such as ITER tritium retention due to tritium co-deposition in mixed material layers can be a serious safety problem. Laser induced desorption spectroscopy (LIDS) can measure the hydrogen content of hydrogenic carbon layers locally on plasma-facing components, while hydrogen is used as a tritium substitute. For several years, this method has been applied in the TEXTOR tokamak in situ during plasma operation to monitor the hydrogen content in space and time. This work shows the LIDS signal reproducibility and studies the effects of different plasma conditions, desorption distances from the plasma and different laser energies using a dedicated sample with constant hydrogen amount. Also the LIDS signal evaluation procedure is described in detail and the detection limits for different conditions in the TEXTOR tokamak are estimated.

  8. Study of ion-irradiated tungsten in deuterium plasma

    NASA Astrophysics Data System (ADS)

    Khripunov, B. I.; Gureev, V. M.; Koidan, V. S.; Kornienko, S. N.; Latushkin, S. T.; Petrov, V. B.; Ryazanov, A. I.; Semenov, E. V.; Stolyarova, V. G.; Danelyan, L. S.; Kulikauskas, V. S.; Zatekin, V. V.; Unezhev, V. N.

    2013-07-01

    Experimental study aimed at investigation of neutron induced damage influence on fusion reactor plasma facing materials is reported. Displacement damage was produced in tungsten by high-energy helium and carbon ions at 3-10 MeV. The reached level of displacement damage ranged from several dpa to 600 dpa. The properties of the irradiated tungsten were studied in steady-state deuterium plasma on the LENTA linear divertor simulator. Plasma exposures were made at 250 eV of ion energy to fluence 1021-1022 ion/сm2. Erosion dynamics of the damaged layer and deuterium retention were observed. Surface microstructure modifications and important damage of the 5 μm layer shown. Deuterium retention in helium-damaged tungsten (ERD) showed its complex behavior (increase or decrease) depending on implanted helium quantity and the structure of the surface layer.

  9. Ion behaviour in pulsed plasma regime by means of Time-resolved energy mass spectroscopy (TREMS) applied to an industrial radiofrequency Plasma Immersion Ion Implanter PULSION registered

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carrere, M.; Kaeppelin, V.; Torregrosa, F.

    2006-11-13

    In order to face the requirements for P+/N junctions requested for < 45 nm ITRS nodes, new doping techniques are studied. Among them Plasma Immersion Ion Implantation (PIII) has been largely studied. IBS has designed and developed its own PIII machine named PULSION registered . This machine is using a pulsed plasma. As other modem technological applications of low pressure plasma, PULSION registered needs a precise control over plasma parameters in order to optimise process characteristics. In order to improve pulsed plasma discharge devoted to PIII, a nitrogen pulsed plasma has been studied in the inductively coupled plasma (ICP) ofmore » PULSION registered and an argon pulsed plasma has been studied in the helicon discharge of the laboratory reactor of LPIIM (PHYSIS). Measurements of the Ion Energy Distribution Function (IEDF) with EQP300 (Hidden) have been performed in both pulsed plasma. This study has been done for different energies which allow to reconstruct the IEDF resolved in time (TREMS). By comparing these results, we found that the beginning of the plasma pulse, named ignition, exhaust at least three phases, or more. All these results allowed us to explain plasma dynamics during the pulse while observing transitions between capacitive and inductive coupling. This study leads in a better understanding of changes in discharge parameters as plasma potential, electron temperature, ion density.« less

  10. Low Frequency Plasma Oscillations in a 6-kW Magnetically Shielded Hall Thruster

    NASA Technical Reports Server (NTRS)

    Jorns, Benjamin A.; Hofery, Richard R.

    2013-01-01

    The oscillations from 0-100 kHz in a 6-kW magnetically shielded thruster are experimen- tally characterized. Changes in plasma parameters that result from the magnetic shielding of Hall thrusters have the potential to significantly alter thruster transients. A detailed investigation of the resulting oscillations is necessary both for the purpose of determin- ing the underlying physical processes governing time-dependent behavior in magnetically shielded thrusters as well as for improving thruster models. In this investigation, a high speed camera and a translating ion saturation probe are employed to examine the spatial extent and nature of oscillations from 0-100 kHz in the H6MS thruster. Two modes are identified at 8 kHz and 75-90 kHz. The low frequency mode is azimuthally uniform across the thruster face while the high frequency oscillation is concentrated close to the thruster centerline with an m = 1 azimuthal dependence. These experimental results are discussed in the context of wave theory as well as published observations from an unshielded variant of the H6MS thruster.

  11. Experimental study of shock-driven cavity collapse with a single-stage gas gun driver

    NASA Astrophysics Data System (ADS)

    Anderson, Phillip; Betney, Matthew; Doyle, Hugo; Hawker, Nicholas; Roy, Ronald

    2014-10-01

    This paper explores experimental studies of shock-driven cavity collapse using a single-stage gas gun. Shocks of up to 1 GPa are generated in a hydrogel with the impact of a planar-faced projectile (50 mm dia.). Within the hydrogel, a pre-formed cavity (5 mm dia.) is cast, which is collapsed by the interaction with the shockwave. The basic collapse process involves the formation of a high-speed transverse jet and then a second collapse phase driven from jet impact. Single-shot multi-frame schlieren imaging is used to show the position and timing of optical emission in relation to the collapse hydrodynamics. Further, temporally and spectrally-resolved measurements of the optical emission are made through simultaneous use of multiple band-passed PMTs and an integrating spectrometer. This reveals three distinct pulses of emission possessing different frequency content. The first corresponds to the trapping of gas during jet impact; the second and third correspond to the further inertial collapse of the now toroidal cavity. Plasma models are used to provide the first indication of the temperature of these inertially confined plasmas.

  12. Pertinent plasma indicators of the ability of chickens to synthesize and store lipids.

    PubMed

    Baéza, E; Jégou, M; Gondret, F; Lalande-Martin, J; Tea, I; Le Bihan-Duval, E; Berri, C; Collin, A; Métayer-Coustard, S; Louveau, I; Lagarrigue, S; Duclos, M J

    2015-01-01

    Excessive deposition of body fat is detrimental to production efficiency. The aim of this study was to provide plasma indicators of chickens' ability to store fat. From 3 to 9 wk of age, chickens from 2 experimental lines exhibiting a 2.5-fold difference in abdominal fat content and fed experimental diets with contrasted feed energy sources were compared. The diets contained 80 vs. 20 g of lipids and 379 vs. 514 g of starch per kg of feed, respectively, but had the same ME and total protein contents. Cellulose was used to dilute energy in the high-fat diet. At 9 wk of age, the body composition was analyzed and blood samples were collected. A metabolome-wide approach based on proton nuclear magnetic resonance spectroscopy was associated with conventional measurements of plasma parameters. A metabolomics approach showed that betaine, glutamine, and histidine were the most discriminating metabolites between groups. Betaine, uric acid, triglycerides, and phospholipids were positively correlated (r > 0.3; P < 0.05) and glutamine, histidine, triiodothyronine, homocysteine, and β-hydroxybutyrate were negatively correlated (r < -0.3; P < 0.05) with relative weight of abdominal fat and/or fat situated at the top of external face of the thigh. The combination of plasma free fatty acids, total cholesterol, phospholipid, β-hydroxybutyrate, glutamine, and methionine levels accounted for 74% of the variability of the relative weight of abdominal fat. On the other hand, the combination of plasma triglyceride and homocysteine levels accounted for 37% of the variability of fat situated at the top of external face of the thigh. The variations in plasma levels of betaine, homocysteine, uric acid, glutamine, and histidine suggest the implication of methyl donors in the control of hepatic lipid synthesis and illustrate the interplay between AA, glucose, and lipid metabolisms in growing chickens.

  13. Design and Construction of Field Reversed Configuration Plasma Chamber for Plasma Material Interaction Studies

    NASA Astrophysics Data System (ADS)

    Smith, DuWayne L.

    A Field Reversed Configuration (FRC) plasma source was designed and constructed to conduct high energy plasma-materials interaction studies. The purpose of these studies is the development of advanced materials for use in plasma based electric propulsion systems and nuclear fusion containment vessels. Outlined within this thesis is the basic concept of FRC plasmoid creation, an overview of the device design and integration of various diagnostics systems for plasma conditions and characterization, discussion on the variety of material defects resulting from the plasma exposure with methods and tools designed for characterization. Using a Michelson interferometer it was determined that the FRC plasma densities are on the order of ~1021 m-3. A novel dynamic pressure probe was created to measure ion velocities averaging 300 km/s. Compensating flux loop arrays were used to measure magnetic field strength and verify the existence of the FRC plasmoid and when used in combination with density measurements it was determined that the average ion temperatures are ~130 eV. X-ray Photoelectron Spectroscopy (XPS) was employed as a means of characterizing the size and shape of the plasma jet in the sample exposure positions. SEM results from preliminary studies reveal significant morphological changes on plasma facing material surfaces, and use of XRD to elucidate fuel gas-ion implantation strain rates correlated to plasma exposure energies.

  14. Reconstructing 3D Face Model with Associated Expression Deformation from a Single Face Image via Constructing a Low-Dimensional Expression Deformation Manifold.

    PubMed

    Wang, Shu-Fan; Lai, Shang-Hong

    2011-10-01

    Facial expression modeling is central to facial expression recognition and expression synthesis for facial animation. In this work, we propose a manifold-based 3D face reconstruction approach to estimating the 3D face model and the associated expression deformation from a single face image. With the proposed robust weighted feature map (RWF), we can obtain the dense correspondences between 3D face models and build a nonlinear 3D expression manifold from a large set of 3D facial expression models. Then a Gaussian mixture model in this manifold is learned to represent the distribution of expression deformation. By combining the merits of morphable neutral face model and the low-dimensional expression manifold, a novel algorithm is developed to reconstruct the 3D face geometry as well as the facial deformation from a single face image in an energy minimization framework. Experimental results on simulated and real images are shown to validate the effectiveness and accuracy of the proposed algorithm.

  15. Animal-vegetal polarity in the plasma membrane of a molluscan egg: a quantitative freeze-fracture study.

    PubMed

    Speksnijder, J E; Mulder, M M; Dohmen, M R; Hage, W J; Bluemink, J G

    1985-03-01

    Using freeze-fracture electron microscopy, the numerical particle distribution in the fertilized Nassarius egg plasma membrane has been analyzed in four areas at different positions along the animal-vegetal axis of the egg. These areas can be distinguished by distinct microvilli patterns and differences in microvilli densities. In all areas, more IMPs (intramembrane particles) are present on the P face than on the corresponding E face. The ratio of the number of IMPs present on E and P face is similar in all areas (0.48-0.55) except for the most animal part of the vegetal hemisphere, where relatively more IMPs remain attached to the exterior half of the fractured membrane (E/P ratio = 0.88). The IMP density at the vegetal pole of the egg is considerably higher than in the animal hemisphere and in the animal part of the vegetal hemisphere. This difference is due to an increased number of IMPs in all size classes (4-18 nm). In the area adjacent to the vegetal pole the density of particles is also higher than in the two more animal areas, but here the difference is exclusively due to the smaller IMP size classes (4-8 nm). Statistical analysis of our data reveals that the area adjacent to the vegetal pole patch is significantly different from the other areas with respect to the distribution of the IMPs over the different IMP size classes. These results demonstrate the polar organization of the Nassarius egg plasma membrane. The possible role of this surface heterogeneity in the spatial organization of the egg cell and the later embryo is discussed.

  16. Membrane events in the acrosomal reaction of Limulus sperm. Membrane fusion, filament-membrane particle attachment, and the source and formation of new membrane surface

    PubMed Central

    1979-01-01

    The membranes of Limulus (horseshoe crab) sperm were examined before and during the acrosomal reaction by using the technique of freeze- fracturing and thin sectioning. We focused on three areas. First, we examined stages in the fusion of the acrosomal vacuole with the cell surface. Fusion takes place in a particle-free zone which is surrounded by a circlet of particles on the P face of the plasma membrane and an underlying circlet of particles on the P face of the acrosomal vauole membrane. These circlets of particles are present before induction. Up to nine focal points of fusion occur within the particle-free zone. Second, we describe a system of fine filaments, each 30 A in diameter, which lies between the acrosomal vacuole and the plasma membrane. These filaments change their orientation as the vacuole opens, a process that takes place in less than 50 ms. Membrane particles seen on the P face of the acrosomal vacuole membrane change their orientation at the same time and in the same way as do the filaments, thus indicating that the membrane particles and filaments are probably connected. Third, we examined the source and the point of fusion of new membrane needed to cover the acrosomal process. This new membrane is almost certainly derived from the outer nuclear envelope and appears to insert into the plasma membrane in a particle-free area adjacent to an area rich in particles. The latter is the region where the particles are probably connected to the cytoplasmic filaments. The relevance of these observations in relation to the process of fertilization of this fantastic sperm is discussed. PMID:582596

  17. 3-Dimensional Modeling of Capacitively and Inductively Coupled Plasma Etching Systems

    NASA Astrophysics Data System (ADS)

    Rauf, Shahid

    2008-10-01

    Low temperature plasmas are widely used for thin film etching during micro and nano-electronic device fabrication. Fluid and hybrid plasma models were developed 15-20 years ago to understand the fundamentals of these plasmas and plasma etching. These models have significantly evolved since then, and are now a major tool used for new plasma hardware design and problem resolution. Plasma etching is a complex physical phenomenon, where inter-coupled plasma, electromagnetic, fluid dynamics, and thermal effects all have a major influence. The next frontier in the evolution of fluid-based plasma models is where these models are able to self-consistently treat the inter-coupling of plasma physics with fluid dynamics, electromagnetics, heat transfer and magnetostatics. We describe one such model in this paper and illustrate its use in solving engineering problems of interest for next generation plasma etcher design. Our 3-dimensional plasma model includes the full set of Maxwell equations, transport equations for all charged and neutral species in the plasma, the Navier-Stokes equation for fluid flow, and Kirchhoff's equations for the lumped external circuit. This model also includes Monte Carlo based kinetic models for secondary electrons and stochastic heating, and can take account of plasma chemistry. This modeling formalism allows us to self-consistently treat the dynamics in commercial inductively and capacitively coupled plasma etching reactors with realistic plasma chemistries, magnetic fields, and reactor geometries. We are also able to investigate the influence of the distributed electromagnetic circuit at very high frequencies (VHF) on the plasma dynamics. The model is used to assess the impact of azimuthal asymmetries in plasma reactor design (e.g., off-center pump, 3D magnetic field, slit valve, flow restrictor) on plasma characteristics at frequencies from 2 -- 180 MHz. With Jason Kenney, Ankur Agarwal, Ajit Balakrishna, Kallol Bera, and Ken Collins.

  18. Castellated tiles as the beam-facing components for the diagnostic calorimeter of the negative ion source SPIDER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peruzzo, S., E-mail: simone.peruzzo@igi.cnr.it; Cervaro, V.; Dalla Palma, M.

    2016-02-15

    This paper presents the results of numerical simulations and experimental tests carried out to assess the feasibility and suitability of graphite castellated tiles as beam-facing component in the diagnostic calorimeter of the negative ion source SPIDER (Source for Production of Ions of Deuterium Extracted from Radio frequency plasma). The results indicate that this concept could be a reliable, although less performing, alternative for the present design based on carbon fiber composite tiles, as it provides thermal measurements on the required spatial scale.

  19. Castellated tiles as the beam-facing components for the diagnostic calorimeter of the negative ion source SPIDER

    NASA Astrophysics Data System (ADS)

    Peruzzo, S.; Cervaro, V.; Dalla Palma, M.; Delogu, R.; De Muri, M.; Fasolo, D.; Franchin, L.; Pasqualotto, R.; Pimazzoni, A.; Rizzolo, A.; Tollin, M.; Zampieri, L.; Serianni, G.

    2016-02-01

    This paper presents the results of numerical simulations and experimental tests carried out to assess the feasibility and suitability of graphite castellated tiles as beam-facing component in the diagnostic calorimeter of the negative ion source SPIDER (Source for Production of Ions of Deuterium Extracted from Radio frequency plasma). The results indicate that this concept could be a reliable, although less performing, alternative for the present design based on carbon fiber composite tiles, as it provides thermal measurements on the required spatial scale.

  20. Modelling temporal networks of human face-to-face contacts with public activity and individual reachability

    NASA Astrophysics Data System (ADS)

    Zhang, Yi-Qing; Cui, Jing; Zhang, Shu-Min; Zhang, Qi; Li, Xiang

    2016-02-01

    Modelling temporal networks of human face-to-face contacts is vital both for understanding the spread of airborne pathogens and word-of-mouth spreading of information. Although many efforts have been devoted to model these temporal networks, there are still two important social features, public activity and individual reachability, have been ignored in these models. Here we present a simple model that captures these two features and other typical properties of empirical face-to-face contact networks. The model describes agents which are characterized by an attractiveness to slow down the motion of nearby people, have event-triggered active probability and perform an activity-dependent biased random walk in a square box with periodic boundary. The model quantitatively reproduces two empirical temporal networks of human face-to-face contacts which are testified by their network properties and the epidemic spread dynamics on them.

  1. Increased heat dissipation with the X-divertor geometry facilitating detachment onset at lower density in DIII-D

    NASA Astrophysics Data System (ADS)

    Covele, B.; Kotschenreuther, M.; Mahajan, S.; Valanju, P.; Leonard, A.; Watkins, J.; Makowski, M.; Fenstermacher, M.; Si, H.

    2017-08-01

    The X-divertor geometry on DIII-D has demonstrated reduced particle and heat fluxes to the target, facilitating detachment onset at 10-20% lower upstream density and higher H-mode pedestal pressure than a standard divertor. SOLPS modeling suggests that this effect cannot be explained by an increase in total connection length alone, but rather by the addition of connection length specifically in the power-dissipating volume near the target, via poloidal flux expansion and flaring. However, poloidal flaring must work synergistically with divertor closure to most effectively reduce the detachment density threshold. The model also points to carbon radiation as the primary driver of power dissipation in divertors on the DIII-D floor, which is consistent with experimental observations. Sustainable divertor detachment at lower density has beneficial consequences for energy confinement and current drive efficiency for core operation, while simultaneously satisfying the exhaust requirements of the plasma-facing components.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Covele, Brent; Kotschenreuther, M.; Mahajan, S.

    The X-Divertor geometry on DIII-D has demonstrated reduced particle and heat fluxes to the target, facilitating detachment onset at ~20% lower upstream density and higher H-mode pedestal pressure than a standard divertor. SOLPS modeling suggests that this effect cannot be explained by an increase in total connection length alone, but rather by the addition of connection length specifically in the power-dissipating volume near the target, via poloidal flux expansion and flaring. But, poloidal flaring must work synergistically with divertor closure to most effectively reduce the detachment density threshold. Furthermore, the model also points to carbon radiation as the primary drivermore » of power dissipation in divertors on the DIII-D floor, which is consistent with experimental observations. Sustainable divertor detachment at lower density has beneficial consequences for energy confinement and current drive efficiency in the core for advanced tokamak (AT) operation, while simultaneously satisfying the exhaust requirements of the plasma-facing components.« less

  3. Acylation-dependent protein export in Leishmania.

    PubMed

    Denny, P W; Gokool, S; Russell, D G; Field, M C; Smith, D F

    2000-04-14

    The surface of the protozoan parasite Leishmania is unusual in that it consists predominantly of glycosylphosphatidylinositol-anchored glycoconjugates and proteins. Additionally, a family of hydrophilic acylated surface proteins (HASPs) has been localized to the extracellular face of the plasma membrane in infective parasite stages. These surface polypeptides lack a recognizable endoplasmic reticulum secretory signal sequence, transmembrane spanning domain, or glycosylphosphatidylinositol-anchor consensus sequence, indicating that novel mechanisms are involved in their transport and localization. Here, we show that the N-terminal domain of HASPB contains primary structural information that directs both N-myristoylation and palmitoylation and is essential for correct localization of the protein to the plasma membrane. Furthermore, the N-terminal 18 amino acids of HASPB, encoding the dual acylation site, are sufficient to target the heterologous Aequorea victoria green fluorescent protein to the cell surface of Leishmania. Mutagenesis of the predicted acylated residues confirms that modification by both myristate and palmitate is required for correct trafficking. These data suggest that HASPB is a representative of a novel class of proteins whose translocation onto the surface of eukaryotic cells is dependent upon a "non-classical" pathway involving N-myristoylation/palmitoylation. Significantly, HASPB is also translocated on to the extracellular face of the plasma membrane of transfected mammalian cells, indicating that the export signal for HASPB is recognized by a higher eukaryotic export mechanism.

  4. Upgrades toward high-heat flux, liquid lithium plasma-facing components in the NSTX-U

    DOE PAGES

    Jaworski, M. A.; Brooks, A.; Kaita, R.; ...

    2016-08-08

    Liquid metal plasma-facing components (PFCs) provide numerous potential advantages over solid-material components. One critique of the approach is the relatively less developed technologies associated with deploying these components in a fusion plasma-experiment. Exploration of the temperature limits of liquid lithium PFCs in a tokamak divertor and the corresponding consequences on core operation are a high priority informing the possibilities for future liquid lithium PFCs. An all-metal NSTX-U is envisioned to make direct comparison between all high-Z wall operation and liquid lithium PFCs in a single device. By executing the all-metal upgrades incrementally, scientific productivity will be maintained while enabling physicsmore » and engineering-science studies to further develop the solid- and liquid-metal components. Six major elements of a flowing liquid-metal divertor system are described and a three-step program for implementing this system is laid out. The upgrade steps involve the first high-Z divertor target upgrade in NSTX-U, pre-filled liquid metal targets and finally, an integrated, flowing liquid metal divertor target. As a result, two example issues are described where the engineering and physics experiments are shown to be closely related in examining the prospects for future liquid metal PFCs.« less

  5. Study of plasma-facing components in the Lithium Tokamak Experiment with the Materials Analysis and Particle Probe

    NASA Astrophysics Data System (ADS)

    Lucia, M.; Kaita, R.; Majeski, R.; Boyle, D. P.; Granstedt, E. M.; Jacobson, C. M.; Schmitt, J. C.; Allain, J. P.; Bedoya, F.; Gonderman, S.

    2013-10-01

    The Lithium Tokamak Experiment (LTX) is a spherical torus designed to accommodate solid or liquid lithium as the primary plasma-facing component (PFC). We present initial results from the implementation on LTX of the Materials Analysis and Particle Probe (MAPP) diagnostic, a collaboration among PPPL, Purdue University, and the University of Illinois. MAPP is a compact in vacuo surface science diagnostic, and its operation on LTX will provide the first ever in situ surface measurements of a tokamak first wall environment. With MAPP's analysis techniques, we will study the evolution of the surface chemistry of LTX's first wall as a function of varied temperature and lithium coating. During its 2013 run campaign, LTX will use an electron beam to evaporate lithium onto the first wall from an in-vessel reservoir. We will use two quartz crystal microbalances to estimate thickness of lithium coatings thus applied to the MAPP probe. We have recently installed a set of triple Langmuir probes on LTX, and they will be used to relate LTX edge plasma parameters to MAPP results. We will combine data from MAPP and the triple probes to estimate the local edge recycling coefficient based on desorption of retained hydrogen. This work was supported by U.S. DOE contract DE-AC02-09CH11466.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lucia, M., E-mail: mlucia@pppl.gov; Kaita, R.; Majeski, R.

    The Materials Analysis and Particle Probe (MAPP) is a compact in vacuo surface science diagnostic, designed to provide in situ surface characterization of plasma facing components in a tokamak environment. MAPP has been implemented for operation on the Lithium Tokamak Experiment at Princeton Plasma Physics Laboratory (PPPL), where all control and analysis systems are currently under development for full remote operation. Control systems include vacuum management, instrument power, and translational/rotational probe drive. Analysis systems include onboard Langmuir probes and all components required for x-ray photoelectron spectroscopy, low-energy ion scattering spectroscopy, direct recoil spectroscopy, and thermal desorption spectroscopy surface analysis techniques.

