Tiltrotor Aeroacoustic Code (TRAC) Prediction Assessment and Initial Comparisons with Tram Test Data
NASA Technical Reports Server (NTRS)
Burley, Casey L.; Brooks, Thomas F.; Charles, Bruce D.; McCluer, Megan
1999-01-01
A prediction sensitivity assessment to inputs and blade modeling is presented for the TiltRotor Aeroacoustic Code (TRAC). For this study, the non-CFD prediction system option in TRAC is used. Here, the comprehensive rotorcraft code, CAMRAD.Mod1, coupled with the high-resolution sectional loads code HIRES, predicts unsteady blade loads to be used in the noise prediction code WOPWOP. The sensitivity of the predicted blade motions, blade airloads, wake geometry, and acoustics is examined with respect to rotor rpm, blade twist and chord, and to blade dynamic modeling. To accomplish this assessment, an interim input-deck for the TRAM test model and an input-deck for a reference test model are utilized in both rigid and elastic modes. Both of these test models are regarded as near scale models of the V-22 proprotor (tiltrotor). With basic TRAC sensitivities established, initial TRAC predictions are compared to results of an extensive test of an isolated model proprotor. The test was that of the TiltRotor Aeroacoustic Model (TRAM) conducted in the Duits-Nederlandse Windtunnel (DNW). Predictions are compared to measured noise for the proprotor operating over an extensive range of conditions. The variation of predictions demonstrates the great care that must be taken in defining the blade motion. However, even with this variability, the predictions using the different blade modeling successfully capture (bracket) the levels and trends of the noise for conditions ranging from descent to ascent.
Tiltrotor Aeroacoustic Code (TRAC) Prediction Assessment and Initial Comparisons With TRAM Test Data
NASA Technical Reports Server (NTRS)
Burley, Casey L.; Brooks, Thomas F.; Charles, Bruce D.; McCluer, Megan
1999-01-01
A prediction sensitivity assessment to inputs and blade modeling is presented for the TiltRotor Aeroacoustic Code (TRAC). For this study, the non-CFD prediction system option in TRAC is used. Here, the comprehensive rotorcraft code, CAMRAD.Mod 1, coupled with the high-resolution sectional loads code HIRES, predicts unsteady blade loads to be used in the noise prediction code WOPWOP. The sensitivity of the predicted blade motions, blade airloads, wake geometry, and acoustics is examined with respect to rotor rpm, blade twist and chord, and to blade dynamic modeling. To accomplish this assessment. an interim input-deck for the TRAM test model and an input-deck for a reference test model are utilized in both rigid and elastic modes. Both of these test models are regarded as near scale models of the V-22 proprotor (tiltrotor). With basic TRAC sensitivities established, initial TRAC predictions are compared to results of an extensive test of an isolated model proprotor. The test was that of the TiltRotor Aeroacoustic Model (TRAM) conducted in the Duits-Nederlandse Windtunnel (DNW). Predictions are compared to measured noise for the proprotor operating over an extensive range of conditions. The variation of predictions demonstrates the great care that must be taken in defining the blade motion. However, even with this variability, the predictions using the different blade modeling successfully capture (bracket) the levels and trends of the noise for conditions ranging from descent to ascent.
Wombacher, Kevin; Dai, Minhao; Matig, Jacob J; Harrington, Nancy Grant
2018-03-22
To identify salient behavioral determinants related to STI testing among college students by testing a model based on the integrative model of behavioral (IMBP) prediction. 265 undergraduate students from a large university in the Southeastern US. Formative and survey research to test an IMBP-based model that explores the relationships between determinants and STI testing intention and behavior. Results of path analyses supported a model in which attitudinal beliefs predicted intention and intention predicted behavior. Normative beliefs and behavioral control beliefs were not significant in the model; however, select individual normative and control beliefs were significantly correlated with intention and behavior. Attitudinal beliefs are the strongest predictor of STI testing intention and behavior. Future efforts to increase STI testing rates should identify and target salient attitudinal beliefs.
Action perception as hypothesis testing.
Donnarumma, Francesco; Costantini, Marcello; Ambrosini, Ettore; Friston, Karl; Pezzulo, Giovanni
2017-04-01
We present a novel computational model that describes action perception as an active inferential process that combines motor prediction (the reuse of our own motor system to predict perceived movements) and hypothesis testing (the use of eye movements to disambiguate amongst hypotheses). The system uses a generative model of how (arm and hand) actions are performed to generate hypothesis-specific visual predictions, and directs saccades to the most informative places of the visual scene to test these predictions - and underlying hypotheses. We test the model using eye movement data from a human action observation study. In both the human study and our model, saccades are proactive whenever context affords accurate action prediction; but uncertainty induces a more reactive gaze strategy, via tracking the observed movements. Our model offers a novel perspective on action observation that highlights its active nature based on prediction dynamics and hypothesis testing. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
AXAF-1 High Resolution Assembly Image Model and Comparison with X-Ray Ground Test Image
NASA Technical Reports Server (NTRS)
Zissa, David E.
1999-01-01
The x-ray ground test of the AXAF-I High Resolution Mirror Assembly was completed in 1997 at the X-ray Calibration Facility at Marshall Space Flight Center. Mirror surface measurements by HDOS, alignment results from Kodak, and predicted gravity distortion in the horizontal test configuration are being used to model the x-ray test image. The Marshall Space Flight Center (MSFC) image modeling serves as a cross check with Smithsonian Astrophysical observatory modeling. The MSFC image prediction software has evolved from the MSFC model of the x-ray test of the largest AXAF-I mirror pair in 1991. The MSFC image modeling software development is being assisted by the University of Alabama in Huntsville. The modeling process, modeling software, and image prediction will be discussed. The image prediction will be compared with the x-ray test results.
Katoh, Masakazu; Hamajima, Fumiyasu; Ogasawara, Takahiro; Hata, Ken-Ichiro
2010-06-01
A new OECD test guideline 431 (TG431) for in vitro skin corrosion tests using human reconstructed skin models was adopted by OECD in 2004. TG431 defines the criteria for the general function and performance of applicable skin models. In order to confirm that the new reconstructed human epidermal model, LabCyte EPI-MODEL is applicable for the skin corrosion test according to TG431, the predictability and repeatability of the model for the skin corrosion test was evaluated. The test was performed according to the test protocol described in TG431. Based on the knowledge that LabCyte EPI-MODEL is an epidermal model as well as EpiDerm, we decided to adopt the the Epiderm prediction model of skin corrosion for the LabCyte EPI-MODEL, using twenty test chemicals (10 corrosive chemicals and 10 non-corrosive chemicals) in the 1(st) stage. The prediction model results showed that the distinction of non-corrosion to corrosion corresponded perfectly. Therefore, it was judged that the prediction model of EpiDerm could be applied to the LabCyte EPI-MODEL. In the 2(nd) stage, the repeatability of this test protocol with the LabCyte EPI-MODEL was examined using twelve chemicals (6 corrosive chemicals and 6 non-corrosive chemicals) that are described in TG431, and these results recognized a high repeatability and accurate predictability. It was concluded that LabCyte EPI-MODEL is applicable for the skin corrosive test protocol according to TG431.
Prediction of biodegradability from chemical structure: Modeling or ready biodegradation test data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loonen, H.; Lindgren, F.; Hansen, B.
1999-08-01
Biodegradation data were collected and evaluated for 894 substances with widely varying chemical structures. All data were determined according to the Japanese Ministry of International Trade and Industry (MITI) I test protocol. The MITI I test is a screening test for ready biodegradability and has been described by Organization for Economic Cooperation and Development (OECD) test guideline 301 C and European Union (EU) test guideline C4F. The chemicals were characterized by a set of 127 predefined structural fragments. This data set was used to develop a model for the prediction of the biodegradability of chemicals under standardized OECD and EUmore » ready biodegradation test conditions. Partial least squares (PLS) discriminant analysis was used for the model development. The model was evaluated by means of internal cross-validation and repeated external validation. The importance of various structural fragments and fragment interactions was investigated. The most important fragments include the presence of a long alkyl chain; hydroxy, ester, and acid groups (enhancing biodegradation); and the presence of one or more aromatic rings and halogen substituents (regarding biodegradation). More than 85% of the model predictions were correct for using the complete data set. The not readily biodegradable predictions were slightly better than the readily biodegradable predictions (86 vs 84%). The average percentage of correct predictions from four external validation studies was 83%. Model optimization by including fragment interactions improve the model predicting capabilities to 89%. It can be concluded that the PLS model provides predictions of high reliability for a diverse range of chemical structures. The predictions conform to the concept of readily biodegradable (or not readily biodegradable) as defined by OECD and EU test guidelines.« less
Parrish, Rudolph S.; Smith, Charles N.
1990-01-01
A quantitative method is described for testing whether model predictions fall within a specified factor of true values. The technique is based on classical theory for confidence regions on unknown population parameters and can be related to hypothesis testing in both univariate and multivariate situations. A capability index is defined that can be used as a measure of predictive capability of a model, and its properties are discussed. The testing approach and the capability index should facilitate model validation efforts and permit comparisons among competing models. An example is given for a pesticide leaching model that predicts chemical concentrations in the soil profile.
Testing prediction methods: Earthquake clustering versus the Poisson model
Michael, A.J.
1997-01-01
Testing earthquake prediction methods requires statistical techniques that compare observed success to random chance. One technique is to produce simulated earthquake catalogs and measure the relative success of predicting real and simulated earthquakes. The accuracy of these tests depends on the validity of the statistical model used to simulate the earthquakes. This study tests the effect of clustering in the statistical earthquake model on the results. Three simulation models were used to produce significance levels for a VLF earthquake prediction method. As the degree of simulated clustering increases, the statistical significance drops. Hence, the use of a seismicity model with insufficient clustering can lead to overly optimistic results. A successful method must pass the statistical tests with a model that fully replicates the observed clustering. However, a method can be rejected based on tests with a model that contains insufficient clustering. U.S. copyright. Published in 1997 by the American Geophysical Union.
NASA Technical Reports Server (NTRS)
Macwilkinson, D. G.; Blackerby, W. T.; Paterson, J. H.
1974-01-01
The degree of cruise drag correlation on the C-141A aircraft is determined between predictions based on wind tunnel test data, and flight test results. An analysis of wind tunnel tests on a 0.0275 scale model at Reynolds number up to 3.05 x 1 million/MAC is reported. Model support interference corrections are evaluated through a series of tests, and fully corrected model data are analyzed to provide details on model component interference factors. It is shown that predicted minimum profile drag for the complete configuration agrees within 0.75% of flight test data, using a wind tunnel extrapolation method based on flat plate skin friction and component shape factors. An alternative method of extrapolation, based on computed profile drag from a subsonic viscous theory, results in a prediction four percent lower than flight test data.
NASA Technical Reports Server (NTRS)
Bihrle, W., Jr.
1976-01-01
A correlation study was conducted to determine the ability of current analytical spin prediction techniques to predict the flight motions of a current fighter airplane configuration during the spin entry, the developed spin, and the spin recovery motions. The airplane math model used aerodynamics measured on an exact replica of the flight test model using conventional static and forced-oscillation wind-tunnel test techniques and a recently developed rotation-balance test apparatus capable of measuring aerodynamics under steady spinning conditions. An attempt was made to predict the flight motions measured during stall/spin flight testing of an unpowered, radio-controlled model designed to be a 1/10 scale, dynamically-scaled model of a current fighter configuration. Comparison of the predicted and measured flight motions show that while the post-stall and spin entry motions were not well-predicted, the developed spinning motion (a steady flat spin) and the initial phases of the spin recovery motion are reasonably well predicted.
NASA Technical Reports Server (NTRS)
Bansal, P. N.; Arseneaux, P. J.; Smith, A. F.; Turnberg, J. E.; Brooks, B. M.
1985-01-01
Results of dynamic response and stability wind tunnel tests of three 62.2 cm (24.5 in) diameter models of the Prop-Fan, advanced turboprop, are presented. Measurements of dynamic response were made with the rotors mounted on an isolated nacelle, with varying tilt for nonuniform inflow. One model was also tested using a semi-span wing and fuselage configuration for response to realistic aircraft inflow. Stability tests were performed using tunnel turbulence or a nitrogen jet for excitation. Measurements are compared with predictions made using beam analysis methods for the model with straight blades, and finite element analysis methods for the models with swept blades. Correlations between measured and predicted rotating blade natural frequencies for all the models are very good. The IP dynamic response of the straight blade model is reasonably well predicted. The IP response of the swept blades is underpredicted and the wing induced response of the straight blade is overpredicted. Two models did not flutter, as predicted. One swept blade model encountered an instability at a higher RPM than predicted, showing predictions to be conservative.
Propeller aircraft interior noise model. II - Scale-model and flight-test comparisons
NASA Technical Reports Server (NTRS)
Willis, C. M.; Mayes, W. H.
1987-01-01
A program for predicting the sound levels inside propeller driven aircraft arising from sidewall transmission of airborne exterior noise is validated through comparisons of predictions with both scale-model test results and measurements obtained in flight tests on a turboprop aircraft. The program produced unbiased predictions for the case of the scale-model tests, with a standard deviation of errors of about 4 dB. For the case of the flight tests, the predictions revealed a bias of 2.62-4.28 dB (depending upon whether or not the data for the fourth harmonic were included) and the standard deviation of the errors ranged between 2.43 and 4.12 dB. The analytical model is shown to be capable of taking changes in the flight environment into account.
Predicting bending strength of fire-retardant-treated plywood from screw-withdrawal tests
J. E. Winandy; P. K. Lebow; W. Nelson
This report describes the development of a test method and predictive model to estimate the residual bending strength of fire-retardant-treated plywood roof sheathing from measurement of screw-withdrawal force. The preferred test methodology is described in detail. Models were developed to predict loss in mean and lower prediction bounds for plywood bending strength as...
Lightweight ZERODUR: Validation of Mirror Performance and Mirror Modeling Predictions
NASA Technical Reports Server (NTRS)
Hull, Tony; Stahl, H. Philip; Westerhoff, Thomas; Valente, Martin; Brooks, Thomas; Eng, Ron
2017-01-01
Upcoming spaceborne missions, both moderate and large in scale, require extreme dimensional stability while relying both upon established lightweight mirror materials, and also upon accurate modeling methods to predict performance under varying boundary conditions. We describe tests, recently performed at NASA's XRCF chambers and laboratories in Huntsville Alabama, during which a 1.2 m diameter, f/1.2988% lightweighted SCHOTT lightweighted ZERODUR(TradeMark) mirror was tested for thermal stability under static loads in steps down to 230K. Test results are compared to model predictions, based upon recently published data on ZERODUR(TradeMark). In addition to monitoring the mirror surface for thermal perturbations in XRCF Thermal Vacuum tests, static load gravity deformations have been measured and compared to model predictions. Also the Modal Response(dynamic disturbance) was measured and compared to model. We will discuss the fabrication approach and optomechanical design of the ZERODUR(TradeMark) mirror substrate by SCHOTT, its optical preparation for test by Arizona Optical Systems (AOS). Summarize the outcome of NASA's XRCF tests and model validations
Lightweight ZERODUR®: Validation of mirror performance and mirror modeling predictions
NASA Astrophysics Data System (ADS)
Hull, Anthony B.; Stahl, H. Philip; Westerhoff, Thomas; Valente, Martin; Brooks, Thomas; Eng, Ron
2017-01-01
Upcoming spaceborne missions, both moderate and large in scale, require extreme dimensional stability while relying both upon established lightweight mirror materials, and also upon accurate modeling methods to predict performance under varying boundary conditions. We describe tests, recently performed at NASA’s XRCF chambers and laboratories in Huntsville Alabama, during which a 1.2m diameter, f/1.29 88% lightweighted SCHOTT lightweighted ZERODUR® mirror was tested for thermal stability under static loads in steps down to 230K. Test results are compared to model predictions, based upon recently published data on ZERODUR®. In addition to monitoring the mirror surface for thermal perturbations in XRCF Thermal Vacuum tests, static load gravity deformations have been measured and compared to model predictions. Also the Modal Response (dynamic disturbance) was measured and compared to model. We will discuss the fabrication approach and optomechanical design of the ZERODUR® mirror substrate by SCHOTT, its optical preparation for test by Arizona Optical Systems (AOS), and summarize the outcome of NASA’s XRCF tests and model validations.
NASA Astrophysics Data System (ADS)
Wang, F.; Annable, M. D.; Jawitz, J. W.
2012-12-01
The equilibrium streamtube model (EST) has demonstrated the ability to accurately predict dense nonaqueous phase liquid (DNAPL) dissolution in laboratory experiments and numerical simulations. Here the model is applied to predict DNAPL dissolution at a PCE-contaminated dry cleaner site, located in Jacksonville, Florida. The EST is an analytical solution with field-measurable input parameters. Here, measured data from a field-scale partitioning tracer test were used to parameterize the EST model and the predicted PCE dissolution was compared to measured data from an in-situ alcohol (ethanol) flood. In addition, a simulated partitioning tracer test from a calibrated spatially explicit multiphase flow model (UTCHEM) was also used to parameterize the EST analytical solution. The ethanol prediction based on both the field partitioning tracer test and the UTCHEM tracer test simulation closely matched the field data. The PCE EST prediction showed a peak shift to an earlier arrival time that was concluded to be caused by well screen interval differences between the field tracer test and alcohol flood. This observation was based on a modeling assessment of potential factors that may influence predictions by using UTCHEM simulations. The imposed injection and pumping flow pattern at this site for both the partitioning tracer test and alcohol flood was more complex than the natural gradient flow pattern (NGFP). Both the EST model and UTCHEM were also used to predict PCE dissolution under natural gradient conditions, with much simpler flow patterns than the forced-gradient double five spot of the alcohol flood. The NGFP predictions based on parameters determined from tracer tests conducted with complex flow patterns underestimated PCE concentrations and total mass removal. This suggests that the flow patterns influence aqueous dissolution and that the aqueous dissolution under the NGFP is more efficient than dissolution under complex flow patterns.
Kindergarten Predictors of Math Learning Disability
Mazzocco, Michèle M. M.; Thompson, Richard E.
2009-01-01
The aim of the present study was to address how to effectively predict mathematics learning disability (MLD). Specifically, we addressed whether cognitive data obtained during kindergarten can effectively predict which children will have MLD in third grade, whether an abbreviated test battery could be as effective as a standard psychoeducational assessment at predicting MLD, and whether the abbreviated battery corresponded to the literature on MLD characteristics. Participants were 226 children who enrolled in a 4-year prospective longitudinal study during kindergarten. We administered measures of mathematics achievement, formal and informal mathematics ability, visual-spatial reasoning, and rapid automatized naming and examined which test scores and test items from kindergarten best predicted MLD at grades 2 and 3. Statistical models using standardized scores from the entire test battery correctly classified ~80–83 percent of the participants as having, or not having, MLD. Regression models using scores from only individual test items were less predictive than models containing the standard scores, except for models using a specific subset of test items that dealt with reading numerals, number constancy, magnitude judgments of one-digit numbers, or mental addition of one-digit numbers. These models were as accurate in predicting MLD as was the model including the entire set of standard scores from the battery of tests examined. Our findings indicate that it is possible to effectively predict which kindergartners are at risk for MLD, and thus the findings have implications for early screening of MLD. PMID:20084182
Analysis and correlation of the test data from an advanced technology rotor system
NASA Technical Reports Server (NTRS)
Jepson, D.; Moffitt, R.; Hilzinger, K.; Bissell, J.
1983-01-01
Comparisons were made of the performance and blade vibratory loads characteristics for an advanced rotor system as predicted by analysis and as measured in a 1/5 scale model wind tunnel test, a full scale model wind tunnel test and flight test. The accuracy with which the various tools available at the various stages in the design/development process (analysis, model test etc.) could predict final characteristics as measured on the aircraft was determined. The accuracy of the analyses in predicting the effects of systematic tip planform variations investigated in the full scale wind tunnel test was evaluated.
Clothier, Richard; Starzec, Gemma; Pradel, Lionel; Baxter, Victoria; Jones, Melanie; Cox, Helen; Noble, Linda
2002-01-01
A range of cosmetics formulations with human patch-test data were supplied in a coded form, for the examination of the use of a combined in vitro permeability barrier assay and cell viability assay to generate, and then test, a prediction model for assessing potential human skin patch-test results. The target cells employed were of the Madin Darby canine kidney cell line, which establish tight junctions and adherens junctions able to restrict the permeability of sodium fluorescein across the barrier of the confluent cell layer. The prediction model for interpretation of the in vitro assay results included initial effects and the recovery profile over 72 hours. A set of the hand-wash, surfactant-based formulations were tested to generate the prediction model, and then six others were evaluated. The model system was then also evaluated with powder laundry detergents and hand moisturisers: their effects were predicted by the in vitro test system. The model was under-predictive for two of the ten hand-wash products. It was over-predictive for the moisturisers, (two out of six) and eight out of ten laundry powders. However, the in vivo human patch test data were variable, and 19 of the 26 predictions were correct or within 0.5 on the 0-4.0 scale used for the in vivo scores, i.e. within the same variable range reported for the repeat-test hand-wash in vivo data.
Testing 40 Predictions from the Transtheoretical Model Again, with Confidence
ERIC Educational Resources Information Center
Velicer, Wayne F.; Brick, Leslie Ann D.; Fava, Joseph L.; Prochaska, James O.
2013-01-01
Testing Theory-based Quantitative Predictions (TTQP) represents an alternative to traditional Null Hypothesis Significance Testing (NHST) procedures and is more appropriate for theory testing. The theory generates explicit effect size predictions and these effect size estimates, with related confidence intervals, are used to test the predictions.…
Modeling and Analysis of Structural Dynamics for a One-Tenth Scale Model NGST Sunshield
NASA Technical Reports Server (NTRS)
Johnston, John; Lienard, Sebastien; Brodeur, Steve (Technical Monitor)
2001-01-01
New modeling and analysis techniques have been developed for predicting the dynamic behavior of the Next Generation Space Telescope (NGST) sunshield. The sunshield consists of multiple layers of pretensioned, thin-film membranes supported by deployable booms. Modeling the structural dynamic behavior of the sunshield is a challenging aspect of the problem due to the effects of membrane wrinkling. A finite element model of the sunshield was developed using an approximate engineering approach, the cable network method, to account for membrane wrinkling effects. Ground testing of a one-tenth scale model of the NGST sunshield were carried out to provide data for validating the analytical model. A series of analyses were performed to predict the behavior of the sunshield under the ground test conditions. Modal analyses were performed to predict the frequencies and mode shapes of the test article and transient response analyses were completed to simulate impulse excitation tests. Comparison was made between analytical predictions and test measurements for the dynamic behavior of the sunshield. In general, the results show good agreement with the analytical model correctly predicting the approximate frequency and mode shapes for the significant structural modes.
Suresh, V; Parthasarathy, S
2014-01-01
We developed a support vector machine based web server called SVM-PB-Pred, to predict the Protein Block for any given amino acid sequence. The input features of SVM-PB-Pred include i) sequence profiles (PSSM) and ii) actual secondary structures (SS) from DSSP method or predicted secondary structures from NPS@ and GOR4 methods. There were three combined input features PSSM+SS(DSSP), PSSM+SS(NPS@) and PSSM+SS(GOR4) used to test and train the SVM models. Similarly, four datasets RS90, DB433, LI1264 and SP1577 were used to develop the SVM models. These four SVM models developed were tested using three different benchmarking tests namely; (i) self consistency, (ii) seven fold cross validation test and (iii) independent case test. The maximum possible prediction accuracy of ~70% was observed in self consistency test for the SVM models of both LI1264 and SP1577 datasets, where PSSM+SS(DSSP) input features was used to test. The prediction accuracies were reduced to ~53% for PSSM+SS(NPS@) and ~43% for PSSM+SS(GOR4) in independent case test, for the SVM models of above two same datasets. Using our method, it is possible to predict the protein block letters for any query protein sequence with ~53% accuracy, when the SP1577 dataset and predicted secondary structure from NPS@ server were used. The SVM-PB-Pred server can be freely accessed through http://bioinfo.bdu.ac.in/~svmpbpred.
Comparison of modeled backscatter with SAR data at P-band
NASA Technical Reports Server (NTRS)
Wang, Yong; Davis, Frank W.; Melack, John M.
1992-01-01
In recent years several analytical models were developed to predict microwave scattering by trees and forest canopies. These models contribute to the understanding of radar backscatter over forested regions to the extent that they capture the basic interactions between microwave radiation and tree canopies, understories, and ground layers as functions of incidence angle, wavelength, and polarization. The Santa Barbara microwave model backscatter model for woodland (i.e. with discontinuous tree canopies) combines a single-tree backscatter model and a gap probability model. Comparison of model predictions with synthetic aperture radar (SAR) data and L-band (lambda = 0.235 m) is promising, but much work is still needed to test the validity of model predictions at other wavelengths. The validity of the model predictions at P-band (lambda = 0.68 m) for woodland stands at our Mt. Shasta test site was tested.
Neuropsychological tests for predicting cognitive decline in older adults
Baerresen, Kimberly M; Miller, Karen J; Hanson, Eric R; Miller, Justin S; Dye, Richelin V; Hartman, Richard E; Vermeersch, David; Small, Gary W
2015-01-01
Summary Aim To determine neuropsychological tests likely to predict cognitive decline. Methods A sample of nonconverters (n = 106) was compared with those who declined in cognitive status (n = 24). Significant univariate logistic regression prediction models were used to create multivariate logistic regression models to predict decline based on initial neuropsychological testing. Results Rey–Osterrieth Complex Figure Test (RCFT) Retention predicted conversion to mild cognitive impairment (MCI) while baseline Buschke Delay predicted conversion to Alzheimer’s disease (AD). Due to group sample size differences, additional analyses were conducted using a subsample of demographically matched nonconverters. Analyses indicated RCFT Retention predicted conversion to MCI and AD, and Buschke Delay predicted conversion to AD. Conclusion Results suggest RCFT Retention and Buschke Delay may be useful in predicting cognitive decline. PMID:26107318
Testing for ontological errors in probabilistic forecasting models of natural systems
Marzocchi, Warner; Jordan, Thomas H.
2014-01-01
Probabilistic forecasting models describe the aleatory variability of natural systems as well as our epistemic uncertainty about how the systems work. Testing a model against observations exposes ontological errors in the representation of a system and its uncertainties. We clarify several conceptual issues regarding the testing of probabilistic forecasting models for ontological errors: the ambiguity of the aleatory/epistemic dichotomy, the quantification of uncertainties as degrees of belief, the interplay between Bayesian and frequentist methods, and the scientific pathway for capturing predictability. We show that testability of the ontological null hypothesis derives from an experimental concept, external to the model, that identifies collections of data, observed and not yet observed, that are judged to be exchangeable when conditioned on a set of explanatory variables. These conditional exchangeability judgments specify observations with well-defined frequencies. Any model predicting these behaviors can thus be tested for ontological error by frequentist methods; e.g., using P values. In the forecasting problem, prior predictive model checking, rather than posterior predictive checking, is desirable because it provides more severe tests. We illustrate experimental concepts using examples from probabilistic seismic hazard analysis. Severe testing of a model under an appropriate set of experimental concepts is the key to model validation, in which we seek to know whether a model replicates the data-generating process well enough to be sufficiently reliable for some useful purpose, such as long-term seismic forecasting. Pessimistic views of system predictability fail to recognize the power of this methodology in separating predictable behaviors from those that are not. PMID:25097265
Prediction of skin sensitization potency using machine learning approaches.
Zang, Qingda; Paris, Michael; Lehmann, David M; Bell, Shannon; Kleinstreuer, Nicole; Allen, David; Matheson, Joanna; Jacobs, Abigail; Casey, Warren; Strickland, Judy
2017-07-01
The replacement of animal use in testing for regulatory classification of skin sensitizers is a priority for US federal agencies that use data from such testing. Machine learning models that classify substances as sensitizers or non-sensitizers without using animal data have been developed and evaluated. Because some regulatory agencies require that sensitizers be further classified into potency categories, we developed statistical models to predict skin sensitization potency for murine local lymph node assay (LLNA) and human outcomes. Input variables for our models included six physicochemical properties and data from three non-animal test methods: direct peptide reactivity assay; human cell line activation test; and KeratinoSens™ assay. Models were built to predict three potency categories using four machine learning approaches and were validated using external test sets and leave-one-out cross-validation. A one-tiered strategy modeled all three categories of response together while a two-tiered strategy modeled sensitizer/non-sensitizer responses and then classified the sensitizers as strong or weak sensitizers. The two-tiered model using the support vector machine with all assay and physicochemical data inputs provided the best performance, yielding accuracy of 88% for prediction of LLNA outcomes (120 substances) and 81% for prediction of human test outcomes (87 substances). The best one-tiered model predicted LLNA outcomes with 78% accuracy and human outcomes with 75% accuracy. By comparison, the LLNA predicts human potency categories with 69% accuracy (60 of 87 substances correctly categorized). These results suggest that computational models using non-animal methods may provide valuable information for assessing skin sensitization potency. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Chan, Siew Foong; Deeks, Jonathan J; Macaskill, Petra; Irwig, Les
2008-01-01
To compare three predictive models based on logistic regression to estimate adjusted likelihood ratios allowing for interdependency between diagnostic variables (tests). This study was a review of the theoretical basis, assumptions, and limitations of published models; and a statistical extension of methods and application to a case study of the diagnosis of obstructive airways disease based on history and clinical examination. Albert's method includes an offset term to estimate an adjusted likelihood ratio for combinations of tests. Spiegelhalter and Knill-Jones method uses the unadjusted likelihood ratio for each test as a predictor and computes shrinkage factors to allow for interdependence. Knottnerus' method differs from the other methods because it requires sequencing of tests, which limits its application to situations where there are few tests and substantial data. Although parameter estimates differed between the models, predicted "posttest" probabilities were generally similar. Construction of predictive models using logistic regression is preferred to the independence Bayes' approach when it is important to adjust for dependency of tests errors. Methods to estimate adjusted likelihood ratios from predictive models should be considered in preference to a standard logistic regression model to facilitate ease of interpretation and application. Albert's method provides the most straightforward approach.
Initial Comparison of Single Cylinder Stirling Engine Computer Model Predictions with Test Results
NASA Technical Reports Server (NTRS)
Tew, R. C., Jr.; Thieme, L. G.; Miao, D.
1979-01-01
A Stirling engine digital computer model developed at NASA Lewis Research Center was configured to predict the performance of the GPU-3 single-cylinder rhombic drive engine. Revisions to the basic equations and assumptions are discussed. Model predictions with the early results of the Lewis Research Center GPU-3 tests are compared.
Elskens, Marc; Vloeberghs, Daniel; Van Elsen, Liesbeth; Baeyens, Willy; Goeyens, Leo
2012-09-15
For reasons of food safety, packaging and food contact materials must be submitted to migration tests. Testing of silicone moulds is often very laborious, since three replicate tests are required to decide about their compliancy. This paper presents a general modelling framework to predict the sample's compliance or non-compliance using results of the first two migration tests. It compares the outcomes of models with multiple continuous predictors with a class of models involving latent and dummy variables. The model's prediction ability was tested using cross and external validations, i.e. model revalidation each time a new measurement set became available. At the overall migration limit of 10 mg dm(-2), the relative uncertainty on a prediction was estimated to be ~10%. Taking the default values for α and β equal to 0.05, the maximum value that can be predicted for sample compliance was therefore 7 mg dm(-2). Beyond this limit the risk for false compliant results increases significantly, and a third migration test should be performed. The result of this latter test defines the sample's compliance or non-compliance. Propositions for compliancy control inspired by the current dioxin control strategy are discussed. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Beck, L. R.; Rodriguez, M. H.; Dister, S. W.; Rodriguez, A. D.; Washino, R. K.; Roberts, D. R.; Spanner, M. A.
1997-01-01
A blind test of two remote sensing-based models for predicting adult populations of Anopheles albimanus in villages, an indicator of malaria transmission risk, was conducted in southern Chiapas, Mexico. One model was developed using a discriminant analysis approach, while the other was based on regression analysis. The models were developed in 1992 for an area around Tapachula, Chiapas, using Landsat Thematic Mapper (TM) satellite data and geographic information system functions. Using two remotely sensed landscape elements, the discriminant model was able to successfully distinguish between villages with high and low An. albimanus abundance with an overall accuracy of 90%. To test the predictive capability of the models, multitemporal TM data were used to generate a landscape map of the Huixtla area, northwest of Tapachula, where the models were used to predict risk for 40 villages. The resulting predictions were not disclosed until the end of the test. Independently, An. albimanus abundance data were collected in the 40 randomly selected villages for which the predictions had been made. These data were subsequently used to assess the models' accuracies. The discriminant model accurately predicted 79% of the high-abundance villages and 50% of the low-abundance villages, for an overall accuracy of 70%. The regression model correctly identified seven of the 10 villages with the highest mosquito abundance. This test demonstrated that remote sensing-based models generated for one area can be used successfully in another, comparable area.
Statistical procedures for evaluating daily and monthly hydrologic model predictions
Coffey, M.E.; Workman, S.R.; Taraba, J.L.; Fogle, A.W.
2004-01-01
The overall study objective was to evaluate the applicability of different qualitative and quantitative methods for comparing daily and monthly SWAT computer model hydrologic streamflow predictions to observed data, and to recommend statistical methods for use in future model evaluations. Statistical methods were tested using daily streamflows and monthly equivalent runoff depths. The statistical techniques included linear regression, Nash-Sutcliffe efficiency, nonparametric tests, t-test, objective functions, autocorrelation, and cross-correlation. None of the methods specifically applied to the non-normal distribution and dependence between data points for the daily predicted and observed data. Of the tested methods, median objective functions, sign test, autocorrelation, and cross-correlation were most applicable for the daily data. The robust coefficient of determination (CD*) and robust modeling efficiency (EF*) objective functions were the preferred methods for daily model results due to the ease of comparing these values with a fixed ideal reference value of one. Predicted and observed monthly totals were more normally distributed, and there was less dependence between individual monthly totals than was observed for the corresponding predicted and observed daily values. More statistical methods were available for comparing SWAT model-predicted and observed monthly totals. The 1995 monthly SWAT model predictions and observed data had a regression Rr2 of 0.70, a Nash-Sutcliffe efficiency of 0.41, and the t-test failed to reject the equal data means hypothesis. The Nash-Sutcliffe coefficient and the R r2 coefficient were the preferred methods for monthly results due to the ability to compare these coefficients to a set ideal value of one.
Composite Overwrapped Pressure Vessel (COPV) Stress Rupture Testing
NASA Technical Reports Server (NTRS)
Greene, Nathanael J.; Saulsberry, Regor L.; Leifeste, Mark R.; Yoder, Tommy B.; Keddy, Chris P.; Forth, Scott C.; Russell, Rick W.
2010-01-01
This paper reports stress rupture testing of Kevlar(TradeMark) composite overwrapped pressure vessels (COPVs) at NASA White Sands Test Facility. This 6-year test program was part of the larger effort to predict and extend the lifetime of flight vessels. Tests were performed to characterize control parameters for stress rupture testing, and vessel life was predicted by statistical modeling. One highly instrumented 102-cm (40-in.) diameter Kevlar(TradeMark) COPV was tested to failure (burst) as a single-point model verification. Significant data were generated that will enhance development of improved NDE methods and predictive modeling techniques, and thus better address stress rupture and other composite durability concerns that affect pressure vessel safety, reliability and mission assurance.
PREDICTING THE EFFECTIVENESS OF CHEMICAL-PROTECTIVE CLOTHING MODEL AND TEST METHOD DEVELOPMENT
A predictive model and test method were developed for determining the chemical resistance of protective polymeric gloves exposed to liquid organic chemicals. The prediction of permeation through protective gloves by solvents was based on theories of the solution thermodynamics of...
Casillas, Jean-Marie; Joussain, Charles; Gremeaux, Vincent; Hannequin, Armelle; Rapin, Amandine; Laurent, Yves; Benaïm, Charles
2015-02-01
To develop a new predictive model of maximal heart rate based on two walking tests at different speeds (comfortable and brisk walking) as an alternative to a cardiopulmonary exercise test during cardiac rehabilitation. Evaluation of a clinical assessment tool. A Cardiac Rehabilitation Department in France. A total of 148 patients (133 men), mean age of 59 ±9 years, at the end of an outpatient cardiac rehabilitation programme. Patients successively performed a 6-minute walk test, a 200 m fast-walk test (200mFWT), and a cardiopulmonary exercise test, with measure of heart rate at the end of each test. An all-possible regression procedure was used to determine the best predictive regression models of maximal heart rate. The best model was compared with the Fox equation in term of predictive error of maximal heart rate using the paired t-test. Results of the two walking tests correlated significantly with maximal heart rate determined during the cardiopulmonary exercise test, whereas anthropometric parameters and resting heart rate did not. The simplified predictive model with the most acceptable mean error was: maximal heart rate = 130 - 0.6 × age + 0.3 × HR200mFWT (R(2) = 0.24). This model was superior to the Fox formula (R(2) = 0.138). The relationship between training target heart rate calculated from measured reserve heart rate and that established using this predictive model was statistically significant (r = 0.528, p < 10(-6)). A formula combining heart rate measured during a safe simple fast walk test and age is more efficient than an equation only including age to predict maximal heart rate and training target heart rate. © The Author(s) 2014.
Bias in Prediction: A Test of Three Models with Elementary School Children
ERIC Educational Resources Information Center
Frazer, William G.; And Others
1975-01-01
Explores the differences among the traditional single-equation prediction model of test bias, the Cleary and the Thorndike model in a situation involving typical educational variables with young female and male children. (Author/DEP)
Methods for evaluating the predictive accuracy of structural dynamic models
NASA Technical Reports Server (NTRS)
Hasselman, Timothy K.; Chrostowski, Jon D.
1991-01-01
Modeling uncertainty is defined in terms of the difference between predicted and measured eigenvalues and eigenvectors. Data compiled from 22 sets of analysis/test results was used to create statistical databases for large truss-type space structures and both pretest and posttest models of conventional satellite-type space structures. Modeling uncertainty is propagated through the model to produce intervals of uncertainty on frequency response functions, both amplitude and phase. This methodology was used successfully to evaluate the predictive accuracy of several structures, including the NASA CSI Evolutionary Structure tested at Langley Research Center. Test measurements for this structure were within + one-sigma intervals of predicted accuracy for the most part, demonstrating the validity of the methodology and computer code.
On-Line, Self-Learning, Predictive Tool for Determining Payload Thermal Response
NASA Technical Reports Server (NTRS)
Jen, Chian-Li; Tilwick, Leon
2000-01-01
This paper will present the results of a joint ManTech / Goddard R&D effort, currently under way, to develop and test a computer based, on-line, predictive simulation model for use by facility operators to predict the thermal response of a payload during thermal vacuum testing. Thermal response was identified as an area that could benefit from the algorithms developed by Dr. Jeri for complex computer simulations. Most thermal vacuum test setups are unique since no two payloads have the same thermal properties. This requires that the operators depend on their past experiences to conduct the test which requires time for them to learn how the payload responds while at the same time limiting any risk of exceeding hot or cold temperature limits. The predictive tool being developed is intended to be used with the new Thermal Vacuum Data System (TVDS) developed at Goddard for the Thermal Vacuum Test Operations group. This model can learn the thermal response of the payload by reading a few data points from the TVDS, accepting the payload's current temperature as the initial condition for prediction. The model can then be used as a predictive tool to estimate the future payload temperatures according to a predetermined shroud temperature profile. If the error of prediction is too big, the model can be asked to re-learn the new situation on-line in real-time and give a new prediction. Based on some preliminary tests, we feel this predictive model can forecast the payload temperature of the entire test cycle within 5 degrees Celsius after it has learned 3 times during the beginning of the test. The tool will allow the operator to play "what-if' experiments to decide what is his best shroud temperature set-point control strategy. This tool will save money by minimizing guess work and optimizing transitions as well as making the testing process safer and easier to conduct.
NASA Technical Reports Server (NTRS)
Phillips, M. A.
1973-01-01
Results are presented of an analysis which compares the performance predictions of a thermal model of a multi-panel modular radiator system with thermal vacuum test data. Comparisons between measured and predicted individual panel outlet temperatures and pressure drops and system outlet temperatures have been made over the full range of heat loads, environments and plumbing arrangements expected for the shuttle radiators. Both two sided and one sided radiation have been included. The model predictions show excellent agreement with the test data for the maximum design conditions of high load and hot environment. Predictions under minimum design conditions of low load-cold environments indicate good agreement with the measured data, but evaluation of low load predictions should consider the possibility of parallel flow instabilities due to main system freezing. Performance predictions under intermediate conditions in which the majority of the flow is not in either the main or prime system are adequate although model improvements in this area may be desired. The primary modeling objective of providing an analytical technique for performance predictions of a multi-panel radiator system under the design conditions has been met.
Nagahori, Hirohisa; Suzuki, Noriyuki; Le Coz, Florian; Omori, Takashi; Saito, Koichi
2016-09-30
Hand1-Luc Embryonic Stem Cell Test (Hand1-Luc EST) is a promising alternative method for evaluation of developmental toxicity. However, the problems of predictivity have remained due to appropriateness of the solubility, metabolic system, and prediction model. Therefore, we assessed the usefulness of rat liver S9 metabolic stability test using LC-MS/MS to develop new prediction model. A total of 71 chemicals were analyzed by measuring cytotoxicity and differentiation toxicity, and highly reproducible (CV=20%) results were obtained. The first prediction model was developed by discriminant analysis performed on a full dataset using Hand1-Luc EST, and 66.2% of the chemicals were correctly classified by the cross-validated classification. A second model was developed with additional descriptors obtained from the metabolic stability test to calculate hepatic availability, and an accuracy of 83.3% was obtained with applicability domain of 50.7% (=36/71) after exclusion of 22 metabolically inapplicable candidates, which potentially have a metabolic activation property. A step-wise prediction scheme with combination of Hand1-Luc EST and metabolic stability test was therefore proposed. The current results provide a promising in vitro test method for accurately predicting in vivo developmental toxicity. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Does rational selection of training and test sets improve the outcome of QSAR modeling?
Martin, Todd M; Harten, Paul; Young, Douglas M; Muratov, Eugene N; Golbraikh, Alexander; Zhu, Hao; Tropsha, Alexander
2012-10-22
Prior to using a quantitative structure activity relationship (QSAR) model for external predictions, its predictive power should be established and validated. In the absence of a true external data set, the best way to validate the predictive ability of a model is to perform its statistical external validation. In statistical external validation, the overall data set is divided into training and test sets. Commonly, this splitting is performed using random division. Rational splitting methods can divide data sets into training and test sets in an intelligent fashion. The purpose of this study was to determine whether rational division methods lead to more predictive models compared to random division. A special data splitting procedure was used to facilitate the comparison between random and rational division methods. For each toxicity end point, the overall data set was divided into a modeling set (80% of the overall set) and an external evaluation set (20% of the overall set) using random division. The modeling set was then subdivided into a training set (80% of the modeling set) and a test set (20% of the modeling set) using rational division methods and by using random division. The Kennard-Stone, minimal test set dissimilarity, and sphere exclusion algorithms were used as the rational division methods. The hierarchical clustering, random forest, and k-nearest neighbor (kNN) methods were used to develop QSAR models based on the training sets. For kNN QSAR, multiple training and test sets were generated, and multiple QSAR models were built. The results of this study indicate that models based on rational division methods generate better statistical results for the test sets than models based on random division, but the predictive power of both types of models are comparable.
Testing the Predictive Power of Coulomb Stress on Aftershock Sequences
NASA Astrophysics Data System (ADS)
Woessner, J.; Lombardi, A.; Werner, M. J.; Marzocchi, W.
2009-12-01
Empirical and statistical models of clustered seismicity are usually strongly stochastic and perceived to be uninformative in their forecasts, since only marginal distributions are used, such as the Omori-Utsu and Gutenberg-Richter laws. In contrast, so-called physics-based aftershock models, based on seismic rate changes calculated from Coulomb stress changes and rate-and-state friction, make more specific predictions: anisotropic stress shadows and multiplicative rate changes. We test the predictive power of models based on Coulomb stress changes against statistical models, including the popular Short Term Earthquake Probabilities and Epidemic-Type Aftershock Sequences models: We score and compare retrospective forecasts on the aftershock sequences of the 1992 Landers, USA, the 1997 Colfiorito, Italy, and the 2008 Selfoss, Iceland, earthquakes. To quantify predictability, we use likelihood-based metrics that test the consistency of the forecasts with the data, including modified and existing tests used in prospective forecast experiments within the Collaboratory for the Study of Earthquake Predictability (CSEP). Our results indicate that a statistical model performs best. Moreover, two Coulomb model classes seem unable to compete: Models based on deterministic Coulomb stress changes calculated from a given fault-slip model, and those based on fixed receiver faults. One model of Coulomb stress changes does perform well and sometimes outperforms the statistical models, but its predictive information is diluted, because of uncertainties included in the fault-slip model. Our results suggest that models based on Coulomb stress changes need to incorporate stochastic features that represent model and data uncertainty.
Pasotti, Lorenzo; Bellato, Massimo; Casanova, Michela; Zucca, Susanna; Cusella De Angelis, Maria Gabriella; Magni, Paolo
2017-01-01
The study of simplified, ad-hoc constructed model systems can help to elucidate if quantitatively characterized biological parts can be effectively re-used in composite circuits to yield predictable functions. Synthetic systems designed from the bottom-up can enable the building of complex interconnected devices via rational approach, supported by mathematical modelling. However, such process is affected by different, usually non-modelled, unpredictability sources, like cell burden. Here, we analyzed a set of synthetic transcriptional cascades in Escherichia coli . We aimed to test the predictive power of a simple Hill function activation/repression model (no-burden model, NBM) and of a recently proposed model, including Hill functions and the modulation of proteins expression by cell load (burden model, BM). To test the bottom-up approach, the circuit collection was divided into training and test sets, used to learn individual component functions and test the predicted output of interconnected circuits, respectively. Among the constructed configurations, two test set circuits showed unexpected logic behaviour. Both NBM and BM were able to predict the quantitative output of interconnected devices with expected behaviour, but only the BM was also able to predict the output of one circuit with unexpected behaviour. Moreover, considering training and test set data together, the BM captures circuits output with higher accuracy than the NBM, which is unable to capture the experimental output exhibited by some of the circuits even qualitatively. Finally, resource usage parameters, estimated via BM, guided the successful construction of new corrected variants of the two circuits showing unexpected behaviour. Superior descriptive and predictive capabilities were achieved considering resource limitation modelling, but further efforts are needed to improve the accuracy of models for biological engineering.
Rajgaria, R.; Wei, Y.; Floudas, C. A.
2010-01-01
An integer linear optimization model is presented to predict residue contacts in β, α + β, and α/β proteins. The total energy of a protein is expressed as sum of a Cα – Cα distance dependent contact energy contribution and a hydrophobic contribution. The model selects contacts that assign lowest energy to the protein structure while satisfying a set of constraints that are included to enforce certain physically observed topological information. A new method based on hydrophobicity is proposed to find the β-sheet alignments. These β-sheet alignments are used as constraints for contacts between residues of β-sheets. This model was tested on three independent protein test sets and CASP8 test proteins consisting of β, α + β, α/β proteins and was found to perform very well. The average accuracy of the predictions (separated by at least six residues) was approximately 61%. The average true positive and false positive distances were also calculated for each of the test sets and they are 7.58 Å and 15.88 Å, respectively. Residue contact prediction can be directly used to facilitate the protein tertiary structure prediction. This proposed residue contact prediction model is incorporated into the first principles protein tertiary structure prediction approach, ASTRO-FOLD. The effectiveness of the contact prediction model was further demonstrated by the improvement in the quality of the protein structure ensemble generated using the predicted residue contacts for a test set of 10 proteins. PMID:20225257
Predicting space telerobotic operator training performance from human spatial ability assessment
NASA Astrophysics Data System (ADS)
Liu, Andrew M.; Oman, Charles M.; Galvan, Raquel; Natapoff, Alan
2013-11-01
Our goal was to determine whether existing tests of spatial ability can predict an astronaut's qualification test performance after robotic training. Because training astronauts to be qualified robotics operators is so long and expensive, NASA is interested in tools that can predict robotics performance before training begins. Currently, the Astronaut Office does not have a validated tool to predict robotics ability as part of its astronaut selection or training process. Commonly used tests of human spatial ability may provide such a tool to predict robotics ability. We tested the spatial ability of 50 active astronauts who had completed at least one robotics training course, then used logistic regression models to analyze the correlation between spatial ability test scores and the astronauts' performance in their evaluation test at the end of the training course. The fit of the logistic function to our data is statistically significant for several spatial tests. However, the prediction performance of the logistic model depends on the criterion threshold assumed. To clarify the critical selection issues, we show how the probability of correct classification vs. misclassification varies as a function of the mental rotation test criterion level. Since the costs of misclassification are low, the logistic models of spatial ability and robotic performance are reliable enough only to be used to customize regular and remedial training. We suggest several changes in tracking performance throughout robotics training that could improve the range and reliability of predictive models.
Overview of Heat Addition and Efficiency Predictions for an Advanced Stirling Convertor
NASA Technical Reports Server (NTRS)
Wilson, Scott D.; Reid, Terry; Schifer, Nicholas; Briggs, Maxwell
2011-01-01
Past methods of predicting net heat input needed to be validated. Validation effort pursued with several paths including improving model inputs, using test hardware to provide validation data, and validating high fidelity models. Validation test hardware provided direct measurement of net heat input for comparison to predicted values. Predicted value of net heat input was 1.7 percent less than measured value and initial calculations of measurement uncertainty were 2.1 percent (under review). Lessons learned during validation effort were incorporated into convertor modeling approach which improved predictions of convertor efficiency.
The Theory of Planned Behavior as a Model of Heavy Episodic Drinking Among College Students
Collins, Susan E.; Carey, Kate B.
2008-01-01
This study provided a simultaneous, confirmatory test of the theory of planned behavior (TPB) in predicting heavy episodic drinking (HED) among college students. It was hypothesized that past HED, drinking attitudes, subjective norms and drinking refusal self-efficacy would predict intention, which would in turn predict future HED. Participants consisted of 131 college drinkers (63% female) who reported having engaged in HED in the previous two weeks. Participants were recruited and completed questionnaires within the context of a larger intervention study (see Collins & Carey, 2005). Latent factor structural equation modeling was used to test the ability of the TPB to predict HED. Chi-square tests and fit indices indicated good fit for the final structural models. Self-efficacy and attitudes but not subjective norms significantly predicted baseline intention, and intention and past HED predicted future HED. Contrary to hypotheses, however, a structural model excluding past HED provided a better fit than a model including it. Although further studies must be conducted before a definitive conclusion is reached, a TPB model excluding past behavior, which is arguably more parsimonious and theory driven, may provide better prediction of HED among college drinkers than a model including past behavior. PMID:18072832
Proposed Framework for Determining Added Mass of Orion Drogue Parachutes
NASA Technical Reports Server (NTRS)
Fraire, Usbaldo, Jr.; Dearman, James; Morris, Aaron
2011-01-01
The Crew Exploration Vehicle (CEV) Parachute Assembly System (CPAS) project is executing a program to qualify a parachute system for a next generation human spacecraft. Part of the qualification process involves predicting parachute riser tension during system descent with flight simulations. Human rating the CPAS hardware requires a high degree of confidence in the simulation models used to predict parachute loads. However, uncertainty exists in the heritage added mass models used for loads predictions due to a lack of supporting documentation and data. Even though CPAS anchors flight simulation loads predictions to flight tests, extrapolation of these models outside the test regime carries the risk of producing non-bounding loads. A set of equations based on empirically derived functions of skirt radius is recommended as the simplest and most viable method to test and derive an enhanced added mass model for an inflating parachute. This will increase confidence in the capability to predict parachute loads. The selected equations are based on those published in A Simplified Dynamic Model of Parachute Inflation by Dean Wolf. An Ames 80x120 wind tunnel test campaign is recommended to acquire the reefing line tension and canopy photogrammetric data needed to quantify the terms in the Wolf equations and reduce uncertainties in parachute loads predictions. Once the campaign is completed, the Wolf equations can be used to predict loads in a typical CPAS Drogue Flight test. Comprehensive descriptions of added mass test techniques from the Apollo Era to the current CPAS project are included for reference.
Effective prediction of biodiversity in tidal flat habitats using an artificial neural network.
Yoo, Jae-Won; Lee, Yong-Woo; Lee, Chang-Gun; Kim, Chang-Soo
2013-02-01
Accurate predictions of benthic macrofaunal biodiversity greatly benefit the efficient planning and management of habitat restoration efforts in tidal flat habitats. Artificial neural network (ANN) prediction models for such biodiversity were developed and tested based on 13 biophysical variables, collected from 50 sites of tidal flats along the coast of Korea during 1991-2006. The developed model showed high predictions during training, cross-validation and testing. Besides the training and testing procedures, an independent dataset from a different time period (2007-2010) was used to test the robustness and practical usage of the model. High prediction on the independent dataset (r = 0.84) validated the networks proper learning of predictive relationship and its generality. Key influential variables identified by follow-up sensitivity analyses were related with topographic dimension, environmental heterogeneity, and water column properties. Study demonstrates the successful application of ANN for the accurate prediction of benthic macrofaunal biodiversity and understanding of dynamics of candidate variables. Copyright © 2012 Elsevier Ltd. All rights reserved.
Testing model for prediction system of 1-AU arrival times of CME-associated interplanetary shocks
NASA Astrophysics Data System (ADS)
Ogawa, Tomoya; den, Mitsue; Tanaka, Takashi; Sugihara, Kohta; Takei, Toshifumi; Amo, Hiroyoshi; Watari, Shinichi
We test a model to predict arrival times of interplanetary shock waves associated with coronal mass ejections (CMEs) using a three-dimensional adaptive mesh refinement (AMR) code. The model is used for the prediction system we develop, which has a Web-based user interface and aims at people who is not familiar with operation of computers and numerical simulations or is not researcher. We apply the model to interplanetary CME events. We first choose coronal parameters so that property of background solar wind observed by ACE space craft is reproduced. Then we input CME parameters observed by SOHO/LASCO. Finally we compare the predicted arrival times with observed ones. We describe results of the test and discuss tendency of the model.
Characterizing Decision-Analysis Performances of Risk Prediction Models Using ADAPT Curves.
Lee, Wen-Chung; Wu, Yun-Chun
2016-01-01
The area under the receiver operating characteristic curve is a widely used index to characterize the performance of diagnostic tests and prediction models. However, the index does not explicitly acknowledge the utilities of risk predictions. Moreover, for most clinical settings, what counts is whether a prediction model can guide therapeutic decisions in a way that improves patient outcomes, rather than to simply update probabilities.Based on decision theory, the authors propose an alternative index, the "average deviation about the probability threshold" (ADAPT).An ADAPT curve (a plot of ADAPT value against the probability threshold) neatly characterizes the decision-analysis performances of a risk prediction model.Several prediction models can be compared for their ADAPT values at a chosen probability threshold, for a range of plausible threshold values, or for the whole ADAPT curves. This should greatly facilitate the selection of diagnostic tests and prediction models.
Improve SSME power balance model
NASA Technical Reports Server (NTRS)
Karr, Gerald R.
1992-01-01
Effort was dedicated to development and testing of a formal strategy for reconciling uncertain test data with physically limited computational prediction. Specific weaknesses in the logical structure of the current Power Balance Model (PBM) version are described with emphasis given to the main routing subroutines BAL and DATRED. Selected results from a variational analysis of PBM predictions are compared to Technology Test Bed (TTB) variational study results to assess PBM predictive capability. The motivation for systematic integration of uncertain test data with computational predictions based on limited physical models is provided. The theoretical foundation for the reconciliation strategy developed in this effort is presented, and results of a reconciliation analysis of the Space Shuttle Main Engine (SSME) high pressure fuel side turbopump subsystem are examined.
Thermal barrier coating life prediction model development
NASA Technical Reports Server (NTRS)
Hillery, R. V.; Pilsner, B. H.; Mcknight, R. L.; Cook, T. S.; Hartle, M. S.
1988-01-01
This report describes work performed to determine the predominat modes of degradation of a plasma sprayed thermal barrier coating system and to develop and verify life prediction models accounting for these degradation modes. The primary TBC system consisted of a low pressure plasma sprayed NiCrAlY bond coat, an air plasma sprayed ZrO2-Y2O3 top coat, and a Rene' 80 substrate. The work was divided into 3 technical tasks. The primary failure mode to be addressed was loss of the zirconia layer through spalling. Experiments showed that oxidation of the bond coat is a significant contributor to coating failure. It was evident from the test results that the species of oxide scale initially formed on the bond coat plays a role in coating degradation and failure. It was also shown that elevated temperature creep of the bond coat plays a role in coating failure. An empirical model was developed for predicting the test life of specimens with selected coating, specimen, and test condition variations. In the second task, a coating life prediction model was developed based on the data from Task 1 experiments, results from thermomechanical experiments performed as part of Task 2, and finite element analyses of the TBC system during thermal cycles. The third and final task attempted to verify the validity of the model developed in Task 2. This was done by using the model to predict the test lives of several coating variations and specimen geometries, then comparing these predicted lives to experimentally determined test lives. It was found that the model correctly predicts trends, but that additional refinement is needed to accurately predict coating life.
Wu, X; Lund, M S; Sun, D; Zhang, Q; Su, G
2015-10-01
One of the factors affecting the reliability of genomic prediction is the relationship among the animals of interest. This study investigated the reliability of genomic prediction in various scenarios with regard to the relationship between test and training animals, and among animals within the training data set. Different training data sets were generated from EuroGenomics data and a group of Nordic Holstein bulls (born in 2005 and afterwards) as a common test data set. Genomic breeding values were predicted using a genomic best linear unbiased prediction model and a Bayesian mixture model. The results showed that a closer relationship between test and training animals led to a higher reliability of genomic predictions for the test animals, while a closer relationship among training animals resulted in a lower reliability. In addition, the Bayesian mixture model in general led to a slightly higher reliability of genomic prediction, especially for the scenario of distant relationships between training and test animals. Therefore, to prevent a decrease in reliability, constant updates of the training population with animals from more recent generations are required. Moreover, a training population consisting of less-related animals is favourable for reliability of genomic prediction. © 2015 Blackwell Verlag GmbH.
Experimental evaluation of a recursive model identification technique for type 1 diabetes.
Finan, Daniel A; Doyle, Francis J; Palerm, Cesar C; Bevier, Wendy C; Zisser, Howard C; Jovanovic, Lois; Seborg, Dale E
2009-09-01
A model-based controller for an artificial beta cell requires an accurate model of the glucose-insulin dynamics in type 1 diabetes subjects. To ensure the robustness of the controller for changing conditions (e.g., changes in insulin sensitivity due to illnesses, changes in exercise habits, or changes in stress levels), the model should be able to adapt to the new conditions by means of a recursive parameter estimation technique. Such an adaptive strategy will ensure that the most accurate model is used for the current conditions, and thus the most accurate model predictions are used in model-based control calculations. In a retrospective analysis, empirical dynamic autoregressive exogenous input (ARX) models were identified from glucose-insulin data for nine type 1 diabetes subjects in ambulatory conditions. Data sets consisted of continuous (5-minute) glucose concentration measurements obtained from a continuous glucose monitor, basal insulin infusion rates and times and amounts of insulin boluses obtained from the subjects' insulin pumps, and subject-reported estimates of the times and carbohydrate content of meals. Two identification techniques were investigated: nonrecursive, or batch methods, and recursive methods. Batch models were identified from a set of training data, whereas recursively identified models were updated at each sampling instant. Both types of models were used to make predictions of new test data. For the purpose of comparison, model predictions were compared to zero-order hold (ZOH) predictions, which were made by simply holding the current glucose value constant for p steps into the future, where p is the prediction horizon. Thus, the ZOH predictions are model free and provide a base case for the prediction metrics used to quantify the accuracy of the model predictions. In theory, recursive identification techniques are needed only when there are changing conditions in the subject that require model adaptation. Thus, the identification and validation techniques were performed with both "normal" data and data collected during conditions of reduced insulin sensitivity. The latter were achieved by having the subjects self-administer a medication, prednisone, for 3 consecutive days. The recursive models were allowed to adapt to this condition of reduced insulin sensitivity, while the batch models were only identified from normal data. Data from nine type 1 diabetes subjects in ambulatory conditions were analyzed; six of these subjects also participated in the prednisone portion of the study. For normal test data, the batch ARX models produced 30-, 45-, and 60-minute-ahead predictions that had average root mean square error (RMSE) values of 26, 34, and 40 mg/dl, respectively. For test data characterized by reduced insulin sensitivity, the batch ARX models produced 30-, 60-, and 90-minute-ahead predictions with average RMSE values of 27, 46, and 59 mg/dl, respectively; the recursive ARX models demonstrated similar performance with corresponding values of 27, 45, and 61 mg/dl, respectively. The identified ARX models (batch and recursive) produced more accurate predictions than the model-free ZOH predictions, but only marginally. For test data characterized by reduced insulin sensitivity, RMSE values for the predictions of the batch ARX models were 9, 5, and 5% more accurate than the ZOH predictions for prediction horizons of 30, 60, and 90 minutes, respectively. In terms of RMSE values, the 30-, 60-, and 90-minute predictions of the recursive models were more accurate than the ZOH predictions, by 10, 5, and 2%, respectively. In this experimental study, the recursively identified ARX models resulted in predictions of test data that were similar, but not superior, to the batch models. Even for the test data characteristic of reduced insulin sensitivity, the batch and recursive models demonstrated similar prediction accuracy. The predictions of the identified ARX models were only marginally more accurate than the model-free ZOH predictions. Given the simplicity of the ARX models and the computational ease with which they are identified, however, even modest improvements may justify the use of these models in a model-based controller for an artificial beta cell. 2009 Diabetes Technology Society.
Prediction of Acoustic Loads Generated by Propulsion Systems
NASA Technical Reports Server (NTRS)
Perez, Linamaria; Allgood, Daniel C.
2011-01-01
NASA Stennis Space Center is one of the nation's premier facilities for conducting large-scale rocket engine testing. As liquid rocket engines vary in size, so do the acoustic loads that they produce. When these acoustic loads reach very high levels they may cause damages both to humans and to actual structures surrounding the testing area. To prevent these damages, prediction tools are used to estimate the spectral content and levels of the acoustics being generated by the rocket engine plumes and model their propagation through the surrounding atmosphere. Prior to the current work, two different acoustic prediction tools were being implemented at Stennis Space Center, each having their own advantages and disadvantages depending on the application. Therefore, a new prediction tool was created, using NASA SP-8072 handbook as a guide, which would replicate the same prediction methods as the previous codes, but eliminate any of the drawbacks the individual codes had. Aside from replicating the previous modeling capability in a single framework, additional modeling functions were added thereby expanding the current modeling capability. To verify that the new code could reproduce the same predictions as the previous codes, two verification test cases were defined. These verification test cases also served as validation cases as the predicted results were compared to actual test data.
Three Tests of the Learned Helplessness Model of Depression
ERIC Educational Resources Information Center
Blaney, Paul H.; Willis, Max H.
1978-01-01
Three studies, testing predictions derived from Seligman's helplessness model of depression and generally supported by earlier research, are reported. The first addressed the finding that depressed individuals evidence a perception of noncontingency, the second tested the prediction that undergraduates in whom helplessness had been induced would…
In-silico wear prediction for knee replacements--methodology and corroboration.
Strickland, M A; Taylor, M
2009-07-22
The capability to predict in-vivo wear of knee replacements is a valuable pre-clinical analysis tool for implant designers. Traditionally, time-consuming experimental tests provided the principal means of investigating wear. Today, computational models offer an alternative. However, the validity of these models has not been demonstrated across a range of designs and test conditions, and several different formulas are in contention for estimating wear rates, limiting confidence in the predictive power of these in-silico models. This study collates and retrospectively simulates a wide range of experimental wear tests using fast rigid-body computational models with extant wear prediction algorithms, to assess the performance of current in-silico wear prediction tools. The number of tests corroborated gives a broader, more general assessment of the performance of these wear-prediction tools, and provides better estimates of the wear 'constants' used in computational models. High-speed rigid-body modelling allows a range of alternative algorithms to be evaluated. Whilst most cross-shear (CS)-based models perform comparably, the 'A/A+B' wear model appears to offer the best predictive power amongst existing wear algorithms. However, the range and variability of experimental data leaves considerable uncertainty in the results. More experimental data with reduced variability and more detailed reporting of studies will be necessary to corroborate these models with greater confidence. With simulation times reduced to only a few minutes, these models are ideally suited to large-volume 'design of experiment' or probabilistic studies (which are essential if pre-clinical assessment tools are to begin addressing the degree of variation observed clinically and in explanted components).
NASA Technical Reports Server (NTRS)
Nguyen, Han; Mazurkivich, Pete
2006-01-01
A pressurization system model was developed for a crossfeed subscale water test article using the EASY5 modeling software. The model consisted of an integrated tank pressurization and pressurization line model. The tank model was developed using the general purpose library, while the line model was assembled from the gas dynamic library. The pressurization system model was correlated to water test data obtained from nine test runs conducted on the crossfeed subscale test article. The model was first correlated to a representative test run and frozen. The correlated model was then used to predict the tank pressures and compared with the test data for eight other runs. The model prediction showed excellent agreement with the test data, allowing it to be used in a later study to analyze the pressurization system performance of a full-scale bimese vehicle with cryogenic propellants.
NASA Astrophysics Data System (ADS)
Parkin, G.; O'Donnell, G.; Ewen, J.; Bathurst, J. C.; O'Connell, P. E.; Lavabre, J.
1996-02-01
Validation methods commonly used to test catchment models are not capable of demonstrating a model's fitness for making predictions for catchments where the catchment response is not known (including hypothetical catchments, and future conditions of existing catchments which are subject to land-use or climate change). This paper describes the first use of a new method of validation (Ewen and Parkin, 1996. J. Hydrol., 175: 583-594) designed to address these types of application; the method involves making 'blind' predictions of selected hydrological responses which are considered important for a particular application. SHETRAN (a physically based, distributed catchment modelling system) is tested on a small Mediterranean catchment. The test involves quantification of the uncertainty in four predicted features of the catchment response (continuous hydrograph, peak discharge rates, monthly runoff, and total runoff), and comparison of observations with the predicted ranges for these features. The results of this test are considered encouraging.
NASA Technical Reports Server (NTRS)
Smith, Arthur F.
1985-01-01
Results of static stability wind tunnel tests of three 62.2 cm (24.5 in) diameter models of the Prop-Fan are presented. Measurements of blade stresses were made with the Prop-Fans mounted on an isolated nacelle in an open 5.5 m (18 ft) wind tunnel test section with no tunnel flow. The tests were conducted in the United Technology Research Center Large Subsonic Wind Tunnel. Stall flutter was determined by regions of high stress, which were compared with predictions of boundaries of zero total viscous damping. The structural analysis used beam methods for the model with straight blades and finite element methods for the models with swept blades. Increasing blade sweep tends to suppress stall flutter. Comparisons with similar test data acquired at NASA/Lewis are good. Correlations between measured and predicted critical speeds for all the models are good. The trend of increased stability with increased blade sweep is well predicted. Calculated flutter boundaries generaly coincide with tested boundaries. Stall flutter is predicted to occur in the third (torsion) mode. The straight blade test shows third mode response, while the swept blades respond in other modes.
Fatemi, Mohammad Hossein; Ghorbanzad'e, Mehdi
2009-11-01
Quantitative structure-property relationship models for the prediction of the nematic transition temperature (T (N)) were developed by using multilinear regression analysis and a feedforward artificial neural network (ANN). A collection of 42 thermotropic liquid crystals was chosen as the data set. The data set was divided into three sets: for training, and an internal and external test set. Training and internal test sets were used for ANN model development, and the external test set was used for evaluation of the predictive power of the model. In order to build the models, a set of six descriptors were selected by the best multilinear regression procedure of the CODESSA program. These descriptors were: atomic charge weighted partial negatively charged surface area, relative negative charged surface area, polarity parameter/square distance, minimum most negative atomic partial charge, molecular volume, and the A component of moment of inertia, which encode geometrical and electronic characteristics of molecules. These descriptors were used as inputs to ANN. The optimized ANN model had 6:6:1 topology. The standard errors in the calculation of T (N) for the training, internal, and external test sets using the ANN model were 1.012, 4.910, and 4.070, respectively. To further evaluate the ANN model, a crossvalidation test was performed, which produced the statistic Q (2) = 0.9796 and standard deviation of 2.67 based on predicted residual sum of square. Also, the diversity test was performed to ensure the model's stability and prove its predictive capability. The obtained results reveal the suitability of ANN for the prediction of T (N) for liquid crystals using molecular structural descriptors.
Metabolomics biomarkers to predict acamprosate treatment response in alcohol-dependent subjects.
Hinton, David J; Vázquez, Marely Santiago; Geske, Jennifer R; Hitschfeld, Mario J; Ho, Ada M C; Karpyak, Victor M; Biernacka, Joanna M; Choi, Doo-Sup
2017-05-31
Precision medicine for alcohol use disorder (AUD) allows optimal treatment of the right patient with the right drug at the right time. Here, we generated multivariable models incorporating clinical information and serum metabolite levels to predict acamprosate treatment response. The sample of 120 patients was randomly split into a training set (n = 80) and test set (n = 40) five independent times. Treatment response was defined as complete abstinence (no alcohol consumption during 3 months of acamprosate treatment) while nonresponse was defined as any alcohol consumption during this period. In each of the five training sets, we built a predictive model using a least absolute shrinkage and section operator (LASSO) penalized selection method and then evaluated the predictive performance of each model in the corresponding test set. The models predicted acamprosate treatment response with a mean sensitivity and specificity in the test sets of 0.83 and 0.31, respectively, suggesting our model performed well at predicting responders, but not non-responders (i.e. many non-responders were predicted to respond). Studies with larger sample sizes and additional biomarkers will expand the clinical utility of predictive algorithms for pharmaceutical response in AUD.
Field-scale prediction of enhanced DNAPL dissolution based on partitioning tracers.
Wang, Fang; Annable, Michael D; Jawitz, James W
2013-09-01
The equilibrium streamtube model (EST) has demonstrated the ability to accurately predict dense nonaqueous phase liquid (DNAPL) dissolution in laboratory experiments and numerical simulations. Here the model is applied to predict DNAPL dissolution at a tetrachloroethylene (PCE)-contaminated dry cleaner site, located in Jacksonville, Florida. The EST model is an analytical solution with field-measurable input parameters. Measured data from a field-scale partitioning tracer test were used to parameterize the EST model and the predicted PCE dissolution was compared to measured data from an in-situ ethanol flood. In addition, a simulated partitioning tracer test from a calibrated, three-dimensional, spatially explicit multiphase flow model (UTCHEM) was also used to parameterize the EST analytical solution. The EST ethanol prediction based on both the field partitioning tracer test and the simulation closely matched the total recovery well field ethanol data with Nash-Sutcliffe efficiency E=0.96 and 0.90, respectively. The EST PCE predictions showed a peak shift to earlier arrival times for models based on either field-measured or simulated partitioning tracer tests, resulting in poorer matches to the field PCE data in both cases. The peak shifts were concluded to be caused by well screen interval differences between the field tracer test and ethanol flood. Both the EST model and UTCHEM were also used to predict PCE aqueous dissolution under natural gradient conditions, which has a much less complex flow pattern than the forced-gradient double five spot used for the ethanol flood. The natural gradient EST predictions based on parameters determined from tracer tests conducted with a complex flow pattern underestimated the UTCHEM-simulated natural gradient total mass removal by 12% after 170 pore volumes of water flushing indicating that some mass was not detected by the tracers likely due to stagnation zones in the flow field. These findings highlight the important influence of well configuration and the associated flow patterns on dissolution. © 2013.
Field-scale prediction of enhanced DNAPL dissolution based on partitioning tracers
NASA Astrophysics Data System (ADS)
Wang, Fang; Annable, Michael D.; Jawitz, James W.
2013-09-01
The equilibrium streamtube model (EST) has demonstrated the ability to accurately predict dense nonaqueous phase liquid (DNAPL) dissolution in laboratory experiments and numerical simulations. Here the model is applied to predict DNAPL dissolution at a tetrachloroethylene (PCE)-contaminated dry cleaner site, located in Jacksonville, Florida. The EST model is an analytical solution with field-measurable input parameters. Measured data from a field-scale partitioning tracer test were used to parameterize the EST model and the predicted PCE dissolution was compared to measured data from an in-situ ethanol flood. In addition, a simulated partitioning tracer test from a calibrated, three-dimensional, spatially explicit multiphase flow model (UTCHEM) was also used to parameterize the EST analytical solution. The EST ethanol prediction based on both the field partitioning tracer test and the simulation closely matched the total recovery well field ethanol data with Nash-Sutcliffe efficiency E = 0.96 and 0.90, respectively. The EST PCE predictions showed a peak shift to earlier arrival times for models based on either field-measured or simulated partitioning tracer tests, resulting in poorer matches to the field PCE data in both cases. The peak shifts were concluded to be caused by well screen interval differences between the field tracer test and ethanol flood. Both the EST model and UTCHEM were also used to predict PCE aqueous dissolution under natural gradient conditions, which has a much less complex flow pattern than the forced-gradient double five spot used for the ethanol flood. The natural gradient EST predictions based on parameters determined from tracer tests conducted with a complex flow pattern underestimated the UTCHEM-simulated natural gradient total mass removal by 12% after 170 pore volumes of water flushing indicating that some mass was not detected by the tracers likely due to stagnation zones in the flow field. These findings highlight the important influence of well configuration and the associated flow patterns on dissolution.
Correlation of ground tests and analyses of a dynamically scaled Space Station model configuration
NASA Technical Reports Server (NTRS)
Javeed, Mehzad; Edighoffer, Harold H.; Mcgowan, Paul E.
1993-01-01
Verification of analytical models through correlation with ground test results of a complex space truss structure is demonstrated. A multi-component, dynamically scaled space station model configuration is the focus structure for this work. Previously established test/analysis correlation procedures are used to develop improved component analytical models. Integrated system analytical models, consisting of updated component analytical models, are compared with modal test results to establish the accuracy of system-level dynamic predictions. Design sensitivity model updating methods are shown to be effective for providing improved component analytical models. Also, the effects of component model accuracy and interface modeling fidelity on the accuracy of integrated model predictions is examined.
NASA Astrophysics Data System (ADS)
Sadi, Maryam
2018-01-01
In this study a group method of data handling model has been successfully developed to predict heat capacity of ionic liquid based nanofluids by considering reduced temperature, acentric factor and molecular weight of ionic liquids, and nanoparticle concentration as input parameters. In order to accomplish modeling, 528 experimental data points extracted from the literature have been divided into training and testing subsets. The training set has been used to predict model coefficients and the testing set has been applied for model validation. The ability and accuracy of developed model, has been evaluated by comparison of model predictions with experimental values using different statistical parameters such as coefficient of determination, mean square error and mean absolute percentage error. The mean absolute percentage error of developed model for training and testing sets are 1.38% and 1.66%, respectively, which indicate excellent agreement between model predictions and experimental data. Also, the results estimated by the developed GMDH model exhibit a higher accuracy when compared to the available theoretical correlations.
NASA Astrophysics Data System (ADS)
Lian, J.; Ahn, D. C.; Chae, D. C.; Münstermann, S.; Bleck, W.
2016-08-01
Experimental and numerical investigations on the characterisation and prediction of cold formability of a ferritic steel sheet are performed in this study. Tensile tests and Nakajima tests were performed for the plasticity characterisation and the forming limit diagram determination. In the numerical prediction, the modified maximum force criterion is selected as the localisation criterion. For the plasticity model, a non-associated formulation of the Hill48 model is employed. With the non-associated flow rule, the model can result in a similar predictive capability of stress and r-value directionality to the advanced non-quadratic associated models. To accurately characterise the anisotropy evolution during hardening, the anisotropic hardening is also calibrated and implemented into the model for the prediction of the formability.
Family-supportive work environments and psychological strain: a longitudinal test of two theories.
Odle-Dusseau, Heather N; Herleman, Hailey A; Britt, Thomas W; Moore, Dewayne D; Castro, Carl A; McGurk, Dennis
2013-01-01
Based on the Job Demands-Resources (JDR) model (E. Demerouti, A. B. Bakker, F. Nachreiner, & W. B. Schaufeli, 2001, The job demands-resources model of burnout. Journal of Applied Psychology, 86, 499-512) and Conservation of Resources (COR) theory (S. E. Hobfoll, 2002, Social and psychological resources and adaptation. Review of General Psychology, 6, 307-324), we tested three competing models that predict different directions of causation for relationships over time between family-supportive work environments (FSWE) and psychological strain, with two waves of data from a military sample. Results revealed support for both the JDR and COR theories, first in the static model where FSWE at Time 1 predicted psychological strain at Time 2 and when testing the opposite direction, where psychological strain at Time 1 predicted FSWE at Time 2. For change models, FSWE predicted changes in psychological strain across time, although the reverse causation model was not supported (psychological strain at Time 1 did not predict changes in FSWE). Also, changes in FSWE across time predicted psychological strain at Time 2, whereas changes in psychological strain did not predict FSWE at Time 2. Theoretically, these results are important for the work-family interface in that they demonstrate the application of a systems approach to studying work and family interactions, as support was obtained for both the JDR model with perceptions of FSWE predicting psychological strain (in both the static and change models), and for COR theory where psychological strain predicts FSWE across time.
NASA Technical Reports Server (NTRS)
Steele, W. G.; Molder, K. J.; Hudson, S. T.; Vadasy, K. V.; Rieder, P. T.; Giel, T.
2005-01-01
NASA and the U.S. Air Force are working on a joint project to develop a new hydrogen-fueled, full-flow, staged combustion rocket engine. The initial testing and modeling work for the Integrated Powerhead Demonstrator (IPD) project is being performed by NASA Marshall and Stennis Space Centers. A key factor in the testing of this engine is the ability to predict and measure the transient fluid flow during engine start and shutdown phases of operation. A model built by NASA Marshall in the ROCket Engine Transient Simulation (ROCETS) program is used to predict transient engine fluid flows. The model is initially calibrated to data from previous tests on the Stennis E1 test stand. The model is then used to predict the next run. Data from this run can then be used to recalibrate the model providing a tool to guide the test program in incremental steps to reduce the risk to the prototype engine. In this paper, they define this type of model as a calibrated model. This paper proposes a method to estimate the uncertainty of a model calibrated to a set of experimental test data. The method is similar to that used in the calibration of experiment instrumentation. For the IPD example used in this paper, the model uncertainty is determined for both LOX and LH flow rates using previous data. The successful use of this model is then demonstrated to predict another similar test run within the uncertainty bounds. The paper summarizes the uncertainty methodology when a model is continually recalibrated with new test data. The methodology is general and can be applied to other calibrated models.
Quinn, Francis; Johnston, Marie; Johnston, Derek W
2013-01-01
Previous research has supported an integrated biomedical and behavioural model explaining activity limitations. However, further tests of this model are required at the within-person level, because while it proposes that the constructs are related within individuals, it has primarily been tested between individuals in large group studies. We aimed to test the integrated model at the within-person level. Six correlational N-of-1 studies in participants with arthritis, chronic pain and walking limitations were carried out. Daily measures of theoretical constructs were collected using a hand-held computer (PDA), the activity was assessed by self-report and accelerometer and the data were analysed using time-series analysis. The biomedical model was not supported as pain impairment did not predict activity, so the integrated model was supported partially. Impairment predicted intention to move around, while perceived behavioural control (PBC) and intention predicted activity. PBC did not predict activity limitation in the expected direction. The integrated model of disability was partially supported within individuals, especially the behavioural elements. However, results suggest that different elements of the model may drive activity (limitations) for different individuals. The integrated model provides a useful framework for understanding disability and suggests interventions, and the utility of N-of-1 methodology for testing theory is illustrated.
The Theory of Planned Behavior as a Predictor of HIV Testing Intention.
Ayodele, Olabode
2017-03-01
This investigation tests the theory of planned behavior (TPB) as a predictor of HIV testing intention among Nigerian university undergraduate students. A cross-sectional study of 392 students was conducted using a self-administered structured questionnaire that measured socio-demographics, perceived risk of human immunodeficiency virus (HIV) infection, and TPB constructs. Analysis was based on 273 students who had never been tested for HIV. Hierarchical multiple regression analysis assessed the applicability of the TPB in predicting HIV testing intention and additional predictive value of perceived risk of HIV infection. The prediction model containing TPB constructs explained 35% of the variance in HIV testing intention, with attitude and perceived behavioral control making significant and unique contributions to intention. Perceived risk of HIV infection contributed marginally (2%) but significantly to the final prediction model. Findings supported the TPB in predicting HIV testing intention. Although future studies must determine the generalizability of these results, the findings highlight the importance of perceived behavioral control, attitude, and perceived risk of HIV infection in the prediction of HIV testing intention among students who have not previously tested for HIV.
Evaluation of Two Crew Module Boilerplate Tests Using Newly Developed Calibration Metrics
NASA Technical Reports Server (NTRS)
Horta, Lucas G.; Reaves, Mercedes C.
2012-01-01
The paper discusses a application of multi-dimensional calibration metrics to evaluate pressure data from water drop tests of the Max Launch Abort System (MLAS) crew module boilerplate. Specifically, three metrics are discussed: 1) a metric to assess the probability of enveloping the measured data with the model, 2) a multi-dimensional orthogonality metric to assess model adequacy between test and analysis, and 3) a prediction error metric to conduct sensor placement to minimize pressure prediction errors. Data from similar (nearly repeated) capsule drop tests shows significant variability in the measured pressure responses. When compared to expected variability using model predictions, it is demonstrated that the measured variability cannot be explained by the model under the current uncertainty assumptions.
Initial CGE Model Results Summary Exogenous and Endogenous Variables Tests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edwards, Brian Keith; Boero, Riccardo; Rivera, Michael Kelly
The following discussion presents initial results of tests of the most recent version of the National Infrastructure Simulation and Analysis Center Dynamic Computable General Equilibrium (CGE) model developed by Los Alamos National Laboratory (LANL). The intent of this is to test and assess the model’s behavioral properties. The test evaluated whether the predicted impacts are reasonable from a qualitative perspective. This issue is whether the predicted change, be it an increase or decrease in other model variables, is consistent with prior economic intuition and expectations about the predicted change. One of the purposes of this effort is to determine whethermore » model changes are needed in order to improve its behavior qualitatively and quantitatively.« less
Green, Jasmine; Liem, Gregory Arief D; Martin, Andrew J; Colmar, Susan; Marsh, Herbert W; McInerney, Dennis
2012-10-01
The study tested three theoretically/conceptually hypothesized longitudinal models of academic processes leading to academic performance. Based on a longitudinal sample of 1866 high-school students across two consecutive years of high school (Time 1 and Time 2), the model with the most superior heuristic value demonstrated: (a) academic motivation and self-concept positively predicted attitudes toward school; (b) attitudes toward school positively predicted class participation and homework completion and negatively predicted absenteeism; and (c) class participation and homework completion positively predicted test performance whilst absenteeism negatively predicted test performance. Taken together, these findings provide support for the relevance of the self-system model and, particularly, the importance of examining the dynamic relationships amongst engagement factors of the model. The study highlights implications for educational and psychological theory, measurement, and intervention. Copyright © 2012 The Foundation for Professionals in Services for Adolescents. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Wells, Jason E.; Black, David L.; Taylor, Casey L.
2013-01-01
Exhaust plumes from large solid rocket motors fired at ATK's Promontory test site carry particulates to high altitudes and typically produce deposits that fall on regions downwind of the test area. As populations and communities near the test facility grow, ATK has become increasingly concerned about the impact of motor testing on those surrounding communities. To assess the potential impact of motor testing on the community and to identify feasible mitigation strategies, it is essential to have a tool capable of predicting plume behavior downrange of the test stand. A software package, called PlumeTracker, has been developed and validated at ATK for this purpose. The code is a point model that offers a time-dependent, physics-based description of plume transport and precipitation. The code can utilize either measured or forecasted weather data to generate plume predictions. Next-Generation Radar (NEXRAD) data and field observations from twenty-three historical motor test fires at Promontory were collected to test the predictive capability of PlumeTracker. Model predictions for plume trajectories and deposition fields were found to correlate well with the collected dataset.
Evaluating the habitat capability model for Merriam's turkeys
Mark A. Rumble; Stanley H. Anderson
1995-01-01
Habitat capability (HABCAP) models for wildlife assist land managers in predicting the consequences of their management decisions. Models must be tested and refined prior to using them in management planning. We tested the predicted patterns of habitat selection of the R2 HABCAP model using observed patterns of habitats selected by radio-marked Merriamâs turkey (
Composite Stress Rupture: A New Reliability Model Based on Strength Decay
NASA Technical Reports Server (NTRS)
Reeder, James R.
2012-01-01
A model is proposed to estimate reliability for stress rupture of composite overwrap pressure vessels (COPVs) and similar composite structures. This new reliability model is generated by assuming a strength degradation (or decay) over time. The model suggests that most of the strength decay occurs late in life. The strength decay model will be shown to predict a response similar to that predicted by a traditional reliability model for stress rupture based on tests at a single stress level. In addition, the model predicts that even though there is strength decay due to proof loading, a significant overall increase in reliability is gained by eliminating any weak vessels, which would fail early. The model predicts that there should be significant periods of safe life following proof loading, because time is required for the strength to decay from the proof stress level to the subsequent loading level. Suggestions for testing the strength decay reliability model have been made. If the strength decay reliability model predictions are shown through testing to be accurate, COPVs may be designed to carry a higher level of stress than is currently allowed, which will enable the production of lighter structures
ZY3-02 Laser Altimeter Footprint Geolocation Prediction
Xie, Junfeng; Tang, Xinming; Mo, Fan; Li, Guoyuan; Zhu, Guangbin; Wang, Zhenming; Fu, Xingke; Gao, Xiaoming; Dou, Xianhui
2017-01-01
Successfully launched on 30 May 2016, ZY3-02 is the first Chinese surveying and mapping satellite equipped with a lightweight laser altimeter. Calibration is necessary before the laser altimeter becomes operational. Laser footprint location prediction is the first step in calibration that is based on ground infrared detectors, and it is difficult because the sample frequency of the ZY3-02 laser altimeter is 2 Hz, and the distance between two adjacent laser footprints is about 3.5 km. In this paper, we build an on-orbit rigorous geometric prediction model referenced to the rigorous geometric model of optical remote sensing satellites. The model includes three kinds of data that must be predicted: pointing angle, orbit parameters, and attitude angles. The proposed method is verified by a ZY3-02 laser altimeter on-orbit geometric calibration test. Five laser footprint prediction experiments are conducted based on the model, and the laser footprint prediction accuracy is better than 150 m on the ground. The effectiveness and accuracy of the on-orbit rigorous geometric prediction model are confirmed by the test results. The geolocation is predicted precisely by the proposed method, and this will give a reference to the geolocation prediction of future land laser detectors in other laser altimeter calibration test. PMID:28934160
ZY3-02 Laser Altimeter Footprint Geolocation Prediction.
Xie, Junfeng; Tang, Xinming; Mo, Fan; Li, Guoyuan; Zhu, Guangbin; Wang, Zhenming; Fu, Xingke; Gao, Xiaoming; Dou, Xianhui
2017-09-21
Successfully launched on 30 May 2016, ZY3-02 is the first Chinese surveying and mapping satellite equipped with a lightweight laser altimeter. Calibration is necessary before the laser altimeter becomes operational. Laser footprint location prediction is the first step in calibration that is based on ground infrared detectors, and it is difficult because the sample frequency of the ZY3-02 laser altimeter is 2 Hz, and the distance between two adjacent laser footprints is about 3.5 km. In this paper, we build an on-orbit rigorous geometric prediction model referenced to the rigorous geometric model of optical remote sensing satellites. The model includes three kinds of data that must be predicted: pointing angle, orbit parameters, and attitude angles. The proposed method is verified by a ZY3-02 laser altimeter on-orbit geometric calibration test. Five laser footprint prediction experiments are conducted based on the model, and the laser footprint prediction accuracy is better than 150 m on the ground. The effectiveness and accuracy of the on-orbit rigorous geometric prediction model are confirmed by the test results. The geolocation is predicted precisely by the proposed method, and this will give a reference to the geolocation prediction of future land laser detectors in other laser altimeter calibration test.
Nolan, Bernard T.; Fienen, Michael N.; Lorenz, David L.
2015-01-01
We used a statistical learning framework to evaluate the ability of three machine-learning methods to predict nitrate concentration in shallow groundwater of the Central Valley, California: boosted regression trees (BRT), artificial neural networks (ANN), and Bayesian networks (BN). Machine learning methods can learn complex patterns in the data but because of overfitting may not generalize well to new data. The statistical learning framework involves cross-validation (CV) training and testing data and a separate hold-out data set for model evaluation, with the goal of optimizing predictive performance by controlling for model overfit. The order of prediction performance according to both CV testing R2 and that for the hold-out data set was BRT > BN > ANN. For each method we identified two models based on CV testing results: that with maximum testing R2 and a version with R2 within one standard error of the maximum (the 1SE model). The former yielded CV training R2 values of 0.94–1.0. Cross-validation testing R2 values indicate predictive performance, and these were 0.22–0.39 for the maximum R2 models and 0.19–0.36 for the 1SE models. Evaluation with hold-out data suggested that the 1SE BRT and ANN models predicted better for an independent data set compared with the maximum R2 versions, which is relevant to extrapolation by mapping. Scatterplots of predicted vs. observed hold-out data obtained for final models helped identify prediction bias, which was fairly pronounced for ANN and BN. Lastly, the models were compared with multiple linear regression (MLR) and a previous random forest regression (RFR) model. Whereas BRT results were comparable to RFR, MLR had low hold-out R2 (0.07) and explained less than half the variation in the training data. Spatial patterns of predictions by the final, 1SE BRT model agreed reasonably well with previously observed patterns of nitrate occurrence in groundwater of the Central Valley.
NASA Technical Reports Server (NTRS)
Frady, Gregory P.; Duvall, Lowery D.; Fulcher, Clay W. G.; Laverde, Bruce T.; Hunt, Ronald A.
2011-01-01
A rich body of vibroacoustic test data was recently generated at Marshall Space Flight Center for a curved orthogrid panel typical of launch vehicle skin structures. Several test article configurations were produced by adding component equipment of differing weights to the flight-like vehicle panel. The test data were used to anchor computational predictions of a variety of spatially distributed responses including acceleration, strain and component interface force. Transfer functions relating the responses to the input pressure field were generated from finite element based modal solutions and test-derived damping estimates. A diffuse acoustic field model was employed to describe the assumed correlation of phased input sound pressures across the energized panel. This application demonstrates the ability to quickly and accurately predict a variety of responses to acoustically energized skin panels with mounted components. Favorable comparisons between the measured and predicted responses were established. The validated models were used to examine vibration response sensitivities to relevant modeling parameters such as pressure patch density, mesh density, weight of the mounted component and model form. Convergence metrics include spectral densities and cumulative root-mean squared (RMS) functions for acceleration, velocity, displacement, strain and interface force. Minimum frequencies for response convergence were established as well as recommendations for modeling techniques, particularly in the early stages of a component design when accurate structural vibration requirements are needed relatively quickly. The results were compared with long-established guidelines for modeling accuracy of component-loaded panels. A theoretical basis for the Response/Pressure Transfer Function (RPTF) approach provides insight into trends observed in the response predictions and confirmed in the test data. The software modules developed for the RPTF method can be easily adapted for quick replacement of the diffuse acoustic field with other pressure field models; for example a turbulent boundary layer (TBL) model suitable for vehicle ascent. Wind tunnel tests have been proposed to anchor the predictions and provide new insight into modeling approaches for this type of environment. Finally, component vibration environments for design were developed from the measured and predicted responses and compared with those derived from traditional techniques such as Barrett scaling methods for unloaded and component-loaded panels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Majumdar, S.
1997-02-01
Available models for predicting failure of flawed and unflawed steam generator tubes under normal operating, accident, and severe accident conditions are reviewed. Tests conducted in the past, though limited, tended to show that the earlier flow-stress model for part-through-wall axial cracks overestimated the damaging influence of deep cracks. This observation was confirmed by further tests at high temperatures, as well as by finite-element analysis. A modified correlation for deep cracks can correct this shortcoming of the model. Recent tests have shown that lateral restraint can significantly increase the failure pressure of tubes with unsymmetrical circumferential cracks. This observation was confirmedmore » by finite-element analysis. The rate-independent flow stress models that are successful at low temperatures cannot predict the rate-sensitive failure behavior of steam generator tubes at high temperatures. Therefore, a creep rupture model for predicting failure was developed and validated by tests under various temperature and pressure loadings that can occur during postulated severe accidents.« less
Li, Zhigang; Liu, Weiguo; Zhang, Jinhuan; Hu, Jingwen
2015-09-01
Skull fracture is one of the most common pediatric traumas. However, injury assessment tools for predicting pediatric skull fracture risk is not well established mainly due to the lack of cadaver tests. Weber conducted 50 pediatric cadaver drop tests for forensic research on child abuse in the mid-1980s (Experimental studies of skull fractures in infants, Z Rechtsmed. 92: 87-94, 1984; Biomechanical fragility of the infant skull, Z Rechtsmed. 94: 93-101, 1985). To our knowledge, these studies contained the largest sample size among pediatric cadaver tests in the literature. However, the lack of injury measurements limited their direct application in investigating pediatric skull fracture risks. In this study, 50 pediatric cadaver tests from Weber's studies were reconstructed using a parametric pediatric head finite element (FE) model which were morphed into subjects with ages, head sizes/shapes, and skull thickness values that reported in the tests. The skull fracture risk curves for infants from 0 to 9 months old were developed based on the model-predicted head injury measures through logistic regression analysis. It was found that the model-predicted stress responses in the skull (maximal von Mises stress, maximal shear stress, and maximal first principal stress) were better predictors than global kinematic-based injury measures (peak head acceleration and head injury criterion (HIC)) in predicting pediatric skull fracture. This study demonstrated the feasibility of using age- and size/shape-appropriate head FE models to predict pediatric head injuries. Such models can account for the morphological variations among the subjects, which cannot be considered by a single FE human model.