  7. A gas-puff-driven theta pinch for plasma-surface interaction studies

    NASA Astrophysics Data System (ADS)

    Jung, Soonwook; Kesler, Leigh; Yun, Hyun-Ho; Curreli, Davide; Andruczyk, Daniel; Ruzic, David

    2012-10-01

    DEVeX is a theta pinch device used to investigate fusion-related material interaction such as vapor shielding and ICRF antenna interactions with plasma-pulses in a laboratory setting. The simulator is required to produce high heat-flux plasma enough to induce temperature gradient high enough to study extreme conditions happened in a plasma fusion reactor. In order to achieve it, DEVeX is reconfigured to be combined with gas puff system as gas puffing may reduce heat flux loss resulting from collisions with neutral. A gas puff system as well as a conical gas nozzle is manufactured and several diagnostics including hot wire anemometer and fast ionization gauge are carried out to quantitatively estimate the supersonic flow of gas. Energy deposited on the target for gas puffing and static-filled conditions is measured with thermocouples and its application to TELS, an innovative concept utilizing a thermoelectric-driven liquid metal flow for plasma facing component, is discussed.

  8. First measurements of Hiro currents in vertical displacement event in tokamaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiong, Hao; Xu, Guosheng; Wang, Huiqian

    Specially designed tiles were setup in the 2012 campaign of the Experimental Advanced Superconducting Tokamak (EAST), to directly measure the toroidal surface currents during the disruptions. Hiro currents with direction opposite to the plasma currents have been observed, confirming the sign prediction by the Wall Touching Vertical Mode (WTVM) theory and numerical simulations. During the initial phase of the disruption, when the plasma begins to touch the wall, the surface currents can be excited by WTVM along the plasma facing tile surface, varying with the mode magnitude. The currents are not observed in the cases when the plasma moves awaymore » from the tile surface. This discovery addresses the importance of the plasma motion into the wall in vertical disruptions. WTVM, acting as a current generator, forces the Hiro currents to flow through the gaps between tiles. This effect, being overlooked so far in disruption analysis, may damage the edges of the tiles and is important for the ITER device.« less

  9. The impact of the fast ion fluxes and thermal plasma loads on the design of the ITER fast ion loss detector

    NASA Astrophysics Data System (ADS)

    Kocan, M.; Garcia-Munoz, M.; Ayllon-Guerola, J.; Bertalot, L.; Bonnet, Y.; Casal, N.; Galdon, J.; Garcia-Lopez, J.; Giacomin, T.; Gonzalez-Martin, J.; Gunn, J. P.; Rodriguez-Ramos, M.; Reichle, R.; Rivero-Rodriguez, J. F.; Sanchis-Sanchez, L.; Vayakis, G.; Veshchev, E.; Vorpahl, C.; Walsh, M.; Walton, R.

    2017-12-01

    Thermal plasma loads to the ITER Fast Ion Loss Detector are studied for QDT = 10 burning plasma equilibrium using the 3D field line tracing. The simulations are performed for a FILD insertion 9-13 cm past the port plasma facing surface, optimized for fast ion measurements, and include the worst-case perturbation of the plasma boundary and the error in the magnetic reconstruction. The FILD head is exposed to superimposed time-averaged ELM heat load, static inter-ELM heat flux and plasma radiation. The study includes the estimate of the instantaneous temperature rise due to individual 0.6 MJ controlled ELMs. The maximum time-averaged surface heat load is lesssim 12 MW/m2 and will lead to increase of the FILD surface temperature well below the melting temperature of the materials considered here, for the FILD insertion time of 0.2 s. The worst-case instantaneous temperature rise during controlled 0.6 MJ ELMs is also significantly smaller than the melting temperature of e.g. Tungsten or Molybdenum, foreseen for the FILD housing.

  10. Characterization of boronized graphite in NSTX-U and its effect on plasma performance

    NASA Astrophysics Data System (ADS)

    Bedoya, Felipe; Allain, Jean Paul; Kaita, Robert; Skinner, Charles; University of Illinois Team; Princeton Plasma Physics Laboratory Collaboration

    2017-10-01

    Plasma Facing Components (PFC) conditioning can have a crucial influence in plasma performance in tokamak machines. The National Spherical Torus Experiment (NSTX-U) used boronization as the main wall conditioning technique during the FY16 experimental campaign. The Materials Analysis Particle Probe (MAPP), a characterization facility, was used to investigate the surface of ATJ graphite exposed to boronization and plasma in the tokamak using X-ray Photoelectron Spectroscopy (XPS). The measurements showed that plasma induced oxidation plays a critical role in the chemical evolution of the surfaces and as a consequence in plasma performance. Additionally, ex-vessel in-situ laboratory experiments and post-mortem studies of extracted NSTX-U tiles were performed to complement the observations made with MAPP, including controlled D irradiations and XPS depth profiles. These three methodologies show congruent results where D exposures increase the oxygen concentration between 20-30%, highlighting the influence of these two species on the chemistry of the samples. USDOE Contract DE-AC02-09CH11466, USDOE Contract DE-SC0010717 and Award Number DE-SC0012890.

  11. Tungsten coating by ATC plasma spraying on CFC for WEST tokamak

    NASA Astrophysics Data System (ADS)

    Firdaouss, M.; Desgranges, C.; Hernandez, C.; Mateus, C.; Maier, H.; Böswirth, B.; Greuner, H.; Samaille, F.; Bucalossi, J.; Missirlian, M.

    2017-12-01

    In the field of fusion experiments using a tokamak, the plasma facing components (PFC) are the closest object to the hot plasma. Due to the plasma-wall interaction, the material composing the PFC may enter the plasma and disturb the experiments. In the past, the main material for PFC was carbon (CFC, graphite), while the future reactors like ITER will be fully metallic, in particular tungsten. The Tore Supra tokamak has been transformed in an x-point divertor fusion device within the frame of the WEST (W (tungsten) Environment in Steady-state Tokamak) project in order to have plasma conditions close to those expected in ITER. The PFC other than the divertor has been coated with W to transform Tore Supra into a fully metallic environment. Different coating techniques have been selected for different kind of PFC. This paper gives an overview on the coating process used for the antennae protection limiter, the associated validation programme and concludes on the adequacy of the W coating with the WEST experimental programme requirements and gives perspectives on the development to be pursued.

  12. Design and Fabrication of the Lithium Tokamak Experiment

    NASA Astrophysics Data System (ADS)

    Kozub, Thomas; Majeski, Richard; Kaita, Robert; Priniski, Craig; Zakharov, Leonid

    2006-10-01

    The design objective of the lithium tokamak experiment (LTX) is to investigate the equilibrium and stability of tokamak discharges with near-zero recycling. The construction of LTX incorporates the conversion of the existing current drive experiment (CDX) vessel into one with a nearly complete plasma facing surface of liquid lithium This paper will describe the design, fabrication, and installation activities required to convert CDX into LTX. The most significant new feature is the addition of a plasma facing liner on a shell that will be operated at 300 C to 400 C and covered with an evaporated layer of liquid lithium. The shell has been fabricated in-house from explosively bonded stainless steel on copper to a rather unique geometry to match the outer flux surface. Other significant device modifications include the construction of a new ohmic heating power system, rebuilding of the vacuum vessel, new lithium evaporators, additional diagnostics, modifications to the poloidal field coil geometry and their associated power supplies. Details on the progress of this conversion will be reported.

  13. Results of high heat flux qualification tests of W monoblock components for WEST

    NASA Astrophysics Data System (ADS)

    Greuner, H.; Böswirth, B.; Lipa, M.; Missirlian, M.; Richou, M.

    2017-12-01

    One goal of the WEST project (W Environment in Steady-state Tokamak) is the manufacturing, quality assessment and operation of ITER-like actively water-cooled divertor plasma facing components made of tungsten. Six W monoblock plasma facing units (PFUs) from different suppliers have been successfully evaluated in the high heat flux test facility GLADIS at IPP. Each PFU is equipped with 35 W monoblocks of an ITER-like geometry. However, the W blocks are made of different tungsten grades and the suppliers applied different bonding techniques between tungsten and the inserted Cu-alloy cooling tubes. The intention of the HHF test campaign was to assess the manufacturing quality of the PFUs on the basis of a statistical analysis of the surface temperature evolution of the individual W monoblocks during thermal loading with 100 cycles at 10 MW m-2. These tests confirm the non-destructive examinations performed by the manufacturer and CEA prior to the installation of the WEST platform, and no defects of the components were detected.

  14. Osmoregulation and muscle water control in vitro facing salinity stress of the Amazon fish Oscar Astronotus ocellatus (Cichlidae)

    USGS Publications Warehouse

    Gutierre, Silvia M. M.; Schulte, Jessica M.; Schofield, Pam; Prodocimo, Viviane

    2017-01-01

    Specimens of Oscar Astronotus ocellatus from a fish farm were abruptly submitted to salt stress of 14 ppt and 20 ppt, for 3 and 8 h to determine their plasma osmolality. Muscle wet body mass change in vitro was analyzed from control freshwater animals. Fish in 14 ppt presented no osmolality distress even after 8 h. In 20 ppt, a slight increase (10%) in plasma osmolality was observed for both times of exposure when compared to control fish. Muscle slices submitted in vitro to hyper-osmotic saline displayed decreased body mass after 75 min, and slices submitted to hypo-osmotic saline displayed increased body mass after 45 min when compared to control (isosmotic saline). These results reinforce A. ocellatus’s euryhalinity. The fish were able to regulate its internal medium and tolerate 14 ppt, but presented an intense osmotic challenge and low muscle hydration control when facing salinities of 20 ppt.

  15. Plasma facing materials performance under ITER-relevant mitigated disruption photonic heat loads

    NASA Astrophysics Data System (ADS)

    Klimov, N. S.; Putrik, A. B.; Linke, J.; Pitts, R. A.; Zhitlukhin, A. M.; Kuprianov, I. B.; Spitsyn, A. V.; Ogorodnikova, O. V.; Podkovyrov, V. L.; Muzichenko, A. D.; Ivanov, B. V.; Sergeecheva, Ya. V.; Lesina, I. G.; Kovalenko, D. V.; Barsuk, V. A.; Danilina, N. A.; Bazylev, B. N.; Giniyatulin, R. N.

    2015-08-01

    PFMs (Plasma-facing materials: ITER grade stainless steel, beryllium, and ferritic-martensitic steels) as well as deposited erosion products of PFCs (Be-like, tungsten, and carbon based) were tested in QSPA under photonic heat loads relevant to those expected from photon radiation during disruptions mitigated by massive gas injection in ITER. Repeated pulses slightly above the melting threshold on the bulk materials eventually lead to a regular, "corrugated" surface, with hills and valleys spaced by 0.2-2 mm. The results indicate that hill growth (growth rate of ∼1 μm per pulse) and sample thinning in the valleys is a result of melt-layer redistribution. The measurements on the 316L(N)-IG indicate that the amount of tritium absorbed by the sample from the gas phase significantly increases with pulse number as well as the modified layer thickness. Repeated pulses significantly below the melting threshold on the deposited erosion products lead to a decrease of hydrogen isotopes trapped during the deposition of the eroded material.

  16. Measurement of thickness of film deposited on the plasma-facing wall in the QUEST tokamak by colorimetry.

    PubMed

    Wang, Z; Hanada, K; Yoshida, N; Shimoji, T; Miyamoto, M; Oya, Y; Zushi, H; Idei, H; Nakamura, K; Fujisawa, A; Nagashima, Y; Hasegawa, M; Kawasaki, S; Higashijima, A; Nakashima, H; Nagata, T; Kawaguchi, A; Fujiwara, T; Araki, K; Mitarai, O; Fukuyama, A; Takase, Y; Matsumoto, K

    2017-09-01

    After several experimental campaigns in the Kyushu University Experiment with Steady-state Spherical Tokamak (QUEST), the originally stainless steel plasma-facing wall (PFW) becomes completely covered with a deposited film composed of mixture materials, such as iron, chromium, carbon, and tungsten. In this work, an innovative colorimetry-based method was developed to measure the thickness of the deposited film on the actual QUEST wall. Because the optical constants of the deposited film on the PFW were position-dependent and the extinction coefficient k 1 was about 1.0-2.0, which made the probing light not penetrate through some thick deposited films, the colorimetry method developed can only provide a rough value range of thickness of the metal-containing film deposited on the actual PFW in QUEST. However, the use of colorimetry is of great benefit to large-area inspections and to radioactive materials in future fusion devices that will be strictly prohibited from being taken out of the limited area.

  17. Ti-doped isotropic graphite: A promising armour material for plasma-facing components

    NASA Astrophysics Data System (ADS)

    García-Rosales, C.; López-Galilea, I.; Ordás, N.; Adelhelm, C.; Balden, M.; Pintsuk, G.; Grattarola, M.; Gualco, C.

    2009-04-01

    Finely dispersed Ti-doped isotropic graphites with 4 at.% Ti have been manufactured using synthetic mesophase pitch 'AR' as raw material. These new materials show a thermal conductivity at room temperature of ˜200 W/mK and flexural strength close to 100 MPa. Measurement of the total erosion yield by deuterium bombardment at ion energies and sample temperatures for which pure carbon shows maximum values, resulted in a reduction of at least a factor of 4, mainly due to dopant enrichment at the surface caused by preferential erosion of carbon. In addition, ITER relevant thermal shock loads were applied with an energetic electron beam at the JUDITH facility. The results demonstrated a significantly improved performance of Ti-doped graphite compared to pure graphite. Finally, Ti-doped graphite was successfully brazed to a CuCrZr block using a Mo interlayer. These results let assume that Ti-doped graphite can be a promising armour material for divertor plasma-facing components.

  18. Sorption of atmospheric gases by bulk lithium metal

    DOE PAGES

    Hart, C. A.; Skinner, C. H.; Capece, A. M.; ...

    2016-01-01

    Lithium conditioning of plasma facing components has enhanced the performance of several fusion devices. Elemental lithium will react with air during maintenance activities and with residual gases (H 2O, CO, CO 2) in the vacuum vessel during operations. We have used a mass balance (microgram sensitivity) to measure the mass gain of lithium samples during exposure of a ~1 cm 2 surface to ambient and dry synthetic air. For ambient air, we found an initial mass gain of several mg/h declining to less than 1 mg/h after an hour and decreasing by an order of magnitude after 24 h. Amore » 9 mg sample achieved a final mass gain corresponding to complete conversion to Li 2CO 3 after 5 days. Exposure to dry air resulted in a 30 times lower initial rate of mass gain. The results have implications for the chemical state of lithium plasma facing surfaces and for safe handling of lithium coated components.« less

  19. Definition of acceptance criteria for the ITER divertor plasma-facing components through systematic experimental analysis

    NASA Astrophysics Data System (ADS)

    Escourbiac, F.; Richou, M.; Guigon, R.; Constans, S.; Durocher, A.; Merola, M.; Schlosser, J.; Riccardi, B.; Grosman, A.

    2009-12-01

    Experience has shown that a critical part of the high-heat flux (HHF) plasma-facing component (PFC) is the armour to heat sink bond. An experimental study was performed in order to define acceptance criteria with regards to thermal hydraulics and fatigue performance of the International Thermonuclear Experimental Reactor (ITER) divertor PFCs. This study, which includes the manufacturing of samples with calibrated artificial defects relevant to the divertor design, is reported in this paper. In particular, it was concluded that defects detectable with non-destructive examination (NDE) techniques appeared to be acceptable during HHF experiments relevant to heat fluxes expected in the ITER divertor. On the basis of these results, a set of acceptance criteria was proposed and applied to the European vertical target medium-size qualification prototype: 98% of the inspected carbon fibre composite (CFC) monoblocks and 100% of tungsten (W) monoblock and flat tiles elements (i.e. 80% of the full units) were declared acceptable.

  20. Development of positron annihilation spectroscopy for investigating deuterium decorated voids in neutron-irradiated tungsten

    NASA Astrophysics Data System (ADS)

    Taylor, C. N.; Shimada, M.; Merrill, B. J.; Akers, D. W.; Hatano, Y.

    2015-08-01

    The present work is a continuation of a recent research to develop and optimize positron annihilation spectroscopy (PAS) for characterizing neutron-irradiated tungsten. Tungsten samples were exposed to neutrons in the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory and damaged to 0.025 and 0.3 dpa. Subsequently, they were exposed to deuterium plasmas in the Tritium Plasma Experiment (TPE) at Idaho National Laboratory. The implanted deuterium was desorbed through sample heating to 900 °C, and Doppler broadening (DB)-PAS was performed both before and after heating. Results show that deuterium impregnated tungsten is identified as having a smaller S-parameter. The S-parameter increases after deuterium desorption. Microstructural changes also occur during sample heating. These effects can be isolated from deuterium desorption by comparing the S-parameters from the deuterium-free back face with the deuterium-implanted front face. The application of using DB-PAS to examine deuterium retention in tungsten is examined.

  1. Deuterium retention and release from molybdenum exposed to a Penning discharge

    NASA Astrophysics Data System (ADS)

    Causey, R. A.; Kunz, C. L.; Cowgill, D. F.

    2005-03-01

    Both molybdenum and tungsten are candidate materials for plasma-facing applications in fusion reactors. While tungsten has a higher melting point and a higher threshold for sputtering, it is a brittle material that is difficult to machine into shapes required for fusion applications. For this reason, molybdenum is now receiving serious consideration as an alternative for tungsten. If molybdenum is to be used as a plasma-facing material, the hydrogen retention and recycling characteristics must be known. In this report, we present experimental results on deuterium retention in molybdenum after exposure to a Penning discharge at temperatures from 573 to 773 K. D2+ ions with energies of 1.2 keV were implanted into the 50 mm diameter molybdenum samples at fluxes of 10 20 D/m 2 s. Thermal desorption spectroscopy was used to determine both the amount of retained deuterium and the release kinetics. Low retention values similar to those measured previously for tungsten were observed.

  2. Implementation of a plasma-neutral model in NIMROD

    NASA Astrophysics Data System (ADS)

    Taheri, S.; Shumlak, U.; King, J. R.

    2016-10-01

    Interaction between plasma fluid and neutral species is of great importance in the edge region of magnetically confined fusion plasmas. The presence of neutrals can have beneficial effects such as fueling burning plasmas and quenching the disruptions in tokamaks, as well as deleterious effects like depositing high energy particles on the vessel wall. The behavior of edge plasmas in magnetically confined systems has been investigated using computational approaches that utilize the fluid description for the plasma and Monte Carlo transport for neutrals. In this research a reacting plasma-neutral model is implemented in NIMROD to study the interaction between plasma and neutral fluids. This model, developed by E. T. Meier and U. Shumlak, combines a single-fluid magnetohydrodynamic (MHD) plasma model with a gas dynamic neutral fluid model which accounts for electron-impact ionization, radiative recombination, and resonant charge exchange. Incorporating this model into NIMROD allows the study of the interaction between neutrals and plasma in a variety of plasma science problems. An accelerated plasma moving through a neutral gas background in a coaxial electrode configuration is modeled, and the results are compared with previous calculations from the HiFi code.

  3. Single-side conduction modeling for high heat flux coolant channels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyd, R.D. Sr.

    In the development of plasma-facing components (PFCs), most investigators have erroneously postulated negligible water critical heat flux dependence on the coolant channel length-to-diameter (L/D) ratio above a constant value of L/D. Although encouraging results have been obtained in characterizing peaking factors for local two-dimensional boiling curves and critical heat flux, additional experimental data and theoretical model development are needed to validate the applicability to PFCs. Both these and related issues will affect the flow boiling correlation and data reduction associated with the development of PFCs for fusion reactors and other physical problems that are dependent on conduction modeling in themore » heat flux spectrum of applications. Both exact solutions and numerical conjugate analyses are presented for a one-side heated (OSH) geometry. The results show (a) the coexistence of three flow regimes inside an OSH circular geometry, (b) the correlational dependence of the inside wall heat flux and temperature, and (c) inaccuracies that could arise in some data reduction procedures.« less

  4. Energetic ion loss detector on the Alcator C-Mod tokamak.

    PubMed

    Pace, D C; Granetz, R S; Vieira, R; Bader, A; Bosco, J; Darrow, D S; Fiore, C; Irby, J; Parker, R R; Parkin, W; Reinke, M L; Terry, J L; Wolfe, S M; Wukitch, S J; Zweben, S J

    2012-07-01

    A scintillator-based energetic ion loss detector has been successfully commissioned on the Alcator C-Mod tokamak. This probe is located just below the outer midplane, where it captures ions of energies up to 2 MeV resulting from ion cyclotron resonance heating. After passing through a collimating aperture, ions impact different regions of the scintillator according to their gyroradius (energy) and pitch angle. The probe geometry and installation location are determined based on modeling of expected lost ions. The resulting probe is compact and resembles a standard plasma facing tile. Four separate fiber optic cables view different regions of the scintillator to provide phase space resolution. Evolving loss levels are measured during ion cyclotron resonance heating, including variation dependent upon individual antennae.

  5. From core to coax: extending core RF modelling to include SOL, Antenna, and PFC

    NASA Astrophysics Data System (ADS)

    Shiraiwa, Syun'ichi

    2017-10-01

    A new technique for the calculation of RF waves in toroidal geometry enables the simultaneous incorporation of antenna geometry, plasma facing components (PFCs), the scrape off-layer (SOL), and core propagation. Traditionally, core RF wave propagation and antenna coupling has been calculated separately both using rather simplified SOL plasmas. The new approach, instead, allows capturing wave propagation in the SOL and its interactions with non-conforming PFCs permitting self-consistent calculation of core absorption and edge power loss, as well as investigating far and near field impurity generation from RF sheaths and a breakdown issue from antenna electric fields. Our approach combines the field solutions obtained from a core spectral code with a hot plasma dielectric and an edge FEM code using a cold plasma approximation via surface admittance-like matrix. Our approach was verified using the TORIC core ICRF spectral code and the commercial COMSOL FEM package, and was extended to 3D torus using open-source scalable MFEM library. The simulation result revealed that as the core wave damping gets weaker, the wave absorption in edge could become non-negligible. Three dimensional capabilities with non axisymmetric edge are being applied to study the antenna characteristic difference between the field aligned and toroidally aligned antennas on Alcator C-Mod, as well as the surface wave excitation on NSTX-U. Work supported by the U.S. DoE, OFES, using User Facility Alcator C-Mod, DE-FC02-99ER54512 and Contract No. DE-FC02-01ER54648.

  6. Nonmuscle myosin II powered transport of newly formed collagen fibrils at the plasma membrane

    PubMed Central

    Kalson, Nicholas S.; Starborg, Tobias; Lu, Yinhui; Mironov, Aleksandr; Humphries, Sally M.; Holmes, David F.; Kadler, Karl E.

    2013-01-01

    Collagen fibrils can exceed thousands of microns in length and are therefore the longest, largest, and most size-pleomorphic protein polymers in vertebrates; thus, knowing how cells transport collagen fibrils is essential for a more complete understanding of protein transport and its role in tissue morphogenesis. Here, we identified newly formed collagen fibrils being transported at the surface of embryonic tendon cells in vivo by using serial block face-scanning electron microscopy of the cell-matrix interface. Newly formed fibrils ranged in length from ∼1 to ∼30 µm. The shortest (1–10 µm) occurred in intracellular fibricarriers; the longest (∼30 µm) occurred in plasma membrane fibripositors. Fibrils and fibripositors were reduced in numbers when collagen secretion was blocked. ImmunoEM showed the absence of lysosomal-associated membrane protein 2 on fibricarriers and fibripositors and there was no effect of leupeptin on fibricarrier or fibripositor number and size, suggesting that fibricarriers and fibripositors are not part of a fibril degradation pathway. Blebbistatin decreased fibricarrier number and increased fibripositor length; thus, nonmuscle myosin II (NMII) powers the transport of these compartments. Inhibition of dynamin-dependent endocytosis with dynasore blocked fibricarrier formation and caused accumulation of fibrils in fibripositors. Data from fluid-phase HRP electron tomography showed that fibricarriers could originate at the plasma membrane. We propose that NMII-powered transport of newly formed collagen fibrils at the plasma membrane is fundamental to the development of collagen fibril-rich tissues. A NMII-dependent cell-force model is presented as the basis for the creation and dynamics of fibripositor structures. PMID:24248360

  7. Effect of acute dietary standardization on the urinary, plasma, and salivary metabolomic profiles of healthy humans.

    PubMed

    Walsh, Marianne C; Brennan, Lorraine; Malthouse, J Paul G; Roche, Helen M; Gibney, Michael J

    2006-09-01

    Metabolomics in human nutrition research is faced with the challenge that changes in metabolic profiles resulting from diet may be difficult to differentiate from normal physiologic variation. We assessed the extent of intra- and interindividual variation in normal human metabolic profiles and investigated the effect of standardizing diet on reducing variation. Urine, plasma, and saliva were collected from 30 healthy volunteers (23 females, 7 males) on 4 separate mornings. For visits 1 and 2, free food choice was permitted on the day before biofluid collection. Food choice on the day before visit 3 was intended to mimic that for visit 2, and all foods were standardized on the day before visit 4. Samples were analyzed by using 1H nuclear magnetic resonance spectroscopy followed by multivariate data analysis. Intra- and interindividual variations were considerable for each biofluid. Visual inspection of the principal components analysis scores plots indicated a reduction in interindividual variation in urine, but not in plasma or saliva, after the standard diet. Partial least-squares discriminant analysis indicated time-dependent changes in urinary and salivary samples, mainly resulting from creatinine in urine and acetate in saliva. The predictive power of each model to classify the samples as either night or morning was 85% for urine and 75% for saliva. Urine represented a sensitive metabolic profile that reflected acute dietary intake, whereas plasma and saliva did not. Future metabolomics studies should consider recent dietary intake and time of sample collection as a means of reducing normal physiologic variation.

  8. Spark plasma sintering of pure and doped tungsten as plasma facing material

    NASA Astrophysics Data System (ADS)

    Autissier, E.; Richou, M.; Minier, L.; Naimi, F.; Pintsuk, G.; Bernard, F.

    2014-04-01

    In the current water cooled divertor concept, tungsten is an armour material and CuCrZr is a structural material. In this work, a fabrication route via a powder metallurgy process such as spark plasma sintering is proposed to fully control the microstructure of W and W composites. The effect of chemical composition (additives) and the powder grain size was investigated. To reduce the sintering temperature, W powders doped with a nano-oxide dispersion of Y2O3 are used. Consequently, the sintering temperature for W-oxide dispersed strengthened (1800 °C) is lower than for pure W powder. Edge localized mode tests were performed on pure W and compared to other preparation techniques and showed promising results.

  9. ECRH launching scenario in FFHR-d1

    NASA Astrophysics Data System (ADS)

    Yanagihara, Kota; Kubo, Shin; Shimozuma, Takashi; Yoshimura, Yasuo; Igami, Hiroe; Takahashi, Hiromi; Tsujimura, Tohru; Makino, Ryohhei

    2016-10-01

    ECRH is promising as a principal heating system in a prototype helical reactor FFHR-d1 where the heating power of 80 MW is required to bring the plasma parameter to break even condition. To generate the plasma and bring it to ignition condition in FFHR-d1, it is effective to heat the under/over-dense plasma with normal ECRH or Electron Bernstein Wave (EBW). Normal ECRH is well established but heating via EBW need sophisticated injection control. EBW can be excited via the O(ordinary)-X(extraordinary)-B(EBW) mode conversion process by launching the ordinary wave from the low field side to plasma cut-off layer with optimum injection angle, and the range of injection angle to get high OXB mode conversion rate is called OXB mode conversion window. Since the window position can change as the plasma parameter, it is necessary to optimize the injection angle so as to aim the window in response to the plasma parameters. Candidates of antenna positions are determined by optimum injection points on the plasma facing wall calculated by the injection angle. Given such picked up area, detailed analysis using ray-tracing calculations and engineering antenna design will be performed.

  10. Numerical Characterization of Wall Recycling Conditions of the HIDRA Stellarator using EMC3-EIRENE

    NASA Astrophysics Data System (ADS)

    Marcinko, Steven; Curreli, Davide

    2015-11-01

    The wall recycling conditions created by energetic bombardment of plasma-facing components (PFCs) are of critical importance to determining the plasma and impurity profile in the edge region of a magnetically confined plasma. In this work a pre-online numerical characterization of the edge plasma in HIDRA has been carried out. HIDRA is the former WEGA experiment, now relocated to the University of Illinois at Urbana-Champaign. Numerical simulations of the HIDRA edge environment are performed utilizing the 3D edge plasma and neutral transport code EMC3-EIRENE [Y. Feng J. Nucl. Mater 241-243, 930 (1997)]. In our analysis, emphasis is placed on the influence of the neutrals and the impurities on edge plasma profiles and thus on energy and particle fluxes impingent onto PFCs. We examine the effect of different wall types, comparing high recycling conditions to situations of low recycling. The effect of intrinsic impurity screening is also taken into account under the expected HIDRA operating regimes. We report the calculated particle confinement time and fluid moments of both plasma and neutrals at the low recycling regimes expected with lithium-based PFCs, and compare them with the high recycling regimes found with conventional metal-based PFCs.

  11. Plasma Wall interaction in the IGNITOR machine

    NASA Astrophysics Data System (ADS)

    Ferro, C.

    1998-11-01

    One of the critical issues in ignited machines is the management of the heat and particle exhaust without degradation of the plasma quality (pollution and confinement time) and without damage of the material facing the plasma. The IGNITOR machine has been conceived as a ``limiter" device, i.e., with the plasma leaning nearly on the entire surface of the first wall. Peak heat loads can easily be maintained at values lower than 1.35 MW/m^2 even considering displacements of the plasma column^1. This ``limiter" choice is based on the operational performances of high density, high field machines which suggests that intrinsic physics processes in the edge of the plasma are effective in spreading heat loads and maintaining the plasma pollution at a low level. The possibility of these operating scenarios has been demonstrated recently by different machines both in limiter and divertor configurations. The basis for the different physical processes that are expected to influence the IGNITOR edge parameters ^2 are discussed and a comparison with the latest experimental results is given. ^1 C. Ferro, G. Franzoni, R. Zanino, ENEA Internal Report RT/ERG/FUS/94/14. ^2 C. Ferro, R. Zanino, J. Nucl. Mater. 543, 176 (1990).

  12. Deposition Profile Analysis from DIII-D Metal Rings Campaign Outer-Midplane Collector Probe Diagnostic and Utilization of Enriched Isotopic Tungsten Tracer Particles

    NASA Astrophysics Data System (ADS)

    Donovan, D. C.; Duran, J.; Zamperini, S.; Lee, S.; Unterberg, E. A.; Wampler, W. R.; Rudakov, D. L.; Elder, D.; Stangeby, P. C.; Abrams, T.

    2017-10-01

    The DIII-D Metal Rings Campaign used isotopically-enriched, W-coated divertor tiles coupled with dual-facing midplane collector probes (CPs) in the far Scrape-off Layer (SOL). Inductively Coupled Plasma Mass Spectroscopy (ICP-MS) results are presented characterizing the isotopic ratios of deposited W on the CPs and which give quantitative information on the transport of W from specific poloidal locations within the lower outer divertor region having different isotopically-marked tiles. Rutherford Backscattering Spectrometry (RBS) of these CPs has provided areal densities of elemental W content. These resultant W deposition profiles were compared with DIVIMP modelling of the far-SOL to better understand impurity transport in the edge plasma. CPs were exposed for 37 distinct operating configurations (L-mode/H-mode, forward/reverse Bt, strikepoint position). Radial decay lengths (RDL) between 5 and 50 mm were observed with consistently narrower RDL and higher peak W content on the side of the probes connected along field lines to the inner divertor, indicating a concentration of W in the upstream plasma. Correlations are discussed between peak W content, RDL, and isotopic profiles on the CPs over a wide range of conditions. Work supported by US DOE under DE-AC05-00OR22725, DE-FG02-07ER54917, DE-FC02-04ER54698, DE-NA0003525.

  13. On charge exchange and knock-on processes in the exosphere of Io

    NASA Technical Reports Server (NTRS)

    Ip, W.-H.

    1982-01-01

    One direct consequence of magnetospheric interaction of Io is the strong dynamical coupling of its neutral atmosphere with the corotating plasma. The absorption of the thermal ions and the associated neutral injection is an improtant issue not yet explored. As far as nonthermal escape of the neutral atmosphere is concerned, three processes stand out. That is, apart from sputtering, exospheric interactions like atom-ion knock-on collision and charge exchange recombination could be a significant source of the neutral clouds in the Jovian system. Using a current electrodynamic model of Io, both the absorption rate of the corotating thermal plasma and the production rates of new exospheric ions and the fast neutrals are considered. It is found that the source strength of the neutral atoms and molecules with speeds of about 100 km/sec could amount to 10 to the 26th/sec whereas exospheric neutrals emitted at lower speed (of about 10 km/sec) amounts to 4 x 10 to the 25th/sec. The generation of the new ions in connection with the streaming of the magnetospheric plasma around Io could also produce an asymmetric sputtering with a neutral flux of about 10 to the 27th/sec emitted from the region of Io which faces Jupiter. These results may be related to a number of sodium observations.

  14. Antisense oligonucleotide reduction of apoB-ameliorated atherosclerosis in LDL receptor-deficient mice[S

    PubMed Central

    Mullick, Adam E.; Fu, Wuxia; Graham, Mark J.; Lee, Richard G.; Witchell, Donna; Bell, Thomas A.; Whipple, Charles P.; Crooke, Rosanne M.

    2011-01-01

    Chronic elevations of plasma apolipoprotein B (apoB) are strongly associated with cardiovascular disease. We have previously demonstrated that inhibition of hepatic apoB mRNA using antisense oligonucleotides (ASO) results in reductions of apoB, VLDL, and LDL in several preclinical animal models and humans. In this study, we evaluated the anti-atherogenic effects of a murine-specific apoB ASO (ISIS 147764) in hypercholesterolemic LDLr deficient (LDLr−/−) mice. ISIS 147764 was administered weekly at 25-100 mg/kg for 10-12 weeks and produced dose-dependent reductions of hepatic apoB mRNA and plasma LDL by 60-90%. No effects on these parameters were seen in mice receiving control ASOs. ApoB ASO treatment also produced dose-dependent reductions of aortic en face and sinus atherosclerosis from 50-90%, with high-dose treatment displaying less disease than the saline-treated, chow-fed LDLr−/− mice. No changes in intestinal cholesterol absorption were seen with apoB ASO treatment, suggesting that the cholesterol-lowering pharmacology of 147764 was primarily due to inhibition of hepatic apoB synthesis and secretion. In summary, ASO-mediated suppression of apoB mRNA expression profoundly reduced plasma lipids and atherogenesis in LDLr−/− mice, leading to the hypothesis that apoB inhibition in humans with impaired LDLr activity may produce similar effects. PMID:21343632

  15. Ongoing Capabilities and Developments of Re-Entry Plasma Ground Tests at EADS-ASTRIUM

    NASA Technical Reports Server (NTRS)

    Jullien, Pierre

    2008-01-01

    During re-entry, spacecrafts are subjected to extreme thermal loads. On mars, they may go through dust storms. These external heat loads are leading the design of re-entry vehicles or are affecting it for spacecraft facing solid propellant jet stream. Sizing the Thermal Protection System require a good knowledge of such solicitations and means to model and reproduce them on earth. Through its work on European projects, ASTRIUM has developed the full range of competences to deal with such issues. For instance, we have designed and tested the heat-shield of the Huygens probe which landed on Titan. In particular, our plasma generators aim to reproduce a wide variety of re-entry conditions. Heat loads are generated by the huge speed of the probes. Such conditions cannot be fully reproduced. Ground tests focus on reproducing local aerothermal loads by using slower but hotter flows. Our inductive plasma torch enables to test little samples at low TRL. Amongst the arc-jets, one was design to test architecture design of ISS crew return system and others fit more severe re-entry such as sample returns or Venus re-entry. The last developments aimed in testing samples in seeded flows. First step was to design and test the seeding device. Special diagnostics characterizing the resulting flow enabled us to fit it to the requirements.

  16. Investigation of Plasma Surface Interactions with the PISCES ELM Laser System

    NASA Astrophysics Data System (ADS)

    Umstadter, K. R.; Baldwin, M.; Hanna, J.; Doerner, R.; Lynch, T.; Palmer, T.; Tynan, G. R.

    2007-11-01

    When an ELM occurs in tokamaks, up to 30% of the pedestal energy can be deposited on the wall of the tokamak causing heating & material loss due to sublimation, evaporation and melt splashing of plasma facing components (PFCs) and expansion of the ejected material into the plasma. We have explored heat pulses using an electrical power circuit to draw electrons from the plasma to heat samples ohmically. This system is limited in power to ˜250kJ/m^2 at the minimum pulse width of 10ms and depletes the plasma column, complicating spectroscopy. We have completed calculations that indicate that a pulsed laser system can be used to simulate the heat pulse of ELMs. We are integrating laser systems into the existing PFC research program in PISCES, a laboratory facility capable of reproducing plasma-materials interactions expected during normal operation of large tokamaks. Two Nd:YAG lasers capable of delivering up to 50J of energy over various pulsewidths are used for the experiments. Laser heat pulse only, H+/D+ plasma only, and laser+plasma experiments were conducted and initial results indicate that metals behave very differently while exposed to plasma and simultaneous heat pulses. We will also discuss initial results for carbon PFCs and material transport into the plasma. Supported by US DoE grant DE-FG02-07ER-54912.

  17. Three-dimensional face model reproduction method using multiview images

    NASA Astrophysics Data System (ADS)

    Nagashima, Yoshio; Agawa, Hiroshi; Kishino, Fumio

    1991-11-01

    This paper describes a method of reproducing three-dimensional face models using multi-view images for a virtual space teleconferencing system that achieves a realistic visual presence for teleconferencing. The goal of this research, as an integral component of a virtual space teleconferencing system, is to generate a three-dimensional face model from facial images, synthesize images of the model virtually viewed from different angles, and with natural shadow to suit the lighting conditions of the virtual space. The proposed method is as follows: first, front and side view images of the human face are taken by TV cameras. The 3D data of facial feature points are obtained from front- and side-views by an image processing technique based on the color, shape, and correlation of face components. Using these 3D data, the prepared base face models, representing typical Japanese male and female faces, are modified to approximate the input facial image. The personal face model, representing the individual character, is then reproduced. Next, an oblique view image is taken by TV camera. The feature points of the oblique view image are extracted using the same image processing technique. A more precise personal model is reproduced by fitting the boundary of the personal face model to the boundary of the oblique view image. The modified boundary of the personal face model is determined by using face direction, namely rotation angle, which is detected based on the extracted feature points. After the 3D model is established, the new images are synthesized by mapping facial texture onto the model.

  18. Transparent electrode for optical switch

    DOEpatents

    Goldhar, Julius; Henesian, Mark A.

    1986-01-01

    A low pressure gas electrode utilizing ionized gas in a glow discharge regime forms a transparent electrode for electro-optical switches. The transparent electrode comprises a low pressure gas region on both sides of the crystal. When the gas is ionized, e.g., by a glow discharge in the low pressure gas, the plasma formed is a good conductor. The gas electrode acts as a highly uniform conducting electrode. Since the plasma is transparent to a high energy laser beam passing through the crystal, the electrode is a transparent electrode. A crystal exposed from two sides to such a plasma can be charged up uniformly to any desired voltage. The plasma can be created either by the main high voltage pulser used to charge up the crystal or by auxiliary discharges or external sources of ionization. A typical configuration utilizes 10 torr argon in the discharge region adjacent to each crystal face.

  19. Plasma behaviour in the neighbourhood of the hot-spot during an active experiment

    NASA Astrophysics Data System (ADS)

    Sallago, Patricia

    In order to study the physical quantities that characterize a plasma, several active experiments have been done by many researcher groups around the world. These experimental papers, describing their measurements and the observed phenomena under a variety of geomagnetical conditions, bring some clues about the plasma behaviour in the neighbourhood of the hot-spot during and soon after the turn-off of ionospheric heating devices. A review of these works was faced in the frame of the application of IAR (Argentinian Radioas-tronomy Institute), La Plata, Argentine, as a site of installation for the AMISR (Advanced Modular Incoherent Scatter Radar), in a contest of research projets called by NSF (National Scientific Foundation). The present contribution gives a possible theoretical explanation, based on the generation and propagation of Alfven waves, of the plasma behaviour in the neighbourhood of the hot-spot during an active experiment and, as a consequence, for some experimental results.

  20. The radiation asymmetry in MGI rapid shutdown on J-TEXT tokamak

    NASA Astrophysics Data System (ADS)

    Tong, Ruihai; Chen, Zhongyong; Huang, Duwei; Cheng, Zhifeng; Zhang, Xiaolong; Zhuang, Ge; J-TEXT Team

    2017-10-01

    Disruptions, the sudden termination of tokamak fusion plasmas by instabilities, have the potential to cause severe material wall damage to large tokamaks like ITER. The mitigation of disruption damage is an essential part of any fusion reactor system. Massive gas injection (MGI) rapid shutdown is a technique in which large amounts of noble gas are injected into the plasma in order to safely radiate the plasma energy evenly over the entire plasma-facing first wall. However, the radiated energy during the thermal quench (TQ) in massive gas injection (MGI) induced disruptions is found toroidal asymmetric, and the degrees of asymmetry correlate with the gas penetration and MGI induced magnetohydrodynamics (MHD) activities. A toroidal and poloidal array of ultraviolet photodiodes (AXUV) has been developed to investigate the radiation asymmetry on J-TEXT tokamak. Together with the upgraded mirnov probe arrays, the relation between MGI triggered MHD activities with radiation asymmetry is studied.

  1. Power and Particle Balance Calculations with Impurities in NSTX

    NASA Astrophysics Data System (ADS)

    Holland, C. G.; Maingi, R.; Owen, L. W.; Kaye, S. M.

    1998-11-01

    We reported the development C. Holland, et. al., Bull. Am. Phys. Soc. 42 (1997) 1927. and application R. Maingi et al., Proc. 3rd International Workshop on Spherical Tori, Sept. 3-5, 1997, St. Petersburg, Russia. of a Graphical User Interface to assess the important terms for edge and divertor plasma calculations for NSTX with the b2.5 edge plasma transport code B. Braams, Contrib. Plasma Phys. 36 (1996) 276.. The goals of those calculations were to estimate the worst case peak heat flux for plasma-facing component design, and the radiation requirements to reduce the peak heat flux. In this study we present the first simulations with intrinsic carbon impurity radiation. We find in general that the intrinsic carbon radiation should be sufficient to provide a wide operation window for the NSTX device. Details of the relative importance of heat flux transport mechanisms as determined with the GUI will be presented.

  2. JET disruption studies in support of ITER

    NASA Astrophysics Data System (ADS)

    Riccardo, V.; Arnoux, G.; Cahyna, P.; Hender, T. C.; Huber, A.; Jachmich, S.; Kiptily, V.; Koslowski, R.; Krlin, L.; Lehnen, M.; Loarte, A.; Nardon, E.; Paprok, R.; Tskhakaya (Sr, D.; contributors, JET-EFDA

    2010-12-01

    Plasma disruptions affect plasma-facing and structural components of tokamaks due to electromechanical forces, thermal loads and generation of high energy runaway electrons (REs). Asymmetries in poloidal halo and toroidal plasma current can now be routinely measured in four positions 90° apart. Their assessment is used to validate the design of the ITER vessel support system and its in-vessel components. The challenge of disruption thermal loads comes from both the short duration over which a large energy has to be lost and the potential for asymmetries. The focus of this paper will be on localized heat loads. Resonant magnetic perturbations failed to reduce the generation of REs in JET. An explanation of the limitations applying to these attempts is offered together with a minimum guideline. The REs generated by a moderate, but fast, Ar injection in limiter plasmas show evidence of milder and more efficient losses due to the high Ar background density.

  3. Large area plasma source

    NASA Technical Reports Server (NTRS)

    Foster, John (Inventor); Patterson, Michael (Inventor)

    2008-01-01

    An all permanent magnet Electron Cyclotron Resonance, large diameter (e.g., 40 cm) plasma source suitable for ion/plasma processing or electric propulsion, is capable of producing uniform ion current densities at its exit plane at very low power (e.g., below 200 W), and is electrodeless to avoid sputtering or contamination issues. Microwave input power is efficiently coupled with an ionizing gas without using a dielectric microwave window and without developing a throat plasma by providing a ferromagnetic cylindrical chamber wall with a conical end narrowing to an axial entrance hole for microwaves supplied on-axis from an open-ended waveguide. Permanent magnet rings are attached inside the wall with alternating polarities against the wall. An entrance magnet ring surrounding the entrance hole has a ferromagnetic pole piece that extends into the chamber from the entrance hole to a continuing second face that extends radially across an inner pole of the entrance magnet ring.

  4. Can tokamaks PFC survive a single event of any plasma instabilities?

    NASA Astrophysics Data System (ADS)

    Hassanein, A.; Sizyuk, V.; Miloshevsky, G.; Sizyuk, T.

    2013-07-01

    Plasma instability events such as disruptions, edge-localized modes (ELMs), runaway electrons (REs), and vertical displacement events (VDEs) are continued to be serious events and most limiting factors for successful tokamak reactor concept. The plasma-facing components (PFCs), e.g., wall, divertor, and limited surfaces of a tokamak as well as coolant structure materials are subjected to intense particle and heat loads and must maintain a clean and stable surface environment among them and the core/edge plasma. Typical ITER transient events parameters are used for assessing the damage from these four different instability events. HEIGHTS simulation showed that a single event of a disruption, giant ELM, VDE, or RE can cause significant surface erosion (melting and vaporization) damage to PFC, nearby components, and/or structural materials (VDE, RE) melting and possible burnout of coolant tubes that could result in shut down of reactor for extended repair time.

  5. Results of subscale MTF compression experiments

    NASA Astrophysics Data System (ADS)

    Howard, Stephen; Mossman, A.; Donaldson, M.; Fusion Team, General

    2016-10-01

    In magnetized target fusion (MTF) a magnetized plasma torus is compressed in a time shorter than its own energy confinement time, thereby heating to fusion conditions. Understanding plasma behavior and scaling laws is needed to advance toward a reactor-scale demonstration. General Fusion is conducting a sequence of subscale experiments of compact toroid (CT) plasmas being compressed by chemically driven implosion of an aluminum liner, providing data on several key questions. CT plasmas are formed by a coaxial Marshall gun, with magnetic fields supported by internal plasma currents and eddy currents in the wall. Configurations that have been compressed so far include decaying and sustained spheromaks and an ST that is formed into a pre-existing toroidal field. Diagnostics measure B, ne, visible and x-ray emission, Ti and Te. Before compression the CT has an energy of 10kJ magnetic, 1 kJ thermal, with Te of 100 - 200 eV, ne 5x1020 m-3. Plasma was stable during a compression factor R0/R >3 on best shots. A reactor scale demonstration would require 10x higher initial B and ne but similar Te. Liner improvements have minimized ripple, tearing and ejection of micro-debris. Plasma facing surfaces have included plasma-sprayed tungsten, bare Cu and Al, and gettering with Ti and Li.

  6. Impact of combined hydrogen plasma and transient heat loads on the performance of tungsten as plasma facing material

    NASA Astrophysics Data System (ADS)

    Wirtz, M.; Bardin, S.; Huber, A.; Kreter, A.; Linke, J.; Morgan, T. W.; Pintsuk, G.; Reinhart, M.; Sergienko, G.; Steudel, I.; De Temmerman, G.; Unterberg, B.