Lado, Bettina; Matus, Ivan; Rodríguez, Alejandra; Inostroza, Luis; Poland, Jesse; Belzile, François; del Pozo, Alejandro; Quincke, Martín; Castro, Marina; von Zitzewitz, Jarislav
2013-12-09
In crop breeding, the interest of predicting the performance of candidate cultivars in the field has increased due to recent advances in molecular breeding technologies. However, the complexity of the wheat genome presents some challenges for applying new technologies in molecular marker identification with next-generation sequencing. We applied genotyping-by-sequencing, a recently developed method to identify single-nucleotide polymorphisms, in the genomes of 384 wheat (Triticum aestivum) genotypes that were field tested under three different water regimes in Mediterranean climatic conditions: rain-fed only, mild water stress, and fully irrigated. We identified 102,324 single-nucleotide polymorphisms in these genotypes, and the phenotypic data were used to train and test genomic selection models intended to predict yield, thousand-kernel weight, number of kernels per spike, and heading date. Phenotypic data showed marked spatial variation. Therefore, different models were tested to correct the trends observed in the field. A mixed-model using moving-means as a covariate was found to best fit the data. When we applied the genomic selection models, the accuracy of predicted traits increased with spatial adjustment. Multiple genomic selection models were tested, and a Gaussian kernel model was determined to give the highest accuracy. The best predictions between environments were obtained when data from different years were used to train the model. Our results confirm that genotyping-by-sequencing is an effective tool to obtain genome-wide information for crops with complex genomes, that these data are efficient for predicting traits, and that correction of spatial variation is a crucial ingredient to increase prediction accuracy in genomic selection models.
Predicting outcome of Morris water maze test in vascular dementia mouse model with deep learning
Mogi, Masaki; Iwanami, Jun; Min, Li-Juan; Bai, Hui-Yu; Shan, Bao-Shuai; Kukida, Masayoshi; Kan-no, Harumi; Ikeda, Shuntaro; Higaki, Jitsuo; Horiuchi, Masatsugu
2018-01-01
The Morris water maze test (MWM) is one of the most popular and established behavioral tests to evaluate rodents’ spatial learning ability. The conventional training period is around 5 days, but there is no clear evidence or guidelines about the appropriate duration. In many cases, the final outcome of the MWM seems predicable from previous data and their trend. So, we assumed that if we can predict the final result with high accuracy, the experimental period could be shortened and the burden on testers reduced. An artificial neural network (ANN) is a useful modeling method for datasets that enables us to obtain an accurate mathematical model. Therefore, we constructed an ANN system to estimate the final outcome in MWM from the previously obtained 4 days of data in both normal mice and vascular dementia model mice. Ten-week-old male C57B1/6 mice (wild type, WT) were subjected to bilateral common carotid artery stenosis (WT-BCAS) or sham-operation (WT-sham). At 6 weeks after surgery, we evaluated their cognitive function with MWM. Mean escape latency was significantly longer in WT-BCAS than in WT-sham. All data were collected and used as training data and test data for the ANN system. We defined a multiple layer perceptron (MLP) as a prediction model using an open source framework for deep learning, Chainer. After a certain number of updates, we compared the predicted values and actual measured values with test data. A significant correlation coefficient was derived form the updated ANN model in both WT-sham and WT-BCAS. Next, we analyzed the predictive capability of human testers with the same datasets. There was no significant difference in the prediction accuracy between human testers and ANN models in both WT-sham and WT-BCAS. In conclusion, deep learning method with ANN could predict the final outcome in MWM from 4 days of data with high predictive accuracy in a vascular dementia model. PMID:29415035
Predicting outcome of Morris water maze test in vascular dementia mouse model with deep learning.
Higaki, Akinori; Mogi, Masaki; Iwanami, Jun; Min, Li-Juan; Bai, Hui-Yu; Shan, Bao-Shuai; Kukida, Masayoshi; Kan-No, Harumi; Ikeda, Shuntaro; Higaki, Jitsuo; Horiuchi, Masatsugu
2018-01-01
The Morris water maze test (MWM) is one of the most popular and established behavioral tests to evaluate rodents' spatial learning ability. The conventional training period is around 5 days, but there is no clear evidence or guidelines about the appropriate duration. In many cases, the final outcome of the MWM seems predicable from previous data and their trend. So, we assumed that if we can predict the final result with high accuracy, the experimental period could be shortened and the burden on testers reduced. An artificial neural network (ANN) is a useful modeling method for datasets that enables us to obtain an accurate mathematical model. Therefore, we constructed an ANN system to estimate the final outcome in MWM from the previously obtained 4 days of data in both normal mice and vascular dementia model mice. Ten-week-old male C57B1/6 mice (wild type, WT) were subjected to bilateral common carotid artery stenosis (WT-BCAS) or sham-operation (WT-sham). At 6 weeks after surgery, we evaluated their cognitive function with MWM. Mean escape latency was significantly longer in WT-BCAS than in WT-sham. All data were collected and used as training data and test data for the ANN system. We defined a multiple layer perceptron (MLP) as a prediction model using an open source framework for deep learning, Chainer. After a certain number of updates, we compared the predicted values and actual measured values with test data. A significant correlation coefficient was derived form the updated ANN model in both WT-sham and WT-BCAS. Next, we analyzed the predictive capability of human testers with the same datasets. There was no significant difference in the prediction accuracy between human testers and ANN models in both WT-sham and WT-BCAS. In conclusion, deep learning method with ANN could predict the final outcome in MWM from 4 days of data with high predictive accuracy in a vascular dementia model.
A method for modeling aquatic toxicity date based on the theory of accelerated life testing and a procedure for maximum likelihood fitting the proposed model is presented. he procedure is computerized as software, which can predict chronic lethality of chemicals using data from a...
ERIC Educational Resources Information Center
Putwain, Dave; Deveney, Carolyn
2009-01-01
The aim of this study was to examine an expanded integrative hierarchical model of test emotions and achievement goal orientations in predicting the examination performance of undergraduate students. Achievement goals were theorised as mediating the relationship between test emotions and performance. 120 undergraduate students completed…
Fracture prediction using modified mohr coulomb theory for non-linear strain paths using AA3104-H19
NASA Astrophysics Data System (ADS)
Dick, Robert; Yoon, Jeong Whan
2016-08-01
Experiment results from uniaxial tensile tests, bi-axial bulge tests, and disk compression tests for a beverage can AA3104-H19 material are presented. The results from the experimental tests are used to determine material coefficients for both Yld2000 and Yld2004 models. Finite element simulations are developed to study the influence of materials model on the predicted earing profile. It is shown that only the YLD2004 model is capable of accurately predicting the earing profile as the YLD2000 model only predicts 4 ears. Excellent agreement with the experimental data for earing is achieved using the AA3104-H19 material data and the Yld2004 constitutive model. Mechanical tests are also conducted on the AA3104-H19 to generate fracture data under different stress triaxiality conditions. Tensile tests are performed on specimens with a central hole and notched specimens. Torsion of a double bridge specimen is conducted to generate points near pure shear conditions. The Nakajima test is utilized to produce points in bi-axial tension. The data from the experiments is used to develop the fracture locus in the principal strain space. Mapping from principal strain space to stress triaxiality space, principal stress space, and polar effective plastic strain space is accomplished using a generalized mapping technique. Finite element modeling is used to validate the Modified Mohr-Coulomb (MMC) fracture model in the polar space. Models of a hole expansion during cup drawing and a cup draw/reverse redraw/expand forming sequence demonstrate the robustness of the modified PEPS fracture theory for the condition with nonlinear forming paths and accurately predicts the onset of failure. The proposed methods can be widely used for predicting failure for the examples which undergo nonlinear strain path including rigid-packaging and automotive forming.
Testing In College Admissions: An Alternative to the Traditional Predictive Model.
ERIC Educational Resources Information Center
Lunneborg, Clifford E.
1982-01-01
A decision-making or utility theory model (which deals effectively with affirmative action goals and allows standardized tests to be placed in the service of those goals) is discussed as an alternative to traditional predictive admissions. (Author/PN)
NASA Astrophysics Data System (ADS)
Chen, Pengfei; Jing, Qi
2017-02-01
An assumption that the non-linear method is more reasonable than the linear method when canopy reflectance is used to establish the yield prediction model was proposed and tested in this study. For this purpose, partial least squares regression (PLSR) and artificial neural networks (ANN), represented linear and non-linear analysis method, were applied and compared for wheat yield prediction. Multi-period Landsat-8 OLI images were collected at two different wheat growth stages, and a field campaign was conducted to obtain grain yields at selected sampling sites in 2014. The field data were divided into a calibration database and a testing database. Using calibration data, a cross-validation concept was introduced for the PLSR and ANN model construction to prevent over-fitting. All models were tested using the test data. The ANN yield-prediction model produced R2, RMSE and RMSE% values of 0.61, 979 kg ha-1, and 10.38%, respectively, in the testing phase, performing better than the PLSR yield-prediction model, which produced R2, RMSE, and RMSE% values of 0.39, 1211 kg ha-1, and 12.84%, respectively. Non-linear method was suggested as a better method for yield prediction.
Mathematical model to predict drivers' reaction speeds.
Long, Benjamin L; Gillespie, A Isabella; Tanaka, Martin L
2012-02-01
Mental distractions and physical impairments can increase the risk of accidents by affecting a driver's ability to control the vehicle. In this article, we developed a linear mathematical model that can be used to quantitatively predict drivers' performance over a variety of possible driving conditions. Predictions were not limited only to conditions tested, but also included linear combinations of these tests conditions. Two groups of 12 participants were evaluated using a custom drivers' reaction speed testing device to evaluate the effect of cell phone talking, texting, and a fixed knee brace on the components of drivers' reaction speed. Cognitive reaction time was found to increase by 24% for cell phone talking and 74% for texting. The fixed knee brace increased musculoskeletal reaction time by 24%. These experimental data were used to develop a mathematical model to predict reaction speed for an untested condition, talking on a cell phone with a fixed knee brace. The model was verified by comparing the predicted reaction speed to measured experimental values from an independent test. The model predicted full braking time within 3% of the measured value. Although only a few influential conditions were evaluated, we present a general approach that can be expanded to include other types of distractions, impairments, and environmental conditions.
Testing of transition-region models: Test cases and data
NASA Technical Reports Server (NTRS)
Singer, Bart A.; Dinavahi, Surya; Iyer, Venkit
1991-01-01
Mean flow quantities in the laminar turbulent transition region and in the fully turbulent region are predicted with different models incorporated into a 3-D boundary layer code. The predicted quantities are compared with experimental data for a large number of different flows and the suitability of the models for each flow is evaluated.
TOPEX Microwave Radiometer - Thermal design verification test and analytical model validation
NASA Technical Reports Server (NTRS)
Lin, Edward I.
1992-01-01
The testing of the TOPEX Microwave Radiometer (TMR) is described in terms of hardware development based on the modeling and thermal vacuum testing conducted. The TMR and the vacuum-test facility are described, and the thermal verification test includes a hot steady-state segment, a cold steady-state segment, and a cold survival mode segment totalling 65 hours. A graphic description is given of the test history which is related temperature tracking, and two multinode TMR test-chamber models are compared to the test results. Large discrepancies between the test data and the model predictions are attributed to contact conductance, effective emittance from the multilayer insulation, and heat leaks related to deviations from the flight configuration. The TMR thermal testing/modeling effort is shown to provide technical corrections for the procedure outlined, and the need for validating predictive models is underscored.
26th International Symposium on Ballistics
2011-09-16
judicious use of analytical predictions correlated with ballistic testing and post - test failure morphology investigations. •Our approach...ballistic predictions. The numerical predictions correlate well with the damage pattern. Post - Test Morphology Simulation Imbedded Steel Plate Removed Post ... Test •Numerical simulation of damage to embedded steel plate compares well with the post - test plate morphology •Multi-strike modeling in work
Results of steel containment vessel model test
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luk, V.K.; Ludwigsen, J.S.; Hessheimer, M.F.
A series of static overpressurization tests of scale models of nuclear containment structures is being conducted by Sandia National Laboratories for the Nuclear Power Engineering Corporation of Japan and the US Nuclear Regulatory Commission. Two tests are being conducted: (1) a test of a model of a steel containment vessel (SCV) and (2) a test of a model of a prestressed concrete containment vessel (PCCV). This paper summarizes the conduct of the high pressure pneumatic test of the SCV model and the results of that test. Results of this test are summarized and are compared with pretest predictions performed bymore » the sponsoring organizations and others who participated in a blind pretest prediction effort. Questions raised by this comparison are identified and plans for posttest analysis are discussed.« less
Marschollek, M; Nemitz, G; Gietzelt, M; Wolf, K H; Meyer Zu Schwabedissen, H; Haux, R
2009-08-01
Falls are among the predominant causes for morbidity and mortality in elderly persons and occur most often in geriatric clinics. Despite several studies that have identified parameters associated with elderly patients' fall risk, prediction models -- e.g., based on geriatric assessment data -- are currently not used on a regular basis. Furthermore, technical aids to objectively assess mobility-associated parameters are currently not used. To assess group differences in clinical as well as common geriatric assessment data and sensory gait measurements between fallers and non-fallers in a geriatric sample, and to derive and compare two prediction models based on assessment data alone (model #1) and added sensory measurement data (model #2). For a sample of n=110 geriatric in-patients (81 women, 29 men) the following fall risk-associated assessments were performed: Timed 'Up & Go' (TUG) test, STRATIFY score and Barthel index. During the TUG test the subjects wore a triaxial accelerometer, and sensory gait parameters were extracted from the data recorded. Group differences between fallers (n=26) and non-fallers (n=84) were compared using Student's t-test. Two classification tree prediction models were computed and compared. Significant differences between the two groups were found for the following parameters: time to complete the TUG test, transfer item (Barthel), recent falls (STRATIFY), pelvic sway while walking and step length. Prediction model #1 (using common assessment data only) showed a sensitivity of 38.5% and a specificity of 97.6%, prediction model #2 (assessment data plus sensory gait parameters) performed with 57.7% and 100%, respectively. Significant differences between fallers and non-fallers among geriatric in-patients can be detected for several assessment subscores as well as parameters recorded by simple accelerometric measurements during a common mobility test. Existing geriatric assessment data may be used for falls prediction on a regular basis. Adding sensory data improves the specificity of our test markedly.
Mark A. Rumble; Lakhdar Benkobi; R. Scott Gamo
2007-01-01
We tested predictions of the spatially explicit ArcHSI habitat model for elk. The distribution of elk relative to proximity of forage and cover differed from that predicted. Elk used areas near primary roads similar to that predicted by the model, but elk were farther from secondary roads. Elk used areas categorized as good (> 0.7), fair (> 0.42 to 0.7), and poor...
Pessina, A; Albella, B; Bueren, J; Brantom, P; Casati, S; Gribaldo, L; Croera, C; Gagliardi, G; Foti, P; Parchment, R; Parent-Massin, D; Sibiril, Y; Van Den Heuvel, R
2001-12-01
This report describes an international prevalidation study conducted to optimise the Standard Operating Procedure (SOP) for detecting myelosuppressive agents by CFU-GM assay and to study a model for predicting (by means of this in vitro hematopoietic assay) the acute xenobiotic exposure levels that cause maximum tolerated decreases in absolute neutrophil counts (ANC). In the first phase of the study (Protocol Refinement), two SOPs were assessed, by using two cell culture media (Test A, containing GM-CSF; and Test B, containing G-CSF, GM-CSF, IL-3, IL-6 and SCF), and the two tests were applied to cells from both human (bone marrow and umbilical cord blood) and mouse (bone marrow) CFU-GM. In the second phase (Protocol Transfer), the SOPs were transferred to four laboratories to verify the linearity of the assay response and its interlaboratory reproducibility. After a further phase (Protocol Performance), dedicated to a training set of six anticancer drugs (adriamycin, flavopindol, morpholino-doxorubicin, pyrazoloacridine, taxol and topotecan), a model for predicting neutropenia was verified. Results showed that the assay is linear under SOP conditions, and that the in vitro endpoints used by the clinical prediction model of neutropenia are highly reproducible within and between laboratories. Valid tests represented 95% of all tests attempted. The 90% inhibitory concentration values (IC(90)) from Test A and Test B accurately predicted the human maximum tolerated dose (MTD) for five of six and for four of six myelosuppressive anticancer drugs, respectively, that were selected as prototype xenobiotics. As expected, both tests failed to accurately predict the human MTD of a drug that is a likely protoxicant. It is concluded that Test A offers significant cost advantages compared to Test B, without any loss of performance or predictive accuracy. On the basis of these results, we proposed a formal Phase II validation study using the Test A SOP for 16-18 additional xenobiotics that represent the spectrum of haematotoxic potential.
Denovan, Andrew; Dagnall, Neil; Drinkwater, Kenneth; Parker, Andrew; Clough, Peter
2017-01-01
The present study assessed the degree to which probabilistic reasoning performance and thinking style influenced perception of risk and self-reported levels of terrorism-related behavior change. A sample of 263 respondents, recruited via convenience sampling, completed a series of measures comprising probabilistic reasoning tasks (perception of randomness, base rate, probability, and conjunction fallacy), the Reality Testing subscale of the Inventory of Personality Organization (IPO-RT), the Domain-Specific Risk-Taking Scale, and a terrorism-related behavior change scale. Structural equation modeling examined three progressive models. Firstly, the Independence Model assumed that probabilistic reasoning, perception of risk and reality testing independently predicted terrorism-related behavior change. Secondly, the Mediation Model supposed that probabilistic reasoning and reality testing correlated, and indirectly predicted terrorism-related behavior change through perception of risk. Lastly, the Dual-Influence Model proposed that probabilistic reasoning indirectly predicted terrorism-related behavior change via perception of risk, independent of reality testing. Results indicated that performance on probabilistic reasoning tasks most strongly predicted perception of risk, and preference for an intuitive thinking style (measured by the IPO-RT) best explained terrorism-related behavior change. The combination of perception of risk with probabilistic reasoning ability in the Dual-Influence Model enhanced the predictive power of the analytical-rational route, with conjunction fallacy having a significant indirect effect on terrorism-related behavior change via perception of risk. The Dual-Influence Model possessed superior fit and reported similar predictive relations between intuitive-experiential and analytical-rational routes and terrorism-related behavior change. The discussion critically examines these findings in relation to dual-processing frameworks. This includes considering the limitations of current operationalisations and recommendations for future research that align outcomes and subsequent work more closely to specific dual-process models.
Denovan, Andrew; Dagnall, Neil; Drinkwater, Kenneth; Parker, Andrew; Clough, Peter
2017-01-01
The present study assessed the degree to which probabilistic reasoning performance and thinking style influenced perception of risk and self-reported levels of terrorism-related behavior change. A sample of 263 respondents, recruited via convenience sampling, completed a series of measures comprising probabilistic reasoning tasks (perception of randomness, base rate, probability, and conjunction fallacy), the Reality Testing subscale of the Inventory of Personality Organization (IPO-RT), the Domain-Specific Risk-Taking Scale, and a terrorism-related behavior change scale. Structural equation modeling examined three progressive models. Firstly, the Independence Model assumed that probabilistic reasoning, perception of risk and reality testing independently predicted terrorism-related behavior change. Secondly, the Mediation Model supposed that probabilistic reasoning and reality testing correlated, and indirectly predicted terrorism-related behavior change through perception of risk. Lastly, the Dual-Influence Model proposed that probabilistic reasoning indirectly predicted terrorism-related behavior change via perception of risk, independent of reality testing. Results indicated that performance on probabilistic reasoning tasks most strongly predicted perception of risk, and preference for an intuitive thinking style (measured by the IPO-RT) best explained terrorism-related behavior change. The combination of perception of risk with probabilistic reasoning ability in the Dual-Influence Model enhanced the predictive power of the analytical-rational route, with conjunction fallacy having a significant indirect effect on terrorism-related behavior change via perception of risk. The Dual-Influence Model possessed superior fit and reported similar predictive relations between intuitive-experiential and analytical-rational routes and terrorism-related behavior change. The discussion critically examines these findings in relation to dual-processing frameworks. This includes considering the limitations of current operationalisations and recommendations for future research that align outcomes and subsequent work more closely to specific dual-process models. PMID:29062288
Feasibility of Using Neural Network Models to Accelerate the Testing of Mechanical Systems
NASA Technical Reports Server (NTRS)
Fusaro, Robert L.
1998-01-01
Verification testing is an important aspect of the design process for mechanical mechanisms, and full-scale, full-length life testing is typically used to qualify any new component for use in space. However, as the required life specification is increased, full-length life tests become more costly and lengthen the development time. At the NASA Lewis Research Center, we theorized that neural network systems may be able to model the operation of a mechanical device. If so, the resulting neural network models could simulate long-term mechanical testing with data from a short-term test. This combination of computer modeling and short-term mechanical testing could then be used to verify the reliability of mechanical systems, thereby eliminating the costs associated with long-term testing. Neural network models could also enable designers to predict the performance of mechanisms at the conceptual design stage by entering the critical parameters as input and running the model to predict performance. The purpose of this study was to assess the potential of using neural networks to predict the performance and life of mechanical systems. To do this, we generated a neural network system to model wear obtained from three accelerated testing devices: 1) A pin-on-disk tribometer; 2) A line-contact rub-shoe tribometer; 3) A four-ball tribometer.
Sampson, Maureen L; Gounden, Verena; van Deventer, Hendrik E; Remaley, Alan T
2016-02-01
The main drawback of the periodic analysis of quality control (QC) material is that test performance is not monitored in time periods between QC analyses, potentially leading to the reporting of faulty test results. The objective of this study was to develop a patient based QC procedure for the more timely detection of test errors. Results from a Chem-14 panel measured on the Beckman LX20 analyzer were used to develop the model. Each test result was predicted from the other 13 members of the panel by multiple regression, which resulted in correlation coefficients between the predicted and measured result of >0.7 for 8 of the 14 tests. A logistic regression model, which utilized the measured test result, the predicted test result, the day of the week and time of day, was then developed for predicting test errors. The output of the logistic regression was tallied by a daily CUSUM approach and used to predict test errors, with a fixed specificity of 90%. The mean average run length (ARL) before error detection by CUSUM-Logistic Regression (CSLR) was 20 with a mean sensitivity of 97%, which was considerably shorter than the mean ARL of 53 (sensitivity 87.5%) for a simple prediction model that only used the measured result for error detection. A CUSUM-Logistic Regression analysis of patient laboratory data can be an effective approach for the rapid and sensitive detection of clinical laboratory errors. Published by Elsevier Inc.
Hot limpets: predicting body temperature in a conductance-mediated thermal system.
Denny, Mark W; Harley, Christopher D G
2006-07-01
Living at the interface between the marine and terrestrial environments, intertidal organisms may serve as a bellwether for environmental change and a test of our ability to predict its biological consequences. However, current models do not allow us to predict the body temperature of intertidal organisms whose heat budgets are strongly affected by conduction to and from the substratum. Here, we propose a simple heat-budget model of one such animal, the limpet Lottia gigantea, and test the model against measurements made in the field. Working solely from easily measured physical and meteorological inputs, the model predicts the daily maximal body temperatures of live limpets within a fraction of a degree, suggesting that it may be a useful tool for exploring the thermal biology of limpets and for predicting effects of climate change. The model can easily be adapted to predict the temperatures of chitons, acorn barnacles, keyhole limpets, and encrusting animals and plants.
NASA Technical Reports Server (NTRS)
Sebok, Angelia; Wickens, Christopher; Sargent, Robert
2015-01-01
One human factors challenge is predicting operator performance in novel situations. Approaches such as drawing on relevant previous experience, and developing computational models to predict operator performance in complex situations, offer potential methods to address this challenge. A few concerns with modeling operator performance are that models need to realistic, and they need to be tested empirically and validated. In addition, many existing human performance modeling tools are complex and require that an analyst gain significant experience to be able to develop models for meaningful data collection. This paper describes an effort to address these challenges by developing an easy to use model-based tool, using models that were developed from a review of existing human performance literature and targeted experimental studies, and performing an empirical validation of key model predictions.
SLS Scale Model Acoustic Test Liftoff Results and Comparisons
NASA Technical Reports Server (NTRS)
Houston, Janice; Counter, Douglas; Giacomoni, Clothilde
2015-01-01
The liftoff phase induces acoustic loading over a broad frequency range for a launch vehicle. These external acoustic environments are then used in the prediction of internal vibration responses of the vehicle and components which result in the qualification levels. Thus, predicting these liftoff acoustic (LOA) environments is critical to the design requirements of any launch vehicle. If there is a significant amount of uncertainty in the predictions or if acoustic mitigation options must be implemented, a subscale acoustic test is a feasible design phase test option to verify the LOA environments. The NASA Space Launch System (SLS) program initiated the Scale Model Acoustic Test (SMAT) to verify the predicted SLS LOA environments.
NASA Astrophysics Data System (ADS)
Robin, C.; Gérard, M.; Quinaud, M.; d'Arbigny, J.; Bultel, Y.
2016-09-01
The prediction of Proton Exchange Membrane Fuel Cell (PEMFC) lifetime is one of the major challenges to optimize both material properties and dynamic control of the fuel cell system. In this study, by a multiscale modeling approach, a mechanistic catalyst dissolution model is coupled to a dynamic PEMFC cell model to predict the performance loss of the PEMFC. Results are compared to two 2000-h experimental aging tests. More precisely, an original approach is introduced to estimate the loss of an equivalent active surface area during an aging test. Indeed, when the computed Electrochemical Catalyst Surface Area profile is fitted on the experimental measures from Cyclic Voltammetry, the computed performance loss of the PEMFC is underestimated. To be able to predict the performance loss measured by polarization curves during the aging test, an equivalent active surface area is obtained by a model inversion. This methodology enables to successfully find back the experimental cell voltage decay during time. The model parameters are fitted from the polarization curves so that they include the global degradation. Moreover, the model captures the aging heterogeneities along the surface of the cell observed experimentally. Finally, a second 2000-h durability test in dynamic operating conditions validates the approach.
Cultural Resource Predictive Modeling
2017-10-01
property to manage ? a. Yes 2) Do you use CRPM (Cultural Resource Predictive Modeling) No, but I use predictive modelling informally . For example...resource program and provide support to the test ranges for their missions. This document will provide information such as lessons learned, points...of contact, and resources to the range cultural resource managers . Objective/Scope: Identify existing cultural resource predictive models and
Using a Gravity Model to Predict Circulation in a Public Library System.
ERIC Educational Resources Information Center
Ottensmann, John R.
1995-01-01
Describes the development of a gravity model based upon principles of spatial interaction to predict the circulation of libraries in the Indianapolis-Marion County Public Library (Indiana). The model effectively predicted past circulation figures and was tested by predicting future library circulation, particularly for a new branch library.…
Statistical prediction of space motion sickness
NASA Technical Reports Server (NTRS)
Reschke, Millard F.
1990-01-01
Studies designed to empirically examine the etiology of motion sickness to develop a foundation for enhancing its prediction are discussed. Topics addressed include early attempts to predict space motion sickness, multiple test data base that uses provocative and vestibular function tests, and data base subjects; reliability of provocative tests of motion sickness susceptibility; prediction of space motion sickness using linear discriminate analysis; and prediction of space motion sickness susceptibility using the logistic model.
Empirical testing of an analytical model predicting electrical isolation of photovoltaic models
NASA Astrophysics Data System (ADS)
Garcia, A., III; Minning, C. P.; Cuddihy, E. F.
A major design requirement for photovoltaic modules is that the encapsulation system be capable of withstanding large DC potentials without electrical breakdown. Presented is a simple analytical model which can be used to estimate material thickness to meet this requirement for a candidate encapsulation system or to predict the breakdown voltage of an existing module design. A series of electrical tests to verify the model are described in detail. The results of these verification tests confirmed the utility of the analytical model for preliminary design of photovoltaic modules.
Hoggarth, Petra A; Innes, Carrie R H; Dalrymple-Alford, John C; Jones, Richard D
2013-12-01
To generate a robust model of computerized sensory-motor and cognitive test performance to predict on-road driving assessment outcomes in older persons with diagnosed or suspected cognitive impairment. A logistic regression model classified pass–fail outcomes of a blinded on-road driving assessment. Generalizability of the model was tested using leave-one-out cross-validation. Three specialist clinics in New Zealand. Drivers (n=279; mean age 78.4, 65% male) with diagnosed or suspected dementia, mild cognitive impairment, unspecified cognitive impairment, or memory problems referred for a medical driving assessment. A computerized battery of sensory-motor and cognitive tests and an on-road medical driving assessment. One hundred fifty-five participants (55.5%) received an on-road fail score. Binary logistic regression correctly classified 75.6% of the sample into on-road pass and fail groups. The cross-validation indicated accuracy of the model of 72.0% with sensitivity for detecting on-road fails of 73.5%, specificity of 70.2%, positive predictive value of 75.5%, and negative predictive value of 68%. The off-road assessment prediction model resulted in a substantial number of people who were assessed as likely to fail despite passing an on-road assessment and vice versa. Thus, despite a large multicenter sample, the use of off-road tests previously found to be useful in other older populations, and a carefully constructed and tested prediction model, off-road measures have yet to be found that are sufficiently accurate to allow acceptable determination of on-road driving safety of cognitively impaired older drivers. © 2013, Copyright the Authors Journal compilation © 2013, The American Geriatrics Society.
NASA Technical Reports Server (NTRS)
Frady, Gregory P.; Duvall, Lowery D.; Fulcher, Clay W. G.; Laverde, Bruce T.; Hunt, Ronald A.
2011-01-01
rich body of vibroacoustic test data was recently generated at Marshall Space Flight Center for component-loaded curved orthogrid panels typical of launch vehicle skin structures. The test data were used to anchor computational predictions of a variety of spatially distributed responses including acceleration, strain and component interface force. Transfer functions relating the responses to the input pressure field were generated from finite element based modal solutions and test-derived damping estimates. A diffuse acoustic field model was applied to correlate the measured input sound pressures across the energized panel. This application quantifies the ability to quickly and accurately predict a variety of responses to acoustically energized skin panels with mounted components. Favorable comparisons between the measured and predicted responses were established. The validated models were used to examine vibration response sensitivities to relevant modeling parameters such as pressure patch density, mesh density, weight of the mounted component and model form. Convergence metrics include spectral densities and cumulative root-mean squared (RMS) functions for acceleration, velocity, displacement, strain and interface force. Minimum frequencies for response convergence were established as well as recommendations for modeling techniques, particularly in the early stages of a component design when accurate structural vibration requirements are needed relatively quickly. The results were compared with long-established guidelines for modeling accuracy of component-loaded panels. A theoretical basis for the Response/Pressure Transfer Function (RPTF) approach provides insight into trends observed in the response predictions and confirmed in the test data. The software developed for the RPTF method allows easy replacement of the diffuse acoustic field with other pressure fields such as a turbulent boundary layer (TBL) model suitable for vehicle ascent. Structural responses using a TBL model were demonstrated, and wind tunnel tests have been proposed to anchor the predictions and provide new insight into modeling approaches for this environment. Finally, design load factors were developed from the measured and predicted responses and compared with those derived from traditional techniques such as historical Mass Acceleration Curves and Barrett scaling methods for acreage and component-loaded panels.
Cryogenic Tank Modeling for the Saturn AS-203 Experiment
NASA Technical Reports Server (NTRS)
Grayson, Gary D.; Lopez, Alfredo; Chandler, Frank O.; Hastings, Leon J.; Tucker, Stephen P.
2006-01-01
A computational fluid dynamics (CFD) model is developed for the Saturn S-IVB liquid hydrogen (LH2) tank to simulate the 1966 AS-203 flight experiment. This significant experiment is the only known, adequately-instrumented, low-gravity, cryogenic self pressurization test that is well suited for CFD model validation. A 4000-cell, axisymmetric model predicts motion of the LH2 surface including boil-off and thermal stratification in the liquid and gas phases. The model is based on a modified version of the commercially available FLOW3D software. During the experiment, heat enters the LH2 tank through the tank forward dome, side wall, aft dome, and common bulkhead. In both model and test the liquid and gases thermally stratify in the low-gravity natural convection environment. LH2 boils at the free surface which in turn increases the pressure within the tank during the 5360 second experiment. The Saturn S-IVB tank model is shown to accurately simulate the self pressurization and thermal stratification in the 1966 AS-203 test. The average predicted pressurization rate is within 4% of the pressure rise rate suggested by test data. Ullage temperature results are also in good agreement with the test where the model predicts an ullage temperature rise rate within 6% of the measured data. The model is based on first principles only and includes no adjustments to bring the predictions closer to the test data. Although quantitative model validation is achieved or one specific case, a significant step is taken towards demonstrating general use of CFD for low-gravity cryogenic fluid modeling.
Lado, Bettina; Matus, Ivan; Rodríguez, Alejandra; Inostroza, Luis; Poland, Jesse; Belzile, François; del Pozo, Alejandro; Quincke, Martín; Castro, Marina; von Zitzewitz, Jarislav
2013-01-01
In crop breeding, the interest of predicting the performance of candidate cultivars in the field has increased due to recent advances in molecular breeding technologies. However, the complexity of the wheat genome presents some challenges for applying new technologies in molecular marker identification with next-generation sequencing. We applied genotyping-by-sequencing, a recently developed method to identify single-nucleotide polymorphisms, in the genomes of 384 wheat (Triticum aestivum) genotypes that were field tested under three different water regimes in Mediterranean climatic conditions: rain-fed only, mild water stress, and fully irrigated. We identified 102,324 single-nucleotide polymorphisms in these genotypes, and the phenotypic data were used to train and test genomic selection models intended to predict yield, thousand-kernel weight, number of kernels per spike, and heading date. Phenotypic data showed marked spatial variation. Therefore, different models were tested to correct the trends observed in the field. A mixed-model using moving-means as a covariate was found to best fit the data. When we applied the genomic selection models, the accuracy of predicted traits increased with spatial adjustment. Multiple genomic selection models were tested, and a Gaussian kernel model was determined to give the highest accuracy. The best predictions between environments were obtained when data from different years were used to train the model. Our results confirm that genotyping-by-sequencing is an effective tool to obtain genome-wide information for crops with complex genomes, that these data are efficient for predicting traits, and that correction of spatial variation is a crucial ingredient to increase prediction accuracy in genomic selection models. PMID:24082033
Thermal Testing and Model Correlation for Advanced Topographic Laser Altimeter Instrument (ATLAS)
NASA Technical Reports Server (NTRS)
Patel, Deepak
2016-01-01
The Advanced Topographic Laser Altimeter System (ATLAS) part of the Ice Cloud and Land Elevation Satellite 2 (ICESat-2) is an upcoming Earth Science mission focusing on the effects of climate change. The flight instrument passed all environmental testing at GSFC (Goddard Space Flight Center) and is now ready to be shipped to the spacecraft vendor for integration and testing. This topic covers the analysis leading up to the test setup for ATLAS thermal testing as well as model correlation to flight predictions. Test setup analysis section will include areas where ATLAS could not meet flight like conditions and what were the limitations. Model correlation section will walk through changes that had to be made to the thermal model in order to match test results. The correlated model will then be integrated with spacecraft model for on-orbit predictions.
Development of an accident duration prediction model on the Korean Freeway Systems.
Chung, Younshik
2010-01-01
Since duration prediction is one of the most important steps in an accident management process, there have been several approaches developed for modeling accident duration. This paper presents a model for the purpose of accident duration prediction based on accurately recorded and large accident dataset from the Korean Freeway Systems. To develop the duration prediction model, this study utilizes the log-logistic accelerated failure time (AFT) metric model and a 2-year accident duration dataset from 2006 to 2007. Specifically, the 2006 dataset is utilized to develop the prediction model and then, the 2007 dataset was employed to test the temporal transferability of the 2006 model. Although the duration prediction model has limitations such as large prediction error due to the individual differences of the accident treatment teams in terms of clearing similar accidents, the results from the 2006 model yielded a reasonable prediction based on the mean absolute percentage error (MAPE) scale. Additionally, the results of the statistical test for temporal transferability indicated that the estimated parameters in the duration prediction model are stable over time. Thus, this temporal stability suggests that the model may have potential to be used as a basis for making rational diversion and dispatching decisions in the event of an accident. Ultimately, such information will beneficially help in mitigating traffic congestion due to accidents.
Comparison of free-piston Stirling engine model predictions with RE1000 engine test data
NASA Technical Reports Server (NTRS)
Tew, R. C., Jr.
1984-01-01
Predictions of a free-piston Stirling engine model are compared with RE1000 engine test data taken at NASA-Lewis Research Center. The model validation and the engine testing are being done under a joint interagency agreement between the Department of Energy's Oak Ridge National Laboratory and NASA-Lewis. A kinematic code developed at Lewis was upgraded to permit simulation of free-piston engine performance; it was further upgraded and modified at Lewis and is currently being validated. The model predicts engine performance by numerical integration of equations for each control volume in the working space. Piston motions are determined by numerical integration of the force balance on each piston or can be specified as Fourier series. In addition, the model Fourier analyzes the various piston forces to permit the construction of phasor force diagrams. The paper compares predicted and experimental values of power and efficiency and shows phasor force diagrams for the RE1000 engine displacer and piston. Further development plans for the model are also discussed.
NASA Technical Reports Server (NTRS)
Mckim, Stephen A.
2016-01-01
This thesis describes the development and correlation of a thermal model that forms the foundation of a thermal capacitance spacecraft propellant load estimator. Specific details of creating the thermal model for the diaphragm propellant tank used on NASA's Magnetospheric Multiscale spacecraft using ANSYS and the correlation process implemented are presented. The thermal model was correlated to within plus or minus 3 degrees Celsius of the thermal vacuum test data, and was determined sufficient to make future propellant predictions on MMS. The model was also found to be relatively sensitive to uncertainties in applied heat flux and mass knowledge of the tank. More work is needed to improve temperature predictions in the upper hemisphere of the propellant tank where predictions were found to be 2 to 2.5 C lower than the test data. A road map for applying the model to predict propellant loads on the actual MMS spacecraft toward its end of life in 2017-2018 is also presented.
NASA Technical Reports Server (NTRS)
Allgood, Daniel C.
2016-01-01
The objective of the presented work was to develop validated computational fluid dynamics (CFD) based methodologies for predicting propellant detonations and their associated blast environments. Applications of interest were scenarios relevant to rocket propulsion test and launch facilities. All model development was conducted within the framework of the Loci/CHEM CFD tool due to its reliability and robustness in predicting high-speed combusting flow-fields associated with rocket engines and plumes. During the course of the project, verification and validation studies were completed for hydrogen-fueled detonation phenomena such as shock-induced combustion, confined detonation waves, vapor cloud explosions, and deflagration-to-detonation transition (DDT) processes. The DDT validation cases included predicting flame acceleration mechanisms associated with turbulent flame-jets and flow-obstacles. Excellent comparison between test data and model predictions were observed. The proposed CFD methodology was then successfully applied to model a detonation event that occurred during liquid oxygen/gaseous hydrogen rocket diffuser testing at NASA Stennis Space Center.
Zhang, Hui; Ren, Ji-Xia; Kang, Yan-Li; Bo, Peng; Liang, Jun-Yu; Ding, Lan; Kong, Wei-Bao; Zhang, Ji
2017-08-01
Toxicological testing associated with developmental toxicity endpoints are very expensive, time consuming and labor intensive. Thus, developing alternative approaches for developmental toxicity testing is an important and urgent task in the drug development filed. In this investigation, the naïve Bayes classifier was applied to develop a novel prediction model for developmental toxicity. The established prediction model was evaluated by the internal 5-fold cross validation and external test set. The overall prediction results for the internal 5-fold cross validation of the training set and external test set were 96.6% and 82.8%, respectively. In addition, four simple descriptors and some representative substructures of developmental toxicants were identified. Thus, we hope the established in silico prediction model could be used as alternative method for toxicological assessment. And these obtained molecular information could afford a deeper understanding on the developmental toxicants, and provide guidance for medicinal chemists working in drug discovery and lead optimization. Copyright © 2017 Elsevier Inc. All rights reserved.
A nonlinear CDM based damage growth law for ductile materials
NASA Astrophysics Data System (ADS)
Gautam, Abhinav; Priya Ajit, K.; Sarkar, Prabir Kumar
2018-02-01
A nonlinear ductile damage growth criterion is proposed based on continuum damage mechanics (CDM) approach. The model is derived in the framework of thermodynamically consistent CDM assuming damage to be isotropic. In this study, the damage dissipation potential is also derived to be a function of varying strain hardening exponent in addition to damage strain energy release rate density. Uniaxial tensile tests and load-unload-cyclic tensile tests for AISI 1020 steel, AISI 1030 steel and Al 2024 aluminum alloy are considered for the determination of their respective damage variable D and other parameters required for the model(s). The experimental results are very closely predicted, with a deviation of 0%-3%, by the proposed model for each of the materials. The model is also tested with predictabilities of damage growth by other models in the literature. Present model detects the state of damage quantitatively at any level of plastic strain and uses simpler material tests to find the parameters of the model. So, it should be useful in metal forming industries to assess the damage growth for the desired deformation level a priori. The superiority of the new model is clarified by the deviations in the predictability of test results by other models.
Development of rotorcraft interior noise control concepts. Phase 2: Full scale testing, revision 1
NASA Technical Reports Server (NTRS)
Yoerkie, C. A.; Gintoli, P. J.; Moore, J. A.
1986-01-01
The phase 2 effort consisted of a series of ground and flight test measurements to obtain data for validation of the Statistical Energy Analysis (SEA) model. Included in the gound tests were various transfer function measurements between vibratory and acoustic subsystems, vibration and acoustic decay rate measurements, and coherent source measurements. The bulk of these, the vibration transfer functions, were used for SEA model validation, while the others provided information for characterization of damping and reverberation time of the subsystems. The flight test program included measurements of cabin and cockpit sound pressure level, frame and panel vibration level, and vibration levels at the main transmission attachment locations. Comparisons between measured and predicted subsystem excitation levels from both ground and flight testing were evaluated. The ground test data show good correlation with predictions of vibration levels throughout the cabin overhead for all excitations. The flight test results also indicate excellent correlation of inflight sound pressure measurements to sound pressure levels predicted by the SEA model, where the average aircraft speech interference level is predicted within 0.2 dB.
Modeling and dynamic environment analysis technology for spacecraft
NASA Astrophysics Data System (ADS)
Fang, Ren; Zhaohong, Qin; Zhong, Zhang; Zhenhao, Liu; Kai, Yuan; Long, Wei
Spacecraft sustains complex and severe vibrations and acoustic environments during flight. Predicting the resulting structures, including numerical predictions of fluctuating pressure, updating models and random vibration and acoustic analysis, plays an important role during the design, manufacture and ground testing of spacecraft. In this paper, Monotony Integrative Large Eddy Simulation (MILES) is introduced to predict the fluctuating pressure of the fairing. The exact flow structures of the fairing wall surface under different Mach numbers are obtained, then a spacecraft model is constructed using the finite element method (FEM). According to the modal test data, the model is updated by the penalty method. On this basis, the random vibration and acoustic responses of the fairing and satellite are analyzed by different methods. The simulated results agree well with the experimental ones, which shows the validity of the modeling and dynamic environment analysis technology. This information can better support test planning, defining test conditions and designing optimal structures.
Flight-Test Evaluation of Flutter-Prediction Methods
NASA Technical Reports Server (NTRS)
Lind, RIck; Brenner, Marty
2003-01-01
The flight-test community routinely spends considerable time and money to determine a range of flight conditions, called a flight envelope, within which an aircraft is safe to fly. The cost of determining a flight envelope could be greatly reduced if there were a method of safely and accurately predicting the speed associated with the onset of an instability called flutter. Several methods have been developed with the goal of predicting flutter speeds to improve the efficiency of flight testing. These methods include (1) data-based methods, in which one relies entirely on information obtained from the flight tests and (2) model-based approaches, in which one relies on a combination of flight data and theoretical models. The data-driven methods include one based on extrapolation of damping trends, one that involves an envelope function, one that involves the Zimmerman-Weissenburger flutter margin, and one that involves a discrete-time auto-regressive model. An example of a model-based approach is that of the flutterometer. These methods have all been shown to be theoretically valid and have been demonstrated on simple test cases; however, until now, they have not been thoroughly evaluated in flight tests. An experimental apparatus called the Aerostructures Test Wing (ATW) was developed to test these prediction methods.
NASA Technical Reports Server (NTRS)
McKim, Stephen A.
2016-01-01
This thesis describes the development and test data validation of the thermal model that is the foundation of a thermal capacitance spacecraft propellant load estimator. Specific details of creating the thermal model for the diaphragm propellant tank used on NASA's Magnetospheric Multiscale spacecraft using ANSYS and the correlation process implemented to validate the model are presented. The thermal model was correlated to within plus or minus 3 degrees Centigrade of the thermal vacuum test data, and was found to be relatively insensitive to uncertainties in applied heat flux and mass knowledge of the tank. More work is needed, however, to refine the thermal model to further improve temperature predictions in the upper hemisphere of the propellant tank. Temperatures predictions in this portion were found to be 2-2.5 degrees Centigrade lower than the test data. A road map to apply the model to predict propellant loads on the actual MMS spacecraft toward its end of life in 2017-2018 is also presented.
REFINEMENT OF A MODEL TO PREDICT THE PERMEATION OF PROTECTIVE CLOTHING MATERIALS
A prototype of a predictive model for estimating chemical permeation through protective clothing materials was refined and tested. he model applies Fickian diffusion theory and predicts permeation rates and cumulative permeation as a function of time for five materials: butyl rub...
Multi-model ensemble hydrologic prediction using Bayesian model averaging
NASA Astrophysics Data System (ADS)
Duan, Qingyun; Ajami, Newsha K.; Gao, Xiaogang; Sorooshian, Soroosh
2007-05-01
Multi-model ensemble strategy is a means to exploit the diversity of skillful predictions from different models. This paper studies the use of Bayesian model averaging (BMA) scheme to develop more skillful and reliable probabilistic hydrologic predictions from multiple competing predictions made by several hydrologic models. BMA is a statistical procedure that infers consensus predictions by weighing individual predictions based on their probabilistic likelihood measures, with the better performing predictions receiving higher weights than the worse performing ones. Furthermore, BMA provides a more reliable description of the total predictive uncertainty than the original ensemble, leading to a sharper and better calibrated probability density function (PDF) for the probabilistic predictions. In this study, a nine-member ensemble of hydrologic predictions was used to test and evaluate the BMA scheme. This ensemble was generated by calibrating three different hydrologic models using three distinct objective functions. These objective functions were chosen in a way that forces the models to capture certain aspects of the hydrograph well (e.g., peaks, mid-flows and low flows). Two sets of numerical experiments were carried out on three test basins in the US to explore the best way of using the BMA scheme. In the first set, a single set of BMA weights was computed to obtain BMA predictions, while the second set employed multiple sets of weights, with distinct sets corresponding to different flow intervals. In both sets, the streamflow values were transformed using Box-Cox transformation to ensure that the probability distribution of the prediction errors is approximately Gaussian. A split sample approach was used to obtain and validate the BMA predictions. The test results showed that BMA scheme has the advantage of generating more skillful and equally reliable probabilistic predictions than original ensemble. The performance of the expected BMA predictions in terms of daily root mean square error (DRMS) and daily absolute mean error (DABS) is generally superior to that of the best individual predictions. Furthermore, the BMA predictions employing multiple sets of weights are generally better than those using single set of weights.
Predicting ground level impacts of solid rocket motor testing
NASA Technical Reports Server (NTRS)
Douglas, Willard L.; Eagan, Ellen E.; Kennedy, Carolyn D.; Mccaleb, Rebecca C.
1993-01-01
Beginning in August of 1988 and continuing until the present, NASA at Stennis Space Center, Mississippi has conducted environmental monitoring of selected static test firings of the solid rocket motor used on the Space Shuttle. The purpose of the study was to assess the modeling protocol adapted for use in predicting plume behavior for the Advanced Solid Rocket Motor that is to be tested in Mississippi beginning in the mid-1990's. Both motors use an aluminum/ammonium perchlorate fuel that produces HCl and Al2O3 particulates as the major combustion products of concern. A combination of COMBUS.sr and PRISE.sr subroutines and the INPUFF model are used to predict the centerline stabilization height, the maximum concentration of HCl and Al2O3 at ground level, and distance to maximum concentration. Ground studies were conducted to evaluate the ability of the model to make these predictions. The modeling protocol was found to be conservative in the prediction of plume stabilization height and in the concentrations of the two emission products predicted.
Arredondo, Elva Maria; Pollak, Kathryn; Costanzo, Philip R
2008-12-01
The goals of this study are to evaluate (a) the effectiveness of a stage model in predicting Latinas' self-report of obtaining a Pap test and (b) the unique role of psychosocial/cultural factors in predicting progress toward behavior change. One-on-one structured interviews with monolingual Spanish-speaking Latinas (n=190) were conducted. Most participants (85%) intended to obtain a Pap smear within 1 year; therefore, staging women based on intention was not possible. Moreover, results from the polychotomous hierarchical logistic regression suggest that psychosocial and cultural factors were independent predictors of Pap test history. A stage model may not be appropriate for predicting Pap test screening among Latinas. Results suggest that unique cultural, psychosocial, and demographic factors may inhibit cervical cancer screening practices. Clinicians may need to tailor messages on these cultural and psychosocial factors to increase Pap testing among Latinas.
Perotte, Adler; Ranganath, Rajesh; Hirsch, Jamie S; Blei, David; Elhadad, Noémie
2015-07-01
As adoption of electronic health records continues to increase, there is an opportunity to incorporate clinical documentation as well as laboratory values and demographics into risk prediction modeling. The authors develop a risk prediction model for chronic kidney disease (CKD) progression from stage III to stage IV that includes longitudinal data and features drawn from clinical documentation. The study cohort consisted of 2908 primary-care clinic patients who had at least three visits prior to January 1, 2013 and developed CKD stage III during their documented history. Development and validation cohorts were randomly selected from this cohort and the study datasets included longitudinal inpatient and outpatient data from these populations. Time series analysis (Kalman filter) and survival analysis (Cox proportional hazards) were combined to produce a range of risk models. These models were evaluated using concordance, a discriminatory statistic. A risk model incorporating longitudinal data on clinical documentation and laboratory test results (concordance 0.849) predicts progression from state III CKD to stage IV CKD more accurately when compared to a similar model without laboratory test results (concordance 0.733, P<.001), a model that only considers the most recent laboratory test results (concordance 0.819, P < .031) and a model based on estimated glomerular filtration rate (concordance 0.779, P < .001). A risk prediction model that takes longitudinal laboratory test results and clinical documentation into consideration can predict CKD progression from stage III to stage IV more accurately than three models that do not take all of these variables into consideration. © The Author 2015. Published by Oxford University Press on behalf of the American Medical Informatics Association.
Mixing-model Sensitivity to Initial Conditions in Hydrodynamic Predictions
NASA Astrophysics Data System (ADS)
Bigelow, Josiah; Silva, Humberto; Truman, C. Randall; Vorobieff, Peter
2017-11-01
Amagat and Dalton mixing-models were studied to compare their thermodynamic prediction of shock states. Numerical simulations with the Sandia National Laboratories shock hydrodynamic code CTH modeled University of New Mexico (UNM) shock tube laboratory experiments shocking a 1:1 molar mixture of helium (He) and sulfur hexafluoride (SF6) . Five input parameters were varied for sensitivity analysis: driver section pressure, driver section density, test section pressure, test section density, and mixture ratio (mole fraction). We show via incremental Latin hypercube sampling (LHS) analysis that significant differences exist between Amagat and Dalton mixing-model predictions. The differences observed in predicted shock speeds, temperatures, and pressures grow more pronounced with higher shock speeds. Supported by NNSA Grant DE-0002913.
ERIC Educational Resources Information Center
Miller, Jeff; Van Nes, Fenna
2007-01-01
Two experiments tested predictions of the hemispheric coactivation model for redundancy gain (J. O. Miller, 2004). Simple reaction time was measured in divided attention tasks with visual stimuli presented to the left or right of fixation or redundantly to both sides. Experiment 1 tested the prediction that redundancy gain--the decrease in…
Considerations of the Use of 3-D Geophysical Models to Predict Test Ban Monitoring Observables
2007-09-01
predict first P arrival times. Since this is a 3-D model, the travel times are predicted with a 3-D finite-difference code solving the eikonal equations...for the eikonal wave equation should provide more accurate predictions of travel-time from 3D models. These techniques and others are being
Test anxiety and academic performance in chiropractic students.
Zhang, Niu; Henderson, Charles N R
2014-01-01
Objective : We assessed the level of students' test anxiety, and the relationship between test anxiety and academic performance. Methods : We recruited 166 third-quarter students. The Test Anxiety Inventory (TAI) was administered to all participants. Total scores from written examinations and objective structured clinical examinations (OSCEs) were used as response variables. Results : Multiple regression analysis shows that there was a modest, but statistically significant negative correlation between TAI scores and written exam scores, but not OSCE scores. Worry and emotionality were the best predictive models for written exam scores. Mean total anxiety and emotionality scores for females were significantly higher than those for males, but not worry scores. Conclusion : Moderate-to-high test anxiety was observed in 85% of the chiropractic students examined. However, total test anxiety, as measured by the TAI score, was a very weak predictive model for written exam performance. Multiple regression analysis demonstrated that replacing total anxiety (TAI) with worry and emotionality (TAI subscales) produces a much more effective predictive model of written exam performance. Sex, age, highest current academic degree, and ethnicity contributed little additional predictive power in either regression model. Moreover, TAI scores were not found to be statistically significant predictors of physical exam skill performance, as measured by OSCEs.
Overview of Heat Addition and Efficiency Predictions for an Advanced Stirling Convertor
NASA Technical Reports Server (NTRS)
Wilson, Scott D.; Reid, Terry V.; Schifer, Nicholas A.; Briggs, Maxwell H.
2012-01-01
The U.S. Department of Energy (DOE) and Lockheed Martin Space Systems Company (LMSSC) have been developing the Advanced Stirling Radioisotope Generator (ASRG) for use as a power system for space science missions. This generator would use two high-efficiency Advanced Stirling Convertors (ASCs), developed by Sunpower Inc. and NASA Glenn Research Center (GRC). The ASCs convert thermal energy from a radioisotope heat source into electricity. As part of ground testing of these ASCs, different operating conditions are used to simulate expected mission conditions. These conditions require achieving a particular operating frequency, hot end and cold end temperatures, and specified electrical power output for a given net heat input. Microporous bulk insulation is used in the ground support test hardware to minimize the loss of thermal energy from the electric heat source to the environment. The insulation package is characterized before operation to predict how much heat will be absorbed by the convertor and how much will be lost to the environment during operation. In an effort to validate these predictions, numerous tasks have been performed, which provided a more accurate value for net heat input into the ASCs. This test and modeling effort included: (a) making thermophysical property measurements of test setup materials to provide inputs to the numerical models, (b) acquiring additional test data that was collected during convertor tests to provide numerical models with temperature profiles of the test setup via thermocouple and infrared measurements, (c) using multidimensional numerical models (computational fluid dynamics code) to predict net heat input of an operating convertor, and (d) using validation test hardware to provide direct comparison of numerical results and validate the multidimensional numerical models used to predict convertor net heat input. This effort produced high fidelity ASC net heat input predictions, which were successfully validated using specially designed test hardware enabling measurement of heat transferred through a simulated Stirling cycle. The overall effort and results are discussed.
Risk-Based, Hypothesis-Driven Framework for Hydrological Field Campaigns with Case Studies
NASA Astrophysics Data System (ADS)
Harken, B.; Rubin, Y.
2014-12-01
There are several stages in any hydrological modeling campaign, including: formulation and analysis of a priori information, data acquisition through field campaigns, inverse modeling, and prediction of some environmental performance metric (EPM). The EPM being predicted could be, for example, contaminant concentration or plume travel time. These predictions often have significant bearing on a decision that must be made. Examples include: how to allocate limited remediation resources between contaminated groundwater sites or where to place a waste repository site. Answering such questions depends on predictions of EPMs using forward models as well as levels of uncertainty related to these predictions. Uncertainty in EPM predictions stems from uncertainty in model parameters, which can be reduced by measurements taken in field campaigns. The costly nature of field measurements motivates a rational basis for determining a measurement strategy that is optimal with respect to the uncertainty in the EPM prediction. The tool of hypothesis testing allows this uncertainty to be quantified by computing the significance of the test resulting from a proposed field campaign. The significance of the test gives a rational basis for determining the optimality of a proposed field campaign. This hypothesis testing framework is demonstrated and discussed using various synthetic case studies. This study involves contaminated aquifers where a decision must be made based on prediction of when a contaminant will arrive at a specified location. The EPM, in this case contaminant travel time, is cast into the hypothesis testing framework. The null hypothesis states that the contaminant plume will arrive at the specified location before a critical amount of time passes, and the alternative hypothesis states that the plume will arrive after the critical time passes. The optimality of different field campaigns is assessed by computing the significance of the test resulting from each one. Evaluating the level of significance caused by a field campaign involves steps including likelihood-based inverse modeling and semi-analytical conditional particle tracking.
Model Update of a Micro Air Vehicle (MAV) Flexible Wing Frame with Uncertainty Quantification
NASA Technical Reports Server (NTRS)
Reaves, Mercedes C.; Horta, Lucas G.; Waszak, Martin R.; Morgan, Benjamin G.
2004-01-01
This paper describes a procedure to update parameters in the finite element model of a Micro Air Vehicle (MAV) to improve displacement predictions under aerodynamics loads. Because of fabrication, materials, and geometric uncertainties, a statistical approach combined with Multidisciplinary Design Optimization (MDO) is used to modify key model parameters. Static test data collected using photogrammetry are used to correlate with model predictions. Results show significant improvements in model predictions after parameters are updated; however, computed probabilities values indicate low confidence in updated values and/or model structure errors. Lessons learned in the areas of wing design, test procedures, modeling approaches with geometric nonlinearities, and uncertainties quantification are all documented.
[Prediction of 137Cs accumulation in animal products in the territory of Semipalatinsk test site].
Spiridonov, S I; Gontarenko, I A; Mukusheva, M K; Fesenko, S V; Semioshkina, N A
2005-01-01
The paper describes mathematical models for 137Cs behavior in the organism of horses and sheep pasturing on the bording area to the testing area "Ground Zero" of the Semipalatinsk Test Site. The models are parameterized on the base of the data from an experiment with the breeds of animals now commonly encountered within the Semipalatinsk Test Site. The predictive calculations with the models devised have shown that 137Cs concentrations in milk of horses and sheep pasturingon the testing area to "Ground Zero" can exceed the adopted standards during a long period of time.
NASA Astrophysics Data System (ADS)
Hirata, N.; Tsuruoka, H.; Yokoi, S.
2011-12-01
The current Japanese national earthquake prediction program emphasizes the importance of modeling as well as monitoring for a sound scientific development of earthquake prediction research. One major focus of the current program is to move toward creating testable earthquake forecast models. For this purpose, in 2009 we joined the Collaboratory for the Study of Earthquake Predictability (CSEP) and installed, through an international collaboration, the CSEP Testing Centre, an infrastructure to encourage researchers to develop testable models for Japan. We started Japanese earthquake predictability experiment on November 1, 2009. The experiment consists of 12 categories, with 4 testing classes with different time spans (1 day, 3 months, 1 year and 3 years) and 3 testing regions called 'All Japan,' 'Mainland,' and 'Kanto.' A total of 160 models, as of August 2013, were submitted, and are currently under the CSEP official suite of tests for evaluating the performance of forecasts. We will present results of prospective forecast and testing for periods before and after the 2011 Tohoku-oki earthquake. Because a seismic activity has changed dramatically since the 2011 event, performances of models have been affected very much. In addition, as there is the problem of authorized catalogue related to the completeness magnitude, most models did not pass the CSEP consistency tests. Also, we will discuss the retrospective earthquake forecast experiments for aftershocks of the 2011 Tohoku-oki earthquake. Our aim is to describe what has turned out to be the first occasion for setting up a research environment for rigorous earthquake forecasting in Japan.
NASA Astrophysics Data System (ADS)
Hirata, N.; Tsuruoka, H.; Yokoi, S.
2013-12-01
The current Japanese national earthquake prediction program emphasizes the importance of modeling as well as monitoring for a sound scientific development of earthquake prediction research. One major focus of the current program is to move toward creating testable earthquake forecast models. For this purpose, in 2009 we joined the Collaboratory for the Study of Earthquake Predictability (CSEP) and installed, through an international collaboration, the CSEP Testing Centre, an infrastructure to encourage researchers to develop testable models for Japan. We started Japanese earthquake predictability experiment on November 1, 2009. The experiment consists of 12 categories, with 4 testing classes with different time spans (1 day, 3 months, 1 year and 3 years) and 3 testing regions called 'All Japan,' 'Mainland,' and 'Kanto.' A total of 160 models, as of August 2013, were submitted, and are currently under the CSEP official suite of tests for evaluating the performance of forecasts. We will present results of prospective forecast and testing for periods before and after the 2011 Tohoku-oki earthquake. Because a seismic activity has changed dramatically since the 2011 event, performances of models have been affected very much. In addition, as there is the problem of authorized catalogue related to the completeness magnitude, most models did not pass the CSEP consistency tests. Also, we will discuss the retrospective earthquake forecast experiments for aftershocks of the 2011 Tohoku-oki earthquake. Our aim is to describe what has turned out to be the first occasion for setting up a research environment for rigorous earthquake forecasting in Japan.
Single-Column Modeling, GCM Parameterizations and Atmospheric Radiation Measurement Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Somerville, R.C.J.; Iacobellis, S.F.
2005-03-18
Our overall goal is identical to that of the Atmospheric Radiation Measurement (ARM) Program: the development of new and improved parameterizations of cloud-radiation effects and related processes, using ARM data at all three ARM sites, and the implementation and testing of these parameterizations in global and regional models. To test recently developed prognostic parameterizations based on detailed cloud microphysics, we have first compared single-column model (SCM) output with ARM observations at the Southern Great Plains (SGP), North Slope of Alaska (NSA) and Topical Western Pacific (TWP) sites. We focus on the predicted cloud amounts and on a suite of radiativemore » quantities strongly dependent on clouds, such as downwelling surface shortwave radiation. Our results demonstrate the superiority of parameterizations based on comprehensive treatments of cloud microphysics and cloud-radiative interactions. At the SGP and NSA sites, the SCM results simulate the ARM measurements well and are demonstrably more realistic than typical parameterizations found in conventional operational forecasting models. At the TWP site, the model performance depends strongly on details of the scheme, and the results of our diagnostic tests suggest ways to develop improved parameterizations better suited to simulating cloud-radiation interactions in the tropics generally. These advances have made it possible to take the next step and build on this progress, by incorporating our parameterization schemes in state-of-the-art 3D atmospheric models, and diagnosing and evaluating the results using independent data. Because the improved cloud-radiation results have been obtained largely via implementing detailed and physically comprehensive cloud microphysics, we anticipate that improved predictions of hydrologic cycle components, and hence of precipitation, may also be achievable. We are currently testing the performance of our ARM-based parameterizations in state-of-the--art global and regional models. One fruitful strategy for evaluating advances in parameterizations has turned out to be using short-range numerical weather prediction as a test-bed within which to implement and improve parameterizations for modeling and predicting climate variability. The global models we have used to date are the CAM atmospheric component of the National Center for Atmospheric Research (NCAR) CCSM climate model as well as the National Centers for Environmental Prediction (NCEP) numerical weather prediction model, thus allowing testing in both climate simulation and numerical weather prediction modes. We present detailed results of these tests, demonstrating the sensitivity of model performance to changes in parameterizations.« less
The Real World Significance of Performance Prediction
ERIC Educational Resources Information Center
Pardos, Zachary A.; Wang, Qing Yang; Trivedi, Shubhendu
2012-01-01
In recent years, the educational data mining and user modeling communities have been aggressively introducing models for predicting student performance on external measures such as standardized tests as well as within-tutor performance. While these models have brought statistically reliable improvement to performance prediction, the real world…
NASA Astrophysics Data System (ADS)
Iden, S. C.; Durner, W.; Delay, M.; Frimmel, F. H.
2009-04-01
Contaminated porous materials, like soils, dredged sediments or waste materials must be tested before they can be used as filling materials in order to minimize the risk of groundwater pollution. We applied a multiple batch extraction test at varying liquid-to-solid (L/S) ratios to a demolition waste material and a municipal waste incineration product and investigated the release of chloride, sulphate, sodium, copper, chromium and dissolved organic carbon from both waste materials. The liquid phase test concentrations were used to estimate parameters of a relatively simple mass balance model accounting for equilibrium partitioning. The model parameters were estimated within a Bayesian framework by applying an efficient MCMC sampler and the uncertainties of the model parameters and model predictions were quantified. We tested isotherms of the linear, Freundlich and Langmuir type and selected the optimal isotherm model by use of the Deviance Information Criterion (DIC). Both the excellent fit to the experimental data and a comparison between the model-predicted and independently measured concentrations at the L/S ratios of 0.25 and 0.5 L/kg demonstrate the applicability of the model for almost all studied substances and both waste materials. We conclude that batch extraction tests at varying L/S ratios provide, at moderate experimental cost, a powerful complement to established test designs like column leaching or single batch extraction tests. The method constitutes an important tool in risk assessments, because concentrations at soil water contents representative for the field situation can be predicted from easier-to-obtain test concentrations at larger L/S ratios. This helps to circumvent the experimental difficulties of the soil saturation extract and eliminates the need to apply statistical approaches to predict such representative concentrations which have been shown to suffer dramatically from poor correlations.
Comparisons of patch-use models for wintering American tree sparrows
Tome, M.W.
1990-01-01
Optimal foraging theory has stimulated numerous theoretical and empirical studies of foraging behavior for >20 years. These models provide a valuable tool for studying the foraging behavior of an organism. As with any other tool, the models are most effective when properly used. For example, to obtain a robust test of a foraging model, Stephens and Krebs (1986) recommend experimental designs in which four questions are answered in the affirmative. First, do the foragers play the same "game" as the model? Sec- ond, are the assumptions of the model met? Third, does the test rule out alternative possibilities? Finally, are the appropriate variables measured? Negative an- swers to any of these questions could invalidate the model and lead to confusion over the usefulness of foraging theory in conducting ecological studies. Gaines (1989) attempted to determine whether American Tree Sparrows (Spizella arborea) foraged by a time (Krebs 1973) or number expectation rule (Gibb 1962), or in a manner consistent with the predictions of Charnov's (1976) marginal value theorem (MVT). Gaines (1989: 118) noted appropriately that field tests of foraging models frequently involve uncontrollable circumstances; thus, it is often difficult to meet the assumptions of the models. Gaines also states (1989: 118) that "violations of the assumptions are also in- formative but do not constitute robust tests of predicted hypotheses," and that "the problem can be avoided by experimental analyses which concurrently test mutually exclusive hypotheses so that alter- native predictions will be eliminated if falsified." There is a problem with this approach because, when major assumptions of models are not satisfied, it is not justifiable to compare a predator's foraging behavior with the model's predictions. I submit that failing to follow the advice offered by Stephens and Krebs (1986) can invalidate tests of foraging models.
Schuwirth, Nele; Reichert, Peter
2013-02-01
For the first time, we combine concepts of theoretical food web modeling, the metabolic theory of ecology, and ecological stoichiometry with the use of functional trait databases to predict the coexistence of invertebrate taxa in streams. We developed a mechanistic model that describes growth, death, and respiration of different taxa dependent on various environmental influence factors to estimate survival or extinction. Parameter and input uncertainty is propagated to model results. Such a model is needed to test our current quantitative understanding of ecosystem structure and function and to predict effects of anthropogenic impacts and restoration efforts. The model was tested using macroinvertebrate monitoring data from a catchment of the Swiss Plateau. Even without fitting model parameters, the model is able to represent key patterns of the coexistence structure of invertebrates at sites varying in external conditions (litter input, shading, water quality). This confirms the suitability of the model concept. More comprehensive testing and resulting model adaptations will further increase the predictive accuracy of the model.
ERIC Educational Resources Information Center
Dell, Gary S.; Martin, Nadine; Schwartz, Myrna F.
2007-01-01
Lexical access in language production, and particularly pathologies of lexical access, are often investigated by examining errors in picture naming and word repetition. In this article, we test a computational approach to lexical access, the two-step interactive model, by examining whether the model can quantitatively predict the repetition-error…
Demonstrating the improvement of predictive maturity of a computational model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hemez, Francois M; Unal, Cetin; Atamturktur, Huriye S
2010-01-01
We demonstrate an improvement of predictive capability brought to a non-linear material model using a combination of test data, sensitivity analysis, uncertainty quantification, and calibration. A model that captures increasingly complicated phenomena, such as plasticity, temperature and strain rate effects, is analyzed. Predictive maturity is defined, here, as the accuracy of the model to predict multiple Hopkinson bar experiments. A statistical discrepancy quantifies the systematic disagreement (bias) between measurements and predictions. Our hypothesis is that improving the predictive capability of a model should translate into better agreement between measurements and predictions. This agreement, in turn, should lead to a smallermore » discrepancy. We have recently proposed to use discrepancy and coverage, that is, the extent to which the physical experiments used for calibration populate the regime of applicability of the model, as basis to define a Predictive Maturity Index (PMI). It was shown that predictive maturity could be improved when additional physical tests are made available to increase coverage of the regime of applicability. This contribution illustrates how the PMI changes as 'better' physics are implemented in the model. The application is the non-linear Preston-Tonks-Wallace (PTW) strength model applied to Beryllium metal. We demonstrate that our framework tracks the evolution of maturity of the PTW model. Robustness of the PMI with respect to the selection of coefficients needed in its definition is also studied.« less
Novel naïve Bayes classification models for predicting the chemical Ames mutagenicity.
Zhang, Hui; Kang, Yan-Li; Zhu, Yuan-Yuan; Zhao, Kai-Xia; Liang, Jun-Yu; Ding, Lan; Zhang, Teng-Guo; Zhang, Ji
2017-06-01
Prediction of drug candidates for mutagenicity is a regulatory requirement since mutagenic compounds could pose a toxic risk to humans. The aim of this investigation was to develop a novel prediction model of mutagenicity by using a naïve Bayes classifier. The established model was validated by the internal 5-fold cross validation and external test sets. For comparison, the recursive partitioning classifier prediction model was also established and other various reported prediction models of mutagenicity were collected. Among these methods, the prediction performance of naïve Bayes classifier established here displayed very well and stable, which yielded average overall prediction accuracies for the internal 5-fold cross validation of the training set and external test set I set were 89.1±0.4% and 77.3±1.5%, respectively. The concordance of the external test set II with 446 marketed drugs was 90.9±0.3%. In addition, four simple molecular descriptors (e.g., Apol, No. of H donors, Num-Rings and Wiener) related to mutagenicity and five representative substructures of mutagens (e.g., aromatic nitro, hydroxyl amine, nitroso, aromatic amine and N-methyl-N-methylenemethanaminum) produced by ECFP_14 fingerprints were identified. We hope the established naïve Bayes prediction model can be applied to risk assessment processes; and the obtained important information of mutagenic chemicals can guide the design of chemical libraries for hit and lead optimization. Copyright © 2017 Elsevier B.V. All rights reserved.
Numerical Modeling of Propellant Boiloff in Cryogenic Storage Tank
NASA Technical Reports Server (NTRS)
Majumdar, A. K.; Steadman, T. E.; Maroney, J. L.
2007-01-01
This Technical Memorandum (TM) describes the thermal modeling effort undertaken at Marshall Space Flight Center to support the Cryogenic Test Laboratory at Kennedy Space Center (KSC) for a study of insulation materials for cryogenic tanks in order to reduce propellant boiloff during long-term storage. The Generalized Fluid System Simulation program has been used to model boiloff in 1,000-L demonstration tanks built for testing the thermal performance of glass bubbles and perlite insulation. Numerical predictions of boiloff rate and ullage temperature have been compared with the measured data from the testing of demonstration tanks. A satisfactory comparison between measured and predicted data has been observed for both liquid nitrogen and hydrogen tests. Based on the experience gained with the modeling of the demonstration tanks, a numerical model of the liquid hydrogen storage tank at launch complex 39 at KSC was built. The predicted boiloff rate of hydrogen has been found to be in good agreement with observed field data. This TM describes three different models that have been developed during this period of study (March 2005 to June 2006), comparisons with test data, and results of parametric studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hammel, T.E.; Srinivas, V.
1978-11-01
This initial definition of the power degradation prediction technique outlines a model for predicting SIG/Galileo mean EOM power using component test data and data from a module power degradation demonstration test program. (LCL)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clauss, D.B.
A 1:6-scale model of a reinforced concrete containment building was pressurized incrementally to failure at a remote site at Sandia National Laboratories. The response of the model was recorded with more than 1000 channels of data (primarily strain and displacement measurements) at 37 discrete pressure levels. The primary objective of this test was to generate data that could be used to validate methods for predicting the performance of containment buildings subject to loads beyond their design basis. Extensive analyses were conducted before the test to predict the behavior of the model. Ten organizations in Europe and the US conducted independentmore » analyses of the model and contributed to a report on the pretest predictions. Predictions included structural response at certain predetermined locations in the model as well as capacity and failure mode. This report discusses comparisons between the pretest predictions and the experimental results. Posttest evaluations that were conducted to provide additional insight into the model behavior are also described. The significance of the analysis and testing of the 1:6-scale model to performance evaluations of actual containments subject to beyond design basis loads is also discussed. 70 refs., 428 figs., 24 tabs.« less
CERAPP: Collaborative Estrogen Receptor Activity Prediction ...
Humans potentially are exposed to thousands of man-made chemicals in the environment. Some chemicals mimic natural endocrine hormones and, thus, have the potential to be endocrine disruptors. Many of these chemicals never have been tested for their ability to interact with the estrogen receptor (ER). Risk assessors need tools to prioritize chemicals for assessment in costly in vivo tests, for instance, within the EPA Endocrine Disruptor Screening Program. Here, we describe a large-scale modeling project called CERAPP (Collaborative Estrogen Receptor Activity Prediction Project) demonstrating the efficacy of using predictive computational models on high-throughput screening data to screen thousands of chemicals against the ER. CERAPP combined multiple models developed in collaboration among 17 groups in the United States and Europe to predict ER activity of a common set of 32,464 chemical structures. Quantitative structure-activity relationship models and docking approaches were employed, mostly using a common training set of 1677 compounds provided by EPA, to build a total of 40 categorical and 8 continuous models for binding, agonist, and antagonist ER activity. All predictions were tested using an evaluation set of 7522 chemicals collected from the literature. To overcome the limitations of single models, a consensus was built weighting models using a scoring function (0 to 1) based on their accuracies. Individual model scores ranged from 0.69 to 0.85, showing
TH-A-9A-01: Active Optical Flow Model: Predicting Voxel-Level Dose Prediction in Spine SBRT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, J; Wu, Q.J.; Yin, F
2014-06-15
Purpose: To predict voxel-level dose distribution and enable effective evaluation of cord dose sparing in spine SBRT. Methods: We present an active optical flow model (AOFM) to statistically describe cord dose variations and train a predictive model to represent correlations between AOFM and PTV contours. Thirty clinically accepted spine SBRT plans are evenly divided into training and testing datasets. The development of predictive model consists of 1) collecting a sequence of dose maps including PTV and OAR (spinal cord) as well as a set of associated PTV contours adjacent to OAR from the training dataset, 2) classifying data into fivemore » groups based on PTV's locations relative to OAR, two “Top”s, “Left”, “Right”, and “Bottom”, 3) randomly selecting a dose map as the reference in each group and applying rigid registration and optical flow deformation to match all other maps to the reference, 4) building AOFM by importing optical flow vectors and dose values into the principal component analysis (PCA), 5) applying another PCA to features of PTV and OAR contours to generate an active shape model (ASM), and 6) computing a linear regression model of correlations between AOFM and ASM.When predicting dose distribution of a new case in the testing dataset, the PTV is first assigned to a group based on its contour characteristics. Contour features are then transformed into ASM's principal coordinates of the selected group. Finally, voxel-level dose distribution is determined by mapping from the ASM space to the AOFM space using the predictive model. Results: The DVHs predicted by the AOFM-based model and those in clinical plans are comparable in training and testing datasets. At 2% volume the dose difference between predicted and clinical plans is 4.2±4.4% and 3.3±3.5% in the training and testing datasets, respectively. Conclusion: The AOFM is effective in predicting voxel-level dose distribution for spine SBRT. Partially supported by NIH/NCI under grant #R21CA161389 and a master research grant by Varian Medical System.« less
Application of nomographs for analysis and prediction of receiver spurious response EMI
NASA Astrophysics Data System (ADS)
Heather, F. W.
1985-07-01
Spurious response EMI for the front end of a superheterodyne receiver follows a simple mathematic formula; however, the application of the formula to predict test frequencies produces more data than can be evaluated. An analysis technique has been developed to graphically depict all receiver spurious responses usig a nomograph and to permit selection of optimum test frequencies. The discussion includes the math model used to simulate a superheterodyne receiver, the implementation of the model in the computer program, the approach to test frequency selection, interpretation of the nomographs, analysis and prediction of receiver spurious response EMI from the nomographs, and application of the nomographs. In addition, figures are provided of sample applications. This EMI analysis and prediction technique greatly improves the Electromagnetic Compatibility (EMC) test engineer's ability to visualize the scope of receiver spurious response EMI testing and optimize test frequency selection.
Significance of Landsat-7 Spacecraft Level Thermal Balance and Thermal Test for ETM+Instrument
NASA Technical Reports Server (NTRS)
Choi, Michael K.
1999-01-01
The thermal design and the instrument thermal vacuum (T/V) test of the Landsat-7 Enhanced Thematic Mapper Plus (ETM+) instrument were based on the Landsat-4, 5 and 6 heritage. The ETM+ scanner thermal model was also inherited from Landsat-4, 5 and 6. The temperature predictions of many scanner components in the original thermal model had poor agreement with the spacecraft and instrument integrated sun-pointing safehold (SPSH) thermal balance (T/B) test results. The spacecraft and instrument integrated T/B test led to a change of the Full Aperture Calibrator (FAC) motor stack "solar shield" coating from MIL-C-5541 to multi-layer insulation (MLI) thermal blanket. The temperature predictions of the Auxiliary Electronics Module (AEM) in the thermal model also had poor agreement with the T/B test results. Modifications to the scanner and AEM thermal models were performed to give good agreement between the temperature predictions and the test results. The correlated ETM+ thermal model was used to obtain flight temperature predictions. The flight temperature predictions in the nominal 15-orbit mission profile, plus margins, were used as the yellow limits for most of the ETM+ components. The spacecraft and instrument integrated T/B and TN test also revealed that the standby heater capacity on the Scan Mirror Assembly (SMA) was insufficient when the Earth Background Simulator (EBS) was 1 50C or colder, and the baffle heater possibly caused the coherent noise in the narrow band data when it was on. Also, the cooler cool-down was significantly faster than that in the instrument T/V test, and the coldest Cold Focal Plane Array (CFPA) temperature achieved was colder.
Male dominance rank and reproductive success in chimpanzees, Pan troglodytes schweinfurthii.
Wroblewski, Emily E; Murray, Carson M; Keele, Brandon F; Schumacher-Stankey, Joann C; Hahn, Beatrice H; Pusey, Anne E
2009-01-01
Competition for fertile females determines male reproductive success in many species. The priority of access model predicts that male dominance rank determines access to females, but this model has been difficult to test in wild populations, particularly in promiscuous mating systems. Tests of the model have produced variable results, probably because of the differing socioecological circumstances of individual species and populations. We tested the predictions of the priority of access model in the chimpanzees of Gombe National Park, Tanzania. Chimpanzees are an interesting species in which to test the model because of their fission-fusion grouping patterns, promiscuous mating system and alternative male mating strategies. We determined paternity for 34 offspring over a 22-year period and found that the priority of access model was generally predictive of male reproductive success. However, we found that younger males had higher success per male than older males, and low-ranking males sired more offspring than predicted. Low-ranking males sired offspring with younger, less desirable females and by engaging in consortships more often than high-ranking fathers. Although alpha males never sired offspring with related females, inbreeding avoidance of high-ranking male relatives did not completely explain the success of low-ranking males. While our work confirms that male rank typically predicts male chimpanzee reproductive success, other factors are also important; mate choice and alternative male strategies can give low-ranking males access to females more often than would be predicted by the model. Furthermore, the success of younger males suggests that they are more successful in sperm competition.
CaPTHUS scoring model in primary hyperparathyroidism: can it eliminate the need for ioPTH testing?
Elfenbein, Dawn M; Weber, Sara; Schneider, David F; Sippel, Rebecca S; Chen, Herbert
2015-04-01
The CaPTHUS model was reported to have a positive predictive value of 100 % to correctly predict single-gland disease in patients with primary hyperparathyroidism, thus obviating the need for intraoperative parathyroid hormone (ioPTH) testing. We sought to apply the CaPTHUS scoring model in our patient population and assess its utility in predicting long-term biochemical cure. We retrospective reviewed all parathyroidectomies for primary hyperparathyroidism performed at our university hospital from 2003 to 2012. We routinely perform ioPTH testing. Biochemical cure was defined as a normal calcium level at 6 months. A total of 1,421 patients met the inclusion criteria: 78 % of patients had a single adenoma at the time of surgery, 98 % had a normal serum calcium at 1 week postoperatively, and 96 % had a normal serum calcium level 6 months postoperatively. Using the CaPTHUS scoring model, 307 patients (22.5 %) had a score of ≥ 3, with a positive predictive value of 91 % for single adenoma. A CaPTHUS score of ≥ 3 had a positive predictive value of 98 % for biochemical cure at 1 week as well as at 6 months. In our population, where ioPTH testing is used routinely to guide use of bilateral exploration, patients with a preoperative CaPTHUS score of ≥ 3 had good long-term biochemical cure rates. However, the model only predicted adenoma in 91 % of cases. If minimally invasive parathyroidectomy without ioPTH testing had been done for these patients, the cure rate would have dropped from 98 % to an unacceptable 89 %. Even in these patients with high CaPTHUS scores, multigland disease is present in almost 10 %, and ioPTH testing is necessary.
Does Rational Selection of Training and Test Sets Improve the Outcome of QSAR Modeling?
Prior to using a quantitative structure activity relationship (QSAR) model for external predictions, its predictive power should be established and validated. In the absence of a true external dataset, the best way to validate the predictive ability of a model is to perform its s...
Zhou, Kun; Gao, Chun-Fang; Zhao, Yun-Peng; Liu, Hai-Lin; Zheng, Rui-Dan; Xian, Jian-Chun; Xu, Hong-Tao; Mao, Yi-Min; Zeng, Min-De; Lu, Lun-Gen
2010-09-01
In recent years, a great interest has been dedicated to the development of noninvasive predictive models to substitute liver biopsy for fibrosis assessment and follow-up. Our aim was to provide a simpler model consisting of routine laboratory markers for predicting liver fibrosis in patients chronically infected with hepatitis B virus (HBV) in order to optimize their clinical management. Liver fibrosis was staged in 386 chronic HBV carriers who underwent liver biopsy and routine laboratory testing. Correlations between routine laboratory markers and fibrosis stage were statistically assessed. After logistic regression analysis, a novel predictive model was constructed. This S index was validated in an independent cohort of 146 chronic HBV carriers in comparison to the SLFG model, Fibrometer, Hepascore, Hui model, Forns score and APRI using receiver operating characteristic (ROC) curves. The diagnostic values of each marker panels were better than single routine laboratory markers. The S index consisting of gamma-glutamyltransferase (GGT), platelets (PLT) and albumin (ALB) (S-index: 1000 x GGT/(PLT x ALB(2))) had a higher diagnostic accuracy in predicting degree of fibrosis than any other mathematical model tested. The areas under the ROC curves (AUROC) were 0.812 and 0.890 for predicting significant fibrosis and cirrhosis in the validation cohort, respectively. The S index, a simpler mathematical model consisting of routine laboratory markers predicts significant fibrosis and cirrhosis in patients with chronic HBV infection with a high degree of accuracy, potentially decreasing the need for liver biopsy.
NASA Astrophysics Data System (ADS)
Rooper, Christopher N.; Zimmermann, Mark; Prescott, Megan M.
2017-08-01
Deep-sea coral and sponge ecosystems are widespread throughout most of Alaska's marine waters, and are associated with many different species of fishes and invertebrates. These ecosystems are vulnerable to the effects of commercial fishing activities and climate change. We compared four commonly used species distribution models (general linear models, generalized additive models, boosted regression trees and random forest models) and an ensemble model to predict the presence or absence and abundance of six groups of benthic invertebrate taxa in the Gulf of Alaska. All four model types performed adequately on training data for predicting presence and absence, with regression forest models having the best overall performance measured by the area under the receiver-operating-curve (AUC). The models also performed well on the test data for presence and absence with average AUCs ranging from 0.66 to 0.82. For the test data, ensemble models performed the best. For abundance data, there was an obvious demarcation in performance between the two regression-based methods (general linear models and generalized additive models), and the tree-based models. The boosted regression tree and random forest models out-performed the other models by a wide margin on both the training and testing data. However, there was a significant drop-off in performance for all models of invertebrate abundance ( 50%) when moving from the training data to the testing data. Ensemble model performance was between the tree-based and regression-based methods. The maps of predictions from the models for both presence and abundance agreed very well across model types, with an increase in variability in predictions for the abundance data. We conclude that where data conforms well to the modeled distribution (such as the presence-absence data and binomial distribution in this study), the four types of models will provide similar results, although the regression-type models may be more consistent with biological theory. For data with highly zero-inflated distributions and non-normal distributions such as the abundance data from this study, the tree-based methods performed better. Ensemble models that averaged predictions across the four model types, performed better than the GLM or GAM models but slightly poorer than the tree-based methods, suggesting ensemble models might be more robust to overfitting than tree methods, while mitigating some of the disadvantages in predictive performance of regression methods.
Extracting falsifiable predictions from sloppy models.
Gutenkunst, Ryan N; Casey, Fergal P; Waterfall, Joshua J; Myers, Christopher R; Sethna, James P
2007-12-01
Successful predictions are among the most compelling validations of any model. Extracting falsifiable predictions from nonlinear multiparameter models is complicated by the fact that such models are commonly sloppy, possessing sensitivities to different parameter combinations that range over many decades. Here we discuss how sloppiness affects the sorts of data that best constrain model predictions, makes linear uncertainty approximations dangerous, and introduces computational difficulties in Monte-Carlo uncertainty analysis. We also present a useful test problem and suggest refinements to the standards by which models are communicated.
Sweat loss prediction using a multi-model approach
NASA Astrophysics Data System (ADS)
Xu, Xiaojiang; Santee, William R.
2011-07-01
A new multi-model approach (MMA) for sweat loss prediction is proposed to improve prediction accuracy. MMA was computed as the average of sweat loss predicted by two existing thermoregulation models: i.e., the rational model SCENARIO and the empirical model Heat Strain Decision Aid (HSDA). Three independent physiological datasets, a total of 44 trials, were used to compare predictions by MMA, SCENARIO, and HSDA. The observed sweat losses were collected under different combinations of uniform ensembles, environmental conditions (15-40°C, RH 25-75%), and exercise intensities (250-600 W). Root mean square deviation (RMSD), residual plots, and paired t tests were used to compare predictions with observations. Overall, MMA reduced RMSD by 30-39% in comparison with either SCENARIO or HSDA, and increased the prediction accuracy to 66% from 34% or 55%. Of the MMA predictions, 70% fell within the range of mean observed value ± SD, while only 43% of SCENARIO and 50% of HSDA predictions fell within the same range. Paired t tests showed that differences between observations and MMA predictions were not significant, but differences between observations and SCENARIO or HSDA predictions were significantly different for two datasets. Thus, MMA predicted sweat loss more accurately than either of the two single models for the three datasets used. Future work will be to evaluate MMA using additional physiological data to expand the scope of populations and conditions.
Routine blood tests to predict liver fibrosis in chronic hepatitis C.
Hsieh, Yung-Yu; Tung, Shui-Yi; Lee, Kamfai; Wu, Cheng-Shyong; Wei, Kuo-Liang; Shen, Chien-Heng; Chang, Te-Sheng; Lin, Yi-Hsiung
2012-02-28
To verify the usefulness of FibroQ for predicting fibrosis in patients with chronic hepatitis C, compared with other noninvasive tests. This retrospective cohort study included 237 consecutive patients with chronic hepatitis C who had undergone percutaneous liver biopsy before treatment. FibroQ, aspartate aminotransferase (AST)/alanine aminotransferase ratio (AAR), AST to platelet ratio index, cirrhosis discriminant score, age-platelet index (API), Pohl score, FIB-4 index, and Lok's model were calculated and compared. FibroQ, FIB-4, AAR, API and Lok's model results increased significantly as fibrosis advanced (analysis of variance test: P < 0.001). FibroQ trended to be superior in predicting significant fibrosis score in chronic hepatitis C compared with other noninvasive tests. FibroQ is a simple and useful test for predicting significant fibrosis in patients with chronic hepatitis C.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Raymond H.; Stone, James; Truax, Ryan
Batch tests, column tests, and predictive reactive transport modeling can be done before ISR begins as part of the decision making/permitting process by bracketing possible post-restoration conditions; Help address stakeholder concerns; The best predictions require actual restored groundwater in contact with the downgradient solid phase; Resulting modeling provides a range of natural attenuation rates and assists with designing the best locations and time frames for continued monitoring; Field pilot tests are the best field-scale data and can provide the best model input and calibration data
Kruger, Jen; Pollard, Daniel; Basarir, Hasan; Thokala, Praveen; Cooke, Debbie; Clark, Marie; Bond, Rod; Heller, Simon; Brennan, Alan
2015-10-01
. Health economic modeling has paid limited attention to the effects that patients' psychological characteristics have on the effectiveness of treatments. This case study tests 1) the feasibility of incorporating psychological prediction models of treatment response within an economic model of type 1 diabetes, 2) the potential value of providing treatment to a subgroup of patients, and 3) the cost-effectiveness of providing treatment to a subgroup of responders defined using 5 different algorithms. . Multiple linear regressions were used to investigate relationships between patients' psychological characteristics and treatment effectiveness. Two psychological prediction models were integrated with a patient-level simulation model of type 1 diabetes. Expected value of individualized care analysis was undertaken. Five different algorithms were used to provide treatment to a subgroup of predicted responders. A cost-effectiveness analysis compared using the algorithms to providing treatment to all patients. . The psychological prediction models had low predictive power for treatment effectiveness. Expected value of individualized care results suggested that targeting education at responders could be of value. The cost-effectiveness analysis suggested, for all 5 algorithms, that providing structured education to a subgroup of predicted responders would not be cost-effective. . The psychological prediction models tested did not have sufficient predictive power to make targeting treatment cost-effective. The psychological prediction models are simple linear models of psychological behavior. Collection of data on additional covariates could potentially increase statistical power. . By collecting data on psychological variables before an intervention, we can construct predictive models of treatment response to interventions. These predictive models can be incorporated into health economic models to investigate more complex service delivery and reimbursement strategies. © The Author(s) 2015.
QSAR Classification Model for Antibacterial Compounds and Its Use in Virtual Screening
2012-09-26
test set molecules that were not used to train the models . This allowed us to more accurately estimate the prediction power of the models . As...pathogens and deposited in PubChem Bioassays. Ultimately, the main purpose of this model is to make predictions , based on known antibacterial and non...the model built form the remaining compounds is used to predict the left out compound. Once all the compounds pass through this cycle of prediction , a
A prediction model for colon cancer surveillance data.
Good, Norm M; Suresh, Krithika; Young, Graeme P; Lockett, Trevor J; Macrae, Finlay A; Taylor, Jeremy M G
2015-08-15
Dynamic prediction models make use of patient-specific longitudinal data to update individualized survival probability predictions based on current and past information. Colonoscopy (COL) and fecal occult blood test (FOBT) results were collected from two Australian surveillance studies on individuals characterized as high-risk based on a personal or family history of colorectal cancer. Motivated by a Poisson process, this paper proposes a generalized nonlinear model with a complementary log-log link as a dynamic prediction tool that produces individualized probabilities for the risk of developing advanced adenoma or colorectal cancer (AAC). This model allows predicted risk to depend on a patient's baseline characteristics and time-dependent covariates. Information on the dates and results of COLs and FOBTs were incorporated using time-dependent covariates that contributed to patient risk of AAC for a specified period following the test result. These covariates serve to update a person's risk as additional COL, and FOBT test information becomes available. Model selection was conducted systematically through the comparison of Akaike information criterion. Goodness-of-fit was assessed with the use of calibration plots to compare the predicted probability of event occurrence with the proportion of events observed. Abnormal COL results were found to significantly increase risk of AAC for 1 year following the test. Positive FOBTs were found to significantly increase the risk of AAC for 3 months following the result. The covariates that incorporated the updated test results were of greater significance and had a larger effect on risk than the baseline variables. Copyright © 2015 John Wiley & Sons, Ltd.
Circumferential distortion modeling of the TF30-P-3 compression system
NASA Technical Reports Server (NTRS)
Mazzawy, R. S.; Banks, G. A.
1977-01-01
Circumferential inlet pressure and temperature distortion testing of the TF30 P-3 turbofan engine was conducted. The compressor system at the test conditions run was modelled according to a multiple segment parallel compressor model. Aspects of engine operation and distortion configuration modelled include the effects of compressor bleeds, relative pressure-temperature distortion alignment and circumferential distortion extent. Model predictions for limiting distortion amplitudes and flow distributions within the compression system were compared with test results in order to evaluate predicted trends. Relatively good agreement was obtained. The model also identified the low pressure compressor as the stall-initiating component, which was in agreement with the data.
Testing an idealized dynamic cascade model of the development of serious violence in adolescence.