    2015-11-01

    Experiments were performed in three different facilities in order to investigate the impact of combined steady state deuterium plasma exposure and ELM-like thermal shock events on the performance of ultra high purity tungsten. The electron beam facility JUDITH 1 was used to simulate pure thermal loads. In addition the linear plasma devices PSI-2 and Pilot-PSI have been used for successive as well as simultaneous exposure where the transient heat loads were applied by a high energy laser and the pulsed plasma operation, respectively. The results show that the damage behaviour strongly depends on the loading conditions and the sequence of the particle and heat flux exposure. This is due to hydrogen embrittlement and/or a higher defect concentration in the tungsten near surface region due to supersaturation of hydrogen. The different results in terms of damage formation from both linear plasma devices indicate that also the plasma parameters such as particle energy, flux and fluence, plasma impurities and the pulse shape have a strong influence on the damage performance. In addition, the different loading methods such as the scanning with the electron beam in contrast to the homogeneous exposure by the laser leads to an faster increase of the surface roughness due to plastic deformation.

  7. Near-infrared spectroscopy for burning plasma diagnostic applications.

    PubMed

    Soukhanovskii, V A

    2008-10-01

    Ultraviolet and visible (UV-VIS, 200-750 nm) atomic spectroscopy of neutral and ionized fuel species (H, D, T, and Li) and impurities (e.g., He, Be, C, and W) is a key element of plasma control and diagnosis on International Thermonuclear Experimental Reactor and future magnetically confined burning plasma experiments (BPXs). Spectroscopic diagnostic implementation and performance issues that arise in the BPX harsh nuclear environment in the UV-VIS range, e.g., degradation of first mirror reflectivity under charge-exchange atom bombardment (erosion) and impurity deposition, permanent and dynamic loss of window, and optical fiber transmission under intense neutron and gamma-ray fluxes, are either absent or not as severe in the near-infrared (NIR, 750-2000 nm) range. An initial survey of NIR diagnostic applications has been undertaken on the National Spherical Torus Experiment. It is demonstrated that NIR spectroscopy can be used for machine protection and plasma control applications, as well as contribute to plasma performance evaluation and physics studies. Emission intensity estimates demonstrate that NIR measurements are possible in the BPX plasma operating parameter range. Complications in the NIR range due to the parasitic background emissions are expected to occur at very high plasma densities, low impurity densities, and at high plasma-facing component temperatures.

  8. The EPQ Code System for Simulating the Thermal Response of Plasma-Facing Components to High-Energy Electron Impact

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, Robert Cameron; Steiner, Don

    2004-06-15

    The generation of runaway electrons during a thermal plasma disruption is a concern for the safe and economical operation of a tokamak power system. Runaway electrons have high energy, 10 to 300 MeV, and may potentially cause extensive damage to plasma-facing components (PFCs) through large temperature increases, melting of metallic components, surface erosion, and possible burnout of coolant tubes. The EPQ code system was developed to simulate the thermal response of PFCs to a runaway electron impact. The EPQ code system consists of several parts: UNIX scripts that control the operation of an electron-photon Monte Carlo code to calculate themore » interaction of the runaway electrons with the plasma-facing materials; a finite difference code to calculate the thermal response, melting, and surface erosion of the materials; a code to process, scale, transform, and convert the electron Monte Carlo data to volumetric heating rates for use in the thermal code; and several minor and auxiliary codes for the manipulation and postprocessing of the data. The electron-photon Monte Carlo code used was Electron-Gamma-Shower (EGS), developed and maintained by the National Research Center of Canada. The Quick-Therm-Two-Dimensional-Nonlinear (QTTN) thermal code solves the two-dimensional cylindrical modified heat conduction equation using the Quickest third-order accurate and stable explicit finite difference method and is capable of tracking melting or surface erosion. The EPQ code system is validated using a series of analytical solutions and simulations of experiments. The verification of the QTTN thermal code with analytical solutions shows that the code with the Quickest method is better than 99.9% accurate. The benchmarking of the EPQ code system and QTTN versus experiments showed that QTTN's erosion tracking method is accurate within 30% and that EPQ is able to predict the occurrence of melting within the proper time constraints. QTTN and EPQ are verified and validated as able to calculate the temperature distribution, phase change, and surface erosion successfully.« less

  9. Assessing material properties for fusion applications by ion beams

    NASA Astrophysics Data System (ADS)

    Catarino, N.; Dias, M.; Jepu, I.; Alves, E.

    2017-10-01

    The plasma-facing materials in the ITER divertor area must withstand unusual events, such as the edge-localized modes (ELMS). At the point when an ELM occurs, up to 30% of the energy can be deposited on the plasma-facing boundary in the form of the heat and particle load causing material loss due to sublimation. Tungsten is a promising candidate as a plasma-facing material in the ITER divertor area since it has a high melting point, good thermal conductivity and low sputtering yield, which minimizes the plasma contamination. However their brittleness at low temperatures which is worsened by irradiation is an issue. One strategy to modulate the properties of tungsten is alloying this element with other refractory metals, such as tantalum that shows higher toughness, lower activation and higher radiation resistance. In the present study tungsten-tantalum alloys (W-Ta) were produced by Ta implantation. The fundamental mechanisms which govern the behaviour of defect dynamics in W-Ta materials under reactor conditions, were simulated by the implantation of He and D. The microstructure observations of the W plates that after single Ta implantation revealed crater-like cavities and a more severe effect after D implantation. The effect increase with the increasing of D fluence. However at fluences higher than 1021D/m the effect is reduced. In addition, blistering was observed in W-Ta plates implanted with He. The D retention in the W-Ta alloys increases with the implanted fluence with tendency for saturation for high fluences. Moreover the results show that D retention is higher after sequential He and D implantation than for single D implantation. The diffractogram of W-Ta alloys implanted with He evidenced the presence of broadened W peaks associated with stress induced by irradiation, which may cause internal stress field resulting in a distortion of the crystal lattice. These irradiation defects can be observed in the D release spectra where three peaks are associated with three types of defects in W and W-Ta implanted with He and D.

  10. The materials irradiation experiment for testing plasma facing materials at fusion relevant conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garrison, L. M., E-mail: garrisonlm@ornl.gov; Egle, B. J.; Fusion Technology Institute, University of Wisconsin-Madison, 1500 Engineering Drive, Madison, Wisconsin 53706

    2016-08-15

    The Materials Irradiation Experiment (MITE-E) was constructed at the University of Wisconsin-Madison Inertial Electrostatic Confinement Laboratory to test materials for potential use as plasma-facing materials (PFMs) in fusion reactors. PFMs in fusion reactors will be bombarded with x-rays, neutrons, and ions of hydrogen and helium. More needs to be understood about the interactions between the plasma and the materials to validate their use for fusion reactors. The MITE-E simulates some of the fusion reactor conditions by holding samples at temperatures up to 1000 °C while irradiating them with helium or deuterium ions with energies from 10 to 150 keV. The ionmore » gun can irradiate the samples with ion currents of 20 μA–500 μA; the typical current used is 72 μA, which is an average flux of 9 × 10{sup 14} ions/(cm{sup 2} s). The ion gun uses electrostatic lenses to extract and shape the ion beam. A variable power (1-20 W), steady-state, Nd:YAG laser provides additional heating to maintain a constant sample temperature during irradiations. The ion beam current reaching the sample is directly measured and monitored in real-time during irradiations. The ion beam profile has been investigated using a copper sample sputtering experiment. The MITE-E has successfully been used to irradiate polycrystalline and single crystal tungsten samples with helium ions and will continue to be a source of important data for plasma interactions with materials.« less

  11. Overview of the JET results with the ITER-like wall

    NASA Astrophysics Data System (ADS)

    Romanelli, F.; EFDA Contributors, JET

    2013-10-01

    Following the completion in May 2011 of the shutdown for the installation of the beryllium wall and the tungsten divertor, the first set of JET campaigns have addressed the investigation of the retention properties and the development of operational scenarios with the new plasma-facing materials. The large reduction in the carbon content (more than a factor ten) led to a much lower Zeff (1.2-1.4) during L- and H-mode plasmas, and radiation during the burn-through phase of the plasma initiation with the consequence that breakdown failures are almost absent. Gas balance experiments have shown that the fuel retention rate with the new wall is substantially reduced with respect to the C wall. The re-establishment of the baseline H-mode and hybrid scenarios compatible with the new wall has required an optimization of the control of metallic impurity sources and heat loads. Stable type-I ELMy H-mode regimes with H98,y2 close to 1 and βN ˜ 1.6 have been achieved using gas injection. ELM frequency is a key factor for the control of the metallic impurity accumulation. Pedestal temperatures tend to be lower with the new wall, leading to reduced confinement, but nitrogen seeding restores high pedestal temperatures and confinement. Compared with the carbon wall, major disruptions with the new wall show a lower radiated power and a slower current quench. The higher heat loads on Be wall plasma-facing components due to lower radiation made the routine use of massive gas injection for disruption mitigation essential.

  12. Evidence of formation of lithium compounds on FTU tiles and dust

    NASA Astrophysics Data System (ADS)

    Ghezzi, F.; Laguardia, L.; Apicella, M. L.; Bressan, C.; Caniello, R.; Cippo, E. Perelli; Conti, C.; De Angeli, M.; Maddaluno, G.; Mazzitelli, G.

    2018-01-01

    Since 2006 lithium as an advanced plasma facing material has been tested on the Frascati Tokamak Upgrade (FTU). Lithium in the liquid phase acts both as plasma facing component, i.e. limiter, and plays also a role in plasma operation because by depositing a lithium film on the walls (lithization) oxygen is gettered. As in all deposition processes, even for the lithization, the presence of impurities in plasma phase strongly affects the properties of the deposited film. During the 2008 campaigns of FTU it was observed a strong release of carbon dioxide (during disruptions), resulting in successive serious difficulty of operation. In order to find the possible reactions occurred, we have analyzed the surface of two tiles of the toroidal limiter close to the Liquid Lithium Limiter (LLL). The presence of molybdenum oxides and carbides suggested that the surface temperatures could have exceeded 1000 K, likely during disruptions. lithium oxides and hydroxides have been found on the tiles and in the dust collected in the vessel, confirming the presence of LiO and LiOH and a not negligible concentration of Li2CO3 especially at the LLL location. On the basis of the above results, we propose here a simple rationale, based on a two reactions mechanism, which can explain the formation of Li2CO3 and its subsequent decomposition during disruption with release of CO2 in the vessel. Admitting surface temperatures above 1000 K during a disruption, relatively high partial pressures of CO2 are also predicted by the equilibrium constant for Li2CO3 decomposition.

  13. Increased dead space in face mask continuous positive airway pressure in neonates.

    PubMed

    Hishikawa, Kenji; Fujinaga, Hideshi; Ito, Yushi

    2017-01-01

    Continuous positive airway pressure (CPAP) by face mask is commonly performed in newborn resuscitation. We evaluated the effect of face mask CPAP on system dead space. Face mask CPAP increases dead space. A CPAP model study. We estimated the volume of the inner space of the mask. We devised a face mask CPAP model, in which the outlet of the mask was covered with plastic; and three modified face mask CPAP models, in which holes were drilled near to the cushion of the covered face mask to alter the air exit. We passed a continuous flow of 21% oxygen through each model and we controlled the inner pressure to 5 cmH 2 O by adjusting the flow-relief valve. To evaluate the ventilation in the inner space of each model, we measured the oxygen concentration rise time, that is, the time needed for the oxygen concentration of each model to reach 35% after the oxygen concentration of the continuous flow was raised from 21% to 40%. The volume of inner space of the face mask was 38.3 ml. Oxygen concentration rise time in the face mask CPAP model was significantly longer at various continuous flow rates and points of the inner space of the face mask compared with that of the modified face mask CPAP model. Our study indicates that face mask CPAP leads to an increase in dead space and a decrease in ventilation efficiency under certain circumstances. Pediatr Pulmonol. 2017;52:107-111. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  14. Evaluating optical hazards from plasma arc cutting.

    PubMed

    Glassford, Eric; Burr, Gregory

    2018-01-01

    The Health Hazard Evaluation Program of the National Institute for Occupational Safety and Health evaluated a steel building materials manufacturer. The employer requested the evaluation because of concerns about optical radiation hazards from a plasma arc cutting system and the need to clarify eye protection requirements for plasma operators, other employees, and visitors. The strength of the ultraviolet radiation, visible radiation (light), and infrared radiation generated by the plasma arc cutter was measured at various distances from the source and at different operating amperages. Investigators also observed employees performing the plasma arc cutting. Optical radiation above safe levels for the unprotected eyes in the ultraviolet-C, ultraviolet-B, and visible light ranges were found during plasma arc cutting. In contrast, infrared and ultraviolet-A radiation levels during plasma arc cutting were similar to background levels. The highest non-ionizing radiation exposures occurred when no welding curtains were used. A plasma arc welding curtain in place did not eliminate optical radiation hazards to the plasma arc operator or to nearby employees. In most instances, the measured intensities for visible light, UV-C, and UV-B resulted in welding shade lens numbers that were lower than those stipulated in the OSHA Filter Lenses for Protection Against Radiant Energy table in 29 CFR 1910.133(a)(5). [1] Investigators recommended using a welding curtain that enclosed the plasma arc, posting optical radiation warning signs in the plasma arc cutter area, installing audible or visual warning cues when the plasma arc cutter was operating, and using welding shades that covered the plasma arc cutter operator's face to protect skin from ultraviolet radiation hazards.

  15. Electrical model of cold atmospheric plasma gun

    NASA Astrophysics Data System (ADS)

    Slutsker, Ya. Z.; Semenov, V. E.; Krasik, Ya. E.; Ryzhkov, M. A.; Felsteiner, J.; Binenbaum, Y.; Gil, Z.; Shtrichman, R.; Cohen, J. T.

    2017-10-01

    We present an analytical model of cold atmospheric plasma formed by a dielectric barrier discharge (DBD), which is based on the lumped and distributed elements of an equivalent electric circuit of this plasma. This model is applicable for a wide range of frequencies and amplitudes of the applied voltage pulses, no matter whether or not the generated plasma plume interacts with a target. The model allows quantitative estimation of the plasma plume length and the energy delivered to the plasma. Also, the results of this model can be used for the design of DBD guns which efficiently generate cold atmospheric plasma. A comparison of the results of the model with those obtained in experiments shows a fairly good agreement.

  16. 3D Face Modeling Using the Multi-Deformable Method

    PubMed Central

    Hwang, Jinkyu; Yu, Sunjin; Kim, Joongrock; Lee, Sangyoun

    2012-01-01

    In this paper, we focus on the problem of the accuracy performance of 3D face modeling techniques using corresponding features in multiple views, which is quite sensitive to feature extraction errors. To solve the problem, we adopt a statistical model-based 3D face modeling approach in a mirror system consisting of two mirrors and a camera. The overall procedure of our 3D facial modeling method has two primary steps: 3D facial shape estimation using a multiple 3D face deformable model and texture mapping using seamless cloning that is a type of gradient-domain blending. To evaluate our method's performance, we generate 3D faces of 30 individuals and then carry out two tests: accuracy test and robustness test. Our method shows not only highly accurate 3D face shape results when compared with the ground truth, but also robustness to feature extraction errors. Moreover, 3D face rendering results intuitively show that our method is more robust to feature extraction errors than other 3D face modeling methods. An additional contribution of our method is that a wide range of face textures can be acquired by the mirror system. By using this texture map, we generate realistic 3D face for individuals at the end of the paper. PMID:23201976

  17. An analytical model of sub-Alfvénic moon-plasma interactions with application to the hemisphere coupling effect

    NASA Astrophysics Data System (ADS)

    Simon, Sven

    2015-09-01

    We develop a new analytical model of the Alfvén wing that is generated by the interaction between a planetary moon's ionosphere and its magnetospheric environment. While preceding analytical approaches assumed the obstacle's height-integrated ionospheric conductivities to be spatially constant, the model presented here can take into account a continuous conductance profile that follows a power law. The electric potential in the interaction region, determining the electromagnetic fields of the Alfvén wing, can then be calculated from an Euler-type differential equation. In this way, the model allows to include a realistic representation of the "suspension bridge"-like conductance profile expected for the moon's ionosphere. The major drawback of this approach is its restriction to interaction scenarios where the ionospheric Pedersen conductance is large compared to the Hall conductance, and thus, the Alfvénic perturbations are approximately symmetric between the planet-facing and the planet-averted hemispheres of the moon. The model is applied to the hemisphere coupling effect observed at Enceladus, i.e., to the surface currents and the associated magnetic discontinuities that arise from a north-south asymmetry of the obstacle to the plasma flow. We show that the occurrence of this effect is very robust against changes in the conductance profile of Enceladus' plume, and we derive upper limits for the strength of the magnetic field jumps generated by the hemisphere coupling effect. During all 11 reported detections of the hemisphere coupling currents at Enceladus, the observed magnetic field jumps were clearly weaker than the proposed limits. Our findings are also relevant for future in situ studies of putative plumes at the Jovian moon Europa.

  18. Probabilistic Elastic Part Model: A Pose-Invariant Representation for Real-World Face Verification.

    PubMed

    Li, Haoxiang; Hua, Gang

    2018-04-01

    Pose variation remains to be a major challenge for real-world face recognition. We approach this problem through a probabilistic elastic part model. We extract local descriptors (e.g., LBP or SIFT) from densely sampled multi-scale image patches. By augmenting each descriptor with its location, a Gaussian mixture model (GMM) is trained to capture the spatial-appearance distribution of the face parts of all face images in the training corpus, namely the probabilistic elastic part (PEP) model. Each mixture component of the GMM is confined to be a spherical Gaussian to balance the influence of the appearance and the location terms, which naturally defines a part. Given one or multiple face images of the same subject, the PEP-model builds its PEP representation by sequentially concatenating descriptors identified by each Gaussian component in a maximum likelihood sense. We further propose a joint Bayesian adaptation algorithm to adapt the universally trained GMM to better model the pose variations between the target pair of faces/face tracks, which consistently improves face verification accuracy. Our experiments show that we achieve state-of-the-art face verification accuracy with the proposed representations on the Labeled Face in the Wild (LFW) dataset, the YouTube video face database, and the CMU MultiPIE dataset.

  19. Communication competence, social support, and depression among college students: a model of facebook and face-to-face support network influence.

    PubMed

    Wright, Kevin B; Rosenberg, Jenny; Egbert, Nicole; Ploeger, Nicole A; Bernard, Daniel R; King, Shawn

    2013-01-01

    This study examined the influence of the social networking site Facebook and face-to-face support networks on depression among (N = 361) college students. The authors used the Relational Health Communication Competence Model as a framework for examining the influence of communication competence on social support network satisfaction and depression. Moreover, they examined the influence of interpersonal and social integrative motives as exogenous variables. On the basis of previous work, the authors propose and test a theoretical model using structural equation modeling. The results indicated empirical support for the model, with interpersonal motives predicting increased face-to-face and computer-mediated competence, increased social support satisfaction with face-to-face and Facebook support, and lower depression scores. The implications of the findings for theory, key limitations, and directions for future research are discussed.

  20. Modeling of low pressure plasma sources for microelectronics fabrication

    NASA Astrophysics Data System (ADS)

    Agarwal, Ankur; Bera, Kallol; Kenney, Jason; Likhanskii, Alexandre; Rauf, Shahid

    2017-10-01

    Chemically reactive plasmas operating in the 1 mTorr-10 Torr pressure range are widely used for thin film processing in the semiconductor industry. Plasma modeling has come to play an important role in the design of these plasma processing systems. A number of 3-dimensional (3D) fluid and hybrid plasma modeling examples are used to illustrate the role of computational investigations in design of plasma processing hardware for applications such as ion implantation, deposition, and etching. A model for a rectangular inductively coupled plasma (ICP) source is described, which is employed as an ion source for ion implantation. It is shown that gas pressure strongly influences ion flux uniformity, which is determined by the balance between the location of plasma production and diffusion. The effect of chamber dimensions on plasma uniformity in a rectangular capacitively coupled plasma (CCP) is examined using an electromagnetic plasma model. Due to high pressure and small gap in this system, plasma uniformity is found to be primarily determined by the electric field profile in the sheath/pre-sheath region. A 3D model is utilized to investigate the confinement properties of a mesh in a cylindrical CCP. Results highlight the role of hole topology and size on the formation of localized hot-spots. A 3D electromagnetic plasma model for a cylindrical ICP is used to study inductive versus capacitive power coupling and how placement of ground return wires influences it. Finally, a 3D hybrid plasma model for an electron beam generated magnetized plasma is used to understand the role of reactor geometry on plasma uniformity in the presence of E  ×  B drift.

  1. Plasma agriculture and innovative food cycles

    USDA-ARS?s Scientific Manuscript database

    It is predicted that humankind may face the global issues of a pandemic and food crisis due to the rapid growth of the population, reaching almost 10 billion by 2050. Contamination of foods with human pathogens such as Salmonella, Listeria monocytogenes, Escherichia coli O157:H7, and norovirus is an...

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Webster, A. J.; Morris, J.; Todd, T. N.

    A unique sequence of 120 almost identical plasmas in the Joint European Torus (JET) recently provided two orders of magnitude more statistically equivalent data than ever previously available. The purpose was to study movement of eroded plasma-facing material from JET's new Beryllium wall, but it has allowed the statistical detection of otherwise unobservable phenomenon. This includes a sequence of resonant-like waiting times between edge-localised plasma instabilities (ELMs), instabilities that must be mitigated or avoided in large magnetically confined plasmas such as those planned for ITER. Here, we investigate the cause of this phenomenon, using the unprecedented quantity of data tomore » produce a detailed picture of the plasma's behaviour. After combining the data, oscillations are clearly observable in the plasma's vertical position, in edge losses of ions, and in Beryllium II (527 nm) light emissions. The oscillations are unexpected, are not obvious in data from a single pulse alone, and are all clearly correlated with each other. They are likely to be caused by a small vertical oscillation that the plasma control system is not reacting to prevent, but a more complex explanation is possible. The clearly observable but unexpected link between small changes in the plasma's position and changes to edge-plasma transport and stability suggest that these characteristics cannot always be studied in isolation. It also suggests new opportunities for ELM mitigation and control that may exist.« less

  3. Measurements of line-averaged electron density of pulsed plasmas using a He-Ne laser interferometer in a magnetized coaxial plasma gun device

    NASA Astrophysics Data System (ADS)

    Iwamoto, D.; Sakuma, I.; Kitagawa, Y.; Kikuchi, Y.; Fukumoto, N.; Nagata, M.

    2012-10-01

    In next step of fusion devices such as ITER, lifetime of plasma-facing materials (PFMs) is strongly affected by transient heat and particle loads during type I edge localized modes (ELMs) and disruption. To clarify damage characteristics of the PFMs, transient heat and particle loads have been simulated by using a plasma gun device. We have performed simulation experiments by using a magnetized coaxial plasma gun (MCPG) device at University of Hyogo. The line-averaged electron density measured by a He-Ne interferometer is 2x10^21 m-3 in a drift tube. The plasma velocity measured by a time of flight technique and ion Doppler spectrometer was 70 km/s, corresponding to the ion energy of 100 eV for helium. Thus, the ion flux density is 1.4x10^26 m-2s-1. On the other hand, the MCPG is connected to a target chamber for material irradiation experiments. It is important to measure plasma parameters in front of target materials in the target chamber. In particular, a vapor cloud layer in front of the target material produced by the pulsed plasma irradiation has to be characterized in order to understand surface damage of PFMs under ELM-like plasma bombardment. In the conference, preliminary results of application of the He-Ne laser interferometer for the above experiment will be shown.

  4. Cells Recognize and Prefer Bone-like Hydroxyapatite: Biochemical Understanding of Ultrathin Mineral Platelets in Bone.