Dodge, Kenneth A; Greenberg, Mark T; Malone, Patrick S
2008-01-01
A dynamic cascade model of development of serious adolescent violence was proposed and tested through prospective inquiry with 754 children (50% male; 43% African American) from 27 schools at 4 geographic sites followed annually from kindergarten through Grade 11 (ages 5-18). Self, parent, teacher, peer, observer, and administrative reports provided data. Partial least squares analyses revealed a cascade of prediction and mediation: An early social context of disadvantage predicts harsh-inconsistent parenting, which predicts social and cognitive deficits, which predicts conduct problem behavior, which predicts elementary school social and academic failure, which predicts parental withdrawal from supervision and monitoring, which predicts deviant peer associations, which ultimately predicts adolescent violence. Findings suggest targets for in-depth inquiry and preventive intervention.
NASA Technical Reports Server (NTRS)
Little, B. H., Jr.; Tomlin, K. H.; Aljabri, A. S.; Mason, C. A.
1988-01-01
One-ninth scale wind tunnel model tests of the Propfan Test Assessment (PTA) aircraft were performed in three different NASA facilities. Wing and propfan nacelle static pressures, model forces and moments, and flow field at the propfan plane were measured in these tests. Tests started in June 1985 and were completed in January 1987. These data were needed to assure PTA safety of flight, predict PTA performance, and validate analytical codes that will be used to predict flow fields in which the propfan will operate.
Testing and validating environmental models
Kirchner, J.W.; Hooper, R.P.; Kendall, C.; Neal, C.; Leavesley, G.
1996-01-01
Generally accepted standards for testing and validating ecosystem models would benefit both modellers and model users. Universally applicable test procedures are difficult to prescribe, given the diversity of modelling approaches and the many uses for models. However, the generally accepted scientific principles of documentation and disclosure provide a useful framework for devising general standards for model evaluation. Adequately documenting model tests requires explicit performance criteria, and explicit benchmarks against which model performance is compared. A model's validity, reliability, and accuracy can be most meaningfully judged by explicit comparison against the available alternatives. In contrast, current practice is often characterized by vague, subjective claims that model predictions show 'acceptable' agreement with data; such claims provide little basis for choosing among alternative models. Strict model tests (those that invalid models are unlikely to pass) are the only ones capable of convincing rational skeptics that a model is probably valid. However, 'false positive' rates as low as 10% can substantially erode the power of validation tests, making them insufficiently strict to convince rational skeptics. Validation tests are often undermined by excessive parameter calibration and overuse of ad hoc model features. Tests are often also divorced from the conditions under which a model will be used, particularly when it is designed to forecast beyond the range of historical experience. In such situations, data from laboratory and field manipulation experiments can provide particularly effective tests, because one can create experimental conditions quite different from historical data, and because experimental data can provide a more precisely defined 'target' for the model to hit. We present a simple demonstration showing that the two most common methods for comparing model predictions to environmental time series (plotting model time series against data time series, and plotting predicted versus observed values) have little diagnostic power. We propose that it may be more useful to statistically extract the relationships of primary interest from the time series, and test the model directly against them.
Airframe noise prediction evaluation
NASA Technical Reports Server (NTRS)
Yamamoto, Kingo J.; Donelson, Michael J.; Huang, Shumei C.; Joshi, Mahendra C.
1995-01-01
The objective of this study is to evaluate the accuracy and adequacy of current airframe noise prediction methods using available airframe noise measurements from tests of a narrow body transport (DC-9) and a wide body transport (DC-10) in addition to scale model test data. General features of the airframe noise from these aircraft and models are outlined. The results of the assessment of two airframe prediction methods, Fink's and Munson's methods, against flight test data of these aircraft and scale model wind tunnel test data are presented. These methods were extensively evaluated against measured data from several configurations including clean, slat deployed, landing gear-deployed, flap deployed, and landing configurations of both DC-9 and DC-10. They were also assessed against a limited number of configurations of scale models. The evaluation was conducted in terms of overall sound pressure level (OASPL), tone corrected perceived noise level (PNLT), and one-third-octave band sound pressure level (SPL).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aldegunde, Manuel, E-mail: M.A.Aldegunde-Rodriguez@warwick.ac.uk; Kermode, James R., E-mail: J.R.Kermode@warwick.ac.uk; Zabaras, Nicholas
This paper presents the development of a new exchange–correlation functional from the point of view of machine learning. Using atomization energies of solids and small molecules, we train a linear model for the exchange enhancement factor using a Bayesian approach which allows for the quantification of uncertainties in the predictions. A relevance vector machine is used to automatically select the most relevant terms of the model. We then test this model on atomization energies and also on bulk properties. The average model provides a mean absolute error of only 0.116 eV for the test points of the G2/97 set butmore » a larger 0.314 eV for the test solids. In terms of bulk properties, the prediction for transition metals and monovalent semiconductors has a very low test error. However, as expected, predictions for types of materials not represented in the training set such as ionic solids show much larger errors.« less
White, H; Racine, J
2001-01-01
We propose tests for individual and joint irrelevance of network inputs. Such tests can be used to determine whether an input or group of inputs "belong" in a particular model, thus permitting valid statistical inference based on estimated feedforward neural-network models. The approaches employ well-known statistical resampling techniques. We conduct a small Monte Carlo experiment showing that our tests have reasonable level and power behavior, and we apply our methods to examine whether there are predictable regularities in foreign exchange rates. We find that exchange rates do appear to contain information that is exploitable for enhanced point prediction, but the nature of the predictive relations evolves through time.
Study of cavitating inducer instabilities
NASA Technical Reports Server (NTRS)
Young, W. E.; Murphy, R.; Reddecliff, J. M.
1972-01-01
An analytic and experimental investigation into the causes and mechanisms of cavitating inducer instabilities was conducted. Hydrofoil cascade tests were performed, during which cavity sizes were measured. The measured data were used, along with inducer data and potential flow predictions, to refine an analysis for the prediction of inducer blade suction surface cavitation cavity volume. Cavity volume predictions were incorporated into a linearized system model, and instability predictions for an inducer water test loop were generated. Inducer tests were conducted and instability predictions correlated favorably with measured instability data.
Cigarette smoking in a student sample: neurocognitive and clinical correlates.
Dinn, Wayne M; Aycicegi, Ayse; Harris, Catherine L
2004-01-01
Why do adolescents begin to smoke in the face of profound health risks and aggressive antismoking campaigns? The present study tested predictions based on two theoretical models of tobacco use in young adults: (1) the self-medication model; and (2) the orbitofrontal/disinhibition model. Investigators speculated that a significant number of smokers were self-medicating since nicotine possesses mood-elevating and hedonic properties. The self-medication model predicts that smokers will demonstrate increased rates of psychopathology relative to nonsmokers. Similarly, researchers have suggested that individuals with attention-deficit/hyperactivity disorder (ADHD) employ nicotine to enhance cognitive function. The ADHD/self-medication model predicts that smokers will perform poorly on tests of executive function and report a greater number of ADHD symptoms. A considerable body of research indicates that tobacco use is associated with several related personality traits including extraversion, impulsivity, risk taking, sensation seeking, novelty seeking, and antisocial personality features. Antisocial behavior and related personality traits as well as tobacco use may reflect, in part, a failure to effectively employ reward and punishment cues to guide behavior. This failure may reflect orbitofrontal dysfunction. The orbitofrontal/disinhibition model predicts that smokers will perform poorly on neurocognitive tasks considered sensitive to orbitofrontal dysfunction and will obtain significantly higher scores on measures of behavioral disinhibition and antisocial personality relative to nonsmokers. To test these predictions, we administered a battery of neuropsychological tests, clinical scales, and personality questionnaires to university student smokers and nonsmokers. Results did not support the self-medication model or the ADHD/self-medication model; however, findings were consistent with the orbitofrontal/disinhibition model.
Reusable Solid Rocket Motor Nozzle Joint-4 Thermal Analysis
NASA Technical Reports Server (NTRS)
Clayton, J. Louie
2001-01-01
This study provides for development and test verification of a thermal model used for prediction of joint heating environments, structural temperatures and seal erosions in the Space Shuttle Reusable Solid Rocket Motor (RSRM) Nozzle Joint-4. The heating environments are a result of rapid pressurization of the joint free volume assuming a leak path has occurred in the filler material used for assembly gap close out. Combustion gases flow along the leak path from nozzle environment to joint O-ring gland resulting in local heating to the metal housing and erosion of seal materials. Analysis of this condition was based on usage of the NASA Joint Pressurization Routine (JPR) for environment determination and the Systems Improved Numerical Differencing Analyzer (SINDA) for structural temperature prediction. Model generated temperatures, pressures and seal erosions are compared to hot fire test data for several different leak path situations. Investigated in the hot fire test program were nozzle joint-4 O-ring erosion sensitivities to leak path width in both open and confined joint geometries. Model predictions were in generally good agreement with the test data for the confined leak path cases. Worst case flight predictions are provided using the test-calibrated model. Analysis issues are discussed based on model calibration procedures.
NASA Astrophysics Data System (ADS)
Carey-De La Torre, Olivia; Ewoldt, Randy H.
2018-02-01
We use first-harmonic MAOS nonlinearities from G 1' and G 1″ to test a predictive structure-rheology model for a transient polymer network. Using experiments with PVA-Borax (polyvinyl alcohol cross-linked by sodium tetraborate (borax)) at 11 different compositions, the model is calibrated to first-harmonic MAOS data on a torque-controlled rheometer at a fixed frequency, and used to predict third-harmonic MAOS on a displacement controlled rheometer at a different frequency three times larger. The prediction matches experiments for decomposed MAOS measures [ e 3] and [ v 3] with median disagreement of 13% and 25%, respectively, across all 11 compositions tested. This supports the validity of this model, and demonstrates the value of using all four MAOS signatures to understand and test structure-rheology relations for complex fluids.
Safiuddin, Md.; Raman, Sudharshan N.; Abdus Salam, Md.; Jumaat, Mohd. Zamin
2016-01-01
Modeling is a very useful method for the performance prediction of concrete. Most of the models available in literature are related to the compressive strength because it is a major mechanical property used in concrete design. Many attempts were taken to develop suitable mathematical models for the prediction of compressive strength of different concretes, but not for self-consolidating high-strength concrete (SCHSC) containing palm oil fuel ash (POFA). The present study has used artificial neural networks (ANN) to predict the compressive strength of SCHSC incorporating POFA. The ANN model has been developed and validated in this research using the mix proportioning and experimental strength data of 20 different SCHSC mixes. Seventy percent (70%) of the data were used to carry out the training of the ANN model. The remaining 30% of the data were used for testing the model. The training of the ANN model was stopped when the root mean square error (RMSE) and the percentage of good patterns was 0.001 and ≈100%, respectively. The predicted compressive strength values obtained from the trained ANN model were much closer to the experimental values of compressive strength. The coefficient of determination (R2) for the relationship between the predicted and experimental compressive strengths was 0.9486, which shows the higher degree of accuracy of the network pattern. Furthermore, the predicted compressive strength was found very close to the experimental compressive strength during the testing process of the ANN model. The absolute and percentage relative errors in the testing process were significantly low with a mean value of 1.74 MPa and 3.13%, respectively, which indicated that the compressive strength of SCHSC including POFA can be efficiently predicted by the ANN. PMID:28773520
Safiuddin, Md; Raman, Sudharshan N; Abdus Salam, Md; Jumaat, Mohd Zamin
2016-05-20
Modeling is a very useful method for the performance prediction of concrete. Most of the models available in literature are related to the compressive strength because it is a major mechanical property used in concrete design. Many attempts were taken to develop suitable mathematical models for the prediction of compressive strength of different concretes, but not for self-consolidating high-strength concrete (SCHSC) containing palm oil fuel ash (POFA). The present study has used artificial neural networks (ANN) to predict the compressive strength of SCHSC incorporating POFA. The ANN model has been developed and validated in this research using the mix proportioning and experimental strength data of 20 different SCHSC mixes. Seventy percent (70%) of the data were used to carry out the training of the ANN model. The remaining 30% of the data were used for testing the model. The training of the ANN model was stopped when the root mean square error (RMSE) and the percentage of good patterns was 0.001 and ≈100%, respectively. The predicted compressive strength values obtained from the trained ANN model were much closer to the experimental values of compressive strength. The coefficient of determination ( R ²) for the relationship between the predicted and experimental compressive strengths was 0.9486, which shows the higher degree of accuracy of the network pattern. Furthermore, the predicted compressive strength was found very close to the experimental compressive strength during the testing process of the ANN model. The absolute and percentage relative errors in the testing process were significantly low with a mean value of 1.74 MPa and 3.13%, respectively, which indicated that the compressive strength of SCHSC including POFA can be efficiently predicted by the ANN.
Subjective Well-Being, Test Anxiety, Academic Achievement: Testing for Reciprocal Effects.
Steinmayr, Ricarda; Crede, Julia; McElvany, Nele; Wirthwein, Linda
2015-01-01
In the context of adolescents' subjective well-being (SWB), research has recently focused on a number of different school variables. The direction of the relationships between adolescents' SWB, academic achievement, and test anxiety is, however, still open although reciprocal causation has been hypothesized. The present study set out to investigate to what extent SWB, academic achievement, and test anxiety influence each other over time. A sample of N = 290 11th grade students (n = 138 female; age: M = 16.54 years, SD = 0.57) completed measures of SWB and test anxiety in the time span of 1 year. Grade point average (GPA) indicated students' academic achievement. We analyzed the reciprocal relations using cross-lagged structural equation modeling. The model fit was satisfactory for all computed models. Results indicated that the worry component of test anxiety negatively and GPA positively predicted changes in the cognitive component of SWB (life satisfaction). Worry also negatively predicted changes in the affective component of SWB. Moreover, worry negatively predicted changes in students' GPA. Directions for future research and the differential predictive influences of academic achievement and test anxiety on adolescents' SWB are discussed with regard to potential underlying processes.
Subjective Well-Being, Test Anxiety, Academic Achievement: Testing for Reciprocal Effects
Steinmayr, Ricarda; Crede, Julia; McElvany, Nele; Wirthwein, Linda
2016-01-01
In the context of adolescents’ subjective well-being (SWB), research has recently focused on a number of different school variables. The direction of the relationships between adolescents’ SWB, academic achievement, and test anxiety is, however, still open although reciprocal causation has been hypothesized. The present study set out to investigate to what extent SWB, academic achievement, and test anxiety influence each other over time. A sample of N = 290 11th grade students (n = 138 female; age: M = 16.54 years, SD = 0.57) completed measures of SWB and test anxiety in the time span of 1 year. Grade point average (GPA) indicated students’ academic achievement. We analyzed the reciprocal relations using cross-lagged structural equation modeling. The model fit was satisfactory for all computed models. Results indicated that the worry component of test anxiety negatively and GPA positively predicted changes in the cognitive component of SWB (life satisfaction). Worry also negatively predicted changes in the affective component of SWB. Moreover, worry negatively predicted changes in students’ GPA. Directions for future research and the differential predictive influences of academic achievement and test anxiety on adolescents’ SWB are discussed with regard to potential underlying processes. PMID:26779096
NASA Astrophysics Data System (ADS)
Grudinin, Sergei; Kadukova, Maria; Eisenbarth, Andreas; Marillet, Simon; Cazals, Frédéric
2016-09-01
The 2015 D3R Grand Challenge provided an opportunity to test our new model for the binding free energy of small molecules, as well as to assess our protocol to predict binding poses for protein-ligand complexes. Our pose predictions were ranked 3-9 for the HSP90 dataset, depending on the assessment metric. For the MAP4K dataset the ranks are very dispersed and equal to 2-35, depending on the assessment metric, which does not provide any insight into the accuracy of the method. The main success of our pose prediction protocol was the re-scoring stage using the recently developed Convex-PL potential. We make a thorough analysis of our docking predictions made with AutoDock Vina and discuss the effect of the choice of rigid receptor templates, the number of flexible residues in the binding pocket, the binding pocket size, and the benefits of re-scoring. However, the main challenge was to predict experimentally determined binding affinities for two blind test sets. Our affinity prediction model consisted of two terms, a pairwise-additive enthalpy, and a non pairwise-additive entropy. We trained the free parameters of the model with a regularized regression using affinity and structural data from the PDBBind database. Our model performed very well on the training set, however, failed on the two test sets. We explain the drawback and pitfalls of our model, in particular in terms of relative coverage of the test set by the training set and missed dynamical properties from crystal structures, and discuss different routes to improve it.
NASA Astrophysics Data System (ADS)
Maizir, H.; Suryanita, R.
2018-01-01
A few decades, many methods have been developed to predict and evaluate the bearing capacity of driven piles. The problem of the predicting and assessing the bearing capacity of the pile is very complicated and not yet established, different soil testing and evaluation produce a widely different solution. However, the most important thing is to determine methods used to predict and evaluate the bearing capacity of the pile to the required degree of accuracy and consistency value. Accurate prediction and evaluation of axial bearing capacity depend on some variables, such as the type of soil, diameter, and length of pile, etc. The aims of the study of Artificial Neural Networks (ANNs) are utilized to obtain more accurate and consistent axial bearing capacity of a driven pile. ANNs can be described as mapping an input to the target output data. The method using the ANN model developed to predict and evaluate the axial bearing capacity of the pile based on the pile driving analyzer (PDA) test data for more than 200 selected data. The results of the predictions obtained by the ANN model and the PDA test were then compared. This research as the neural network models give a right prediction and evaluation of the axial bearing capacity of piles using neural networks.
Developing Uncertainty Models for Robust Flutter Analysis Using Ground Vibration Test Data
NASA Technical Reports Server (NTRS)
Potter, Starr; Lind, Rick; Kehoe, Michael W. (Technical Monitor)
2001-01-01
A ground vibration test can be used to obtain information about structural dynamics that is important for flutter analysis. Traditionally, this information#such as natural frequencies of modes#is used to update analytical models used to predict flutter speeds. The ground vibration test can also be used to obtain uncertainty models, such as natural frequencies and their associated variations, that can update analytical models for the purpose of predicting robust flutter speeds. Analyzing test data using the -norm, rather than the traditional 2-norm, is shown to lead to a minimum-size uncertainty description and, consequently, a least-conservative robust flutter speed. This approach is demonstrated using ground vibration test data for the Aerostructures Test Wing. Different norms are used to formulate uncertainty models and their associated robust flutter speeds to evaluate which norm is least conservative.
Structural Dynamics Modeling of HIRENASD in Support of the Aeroelastic Prediction Workshop
NASA Technical Reports Server (NTRS)
Wieseman, Carol; Chwalowski, Pawel; Heeg, Jennifer; Boucke, Alexander; Castro, Jack
2013-01-01
An Aeroelastic Prediction Workshop (AePW) was held in April 2012 using three aeroelasticity case study wind tunnel tests for assessing the capabilities of various codes in making aeroelasticity predictions. One of these case studies was known as the HIRENASD model that was tested in the European Transonic Wind Tunnel (ETW). This paper summarizes the development of a standardized enhanced analytical HIRENASD structural model for use in the AePW effort. The modifications to the HIRENASD finite element model were validated by comparing modal frequencies, evaluating modal assurance criteria, comparing leading edge, trailing edge and twist of the wing with experiment and by performing steady and unsteady CFD analyses for one of the test conditions on the same grid, and identical processing of results.
Kopp-Schneider, Annette; Prieto, Pilar; Kinsner-Ovaskainen, Agnieszka; Stanzel, Sven
2013-06-01
In the framework of toxicology, a testing strategy can be viewed as a series of steps which are taken to come to a final prediction about a characteristic of a compound under study. The testing strategy is performed as a single-step procedure, usually called a test battery, using simultaneously all information collected on different endpoints, or as tiered approach in which a decision tree is followed. Design of a testing strategy involves statistical considerations, such as the development of a statistical prediction model. During the EU FP6 ACuteTox project, several prediction models were proposed on the basis of statistical classification algorithms which we illustrate here. The final choice of testing strategies was not based on statistical considerations alone. However, without thorough statistical evaluations a testing strategy cannot be identified. We present here a number of observations made from the statistical viewpoint which relate to the development of testing strategies. The points we make were derived from problems we had to deal with during the evaluation of this large research project. A central issue during the development of a prediction model is the danger of overfitting. Procedures are presented to deal with this challenge. Copyright © 2012 Elsevier Ltd. All rights reserved.
Kozma, Bence; Hirsch, Edit; Gergely, Szilveszter; Párta, László; Pataki, Hajnalka; Salgó, András
2017-10-25
In this study, near-infrared (NIR) and Raman spectroscopy were compared in parallel to predict the glucose concentration of Chinese hamster ovary cell cultivations. A shake flask model system was used to quickly generate spectra similar to bioreactor cultivations therefore accelerating the development of a working model prior to actual cultivations. Automated variable selection and several pre-processing methods were tested iteratively during model development using spectra from six shake flask cultivations. The target was to achieve the lowest error of prediction for the glucose concentration in two independent shake flasks. The best model was then used to test the scalability of the two techniques by predicting spectra of a 10l and a 100l scale bioreactor cultivation. The NIR spectroscopy based model could follow the trend of the glucose concentration but it was not sufficiently accurate for bioreactor monitoring. On the other hand, the Raman spectroscopy based model predicted the concentration of glucose in both cultivation scales sufficiently accurately with an error around 4mM (0.72g/l), that is satisfactory for the on-line bioreactor monitoring purposes of the biopharma industry. Therefore, the shake flask model system was proven to be suitable for scalable spectroscopic model development. Copyright © 2017 Elsevier B.V. All rights reserved.
Finding Furfural Hydrogenation Catalysts via Predictive Modelling
Strassberger, Zea; Mooijman, Maurice; Ruijter, Eelco; Alberts, Albert H; Maldonado, Ana G; Orru, Romano V A; Rothenberg, Gadi
2010-01-01
Abstract We combine multicomponent reactions, catalytic performance studies and predictive modelling to find transfer hydrogenation catalysts. An initial set of 18 ruthenium-carbene complexes were synthesized and screened in the transfer hydrogenation of furfural to furfurol with isopropyl alcohol complexes gave varied yields, from 62% up to >99.9%, with no obvious structure/activity correlations. Control experiments proved that the carbene ligand remains coordinated to the ruthenium centre throughout the reaction. Deuterium-labelling studies showed a secondary isotope effect (kH:kD=1.5). Further mechanistic studies showed that this transfer hydrogenation follows the so-called monohydride pathway. Using these data, we built a predictive model for 13 of the catalysts, based on 2D and 3D molecular descriptors. We tested and validated the model using the remaining five catalysts (cross-validation, R2=0.913). Then, with this model, the conversion and selectivity were predicted for four completely new ruthenium-carbene complexes. These four catalysts were then synthesized and tested. The results were within 3% of the model’s predictions, demonstrating the validity and value of predictive modelling in catalyst optimization. PMID:23193388
NASA Technical Reports Server (NTRS)
Curry, Timothy J.; Batterson, James G. (Technical Monitor)
2000-01-01
Low order equivalent system (LOES) models for the Tu-144 supersonic transport aircraft were identified from flight test data. The mathematical models were given in terms of transfer functions with a time delay by the military standard MIL-STD-1797A, "Flying Qualities of Piloted Aircraft," and the handling qualities were predicted from the estimated transfer function coefficients. The coefficients and the time delay in the transfer functions were estimated using a nonlinear equation error formulation in the frequency domain. Flight test data from pitch, roll, and yaw frequency sweeps at various flight conditions were used for parameter estimation. Flight test results are presented in terms of the estimated parameter values, their standard errors, and output fits in the time domain. Data from doublet maneuvers at the same flight conditions were used to assess the predictive capabilities of the identified models. The identified transfer function models fit the measured data well and demonstrated good prediction capabilities. The Tu-144 was predicted to be between level 2 and 3 for all longitudinal maneuvers and level I for all lateral maneuvers. High estimates of the equivalent time delay in the transfer function model caused the poor longitudinal rating.
United3D: a protein model quality assessment program that uses two consensus based methods.
Terashi, Genki; Oosawa, Makoto; Nakamura, Yuuki; Kanou, Kazuhiko; Takeda-Shitaka, Mayuko
2012-01-01
In protein structure prediction, such as template-based modeling and free modeling (ab initio modeling), the step that assesses the quality of protein models is very important. We have developed a model quality assessment (QA) program United3D that uses an optimized clustering method and a simple Cα atom contact-based potential. United3D automatically estimates the quality scores (Qscore) of predicted protein models that are highly correlated with the actual quality (GDT_TS). The performance of United3D was tested in the ninth Critical Assessment of protein Structure Prediction (CASP9) experiment. In CASP9, United3D showed the lowest average loss of GDT_TS (5.3) among the QA methods participated in CASP9. This result indicates that the performance of United3D to identify the high quality models from the models predicted by CASP9 servers on 116 targets was best among the QA methods that were tested in CASP9. United3D also produced high average Pearson correlation coefficients (0.93) and acceptable Kendall rank correlation coefficients (0.68) between the Qscore and GDT_TS. This performance was competitive with the other top ranked QA methods that were tested in CASP9. These results indicate that United3D is a useful tool for selecting high quality models from many candidate model structures provided by various modeling methods. United3D will improve the accuracy of protein structure prediction.
Modal Survey of ETM-3, A 5-Segment Derivative of the Space Shuttle Solid Rocket Booster
NASA Technical Reports Server (NTRS)
Nielsen, D.; Townsend, J.; Kappus, K.; Driskill, T.; Torres, I.; Parks, R.
2005-01-01
The complex interactions between internal motor generated pressure oscillations and motor structural vibration modes associated with the static test configuration of a Reusable Solid Rocket Motor have potential to generate significant dynamic thrust loads in the 5-segment configuration (Engineering Test Motor 3). Finite element model load predictions for worst-case conditions were generated based on extrapolation of a previously correlated 4-segment motor model. A modal survey was performed on the largest rocket motor to date, Engineering Test Motor #3 (ETM-3), to provide data for finite element model correlation and validation of model generated design loads. The modal survey preparation included pretest analyses to determine an efficient analysis set selection using the Effective Independence Method and test simulations to assure critical test stand component loads did not exceed design limits. Historical Reusable Solid Rocket Motor modal testing, ETM-3 test analysis model development and pre-test loads analyses, as well as test execution, and a comparison of results to pre-test predictions are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neary, Vincent Sinclair; Yang, Zhaoqing; Wang, Taiping
A wave model test bed is established to benchmark, test and evaluate spectral wave models and modeling methodologies (i.e., best practices) for predicting the wave energy resource parameters recommended by the International Electrotechnical Commission, IEC TS 62600-101Ed. 1.0 ©2015. Among other benefits, the model test bed can be used to investigate the suitability of different models, specifically what source terms should be included in spectral wave models under different wave climate conditions and for different classes of resource assessment. The overarching goal is to use these investigations to provide industry guidance for model selection and modeling best practices depending onmore » the wave site conditions and desired class of resource assessment. Modeling best practices are reviewed, and limitations and knowledge gaps in predicting wave energy resource parameters are identified.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peterson, S.R.; Hoffman, F.O.; Koehler, H.
1996-08-01
A unique opportunity to test dose assessment models arose after the Chernobyl reactor accident. During the passage of the contaminated plume, concentrations of {sup 131}I and {sup 137}Cs in air, pasture, and cow`s milk were collected at various sites in the northern hemisphere. Afterwards, contaminated pasture and milk samples were analyzed over time. Under the auspices of the Biospheric Model Validation Study (BIOMOVS), data from 13 sites for {sup 131}I and 10 sites for {sup 137}Cs were used to test model predictions for the air-pasture-cow milk pathway. Calculations were submitted for 23 models, 10 of which were quasi-steady state. Themore » others were time-dependent. Daily predictions and predictions of time-integrated concentration of {sup 131}I and {sup 137}Cs in pasture grass and milk for six months post-accident were calculated and compared with observed data. Testing against data from several locations over time for several steps in the air-to-milk pathway resulted in a better understanding of important processes and how they should be modeled. This model testing exercise showed both the strengths and weaknesses of the models and revealed the importance of testing all parts of dose assessment models whenever possible. 19 refs., 14 figs., 4 tabs.« less
Moroz, Brian E; Beck, Harold L; Bouville, André; Simon, Steven L
2010-08-01
The NOAA Hybrid Single-Particle Lagrangian Integrated Trajectory Model (HYSPLIT) was evaluated as a research tool to simulate the dispersion and deposition of radioactive fallout from nuclear tests. Model-based estimates of fallout can be valuable for use in the reconstruction of past exposures from nuclear testing, particularly where little historical fallout monitoring data are available. The ability to make reliable predictions about fallout deposition could also have significant importance for nuclear events in the future. We evaluated the accuracy of the HYSPLIT-predicted geographic patterns of deposition by comparing those predictions against known deposition patterns following specific nuclear tests with an emphasis on nuclear weapons tests conducted in the Marshall Islands. We evaluated the ability of the computer code to quantitatively predict the proportion of fallout particles of specific sizes deposited at specific locations as well as their time of transport. In our simulations of fallout from past nuclear tests, historical meteorological data were used from a reanalysis conducted jointly by the National Centers for Environmental Prediction (NCEP) and the National Center for Atmospheric Research (NCAR). We used a systematic approach in testing the HYSPLIT model by simulating the release of a range of particle sizes from a range of altitudes and evaluating the number and location of particles deposited. Our findings suggest that the quantity and quality of meteorological data are the most important factors for accurate fallout predictions and that, when satisfactory meteorological input data are used, HYSPLIT can produce relatively accurate deposition patterns and fallout arrival times. Furthermore, when no other measurement data are available, HYSPLIT can be used to indicate whether or not fallout might have occurred at a given location and provide, at minimum, crude quantitative estimates of the magnitude of the deposited activity. A variety of simulations of the deposition of fallout from atmospheric nuclear tests conducted in the Marshall Islands (mid-Pacific), at the Nevada Test Site (U.S.), and at the Semipalatinsk Nuclear Test Site (Kazakhstan) were performed. The results of the Marshall Islands simulations were used in a limited fashion to support the dose reconstruction described in companion papers within this volume.
Moroz, Brian E.; Beck, Harold L.; Bouville, André; Simon, Steven L.
2013-01-01
The NOAA Hybrid Single-Particle Lagrangian Integrated Trajectory Model (HYSPLIT) was evaluated as a research tool to simulate the dispersion and deposition of radioactive fallout from nuclear tests. Model-based estimates of fallout can be valuable for use in the reconstruction of past exposures from nuclear testing, particularly, where little historical fallout monitoring data is available. The ability to make reliable predictions about fallout deposition could also have significant importance for nuclear events in the future. We evaluated the accuracy of the HYSPLIT-predicted geographic patterns of deposition by comparing those predictions against known deposition patterns following specific nuclear tests with an emphasis on nuclear weapons tests conducted in the Marshall Islands. We evaluated the ability of the computer code to quantitatively predict the proportion of fallout particles of specific sizes deposited at specific locations as well as their time of transport. In our simulations of fallout from past nuclear tests, historical meteorological data were used from a reanalysis conducted jointly by the National Centers for Environmental Prediction (NCEP) and the National Center for Atmospheric Research (NCAR). We used a systematic approach in testing the HYSPLIT model by simulating the release of a range of particles sizes from a range of altitudes and evaluating the number and location of particles deposited. Our findings suggest that the quantity and quality of meteorological data are the most important factors for accurate fallout predictions and that when satisfactory meteorological input data are used, HYSPLIT can produce relatively accurate deposition patterns and fallout arrival times. Furthermore, when no other measurement data are available, HYSPLIT can be used to indicate whether or not fallout might have occurred at a given location and provide, at minimum, crude quantitative estimates of the magnitude of the deposited activity. A variety of simulations of the deposition of fallout from atmospheric nuclear tests conducted in the Marshall Islands, at the Nevada Test Site (USA), and at the Semipalatinsk Nuclear Test Site (Kazakhstan) were performed using reanalysis data composed of historic meteorological observations. The results of the Marshall Islands simulations were used in a limited fashion to support the dose reconstruction described in companion papers within this volume. PMID:20622555
DOE Office of Scientific and Technical Information (OSTI.GOV)
Calcaterra, J.R.; Johnson, W.S.; Neu, R.W.
1997-12-31
Several methodologies have been developed to predict the lives of titanium matrix composites (TMCs) subjected to thermomechanical fatigue (TMF). This paper reviews and compares five life prediction models developed at NASA-LaRC. Wright Laboratories, based on a dingle parameter, the fiber stress in the load-carrying, or 0{degree}, direction. The two other models, both developed at Wright Labs. are multi-parameter models. These can account for long-term damage, which is beyond the scope of the single-parameter models, but this benefit is offset by the additional complexity of the methodologies. Each of the methodologies was used to model data generated at NASA-LeRC. Wright Labs.more » and Georgia Tech for the SCS-6/Timetal 21-S material system. VISCOPLY, a micromechanical stress analysis code, was used to determine the constituent stress state for each test and was used for each model to maintain consistency. The predictive capabilities of the models are compared, and the ability of each model to accurately predict the responses of tests dominated by differing damage mechanisms is addressed.« less
Predicting and understanding law-making with word vectors and an ensemble model.
Nay, John J
2017-01-01
Out of nearly 70,000 bills introduced in the U.S. Congress from 2001 to 2015, only 2,513 were enacted. We developed a machine learning approach to forecasting the probability that any bill will become law. Starting in 2001 with the 107th Congress, we trained models on data from previous Congresses, predicted all bills in the current Congress, and repeated until the 113th Congress served as the test. For prediction we scored each sentence of a bill with a language model that embeds legislative vocabulary into a high-dimensional, semantic-laden vector space. This language representation enables our investigation into which words increase the probability of enactment for any topic. To test the relative importance of text and context, we compared the text model to a context-only model that uses variables such as whether the bill's sponsor is in the majority party. To test the effect of changes to bills after their introduction on our ability to predict their final outcome, we compared using the bill text and meta-data available at the time of introduction with using the most recent data. At the time of introduction context-only predictions outperform text-only, and with the newest data text-only outperforms context-only. Combining text and context always performs best. We conducted a global sensitivity analysis on the combined model to determine important variables predicting enactment.
Predicting and understanding law-making with word vectors and an ensemble model
Nay, John J.
2017-01-01
Out of nearly 70,000 bills introduced in the U.S. Congress from 2001 to 2015, only 2,513 were enacted. We developed a machine learning approach to forecasting the probability that any bill will become law. Starting in 2001 with the 107th Congress, we trained models on data from previous Congresses, predicted all bills in the current Congress, and repeated until the 113th Congress served as the test. For prediction we scored each sentence of a bill with a language model that embeds legislative vocabulary into a high-dimensional, semantic-laden vector space. This language representation enables our investigation into which words increase the probability of enactment for any topic. To test the relative importance of text and context, we compared the text model to a context-only model that uses variables such as whether the bill’s sponsor is in the majority party. To test the effect of changes to bills after their introduction on our ability to predict their final outcome, we compared using the bill text and meta-data available at the time of introduction with using the most recent data. At the time of introduction context-only predictions outperform text-only, and with the newest data text-only outperforms context-only. Combining text and context always performs best. We conducted a global sensitivity analysis on the combined model to determine important variables predicting enactment. PMID:28489868
Kaspi, Omer; Yosipof, Abraham; Senderowitz, Hanoch
2017-06-06
An important aspect of chemoinformatics and material-informatics is the usage of machine learning algorithms to build Quantitative Structure Activity Relationship (QSAR) models. The RANdom SAmple Consensus (RANSAC) algorithm is a predictive modeling tool widely used in the image processing field for cleaning datasets from noise. RANSAC could be used as a "one stop shop" algorithm for developing and validating QSAR models, performing outlier removal, descriptors selection, model development and predictions for test set samples using applicability domain. For "future" predictions (i.e., for samples not included in the original test set) RANSAC provides a statistical estimate for the probability of obtaining reliable predictions, i.e., predictions within a pre-defined number of standard deviations from the true values. In this work we describe the first application of RNASAC in material informatics, focusing on the analysis of solar cells. We demonstrate that for three datasets representing different metal oxide (MO) based solar cell libraries RANSAC-derived models select descriptors previously shown to correlate with key photovoltaic properties and lead to good predictive statistics for these properties. These models were subsequently used to predict the properties of virtual solar cells libraries highlighting interesting dependencies of PV properties on MO compositions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doss, E.D.; Sikes, W.C.
1992-09-01
This report describes the work performed during Phase 1 and Phase 2 of the collaborative research program established between Argonne National Laboratory (ANL) and Newport News Shipbuilding and Dry Dock Company (NNS). Phase I of the program focused on the development of computer models for Magnetohydrodynamic (MHD) propulsion. Phase 2 focused on the experimental validation of the thruster performance models and the identification, through testing, of any phenomena which may impact the attractiveness of this propulsion system for shipboard applications. The report discusses in detail the work performed in Phase 2 of the program. In Phase 2, a two Teslamore » test facility was designed, built, and operated. The facility test loop, its components, and their design are presented. The test matrix and its rationale are discussed. Representative experimental results of the test program are presented, and are compared to computer model predictions. In general, the results of the tests and their comparison with the predictions indicate that thephenomena affecting the performance of MHD seawater thrusters are well understood and can be accurately predicted with the developed thruster computer models.« less
Evaluation and prediction of long-term environmental effects of nonmetallic materials
NASA Technical Reports Server (NTRS)
Papazian, H.
1985-01-01
The properties of a number of nonmetallic materials were evaluated experimentally in simulated space environments in order to develop models for accelerated test methods useful for predicting such behavioral changes. Graphite-epoxy composites were exposed to thermal cycling. Adhesive foam tapes were subjected to a vacuum environment. Metal-matrix composites were tested for baseline data. Predictive modeling designed to include strength and aging effects on composites, polymeric films, and metals under such space conditions (including the atomic oxygen environment) is discussed. The Korel 8031-00 high strength adhesive foam tape was shown to be superior to the other two tested.
Rational selection of training and test sets for the development of validated QSAR models
NASA Astrophysics Data System (ADS)
Golbraikh, Alexander; Shen, Min; Xiao, Zhiyan; Xiao, Yun-De; Lee, Kuo-Hsiung; Tropsha, Alexander
2003-02-01
Quantitative Structure-Activity Relationship (QSAR) models are used increasingly to screen chemical databases and/or virtual chemical libraries for potentially bioactive molecules. These developments emphasize the importance of rigorous model validation to ensure that the models have acceptable predictive power. Using k nearest neighbors ( kNN) variable selection QSAR method for the analysis of several datasets, we have demonstrated recently that the widely accepted leave-one-out (LOO) cross-validated R2 (q2) is an inadequate characteristic to assess the predictive ability of the models [Golbraikh, A., Tropsha, A. Beware of q2! J. Mol. Graphics Mod. 20, 269-276, (2002)]. Herein, we provide additional evidence that there exists no correlation between the values of q 2 for the training set and accuracy of prediction ( R 2) for the test set and argue that this observation is a general property of any QSAR model developed with LOO cross-validation. We suggest that external validation using rationally selected training and test sets provides a means to establish a reliable QSAR model. We propose several approaches to the division of experimental datasets into training and test sets and apply them in QSAR studies of 48 functionalized amino acid anticonvulsants and a series of 157 epipodophyllotoxin derivatives with antitumor activity. We formulate a set of general criteria for the evaluation of predictive power of QSAR models.
Predicting Ideological Prejudice
Brandt, Mark J.
2017-01-01
A major shortcoming of current models of ideological prejudice is that although they can anticipate the direction of the association between participants’ ideology and their prejudice against a range of target groups, they cannot predict the size of this association. I developed and tested models that can make specific size predictions for this association. A quantitative model that used the perceived ideology of the target group as the primary predictor of the ideology-prejudice relationship was developed with a representative sample of Americans (N = 4,940) and tested against models using the perceived status of and choice to belong to the target group as predictors. In four studies (total N = 2,093), ideology-prejudice associations were estimated, and these observed estimates were compared with the models’ predictions. The model that was based only on perceived ideology was the most parsimonious with the smallest errors. PMID:28394693
Correlation of predicted and measured thermal stresses on a truss-type aircraft structure
NASA Technical Reports Server (NTRS)
Jenkins, J. M.; Schuster, L. S.; Carter, A. L.
1978-01-01
A test structure representing a portion of a hypersonic vehicle was instrumented with strain gages and thermocouples. This test structure was then subjected to laboratory heating representative of supersonic and hypersonic flight conditions. A finite element computer model of this structure was developed using several types of elements with the NASA structural analysis (NASTRAN) computer program. Temperature inputs from the test were used to generate predicted model thermal stresses and these were correlated with the test measurements.
Predictive Model of Systemic Toxicity (SOT)
In an effort to ensure chemical safety in light of regulatory advances away from reliance on animal testing, USEPA and L’Oréal have collaborated to develop a quantitative systemic toxicity prediction model. Prediction of human systemic toxicity has proved difficult and remains a ...
Feasibility of MHD submarine propulsion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doss, E.D.; Sikes, W.C.
1992-09-01
This report describes the work performed during Phase 1 and Phase 2 of the collaborative research program established between Argonne National Laboratory (ANL) and Newport News Shipbuilding and Dry Dock Company (NNS). Phase I of the program focused on the development of computer models for Magnetohydrodynamic (MHD) propulsion. Phase 2 focused on the experimental validation of the thruster performance models and the identification, through testing, of any phenomena which may impact the attractiveness of this propulsion system for shipboard applications. The report discusses in detail the work performed in Phase 2 of the program. In Phase 2, a two Teslamore » test facility was designed, built, and operated. The facility test loop, its components, and their design are presented. The test matrix and its rationale are discussed. Representative experimental results of the test program are presented, and are compared to computer model predictions. In general, the results of the tests and their comparison with the predictions indicate that thephenomena affecting the performance of MHD seawater thrusters are well understood and can be accurately predicted with the developed thruster computer models.« less
NASA Technical Reports Server (NTRS)
Houston, Janice; Counter, D.; Giacomoni, D.
2015-01-01
The liftoff phase induces acoustic loading over a broad frequency range for a launch vehicle. These external acoustic environments are then used in the prediction of internal vibration responses of the vehicle and components which result in the qualification levels. Thus, predicting these liftoff acoustic (LOA) environments is critical to the design requirements of any launch vehicle. If there is a significant amount of uncertainty in the predictions or if acoustic mitigation options must be implemented, a subscale acoustic test is a feasible pre-launch test option to verify the LOA environments. The NASA Space Launch System (SLS) program initiated the Scale Model Acoustic Test (SMAT) to verify the predicted SLS LOA environments and to determine the acoustic reduction with an above deck water sound suppression system. The SMAT was conducted at Marshall Space Flight Center and the test article included a 5% scale SLS vehicle model, tower and Mobile Launcher. Acoustic and pressure data were measured by approximately 250 instruments. The SMAT liftoff acoustic results are presented, findings are discussed and a comparison is shown to the Ares I Scale Model Acoustic Test (ASMAT) results.
Can contaminant transport models predict breakthrough?
Peng, Wei-Shyuan; Hampton, Duane R.; Konikow, Leonard F.; Kambham, Kiran; Benegar, Jeffery J.
2000-01-01
A solute breakthrough curve measured during a two-well tracer test was successfully predicted in 1986 using specialized contaminant transport models. Water was injected into a confined, unconsolidated sand aquifer and pumped out 125 feet (38.3 m) away at the same steady rate. The injected water was spiked with bromide for over three days; the outflow concentration was monitored for a month. Based on previous tests, the horizontal hydraulic conductivity of the thick aquifer varied by a factor of seven among 12 layers. Assuming stratified flow with small dispersivities, two research groups accurately predicted breakthrough with three-dimensional (12-layer) models using curvilinear elements following the arc-shaped flowlines in this test. Can contaminant transport models commonly used in industry, that use rectangular blocks, also reproduce this breakthrough curve? The two-well test was simulated with four MODFLOW-based models, MT3D (FD and HMOC options), MODFLOWT, MOC3D, and MODFLOW-SURFACT. Using the same 12 layers and small dispersivity used in the successful 1986 simulations, these models fit almost as accurately as the models using curvilinear blocks. Subtle variations in the curves illustrate differences among the codes. Sensitivities of the results to number and size of grid blocks, number of layers, boundary conditions, and values of dispersivity and porosity are briefly presented. The fit between calculated and measured breakthrough curves degenerated as the number of layers and/or grid blocks decreased, reflecting a loss of model predictive power as the level of characterization lessened. Therefore, the breakthrough curve for most field sites can be predicted only qualitatively due to limited characterization of the hydrogeology and contaminant source strength.
Prediction of biodegradability of aromatics in water using QSAR modeling.
Cvetnic, Matija; Juretic Perisic, Daria; Kovacic, Marin; Kusic, Hrvoje; Dermadi, Jasna; Horvat, Sanja; Bolanca, Tomislav; Marin, Vedrana; Karamanis, Panaghiotis; Loncaric Bozic, Ana
2017-05-01
The study was aimed at developing models for predicting the biodegradability of aromatic water pollutants. For that purpose, 36 single-benzene ring compounds, with different type, number and position of substituents, were used. The biodegradability was estimated according to the ratio of the biochemical (BOD 5 ) and chemical (COD) oxygen demand values determined for parent compounds ((BOD 5 /COD) 0 ), as well as for their reaction mixtures in half-life achieved by UV-C/H 2 O 2 process ((BOD 5 /COD) t1/2 ). The models correlating biodegradability and molecular structure characteristics of studied pollutants were derived using quantitative structure-activity relationship (QSAR) principles and tools. Upon derivation of the models and calibration on the training and subsequent testing on the test set, 3- and 5-variable models were selected as the most predictive for (BOD 5 /COD) 0 and (BOD 5 /COD) t1/2 , respectively, according to the values of statistical parameters R 2 and Q 2 . Hence, 3-variable model predicting (BOD 5 /COD) 0 possessed R 2 =0.863 and Q 2 =0.799 for training set, and R 2 =0.710 for test set, while 5-variable model predicting (BOD 5 /COD) 1/2 possessed R 2 =0.886 and Q 2 =0.788 for training set, and R 2 =0.564 for test set. The selected models are interpretable and transparent, reflecting key structural features that influence targeted biodegradability and can be correlated with the degradation mechanisms of studied compounds by UV-C/H 2 O 2 . Copyright © 2017 Elsevier Inc. All rights reserved.
Recent Achievements of the Collaboratory for the Study of Earthquake Predictability
NASA Astrophysics Data System (ADS)
Jordan, T. H.; Liukis, M.; Werner, M. J.; Schorlemmer, D.; Yu, J.; Maechling, P. J.; Jackson, D. D.; Rhoades, D. A.; Zechar, J. D.; Marzocchi, W.