    PubMed

    Liu, Cuilian; Zhai, Halei; Zhang, Zhisen; Li, Yaling; Xu, Xurong; Tang, Ruikang

    2016-11-09

    Hydroxyapatite (HAP) nanocrystallites in all types of bones are distinguished by their ultrathin characteristics, which are uniaxially oriented with fibrillar collagen to uniquely expose the (100) faces. We speculate that living organisms prefer the specific crystal morphology and orientation of HAP because of the interactions between cells and crystals at the mineral-cell interface. Here, bone-like platy HAP (p-HAP) and two different rod-like HAPs were synthesized to investigate the ultrathin mineral modulating effect on cell bioactivity and bone generation. Cell viability and osteogenic differentiation of mesenchymal stem cells (MSCs) were significantly promoted by the platy HAP with (100) faces compared to rod-like HAPs with (001) faces as the dominant crystal orientation, which indicated that MSCs can recognize the crystal face and prefer the (100) HAP faces. This face-specific preference is dependent on the selective adsorption of fibronectin (FN), a plasma protein that plays a central role in cell adhesion, on the HAP surface. This selective adsorption is further confirmed by molecule dynamics (MD) simulation. Our results demonstrate that it is an intelligent choice for cells to use ultrathin HAP with a large (100) face as a basic building block in the hierarchical structure of bone, which is crucial to the promotion of MSCs osteoinductions during bone formation.

  5. Nonequilibrium Nonideal Nanoplasma Generated by a Fast Single Ion in Condensed Matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faenov, A. Ya.; Kansai Photon Science Institut, Japan Atomic Energy Agency; Lankin, A. V.

    A plasma model of relaxation of a medium in heavy ion tracks in condensed matter is proposed. The model is based on three assumptions: the Maxwell distribution of plasma electrons, localization of plasma inside the track nanochannel and constant values of the plasma electron density and temperature during the X-ray irradiation. It is demonstrated that the plasma relaxation model adequately describes the X-ray spectra observed upon interaction of a fast ion with condensed target. Preassumptions of plasma relaxation model are validated by the molecular dynamics modeling and simulation.

  6. Advancing haemostasis automation--successful implementation of robotic centrifugation and sample processing in a tertiary service hospital.

    PubMed

    Sédille-Mostafaie, Nazanin; Engler, Hanna; Lutz, Susanne; Korte, Wolfgang

    2013-06-01

    Laboratories today face increasing pressure to automate operations due to increasing workloads and the need to reduce expenditure. Few studies to date have focussed on the laboratory automation of preanalytical coagulation specimen processing. In the present study, we examined whether a clinical chemistry automation protocol meets the preanalytical requirements for the analyses of coagulation. During the implementation of laboratory automation, we began to operate a pre- and postanalytical automation system. The preanalytical unit processes blood specimens for chemistry, immunology and coagulation by automated specimen processing. As the production of platelet-poor plasma is highly dependent on optimal centrifugation, we examined specimen handling under different centrifugation conditions in order to produce optimal platelet deficient plasma specimens. To this end, manually processed models centrifuged at 1500 g for 5 and 20 min were compared to an automated centrifugation model at 3000 g for 7 min. For analytical assays that are performed frequently enough to be targets for full automation, Passing-Bablok regression analysis showed close agreement between different centrifugation methods, with a correlation coefficient between 0.98 and 0.99 and a bias between -5% and +6%. For seldom performed assays that do not mandate full automation, the Passing-Bablok regression analysis showed acceptable to poor agreement between different centrifugation methods. A full automation solution is suitable and can be recommended for frequent haemostasis testing.

  7. NIMROD simulations of HIT-SI plasmas

    NASA Astrophysics Data System (ADS)

    Akcay, Cihan; Jarboe, Thomas; Nelson, Brian; Kim, Charlson

    2011-10-01

    HIT-SI (Steady Inductive Helicity Injected Torus) is a current drive experiment that uses two semi-toroidal helicity injectors driven at 5-15 kHz to generate steady inductive helicity injection (SIHI). All the plasma-facing walls of the experiment are coated with an insulating material to guarantee an inductive discharge. NIMROD is a 3-D extended MHD code that can only model toroidally-uniform geometries. The helicity injectors of the experiment are simulated as flux and voltage boundary conditions with odd toroidal symmetry. A highly resistive, thin edge-layer approximates the insulating walls. The simulations are initial-value calculations that use a zero β resistive MHD (rMHD) model with uniform density. The Prandtl number (Pr = 10), and Lundquist number (S = 5 - 50) closely match the experimental values. rMHD calculations at S ~ 10 show no growth of an n = 0 mode and only a few kA of toroidal current whereas HIT-SI has demonstrated toroidal currents greater than 50 kA with a current amplification of 3. At higher S (>= 20) the simulations exhibit significant n = 0 magnetic energy growth and a current amplification exceeding unity: Itor/Iinj >= 1 . While HIT-SI has shown evidence for separatrix formation, rMHD calculations indicate an entirely stochastic magnetic structure during sustainment. Results will also presented for Hall MHD, anticipated to play a crucial role in the physics of SIHI.

  8. Adjudicating between face-coding models with individual-face fMRI responses

    PubMed Central

    Kriegeskorte, Nikolaus

    2017-01-01

    The perceptual representation of individual faces is often explained with reference to a norm-based face space. In such spaces, individuals are encoded as vectors where identity is primarily conveyed by direction and distinctiveness by eccentricity. Here we measured human fMRI responses and psychophysical similarity judgments of individual face exemplars, which were generated as realistic 3D animations using a computer-graphics model. We developed and evaluated multiple neurobiologically plausible computational models, each of which predicts a representational distance matrix and a regional-mean activation profile for 24 face stimuli. In the fusiform face area, a face-space coding model with sigmoidal ramp tuning provided a better account of the data than one based on exemplar tuning. However, an image-processing model with weighted banks of Gabor filters performed similarly. Accounting for the data required the inclusion of a measurement-level population averaging mechanism that approximates how fMRI voxels locally average distinct neuronal tunings. Our study demonstrates the importance of comparing multiple models and of modeling the measurement process in computational neuroimaging. PMID:28746335

  9. Charge-exchange plasma environment for an ion drive spacecraft. [a model for describing mercury ion engines and its effect on spacecraft subsystems

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.; Carruth, M. R., Jr.

    1979-01-01

    The charge exchange plasma environment around a spacecraft that uses mercury ion thrusters for propulsion is described. The interactions between the plasma environment and the spacecraft are determined and a model which describes the propagation of the mercury charge exchange plasma is discussed. The model is extended to describe the flow of the molybdenum component of the charge exchange plasma. The uncertainties in the models for various conditions are discussed and current drain to the solar array, charge exchange plasma material deposition, and the effects of space plasma on the charge exchange plasma propagation are addressed.

  10. Instability-driven electromagnetic fields in coronal plasmas

    DOE PAGES

    Manuel, M. J.-E.; Li, C. K.; Seguin, F. H.; ...

    2013-04-15

    Filamentary electromagnetic fields previously observed in the coronae of laser-driven spherical targets [F. H. S eguin et al., Phys. Plasma. 19, 012701 (2012)] have been further investigated in laser irradiated plastic foils. Face-on proton-radiography provides an axial view of these filaments and shows coherent cellular structure regardless of initial foil-surface conditions. The observed cellular fields are shown to have an approximately constant scale size of 210 lm throughout the plasma evolution. A discussion of possible field-generation mechanisms is provided and it is demonstrated that the likely source of the cellular field structure is the magnetothermal instability. Using predicted temperature andmore » density profiles, the fastest growing modes of this instability were found to be slowly varying in time and consistent with the observed cellular size.« less

  11. GEM detector development for tokamak plasma radiation diagnostics: SXR poloidal tomography

    NASA Astrophysics Data System (ADS)

    Chernyshova, Maryna; Malinowski, Karol; Ziółkowski, Adam; Kowalska-Strzeciwilk, Ewa; Czarski, Tomasz; Poźniak, Krzysztof T.; Kasprowicz, Grzegorz; Zabołotny, Wojciech; Wojeński, Andrzej; Kolasiński, Piotr; Krawczyk, Rafał D.

    2015-09-01

    An increased attention to tungsten material is related to a fact that it became a main candidate for the plasma facing material in ITER and future fusion reactor. The proposed work refers to the studies of W influence on the plasma performances by developing new detectors based on Gas Electron Multiplier GEM) technology for tomographic studies of tungsten transport in ITER-oriented tokamaks, e.g. WEST project. It presents current stage of design and developing of cylindrically bent SXR GEM detector construction for horizontal port implementation. Concept to overcome an influence of constraints on vertical port has been also presented. It is expected that the detecting unit under development, when implemented, will add to the safe operation of tokamak bringing creation of sustainable nuclear fusion reactors a step closer.

  12. Design of a digital holography system for PFC erosion measurements on Proto-MPEX.

    PubMed

    Thomas, C E Tommy; Biewer, T M; Baylor, L R; Combs, S K; Meitner, S J; Rapp, J; Hillis, D L; Granstedt, E M; Majeski, R; Kaita, R

    2016-11-01

    A project has been started at ORNL to develop a dual-wavelength digital holography system for plasma facing component erosion measurements on prototype material plasma exposure experiment. Such a system will allow in situ real-time measurements of component erosion. Initially the system will be developed with one laser, and first experimental laboratory measurements will be made with the single laser system. In the second year of development, a second CO 2 laser will be added and measurements with the dual wavelength system will begin. Adding the second wavelength allows measurements at a much longer synthetic wavelength.

  13. Plasma Irregularity Production in the Polar Cap F-Region Ionosphere

    NASA Astrophysics Data System (ADS)

    Lamarche, Leslie

    Plasma in the Earth's ionosphere is highly irregular on scales ranging between a few centimeters and hundreds of kilometers. Small-scale irregularities or plasma waves can scatter radio waves resulting in a loss of signal for navigation and communication networks. The polar region is particularly susceptible to strong disturbances due to its direct connection with the Sun's magnetic field and energetic particles. In this thesis, factors that contribute to the production of decameter-scale plasma irregularities in the polar F region ionosphere are investigated. Both global and local control of irregularity production are studied, i.e. we consider global solar control through solar illumination and solar wind as well as much more local control by plasma density gradients and convection electric field. In the first experimental study, solar control of irregularity production is investigated using the Super Dual Auroral Radar Network (SuperDARN) radar at McMurdo, Antarctica. The occurrence trends for irregularities are analyzed statistically and a model is developed that describes the location of radar echoes within the radar's field-of-view. The trends are explained through variations in background plasma density with solar illumination affecting radar beam propagation. However, it is found that the irregularity occurrence during the night is higher than expected from ray tracing simulations based on a standard ionospheric density model. The high occurrence at night implies an additional source of plasma density and it is proposed that large-scale density enhancements called polar patches may be the source of this density. Additionally, occurrence maximizes around the terminator due to different competing irregularity production processes that favor a more or less sunlit ionosphere. The second study is concerned with modeling irregularity characteristics near a large-scale density gradient reversal, such as those expected near polar patches, with a particular focus on the asymmetry of the irregularity growth rate across the gradient reversal. Directional dependencies on the plasma density gradient, plasma drift, and wavevector are analyzed in the context of the recently developed general fluid theory of the gradient-drift instability. In the ionospheric F region, the strongest asymmetry is found when an elongated structure is oriented along the radar's boresight and moving perpendicular to its direction of elongation. These results have important implications for finding optimal configurations for oblique-scanning ionospheric radars such as SuperDARN to observe gradient reversals. To test the predictions of the developed model and the general theory of the gradient-drift instability, an experimental investigation is presented focusing on decameter-scale irregularities near a polar patch and the previously uninvestigated directional dependence of irregularity characteristics. Backscatter power and occurrence of irregularities are analyzed using measurements from the SuperDARN radar at Rankin Inlet, Canada, while background density gradients and convection electric fields are found from the north face of the Resolute Bay Incoherent Scatter Radar. It is shown that irregularity occurrence tends to follow the expected trends better than irregularity power, suggesting that while the gradient-drift instability may be a dominant process in generating small-scale irregularities, other mechanisms such as a shear-driven instability or nonlinear process may exert greater control over their intensity. It is concluded from this body of work that the production of small-scale plasma irregularities in the polar F-region ionosphere is controlled both by global factors such as solar illumination as well as local plasma density gradients and electric fields. In general, linear gradient-drift instability theory describes small-scale irregularity production well, particularly for low-amplitude perturbations. The production of irregularities is complex, and while ground-based radars are invaluable tools to study the ionosphere, care must be taken to interpret results correctly.

  14. Strongly magnetized classical plasma models

    NASA Technical Reports Server (NTRS)

    Montgomery, D. C.

    1972-01-01

    The class of plasma processes for which the so-called Vlasov approximation is inadequate is investigated. Results from the equilibrium statistical mechanics of two-dimensional plasmas are derived. These results are independent of the presence of an external dc magnetic field. The nonequilibrium statistical mechanics of the electrostatic guiding-center plasma, a two-dimensional plasma model, is discussed. This model is then generalized to three dimensions. The guiding-center model is relaxed to include finite Larmor radius effects for a two-dimensional plasma.

  15. Zea mays Annexins Modulate Cytosolic Free Ca2+ and Generate a Ca2+-Permeable Conductance[W

    PubMed Central

    Laohavisit, Anuphon; Mortimer, Jennifer C.; Demidchik, Vadim; Coxon, Katy M.; Stancombe, Matthew A.; Macpherson, Neil; Brownlee, Colin; Hofmann, Andreas; Webb, Alex A.R.; Miedema, Henk; Battey, Nicholas H.; Davies, Julia M.

    2009-01-01

    Regulation of reactive oxygen species and cytosolic free calcium ([Ca2+]cyt) is central to plant function. Annexins are small proteins capable of Ca2+-dependent membrane binding or membrane insertion. They possess structural motifs that could support both peroxidase activity and calcium transport. Here, a Zea mays annexin preparation caused increases in [Ca2+]cyt when added to protoplasts of Arabidopsis thaliana roots expressing aequorin. The pharmacological profile was consistent with annexin activation (at the extracellular plasma membrane face) of Arabidopsis Ca2+-permeable nonselective cation channels. Secreted annexins could therefore modulate Ca2+ influx. As maize annexins occur in the cytosol and plasma membrane, they were incorporated at the intracellular face of lipid bilayers designed to mimic the plasma membrane. Here, they generated an instantaneously activating Ca2+-permeable conductance at mildly acidic pH that was sensitive to verapamil and Gd3+ and had a Ca2+-to-K+ permeability ratio of 0.36. These results suggest that cytosolic annexins create a Ca2+ influx pathway directly, particularly during stress responses involving acidosis. A maize annexin preparation also demonstrated in vitro peroxidase activity that appeared independent of heme association. In conclusion, this study has demonstrated that plant annexins create Ca2+-permeable transport pathways, regulate [Ca2+]cyt, and may function as peroxidases in vitro. PMID:19234085

  16. Growth diagram of N-face GaN (0001{sup ¯}) grown at high rate by plasma-assisted molecular beam epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okumura, Hironori, E-mail: okumura@engineering.ucsb.edu; McSkimming, Brian M.; Speck, James S.

    2014-01-06

    N-face GaN was grown on free-standing GaN (0001{sup ¯}) substrates at a growth rate of 1.5 μm/h using plasma-assisted molecular beam epitaxy. Difference in growth rate between (0001{sup ¯}) and (0001) oriented GaN depends on nitrogen plasma power, and the (0001{sup ¯}) oriented GaN had only 70% of the growth rate of the (0001) oriented GaN at 300 W. Unintentional impurity concentrations of silicon, carbon, and oxygen were 2 × 10{sup 15}, 2 × 10{sup 16}, and 7 × 10{sup 16} cm{sup −3}, respectively. A growth diagram was constructed that shows the dependence of the growth modes on the difference in the Ga and active nitrogen flux, Φ{sub Ga} − Φ{submore » N*}, and the growth temperature. At high Φ{sub Ga} − Φ{sub N*} (Φ{sub Ga} ≫ Φ{sub N*}), two-dimensional (step-flow and layer-by-layer) growth modes were realized. High growth temperature (780 °C) expanded the growth window of the two-dimensional growth modes, achieving a surface with rms roughness of 0.48 nm without Ga droplets.« less

  17. Fluorescent measurements in whole blood and plasma using red-emitting dyes

    NASA Astrophysics Data System (ADS)

    Abugo, Omoefe O.; Herman, Petr; Lakowicz, Joseph R.

    2000-04-01

    We have determined the fluorescence characteristics of albumin blue 670 and Rhodamine 800 in plasma and blood in order to test the feasibility of making direct fluorescence sensing measurements in blood. These dyes were used because of their absorption in the red/NIR where absorption by hemoglobin is minimized. Front face illumination and detection was used to minimize absorption and scattering during measurement. Fluorescence emission was observed for these dyes in plasma and blood. Attenuation of the fluorescence emission was observed in blood because of hemoglobin absorption. Using frequency domain fluorometry, we recovered the expected lifetime parameters for both dyes in blood and plasma. We were able to quantify HSA concentrations using changes in the mean lifetime of AB670, a dye previously shown to bind preferentially to HSA. Rh800 concentrations in plasma and blood were also determined using modulation sensing. Anisotropy measurements revealed high Anisotropy for these dyes in plasma and blood. It also showed an increase in the anisotropy of AB670 with increase in HSA concentration in the presence of red blood cells. These results indicate that qualitative and quantitative fluorescence measurements can be made directly in blood without the need to process the blood.

  18. Progress and prospect of true steady state operation with RF

    NASA Astrophysics Data System (ADS)

    Jacquinot, Jean

    2017-10-01

    Operation of fusion confinement experiments in full steady state is a major challenge for the development towards fusion energy. Critical to achieving this goal is the availability of actively cooled plasma facing components and auxiliary systems withstanding the very harsh plasma environment. Equally challenging are physics issues related to achieving plasma conditions and current drive efficiency required by reactor plasmas. RF heating and current drive systems have been key instruments for obtaining the progress made until today towards steady state. They hold all the records of long pulse plasma operation both in tokamaks and in stellarators. Nevertheless much progress remains to be made in particular for integrating all the requirements necessary for maintaining in steady state the density and plasma pressure conditions of a reactor. This is an important stated aim of ITER and of devices equipped with superconducting magnets. After considering the present state of the art, this review will address the key issues which remain to be solved both in physics and technology for reaching this goal. They constitute very active subjects of research which will require much dedicated experimentation in the new generation of superconducting devices which are now in operation or becoming close to it.

  19. Blistering behavior and deuterium retention in tungsten vanadium alloys exposed to deuterium plasma in the linear plasma device STEP

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Cheng, Long; Yuan, Yue; Qin, Shao-Yang; Arshad, Kameel; Guo, Wang-Guo; Wang, Zheng; Zhou, Zhang-Jian; Lu, Guang-Hong

    2018-03-01

    The behavior of tungsten-vanadium (W-V) alloys fabricated by powder metallurgy as a plasma facing material has been studied. W-V alloys with different vanadium concentrations (5 and 10 wt %) manufactured by hot pressing (HP) were exposed to deuterium plasma (flux ∼4.6 × 1021 m-2s-1, fluence ∼5.6 × 1025 m-2, ion energy ∼60 eV, target temperature ∼450 K) in the linear plasma device STEP at Beihang University. Three typical grains are observed on HP sintered W-V alloys and exhibit a significant effect on its performance under deuterium plasma irradiation. Surface blistering only occurs at W-enriched grains and is significantly mitigated in W-V alloys, especially in W-10 V, blistering is completely suppressed. On the other hand, deuterium retention dramatically increases in the W-V alloys due to vanadium addition. The deuterium retention in W-5 wt. % V is about 6.2 times more than that in rolled pure W, and this factor further increases to 6.9 when the V concentration rises to 10 wt %. We ascribe these phenomena to the changes of microstructures and components caused by vanadium addition.

  20. The radio-frequency fluctuation effect on the floating harmonic method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Jaewon; Kim, Kyung-Hyun; Kim, Dong-Hwan

    2016-08-15

    The radio-frequency (RF) plasma diagnostics with an electrical probe facing a challenge, because the RF fluctuation oscillates the plasma potential and distorts the current-voltage (I-V) curve. As Langmuir probe is widely used in plasma diagnostics, many researchers have been studying the effect of RF fluctuation on probe and compensation methods. On the other hand, there have not been enough studies on the fluctuation effect on the floating harmonic method. Therefore, we investigated the impact of RF fluctuation on the floating harmonic method theoretically and experimentally. When the electrons are in ideal Maxwellian distribution, the floating potential is negatively shifted bymore » the RF fluctuation, but the fluctuation does not distort I-V curve around the floating potential. However, in practical plasmas, the I-V curve and their harmonic components are distorted. This RF fluctuation effect becomes more significant in a low density plasma with a high impedance sheath. The second harmonic current decreases with the RF fluctuation while the first harmonic current is merely affected. Therefore, the electron temperatures measured with the floating harmonic method under low density plasma with uncompensated probe are overestimated than the results obtained with the compensated probe.« less

  1. ISS Plasma Interaction: Measurements and Modeling

    NASA Technical Reports Server (NTRS)

    Barsamian, H.; Mikatarian, R.; Alred, J.; Minow, J.; Koontz, S.

    2004-01-01

    Ionospheric plasma interaction effects on the International Space Station are discussed in the following paper. The large structure and high voltage arrays of the ISS represent a complex system interacting with LEO plasma. Discharge current measurements made by the Plasma Contactor Units and potential measurements made by the Floating Potential Probe delineate charging and magnetic induction effects on the ISS. Based on theoretical and physical understanding of the interaction phenomena, a model of ISS plasma interaction has been developed. The model includes magnetic induction effects, interaction of the high voltage solar arrays with ionospheric plasma, and accounts for other conductive areas on the ISS. Based on these phenomena, the Plasma Interaction Model has been developed. Limited verification of the model has been performed by comparison of Floating Potential Probe measurement data to simulations. The ISS plasma interaction model will be further tested and verified as measurements from the Floating Potential Measurement Unit become available, and construction of the ISS continues.

  2. Characterization of plasma current quench during disruptions at HL-2A

    NASA Astrophysics Data System (ADS)

    Zhu, Jinxia; Zhang, Yipo; Dong, Yunbo; HL-2A Team

    2017-05-01

    The most essential assumptions of physics for the evaluation of electromagnetic forces on the plasma-facing components due to a disruption-induced eddy current are characteristics of plasma current quenches including the current quench rate or its waveforms. The characteristics of plasma current quenches at HL-2A have been analyzed during spontaneous disruptions. Both linear decay and exponential decay are found in the disruptions with the fastest current quenches. However, there are two stages of current quench in the slow current quench case. The first stage with an exponential decay and the second stage followed by a rapid linear decay. The faster current quench rate corresponds to the faster movement of plasma displacement. The parameter regimes on the current quench time and the current quench rates have been obtained from disruption statistics at HL-2A. There exists no remarkable difference for distributions obtained between the limiter and the divertor configuration. This data from HL-2A provides basic data of the derivation of design criteria for a large-sized machine during the current decay phase of the disruptions.

  3. Li experiments at the tokamak T-11 M in field of steady state PFC investigations

    NASA Astrophysics Data System (ADS)

    Mirnov, S. V.; Lazarev, V. B.

    2011-08-01

    The renewable plasma facing components (PFCs) of steady state tokamak-reactor can be created in framework of Lithium emitter-collector concept, which suggests Li-loop development close the Li-PFC and plasma periphery. It should ensure: Li-emission from PFC into the plasma, plasma periphery cooling by non-coronal Li radiation, Li ions collection before their loss on the wall and Li return into emitter. The subjects of the last T-11 M investigations were the Lithium collection by limiters and Lithium removal from the wall during tokamak conditioning. The Lithium behavior was studied with witness samples and mobile graphite probe. It was shown that Li-deposit on the sides of rail Li-limiter (collector) is proportional to the Li-emission from the Li-limiter (emitter). Lithium deposit on the ion-drift side of Li-limiter is up to 2-3 times more than on the electron-side. The efficiency of Li-collection by T-11 M limiters can be 60 ± 20% of total Lithium emission from Li-limiter during plasma discharges.

  4. Probes, Moons, and Kinetic Plasma Wakes

    NASA Astrophysics Data System (ADS)

    Hutchinson, I. H.; Malaspina, D.; Zhou, C.

    2017-10-01

    Nonmagnetic objects as varied as probes in tokamaks or moons in space give rise to flowing plasma wakes in which strong distortions of the ion and electron velocity distributions cause electrostatic instabilities. Non-linear phenomena such as electron holes are then produced. Historic probe theory largely ignores the resulting unstable character of the wake, but since we can now simulate computationally the non-linear wake phenomena, a timely challenge is to reassess the influence of these instabilities both on probe measurements and on the wakes themselves. Because the electron instability wavelengths are very short (typically a few Debye-lengths), controlled laboratory experiments face serious challenges in diagnosing them. That is one reason why they have long been neglected as an influence in probe interpretation. Space-craft plasma observations, by contrast, easily obtain sub-Debye-length resolution, but have difficulty with larger-scale reconstruction of the plasma spatial variation. In addition to surveying our developing understanding of wakes in magnetized plasmas, ongoing analysis of Artemis data concerning electron holes observed in the solar-wind lunar wake will be featured. Work partially supported by NASA Grant NNX16AG82G.

  5. Development of GEM detector for plasma diagnostics application: simulations addressing optimization of its performance

    NASA Astrophysics Data System (ADS)

    Chernyshova, M.; Malinowski, K.; Kowalska-Strzęciwilk, E.; Czarski, T.; Linczuk, P.; Wojeński, A.; Krawczyk, R. D.

    2017-12-01

    The advanced Soft X-ray (SXR) diagnostics setup devoted to studies of the SXR plasma emissivity is at the moment a highly relevant and important for ITER/DEMO application. Especially focusing on the energy range of tungsten emission lines, as plasma contamination by W and its transport in the plasma must be understood and monitored for W plasma-facing material. The Gas Electron Multiplier, with a spatial and energy-resolved photon detecting chamber, based SXR radiation detection system under development by our group may become such a diagnostic setup considering and solving many physical, technical and technological aspects. This work presents the results of simulations aimed to optimize a design of the detector's internal chamber and its performance. The study of the effect of electrodes alignment allowed choosing the gap distances which maximizes electron transmission and choosing the optimal magnitudes of the applied electric fields. Finally, the optimal readout structure design was identified suitable to collect a total formed charge effectively, basing on the range of the simulated electron cloud at the readout plane which was in the order of ~ 2 mm.

  6. A dual wavelength imaging system for plasma-surface interaction studies on the National Spherical Torus Experiment Upgrade

    DOE PAGES

    Scotti, F.; Soukhanovskii, V. A.

    2015-12-09

    A two-channel spectral imaging system based on a charge injection device radiation-hardened intensified camera was built for studies of plasma-surface interactions on divertor plasma facing components in the National Spherical Torus Experiment Upgrade (NSTX-U) tokamak. By means of commercially available mechanically referenced optical components, the two-wavelength setup images the light from the plasma, relayed by a fiber optic bundle, at two different wavelengths side-by-side on the same detector. Remotely controlled filter wheels are used for narrow band pass and neutral density filters on each optical path allowing for simultaneous imaging of emission at wavelengths differing in brightness up to 3more » orders of magnitude. Applications on NSTX-U will include the measurement of impurity influxes in the lower divertor strike point region and the imaging of plasma-material interaction on the head of the surface analysis probe MAPP (Material Analysis and Particle Probe). Furthermore, the diagnostic setup and initial results from its application on the lithium tokamak experiment are presented.« less

  7. Overview of HIT-SI Results and Plans

    NASA Astrophysics Data System (ADS)

    Ennis, D. A.; Akcay, C.; Hansen, C. J.; Hicks, N. K.; Hossack, A. C.; Jarboe, T. R.; Marklin, G. J.; Nelson, B. A.; Victor, B. S.

    2011-10-01

    Experiments in the Helicity Injected Torus-Steady Inductive (HIT-SI) device have achieved record spheromak current amplification during operations in deuterium plasmas. HIT-SI investigates steady inductive helicity injection with the aim of forming and sustaining a high-beta equilibrium in a spheromak geometry using two semi-toroidal injectors. Recent operations in deuterium plasmas have produced toroidal plasma currents greater than 50 kA, with current amplifications (Itor / Iinj) > 3 , and poloidal flux amplifications (ψpol /ψinj) > 10 . High performance deuterium discharges are achieved by initially conditioning the plasma-facing alumina surface of the HIT-SI confinement volume with helium plasmas. During subsequent deuterium operation the alumina surface strongly pumps deuterium, thereby limiting the density in the confinement volume. Additional measurements during high current deuterium discharges demonstrate reduced current and electron density fluctuations, impurity O III ion temperatures up to 50 eV and a toroidal current persistence for 0.6 ms after the injectors are shut off. Progress and plans for the HIT-SI3 configuration, with three injectors mounted on the same side of the confinement volume, will also be presented. Work supported by USDoE and ARRA.

  8. Plasma Irregularities on the Leading and Trailing Edges of Polar Cap Patches

    NASA Astrophysics Data System (ADS)

    Lamarche, L. J.; Varney, R. H.; Gillies, R.; Chartier, A.; Mitchell, C. N.

    2017-12-01

    Plasma irregularities in the polar cap have often been attributed to the gradient drift instability (GDI). Traditional fluid theories of GDI predicts irregularity growth only on the trailing edge of polar patches, where the plasma density gradient is parallel to the plasma drift velocity, however many observations show irregularities also form on the leading edge of patches. We consider decameter-scale irregularities detected by polar-latitude SuperDARN (Super Dual Auroral Radar Network) radars with any relationship between the background density gradients and drift velocity. Global electron density from the Multi-Instrument Data Analysis System (MIDAS), a GPS tomography routine, is used to provide context for where irregularities are observed relative to polar patches and finer-scale background density gradients are found from 3D imaging from both the North and Canada faces of the Resolute Bay Incoherent Scatter Radars (RISR-N and RISR-C) jointly. Shear-based instabilities are considered as mechanisms by which plasma irregularities could form on the leading edge of patches. Theoretical predictions of instability growth from both GDI and shear instabilities are compared with irregularity observations for the October 13, 2016 storm.

  9. Topography of the Dictyostelium discoideum plasma membrane: analysis of membrane asymmetry and intermolecular disulfide bonds.

    PubMed

    Shiozawa, J A; Jelenska, M M; Jacobson, B S

    1987-07-28

    Through the application of a unique method for isolating plasma membranes, it was possible to specifically iodinate cytoplasm-exposed plasma membrane proteins in vegetative cells of the cellular slime mold Dictyostelium discoideum. The original procedure [Chaney, L. K., & Jacobson, B. S. (1983) J. Biol. Chem. 258, 10062] which involved coating cells with colloidal silica has been modified to yield a more pure preparation. The presence of the continuous and dense silica pellicle on the outside surface of the isolated plasma membrane permitted the specific labeling of cytoplasm-exposed membrane proteins. Lactoperoxidase-catalyzed iodination was employed to label cell-surface and cytoplasm-exposed membrane proteins. The isolated and radioiodinated membranes were then compared and analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The cell-surface and cytoplasmic face labeling patterns were distinct. A total of 65 proteins were found to be accessible to at least one surface of the membrane. Sixteen intermolecular disulfide bond complexes were observed in the plasma membrane of Dictyostelium; most of these complexes involved glycoproteins and, hence, were exposed to the cell surface.

  10. Improving diabetes care among patients with severe mental illness: A systematic review of the effect of interventions.

    PubMed

    Grøn, A O; Dalsgaard, E-M; Ribe, A R; Seidu, S; Mora, G; Cebrián-Cuenca, A M; Charles, M

    2018-04-27

    Individuals with severe mental illness (SMI) who suffer from type 2 diabetes (T2DM) are likely to be sub-optimally treated for their physical condition. This study aimed to review the effect of interventions in this population. A systematic search in five databases was conducted in July 2017. Seven studies on multi-faced interventions were included. These comprised nutrition and exercise counselling, behavioural modelling and increased disease awareness aiming to reduce HbA1c, fasting plasma glucose, body mass index and weight. Non-pharmacologic interventions in individuals with SMI and T2DM could possibly improve measures of diabetes care, although with limited clinical impact. Copyright © 2018 Primary Care Diabetes Europe. Published by Elsevier Ltd. All rights reserved.

  11. Sputtering of rough surfaces: a 3D simulation study

    NASA Astrophysics Data System (ADS)

    von Toussaint, U.; Mutzke, A.; Manhard, A.

    2017-12-01

    The lifetime of plasma-facing components is critical for future magnetic confinement fusion power plants. A key process limiting the lifetime of the first-wall is sputtering by energetic ions. To provide a consistent modeling of the sputtering process of realistic geometries, the SDTrimSP-code has been extended to enable the processing of analytic as well as measured arbitrary 3D surface morphologies. The code has been applied to study the effect of varying the impact angle of ions on rough surfaces on the sputter yield as well as the influence of the aspect ratio of surface structures on the 2D distribution of the local sputtering yields. Depending on the surface morphologies reductions of the effective sputter yields to less than 25% have been observed in the simulation results.

  12. Fast hierarchical knowledge-based approach for human face detection in color images

    NASA Astrophysics Data System (ADS)

    Jiang, Jun; Gong, Jie; Zhang, Guilin; Hu, Ruolan

    2001-09-01

    This paper presents a fast hierarchical knowledge-based approach for automatically detecting multi-scale upright faces in still color images. The approach consists of three levels. At the highest level, skin-like regions are determinated by skin model, which is based on the color attributes hue and saturation in HSV color space, as well color attributes red and green in normalized color space. In level 2, a new eye model is devised to select human face candidates in segmented skin-like regions. An important feature of the eye model is that it is independent of the scale of human face. So it is possible for finding human faces in different scale with scanning image only once, and it leads to reduction the computation time of face detection greatly. In level 3, a human face mosaic image model, which is consistent with physical structure features of human face well, is applied to judge whether there are face detects in human face candidate regions. This model includes edge and gray rules. Experiment results show that the approach has high robustness and fast speed. It has wide application perspective at human-computer interactions and visual telephone etc.

  13. The functional basis of face evaluation

    PubMed Central

    Oosterhof, Nikolaas N.; Todorov, Alexander

    2008-01-01

    People automatically evaluate faces on multiple trait dimensions, and these evaluations predict important social outcomes, ranging from electoral success to sentencing decisions. Based on behavioral studies and computer modeling, we develop a 2D model of face evaluation. First, using a principal components analysis of trait judgments of emotionally neutral faces, we identify two orthogonal dimensions, valence and dominance, that are sufficient to describe face evaluation and show that these dimensions can be approximated by judgments of trustworthiness and dominance. Second, using a data-driven statistical model for face representation, we build and validate models for representing face trustworthiness and face dominance. Third, using these models, we show that, whereas valence evaluation is more sensitive to features resembling expressions signaling whether the person should be avoided or approached, dominance evaluation is more sensitive to features signaling physical strength/weakness. Fourth, we show that important social judgments, such as threat, can be reproduced as a function of the two orthogonal dimensions of valence and dominance. The findings suggest that face evaluation involves an overgeneralization of adaptive mechanisms for inferring harmful intentions and the ability to cause harm and can account for rapid, yet not necessarily accurate, judgments from faces. PMID:18685089

  14. Design of an Integrated-System FARAD Thruster

    NASA Technical Reports Server (NTRS)

    Polzin, K.A.; Rose, R.F.; Miller, R.; Owens, T.

    2007-01-01

    Pulsed inductive plasma accelerators are spacecraft propulsion devices in which energy is stored in a capacitor and then discharged through an inductive coil. The device is electrodeless, inducing a current s heet in a plasma located near the face of the coil. The propellant is accelerated and expelled at a high exhaust velocity (order of 10 km/s) through the interaction of the plasma current and the induced magne tic field, The Faraday Accelerator with RF-Assisted Discharge (FARAD) thruster is a type of pulsed inductive plasma accelerator in which t he plasma is preionized by a mechanism separate from that used to for m the current sheet and accelerate the gas. Employing a separate preionization mechanism allows for the formation of an inductive current s heet at much lower discharge energies and voltages than those used in previous pulsed inductive accelerators like the Pulsed Inductive Thr uster (PIT). In this paper, we present the design of a benchtop FARAD thruster with all the subsystems (mass injection, preionization, and acceleration) integrated into a single unit. Design of the thruster follows the guidelines and similarity performance parameters presented elsewhere. The system is designed to use the ringing, RF-frequency s ignal produced by a discharging Vector Inversion Generator (VIG) to p reionize the gas. The acceleration stage operates on the order of 100 J/pulse and can be driven by several different pulsed powertrains. These include a simple capacitor coupled to the system, a Bernardes and Merryman configuration, and a pulsecompression circuit that takes a temporally broad, low current pulse and transforms it into a short, h igh current pulse. A set of applied magnetic field coils are integrated into the system to guide the preionized propellant as it spreads ov er the face of the inductive acceleration coil. The coils are operate d in a pulsed mode, and the thruster can be operated without using the coils to determine if there is a performance improvement gain realiz ed when an applied field is present.

  15. Optimization of Indium Bump Morphology for Improved Flip Chip Devices

    NASA Technical Reports Server (NTRS)

    Jones, Todd J.; Nikzad, Shouleh; Cunningham, Thomas J.; Blazejewski, Edward; Dickie, Matthew R.; Hoenk, Michael E.; Greer, Harold F.

    2011-01-01

    Flip-chip hybridization, also known as bump bonding, is a packaging technique for microelectronic devices that directly connects an active element or detector to a substrate readout face-to-face, eliminating the need for wire bonding. In order to make conductive links between the two parts, a solder material is used between the bond pads on each side. Solder bumps, composed of indium metal, are typically deposited by thermal evaporation onto the active regions of the device and substrate. While indium bump technology has been a part of the electronic interconnect process field for many years and has been extensively employed in the infrared imager industry, obtaining a reliable, high-yield process for high-density patterns of bumps can be quite difficult. Under the right conditions, a moderate hydrogen plasma exposure can raise the temperature of the indium bump to the point where it can flow. This flow can result in a desirable shape where indium will efficiently wet the metal contact pad to provide good electrical contact to the underlying readout or imager circuit. However, it is extremely important to carefully control this process as the intensity of the hydrogen plasma treatment dramatically affects the indium bump morphology. To ensure the fine-tuning of this reflow process, it is necessary to have realtime feedback on the status of the bumps. With an appropriately placed viewport in a plasma chamber, one can image a small field (a square of approximately 5 millimeters on each side) of the bumps (10-20 microns in size) during the hydrogen plasma reflow process. By monitoring the shape of the bumps in real time using a video camera mounted to a telescoping 12 magnifying zoom lens and associated optical elements, an engineer can precisely determine when the reflow of the bumps has occurred, and can shut off the plasma before evaporation or de-wetting takes place.

  16. Effect of precursor solutions on ZnO film via solution precursor plasma spray and corresponding gas sensing performances

    NASA Astrophysics Data System (ADS)

    Yu, Z. X.; Ma, Y. Z.; Zhao, Y. L.; Huang, J. B.; Wang, W. Z.; Moliere, M.; Liao, H. L.

    2017-08-01

    Solution precursor plasma spraying (SPPS) as a novel thermal spray method was employed to deposit nano-structured ZnO thin film using different formulations of the precursor solution. This article focuses on the influence of the solution composition on the preferential orientation of crystal growth, on crystal size and surface morphology of the resulting ZnO films. The trend of preferential growth along (002) lattice plane of ZnO film was studied by slow scanning X-ray diffraction using a specific coefficient P(002). It appears that the thermal spray process promotes the buildup of ZnO films preferentially oriented along the c-axis. The shape of single particle tends to change from round shaped beads to hexagonal plates by increasing the volume ratio of ethanol in the solvent. Both cauliflower and honeycomb-like surface morphologies featuring high specific surface area and roughness were obtained through the SPPS process by varying solution composition. These ZnO films are hydrophobic with contact angle as high as 136°, which is seemingly associated with micro reliefs developing high surface specific area. Then the gas sensing performances of ZnO films preferentially oriented along (002) face were tentatively predicted using the "first principle calculation method" and were compared with those of conventional films that are mainly oriented along the (101) face. The (002) face displays better hydrogen adsorption capability than the (101) face with much larger resulting changes in electrical resistance. In conclusion, the c-axis oriented ZnO films obtained through SSPS have favorable performances to be used as sensitive layer in gas sensing applications.

  17. Effect of an Additional, Parallel Capacitor on Pulsed Inductive Plasma Accelerator Performance

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.; Sivak, Amy D.; Balla, Joseph V.

    2011-01-01

    A model of pulsed inductive plasma thrusters consisting of a set of coupled circuit equations and a one-dimensional momentum equation has been used to study the effects of adding a second, parallel capacitor into the system. The equations were nondimensionalized, permitting the recovery of several already-known scaling parameters and leading to the identification of a parameter that is unique to the particular topology studied. The current rise rate through the inductive acceleration coil was used as a proxy measurement of the effectiveness of inductive propellant ionization since higher rise rates produce stronger, potentially better ionizing electric fields at the coil face. Contour plots representing thruster performance (exhaust velocity and efficiency) and current rise rate in the coil were generated numerically as a function of the scaling parameters. The analysis reveals that when the value of the second capacitor is much less than the first capacitor, the performance of the two-capacitor system approaches that of the single-capacitor system. In addition, as the second capacitor is decreased in value the current rise rate can grow to be twice as great as the rise rate attained in the single capacitor case.

  18. Sandia technology: Engineering and science applications

    NASA Astrophysics Data System (ADS)

    Maydew, M. C.; Parrot, H.; Dale, B. C.; Floyd, H. L.; Leonard, J. A.; Parrot, L.

    1990-12-01

    This report discusses: protecting environment, safety, and health; Sandia's quality initiative; Sandia vigorously pursues technology transfer; scientific and technical education support programs; nuclear weapons development; recognizing battlefield targets with trained artificial neural networks; battlefield robotics: warfare at a distance; a spinning shell sizes up the enemy; thwarting would-be nuclear terrorists; unattended video surveillance system for nuclear facilities; making the skies safer for travelers; onboard instrumentation system to evaluate performance of stockpile bombs; keeping track with lasers; extended-life lithium batteries; a remote digital video link acquires images securely; guiding high-performance missiles with laser gyroscopes; nonvolatile memory chips for space applications; initiating weapon explosives with lasers; next-generation optoelectronics and microelectronics technology developments; chemometrics: new methods for improving chemical analysis; research team focuses ion beam to record-breaking intensities; standardizing the volt to quantum accuracy; new techniques improve robotic software development productivity; a practical laser plasma source for generating soft x-rays; exploring metal grain boundaries; massively parallel computing; modeling the amount of desiccant needed for moisture control; attacking pollution with sunshine; designing fuel-conversion catalysts with computers; extending a nuclear power plant's useful life; plasma-facing components for the International Thermonuclear Experimental Reactor.

  19. Development of a Buried Layer Platform at the OMEGA Laser to Study Open L-Shell Spectra from Coronal (non-LTE) Plasmas

    NASA Astrophysics Data System (ADS)

    Marley, Edward; Jarrot, Charlie; Schneider, Marilyn; Kemp, Elijah; Foord, Mark; Heeter, Robert; Liedahl, Duane; Widmann, Klause; Mauche, Christopher; Brown, Greg; Emig, James

    2017-10-01

    A buried layer platform is being developed at the OMEGA laser to study the open L-shell spectra of coronal (non LTE) plasmas (ne few 1021/cm3, Te 0.8-1.2 keV) of mid Z materials. Studies have been done using a 250 μm diameter dot composed of a layer of 1200 Å thick Zn between two 600 Å thick layers of Ti, in the center of a 1000 μm diameter, 13 μm thick beryllium tamper. Lasers heat the target from both sides for up to 3 ns. The size of the microdot vs time was measured with x-ray imaging (face-on and side-on). The radiant x-ray power was measured with a low-resolution absolutely calibrated x-ray spectrometer (DANTE). The temperature was measured from the Ti helium-beta complex. The use of this platform for the verification of atomic models is discussed. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  20. Accelerating the connection between experiments and models: The FACE-MDS experience

    NASA Astrophysics Data System (ADS)

    Norby, R. J.; Medlyn, B. E.; De Kauwe, M. G.; Zaehle, S.; Walker, A. P.

    2014-12-01

    The mandate is clear for improving communication between models and experiments to better evaluate terrestrial responses to atmospheric and climatic change. Unfortunately, progress in linking experimental and modeling approaches has been slow and sometimes frustrating. Recent successes in linking results from the Duke and Oak Ridge free-air CO2 enrichment (FACE) experiments with ecosystem and land surface models - the FACE Model-Data Synthesis (FACE-MDS) project - came only after a period of slow progress, but the experience points the way to future model-experiment interactions. As the FACE experiments were approaching their termination, the FACE research community made an explicit attempt to work together with the modeling community to synthesize and deliver experimental data to benchmark models and to use models to supply appropriate context for the experimental results. Initial problems that impeded progress were: measurement protocols were not consistent across different experiments; data were not well organized for model input; and parameterizing and spinning up models that were not designed for simulating a specific site was difficult. Once these problems were worked out, the FACE-MDS project has been very successful in using data from the Duke and ORNL FACE experiment to test critical assumptions in the models. The project showed, for example, that the stomatal conductance model most widely used in models was supported by experimental data, but models did not capture important responses such as increased leaf mass per unit area in elevated CO2, and did not appropriately represent foliar nitrogen allocation. We now have an opportunity to learn from this experience. New FACE experiments that have recently been initiated, or are about to be initiated, include a eucalyptus forest in Australia; the AmazonFACE experiment in a primary, tropical forest in Brazil; and a mature oak woodland in England. Cross-site science questions are being developed that will have a strong modeling framework, and modelers and experimentalists will work to establish common measurement protocols and data format. By starting the model-experiment connection early and learning from our past experiences, we expect to significantly shorten the time lags between advances in process-oriented studies and large-scale models.

  1. The Kinematic and Plasma Properties of X-Ray Knots in Cassiopeia A from the Chandra HETGS

    NASA Astrophysics Data System (ADS)

    Lazendic, J. S.; Dewey, D.; Schulz, N. S.; Canizares, C. R.

    2006-11-01

    We present high-resolution X-ray spectra from the young supernova remnant Cas A using a 70 ks observation taken by the Chandra High Energy Transmission Grating Spectrometer (HETGS). Line emission, dominated by Si and S ions, is used for high-resolution spectral analysis of many bright, narrow regions of Cas A to examine their kinematics and plasma state. These data allow a three-dimensional (3D) reconstruction using the unprecedented X-ray kinematic results: we derive unambiguous Doppler shifts for these selected regions, with values ranging between -2500 and +4000 km s-1 and the typical velocity error less than 200 km s-1. Plasma diagnostics of these regions, derived from line ratios of resolved He-like triplet lines and H-like lines of Si, indicate temperatures largely around 1 keV, which we model as O-rich reverse-shocked ejecta. The ionization age also does not vary considerably over these regions of the remnant. The gratings analysis was complemented by the nondispersed spectra from the same data set, which provided information on emission measure and elemental abundances for the selected Cas A regions. The derived electron density of X-ray emitting ejecta varies from 20 to 200 cm-3. The measured abundances of Mg, Si, S, and Ca are consistent with O being the dominant element in the Cas A plasma. With a diameter of 5', Cas A is the largest source observed with the HETGS to date. We therefore describe the technique we use and some of the challenges we face in the HETGS data reduction from such an extended, complex object.

  2. A numerical study of neutral-plasma interaction in magnetically confined plasmas

    NASA Astrophysics Data System (ADS)

    Taheri, S.; Shumlak, U.; King, J. R.