2016-12-01
The Collaboratory for the Study of Earthquake Predictability (CSEP) supports a global program to conduct prospective earthquake forecasting experiments. CSEP testing centers are now operational in California, New Zealand, Japan, China, and Europe with 442 models under evaluation. The California testing center, started by SCEC, Sept 1, 2007, currently hosts 30-minute, 1-day, 3-month, 1-year and 5-year forecasts, both alarm-based and probabilistic, for California, the Western Pacific, and worldwide. Our tests are now based on the hypocentral locations and magnitudes of cataloged earthquakes, but we plan to test focal mechanisms, seismic hazard models, ground motion forecasts, and finite rupture forecasts as well. We have increased computational efficiency for high-resolution global experiments, such as the evaluation of the Global Earthquake Activity Rate (GEAR) model, introduced Bayesian ensemble models, and implemented support for non-Poissonian simulation-based forecasts models. We are currently developing formats and procedures to evaluate externally hosted forecasts and predictions. CSEP supports the USGS program in operational earthquake forecasting and a DHS project to register and test external forecast procedures from experts outside seismology. We found that earthquakes as small as magnitude 2.5 provide important information on subsequent earthquakes larger than magnitude 5. A retrospective experiment for the 2010-2012 Canterbury earthquake sequence showed that some physics-based and hybrid models outperform catalog-based (e.g., ETAS) models. This experiment also demonstrates the ability of the CSEP infrastructure to support retrospective forecast testing. Current CSEP development activities include adoption of the Comprehensive Earthquake Catalog (ComCat) as an authorized data source, retrospective testing of simulation-based forecasts, and support for additive ensemble methods. We describe the open-source CSEP software that is available to researchers as they develop their forecast models. We also discuss how CSEP procedures are being adapted to intensity and ground motion prediction experiments as well as hazard model testing.
Predictive Model for Jet Engine Test Cell Opacity
1981-09-30
precipitators or venturi scrubbers to treat the exhaust emissions. These predictions indicate that control devices larger than the test cells would have...made to see under what conditions electrostatic precipitators or venturi scrubbers might satisfy opacity regu- lations. 3 SECTION I I SMOKE NUMBER j...high energy venturi scrubber . As with the ESP model, this also required an empirical factor (f) to make the model agree approximately with actual data
A comparison of fatigue life prediction methodologies for rotorcraft
NASA Technical Reports Server (NTRS)
Everett, R. A., Jr.
1990-01-01
Because of the current U.S. Army requirement that all new rotorcraft be designed to a 'six nines' reliability on fatigue life, this study was undertaken to assess the accuracy of the current safe life philosophy using the nominal stress Palmgrem-Miner linear cumulative damage rule to predict the fatigue life of rotorcraft dynamic components. It has been shown that this methodology can predict fatigue lives that differ from test lives by more than two orders of magnitude. A further objective of this work was to compare the accuracy of this methodology to another safe life method called the local strain approach as well as to a method which predicts fatigue life based solely on crack growth data. Spectrum fatigue tests were run on notched (k(sub t) = 3.2) specimens made of 4340 steel using the Felix/28 tests fairly well, being slightly on the unconservative side of the test data. The crack growth method, which is based on 'small crack' crack growth data and a crack-closure model, also predicted the fatigue lives very well with the predicted lives being slightly longer that the mean test lives but within the experimental scatter band. The crack growth model was also able to predict the change in test lives produced by the rainflow reconstructed spectra.
Blanche, Paul; Proust-Lima, Cécile; Loubère, Lucie; Berr, Claudine; Dartigues, Jean-François; Jacqmin-Gadda, Hélène
2015-03-01
Thanks to the growing interest in personalized medicine, joint modeling of longitudinal marker and time-to-event data has recently started to be used to derive dynamic individual risk predictions. Individual predictions are called dynamic because they are updated when information on the subject's health profile grows with time. We focus in this work on statistical methods for quantifying and comparing dynamic predictive accuracy of this kind of prognostic models, accounting for right censoring and possibly competing events. Dynamic area under the ROC curve (AUC) and Brier Score (BS) are used to quantify predictive accuracy. Nonparametric inverse probability of censoring weighting is used to estimate dynamic curves of AUC and BS as functions of the time at which predictions are made. Asymptotic results are established and both pointwise confidence intervals and simultaneous confidence bands are derived. Tests are also proposed to compare the dynamic prediction accuracy curves of two prognostic models. The finite sample behavior of the inference procedures is assessed via simulations. We apply the proposed methodology to compare various prediction models using repeated measures of two psychometric tests to predict dementia in the elderly, accounting for the competing risk of death. Models are estimated on the French Paquid cohort and predictive accuracies are evaluated and compared on the French Three-City cohort. © 2014, The International Biometric Society.
Mars Science Laboratory Rover System Thermal Test
NASA Technical Reports Server (NTRS)
Novak, Keith S.; Kempenaar, Joshua E.; Liu, Yuanming; Bhandari, Pradeep; Dudik, Brenda A.
2012-01-01
On November 26, 2011, NASA launched a large (900 kg) rover as part of the Mars Science Laboratory (MSL) mission to Mars. The MSL rover is scheduled to land on Mars on August 5, 2012. Prior to launch, the Rover was successfully operated in simulated mission extreme environments during a 16-day long Rover System Thermal Test (STT). This paper describes the MSL Rover STT, test planning, test execution, test results, thermal model correlation and flight predictions. The rover was tested in the JPL 25-Foot Diameter Space Simulator Facility at the Jet Propulsion Laboratory (JPL). The Rover operated in simulated Cruise (vacuum) and Mars Surface environments (8 Torr nitrogen gas) with mission extreme hot and cold boundary conditions. A Xenon lamp solar simulator was used to impose simulated solar loads on the rover during a bounding hot case and during a simulated Mars diurnal test case. All thermal hardware was exercised and performed nominally. The Rover Heat Rejection System, a liquid-phase fluid loop used to transport heat in and out of the electronics boxes inside the rover chassis, performed better than predicted. Steady state and transient data were collected to allow correlation of analytical thermal models. These thermal models were subsequently used to predict rover thermal performance for the MSL Gale Crater landing site. Models predict that critical hardware temperatures will be maintained within allowable flight limits over the entire 669 Sol surface mission.
Predicting future protection of respirator users: Statistical approaches and practical implications.
Hu, Chengcheng; Harber, Philip; Su, Jing
2016-01-01
The purpose of this article is to describe a statistical approach for predicting a respirator user's fit factor in the future based upon results from initial tests. A statistical prediction model was developed based upon joint distribution of multiple fit factor measurements over time obtained from linear mixed effect models. The model accounts for within-subject correlation as well as short-term (within one day) and longer-term variability. As an example of applying this approach, model parameters were estimated from a research study in which volunteers were trained by three different modalities to use one of two types of respirators. They underwent two quantitative fit tests at the initial session and two on the same day approximately six months later. The fitted models demonstrated correlation and gave the estimated distribution of future fit test results conditional on past results for an individual worker. This approach can be applied to establishing a criterion value for passing an initial fit test to provide reasonable likelihood that a worker will be adequately protected in the future; and to optimizing the repeat fit factor test intervals individually for each user for cost-effective testing.
NASA Astrophysics Data System (ADS)
Young, B. A.; Gao, Xiaosheng; Srivatsan, T. S.
2009-10-01
In this paper we compare and contrast the crack growth rate of a nickel-base superalloy (Alloy 690) in the Pressurized Water Reactor (PWR) environment. Over the last few years, a preponderance of test data has been gathered on both Alloy 690 thick plate and Alloy 690 tubing. The original model, essentially based on a small data set for thick plate, compensated for temperature, load ratio and stress-intensity range but did not compensate for the fatigue threshold of the material. As additional test data on both plate and tube product became available the model was gradually revised to account for threshold properties. Both the original and revised models generated acceptable results for data that were above 1 × 10 -11 m/s. However, the test data at the lower growth rates were over-predicted by the non-threshold model. Since the original model did not take the fatigue threshold into account, this model predicted no operating stress below which the material would effectively undergo fatigue crack growth. Because of an over-prediction of the growth rate below 1 × 10 -11 m/s, due to a combination of low stress, small crack size and long rise-time, the model in general leads to an under-prediction of the total available life of the components.
NASA Technical Reports Server (NTRS)
Gracey, Renee; Bartoszyk, Andrew; Cofie, Emmanuel; Comber, Brian; Hartig, George; Howard, Joseph; Sabatke, Derek; Wenzel, Greg; Ohl, Raymond
2016-01-01
The James Webb Space Telescope includes the Integrated Science Instrument Module (ISIM) element that contains four science instruments (SI) including a Guider. We performed extensive structural, thermal, and optical performance(STOP) modeling in support of all phases of ISIM development. In this paper, we focus on modeling and results associated with test and verification. ISIMs test program is bound by ground environments, mostly notably the 1g and test chamber thermal environments. This paper describes STOP modeling used to predict ISIM system performance in 0g and at various on-orbit temperature environments. The predictions are used to project results obtained during testing to on-orbit performance.
NASA Astrophysics Data System (ADS)
Love, D. M.; Venturas, M.; Sperry, J.; Wang, Y.; Anderegg, W.
2017-12-01
Modeling approaches for tree stomatal control often rely on empirical fitting to provide accurate estimates of whole tree transpiration (E) and assimilation (A), which are limited in their predictive power by the data envelope used to calibrate model parameters. Optimization based models hold promise as a means to predict stomatal behavior under novel climate conditions. We designed an experiment to test a hydraulic trait based optimization model, which predicts stomatal conductance from a gain/risk approach. Optimal stomatal conductance is expected to maximize the potential carbon gain by photosynthesis, and minimize the risk to hydraulic transport imposed by cavitation. The modeled risk to the hydraulic network is assessed from cavitation vulnerability curves, a commonly measured physiological trait in woody plant species. Over a growing season garden grown plots of aspen (Populus tremuloides, Michx.) and ponderosa pine (Pinus ponderosa, Douglas) were subjected to three distinct drought treatments (moderate, severe, severe with rehydration) relative to a control plot to test model predictions. Model outputs of predicted E, A, and xylem pressure can be directly compared to both continuous data (whole tree sapflux, soil moisture) and point measurements (leaf level E, A, xylem pressure). The model also predicts levels of whole tree hydraulic impairment expected to increase mortality risk. This threshold is used to estimate survivorship in the drought treatment plots. The model can be run at two scales, either entirely from climate (meteorological inputs, irrigation) or using the physiological measurements as a starting point. These data will be used to study model performance and utility, and aid in developing the model for larger scale applications.
The development of a probabilistic approach to forecast coastal change
Lentz, Erika E.; Hapke, Cheryl J.; Rosati, Julie D.; Wang, Ping; Roberts, Tiffany M.
2011-01-01
This study demonstrates the applicability of a Bayesian probabilistic model as an effective tool in predicting post-storm beach changes along sandy coastlines. Volume change and net shoreline movement are modeled for two study sites at Fire Island, New York in response to two extratropical storms in 2007 and 2009. Both study areas include modified areas adjacent to unmodified areas in morphologically different segments of coast. Predicted outcomes are evaluated against observed changes to test model accuracy and uncertainty along 163 cross-shore transects. Results show strong agreement in the cross validation of predictions vs. observations, with 70-82% accuracies reported. Although no consistent spatial pattern in inaccurate predictions could be determined, the highest prediction uncertainties appeared in locations that had been recently replenished. Further testing and model refinement are needed; however, these initial results show that Bayesian networks have the potential to serve as important decision-support tools in forecasting coastal change.
Hirota, Morihiko; Ashikaga, Takao; Kouzuki, Hirokazu
2018-04-01
It is important to predict the potential of cosmetic ingredients to cause skin sensitization, and in accordance with the European Union cosmetic directive for the replacement of animal tests, several in vitro tests based on the adverse outcome pathway have been developed for hazard identification, such as the direct peptide reactivity assay, KeratinoSens™ and the human cell line activation test. Here, we describe the development of an artificial neural network (ANN) prediction model for skin sensitization risk assessment based on the integrated testing strategy concept, using direct peptide reactivity assay, KeratinoSens™, human cell line activation test and an in silico or structure alert parameter. We first investigated the relationship between published murine local lymph node assay EC3 values, which represent skin sensitization potency, and in vitro test results using a panel of about 134 chemicals for which all the required data were available. Predictions based on ANN analysis using combinations of parameters from all three in vitro tests showed a good correlation with local lymph node assay EC3 values. However, when the ANN model was applied to a testing set of 28 chemicals that had not been included in the training set, predicted EC3s were overestimated for some chemicals. Incorporation of an additional in silico or structure alert descriptor (obtained with TIMES-M or Toxtree software) in the ANN model improved the results. Our findings suggest that the ANN model based on the integrated testing strategy concept could be useful for evaluating the skin sensitization potential. Copyright © 2017 John Wiley & Sons, Ltd.
Can we predict 4-year graduation in podiatric medical school using admission data?
Sesodia, Sanjay; Molnar, David; Shaw, Graham P
2012-01-01
This study examined the predictive ability of educational background and demographic variables, available at the admission stage, to identify applicants who will graduate in 4 years from podiatric medical school. A logistic regression model was used to identify two predictors of 4-year graduation: age at matriculation and total Medical College Admission Test score. The model was cross-validated using a second independent sample from the same population. Cross-validation gives greater confidence that the results could be more generally applied. Total Medical College Admission Test score was the strongest predictor of 4-year graduation, with age at matriculation being a statistically significant but weaker predictor. Despite the model's capacity to predict 4-year graduation better than random assignment, a sufficient amount of error in prediction remained, suggesting that important predictors are missing from the model. Furthermore, the high rate of false-positives makes it inappropriate to use age and Medical College Admission Test score as admission screens in an attempt to eliminate attrition by not accepting at-risk students.
Thermal Analysis of the Fastrac Chamber/Nozzle
NASA Technical Reports Server (NTRS)
Davis, Darrell
2001-01-01
This paper will describe the thermal analysis techniques used to predict temperatures in the film-cooled ablative rocket nozzle used on the Fastrac 60K rocket engine. A model was developed that predicts char and pyrolysis depths, liner thermal gradients, and temperatures of the bondline between the overwrap and liner. Correlation of the model was accomplished by thermal analog tests performed at Southern Research, and specially instrumented hot fire tests at the Marshall Space Flight Center. Infrared thermography was instrumental in defining nozzle hot wall surface temperatures. In-depth and outboard thermocouple data was used to correlate the kinetic decomposition routine used to predict char and pyrolysis depths. These depths were anchored with measured char and pyrolysis depths from cross-sectioned hot-fire nozzles. For the X-34 flight analysis, the model includes the ablative Thermal Protection System (TPS) material that protects the overwrap from the recirculating plume. Results from model correlation, hot-fire testing, and flight predictions will be discussed.
Thermal Analysis of the MC-1 Chamber/Nozzle
NASA Technical Reports Server (NTRS)
Davis, Darrell W.; Phelps, Lisa H. (Technical Monitor)
2001-01-01
This paper will describe the thermal analysis techniques used to predict temperatures in the film-cooled ablative rocket nozzle used on the MC-1 60K rocket engine. A model was developed that predicts char and pyrolysis depths, liner thermal gradients, and temperatures of the bondline between the overwrap and liner. Correlation of the model was accomplished by thermal analog tests performed at Southern Research, and specially instrumented hot fire tests at the Marshall Space Flight Center. Infrared thermography was instrumental in defining nozzle hot wall surface temperatures. In-depth and outboard thermocouple data was used to correlate the kinetic decomposition routine used to predict char and pyrolysis depths. These depths were anchored with measured char and pyrolysis depths from cross-sectioned hot-fire nozzles. For the X-34 flight analysis, the model includes the ablative Thermal Protection System (TPS) material that protects the overwrap from the recirculating plume. Results from model correlation, hot-fire testing, and flight predictions will be discussed.
High capacity demonstration of honeycomb panel heat pipes
NASA Technical Reports Server (NTRS)
Tanzer, H. J.
1989-01-01
The feasibility of performance enhancing the sandwich panel heat pipe was investigated for moderate temperature range heat rejection radiators on future-high-power spacecraft. The hardware development program consisted of performance prediction modeling, fabrication, ground test, and data correlation. Using available sandwich panel materials, a series of subscale test panels were augumented with high-capacity sideflow and temperature control variable conductance features, and test evaluated for correlation with performance prediction codes. Using the correlated prediction model, a 50-kW full size radiator was defined using methanol working fluid and closely spaced sideflows. A new concept called the hybrid radiator individually optimizes heat pipe components. A 2.44-m long hybrid test vehicle demonstrated proof-of-principle performance.
Chen, Guangchao; Li, Xuehua; Chen, Jingwen; Zhang, Ya-Nan; Peijnenburg, Willie J G M
2014-12-01
Biodegradation is the principal environmental dissipation process of chemicals. As such, it is a dominant factor determining the persistence and fate of organic chemicals in the environment, and is therefore of critical importance to chemical management and regulation. In the present study, the authors developed in silico methods assessing biodegradability based on a large heterogeneous set of 825 organic compounds, using the techniques of the C4.5 decision tree, the functional inner regression tree, and logistic regression. External validation was subsequently carried out by 2 independent test sets of 777 and 27 chemicals. As a result, the functional inner regression tree exhibited the best predictability with predictive accuracies of 81.5% and 81.0%, respectively, on the training set (825 chemicals) and test set I (777 chemicals). Performance of the developed models on the 2 test sets was subsequently compared with that of the Estimation Program Interface (EPI) Suite Biowin 5 and Biowin 6 models, which also showed a better predictability of the functional inner regression tree model. The model built in the present study exhibits a reasonable predictability compared with existing models while possessing a transparent algorithm. Interpretation of the mechanisms of biodegradation was also carried out based on the models developed. © 2014 SETAC.
NASA Astrophysics Data System (ADS)
Wang, Fuzeng; Zhao, Jun; Zhu, Ningbo
2016-11-01
The flow behavior of Ti-6Al-4V alloy was studied by automated ball indentation (ABI) tests in a wide range of temperatures (293, 493, 693, and 873 K) and strain rates (10-6, 10-5, and 10-4 s-1). Based on the experimental true stress-plastic strain data derived from the ABI tests, the Johnson-Cook (JC), Khan-Huang-Liang (KHL) and modified Zerilli-Armstrong (ZA) constitutive models, as well as artificial neural network (ANN) methods, were employed to predict the flow behavior of Ti-6Al-4V. A comparative study was made on the reliability of the four models, and their predictability was evaluated in terms of correlation coefficient ( R) and mean absolute percentage error. It is found that the flow stresses of Ti-6Al-4V alloy are more sensitive to temperature than strain rate under current experimental conditions. The predicted flow stresses obtained from JC model and KHL model show much better agreement with the experimental results than modified ZA model. Moreover, the ANN model is much more efficient and shows a higher accuracy in predicting the flow behavior of Ti-6Al-4V alloy than the constitutive equations.
Arcjet Testing and Thermal Model Development for Multilayer Felt Reusable Surface Insulation
NASA Technical Reports Server (NTRS)
Milos, Frank S.; Scott, Carl Douglas; Papa, Steven V.
2012-01-01
Felt Reusable Surface Insulation was used extensively on leeward external surfaces of the Shuttle Orbiter, where the material is reusable for temperatures up to 670 K. For application on leeward surfaces of the Orion Multi-Purpose Crew Vehicle, where predicted temperatures reach 1620 K, the material functions as a pyrolyzing conformal ablator. An arcjet test series was conducted to assess the performance of multilayer Felt Reusable Surface Insulation at high temperatures, and a thermal-response, pyrolysis, and ablation model was developed. Model predictions compare favorably with the arcjet test data
Predicting the Cost per Flying Hour for the F-16 Using Programmatic and Operational Variables
2005-06-01
constant variance assumption is accomplished using the Breusch - Pagan test . This is accomplished and the results are listed in Table 12. Figures 19...and 20 follow and add to the discussion by plotting the residuals by predicted for both models. 52 Table 12: Breusch - Pagan Constant Variance Test ...Model A 13844455 6.97E+11 5 74 9.96 0.0764 Model B 74954796 8.69E+12 5 151 17.63 0.00344 Breusch - Pagan Test for Constant Variance -1000 -500 0 500
Prediction of Flutter Boundary Using Flutter Margin for The Discrete-Time System
NASA Astrophysics Data System (ADS)
Dwi Saputra, Angga; Wibawa Purabaya, R.
2018-04-01
Flutter testing in a wind tunnel is generally conducted at subcritical speeds to avoid damages. Hence, The flutter speed has to be predicted from the behavior some of its stability criteria estimated against the dynamic pressure or flight speed. Therefore, it is quite important for a reliable flutter prediction method to estimates flutter boundary. This paper summarizes the flutter testing of a wing cantilever model in a wind tunnel. The model has two degree of freedom; they are bending and torsion modes. The flutter test was conducted in a subsonic wind tunnel. The dynamic data responses was measured by two accelerometers that were mounted on leading edge and center of wing tip. The measurement was repeated while the wind speed increased. The dynamic responses were used to determine the parameter flutter margin for the discrete-time system. The flutter boundary of the model was estimated using extrapolation of the parameter flutter margin against the dynamic pressure. The parameter flutter margin for the discrete-time system has a better performance for flutter prediction than the modal parameters. A model with two degree freedom and experiencing classical flutter, the parameter flutter margin for the discrete-time system gives a satisfying result in prediction of flutter boundary on subsonic wind tunnel test.
The development and testing of a skin tear risk assessment tool.
Newall, Nelly; Lewin, Gill F; Bulsara, Max K; Carville, Keryln J; Leslie, Gavin D; Roberts, Pam A
2017-02-01
The aim of the present study is to develop a reliable and valid skin tear risk assessment tool. The six characteristics identified in a previous case control study as constituting the best risk model for skin tear development were used to construct a risk assessment tool. The ability of the tool to predict skin tear development was then tested in a prospective study. Between August 2012 and September 2013, 1466 tertiary hospital patients were assessed at admission and followed up for 10 days to see if they developed a skin tear. The predictive validity of the tool was assessed using receiver operating characteristic (ROC) analysis. When the tool was found not to have performed as well as hoped, secondary analyses were performed to determine whether a potentially better performing risk model could be identified. The tool was found to have high sensitivity but low specificity and therefore have inadequate predictive validity. Secondary analysis of the combined data from this and the previous case control study identified an alternative better performing risk model. The tool developed and tested in this study was found to have inadequate predictive validity. The predictive validity of an alternative, more parsimonious model now needs to be tested. © 2015 Medicalhelplines.com Inc and John Wiley & Sons Ltd.
Reliability formulation for the strength and fire endurance of glued-laminated beams
D. A. Bender
A model was developed for predicting the statistical distribution of glued-laminated beam strength and stiffness under normal temperature conditions using available long span modulus of elasticity data, end joint tension test data, and tensile strength data for laminating-grade lumber. The beam strength model predictions compared favorably with test data for glued-...
Staff Study on Cost and Training Effectiveness of Proposed Training Systems. TAEG Report 1.
ERIC Educational Resources Information Center
Naval Training Equipment Center, Orlando, FL. Training Analysis and Evaluation Group.
A study began the development and initial testing of a method for predicting cost and training effectiveness of proposed training programs. A prototype Training Effectiveness and Cost Effectiveness Prediction (TECEP) model was developed and tested. The model was a method for optimization of training media allocation on the basis of fixed training…
ERIC Educational Resources Information Center
Qasem, Mousa; Foote, Rebecca
2010-01-01
This study tested the predictions of the revised hierarchical (RHM) and morphological decomposition (MDM) models with Arabic-English bilinguals. The RHM (Kroll & Stewart, 1994) predicts that the amount of activation of first language translation equivalents is negatively correlated with second language (L2) proficiency. The MDM (Frost, Forster, &…
Plant water potential improves prediction of empirical stomatal models.
Anderegg, William R L; Wolf, Adam; Arango-Velez, Adriana; Choat, Brendan; Chmura, Daniel J; Jansen, Steven; Kolb, Thomas; Li, Shan; Meinzer, Frederick; Pita, Pilar; Resco de Dios, Víctor; Sperry, John S; Wolfe, Brett T; Pacala, Stephen
2017-01-01
Climate change is expected to lead to increases in drought frequency and severity, with deleterious effects on many ecosystems. Stomatal responses to changing environmental conditions form the backbone of all ecosystem models, but are based on empirical relationships and are not well-tested during drought conditions. Here, we use a dataset of 34 woody plant species spanning global forest biomes to examine the effect of leaf water potential on stomatal conductance and test the predictive accuracy of three major stomatal models and a recently proposed model. We find that current leaf-level empirical models have consistent biases of over-prediction of stomatal conductance during dry conditions, particularly at low soil water potentials. Furthermore, the recently proposed stomatal conductance model yields increases in predictive capability compared to current models, and with particular improvement during drought conditions. Our results reveal that including stomatal sensitivity to declining water potential and consequent impairment of plant water transport will improve predictions during drought conditions and show that many biomes contain a diversity of plant stomatal strategies that range from risky to conservative stomatal regulation during water stress. Such improvements in stomatal simulation are greatly needed to help unravel and predict the response of ecosystems to future climate extremes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pierce, Eric M.; Bacon, Diana H.
2009-09-21
The interest in the long-term durability of waste glass stems from the need to predict radionuclide release rates from the corroding glass over geologic time-scales. Several long-term test methods have been developed to accelerate the glass-water reaction [drip test, vapor hydration test, product consistency test-B, and pressurized unsaturated flow (PUF)]. Currently, the PUF test is the only method that can mimic the unsaturated hydraulic properties expected in a subsurface disposal facility and simultaneously monitor the glass-water reaction. PUF tests are being conducted to accelerate the weathering of glass and validate the model parameters being used to predict long-term glass behavior.more » One dimensional reactive chemical transport simulations of glass dissolution and secondary phase formation during a 1.5-year long PUF experiment was conducted with the subsurface transport over reactive multi-phases (STORM) code. Results show that parameterization of the computer model by combining direct laboratory measurements and thermodynamic data provides an integrated approach to predicting glass behavior over geologic-time scales.« less
Predictability of gypsy moth defoliation in central hardwoods: a validation study
David E. Fosbroke; Ray R., Jr. Hicks
1993-01-01
A model for predicting gypsy moth defoliation in central hardwood forests based on stand characteristics was evaluated following a 5-year outbreak in Pennsylvania and Maryland. Study area stand characteristics were similar to those of the areas used to develop the model. Comparisons are made between model predictive capability in two physiographic provinces. The tested...
A primary goal of computational toxicology is to generate predictive models of toxicity. An elusive target of alternative test methods and models has been the accurate prediction of systemic toxicity points of departure (PoD). We aim not only to provide a large and valuable resou...
Testing and analysis of internal hardwood log defect prediction models
R. Edward Thomas
2011-01-01
The severity and location of internal defects determine the quality and value of lumber sawn from hardwood logs. Models have been developed to predict the size and position of internal defects based on external defect indicator measurements. These models were shown to predict approximately 80% of all internal knots based on external knot indicators. However, the size...
Parametric Study of Shear Strength of Concrete Beams Reinforced with FRP Bars
NASA Astrophysics Data System (ADS)
Thomas, Job; Ramadass, S.
2016-09-01
Fibre Reinforced Polymer (FRP) bars are being widely used as internal reinforcement in structural elements in the last decade. The corrosion resistance of FRP bars qualifies its use in severe and marine exposure conditions in structures. A total of eight concrete beams longitudinally reinforced with FRP bars were cast and tested over shear span to depth ratio of 0.5 and 1.75. The shear strength test data of 188 beams published in various literatures were also used. The model originally proposed by Indian Standard Code of practice for the prediction of shear strength of concrete beams reinforced with steel bars IS:456 (Plain and reinforced concrete, code of practice, fourth revision. Bureau of Indian Standards, New Delhi, 2000) is considered and a modification to account for the influence of the FRP bars is proposed based on regression analysis. Out of the 196 test data, 110 test data is used for the regression analysis and 86 test data is used for the validation of the model. In addition, the shear strength of 86 test data accounted for the validation is assessed using eleven models proposed by various researchers. The proposed model accounts for compressive strength of concrete ( f ck ), modulus of elasticity of FRP rebar ( E f ), longitudinal reinforcement ratio ( ρ f ), shear span to depth ratio ( a/ d) and size effect of beams. The predicted shear strength of beams using the proposed model and 11 models proposed by other researchers is compared with the corresponding experimental results. The mean of predicted shear strength to the experimental shear strength for the 86 beams accounted for the validation of the proposed model is found to be 0.93. The result of the statistical analysis indicates that the prediction based on the proposed model corroborates with the corresponding experimental data.
Geochemical modeling of leaching of Ca, Mg, Al, and Pb from cementitious waste forms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martens, E., E-mail: evelien.martens@csiro.a; Jacques, D.; Van Gerven, T.
2010-08-15
Results from extraction tests on cement-waste samples were simulated with a thermodynamic equilibrium model using a consistent database, to which lead data were added. Subsequent diffusion tests were modeled by means of a 3D diffusive transport model combined with the geochemical model derived from the extraction tests. Modeling results of the leached major element concentrations for both uncarbonated and (partially) carbonated samples agreed well with the extraction test using the set of pure minerals and solid solutions present in the database. The observed decrease in Ca leaching with increasing carbonation level was qualitatively predicted. Simulations also revealed that Pb leachingmore » is not controlled by dissolution/precipitation only. The addition of the calcite-cerrusite solid solution and adsorption reactions on amorphous Fe- and Al-oxides improved the predictions and are considered to control the Pb leaching during the extractions tests. The dynamic diffusive leaching tests were appropriately modeled for Na, K, Ca and Pb.« less
NASA Astrophysics Data System (ADS)
Frey, M. P.; Stamm, C.; Schneider, M. K.; Reichert, P.
2011-12-01
A distributed hydrological model was used to simulate the distribution of fast runoff formation as a proxy for critical source areas for herbicide pollution in a small agricultural catchment in Switzerland. We tested to what degree predictions based on prior knowledge without local measurements could be improved upon relying on observed discharge. This learning process consisted of five steps: For the prior prediction (step 1), knowledge of the model parameters was coarse and predictions were fairly uncertain. In the second step, discharge data were used to update the prior parameter distribution. Effects of uncertainty in input data and model structure were accounted for by an autoregressive error model. This step decreased the width of the marginal distributions of parameters describing the lower boundary (percolation rates) but hardly affected soil hydraulic parameters. Residual analysis (step 3) revealed model structure deficits. We modified the model, and in the subsequent Bayesian updating (step 4) the widths of the posterior marginal distributions were reduced for most parameters compared to those of the prior. This incremental procedure led to a strong reduction in the uncertainty of the spatial prediction. Thus, despite only using spatially integrated data (discharge), the spatially distributed effect of the improved model structure can be expected to improve the spatially distributed predictions also. The fifth step consisted of a test with independent spatial data on herbicide losses and revealed ambiguous results. The comparison depended critically on the ratio of event to preevent water that was discharged. This ratio cannot be estimated from hydrological data only. The results demonstrate that the value of local data is strongly dependent on a correct model structure. An iterative procedure of Bayesian updating, model testing, and model modification is suggested.
Spiridonov, S I; Mukusheva, M K; Gontarenko, I A; Fesenko, S V; Baranov, S A
2005-01-01
A mathematical model of 137Cs behaviour in the soil-plant system is presented. The model has been parameterized for the area adjacent to the testing area Ground Zero of the Semipalatinsk Test Site. The model describes the main processes responsible for the changes in 137Cs content in the soil solution and, thereby, dynamics of the radionuclide uptake by vegetation. The results are taken from predictive and retrospective calculations that reflect the dynamics of 137Cs distribution by species in soil after nuclear explosions. The importance of factors governing 137Cs accumulation in plants within the STS area is assessed. The analysis of sensitivity of the output model variable to changes in its parameters revealed that the key soil properties significantly influence the results of prediction of 137Cs content in plants.
NASA Technical Reports Server (NTRS)
Kuhlman, E. A.; Baranowski, L. C.
1977-01-01
The effects of the Thermal Protection Subsystem (TPS) contamination on the space shuttle orbiter S band quad antenna due to multiple mission buildup are discussed. A test fixture was designed, fabricated and exposed to ten cycles of simulated ground and flight environments. Radiation pattern and impedance tests were performed to measure the effects of the contaminates. The degradation in antenna performance was attributed to the silicone waterproofing in the TPS tiles rather than exposure to the contaminating sources used in the test program. Validation of the accuracy of an analytical thermal model is discussed. Thermal vacuum tests with a test fixture and a representative S band quad antenna were conducted to evaluate the predictions of the analytical thermal model for two orbital heating conditions and entry from each orbit. The results show that the accuracy of predicting the test fixture thermal responses is largely dependent on the ability to define the boundary and ambient conditions. When the test conditions were accurately included in the analytical model, the predictions were in excellent agreement with measurements.
Wilcox, D.A.; Xie, Y.
2007-01-01
Integrated, GIS-based, wetland predictive models were constructed to assist in predicting the responses of wetland plant communities to proposed new water-level regulation plans for Lake Ontario. The modeling exercise consisted of four major components: 1) building individual site wetland geometric models; 2) constructing generalized wetland geometric models representing specific types of wetlands (rectangle model for drowned river mouth wetlands, half ring model for open embayment wetlands, half ellipse model for protected embayment wetlands, and ellipse model for barrier beach wetlands); 3) assigning wetland plant profiles to the generalized wetland geometric models that identify associations between past flooding / dewatering events and the regulated water-level changes of a proposed water-level-regulation plan; and 4) predicting relevant proportions of wetland plant communities and the time durations during which they would be affected under proposed regulation plans. Based on this conceptual foundation, the predictive models were constructed using bathymetric and topographic wetland models and technical procedures operating on the platform of ArcGIS. An example of the model processes and outputs for the drowned river mouth wetland model using a test regulation plan illustrates the four components and, when compared against other test regulation plans, provided results that met ecological expectations. The model results were also compared to independent data collected by photointerpretation. Although data collections were not directly comparable, the predicted extent of meadow marsh in years in which photographs were taken was significantly correlated with extent of mapped meadow marsh in all but barrier beach wetlands. The predictive model for wetland plant communities provided valuable input into International Joint Commission deliberations on new regulation plans and was also incorporated into faunal predictive models used for that purpose.
Analysis of high vacuum systems using SINDA'85
NASA Technical Reports Server (NTRS)
Spivey, R. A.; Clanton, S. E.; Moore, J. D.
1993-01-01
The theory, algorithms, and test data correlation analysis of a math model developed to predict performance of the Space Station Freedom Vacuum Exhaust System are presented. The theory used to predict the flow characteristics of viscous, transition, and molecular flow is presented in detail. Development of user subroutines which predict the flow characteristics in conjunction with the SINDA'85/FLUINT analysis software are discussed. The resistance-capacitance network approach with application to vacuum system analysis is demonstrated and results from the model are correlated with test data. The model was developed to predict the performance of the Space Station Freedom Vacuum Exhaust System. However, the unique use of the user subroutines developed in this model and written into the SINDA'85/FLUINT thermal analysis model provides a powerful tool that can be used to predict the transient performance of vacuum systems and gas flow in tubes of virtually any geometry. This can be accomplished using a resistance-capacitance (R-C) method very similar to the methods used to perform thermal analyses.
Khan, Waseem S; Hamadneh, Nawaf N; Khan, Waqar A
2017-01-01
In this study, multilayer perception neural network (MLPNN) was employed to predict thermal conductivity of PVP electrospun nanocomposite fibers with multiwalled carbon nanotubes (MWCNTs) and Nickel Zinc ferrites [(Ni0.6Zn0.4) Fe2O4]. This is the second attempt on the application of MLPNN with prey predator algorithm for the prediction of thermal conductivity of PVP electrospun nanocomposite fibers. The prey predator algorithm was used to train the neural networks to find the best models. The best models have the minimal of sum squared error between the experimental testing data and the corresponding models results. The minimal error was found to be 0.0028 for MWCNTs model and 0.00199 for Ni-Zn ferrites model. The predicted artificial neural networks (ANNs) responses were analyzed statistically using z-test, correlation coefficient, and the error functions for both inclusions. The predicted ANN responses for PVP electrospun nanocomposite fibers were compared with the experimental data and were found in good agreement.
2016-01-01
The renewed urgency to develop new treatments for Mycobacterium tuberculosis (Mtb) infection has resulted in large-scale phenotypic screening and thousands of new active compounds in vitro. The next challenge is to identify candidates to pursue in a mouse in vivo efficacy model as a step to predicting clinical efficacy. We previously analyzed over 70 years of this mouse in vivo efficacy data, which we used to generate and validate machine learning models. Curation of 60 additional small molecules with in vivo data published in 2014 and 2015 was undertaken to further test these models. This represents a much larger test set than for the previous models. Several computational approaches have now been applied to analyze these molecules and compare their molecular properties beyond those attempted previously. Our previous machine learning models have been updated, and a novel aspect has been added in the form of mouse liver microsomal half-life (MLM t1/2) and in vitro-based Mtb models incorporating cytotoxicity data that were used to predict in vivo activity for comparison. Our best Mtbin vivo models possess fivefold ROC values > 0.7, sensitivity > 80%, and concordance > 60%, while the best specificity value is >40%. Use of an MLM t1/2 Bayesian model affords comparable results for scoring the 60 compounds tested. Combining MLM stability and in vitroMtb models in a novel consensus workflow in the best cases has a positive predicted value (hit rate) > 77%. Our results indicate that Bayesian models constructed with literature in vivoMtb data generated by different laboratories in various mouse models can have predictive value and may be used alongside MLM t1/2 and in vitro-based Mtb models to assist in selecting antitubercular compounds with desirable in vivo efficacy. We demonstrate for the first time that consensus models of any kind can be used to predict in vivo activity for Mtb. In addition, we describe a new clustering method for data visualization and apply this to the in vivo training and test data, ultimately making the method accessible in a mobile app. PMID:27335215
Integrated modelling of H-mode pedestal and confinement in JET-ILW
NASA Astrophysics Data System (ADS)
Saarelma, S.; Challis, C. D.; Garzotti, L.; Frassinetti, L.; Maggi, C. F.; Romanelli, M.; Stokes, C.; Contributors, JET
2018-01-01
A pedestal prediction model Europed is built on the existing EPED1 model by coupling it with core transport simulation using a Bohm-gyroBohm transport model to self-consistently predict JET-ILW power scan for hybrid plasmas that display weaker power degradation than the IPB98(y, 2) scaling of the energy confinement time. The weak power degradation is reproduced in the coupled core-pedestal simulation. The coupled core-pedestal model is further tested for a 3.0 MA plasma with the highest stored energy achieved in JET-ILW so far, giving a prediction of the stored plasma energy within the error margins of the measured experimental value. A pedestal density prediction model based on the neutral penetration is tested on a JET-ILW database giving a prediction with an average error of 17% from the experimental data when a parameter taking into account the fuelling rate is added into the model. However the model fails to reproduce the power dependence of the pedestal density implying missing transport physics in the model. The future JET-ILW deuterium campaign with increased heating power is predicted to reach plasma energy of 11 MJ, which would correspond to 11-13 MW of fusion power in equivalent deuterium-tritium plasma but with isotope effects on pedestal stability and core transport ignored.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Purdy, R.
A hierarchical model consisting of quantitative structure-activity relationships based mainly on chemical reactivity was developed to predict the carcinogenicity of organic chemicals to rodents. The model is comprised of quantitative structure-activity relationships, QSARs based on hypothesized mechanisms of action, metabolism, and partitioning. Predictors included octanol/water partition coefficient, molecular size, atomic partial charge, bond angle strain, atomic acceptor delocalizibility, atomic radical superdelocalizibility, the lowest unoccupied molecular orbital (LUMO) energy of hypothesized intermediate nitrenium ion of primary aromatic amines, difference in charge of ionized and unionized carbon-chlorine bonds, substituent size and pattern on polynuclear aromatic hydrocarbons, the distance between lone electron pairsmore » over a rigid structure, and the presence of functionalities such as nitroso and hydrazine. The model correctly classified 96% of the carcinogens in the training set of 306 chemicals, and 90% of the carcinogens in the test set of 301 chemicals. The test set by chance contained 84% of the positive thiocontaining chemicals. A QSAR for these chemicals was developed. This posttest set modified model correctly predicted 94% of the carcinogens in the test set. This model was used to predict the carcinogenicity of the 25 organic chemicals the U.S. National Toxicology Program was testing at the writing of this article. 12 refs., 3 tabs.« less
Wang, Heng; Sang, Yuanjun
2017-10-01
The mechanical behavior modeling of human soft biological tissues is a key issue for a large number of medical applications, such as surgery simulation, surgery planning, diagnosis, etc. To develop a biomechanical model of human soft tissues under large deformation for surgery simulation, the adaptive quasi-linear viscoelastic (AQLV) model was proposed and applied in human forearm soft tissues by indentation tests. An incremental ramp-and-hold test was carried out to calibrate the model parameters. To verify the predictive ability of the AQLV model, the incremental ramp-and-hold test, a single large amplitude ramp-and-hold test and a sinusoidal cyclic test at large strain amplitude were adopted in this study. Results showed that the AQLV model could predict the test results under the three kinds of load conditions. It is concluded that the AQLV model is feasible to describe the nonlinear viscoelastic properties of in vivo soft tissues under large deformation. It is promising that this model can be selected as one of the soft tissues models in the software design for surgery simulation or diagnosis.
Li, Huixia; Luo, Miyang; Zheng, Jianfei; Luo, Jiayou; Zeng, Rong; Feng, Na; Du, Qiyun; Fang, Junqun
2017-02-01
An artificial neural network (ANN) model was developed to predict the risks of congenital heart disease (CHD) in pregnant women.This hospital-based case-control study involved 119 CHD cases and 239 controls all recruited from birth defect surveillance hospitals in Hunan Province between July 2013 and June 2014. All subjects were interviewed face-to-face to fill in a questionnaire that covered 36 CHD-related variables. The 358 subjects were randomly divided into a training set and a testing set at the ratio of 85:15. The training set was used to identify the significant predictors of CHD by univariate logistic regression analyses and develop a standard feed-forward back-propagation neural network (BPNN) model for the prediction of CHD. The testing set was used to test and evaluate the performance of the ANN model. Univariate logistic regression analyses were performed on SPSS 18.0. The ANN models were developed on Matlab 7.1.The univariate logistic regression identified 15 predictors that were significantly associated with CHD, including education level (odds ratio = 0.55), gravidity (1.95), parity (2.01), history of abnormal reproduction (2.49), family history of CHD (5.23), maternal chronic disease (4.19), maternal upper respiratory tract infection (2.08), environmental pollution around maternal dwelling place (3.63), maternal exposure to occupational hazards (3.53), maternal mental stress (2.48), paternal chronic disease (4.87), paternal exposure to occupational hazards (2.51), intake of vegetable/fruit (0.45), intake of fish/shrimp/meat/egg (0.59), and intake of milk/soymilk (0.55). After many trials, we selected a 3-layer BPNN model with 15, 12, and 1 neuron in the input, hidden, and output layers, respectively, as the best prediction model. The prediction model has accuracies of 0.91 and 0.86 on the training and testing sets, respectively. The sensitivity, specificity, and Yuden Index on the testing set (training set) are 0.78 (0.83), 0.90 (0.95), and 0.68 (0.78), respectively. The areas under the receiver operating curve on the testing and training sets are 0.87 and 0.97, respectively.This study suggests that the BPNN model could be used to predict the risk of CHD in individuals. This model should be further improved by large-sample-size research.
Buckling Response of a Large-Scale, Seamless, Orthogrid-Stiffened Metallic Cylinder
NASA Technical Reports Server (NTRS)
Rudd, Michelle Tillotson; Hilburger, Mark W.; Lovejoy, Andrew E.; Lindell, Michael C.; Gardner, Nathaniel W.; Schultz, Marc R.
2018-01-01
Results from the buckling test of a compression-loaded 8-ft-diameter seamless (i.e., without manufacturing joints), orthogrid-stiffened metallic cylinder are presented. This test was used to assess the buckling response and imperfection sensitivity characteristics of a seamless cylinder. In addition, the test article and test served as a technology demonstration to show the application of the flow forming manufacturing process to build more efficient buckling-critical structures by eliminating the welded joints that are traditionally used in the manufacturing of large metallic barrels. Pretest predictions of the cylinder buckling response were obtained using a finite-element model that included measured geometric imperfections. The buckling load predicted using this model was 697,000 lb, and the test article buckled at 743,000 lb (6% higher). After the test, the model was revised to account for measured variations in skin and stiffener geometry, nonuniform loading, and material properties. The revised model predicted a buckling load of 754,000 lb, which is within 1.5% of the tested buckling load. In addition, it was determined that the load carrying capability of the seamless cylinder is approximately 28% greater than a corresponding cylinder with welded joints.
Experimental and computational prediction of glass transition temperature of drugs.
Alzghoul, Ahmad; Alhalaweh, Amjad; Mahlin, Denny; Bergström, Christel A S
2014-12-22
Glass transition temperature (Tg) is an important inherent property of an amorphous solid material which is usually determined experimentally. In this study, the relation between Tg and melting temperature (Tm) was evaluated using a data set of 71 structurally diverse druglike compounds. Further, in silico models for prediction of Tg were developed based on calculated molecular descriptors and linear (multilinear regression, partial least-squares, principal component regression) and nonlinear (neural network, support vector regression) modeling techniques. The models based on Tm predicted Tg with an RMSE of 19.5 K for the test set. Among the five computational models developed herein the support vector regression gave the best result with RMSE of 18.7 K for the test set using only four chemical descriptors. Hence, two different models that predict Tg of drug-like molecules with high accuracy were developed. If Tm is available, a simple linear regression can be used to predict Tg. However, the results also suggest that support vector regression and calculated molecular descriptors can predict Tg with equal accuracy, already before compound synthesis.
Lindor, Noralane M; Lindor, Rachel A; Apicella, Carmel; Dowty, James G; Ashley, Amanda; Hunt, Katherine; Mincey, Betty A; Wilson, Marcia; Smith, M Cathie; Hopper, John L
2007-01-01
Models have been developed to predict the probability that a person carries a detectable germline mutation in the BRCA1 or BRCA2 genes. Their relative performance in a clinical setting is unclear. To compare the performance characteristics of four BRCA1/BRCA2 gene mutation prediction models: LAMBDA, based on a checklist and scores developed from data on Ashkenazi Jewish (AJ) women; BRCAPRO, a Bayesian computer program; modified Couch tables based on regression analyses; and Myriad II tables collated by Myriad Genetics Laboratories. Family cancer history data were analyzed from 200 probands from the Mayo Clinic Familial Cancer Program, in a multispecialty tertiary care group practice. All probands had clinical testing for BRCA1 and BRCA2 mutations conducted in a single laboratory. For each model, performance was assessed by the area under the receiver operator characteristic curve (ROC) and by tests of accuracy and dispersion. Cases "missed" by one or more models (model predicted less than 10% probability of mutation when a mutation was actually found) were compared across models. All models gave similar areas under the ROC curve of 0.71 to 0.76. All models except LAMBDA substantially under-predicted the numbers of carriers. All models were too dispersed. In terms of ranking, all prediction models performed reasonably well with similar performance characteristics. Model predictions were widely discrepant for some families. Review of cancer family histories by an experienced clinician continues to be vital to ensure that critical elements are not missed and that the most appropriate risk prediction figures are provided.