    2017-10-01

    Interactions between plasma and neutral species can have a large effect on the dynamic behavior of magnetically confined plasma devices, such as the edge region of tokamaks and the plasma formation of Z-pinches. The presence of neutrals can affect the stability of the pinch and change the dynamics of the pinch collapse, and they can lead to deposition of high energy particles on the first wall. However, plasma-neutral interactions can also have beneficial effects such as quenching the disruptions in tokamaks. In this research a reacting plasma-neutral model, which combines a magnetohydrodynamic (MHD) plasma model with a gas dynamic neutral fluid model, is used to study the interaction between plasma and neutral gas. Incorporating this model into NIMROD allows the study of electron-impact ionization, radiative recombination, and resonant charge-exchange in plasma-neutral systems. An accelerated plasma moving through a neutral gas background is modeled in both a parallel plate and a coaxial electrode configuration to explore the effect of neutral gas in pinch-like devices. This work is supported by a Grant from US DOE.

  3. Characterization of high flux magnetized helium plasma in SCU-PSI linear device

    NASA Astrophysics Data System (ADS)

    Xiaochun, MA; Xiaogang, CAO; Lei, HAN; Zhiyan, ZHANG; Jianjun, WEI; Fujun, GOU

    2018-02-01

    A high-flux linear plasma device in Sichuan University plasma-surface interaction (SCU-PSI) based on a cascaded arc source has been established to simulate the interactions between helium and hydrogen plasma with the plasma-facing components in fusion reactors. In this paper, the helium plasma has been characterized by a double-pin Langmuir probe. The results show that the stable helium plasma beam with a diameter of 26 mm was constrained very well at a magnetic field strength of 0.3 T. The core density and ion flux of helium plasma have a strong dependence on the applied current, magnetic field strength and gas flow rate. It could reach an electron density of 1.2 × 1019 m-3 and helium ion flux of 3.2 × 1022 m-2 s-1, with a gas flow rate of 4 standard liter per minute, magnetic field strength of 0.2 T and input power of 11 kW. With the addition of -80 V applied to the target to increase the helium ion energy and the exposure time of 2 h, the flat top temperature reached about 530 °C. The different sizes of nanostructured fuzz on irradiated tungsten and molybdenum samples surfaces under the bombardment of helium ions were observed by scanning electron microscopy. These results measured in the SCU-PSI linear device provide a reference for International Thermonuclear Experimental Reactor related PSI research.

  4. Lithium-based surfaces controlling fusion plasma behavior at the plasma-material interfacea)

    NASA Astrophysics Data System (ADS)

    Allain, Jean Paul; Taylor, Chase N.

    2012-05-01

    The plasma-material interface and its impact on the performance of magnetically confined thermonuclear fusion plasmas are considered to be one of the key scientific gaps in the realization of nuclear fusion power. At this interface, high particle and heat flux from the fusion plasma can limit the material's lifetime and reliability and therefore hinder operation of the fusion device. Lithium-based surfaces are now being used in major magnetic confinement fusion devices and have observed profound effects on plasma performance including enhanced confinement, suppression and control of edge localized modes (ELM), lower hydrogen recycling and impurity suppression. The critical spatial scale length of deuterium and helium particle interactions in lithium ranges between 5-100 nm depending on the incident particle energies at the edge and magnetic configuration. Lithium-based surfaces also range from liquid state to solid lithium coatings on a variety of substrates (e.g., graphite, stainless steel, refractory metal W/Mo/etc., or porous metal structures). Temperature-dependent effects from lithium-based surfaces as plasma facing components (PFC) include magnetohydrodynamic (MHD) instability issues related to liquid lithium, surface impurity, and deuterium retention issues, and anomalous physical sputtering increase at temperatures above lithium's melting point. The paper discusses the viability of lithium-based surfaces in future burning-plasma environments such as those found in ITER and DEMO-like fusion reactor devices.

  5. Secondary electron emission from plasma-generated nanostructured tungsten fuzz

    DOE PAGES

    Patino, M.; Raitses, Y.; Wirz, R.

    2016-11-14

    Recently, several researchers (e.g., Q. Yang, Y.-W. You, L. Liu, H. Fan, W. Ni, D. Liu, C. S. Liu, G. Benstetter, and Y. Wang, Scientific Reports 5, 10959 (2015)) have shown that tungsten fuzz can grow on a hot tungsten surface under bombardment by energetic helium ions in different plasma discharges and applications, including magnetic fusion devices with plasma facing tungsten components. This work reports direct measurements of the total effective secondary electron emission (SEE) from tungsten fuzz. Using dedicated material surface diagnostics and in-situ characterization, we find two important results: (1) SEE values for tungsten fuzz are 40-63% lowermore » than for smooth tungsten and (2) the SEE values for tungsten fuzz are independent of the angle of the incident electron. The reduction in SEE from tungsten fuzz is most pronounced at high incident angles, which has important implications for many plasma devices since in a negative-going sheath the potential structure leads to relatively high incident angles for the electrons at the plasma confining walls. Overall, low SEE will create a relatively higher sheath potential difference that reduces plasma electron energy loss to the confining wall. Thus the presence or self-generation in a plasma of a low SEE surface such as tungsten fuzz can be desirable for improved performance of many plasma devices.:7px« less

  6. Effective connectivities of cortical regions for top-down face processing: A Dynamic Causal Modeling study

    PubMed Central

    Li, Jun; Liu, Jiangang; Liang, Jimin; Zhang, Hongchuan; Zhao, Jizheng; Rieth, Cory A.; Huber, David E.; Li, Wu; Shi, Guangming; Ai, Lin; Tian, Jie; Lee, Kang

    2013-01-01

    To study top-down face processing, the present study used an experimental paradigm in which participants detected non-existent faces in pure noise images. Conventional BOLD signal analysis identified three regions involved in this illusory face detection. These regions included the left orbitofrontal cortex (OFC) in addition to the right fusiform face area (FFA) and right occipital face area (OFA), both of which were previously known to be involved in both top-down and bottom-up processing of faces. We used Dynamic Causal Modeling (DCM) and Bayesian model selection to further analyze the data, revealing both intrinsic and modulatory effective connectivities among these three cortical regions. Specifically, our results support the claim that the orbitofrontal cortex plays a crucial role in the top-down processing of faces by regulating the activities of the occipital face area, and the occipital face area in turn detects the illusory face features in the visual stimuli and then provides this information to the fusiform face area for further analysis. PMID:20423709

  7. Photogrammetric Network for Evaluation of Human Faces for Face Reconstruction Purpose

    NASA Astrophysics Data System (ADS)

    Schrott, P.; Detrekői, Á.; Fekete, K.

    2012-08-01

    Facial reconstruction is the process of reconstructing the geometry of faces of persons from skeletal remains. A research group (BME Cooperation Research Center for Biomechanics) was formed representing several organisations to combine knowledgebases of different disciplines like anthropology, medical, mechanical, archaeological sciences etc. to computerize the face reconstruction process based on a large dataset of 3D face and skull models gathered from living persons: cranial data from CT scans and face models from photogrammetric evaluations. The BUTE Dept. of Photogrammetry and Geoinformatics works on the method and technology of the 3D data acquisition for the face models. In this paper we will present the research and results of the photogrammetric network design, the modelling to deal with visibility constraints, and the investigation of the developed basic photogrammetric configuration to specify the result characteristics to be expected using the device built for the photogrammetric face measurements.

  8. More Realistic Face Model Surface Improves Relevance of Pediatric In-Vitro Aerosol Studies

    PubMed Central

    Amirav, Israel; Halamish, Asaf; Gorenberg, Miguel; Omar, Hamza; Newhouse, Michael T.

    2015-01-01

    Background Various hard face models are commonly used to evaluate the efficiency of aerosol face masks. Softer more realistic “face” surface materials, like skin, deform upon mask application and should provide more relevant in-vitro tests. Studies that simultaneously take into consideration many of the factors characteristic of the in vivo face are lacking. These include airways, various application forces, comparison of various devices, comparison with a hard-surface model and use of a more representative model face based on large numbers of actual faces. Aim To compare mask to “face” seal and aerosol delivery of two pediatric masks using a soft vs. a hard, appropriately representative, pediatric face model under various applied forces. Methods Two identical face models and upper airways replicas were constructed, the only difference being the suppleness and compressibility of the surface layer of the “face.” Integrity of the seal and aerosol delivery of two different masks [AeroChamber (AC) and SootherMask (SM)] were compared using a breath simulator, filter collection and realistic applied forces. Results The soft “face” significantly increased the delivery efficiency and the sealing characteristics of both masks. Aerosol delivery with the soft “face” was significantly greater for the SM compared to the AC (p< 0.01). No statistically significant difference between the two masks was observed with the hard “face.” Conclusions The material and pliability of the model “face” surface has a significant influence on both the seal and delivery efficiency of face masks. This finding should be taken into account during in-vitro aerosol studies. PMID:26090661

  9. Inductively coupled plasma mass spectrometer with laser ablation metal ions release detection in the human mouth

    NASA Astrophysics Data System (ADS)

    Kueerova, Hana; Dostalova, Tatjana; Prochazkova, J.

    2002-06-01

    Presence of more dental alloys in oral cavity often causes pathological symptoms. Due to various and multi-faced symptomatology, they tend to be a source of significant problems not only for the patient but also for the dentist. Metal ions released from alloys can cause subjective and objective symptoms in mouth. The aim of this study was detection of metal elements presence in saliva. There were 4 groups of examined persons: with intact teeth (15 individuals) with metallic restorations, pathological currents 5-30 (mu) A, multi-faced subjective symptomatology and uncharacteristic objective diagnosis (32 patients), with metallic restorations and no subjective symptoms (14 persons) and with metallic restorations, without pathological currents and with problems related to galvanism (13 patients). Presence of 14 metal elements was checked by inductively coupled plasma mass spectrometer with laser ablation. Nd:YAG laser detector was used. There were significant differences in content of silver, gold and mercury between persons with intact teeth and other three groups. There were no differences found between subjects with and without galvanic currents, and presence of subjective and objective symptoms.

  10. Energy deposition and thermal effects of runaway electrons in ITER-FEAT plasma facing components

    NASA Astrophysics Data System (ADS)

    Maddaluno, G.; Maruccia, G.; Merola, M.; Rollet, S.

    2003-03-01

    The profile of energy deposited by runaway electrons (RAEs) of 10 or 50 MeV in International Thermonuclear Experimental Reactor-Fusion Energy Advanced Tokamak (ITER-FEAT) plasma facing components (PFCs) and the subsequent temperature pattern have been calculated by using the Monte Carlo code FLUKA and the finite element heat conduction code ANSYS. The RAE energy deposition density was assumed to be 50 MJ/m 2 and both 10 and 100 ms deposition times were considered. Five different configurations of PFCs were investigated: primary first wall armoured with Be, with and without protecting CFC poloidal limiters, both port limiter first wall options (Be flat tile and CFC monoblock), divertor baffle first wall, armoured with W. The analysis has outlined that for all the configurations but one (port limiter with Be flat tile) the heat sink and the cooling tube beneath the armour are well protected for both RAE energies and for both energy deposition times. On the other hand large melting (W, Be) or sublimation (C) of the surface layer occurs, eventually affecting the PFCs lifetime.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shaw, Guinevere C.; Bannister, Mark E.; Biewer, Theodore M.

    Laser-induced breakdown spectroscopy (LIBS) results are presented that provide depth-resolved identification of He implanted in polycrystalline tungsten (PC-W) targets by a 200 keV He+ ion beam, with a surface temperature of approximately 900 °C and a peak fluence of 10 23 m –2. He retention, and the influence of He on deuterium and tritium recycling, permeation, and retention in PC-W plasma facing components are important questions for the divertor and plasma facing components in a fusion reactor, yet are difficult to quantify. The purpose of this work is to demonstrate the ability of LIBS to identify helium in tungsten; tomore » investigate the sensitivity of laser parameters including, laser energy and gate delay, that directly influence the sensitivity and depth resolution of LIBS; and to perform a proof-of-principle experiment using LIBS to measure relative He intensities as a function of depth. In conclusion, the results presented demonstrate the potential not only to identify helium but also to develop a methodology to quantify gaseous impurity concentration in PC-W as a function of depth.« less

  12. The detection of He in tungsten following ion implantation by laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Shaw, G.; Bannister, M.; Biewer, T. M.; Martin, M. Z.; Meyer, F.; Wirth, B. D.

    2018-01-01

    Laser-induced breakdown spectroscopy (LIBS) results are presented that provide depth-resolved identification of He implanted in polycrystalline tungsten (PC-W) targets by a 200 keV He+ ion beam, with a surface temperature of approximately 900 °C and a peak fluence of 1023 m-2. He retention, and the influence of He on deuterium and tritium recycling, permeation, and retention in PC-W plasma facing components are important questions for the divertor and plasma facing components in a fusion reactor, yet are difficult to quantify. The purpose of this work is to demonstrate the ability of LIBS to identify helium in tungsten; to investigate the sensitivity of laser parameters including, laser energy and gate delay, that directly influence the sensitivity and depth resolution of LIBS; and to perform a proof-of-principle experiment using LIBS to measure relative He intensities as a function of depth. The results presented demonstrate the potential not only to identify helium but also to develop a methodology to quantify gaseous impurity concentration in PC-W as a function of depth.

  13. A survey of real face modeling methods

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoyue; Dai, Yugang; He, Xiangzhen; Wan, Fucheng

    2017-09-01

    The face model has always been a research challenge in computer graphics, which involves the coordination of multiple organs in faces. This article explained two kinds of face modeling method which is based on the data driven and based on parameter control, analyzed its content and background, summarized their advantages and disadvantages, and concluded muscle model which is based on the anatomy of the principle has higher veracity and easy to drive.

  14. Tungsten: an option for divertor and main chamber plasma facing components in future fusion devices

    NASA Astrophysics Data System (ADS)

    Neu, R.; Dux, R.; Kallenbach, A.; Pütterich, T.; Balden, M.; Fuchs, J. C.; Herrmann, A.; Maggi, C. F.; O'Mullane, M.; Pugno, R.; Radivojevic, I.; Rohde, V.; Sips, A. C. C.; Suttrop, W.; Whiteford, A.; ASDEX Upgrade Team

    2005-03-01

    The tungsten programme in ASDEX Upgrade is pursued towards a full high-Z device. The spectroscopic diagnostic of W has been extended and refined and the cooling factor of W has been re-evaluated. The W coated surfaces now represent a fraction of 65% of all plasma facing components (24.8 m2). The only two major components that are not yet coated are the strikepoint region of the lower divertor as well as the limiters at the low field side. While extending the W surfaces, the W concentration and the discharge behaviour have changed gradually pointing to critical issues when operating with a W wall: anomalous transport in the plasma centre should not be too low, otherwise neoclassical accumulation can occur. One very successful remedy is the addition of central RF heating at the 20-30% level. Regimes with low ELM activity show increased impurity concentration over the whole plasma radius. These discharges can be cured by increasing the ELM frequency through pellet ELM pacemaking or by higher heating power. Moderate gas puffing also mitigates the impurity influx and penetration, however, at the expense of lower confinement. The erosion yield at the low field side guard limiter can be as high as 10-3 and fast particle losses from NBI were identified to contribute a significant part to the W sputtering. Discharges run in the upper W coated divertor do not show higher W concentrations than comparable discharges in the lower C based divertor. According to impurity transport calculations no strong high-Z accumulation is expected for the ITER standard scenario as long as the anomalous transport is at least as high as the neoclassical one.

  15. Crystal orientation effects on helium ion depth distributions and adatom formation processes in plasma-facing tungsten

    DOE PAGES

    Hammond, Karl D.; Wirth, Brian D.

    2014-10-09

    Here, we present atomistic simulations that show the effect of surface orientation on helium depth distributions and surface feature formation as a result of low-energy helium plasma exposure. We find a pronounced effect of surface orientation on the initial depth of implanted helium ions, as well as a difference in reflection and helium retention across different surface orientations. Our results indicate that single helium interstitials are sufficient to induce the formation of adatom/substitutional helium pairs under certain highly corrugated tungsten surfaces, such as {1 1 1}-orientations, leading to the formation of a relatively concentrated layer of immobile helium immediately belowmore » the surface. The energies involved for helium-induced adatom formation on {1 1 1} and {2 1 1} surfaces are exoergic for even a single adatom very close to the surface, while {0 0 1} and {0 1 1} surfaces require two or even three helium atoms in a cluster before a substitutional helium cluster and adatom will form with reasonable probability. This phenomenon results in much higher initial helium retention during helium plasma exposure to {1 1 1} and {2 1 1} tungsten surfaces than is observed for {0 0 1} or {0 1 1} surfaces and is much higher than can be attributed to differences in the initial depth distributions alone. Lastly, the layer thus formed may serve as nucleation sites for further bubble formation and growth or as a source of material embrittlement or fatigue, which may have implications for the formation of tungsten “fuzz” in plasma-facing divertors for magnetic-confinement nuclear fusion reactors and/or the lifetime of such divertors.« less

  16. Access to edge scenarios for testing a scraper element in early operation phases of Wendelstein 7-X

    DOE PAGES

    Holbe, H.; Pedersen, T. Sunn; Geiger, J.; ...

    2016-01-29

    The edge topology of magnetic fusion devices is decisive for the control of the plasma exhaust. In Wendelstein 7-X, the island divertor concept will be used, for which the edge topology can change significantly as the internal currents in a plasma discharge evolve towards steady-state. Consequently, the device has been optimized to minimize such internal currents, in particular the bootstrap current [1]. Nonetheless, there are predicted pulse scenarios where effects of the remaining internal currents could potentially lead to overload of plasma-facing components. These internal currents are predicted to evolve on long time scales (tens of seconds) so their effectsmore » on the edge topology and the divertor heat loads may not be experimentally accessible in the first years of W7-X operation, where only relatively short pulses are possible. However, we show here that for at least one important long-pulse divertor operation issue, relevant physics experiments can be performed already in short-pulse operation, through judicious adjustment of the edge topology by the use of the existing coil sets. The specific issue studied here is a potential overload of the divertor element edges. This overload might be mitigated by the installation of an extra set of plasma-facing components, so-called scraper elements, as suggested in earlier publications. It is shown here that by a targeted control of edge topology, the effectiveness of such scraper elements can be tested already with uncooled test-scraper elements in short-pulse operation. Furthermore, this will allow an early and well-informed decision on whether long-pulse-capable (actively cooled) scraper elements should be built and installed.« less

  17. Contactless electroreflectance studies of surface potential barrier for N- and Ga-face epilayers grown by molecular beam epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kudrawiec, R.; Janicki, L.; Gladysiewicz, M.

    2013-07-29

    Two series of N- and Ga-face GaN Van Hoof structures were grown by plasma-assisted molecular beam epitaxy to study the surface potential barrier by contactless electroreflectance (CER). A clear CER resonance followed by strong Franz-Keldysh oscillation of period varying with the thickness of undoped GaN layer was observed for these structures. This period was much shorter for N-polar structures that means smaller surface potential barrier in these structures than in Ga-polar structures. From the analysis of built-in electric field it was determined that the Fermi-level is located 0.27 ± 0.05 and 0.60 ± 0.05 eV below the conduction band formore » N- and Ga-face GaN surface, respectively.« less

  18. One-dimensional hybrid model of plasma-solid interaction in argon plasma at higher pressures

    NASA Astrophysics Data System (ADS)

    Jelínek, P.; Hrach, R.

    2007-04-01

    One of problems important in the present plasma science is the surface treatment of materials at higher pressures, including the atmospheric pressure plasma. The theoretical analysis of processes in such plasmas is difficult, because the theories derived for collisionless or slightly collisional plasma lose their validity at medium and high pressures, therefore the methods of computational physics are being widely used. There are two basic ways, how to model the physical processes taking place during the interaction of plasma with immersed solids. The first technique is the particle approach, the second one is called the fluid modelling. Both these approaches have their limitations-small efficiency of particle modelling and limited accuracy of fluid models. In computer modelling is endeavoured to use advantages by combination of these two approaches, this combination is named hybrid modelling. In our work one-dimensional hybrid model of plasma-solid interaction has been developed for an electropositive plasma at higher pressures. We have used hybrid model for this problem only as the test for our next applications, e.g. pulsed discharge, RF discharge, etc. The hybrid model consists of a combined molecular dynamics-Monte Carlo model for fast electrons and fluid model for slow electrons and positive argon ions. The latter model also contains Poisson's equation, to obtain a self-consistent electric field distribution. The derived results include the spatial distributions of electric potential, concentrations and fluxes of individual charged species near the substrate for various pressures and for various probe voltage bias.

  19. The complex duration perception of emotional faces: effects of face direction.

    PubMed

    Kliegl, Katrin M; Limbrecht-Ecklundt, Kerstin; Dürr, Lea; Traue, Harald C; Huckauf, Anke

    2015-01-01

    The perceived duration of emotional face stimuli strongly depends on the expressed emotion. But, emotional faces also differ regarding a number of other features like gaze, face direction, or sex. Usually, these features have been controlled by only using pictures of female models with straight gaze and face direction. Doi and Shinohara (2009) reported that an overestimation of angry faces could only be found when the model's gaze was oriented toward the observer. We aimed at replicating this effect for face direction. Moreover, we explored the effect of face direction on the duration perception sad faces. Controlling for the sex of the face model and the participant, female and male participants rated the duration of neutral, angry, and sad face stimuli of both sexes photographed from different perspectives in a bisection task. In line with current findings, we report a significant overestimation of angry compared to neutral face stimuli that was modulated by face direction. Moreover, the perceived duration of sad face stimuli did not differ from that of neutral faces and was not influenced by face direction. Furthermore, we found that faces of the opposite sex appeared to last longer than those of the same sex. This outcome is discussed with regards to stimulus parameters like the induced arousal, social relevance, and an evolutionary context.

  20. Temporal patterns of mental model convergence: implications for distributed teams interacting in electronic collaboration spaces.

    PubMed

    McComb, Sara; Kennedy, Deanna; Perryman, Rebecca; Warner, Norman; Letsky, Michael

    2010-04-01

    Our objective is to capture temporal patterns in mental model convergence processes and differences in these patterns between distributed teams using an electronic collaboration space and face-to-face teams with no interface. Distributed teams, as sociotechnical systems, collaborate via technology to work on their task. The way in which they process information to inform their mental models may be examined via team communication and may unfold differently than it does in face-to-face teams. We conducted our analysis on 32 three-member teams working on a planning task. Half of the teams worked as distributed teams in an electronic collaboration space, and the other half worked face-to-face without an interface. Using event history analysis, we found temporal interdependencies among the initial convergence points of the multiple mental models we examined. Furthermore, the timing of mental model convergence and the onset of task work discussions were related to team performance. Differences existed in the temporal patterns of convergence and task work discussions across conditions. Distributed teams interacting via an electronic interface and face-to-face teams with no interface converged on multiple mental models, but their communication patterns differed. In particular, distributed teams with an electronic interface required less overall communication, converged on all mental models later in their life cycles, and exhibited more linear cognitive processes than did face-to-face teams interacting verbally. Managers need unique strategies for facilitating communication and mental model convergence depending on teams' degrees of collocation and access to an interface, which in turn will enhance team performance.

  1. Optimization of kinetic parameters for the degradation of plasmid DNA in rat plasma

    NASA Astrophysics Data System (ADS)

    Chaudhry, Q. A.

    2014-12-01

    Biotechnology is a rapidly growing area of research work in the field of pharmaceutical sciences. The study of pharmacokinetics of plasmid DNA (pDNA) is an important area of research work. It has been observed that the process of gene delivery faces many troubles on the transport of pDNA towards their target sites. The topoforms of pDNA has been termed as super coiled (S-C), open circular (O-C) and linear (L), the kinetic model of which will be presented in this paper. The kinetic model gives rise to system of ordinary differential equations (ODEs), the exact solution of which has been found. The kinetic parameters, which are responsible for the degradation of super coiled, and the formation of open circular and linear topoforms have a great significance not only in vitro but for modeling of further processes as well, therefore need to be addressed in great detail. For this purpose, global optimization techniques have been adopted, thus finding the optimal results for the said model. The results of the model, while using the optimal parameters, were compared against the measured data, which gives a nice agreement.

  2. The assessment of cold atmospheric plasma treatment of DNA in synthetic models of tissue fluid, tissue and cells

    NASA Astrophysics Data System (ADS)

    Szili, Endre J.; Gaur, Nishtha; Hong, Sung-Ha; Kurita, Hirofumi; Oh, Jun-Seok; Ito, Masafumi; Mizuno, Akira; Hatta, Akimitsu; Cowin, Allison J.; Graves, David B.; Short, Robert D.

    2017-07-01

    There is a growing literature database that demonstrates the therapeutic potential of cold atmospheric plasma (herein referred to as plasma). Given the breadth of proposed applications (e.g. from teeth whitening to cancer therapy) and vast gamut of plasma devices being researched, it is timely to consider plasma interactions with specific components of the cell in more detail. Plasma can produce highly reactive oxygen and nitrogen species (RONS) such as the hydroxyl radical (OH•), peroxynitrite (ONOO-) and superoxide (\\text{O}2- ) that would readily modify essential biomolecules such as DNA. These modifications could in principle drive a wide range of biological processes. Against this possibility, the reported therapeutic action of plasmas are not underpinned by a particularly deep knowledge of the potential plasma-tissue, -cell or -biomolecule interactions. In this study, we aim to partly address this issue by developing simple models to study plasma interactions with DNA, in the form of DNA-strand breaks. This is carried out using synthetic models of tissue fluid, tissue and cells. We argue that this approach makes experimentation simpler, more cost-effective and faster than compared to working with real biological materials and cells. Herein, a helium plasma jet source was utilised for these experiments. We show that the plasma jet readily induced DNA-strand breaks in the tissue fluid model and in the cell model, surprisingly without any significant poration or rupture of the phospholipid membrane. In the plasma jet treatment of the tissue model, DNA-strand breaks were detected in the tissue mass after pro-longed treatment (on the time-scale of minutes) with no DNA-strand breaks being detected in the tissue fluid model underneath the tissue model. These data are discussed in the context of the therapeutic potential of plasma.

  3. Multi-scale study of the isotope effect in ISTTOK

    NASA Astrophysics Data System (ADS)

    Liu, B.; Silva, C.; Figueiredo, H.; Pedrosa, M. A.; van Milligen, B. Ph.; Pereira, T.; Losada, U.; Hidalgo, C.

    2016-05-01

    The isotope effect, namely the isotope dependence of plasma confinement, is still one of the principal scientific conundrums facing the magnetic fusion community. We have investigated the impact of isotope mass on multi-scale mechanisms, including the characterization of radial correlation lengths (\\boldsymbol{L}{r} ) and long-range correlations (LRC) of plasma fluctuations using multi-array Langmuir probe system, in hydrogen (H) and deuterium (D) plasmas in the ISTTOK tokamak. We found that when changing plasma composition from the H dominated to D dominated, the LRC amplitude increased markedly (10-30%) and the \\boldsymbol{L}{r} increased slightly (~10%). The particle confinement also improved by about 50%. The changes of LRC and \\boldsymbol{L}{r} are congruent with previous findings in the TEXTOR tokamak (Xu et al 2013 Phys. Rev. Lett. 110 265005). In addition, using biorthogonal decomposition, both geodesic acoustic modes and very low frequency (<5 kHz) coherent modes were found to be contributing to LRC.

  4. Effects of ELMs on ITER divertor armour materials

    NASA Astrophysics Data System (ADS)

    Zhitlukhin, A.; Klimov, N.; Landman, I.; Linke, J.; Loarte, A.; Merola, M.; Podkovyrov, V.; Federici, G.; Bazylev, B.; Pestchanyi, S.; Safronov, V.; Hirai, T.; Maynashev, V.; Levashov, V.; Muzichenko, A.

    2007-06-01

    This paper is concerned with investigation of an erosion of the ITER-like divertor plasma facing components under plasma heat loads expected during the Type I ELMs in ITER. These experiments were carried out on plasma accelerator QSPA at the SRC RF TRINITI under EU/RF collaboration. Targets were exposed by series repeated plasma pulses with heat loads in a range of 0.5-1.5 MJ/m2 and pulse duration 0.5 ms. Erosion of CFC macrobrushes was determined mainly by sublimation of PAN-fibres that was less than 2.5 μm per pulse. The CFC erosion was negligible at the energy density less than 0.5 MJ/m2 and was increased to the average value 0.3 μm per pulse at 1.5 MJ/m2. The pure tungsten macrobrushes erosion was small in the energy range of 0.5-1.3 MJ/m2. The sharp growth of tungsten erosion and the intense droplet ejection were observed at the energy density of 1.5 MJ/m2.

  5. Fusion Studies in Japan

    NASA Astrophysics Data System (ADS)

    Ogawa, Yuichi

    2016-05-01

    A new strategic energy plan decided by the Japanese Cabinet in 2014 strongly supports the steady promotion of nuclear fusion development activities, including the ITER project and the Broader Approach activities from the long-term viewpoint. Atomic Energy Commission (AEC) in Japan formulated the Third Phase Basic Program so as to promote an experimental fusion reactor project. In 2005 AEC has reviewed this Program, and discussed on selection and concentration among many projects of fusion reactor development. In addition to the promotion of ITER project, advanced tokamak research by JT-60SA, helical plasma experiment by LHD, FIREX project in laser fusion research and fusion engineering by IFMIF were highly prioritized. Although the basic concept is quite different between tokamak, helical and laser fusion researches, there exist a lot of common features such as plasma physics on 3-D magnetic geometry, high power heat load on plasma facing component and so on. Therefore, a synergetic scenario on fusion reactor development among various plasma confinement concepts would be important.

  6. Simulation of tokamak armour erosion and plasma contamination at intense transient heat fluxes in ITER

    NASA Astrophysics Data System (ADS)

    Landman, I. S.; Bazylev, B. N.; Garkusha, I. E.; Loarte, A.; Pestchanyi, S. E.; Safronov, V. M.

    2005-03-01

    For ITER, the potential material damage of plasma facing tungsten-, CFC-, or beryllium components during transient processes such as ELMs or mitigated disruptions are simulated numerically using the MHD code FOREV-2D and the melt motion code MEMOS-1.5D for a heat deposition in the range of 0.5-3 MJ/m 2 on the time scale of 0.1-1 ms. Such loads can cause significant evaporation at the target surface and a contamination of the SOL by the ions of evaporated material. Results are presented on carbon plasma dynamics in toroidal geometry and on radiation fluxes from the SOL carbon ions obtained with FOREV-2D. The validation of MEMOS-1.5D against the plasma gun tokamak simulators MK-200UG and QSPA-Kh50, based on the tungsten melting threshold, is described. Simulations with MEMOS-1.5D for a beryllium first wall that provide important details about the melt motion dynamics and typical features of the damage are reported.

  7. Analysis of Helium Segregation on Surfaces of Plasma-Exposed Tungsten

    NASA Astrophysics Data System (ADS)

    Maroudas, Dimitrios; Hu, Lin; Hammond, Karl; Wirth, Brian

    2015-11-01

    We report a systematic theoretical and atomic-scale computational study of implanted helium segregation on surfaces of tungsten, which is considered as a plasma facing component in nuclear fusion reactors. We employ a hierarchy of atomic-scale simulations, including molecular statics to understand the origin of helium surface segregation, targeted molecular-dynamics (MD) simulations of near-surface cluster reactions, and large-scale MD simulations of implanted helium evolution in plasma-exposed tungsten. We find that small, mobile helium clusters (of 1-7 He atoms) in the near-surface region are attracted to the surface due to an elastic interaction force. This thermodynamic driving force induces drift fluxes of these mobile clusters toward the surface, facilitating helium segregation. Moreover, the clusters' drift toward the surface enables cluster reactions, most importantly trap mutation, at rates much higher than in the bulk material. This cluster dynamics has significant effects on the surface morphology, near-surface defect structures, and the amount of helium retained in the material upon plasma exposure.

  8. Neutron-Irradiated Samples as Test Materials for MPEX

    DOE PAGES

    Ellis, Ronald James; Rapp, Juergen

    2015-10-09

    Plasma Material Interaction (PMI) is a major concern in fusion reactor design and analysis. The Material-Plasma Exposure eXperiment (MPEX) will explore PMI under fusion reactor plasma conditions. Samples with accumulated displacements per atom (DPA) damage produced by fast neutron irradiations in the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL) will be studied in the MPEX facility. This paper presents assessments of the calculated induced radioactivity and resulting radiation dose rates of a variety of potential fusion reactor plasma-facing materials (such as tungsten). The scientific code packages MCNP and SCALE were used to simulate irradiation of themore » samples in HFIR including the generation and depletion of nuclides in the material and the subsequent composition, activity levels, gamma radiation fields, and resultant dose rates as a function of cooling time. A challenge of the MPEX project is to minimize the radioactive inventory in the preparation of the samples and the sample dose rates for inclusion in the MPEX facility.« less

  9. Super-Resolution Microscopy: Shedding Light on the Cellular Plasma Membrane.

    PubMed

    Stone, Matthew B; Shelby, Sarah A; Veatch, Sarah L

    2017-06-14

    Lipids and the membranes they form are fundamental building blocks of cellular life, and their geometry and chemical properties distinguish membranes from other cellular environments. Collective processes occurring within membranes strongly impact cellular behavior and biochemistry, and understanding these processes presents unique challenges due to the often complex and myriad interactions between membrane components. Super-resolution microscopy offers a significant gain in resolution over traditional optical microscopy, enabling the localization of individual molecules even in densely labeled samples and in cellular and tissue environments. These microscopy techniques have been used to examine the organization and dynamics of plasma membrane components, providing insight into the fundamental interactions that determine membrane functions. Here, we broadly introduce the structure and organization of the mammalian plasma membrane and review recent applications of super-resolution microscopy to the study of membranes. We then highlight some inherent challenges faced when using super-resolution microscopy to study membranes, and we discuss recent technical advancements that promise further improvements to super-resolution microscopy and its application to the plasma membrane.

  10. Tritium Plasma Experiment Upgrade and Improvement of Surface Diagnostic Capabilities at STAR Facility for Enhancing Tritium and Nuclear PMI Sciences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shimada, M.; Taylor, C. N.; Pawelko, R. J.

    2016-04-01

    The Tritium Plasma Experiment (TPE) is a unique high-flux linear plasma device that can handle beryllium, tritium, and neutron-irradiated plasma facing materials, and is the only existing device dedicated to directly study tritium retention and permeation in neutron-irradiated materials with tritium [M. Shimada et.al., Rev. Sci. Instru. 82 (2011) 083503 and and M. Shimada, et.al., Nucl. Fusion 55 (2015) 013008]. The plasma-material-interaction (PMI) determines a boundary condition for diffusing tritium into bulk PFCs, and the tritium PMI is crucial for enhancing fundamental sciences that dictate tritium fuel cycles and safety and are high importance to an FNSF and DEMO. Recentlymore » the TPE has undergone major upgrades in its electrical and control systems. New DC power supplies and a new control center enable remote plasma operations from outside of the contamination area for tritium, minimizing the possible exposure risk with tritium and beryllium. We discuss the electrical upgrade, enhanced operational safety, improved plasma performance, and development of optical spectrometer system. This upgrade not only improves operational safety of the worker, but also enhances plasma performance to better simulate extreme plasma-material conditions expected in ITER, Fusion Nuclear Science Facility (FNSF), and Demonstration reactor (DEMO). This work was prepared for the U.S. Department of Energy, Office of Fusion Energy Sciences, under the DOE Idaho Field Office contract number DE-AC07-05ID14517.« less

  11. Alternative modeling methods for plasma-based Rf ion sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veitzer, Seth A., E-mail: veitzer@txcorp.com; Kundrapu, Madhusudhan, E-mail: madhusnk@txcorp.com; Stoltz, Peter H., E-mail: phstoltz@txcorp.com

    Rf-driven ion sources for accelerators and many industrial applications benefit from detailed numerical modeling and simulation of plasma characteristics. For instance, modeling of the Spallation Neutron Source (SNS) internal antenna H{sup −} source has indicated that a large plasma velocity is induced near bends in the antenna where structural failures are often observed. This could lead to improved designs and ion source performance based on simulation and modeling. However, there are significant separations of time and spatial scales inherent to Rf-driven plasma ion sources, which makes it difficult to model ion sources with explicit, kinetic Particle-In-Cell (PIC) simulation codes. Inmore » particular, if both electron and ion motions are to be explicitly modeled, then the simulation time step must be very small, and total simulation times must be large enough to capture the evolution of the plasma ions, as well as extending over many Rf periods. Additional physics processes such as plasma chemistry and surface effects such as secondary electron emission increase the computational requirements in such a way that even fully parallel explicit PIC models cannot be used. One alternative method is to develop fluid-based codes coupled with electromagnetics in order to model ion sources. Time-domain fluid models can simulate plasma evolution, plasma chemistry, and surface physics models with reasonable computational resources by not explicitly resolving electron motions, which thereby leads to an increase in the time step. This is achieved by solving fluid motions coupled with electromagnetics using reduced-physics models, such as single-temperature magnetohydrodynamics (MHD), extended, gas dynamic, and Hall MHD, and two-fluid MHD models. We show recent results on modeling the internal antenna H{sup −} ion source for the SNS at Oak Ridge National Laboratory using the fluid plasma modeling code USim. We compare demonstrate plasma temperature equilibration in two-temperature MHD models for the SNS source and present simulation results demonstrating plasma evolution over many Rf periods for different plasma temperatures. We perform the calculations in parallel, on unstructured meshes, using finite-volume solvers in order to obtain results in reasonable time.« less

  12. Alternative modeling methods for plasma-based Rf ion sources.

    PubMed

    Veitzer, Seth A; Kundrapu, Madhusudhan; Stoltz, Peter H; Beckwith, Kristian R C

    2016-02-01

    Rf-driven ion sources for accelerators and many industrial applications benefit from detailed numerical modeling and simulation of plasma characteristics. For instance, modeling of the Spallation Neutron Source (SNS) internal antenna H(-) source has indicated that a large plasma velocity is induced near bends in the antenna where structural failures are often observed. This could lead to improved designs and ion source performance based on simulation and modeling. However, there are significant separations of time and spatial scales inherent to Rf-driven plasma ion sources, which makes it difficult to model ion sources with explicit, kinetic Particle-In-Cell (PIC) simulation codes. In particular, if both electron and ion motions are to be explicitly modeled, then the simulation time step must be very small, and total simulation times must be large enough to capture the evolution of the plasma ions, as well as extending over many Rf periods. Additional physics processes such as plasma chemistry and surface effects such as secondary electron emission increase the computational requirements in such a way that even fully parallel explicit PIC models cannot be used. One alternative method is to develop fluid-based codes coupled with electromagnetics in order to model ion sources. Time-domain fluid models can simulate plasma evolution, plasma chemistry, and surface physics models with reasonable computational resources by not explicitly resolving electron motions, which thereby leads to an increase in the time step. This is achieved by solving fluid motions coupled with electromagnetics using reduced-physics models, such as single-temperature magnetohydrodynamics (MHD), extended, gas dynamic, and Hall MHD, and two-fluid MHD models. We show recent results on modeling the internal antenna H(-) ion source for the SNS at Oak Ridge National Laboratory using the fluid plasma modeling code USim. We compare demonstrate plasma temperature equilibration in two-temperature MHD models for the SNS source and present simulation results demonstrating plasma evolution over many Rf periods for different plasma temperatures. We perform the calculations in parallel, on unstructured meshes, using finite-volume solvers in order to obtain results in reasonable time.

  13. Models of service delivery for cancer genetic risk assessment and counseling.

    PubMed

    Trepanier, Angela M; Allain, Dawn C

    2014-04-01

    Increasing awareness of and the potentially concomitant increasing demand for cancer genetic services is driving the need to explore more efficient models of service delivery. The aims of this study were to determine which service delivery models are most commonly used by genetic counselors, assess how often they are used, compare the efficiency of each model as well as impact on access to services, and investigate the perceived benefits and barriers of each. Full members of the NSGC Familial Cancer Special Interest Group who subscribe to its listserv were invited to participate in a web-based survey. Eligible respondents were asked which of ten defined service delivery models they use and specific questions related to aspects of model use. One-hundred ninety-two of the approximately 450 members of the listserv responded (42.7%); 177 (92.2%) had provided clinical service in the last year and were eligible to complete all sections of the survey. The four direct care models most commonly used were the (traditional) face-to-face pre- and post-test model (92.2%), the face-to-face pretest without face-to-face post-test model (86.5%), the post-test counseling only for complex results model (36.2%), and the post test counseling for all results model (18.3%). Those using the face-to-face pretest only, post-test all, and post-test complex models reported seeing more new patients than when they used the traditional model and these differences were statistically significantly. There were no significant differences in appointment wait times or distances traveled by patients when comparing use of the traditional model to the other three models. Respondents recognize that a benefit of using alternative service delivery models is increased access to services; however, some are concerned that this may affect quality of care.

  14. Development of three-dimensional patient face model that enables real-time collision detection and cutting operation for a dental simulator.

    PubMed

    Yamaguchi, Satoshi; Yamada, Yuya; Yoshida, Yoshinori; Noborio, Hiroshi; Imazato, Satoshi

    2012-01-01

    The virtual reality (VR) simulator is a useful tool to develop dental hand skill. However, VR simulations with reactions of patients have limited computational time to reproduce a face model. Our aim was to develop a patient face model that enables real-time collision detection and cutting operation by using stereolithography (STL) and deterministic finite automaton (DFA) data files. We evaluated dependence of computational cost and constructed the patient face model using the optimum condition for combining STL and DFA data files, and assessed the computational costs for operation in do-nothing, collision, cutting, and combination of collision and cutting. The face model was successfully constructed with low computational costs of 11.3, 18.3, 30.3, and 33.5 ms for do-nothing, collision, cutting, and collision and cutting, respectively. The patient face model could be useful for developing dental hand skill with VR.

  15. Face Processing: Models For Recognition

    NASA Astrophysics Data System (ADS)

    Turk, Matthew A.; Pentland, Alexander P.

    1990-03-01

    The human ability to process faces is remarkable. We can identify perhaps thousands of faces learned throughout our lifetime and read facial expression to understand such subtle qualities as emotion. These skills are quite robust, despite sometimes large changes in the visual stimulus due to expression, aging, and distractions such as glasses or changes in hairstyle or facial hair. Computers which model and recognize faces will be useful in a variety of applications, including criminal identification, human-computer interface, and animation. We discuss models for representing faces and their applicability to the task of recognition, and present techniques for identifying faces and detecting eye blinks.

  16. Response of a partially penetrating well in a heterogeneous aquifer: integrated well-face flux vs. uniform well-face flux boundary conditions

    NASA Astrophysics Data System (ADS)

    Ruud, N. C.; Kabala, Z. J.

    1997-07-01

    A two-dimensional integrated well-face flux (IWFF) model is developed for computing the drawdown at the well-face and around a fully or partially penetrating well with wellbore storage, situated in a layered confined aquifer. In this model, we calculate drawdown and well-face flux distributions by numerically solving a two-dimensional diffusion equation in cylindrical coordinates subject to appropriate initial and boundary conditions and to the well-face boundary constraint of an integrated well-face flux rather than the physically inconsistent uniform well-face flux boundary condition (the UWFF model). The differences between the IWFF and UWFF models in a partially penetrating well situated in a homogeneous isotropic aquifer are insignificant for wellbore drawdown (less than 3%) but are pronounced for the well-face flux. In fact, the latter strongly deviates from uniformity as the ratio of the screen length to the aquifer thickness decreases. For partially penetrating wells situated in multilayer aquifers, significant differences between the two models may arise, especially if the screen is not located in the most conductive layer. These differences depend on the hydraulic conductivity contrast of the adjacent layers. Consequently, the uniform well-face flux boundary condition should be used with extreme caution.

  17. Global gas balance and influence of atomic hydrogen irradiation on the wall inventory in steady-state operation of QUEST tokamak

    NASA Astrophysics Data System (ADS)

    Kuzmin, A.; Zushi, H.; Takagi, I.; Sharma, S. K.; Rusinov, A.; Inoue, Y.; Hirooka, Y.; Zhou, H.; Kobayashi, M.; Sakamoto, M.; Hanada, K.; Yoshida, N.; Nakamura, K.; Fujisawa, A.; Matsuoka, K.; Idei, H.; Nagashima, Y.; Hasegawa, M.; Onchi, T.; Banerjee, S.; Mishra, K.

    2015-08-01

    Hydrogen wall pumping is studied in steady state tokamak operation (SSTO) of QUEST with all metal plasma facing materials PFMs at 100 °C. The duration of SSTO is up to 820 s in fully non-inductive plasma. Global gas balance analysis shows that wall pumping at the apparent (retention-release) rate of 1-6 × 1018 H/s is dominant and 70-80% of injected H2 can be retained in PFMs. However, immediately after plasma termination the H2 release rate enhances to ∼1019 H/s. In order to understand a true retention process the direct measurement of retention flux has been carried out by permeation probes. The comparison between the evaluated wall retention and results from global analysis is discussed.

  18. Increased heat dissipation with the X-divertor geometry facilitating detachment onset at lower density in DIII-D

    DOE PAGES

    Covele, Brent; Kotschenreuther, M.; Mahajan, S.; ...

    2017-06-23

    The X-Divertor geometry on DIII-D has demonstrated reduced particle and heat fluxes to the target, facilitating detachment onset at ~20% lower upstream density and higher H-mode pedestal pressure than a standard divertor. SOLPS modeling suggests that this effect cannot be explained by an increase in total connection length alone, but rather by the addition of connection length specifically in the power-dissipating volume near the target, via poloidal flux expansion and flaring. But, poloidal flaring must work synergistically with divertor closure to most effectively reduce the detachment density threshold. Furthermore, the model also points to carbon radiation as the primary drivermore » of power dissipation in divertors on the DIII-D floor, which is consistent with experimental observations. Sustainable divertor detachment at lower density has beneficial consequences for energy confinement and current drive efficiency in the core for advanced tokamak (AT) operation, while simultaneously satisfying the exhaust requirements of the plasma-facing components.« less

  19. An analytical expression for ion velocities at the wall including the sheath electric field and surface biasing for erosion modeling at JET ILW

    DOE PAGES

    Borodkina, I.; Borodin, D.; Brezinsek, S.; ...

    2017-04-12

    For simulation of plasma-facing component erosion in fusion experiments, an analytical expression for the ion velocity just before the surface impact including the local electric field and an optional surface biasing effect is suggested. Energy and angular impact distributions and the resulting effective sputtering yields were produced for several experimental scenarios at JET ILW mostly involving PFCs exposed to an oblique magnetic field. The analytic solution has been applied as an improvement to earlier ERO modelling of localized, Be outer limiter, RF-enhanced erosion, modulated by toggling of a remote, however magnetically connected ICRH antenna. The effective W sputtering yields duemore » to D and Be ion impact in Type-I and Type-III ELMs and inter-ELM conditions were also estimated using the analytical approach and benchmarked by spectroscopy. The intra-ELM W sputtering flux increases almost 10 times in comparison to the inter-ELM flux.« less

  20. Increased heat dissipation with the X-divertor geometry facilitating detachment onset at lower density in DIII-D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Covele, Brent; Kotschenreuther, M.; Mahajan, S.

    The X-Divertor geometry on DIII-D has demonstrated reduced particle and heat fluxes to the target, facilitating detachment onset at ~20% lower upstream density and higher H-mode pedestal pressure than a standard divertor. SOLPS modeling suggests that this effect cannot be explained by an increase in total connection length alone, but rather by the addition of connection length specifically in the power-dissipating volume near the target, via poloidal flux expansion and flaring. But, poloidal flaring must work synergistically with divertor closure to most effectively reduce the detachment density threshold. Furthermore, the model also points to carbon radiation as the primary drivermore » of power dissipation in divertors on the DIII-D floor, which is consistent with experimental observations. Sustainable divertor detachment at lower density has beneficial consequences for energy confinement and current drive efficiency in the core for advanced tokamak (AT) operation, while simultaneously satisfying the exhaust requirements of the plasma-facing components.« less

Top