A Model for Predicting Student Performance on High-Stakes Assessment
ERIC Educational Resources Information Center
Dammann, Matthew Walter
2010-01-01
This research study examined the use of student achievement on reading and math state assessments to predict success on the science state assessment. Multiple regression analysis was utilized to test the prediction for all students in grades 5 and 8 in a mid-Atlantic state. The prediction model developed from the analysis explored the combined…
Radiomics biomarkers for accurate tumor progression prediction of oropharyngeal cancer
NASA Astrophysics Data System (ADS)
Hadjiiski, Lubomir; Chan, Heang-Ping; Cha, Kenny H.; Srinivasan, Ashok; Wei, Jun; Zhou, Chuan; Prince, Mark; Papagerakis, Silvana
2017-03-01
Accurate tumor progression prediction for oropharyngeal cancers is crucial for identifying patients who would best be treated with optimized treatment and therefore minimize the risk of under- or over-treatment. An objective decision support system that can merge the available radiomics, histopathologic and molecular biomarkers in a predictive model based on statistical outcomes of previous cases and machine learning may assist clinicians in making more accurate assessment of oropharyngeal tumor progression. In this study, we evaluated the feasibility of developing individual and combined predictive models based on quantitative image analysis from radiomics, histopathology and molecular biomarkers for oropharyngeal tumor progression prediction. With IRB approval, 31, 84, and 127 patients with head and neck CT (CT-HN), tumor tissue microarrays (TMAs) and molecular biomarker expressions, respectively, were collected. For 8 of the patients all 3 types of biomarkers were available and they were sequestered in a test set. The CT-HN lesions were automatically segmented using our level sets based method. Morphological, texture and molecular based features were extracted from CT-HN and TMA images, and selected features were merged by a neural network. The classification accuracy was quantified using the area under the ROC curve (AUC). Test AUCs of 0.87, 0.74, and 0.71 were obtained with the individual predictive models based on radiomics, histopathologic, and molecular features, respectively. Combining the radiomics and molecular models increased the test AUC to 0.90. Combining all 3 models increased the test AUC further to 0.94. This preliminary study demonstrates that the individual domains of biomarkers are useful and the integrated multi-domain approach is most promising for tumor progression prediction.
Hernando, Barbara; Ibañez, Maria Victoria; Deserio-Cuesta, Julio Alberto; Soria-Navarro, Raquel; Vilar-Sastre, Inca; Martinez-Cadenas, Conrado
2018-03-01
Prediction of human pigmentation traits, one of the most differentiable externally visible characteristics among individuals, from biological samples represents a useful tool in the field of forensic DNA phenotyping. In spite of freckling being a relatively common pigmentation characteristic in Europeans, little is known about the genetic basis of this largely genetically determined phenotype in southern European populations. In this work, we explored the predictive capacity of eight freckle and sunlight sensitivity-related genes in 458 individuals (266 non-freckled controls and 192 freckled cases) from Spain. Four loci were associated with freckling (MC1R, IRF4, ASIP and BNC2), and female sex was also found to be a predictive factor for having a freckling phenotype in our population. After identifying the most informative genetic variants responsible for human ephelides occurrence in our sample set, we developed a DNA-based freckle prediction model using a multivariate regression approach. Once developed, the capabilities of the prediction model were tested by a repeated 10-fold cross-validation approach. The proportion of correctly predicted individuals using the DNA-based freckle prediction model was 74.13%. The implementation of sex into the DNA-based freckle prediction model slightly improved the overall prediction accuracy by 2.19% (76.32%). Further evaluation of the newly-generated prediction model was performed by assessing the model's performance in a new cohort of 212 Spanish individuals, reaching a classification success rate of 74.61%. Validation of this prediction model may be carried out in larger populations, including samples from different European populations. Further research to validate and improve this newly-generated freckle prediction model will be needed before its forensic application. Together with DNA tests already validated for eye and hair colour prediction, this freckle prediction model may lead to a substantially more detailed physical description of unknown individuals from DNA found at the crime scene. Copyright © 2017 Elsevier B.V. All rights reserved.
Prediction of fire growth on furniture using CFD
NASA Astrophysics Data System (ADS)
Pehrson, Richard David
A fire growth calculation method has been developed that couples a computational fluid dynamics (CFD) model with bench scale cone calorimeter test data for predicting the rate of flame spread on compartment contents such as furniture. The commercial CFD code TASCflow has been applied to solve time averaged conservation equations using an algebraic multigrid solver with mass weighted skewed upstream differencing for advection. Closure models include k-e for turbulence, eddy breakup for combustion following a single step irreversible reaction with Arrhenius rate constant, finite difference radiation transfer, and conjugate heat transfer. Radiation properties are determined from concentrations of soot, CO2 and H2O using the narrow band model of Grosshandler and exponential wide band curve fit model of Modak. The growth in pyrolyzing area is predicted by treating flame spread as a series of piloted ignitions based on coupled gas-fluid boundary conditions. The mass loss rate from a given surface element follows the bench scale test data for input to the combustion prediction. The fire growth model has been tested against foam-fabric mattresses and chairs burned in the furniture calorimeter. In general, agreement between model and experiment for peak heat release rate (HRR), time to peak HRR, and total energy lost is within +/-20%. Used as a proxy for the flame spread velocity, the slope of the HRR curve predicted by model agreed with experiment within +/-20% for all but one case.
Predicting the weathering of fuel and oil spills: A diffusion-limited evaporation model.
Kotzakoulakis, Konstantinos; George, Simon C
2018-01-01
The majority of the evaporation models currently available in the literature for the prediction of oil spill weathering do not take into account diffusion-limited mass transport and the formation of a concentration gradient in the oil phase. The altered surface concentration of the spill caused by diffusion-limited transport leads to a slower evaporation rate compared to the predictions of diffusion-agnostic evaporation models. The model presented in this study incorporates a diffusive layer in the oil phase and predicts the diffusion-limited evaporation rate. The information required is the composition of the fluid from gas chromatography or alternatively the distillation data. If the density or a single viscosity measurement is available the accuracy of the predictions is higher. Environmental conditions such as water temperature, air pressure and wind velocity are taken into account. The model was tested with synthetic mixtures, petroleum fuels and crude oils with initial viscosities ranging from 2 to 13,000 cSt. The tested temperatures varied from 0 °C to 23.4 °C and wind velocities from 0.3 to 3.8 m/s. The average absolute deviation (AAD) of the diffusion-limited model ranged between 1.62% and 24.87%. In comparison, the AAD of a diffusion-agnostic model ranged between 2.34% and 136.62% against the same tested fluids. Copyright © 2017 Elsevier Ltd. All rights reserved.
Predicting fatty acid profiles in blood based on food intake and the FADS1 rs174546 SNP.
Hallmann, Jacqueline; Kolossa, Silvia; Gedrich, Kurt; Celis-Morales, Carlos; Forster, Hannah; O'Donovan, Clare B; Woolhead, Clara; Macready, Anna L; Fallaize, Rosalind; Marsaux, Cyril F M; Lambrinou, Christina-Paulina; Mavrogianni, Christina; Moschonis, George; Navas-Carretero, Santiago; San-Cristobal, Rodrigo; Godlewska, Magdalena; Surwiłło, Agnieszka; Mathers, John C; Gibney, Eileen R; Brennan, Lorraine; Walsh, Marianne C; Lovegrove, Julie A; Saris, Wim H M; Manios, Yannis; Martinez, Jose Alfredo; Traczyk, Iwona; Gibney, Michael J; Daniel, Hannelore
2015-12-01
A high intake of n-3 PUFA provides health benefits via changes in the n-6/n-3 ratio in blood. In addition to such dietary PUFAs, variants in the fatty acid desaturase 1 (FADS1) gene are also associated with altered PUFA profiles. We used mathematical modeling to predict levels of PUFA in whole blood, based on multiple hypothesis testing and bootstrapped LASSO selected food items, anthropometric and lifestyle factors, and the rs174546 genotypes in FADS1 from 1607 participants (Food4Me Study). The models were developed using data from the first reported time point (training set) and their predictive power was evaluated using data from the last reported time point (test set). Among other food items, fish, pizza, chicken, and cereals were identified as being associated with the PUFA profiles. Using these food items and the rs174546 genotypes as predictors, models explained 26-43% of the variability in PUFA concentrations in the training set and 22-33% in the test set. Selecting food items using multiple hypothesis testing is a valuable contribution to determine predictors, as our models' predictive power is higher compared to analogue studies. As unique feature, we additionally confirmed our models' power based on a test set. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
BEHAVE: fire behavior prediction and fuel modeling system--FUEL subsystem
Robert E. Burgan; Richard C. Rothermel
1984-01-01
This manual documents the fuel modeling procedures of BEHAVE--a state-of-the-art wildland fire behavior prediction system. Described are procedures for collecting fuel data, using the data with the program, and testing and adjusting the fuel model.
Prediction and visualization of redox conditions in the groundwater of Central Valley, California
NASA Astrophysics Data System (ADS)
Rosecrans, Celia Z.; Nolan, Bernard T.; Gronberg, JoAnn M.
2017-03-01
Regional-scale, three-dimensional continuous probability models, were constructed for aspects of redox conditions in the groundwater system of the Central Valley, California. These models yield grids depicting the probability that groundwater in a particular location will have dissolved oxygen (DO) concentrations less than selected threshold values representing anoxic groundwater conditions, or will have dissolved manganese (Mn) concentrations greater than selected threshold values representing secondary drinking water-quality contaminant levels (SMCL) and health-based screening levels (HBSL). The probability models were constrained by the alluvial boundary of the Central Valley to a depth of approximately 300 m. Probability distribution grids can be extracted from the 3-D models at any desired depth, and are of interest to water-resource managers, water-quality researchers, and groundwater modelers concerned with the occurrence of natural and anthropogenic contaminants related to anoxic conditions. Models were constructed using a Boosted Regression Trees (BRT) machine learning technique that produces many trees as part of an additive model and has the ability to handle many variables, automatically incorporate interactions, and is resistant to collinearity. Machine learning methods for statistical prediction are becoming increasing popular in that they do not require assumptions associated with traditional hypothesis testing. Models were constructed using measured dissolved oxygen and manganese concentrations sampled from 2767 wells within the alluvial boundary of the Central Valley, and over 60 explanatory variables representing regional-scale soil properties, soil chemistry, land use, aquifer textures, and aquifer hydrologic properties. Models were trained on a USGS dataset of 932 wells, and evaluated on an independent hold-out dataset of 1835 wells from the California Division of Drinking Water. We used cross-validation to assess the predictive performance of models of varying complexity, as a basis for selecting final models. Trained models were applied to cross-validation testing data and a separate hold-out dataset to evaluate model predictive performance by emphasizing three model metrics of fit: Kappa; accuracy; and the area under the receiver operator characteristic curve (ROC). The final trained models were used for mapping predictions at discrete depths to a depth of 304.8 m. Trained DO and Mn models had accuracies of 86-100%, Kappa values of 0.69-0.99, and ROC values of 0.92-1.0. Model accuracies for cross-validation testing datasets were 82-95% and ROC values were 0.87-0.91, indicating good predictive performance. Kappas for the cross-validation testing dataset were 0.30-0.69, indicating fair to substantial agreement between testing observations and model predictions. Hold-out data were available for the manganese model only and indicated accuracies of 89-97%, ROC values of 0.73-0.75, and Kappa values of 0.06-0.30. The predictive performance of both the DO and Mn models was reasonable, considering all three of these fit metrics and the low percentages of low-DO and high-Mn events in the data.
QSAR study of curcumine derivatives as HIV-1 integrase inhibitors.
Gupta, Pawan; Sharma, Anju; Garg, Prabha; Roy, Nilanjan
2013-03-01
A QSAR study was performed on curcumine derivatives as HIV-1 integrase inhibitors using multiple linear regression. The statistically significant model was developed with squared correlation coefficients (r(2)) 0.891 and cross validated r(2) (r(2) cv) 0.825. The developed model revealed that electronic, shape, size, geometry, substitution's information and hydrophilicity were important atomic properties for determining the inhibitory activity of these molecules. The model was also tested successfully for external validation (r(2) pred = 0.849) as well as Tropsha's test for model predictability. Furthermore, the domain analysis was carried out to evaluate the prediction reliability of external set molecules. The model was statistically robust and had good predictive power which can be successfully utilized for screening of new molecules.
NASA Astrophysics Data System (ADS)
Xiong, H.; Hamila, N.; Boisse, P.
2017-10-01
Pre-impregnated thermoplastic composites have recently attached increasing interest in the automotive industry for their excellent mechanical properties and their rapid cycle manufacturing process, modelling and numerical simulations of forming processes for composites parts with complex geometry is necessary to predict and optimize manufacturing practices, especially for the consolidation effects. A viscoelastic relaxation model is proposed to characterize the consolidation behavior of thermoplastic prepregs based on compaction tests with a range of temperatures. The intimate contact model is employed to predict the evolution of the consolidation which permits the microstructure prediction of void presented through the prepreg. Within a hyperelastic framework, several simulation tests are launched by combining a new developed solid shell finite element and the consolidation models.
A model for prediction of STOVL ejector dynamics
NASA Technical Reports Server (NTRS)
Drummond, Colin K.
1989-01-01
A semi-empirical control-volume approach to ejector modeling for transient performance prediction is presented. This new approach is motivated by the need for a predictive real-time ejector sub-system simulation for Short Take-Off Verticle Landing (STOVL) integrated flight and propulsion controls design applications. Emphasis is placed on discussion of the approximate characterization of the mixing process central to thrust augmenting ejector operation. The proposed ejector model suggests transient flow predictions are possible with a model based on steady-flow data. A practical test case is presented to illustrate model calibration.
The use of the logistic model in space motion sickness prediction
NASA Technical Reports Server (NTRS)
Lin, Karl K.; Reschke, Millard F.
1987-01-01
The one-equation and the two-equation logistic models were used to predict subjects' susceptibility to motion sickness in KC-135 parabolic flights using data from other ground-based motion sickness tests. The results show that the logistic models correctly predicted substantially more cases (an average of 13 percent) in the data subset used for model building. Overall, the logistic models ranged from 53 to 65 percent predictions of the three endpoint parameters, whereas the Bayes linear discriminant procedure ranged from 48 to 65 percent correct for the cross validation sample.
Marshall, Leon; Carvalheiro, Luísa G; Aguirre-Gutiérrez, Jesús; Bos, Merijn; de Groot, G Arjen; Kleijn, David; Potts, Simon G; Reemer, Menno; Roberts, Stuart; Scheper, Jeroen; Biesmeijer, Jacobus C
2015-10-01
Species distribution models (SDM) are increasingly used to understand the factors that regulate variation in biodiversity patterns and to help plan conservation strategies. However, these models are rarely validated with independently collected data and it is unclear whether SDM performance is maintained across distinct habitats and for species with different functional traits. Highly mobile species, such as bees, can be particularly challenging to model. Here, we use independent sets of occurrence data collected systematically in several agricultural habitats to test how the predictive performance of SDMs for wild bee species depends on species traits, habitat type, and sampling technique. We used a species distribution modeling approach parametrized for the Netherlands, with presence records from 1990 to 2010 for 193 Dutch wild bees. For each species, we built a Maxent model based on 13 climate and landscape variables. We tested the predictive performance of the SDMs with independent datasets collected from orchards and arable fields across the Netherlands from 2010 to 2013, using transect surveys or pan traps. Model predictive performance depended on species traits and habitat type. Occurrence of bee species specialized in habitat and diet was better predicted than generalist bees. Predictions of habitat suitability were also more precise for habitats that are temporally more stable (orchards) than for habitats that suffer regular alterations (arable), particularly for small, solitary bees. As a conservation tool, SDMs are best suited to modeling rarer, specialist species than more generalist and will work best in long-term stable habitats. The variability of complex, short-term habitats is difficult to capture in such models and historical land use generally has low thematic resolution. To improve SDMs' usefulness, models require explanatory variables and collection data that include detailed landscape characteristics, for example, variability of crops and flower availability. Additionally, testing SDMs with field surveys should involve multiple collection techniques.
NASA Technical Reports Server (NTRS)
Pope, L. D.; Wilby, E. G.
1982-01-01
An airplane interior noise prediction model is developed to determine the important parameters associated with sound transmission into the interiors of airplanes, and to identify apropriate noise control methods. Models for stiffened structures, and cabin acoustics with floor partition are developed. Validation studies are undertaken using three test articles: a ring stringer stiffened cylinder, an unstiffened cylinder with floor partition, and ring stringer stiffened cylinder with floor partition and sidewall trim. The noise reductions of the three test articles are computed using the heoretical models and compared to measured values. A statistical analysis of the comparison data indicates that there is no bias in the predictions although a substantial random error exists so that a discrepancy of more than five or six dB can be expected for about one out of three predictions.
Lupker, Stephen J.
2017-01-01
The experiments reported here used “Reversed-Interior” (RI) primes (e.g., cetupmor-COMPUTER) in three different masked priming paradigms in order to test between different models of orthographic coding/visual word recognition. The results of Experiment 1, using a standard masked priming methodology, showed no evidence of priming from RI primes, in contrast to the predictions of the Bayesian Reader and LTRS models. By contrast, Experiment 2, using a sandwich priming methodology, showed significant priming from RI primes, in contrast to the predictions of open bigram models, which predict that there should be no orthographic similarity between these primes and their targets. Similar results were obtained in Experiment 3, using a masked prime same-different task. The results of all three experiments are most consistent with the predictions derived from simulations of the Spatial-coding model. PMID:29244824
Linear and nonlinear models for predicting fish bioconcentration factors for pesticides.
Yuan, Jintao; Xie, Chun; Zhang, Ting; Sun, Jinfang; Yuan, Xuejie; Yu, Shuling; Zhang, Yingbiao; Cao, Yunyuan; Yu, Xingchen; Yang, Xuan; Yao, Wu
2016-08-01
This work is devoted to the applications of the multiple linear regression (MLR), multilayer perceptron neural network (MLP NN) and projection pursuit regression (PPR) to quantitative structure-property relationship analysis of bioconcentration factors (BCFs) of pesticides tested on Bluegill (Lepomis macrochirus). Molecular descriptors of a total of 107 pesticides were calculated with the DRAGON Software and selected by inverse enhanced replacement method. Based on the selected DRAGON descriptors, a linear model was built by MLR, nonlinear models were developed using MLP NN and PPR. The robustness of the obtained models was assessed by cross-validation and external validation using test set. Outliers were also examined and deleted to improve predictive power. Comparative results revealed that PPR achieved the most accurate predictions. This study offers useful models and information for BCF prediction, risk assessment, and pesticide formulation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Reevaluation of a walleye (Sander vitreus) bioenergetics model
Madenjian, Charles P.; Wang, Chunfang
2013-01-01
Walleye (Sander vitreus) is an important sport fish throughout much of North America, and walleye populations support valuable commercial fisheries in certain lakes as well. Using a corrected algorithm for balancing the energy budget, we reevaluated the performance of the Wisconsin bioenergetics model for walleye in the laboratory. Walleyes were fed rainbow smelt (Osmerus mordax) in four laboratory tanks each day during a 126-day experiment. Feeding rates ranged from 1.4 to 1.7 % of walleye body weight per day. Based on a statistical comparison of bioenergetics model predictions of monthly consumption with observed monthly consumption, we concluded that the bioenergetics model estimated food consumption by walleye without any significant bias. Similarly, based on a statistical comparison of bioenergetics model predictions of weight at the end of the monthly test period with observed weight, we concluded that the bioenergetics model predicted walleye growth without any detectable bias. In addition, the bioenergetics model predictions of cumulative consumption over the 126-day experiment differed fromobserved cumulative consumption by less than 10 %. Although additional laboratory and field testing will be needed to fully evaluate model performance, based on our laboratory results, the Wisconsin bioenergetics model for walleye appears to be providing unbiased predictions of food consumption.
Jeon, Jin Pyeong; Kim, Chulho; Oh, Byoung-Doo; Kim, Sun Jeong; Kim, Yu-Seop
2018-01-01
To assess and compare predictive factors for persistent hemodynamic depression (PHD) after carotid artery angioplasty and stenting (CAS) using artificial neural network (ANN) and multiple logistic regression (MLR) or support vector machines (SVM) models. A retrospective data set of patients (n=76) who underwent CAS from 2007 to 2014 was used as input (training cohort) to a back-propagation ANN using TensorFlow platform. PHD was defined when systolic blood pressure was less than 90mmHg or heart rate was less 50 beats/min that lasted for more than one hour. The resulting ANN was prospectively tested in 33 patients (test cohort) and compared with MLR or SVM models according to accuracy and receiver operating characteristics (ROC) curve analysis. No significant difference in baseline characteristics between the training cohort and the test cohort was observed. PHD was observed in 21 (27.6%) patients in the training cohort and 10 (30.3%) patients in the test cohort. In the training cohort, the accuracy of ANN for the prediction of PHD was 98.7% and the area under the ROC curve (AUROC) was 0.961. In the test cohort, the number of correctly classified instances was 32 (97.0%) using the ANN model. In contrast, the accuracy rate of MLR or SVM model was both 75.8%. ANN (AUROC: 0.950; 95% CI [confidence interval]: 0.813-0.996) showed superior predictive performance compared to MLR model (AUROC: 0.796; 95% CI: 0.620-0.915, p<0.001) or SVM model (AUROC: 0.885; 95% CI: 0.725-0.969, p<0.001). The ANN model seems to have more powerful prediction capabilities than MLR or SVM model for persistent hemodynamic depression after CAS. External validation with a large cohort is needed to confirm our results. Copyright © 2017. Published by Elsevier B.V.
Mateen, Bilal Akhter; Bussas, Matthias; Doogan, Catherine; Waller, Denise; Saverino, Alessia; Király, Franz J; Playford, E Diane
2018-05-01
To determine whether tests of cognitive function and patient-reported outcome measures of motor function can be used to create a machine learning-based predictive tool for falls. Prospective cohort study. Tertiary neurological and neurosurgical center. In all, 337 in-patients receiving neurosurgical, neurological, or neurorehabilitation-based care. Binary (Y/N) for falling during the in-patient episode, the Trail Making Test (a measure of attention and executive function) and the Walk-12 (a patient-reported measure of physical function). The principal outcome was a fall during the in-patient stay ( n = 54). The Trail test was identified as the best predictor of falls. Moreover, addition of other variables, did not improve the prediction (Wilcoxon signed-rank P < 0.001). Classical linear statistical modeling methods were then compared with more recent machine learning based strategies, for example, random forests, neural networks, support vector machines. The random forest was the best modeling strategy when utilizing just the Trail Making Test data (Wilcoxon signed-rank P < 0.001) with 68% (± 7.7) sensitivity, and 90% (± 2.3) specificity. This study identifies a simple yet powerful machine learning (Random Forest) based predictive model for an in-patient neurological population, utilizing a single neuropsychological test of cognitive function, the Trail Making test.
Short Term Single Station GNSS TEC Prediction Using Radial Basis Function Neural Network
NASA Astrophysics Data System (ADS)
Muslim, Buldan; Husin, Asnawi; Efendy, Joni
2018-04-01
TEC prediction models for 24 hours ahead have been developed from JOG2 GPS TEC data during 2016. Eleven month of TEC data were used as a training model of the radial basis function neural network (RBFNN) and 1 month of last data (December 2016) is used for the RBFNN model testing. The RBFNN inputs are the previous 24 hour TEC data and the minimum of Dst index during the previous 24 hours. Outputs of the model are 24 ahead TEC prediction. Comparison of model prediction show that the RBFNN model is able to predict the next 24 hours TEC is more accurate than the TEC GIM model.
ISO Mid-Infrared Spectra of Reflection Nebulae
NASA Technical Reports Server (NTRS)
Werner, M.; Uchida, K.; Sellgren, K.; Houdashelt, M.
1999-01-01
Our goal is to test predictions of models attributing the IEFs to polycyclic aromatic hydrocarbons (PAHs). Interstellar models predict PAHs change from singly ionized to neutral as the UV intensity, Go, decreases.
2016-08-27
acted to inhibit both TAK1 and MEK. Experimental data for these prediction tests are shown in Figure 4, and comparison between predictions and valida...would decrease did not contain this interaction. The fact that phospho-cJun did decrease in the experimental test of this prediction (Figure 4...pathways primarily through TAK1. Does IL-1 signal through MEKK1 in HepG2 cells? Given the potential importance of MEKK1, we experimentally tested whether IL
Prediction of long-term transverse creep compliance in high-temperature IM7/LaRC-RP46 composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuan, F.G.; Potter, B.D.
1994-12-31
An experimental study is performed which predicts long-term tensile transverse creep compliance of high-temperature IM7/LaRC-RP46 composites from short-term creep and recovery tests. The short-term tests were conducted for various stress levels at various fixed temperatures. Predictive nonlinear viscoelastic model developed by Schapery and experimental procedure were used to predict the long-term results in terms of master curve extrapolated from short-term tests.
Corron, Louise; Marchal, François; Condemi, Silvana; Chaumoître, Kathia; Adalian, Pascal
2017-01-01
Juvenile age estimation methods used in forensic anthropology generally lack methodological consistency and/or statistical validity. Considering this, a standard approach using nonparametric Multivariate Adaptive Regression Splines (MARS) models were tested to predict age from iliac biometric variables of male and female juveniles from Marseilles, France, aged 0-12 years. Models using unidimensional (length and width) and bidimensional iliac data (module and surface) were constructed on a training sample of 176 individuals and validated on an independent test sample of 68 individuals. Results show that MARS prediction models using iliac width, module and area give overall better and statistically valid age estimates. These models integrate punctual nonlinearities of the relationship between age and osteometric variables. By constructing valid prediction intervals whose size increases with age, MARS models take into account the normal increase of individual variability. MARS models can qualify as a practical and standardized approach for juvenile age estimation. © 2016 American Academy of Forensic Sciences.
Choo, Min Soo; Jeong, Seong Jin; Cho, Sung Yong; Yoo, Changwon; Jeong, Chang Wook; Ku, Ja Hyeon; Oh, Seung-June
2017-04-01
We aimed to externally validate the prediction model we developed for having bladder outlet obstruction (BOO) and requiring prostatic surgery using 2 independent data sets from tertiary referral centers, and also aimed to validate a mobile app for using this model through usability testing. Formulas and nomograms predicting whether a subject has BOO and needs prostatic surgery were validated with an external validation cohort from Seoul National University Bundang Hospital and Seoul Metropolitan Government-Seoul National University Boramae Medical Center between January 2004 and April 2015. A smartphone-based app was developed, and 8 young urologists were enrolled for usability testing to identify any human factor issues of the app. A total of 642 patients were included in the external validation cohort. No significant differences were found in the baseline characteristics of major parameters between the original (n=1,179) and the external validation cohort, except for the maximal flow rate. Predictions of requiring prostatic surgery in the validation cohort showed a sensitivity of 80.6%, a specificity of 73.2%, a positive predictive value of 49.7%, and a negative predictive value of 92.0%, and area under receiver operating curve of 0.84. The calibration plot indicated that the predictions have good correspondence. The decision curve showed also a high net benefit. Similar evaluation results using the external validation cohort were seen in the predictions of having BOO. Overall results of the usability test demonstrated that the app was user-friendly with no major human factor issues. External validation of these newly developed a prediction model demonstrated a moderate level of discrimination, adequate calibration, and high net benefit gains for predicting both having BOO and requiring prostatic surgery. Also a smartphone app implementing the prediction model was user-friendly with no major human factor issue.
Varying execution discipline to increase performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campbell, P.L.; Maccabe, A.B.
1993-12-22
This research investigates the relationship between execution discipline and performance. The hypothesis has two parts: 1. Different execution disciplines exhibit different performance for different computations, and 2. These differences can be effectively predicted by heuristics. A machine model is developed that can vary its execution discipline. That is, the model can execute a given program using either the control-driven, data-driven or demand-driven execution discipline. This model is referred to as a ``variable-execution-discipline`` machine. The instruction set for the model is the Program Dependence Web (PDW). The first part of the hypothesis will be tested by simulating the execution of themore » machine model on a suite of computations, based on the Livermore Fortran Kernel (LFK) Test (a.k.a. the Livermore Loops), using all three execution disciplines. Heuristics are developed to predict relative performance. These heuristics predict (a) the execution time under each discipline for one iteration of each loop and (b) the number of iterations taken by that loop; then the heuristics use those predictions to develop a prediction for the execution of the entire loop. Similar calculations are performed for branch statements. The second part of the hypothesis will be tested by comparing the results of the simulated execution with the predictions produced by the heuristics. If the hypothesis is supported, then the door is open for the development of machines that can vary execution discipline to increase performance.« less
Validation of catchment models for predicting land-use and climate change impacts. 1. Method
NASA Astrophysics Data System (ADS)
Ewen, J.; Parkin, G.
1996-02-01
Computer simulation models are increasingly being proposed as tools capable of giving water resource managers accurate predictions of the impact of changes in land-use and climate. Previous validation testing of catchment models is reviewed, and it is concluded that the methods used do not clearly test a model's fitness for such a purpose. A new generally applicable method is proposed. This involves the direct testing of fitness for purpose, uses established scientific techniques, and may be implemented within a quality assured programme of work. The new method is applied in Part 2 of this study (Parkin et al., J. Hydrol., 175:595-613, 1996).
Luque, M J; Tapia, J L; Villarroel, L; Marshall, G; Musante, G; Carlo, W; Kattan, J
2014-01-01
Develop a risk prediction model for severe intraventricular hemorrhage (IVH) in very low birth weight infants (VLBWI). Prospectively collected data of infants with birth weight 500 to 1249 g born between 2001 and 2010 in centers from the Neocosur Network were used. Forward stepwise logistic regression model was employed. The model was tested in the 2011 cohort and then applied to the population of VLBWI that received prophylactic indomethacin to analyze its effect in the risk of severe IVH. Data from 6538 VLBWI were analyzed. The area under ROC curve for the model was 0.79 and 0.76 when tested in the 2011 cohort. The prophylactic indomethacin group had lower incidence of severe IVH, especially in the highest-risk groups. A model for early severe IVH prediction was developed and tested in our population. Prophylactic indomethacin was associated with a lower risk-adjusted incidence of severe IVH.
NASA Technical Reports Server (NTRS)
Yechout, T. R.; Braman, K. B.
1984-01-01
The development, implementation and flight test evaluation of a performance modeling technique which required a limited amount of quasisteady state flight test data to predict the overall one g performance characteristics of an aircraft. The concept definition phase of the program include development of: (1) the relationship for defining aerodynamic characteristics from quasi steady state maneuvers; (2) a simplified in flight thrust and airflow prediction technique; (3) a flight test maneuvering sequence which efficiently provided definition of baseline aerodynamic and engine characteristics including power effects on lift and drag; and (4) the algorithms necessary for cruise and flight trajectory predictions. Implementation of the concept include design of the overall flight test data flow, definition of instrumentation system and ground test requirements, development and verification of all applicable software and consolidation of the overall requirements in a flight test plan.
NASA Technical Reports Server (NTRS)
Putnam, Jacob P.; Untaroiu, Costin; Somers. Jeffrey
2014-01-01
In an effort to develop occupant protection standards for future multipurpose crew vehicles, the National Aeronautics and Space Administration (NASA) has looked to evaluate the test device for human occupant restraint with the modification kit (THOR-K) anthropomorphic test device (ATD) in relevant impact test scenarios. With the allowance and support of the National Highway Traffic Safety Administration, NASA has performed a series of sled impact tests on the latest developed THOR-K ATD. These tests were performed to match test conditions from human volunteer data previously collected by the U.S. Air Force. The objective of this study was to evaluate the THOR-K finite element (FE) model and the Total HUman Model for Safety (THUMS) FE model with respect to the tests performed. These models were evaluated in spinal and frontal impacts against kinematic and kinetic data recorded in ATD and human testing. Methods: The FE simulations were developed based on recorded pretest ATD/human position and sled acceleration pulses measured during testing. Predicted responses by both human and ATD models were compared to test data recorded under the same impact conditions. The kinematic responses of the models were quantitatively evaluated using the ISO-metric curve rating system. In addition, ATD injury criteria and human stress/strain data were calculated to evaluate the risk of injury predicted by the ATD and human model, respectively. Results: Preliminary results show well-correlated response between both FE models and their physical counterparts. In addition, predicted ATD injury criteria and human model stress/strain values are shown to positively relate. Kinematic comparison between human and ATD models indicates promising biofidelic response, although a slightly stiffer response is observed within the ATD. Conclusion: As a compliment to ATD testing, numerical simulation provides efficient means to assess vehicle safety throughout the design process and further improve the design of physical ATDs. The assessment of the THOR-K and THUMS FE models in a spaceflight testing condition is an essential first step to implementing these models in the computational evaluation of spacecraft occupant safety. Promising results suggest future use of these models in the aerospace field.
Computer simulation of solder joint failure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burchett, S.N.; Frear, D.R.; Rashid, M.M.
The thermomechanical fatigue failure of solder joints is increasingly becoming an important reliability issue for electronic packages. The purpose of this Laboratory Directed Research and Development (LDRD) project was to develop computational tools for simulating the behavior of solder joints under strain and temperature cycling, taking into account the microstructural heterogeneities that exist in as-solidified near eutectic Sn-Pb joints, as well as subsequent microstructural evolution. The authors present two computational constitutive models, a two-phase model and a single-phase model, that were developed to predict the behavior of near eutectic Sn-Pb solder joints under fatigue conditions. Unique metallurgical tests provide themore » fundamental input for the constitutive relations. The two-phase model mathematically predicts the heterogeneous coarsening behavior of near eutectic Sn-Pb solder. The finite element simulations with this model agree qualitatively with experimental thermomechanical fatigue tests. The simulations show that the presence of an initial heterogeneity in the solder microstructure could significantly degrade the fatigue lifetime. The single-phase model was developed to predict solder joint behavior using materials data for constitutive relation constants that could be determined through straightforward metallurgical experiments. Special thermomechanical fatigue tests were developed to give fundamental materials input to the models, and an in situ SEM thermomechanical fatigue test system was developed to characterize microstructural evolution and the mechanical behavior of solder joints during the test. A shear/torsion test sample was developed to impose strain in two different orientations. Materials constants were derived from these tests. The simulation results from the two-phase model showed good fit to the experimental test results.« less
Naik, P K; Singh, T; Singh, H
2009-07-01
Quantitative structure-activity relationship (QSAR) analyses were performed independently on data sets belonging to two groups of insecticides, namely the organophosphates and carbamates. Several types of descriptors including topological, spatial, thermodynamic, information content, lead likeness and E-state indices were used to derive quantitative relationships between insecticide activities and structural properties of chemicals. A systematic search approach based on missing value, zero value, simple correlation and multi-collinearity tests as well as the use of a genetic algorithm allowed the optimal selection of the descriptors used to generate the models. The QSAR models developed for both organophosphate and carbamate groups revealed good predictability with r(2) values of 0.949 and 0.838 as well as [image omitted] values of 0.890 and 0.765, respectively. In addition, a linear correlation was observed between the predicted and experimental LD(50) values for the test set data with r(2) of 0.871 and 0.788 for both the organophosphate and carbamate groups, indicating that the prediction accuracy of the QSAR models was acceptable. The models were also tested successfully from external validation criteria. QSAR models developed in this study should help further design of novel potent insecticides.
Chen, Minjun; Tung, Chun-Wei; Shi, Qiang; Guo, Lei; Shi, Leming; Fang, Hong; Borlak, Jürgen; Tong, Weida
2014-07-01
Drug-induced liver injury (DILI) is a major cause of drug failures in both the preclinical and clinical phase. Consequently, improving prediction of DILI at an early stage of drug discovery will reduce the potential failures in the subsequent drug development program. In this regard, high-content screening (HCS) assays are considered as a promising strategy for the study of DILI; however, the predictive performance of HCS assays is frequently insufficient. In the present study, a new testing strategy was developed to improve DILI prediction by employing in vitro assays that was combined with the RO2 model (i.e., 'rule-of-two' defined by daily dose ≥100 mg/day & logP ≥3). The RO2 model was derived from the observation that high daily doses and lipophilicity of an oral medication were associated with significant DILI risk in humans. In the developed testing strategy, the RO2 model was used for the rational selection of candidates for HCS assays, and only the negatives predicted by the RO2 model were further investigated by HCS. Subsequently, the effects of drug treatment on cell loss, nuclear size, DNA damage/fragmentation, apoptosis, lysosomal mass, mitochondrial membrane potential, and steatosis were studied in cultures of primary rat hepatocytes. Using a set of 70 drugs with clear evidence of clinically relevant DILI, the testing strategy improved the accuracies by 10 % and reduced the number of drugs requiring experimental assessment by approximately 20 %, as compared to the HCS assay alone. Moreover, the testing strategy was further validated by including published data (Cosgrove et al. in Toxicol Appl Pharmacol 237:317-330, 2009) on drug-cytokine-induced hepatotoxicity, which improved the accuracies by 7 %. Taken collectively, the proposed testing strategy can significantly improve the prediction of in vitro assays for detecting DILI liability in an early drug discovery phase.
Bayesian model checking: A comparison of tests
NASA Astrophysics Data System (ADS)
Lucy, L. B.
2018-06-01
Two procedures for checking Bayesian models are compared using a simple test problem based on the local Hubble expansion. Over four orders of magnitude, p-values derived from a global goodness-of-fit criterion for posterior probability density functions agree closely with posterior predictive p-values. The former can therefore serve as an effective proxy for the difficult-to-calculate posterior predictive p-values.
Evaluation of Industry Standard Turbulence Models on an Axisymmetric Supersonic Compression Corner
NASA Technical Reports Server (NTRS)
DeBonis, James R.
2015-01-01
Reynolds-averaged Navier-Stokes computations of a shock-wave/boundary-layer interaction (SWBLI) created by a Mach 2.85 flow over an axisymmetric 30-degree compression corner were carried out. The objectives were to evaluate four turbulence models commonly used in industry, for SWBLIs, and to evaluate the suitability of this test case for use in further turbulence model benchmarking. The Spalart-Allmaras model, Menter's Baseline and Shear Stress Transport models, and a low-Reynolds number k- model were evaluated. Results indicate that the models do not accurately predict the separation location; with the SST model predicting the separation onset too early and the other models predicting the onset too late. Overall the Spalart-Allmaras model did the best job in matching the experimental data. However there is significant room for improvement, most notably in the prediction of the turbulent shear stress. Density data showed that the simulations did not accurately predict the thermal boundary layer upstream of the SWBLI. The effect of turbulent Prandtl number and wall temperature were studied in an attempt to improve this prediction and understand their effects on the interaction. The data showed that both parameters can significantly affect the separation size and location, but did not improve the agreement with the experiment. This case proved challenging to compute and should provide a good test for future turbulence modeling work.
Chu, Haitao; Nie, Lei; Cole, Stephen R; Poole, Charles
2009-08-15
In a meta-analysis of diagnostic accuracy studies, the sensitivities and specificities of a diagnostic test may depend on the disease prevalence since the severity and definition of disease may differ from study to study due to the design and the population considered. In this paper, we extend the bivariate nonlinear random effects model on sensitivities and specificities to jointly model the disease prevalence, sensitivities and specificities using trivariate nonlinear random-effects models. Furthermore, as an alternative parameterization, we also propose jointly modeling the test prevalence and the predictive values, which reflect the clinical utility of a diagnostic test. These models allow investigators to study the complex relationship among the disease prevalence, sensitivities and specificities; or among test prevalence and the predictive values, which can reveal hidden information about test performance. We illustrate the proposed two approaches by reanalyzing the data from a meta-analysis of radiological evaluation of lymph node metastases in patients with cervical cancer and a simulation study. The latter illustrates the importance of carefully choosing an appropriate normality assumption for the disease prevalence, sensitivities and specificities, or the test prevalence and the predictive values. In practice, it is recommended to use model selection techniques to identify a best-fitting model for making statistical inference. In summary, the proposed trivariate random effects models are novel and can be very useful in practice for meta-analysis of diagnostic accuracy studies. Copyright 2009 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Wu, Z. R.; Li, X.; Fang, L.; Song, Y. D.
2018-04-01
A new multiaxial fatigue life prediction model has been proposed in this paper. The concepts of nonlinear continuum damage mechanics and critical plane criteria were incorporated in the proposed model. The shear strain-based damage control parameter was chosen to account for multiaxial fatigue damage under constant amplitude loading. Fatigue tests were conducted on nickel-based superalloy GH4169 tubular specimens at the temperature of 400 °C under proportional and nonproportional loading. The proposed method was checked against the multiaxial fatigue test data of GH4169. Most of prediction results are within a factor of two scatter band of the test results.
Finite element modeling as a tool for predicting the fracture behavior of robocast scaffolds.
Miranda, Pedro; Pajares, Antonia; Guiberteau, Fernando
2008-11-01
The use of finite element modeling to calculate the stress fields in complex scaffold structures and thus predict their mechanical behavior during service (e.g., as load-bearing bone implants) is evaluated. The method is applied to identifying the fracture modes and estimating the strength of robocast hydroxyapatite and beta-tricalcium phosphate scaffolds, consisting of a three-dimensional lattice of interpenetrating rods. The calculations are performed for three testing configurations: compression, tension and shear. Different testing orientations relative to the calcium phosphate rods are considered for each configuration. The predictions for the compressive configurations are compared to experimental data from uniaxial compression tests.
Task-Specific Response Strategy Selection on the Basis of Recent Training Experience
Fulvio, Jacqueline M.; Green, C. Shawn; Schrater, Paul R.
2014-01-01
The goal of training is to produce learning for a range of activities that are typically more general than the training task itself. Despite a century of research, predicting the scope of learning from the content of training has proven extremely difficult, with the same task producing narrowly focused learning strategies in some cases and broadly scoped learning strategies in others. Here we test the hypothesis that human subjects will prefer a decision strategy that maximizes performance and reduces uncertainty given the demands of the training task and that the strategy chosen will then predict the extent to which learning is transferable. To test this hypothesis, we trained subjects on a moving dot extrapolation task that makes distinct predictions for two types of learning strategy: a narrow model-free strategy that learns an input-output mapping for training stimuli, and a general model-based strategy that utilizes humans' default predictive model for a class of trajectories. When the number of distinct training trajectories is low, we predict better performance for the mapping strategy, but as the number increases, a predictive model is increasingly favored. Consonant with predictions, subject extrapolations for test trajectories were consistent with using a mapping strategy when trained on a small number of training trajectories and a predictive model when trained on a larger number. The general framework developed here can thus be useful both in interpreting previous patterns of task-specific versus task-general learning, as well as in building future training paradigms with certain desired outcomes. PMID:24391490
NASA Astrophysics Data System (ADS)
Desai, C. S.; Sane, S. M.; Jenson, J. W.; Contractor, D. N.; Carlson, A. E.; Clark, P. U.
2006-12-01
This presentation, which is complementary to Part I (Jenson et al.), describes the application of the Disturbed State Concept (DSC) constitutive model to define the behavior of the deforming sediment (till) underlying glaciers and ice sheets. The DSC includes elastic, plastic, and creep strains, and microstructural changes leading to degradation, failure, and sometimes strengthening or healing. Here, we describe comprehensive laboratory experiments conducted on samples of two regionally significant tills deposited by the Laurentide Ice Sheet: the Tiskilwa Till and Sky Pilot Till. The tests are used to determine the parameters to calibrate the DSC model, which is validated with respect to the laboratory tests by comparing the predictions with test data used to find the parameters, and also comparing them with independent tests not used to find the parameters. Discussion of the results also includes comparison of the DSC model with the classical Mohr-Coulomb model, which has been commonly used for glacial tills. A numerical procedure based on finite element implementation of the DSC is used to simulate an idealized field problem, and its predictions are discussed. Based on these analyses, the unified DSC model is proposed to provide an improved model for subglacial tills compared to other models used commonly, and thus to provide the potential for improved predictions of ice sheet movements.
Physics-based model for predicting the performance of a miniature wind turbine
NASA Astrophysics Data System (ADS)
Xu, F. J.; Hu, J. Z.; Qiu, Y. P.; Yuan, F. G.
2011-04-01
A comprehensive physics-based model for predicting the performance of the miniature wind turbine (MWT) for power wireless sensor systems was proposed in this paper. An approximation of the power coefficient of the turbine rotor was made after the turbine rotor performance was measured. Incorporation of the approximation with the equivalent circuit model which was proposed according to the principles of the MWT, the overall system performance of the MWT was predicted. To demonstrate the prediction, the MWT system comprised of a 7.6 cm thorgren plastic propeller as turbine rotor and a DC motor as generator was designed and its performance was tested experimentally. The predicted output voltage, power and system efficiency are matched well with the tested results, which imply that this study holds promise in estimating and optimizing the performance of the MWT.
Construction and evaluation of FiND, a fall risk prediction model of inpatients from nursing data.
Yokota, Shinichiroh; Ohe, Kazuhiko
2016-04-01
To construct and evaluate an easy-to-use fall risk prediction model based on the daily condition of inpatients from secondary use electronic medical record system data. The present authors scrutinized electronic medical record system data and created a dataset for analysis by including inpatient fall report data and Intensity of Nursing Care Needs data. The authors divided the analysis dataset into training data and testing data, then constructed the fall risk prediction model FiND from the training data, and tested the model using the testing data. The dataset for analysis contained 1,230,604 records from 46,241 patients. The sensitivity of the model constructed from the training data was 71.3% and the specificity was 66.0%. The verification result from the testing dataset was almost equivalent to the theoretical value. Although the model's accuracy did not surpass that of models developed in previous research, the authors believe FiND will be useful in medical institutions all over Japan because it is composed of few variables (only age, sex, and the Intensity of Nursing Care Needs items), and the accuracy for unknown data was clear. © 2016 Japan Academy of Nursing Science.
Klemans, Rob J B; Otte, Dianne; Knol, Mirjam; Knol, Edward F; Meijer, Yolanda; Gmelig-Meyling, Frits H J; Bruijnzeel-Koomen, Carla A F M; Knulst, André C; Pasmans, Suzanne G M A
2013-01-01
A diagnostic prediction model for peanut allergy in children was recently published, using 6 predictors: sex, age, history, skin prick test, peanut specific immunoglobulin E (sIgE), and total IgE minus peanut sIgE. To validate this model and update it by adding allergic rhinitis, atopic dermatitis, and sIgE to peanut components Ara h 1, 2, 3, and 8 as candidate predictors. To develop a new model based only on sIgE to peanut components. Validation was performed by testing discrimination (diagnostic value) with an area under the receiver operating characteristic curve and calibration (agreement between predicted and observed frequencies of peanut allergy) with the Hosmer-Lemeshow test and a calibration plot. The performance of the (updated) models was similarly analyzed. Validation of the model in 100 patients showed good discrimination (88%) but poor calibration (P < .001). In the updating process, age, history, and additional candidate predictors did not significantly increase discrimination, being 94%, and leaving only 4 predictors of the original model: sex, skin prick test, peanut sIgE, and total IgE minus sIgE. When building a model with sIgE to peanut components, Ara h 2 was the only predictor, with a discriminative ability of 90%. Cutoff values with 100% positive and negative predictive values could be calculated for both the updated model and sIgE to Ara h 2. In this way, the outcome of the food challenge could be predicted with 100% accuracy in 59% (updated model) and 50% (Ara h 2) of the patients. Discrimination of the validated model was good; however, calibration was poor. The discriminative ability of Ara h 2 was almost comparable to that of the updated model, containing 4 predictors. With both models, the need for peanut challenges could be reduced by at least 50%. Copyright © 2012 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.
Antanasijević, Davor; Pocajt, Viktor; Povrenović, Dragan; Perić-Grujić, Aleksandra; Ristić, Mirjana
2013-12-01
The aims of this study are to create an artificial neural network (ANN) model using non-specific water quality parameters and to examine the accuracy of three different ANN architectures: General Regression Neural Network (GRNN), Backpropagation Neural Network (BPNN) and Recurrent Neural Network (RNN), for prediction of dissolved oxygen (DO) concentration in the Danube River. The neural network model has been developed using measured data collected from the Bezdan monitoring station on the Danube River. The input variables used for the ANN model are water flow, temperature, pH and electrical conductivity. The model was trained and validated using available data from 2004 to 2008 and tested using the data from 2009. The order of performance for the created architectures based on their comparison with the test data is RNN > GRNN > BPNN. The ANN results are compared with multiple linear regression (MLR) model using multiple statistical indicators. The comparison of the RNN model with the MLR model indicates that the RNN model performs much better, since all predictions of the RNN model for the test data were within the error of less than ± 10 %. In case of the MLR, only 55 % of predictions were within the error of less than ± 10 %. The developed RNN model can be used as a tool for the prediction of DO in river waters.
Effects of elevated temperature on the viscoplastic modeling of graphite/polymeric composites
NASA Technical Reports Server (NTRS)
Gates, Thomas S.
1991-01-01
To support the development of new materials for the design of next generation supersonic transports, a research program is underway at NASA to assess the long term durability of advanced polymer matrix composites (PMC's). One of main objectives of the program was to explore the effects of elevated temperature (23 to 200 C) on the constitutive model's material parameters. To achieve this goal, test data on the observed nonlinear, stress-strain behavior of IM7/5260 and IM7/8320 composites under tension and compression loading were collected and correlated against temperature. These tests, conducted under isothermal conditions using variable strain rates, included such phenomena as stress relaxation and short term creep. The second major goal was the verification of the model by comparison of analytical predictions and test results for off axis and angle ply laminates. Correlation between test and predicted behavior was performed for specimens of both material systems over a range of temperatures. Results indicated that the model provided reasonable predictions of material behavior in load or strain controlled tests. Periods of loading, unloading, stress relaxation, and creep were accounted for.
National Centers for Environmental Prediction
Modeling Mesoscale Modeling Marine Modeling and Analysis Teams Climate Data Assimilation Ensembles and Post missed NDAS cycles since 1 Apr 1995 Log of NAM model code changes Log of NAM model test runs Problems and Prediction (NCWCP) 5830 University Research Court College Park, MD 20740 Page Author: EMC Webmaster Page
The construction of life prediction models for the design of Stirling engine heater components
NASA Technical Reports Server (NTRS)
Petrovich, A.; Bright, A.; Cronin, M.; Arnold, S.
1983-01-01
The service life of Stirling-engine heater structures of Fe-based high-temperature alloys is predicted using a numerical model based on a linear-damage approach and published test data (engine test data for a Co-based alloy and tensile-test results for both the Co-based and the Fe-based alloys). The operating principle of the automotive Stirling engine is reviewed; the economic and technical factors affecting the choice of heater material are surveyed; the test results are summarized in tables and graphs; the engine environment and automotive duty cycle are characterized; and the modeling procedure is explained. It is found that the statistical scatter of the fatigue properties of the heater components needs to be reduced (by decreasing the porosity of the cast material or employing wrought material in fatigue-prone locations) before the accuracy of life predictions can be improved.
Changing the approach to treatment choice in epilepsy using big data.
Devinsky, Orrin; Dilley, Cynthia; Ozery-Flato, Michal; Aharonov, Ranit; Goldschmidt, Ya'ara; Rosen-Zvi, Michal; Clark, Chris; Fritz, Patty
2016-03-01
A UCB-IBM collaboration explored the application of machine learning to large claims databases to construct an algorithm for antiepileptic drug (AED) choice for individual patients. Claims data were collected between January 2006 and September 2011 for patients with epilepsy > 16 years of age. A subset of patient claims with a valid index date of AED treatment change (new, add, or switch) were used to train the AED prediction model by retrospectively evaluating an index date treatment for subsequent treatment change. Based on the trained model, a model-predicted AED regimen with the lowest likelihood of treatment change was assigned to each patient in the group of test claims, and outcomes were evaluated to test model validity. The model had 72% area under receiver operator characteristic curve, indicating good predictive power. Patients who were given the model-predicted AED regimen had significantly longer survival rates (time until a treatment change event) and lower expected health resource utilization on average than those who received another treatment. The actual prescribed AED regimen at the index date matched the model-predicted AED regimen in only 13% of cases; there were large discrepancies in the frequency of use of certain AEDs/combinations between model-predicted AED regimens and those actually prescribed. Chances of treatment success were improved if patients received the model-predicted treatment. Using the model's prediction system may enable personalized, evidence-based epilepsy care, accelerating the match between patients and their ideal therapy, thereby delivering significantly better health outcomes for patients and providing health-care savings by applying resources more efficiently. Our goal will be to strengthen the predictive power of the model by integrating diverse data sets and potentially moving to prospective data collection. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.
Examining the Latent Structure of the Delis-Kaplan Executive Function System.
Karr, Justin E; Hofer, Scott M; Iverson, Grant L; Garcia-Barrera, Mauricio A
2018-05-04
The current study aimed to determine whether the Delis-Kaplan Executive Function System (D-KEFS) taps into three executive function factors (inhibition, shifting, fluency) and to assess the relationship between these factors and tests of executive-related constructs less often measured in latent variable research: reasoning, abstraction, and problem solving. Participants included 425 adults from the D-KEFS standardization sample (20-49 years old; 50.1% female; 70.1% White). Eight alternative measurement models were compared based on model fit, with test scores assigned a priori to three factors: inhibition (Color-Word Interference, Tower), shifting (Trail Making, Sorting, Design Fluency), and fluency (Verbal/Design Fluency). The Twenty Questions, Word Context, and Proverb Tests were predicted in separate structural models. The three-factor model fit the data well (CFI = 0.938; RMSEA = 0.047), although a two-factor model, with shifting and fluency merged, fit similarly well (CFI = 0.929; RMSEA = 0.048). A bifactor model fit best (CFI = 0.977; RMSEA = 0.032) and explained the most variance in shifting indicators, but rarely converged among 5,000 bootstrapped samples. When the three first-order factors simultaneously predicted the criterion variables, only shifting was uniquely predictive (p < .05; R2 = 0.246-0.408). The bifactor significantly predicted all three criterion variables (p < .001; R2 = 0.141-242). Results supported a three-factor D-KEFS model (i.e., inhibition, shifting, and fluency), although shifting and fluency were highly related (r = 0.696). The bifactor showed superior fit, but converged less often than other models. Shifting best predicted tests of reasoning, abstraction, and problem solving. These findings support the validity of D-KEFS scores for measuring executive-related constructs and provide a framework through which clinicians can interpret D-KEFS results.
Testing and extension of a sea lamprey feeding model
Cochran, Philip A.; Swink, William D.; Kinziger, Andrew P.
1999-01-01
A previous model of feeding by sea lamprey Petromyzon marinus predicted energy intake and growth by lampreys as a function of lamprey size, host size, and duration of feeding attachments, but it was applicable only to lampreys feeding at 10°C and it was tested against only a single small data set of limited scope. We extended the model to other temperatures and tested it against an extensive data set (more than 700 feeding bouts) accumulated during experiments with captive sea lampreys. Model predictions of instantaneous growth were highly correlated with observed growth, and a partitioning of mean squared error between model predictions and observed results showed that 88.5% of the variance was due to random variation rather than to systematic errors. However, deviations between observed and predicted values varied substantially, especially for short feeding bouts. Predicted and observed growth trajectories of individual lampreys during multiple feeding bouts during the summer tended to correspond closely, but predicted growth was generally much higher than observed growth late in the year. This suggests the possibility that large overwintering lampreys reduce their feeding rates while attached to hosts. Seasonal or size-related shifts in the fate of consumed energy may provide an alternative explanation. The lamprey feeding model offers great flexibility in assessing growth of captive lampreys within various experimental protocols (e.g., different host species or thermal regimes) because it controls for individual differences in feeding history.
Pulse Jet Mixing Tests With Noncohesive Solids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meyer, Perry A.; Bamberger, Judith A.; Enderlin, Carl W.
2012-02-17
This report summarizes results from pulse jet mixing (PJM) tests with noncohesive solids in Newtonian liquid. The tests were conducted during FY 2007 and 2008 to support the design of mixing systems for the Hanford Waste Treatment and Immobilization Plant (WTP). Tests were conducted at three geometric scales using noncohesive simulants, and the test data were used to develop models predicting two measures of mixing performance for full-scale WTP vessels. The models predict the cloud height (the height to which solids will be lifted by the PJM action) and the critical suspension velocity (the minimum velocity needed to ensure allmore » solids are suspended off the floor, though not fully mixed). From the cloud height, the concentration of solids at the pump inlet can be estimated. The predicted critical suspension velocity for lifting all solids is not precisely the same as the mixing requirement for 'disturbing' a sufficient volume of solids, but the values will be similar and closely related. These predictive models were successfully benchmarked against larger scale tests and compared well with results from computational fluid dynamics simulations. The application of the models to assess mixing in WTP vessels is illustrated in examples for 13 distinct designs and selected operational conditions. The values selected for these examples are not final; thus, the estimates of performance should not be interpreted as final conclusions of design adequacy or inadequacy. However, this work does reveal that several vessels may require adjustments to design, operating features, or waste feed properties to ensure confidence in operation. The models described in this report will prove to be valuable engineering tools to evaluate options as designs are finalized for the WTP. Revision 1 refines data sets used for model development and summarizes models developed since the completion of Revision 0.« less
Multivariate Models for Prediction of Human Skin Sensitization Hazard
Strickland, Judy; Zang, Qingda; Paris, Michael; Lehmann, David M.; Allen, David; Choksi, Neepa; Matheson, Joanna; Jacobs, Abigail; Casey, Warren; Kleinstreuer, Nicole
2016-01-01
One of ICCVAM’s top priorities is the development and evaluation of non-animal approaches to identify potential skin sensitizers. The complexity of biological events necessary to produce skin sensitization suggests that no single alternative method will replace the currently accepted animal tests. ICCVAM is evaluating an integrated approach to testing and assessment based on the adverse outcome pathway for skin sensitization that uses machine learning approaches to predict human skin sensitization hazard. We combined data from three in chemico or in vitro assays—the direct peptide reactivity assay (DPRA), human cell line activation test (h-CLAT), and KeratinoSens™ assay—six physicochemical properties, and an in silico read-across prediction of skin sensitization hazard into 12 variable groups. The variable groups were evaluated using two machine learning approaches, logistic regression (LR) and support vector machine (SVM), to predict human skin sensitization hazard. Models were trained on 72 substances and tested on an external set of 24 substances. The six models (three LR and three SVM) with the highest accuracy (92%) used: (1) DPRA, h-CLAT, and read-across; (2) DPRA, h-CLAT, read-across, and KeratinoSens; or (3) DPRA, h-CLAT, read-across, KeratinoSens, and log P. The models performed better at predicting human skin sensitization hazard than the murine local lymph node assay (accuracy = 88%), any of the alternative methods alone (accuracy = 63–79%), or test batteries combining data from the individual methods (accuracy = 75%). These results suggest that computational methods are promising tools to effectively identify potential human skin sensitizers without animal testing. PMID:27480324
NASA Technical Reports Server (NTRS)
Howland, G. R.; Durno, J. A.; Twomey, W. J.
1990-01-01
Sikorsky Aircraft, together with the other major helicopter airframe manufacturers, is engaged in a study to improve the use of finite element analysis to predict the dynamic behavior of helicopter airframes, under a rotorcraft structural dynamics program called DAMVIBS (Design Analysis Methods for VIBrationS), sponsored by the NASA-Langley. The test plan and test results are presented for a shake test of the UH-60A BLACK HAWK helicopter. A comparison is also presented of test results with results obtained from analysis using a NASTRAN finite element model.
Developing and Testing a Model to Predict Outcomes of Organizational Change
Gustafson, David H; Sainfort, François; Eichler, Mary; Adams, Laura; Bisognano, Maureen; Steudel, Harold
2003-01-01
Objective To test the effectiveness of a Bayesian model employing subjective probability estimates for predicting success and failure of health care improvement projects. Data Sources Experts' subjective assessment data for model development and independent retrospective data on 221 healthcare improvement projects in the United States, Canada, and the Netherlands collected between 1996 and 2000 for validation. Methods A panel of theoretical and practical experts and literature in organizational change were used to identify factors predicting the outcome of improvement efforts. A Bayesian model was developed to estimate probability of successful change using subjective estimates of likelihood ratios and prior odds elicited from the panel of experts. A subsequent retrospective empirical analysis of change efforts in 198 health care organizations was performed to validate the model. Logistic regression and ROC analysis were used to evaluate the model's performance using three alternative definitions of success. Data Collection For the model development, experts' subjective assessments were elicited using an integrative group process. For the validation study, a staff person intimately involved in each improvement project responded to a written survey asking questions about model factors and project outcomes. Results Logistic regression chi-square statistics and areas under the ROC curve demonstrated a high level of model performance in predicting success. Chi-square statistics were significant at the 0.001 level and areas under the ROC curve were greater than 0.84. Conclusions A subjective Bayesian model was effective in predicting the outcome of actual improvement projects. Additional prospective evaluations as well as testing the impact of this model as an intervention are warranted. PMID:12785571
Dell, Gary S.; Martin, Nadine; Schwartz, Myrna F.
2010-01-01
Lexical access in language production, and particularly pathologies of lexical access, are often investigated by examining errors in picture naming and word repetition. In this article, we test a computational approach to lexical access, the two-step interactive model, by examining whether the model can quantitatively predict the repetition-error patterns of 65 aphasic subjects from their naming errors. The model’s characterizations of the subjects’ naming errors were taken from the companion paper to this one (Schwartz, Dell, N. Martin, Gahl & Sobel, 2006), and their repetition was predicted from the model on the assumption that naming involves two error prone steps, word and phonological retrieval, whereas repetition only creates errors in the second of these steps. A version of the model in which lexical-semantic and lexical-phonological connections could be independently lesioned was generally successful in predicting repetition for the aphasics. An analysis of the few cases in which model predictions were inaccurate revealed the role of input phonology in the repetition task. PMID:21085621
A Method to Test Model Calibration Techniques
DOE Office of Scientific and Technical Information (OSTI.GOV)
Judkoff, Ron; Polly, Ben; Neymark, Joel
This paper describes a method for testing model calibration techniques. Calibration is commonly used in conjunction with energy retrofit audit models. An audit is conducted to gather information about the building needed to assemble an input file for a building energy modeling tool. A calibration technique is used to reconcile model predictions with utility data, and then the 'calibrated model' is used to predict energy savings from a variety of retrofit measures and combinations thereof. Current standards and guidelines such as BPI-2400 and ASHRAE-14 set criteria for 'goodness of fit' and assume that if the criteria are met, then themore » calibration technique is acceptable. While it is logical to use the actual performance data of the building to tune the model, it is not certain that a good fit will result in a model that better predicts post-retrofit energy savings. Therefore, the basic idea here is that the simulation program (intended for use with the calibration technique) is used to generate surrogate utility bill data and retrofit energy savings data against which the calibration technique can be tested. This provides three figures of merit for testing a calibration technique, 1) accuracy of the post-retrofit energy savings prediction, 2) closure on the 'true' input parameter values, and 3) goodness of fit to the utility bill data. The paper will also discuss the pros and cons of using this synthetic surrogate data approach versus trying to use real data sets of actual buildings.« less
A Method to Test Model Calibration Techniques: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Judkoff, Ron; Polly, Ben; Neymark, Joel
This paper describes a method for testing model calibration techniques. Calibration is commonly used in conjunction with energy retrofit audit models. An audit is conducted to gather information about the building needed to assemble an input file for a building energy modeling tool. A calibration technique is used to reconcile model predictions with utility data, and then the 'calibrated model' is used to predict energy savings from a variety of retrofit measures and combinations thereof. Current standards and guidelines such as BPI-2400 and ASHRAE-14 set criteria for 'goodness of fit' and assume that if the criteria are met, then themore » calibration technique is acceptable. While it is logical to use the actual performance data of the building to tune the model, it is not certain that a good fit will result in a model that better predicts post-retrofit energy savings. Therefore, the basic idea here is that the simulation program (intended for use with the calibration technique) is used to generate surrogate utility bill data and retrofit energy savings data against which the calibration technique can be tested. This provides three figures of merit for testing a calibration technique, 1) accuracy of the post-retrofit energy savings prediction, 2) closure on the 'true' input parameter values, and 3) goodness of fit to the utility bill data. The paper will also discuss the pros and cons of using this synthetic surrogate data approach versus trying to use real data sets of actual buildings.« less
Thermal Model Predictions of Advanced Stirling Radioisotope Generator Performance
NASA Technical Reports Server (NTRS)
Wang, Xiao-Yen J.; Fabanich, William Anthony; Schmitz, Paul C.
2014-01-01
This paper presents recent thermal model results of the Advanced Stirling Radioisotope Generator (ASRG). The three-dimensional (3D) ASRG thermal power model was built using the Thermal Desktop(trademark) thermal analyzer. The model was correlated with ASRG engineering unit test data and ASRG flight unit predictions from Lockheed Martin's (LM's) I-deas(trademark) TMG thermal model. The auxiliary cooling system (ACS) of the ASRG is also included in the ASRG thermal model. The ACS is designed to remove waste heat from the ASRG so that it can be used to heat spacecraft components. The performance of the ACS is reported under nominal conditions and during a Venus flyby scenario. The results for the nominal case are validated with data from Lockheed Martin. Transient thermal analysis results of ASRG for a Venus flyby with a representative trajectory are also presented. In addition, model results of an ASRG mounted on a Cassini-like spacecraft with a sunshade are presented to show a way to mitigate the high temperatures of a Venus flyby. It was predicted that the sunshade can lower the temperature of the ASRG alternator by 20 C for the representative Venus flyby trajectory. The 3D model also was modified to predict generator performance after a single Advanced Stirling Convertor failure. The geometry of the Microtherm HT insulation block on the outboard side was modified to match deformation and shrinkage observed during testing of a prototypic ASRG test fixture by LM. Test conditions and test data were used to correlate the model by adjusting the thermal conductivity of the deformed insulation to match the post-heat-dump steady state temperatures. Results for these conditions showed that the performance of the still-functioning inboard ACS was unaffected.
Kormány, Róbert; Fekete, Jenő; Guillarme, Davy; Fekete, Szabolcs
2014-02-01
The goal of this study was to evaluate the accuracy of simulated robustness testing using commercial modelling software (DryLab) and state-of-the-art stationary phases. For this purpose, a mixture of amlodipine and its seven related impurities was analyzed on short narrow bore columns (50×2.1mm, packed with sub-2μm particles) providing short analysis times. The performance of commercial modelling software for robustness testing was systematically compared to experimental measurements and DoE based predictions. We have demonstrated that the reliability of predictions was good, since the predicted retention times and resolutions were in good agreement with the experimental ones at the edges of the design space. In average, the retention time relative errors were <1.0%, while the predicted critical resolution errors were comprised between 6.9 and 17.2%. Because the simulated robustness testing requires significantly less experimental work than the DoE based predictions, we think that robustness could now be investigated in the early stage of method development. Moreover, the column interchangeability, which is also an important part of robustness testing, was investigated considering five different C8 and C18 columns packed with sub-2μm particles. Again, thanks to modelling software, we proved that the separation was feasible on all columns within the same analysis time (less than 4min), by proper adjustments of variables. Copyright © 2013 Elsevier B.V. All rights reserved.
Assessing Discriminative Performance at External Validation of Clinical Prediction Models
Nieboer, Daan; van der Ploeg, Tjeerd; Steyerberg, Ewout W.
2016-01-01
Introduction External validation studies are essential to study the generalizability of prediction models. Recently a permutation test, focusing on discrimination as quantified by the c-statistic, was proposed to judge whether a prediction model is transportable to a new setting. We aimed to evaluate this test and compare it to previously proposed procedures to judge any changes in c-statistic from development to external validation setting. Methods We compared the use of the permutation test to the use of benchmark values of the c-statistic following from a previously proposed framework to judge transportability of a prediction model. In a simulation study we developed a prediction model with logistic regression on a development set and validated them in the validation set. We concentrated on two scenarios: 1) the case-mix was more heterogeneous and predictor effects were weaker in the validation set compared to the development set, and 2) the case-mix was less heterogeneous in the validation set and predictor effects were identical in the validation and development set. Furthermore we illustrated the methods in a case study using 15 datasets of patients suffering from traumatic brain injury. Results The permutation test indicated that the validation and development set were homogenous in scenario 1 (in almost all simulated samples) and heterogeneous in scenario 2 (in 17%-39% of simulated samples). Previously proposed benchmark values of the c-statistic and the standard deviation of the linear predictors correctly pointed at the more heterogeneous case-mix in scenario 1 and the less heterogeneous case-mix in scenario 2. Conclusion The recently proposed permutation test may provide misleading results when externally validating prediction models in the presence of case-mix differences between the development and validation population. To correctly interpret the c-statistic found at external validation it is crucial to disentangle case-mix differences from incorrect regression coefficients. PMID:26881753
Assessing Discriminative Performance at External Validation of Clinical Prediction Models.
Nieboer, Daan; van der Ploeg, Tjeerd; Steyerberg, Ewout W
2016-01-01
External validation studies are essential to study the generalizability of prediction models. Recently a permutation test, focusing on discrimination as quantified by the c-statistic, was proposed to judge whether a prediction model is transportable to a new setting. We aimed to evaluate this test and compare it to previously proposed procedures to judge any changes in c-statistic from development to external validation setting. We compared the use of the permutation test to the use of benchmark values of the c-statistic following from a previously proposed framework to judge transportability of a prediction model. In a simulation study we developed a prediction model with logistic regression on a development set and validated them in the validation set. We concentrated on two scenarios: 1) the case-mix was more heterogeneous and predictor effects were weaker in the validation set compared to the development set, and 2) the case-mix was less heterogeneous in the validation set and predictor effects were identical in the validation and development set. Furthermore we illustrated the methods in a case study using 15 datasets of patients suffering from traumatic brain injury. The permutation test indicated that the validation and development set were homogenous in scenario 1 (in almost all simulated samples) and heterogeneous in scenario 2 (in 17%-39% of simulated samples). Previously proposed benchmark values of the c-statistic and the standard deviation of the linear predictors correctly pointed at the more heterogeneous case-mix in scenario 1 and the less heterogeneous case-mix in scenario 2. The recently proposed permutation test may provide misleading results when externally validating prediction models in the presence of case-mix differences between the development and validation population. To correctly interpret the c-statistic found at external validation it is crucial to disentangle case-mix differences from incorrect regression coefficients.
NASA Technical Reports Server (NTRS)
Underwood, J. M.; Cooke, D. R.
1982-01-01
A correlation of the stability and control derivatives from flight (STS-1 & 2) with preflight predictions is presented across the Mach range from 0.9 to 25. Flight data obtained from specially designed flight test maneuvers as well as from conventional bank maneuvers generally indicate good agreement with predicted data. However, the vehicle appears to be lateral-directionally more stable than predicted in the transonic regime. Aerodynamic 'reasonableness tests' are employed to test for validity of flight data. The importance of testing multiple models in multiple wind tunnels at the same test conditions is demonstrated.
Statistical analysis of modeling error in structural dynamic systems
NASA Technical Reports Server (NTRS)
Hasselman, T. K.; Chrostowski, J. D.
1990-01-01
The paper presents a generic statistical model of the (total) modeling error for conventional space structures in their launch configuration. Modeling error is defined as the difference between analytical prediction and experimental measurement. It is represented by the differences between predicted and measured real eigenvalues and eigenvectors. Comparisons are made between pre-test and post-test models. Total modeling error is then subdivided into measurement error, experimental error and 'pure' modeling error, and comparisons made between measurement error and total modeling error. The generic statistical model presented in this paper is based on the first four global (primary structure) modes of four different structures belonging to the generic category of Conventional Space Structures (specifically excluding large truss-type space structures). As such, it may be used to evaluate the uncertainty of predicted mode shapes and frequencies, sinusoidal response, or the transient response of other structures belonging to the same generic category.
Cant, Michael A; Llop, Justine B; Field, Jeremy
2006-06-01
Recent theory suggests that much of the wide variation in individual behavior that exists within cooperative animal societies can be explained by variation in the future direct component of fitness, or the probability of inheritance. Here we develop two models to explore the effect of variation in future fitness on social aggression. The models predict that rates of aggression will be highest toward the front of the queue to inherit and will be higher in larger, more productive groups. A third prediction is that, in seasonal animals, aggression will increase as the time available to inherit the breeding position runs out. We tested these predictions using a model social species, the paper wasp Polistes dominulus. We found that rates of both aggressive "displays" (aimed at individuals of lower rank) and aggressive "tests" (aimed at individuals of higher rank) decreased down the hierarchy, as predicted by our models. The only other significant factor affecting aggression rates was date, with more aggression observed later in the season, also as predicted. Variation in future fitness due to inheritance rank is the hidden factor accounting for much of the variation in aggressiveness among apparently equivalent individuals in this species.
Procedures for adjusting regional regression models of urban-runoff quality using local data
Hoos, A.B.; Sisolak, J.K.
1993-01-01
Statistical operations termed model-adjustment procedures (MAP?s) can be used to incorporate local data into existing regression models to improve the prediction of urban-runoff quality. Each MAP is a form of regression analysis in which the local data base is used as a calibration data set. Regression coefficients are determined from the local data base, and the resulting `adjusted? regression models can then be used to predict storm-runoff quality at unmonitored sites. The response variable in the regression analyses is the observed load or mean concentration of a constituent in storm runoff for a single storm. The set of explanatory variables used in the regression analyses is different for each MAP, but always includes the predicted value of load or mean concentration from a regional regression model. The four MAP?s examined in this study were: single-factor regression against the regional model prediction, P, (termed MAP-lF-P), regression against P,, (termed MAP-R-P), regression against P, and additional local variables (termed MAP-R-P+nV), and a weighted combination of P, and a local-regression prediction (termed MAP-W). The procedures were tested by means of split-sample analysis, using data from three cities included in the Nationwide Urban Runoff Program: Denver, Colorado; Bellevue, Washington; and Knoxville, Tennessee. The MAP that provided the greatest predictive accuracy for the verification data set differed among the three test data bases and among model types (MAP-W for Denver and Knoxville, MAP-lF-P and MAP-R-P for Bellevue load models, and MAP-R-P+nV for Bellevue concentration models) and, in many cases, was not clearly indicated by the values of standard error of estimate for the calibration data set. A scheme to guide MAP selection, based on exploratory data analysis of the calibration data set, is presented and tested. The MAP?s were tested for sensitivity to the size of a calibration data set. As expected, predictive accuracy of all MAP?s for the verification data set decreased as the calibration data-set size decreased, but predictive accuracy was not as sensitive for the MAP?s as it was for the local regression models.
Smith, Kathleen S.; Ranville, James F.; Adams, M.; Choate, LaDonna M.; Church, Stan E.; Fey, David L.; Wanty, Richard B.; Crock, James G.
2006-01-01
The chemical speciation of metals influences their biological effects. The Biotic Ligand Model (BLM) is a computational approach to predict chemical speciation and acute toxicological effects of metals on aquatic biota. Recently, the U.S. Environmental Protection Agency incorporated the BLM into their regulatory water-quality criteria for copper. Results from three different laboratory copper toxicity tests were compared with BLM predictions for simulated test-waters. This was done to evaluate the ability of the BLM to accurately predict the effects of hardness and concentrations of dissolved organic carbon (DOC) and iron on aquatic toxicity. In addition, we evaluated whether the BLM and the three toxicity tests provide consistent results. Comparison of BLM predictions with two types of Ceriodaphnia dubia toxicity tests shows that there is fairly good agreement between predicted LC50 values computed by the BLM and LC50 values determined from the two toxicity tests. Specifically, the effect of increasing calcium concentration (and hardness) on copper toxicity appears to be minimal. Also, there is fairly good agreement between the BLM and the two toxicity tests for test solutions containing elevated DOC, for which the LC50 is 3-to-5 times greater (less toxic) than the LC50 for the lower-DOC test water. This illustrates the protective effects of DOC on copper toxicity and demonstrates the ability of the BLM to predict these protective effects. In contrast, for test solutions with added iron there is a decrease in LC50 values (increase in toxicity) in results from the two C. dubia toxicity tests, and the agreement between BLM LC50 predictions and results from these toxicity tests is poor. The inability of the BLM to account for competitive iron binding to DOC or DOC fractionation may be a significant shortcoming of the BLM for predicting site- specific water-quality criteria in streams affected by iron-rich acidic drainage in mined and mineralized areas.
Modeling of membrane processes for air revitalization and water recovery
NASA Technical Reports Server (NTRS)
Lange, Kevin E.; Foerg, Sandra L.; Dall-Bauman, Liese A.
1992-01-01
Gas-separation and reverse-osmosis membrane models are being developed in conjunction with membrane testing at NASA JSC. The completed gas-separation membrane model extracts effective component permeabilities from multicomponent test data, and predicts the effects of flow configuration, operating conditions, and membrane dimensions on module performance. Variable feed- and permeate-side pressures are considered. The model has been applied to test data for hollow-fiber membrane modules with simulated cabin-air feeds. Results are presented for a membrane designed for air drying applications. Extracted permeabilities are used to predict the effect of operating conditions on water enrichment in the permeate. A first-order reverse-osmosis model has been applied to test data for spiral wound membrane modules with a simulated hygiene water feed. The model estimates an effective local component rejection coefficient under pseudosteady-state conditions. Results are used to define requirements for a detailed reverse-osmosis model.
Biewener, Andrew A.; Wakeling, James M.
2017-01-01
ABSTRACT Hill-type models are ubiquitous in the field of biomechanics, providing estimates of a muscle's force as a function of its activation state and its assumed force–length and force–velocity properties. However, despite their routine use, the accuracy with which Hill-type models predict the forces generated by muscles during submaximal, dynamic tasks remains largely unknown. This study compared human gastrocnemius forces predicted by Hill-type models with the forces estimated from ultrasound-based measures of tendon length changes and stiffness during cycling, over a range of loads and cadences. We tested both a traditional model, with one contractile element, and a differential model, with two contractile elements that accounted for independent contributions of slow and fast muscle fibres. Both models were driven by subject-specific, ultrasound-based measures of fascicle lengths, velocities and pennation angles and by activation patterns of slow and fast muscle fibres derived from surface electromyographic recordings. The models predicted, on average, 54% of the time-varying gastrocnemius forces estimated from the ultrasound-based methods. However, differences between predicted and estimated forces were smaller under low speed–high activation conditions, with models able to predict nearly 80% of the gastrocnemius force over a complete pedal cycle. Additionally, the predictions from the Hill-type muscle models tested here showed that a similar pattern of force production could be achieved for most conditions with and without accounting for the independent contributions of different muscle fibre types. PMID:28202584
A microstructurally based model of solder joints under conditions of thermomechanical fatigue
NASA Astrophysics Data System (ADS)
Frear, D. R.; Burchett, S. N.; Rashid, M. M.
The thermomechanical fatigue failure of solder joints is increasingly becoming an important reliability issue. We present two computational methodologies that have been developed to predict the behavior of near eutectic Sn-Pb solder joints under fatigue conditions that are based on metallurgical tests as fundamental input for constitutive relations. The two-phase model mathematically predicts the heterogeneous coarsening behavior of near eutectic Sn-Pb solder. The finite element simulations from this model agree well with experimental thermomechanical fatigue tests. The simulations show that the presence of an initial heterogeneity in the solder microstructure could significantly degrade the fatigue lifetime. The single phase model is a computational technique that was developed to predict solder joint behavior using materials data for constitutive relation constants that could be determined through straightforward metallurgical experiments. A shear/torsion test sample was developed to impose strain in two different orientations. Materials constants were derived from these tests and the results showed an adequate fit to experimental results. The single-phase model could be very useful for conditions where microstructural evolution is not a dominant factor in fatigue.
Hermes, Helen E.; Teutonico, Donato; Preuss, Thomas G.; Schneckener, Sebastian
2018-01-01
The environmental fates of pharmaceuticals and the effects of crop protection products on non-target species are subjects that are undergoing intense review. Since measuring the concentrations and effects of xenobiotics on all affected species under all conceivable scenarios is not feasible, standard laboratory animals such as rabbits are tested, and the observed adverse effects are translated to focal species for environmental risk assessments. In that respect, mathematical modelling is becoming increasingly important for evaluating the consequences of pesticides in untested scenarios. In particular, physiologically based pharmacokinetic/toxicokinetic (PBPK/TK) modelling is a well-established methodology used to predict tissue concentrations based on the absorption, distribution, metabolism and excretion of drugs and toxicants. In the present work, a rabbit PBPK/TK model is developed and evaluated with data available from the literature. The model predictions include scenarios of both intravenous (i.v.) and oral (p.o.) administration of small and large compounds. The presented rabbit PBPK/TK model predicts the pharmacokinetics (Cmax, AUC) of the tested compounds with an average 1.7-fold error. This result indicates a good predictive capacity of the model, which enables its use for risk assessment modelling and simulations. PMID:29561908
QSAR modeling for predicting mutagenic toxicity of diverse chemicals for regulatory purposes.
Basant, Nikita; Gupta, Shikha
2017-06-01
The safety assessment process of chemicals requires information on their mutagenic potential. The experimental determination of mutagenicity of a large number of chemicals is tedious and time and cost intensive, thus compelling for alternative methods. We have established local and global QSAR models for discriminating low and high mutagenic compounds and predicting their mutagenic activity in a quantitative manner in Salmonella typhimurium (TA) bacterial strains (TA98 and TA100). The decision treeboost (DTB)-based classification QSAR models discriminated among two categories with accuracies of >96% and the regression QSAR models precisely predicted the mutagenic activity of diverse chemicals yielding high correlations (R 2 ) between the experimental and model-predicted values in the respective training (>0.96) and test (>0.94) sets. The test set root mean squared error (RMSE) and mean absolute error (MAE) values emphasized the usefulness of the developed models for predicting new compounds. Relevant structural features of diverse chemicals that were responsible and influence the mutagenic activity were identified. The applicability domains of the developed models were defined. The developed models can be used as tools for screening new chemicals for their mutagenicity assessment for regulatory purpose.
Hui, Shisheng; Chen, Lizhang; Liu, Fuqiang; Ouyang, Yanhao
2015-12-01
To establish multiple seasonal autoregressive integrated moving average model(ARIMA) according to mumps disease incidence in Hunan province, and to predict the mumps incidence from May 2015 to April 2016 in Hunan province by the model. The data were downloaded from "Disease Surveillance Information Reporting Management System" in China Information System for Disease Control and Prevention. The monthly incidence of mumps in Hunan province was collected from January 2004 to April 2015 according to the onset date, including clinical diagnosis and laboratory confirmed cases. The predictive analysis method was the ARIMA model in SPSS 18.0 software, the ARIMA model was established on the monthly incidence of mumps from January 2004 to April 2014, and the date from May 2014 to April 2015 was used as the testing sample, Box-Ljung Q test was used to test the residual of the selected model. Finally, the monthly incidence of mumps from May 2015 to April 2016 was predicted by the model. The peak months of the mumps incidence were May to July every year, and the secondary peak months were November to January of the following year, during January 2004 to April 2014 in Hunan province. After the data sequence was handled by smooth sequence, model identification, establishment and diagnosis, the ARIMA(2,1,1) × (0,1,1)(12) was established, Box-Ljung Q test found, Q=8.40, P=0.868, the residual sequence was white noise, the established model to the data information extraction was complete, the model was reasonable. The R(2) value of the model fitting degree was 0.871, and the value of BIC was -1.646, while the average absolute error of the predicted value and the actual value was 0.025/100 000, the average relative error was 13.004%. The relative error of the model for the prediction of the mumps incidence in Hunan province was small, and the predicting results were reliable. Using the ARIMA(2,1,1) ×(0,1,1)(12) model to predict the mumps incidence from April 2016 to May 2015 in Hunan province, the peak months of the mumps incidence were May to July, and the secondary peak months were November to January of the following year, the incidence of the peak month was close to the same period. The ARIMA(2,1,1)×(0,1,1)(12) model is well fitted the trend of the mumps disease incidence in Hunan province, it has some practical value for the prevention and control of the disease.
NASA Astrophysics Data System (ADS)
Duc-Toan, Nguyen; Tien-Long, Banh; Young-Suk, Kim; Dong-Won, Jung
2011-08-01
In this study, a modified Johnson-Cook (J-C) model and an innovated method to determine (J-C) material parameters are proposed to predict more correctly stress-strain curve for tensile tests in elevated temperatures. A MATLAB tool is used to determine material parameters by fitting a curve to follow Ludwick's hardening law at various elevated temperatures. Those hardening law parameters are then utilized to determine modified (J-C) model material parameters. The modified (J-C) model shows the better prediction compared to the conventional one. As the first verification, an FEM tensile test simulation based on the isotropic hardening model for boron sheet steel at elevated temperatures was carried out via a user-material subroutine, using an explicit finite element code, and compared with the measurements. The temperature decrease of all elements due to the air cooling process was then calculated when considering the modified (J-C) model and coded to VUMAT subroutine for tensile test simulation of cooling process. The modified (J-C) model showed the good agreement between the simulation results and the corresponding experiments. The second investigation was applied for V-bending spring-back prediction of magnesium alloy sheets at elevated temperatures. Here, the combination of proposed J-C model with modified hardening law considering the unusual plastic behaviour for magnesium alloy sheet was adopted for FEM simulation of V-bending spring-back prediction and shown the good comparability with corresponding experiments.
Correlation of SA349/2 helicopter flight-test data with a comprehensive rotorcraft model
NASA Technical Reports Server (NTRS)
Yamauchi, Gloria K.; Heffernan, Ruth M.; Gaubert, Michel
1986-01-01
A comprehensive rotorcraft analysis model was used to predict blade aerodynamic and structural loads for comparison with flight test data. The data were obtained from an SA349/2 helicopter with an advanced geometry rotor. Sensitivity of the correlation to wake geometry, blade dynamics, and blade aerodynamic effects was investigated. Blade chordwise pressure coefficients were predicted for the blade transonic regimes using the model coupled with two finite-difference codes.
Acoustic test and analyses of three advanced turboprop models
NASA Technical Reports Server (NTRS)
Brooks, B. M.; Metzger, F. B.
1980-01-01
Results of acoustic tests of three 62.2 cm (24.5 inch) diameter models of the prop-fan (a small diameter, highly loaded. Multi-bladed variable pitch advanced turboprop) are presented. Results show that there is little difference in the noise produced by unswept and slightly swept designs. However, the model designed for noise reduction produces substantially less noise at test conditions simulating 0.8 Mach number cruise speed or at conditions simulating takeoff and landing. In the near field at cruise conditions the acoustically designed. In the far field at takeoff and landing conditions the acoustically designed model is 5 db quieter than unswept or slightly swept designs. Correlation between noise measurement and theoretical predictions as well as comparisons between measured and predicted acoustic pressure pulses generated by the prop-fan blades are discussed. The general characteristics of the pulses are predicted. Shadowgraph measurements were obtained which showed the location of bow and trailing waves.
Predicting Operator Execution Times Using CogTool
NASA Technical Reports Server (NTRS)
Santiago-Espada, Yamira; Latorella, Kara A.
2013-01-01
Researchers and developers of NextGen systems can use predictive human performance modeling tools as an initial approach to obtain skilled user performance times analytically, before system testing with users. This paper describes the CogTool models for a two pilot crew executing two different types of a datalink clearance acceptance tasks, and on two different simulation platforms. The CogTool time estimates for accepting and executing Required Time of Arrival and Interval Management clearances were compared to empirical data observed in video tapes and registered in simulation files. Results indicate no statistically significant difference between empirical data and the CogTool predictions. A population comparison test found no significant differences between the CogTool estimates and the empirical execution times for any of the four test conditions. We discuss modeling caveats and considerations for applying CogTool to crew performance modeling in advanced cockpit environments.
Validity of Models for Predicting BRCA1 and BRCA2 Mutations
Parmigiani, Giovanni; Chen, Sining; Iversen, Edwin S.; Friebel, Tara M.; Finkelstein, Dianne M.; Anton-Culver, Hoda; Ziogas, Argyrios; Weber, Barbara L.; Eisen, Andrea; Malone, Kathleen E.; Daling, Janet R.; Hsu, Li; Ostrander, Elaine A.; Peterson, Leif E.; Schildkraut, Joellen M.; Isaacs, Claudine; Corio, Camille; Leondaridis, Leoni; Tomlinson, Gail; Amos, Christopher I.; Strong, Louise C.; Berry, Donald A.; Weitzel, Jeffrey N.; Sand, Sharon; Dutson, Debra; Kerber, Rich; Peshkin, Beth N.; Euhus, David M.
2008-01-01
Background Deleterious mutations of the BRCA1 and BRCA2 genes confer susceptibility to breast and ovarian cancer. At least 7 models for estimating the probabilities of having a mutation are used widely in clinical and scientific activities; however, the merits and limitations of these models are not fully understood. Objective To systematically quantify the accuracy of the following publicly available models to predict mutation carrier status: BRCAPRO, family history assessment tool, Finnish, Myriad, National Cancer Institute, University of Pennsylvania, and Yale University. Design Cross-sectional validation study, using model predictions and BRCA1 or BRCA2 mutation status of patients different from those used to develop the models. Setting Multicenter study across Cancer Genetics Network participating centers. Patients 3 population-based samples of participants in research studies and 8 samples from genetic counseling clinics. Measurements Discrimination between individuals testing positive for a mutation in BRCA1 or BRCA2 from those testing negative, as measured by the c-statistic, and sensitivity and specificity of model predictions. Results The 7 models differ in their predictions. The better-performing models have a c-statistic around 80%. BRCAPRO has the largest c-statistic overall and in all but 2 patient subgroups, although the margin over other models is narrow in many strata. Outside of high-risk populations, all models have high false-negative and false-positive rates across a range of probability thresholds used to refer for mutation testing. Limitation Three recently published models were not included. Conclusions All models identify women who probably carry a deleterious mutation of BRCA1 or BRCA2 with adequate discrimination to support individualized genetic counseling, although discrimination varies across models and populations. PMID:17909205
Development of Methods to Predict the Effects of Test Media in Ground-Based Propulsion Testing
NASA Technical Reports Server (NTRS)
Drummond, J. Philip; Danehy, Paul M.; Gaffney, Richard L., Jr.; Parker, Peter A.; Tedder, Sarah A.; Chelliah, Harsha K.; Cutler, Andrew D.; Bivolaru, Daniel; Givi, Peyman; Hassan, Hassan A.
2009-01-01
This report discusses work that began in mid-2004 sponsored by the Office of the Secretary of Defense (OSD) Test & Evaluation/Science & Technology (T&E/S&T) Program. The work was undertaken to improve the state of the art of CFD capabilities for predicting the effects of the test media on the flameholding characteristics in scramjet engines. The program had several components including the development of advanced algorithms and models for simulating engine flowpaths as well as a fundamental experimental and diagnostic development effort to support the formulation and validation of the mathematical models. This report provides details of the completed work, involving the development of phenomenological models for Reynolds averaged Navier-Stokes codes, large-eddy simulation techniques and reduced-kinetics models. Experiments that provided data for the modeling efforts are also described, along with with the associated nonintrusive diagnostics used to collect the data.
Predicting the Effects of Test Media in Ground-Based Propulsion Testing
NASA Technical Reports Server (NTRS)
Drummond, J. Philip; Danehy, Paul M.; Bivolaru, Daniel; Gaffney, Richard L.; Parker, Peter A.; Chelliah, Harsha K.; Cutler, Andrew D.; Givi, Peyman; Hassan, Hassan, A.
2006-01-01
This paper discusses the progress of work which began in mid-2004 sponsored by the Office of the Secretary of Defense (OSD) Test & Evaluation/Science & Technology (T&E/S&T) Program. The purpose of the work is to improve the state of the art of CFD capabilities for predicting the effects of the test media on the flameholding characteristics in scramjet engines. The program has several components including the development of advance algorithms and models for simulating engine flowpaths as well as a fundamental experimental and diagnostic development effort to support the formulation and validation of the mathematical models. The paper will provide details of current work involving the development of phenomenological models for Reynolds averaged Navier-Stokes codes, large-eddy simulation techniques and reduced-kinetics models. Experiments that will provide data for the modeling efforts will also be described, along with with the associated nonintrusive diagnostics used to collect the data.
Predicting degree of benefit from adjuvant trastuzumab in NSABP trial B-31.
Pogue-Geile, Katherine L; Kim, Chungyeul; Jeong, Jong-Hyeon; Tanaka, Noriko; Bandos, Hanna; Gavin, Patrick G; Fumagalli, Debora; Goldstein, Lynn C; Sneige, Nour; Burandt, Eike; Taniyama, Yusuke; Bohn, Olga L; Lee, Ahwon; Kim, Seung-Il; Reilly, Megan L; Remillard, Matthew Y; Blackmon, Nicole L; Kim, Seong-Rim; Horne, Zachary D; Rastogi, Priya; Fehrenbacher, Louis; Romond, Edward H; Swain, Sandra M; Mamounas, Eleftherios P; Wickerham, D Lawrence; Geyer, Charles E; Costantino, Joseph P; Wolmark, Norman; Paik, Soonmyung
2013-12-04
National Surgical Adjuvant Breast and Bowel Project (NSABP) trial B-31 suggested the efficacy of adjuvant trastuzumab, even in HER2-negative breast cancer. This finding prompted us to develop a predictive model for degree of benefit from trastuzumab using archived tumor blocks from B-31. Case subjects with tumor blocks were randomly divided into discovery (n = 588) and confirmation cohorts (n = 991). A predictive model was built from the discovery cohort through gene expression profiling of 462 genes with nCounter assay. A predefined cut point for the predictive model was tested in the confirmation cohort. Gene-by-treatment interaction was tested with Cox models, and correlations between variables were assessed with Spearman correlation. Principal component analysis was performed on the final set of selected genes. All statistical tests were two-sided. Eight predictive genes associated with HER2 (ERBB2, c17orf37, GRB7) or ER (ESR1, NAT1, GATA3, CA12, IGF1R) were selected for model building. Three-dimensional subset treatment effect pattern plot using two principal components of these genes was used to identify a subset with no benefit from trastuzumab, characterized by intermediate-level ERBB2 and high-level ESR1 mRNA expression. In the confirmation set, the predefined cut points for this model classified patients into three subsets with differential benefit from trastuzumab with hazard ratios of 1.58 (95% confidence interval [CI] = 0.67 to 3.69; P = .29; n = 100), 0.60 (95% CI = 0.41 to 0.89; P = .01; n = 449), and 0.28 (95% CI = 0.20 to 0.41; P < .001; n = 442; P(interaction) between the model and trastuzumab < .001). We developed a gene expression-based predictive model for degree of benefit from trastuzumab and demonstrated that HER2-negative tumors belong to the moderate benefit group, thus providing justification for testing trastuzumab in HER2-negative patients (NSABP B-47).
Predicting Degree of Benefit From Adjuvant Trastuzumab in NSABP Trial B-31
Pogue-Geile, Katherine L.; Kim, Chungyeul; Jeong, Jong-Hyeon; Tanaka, Noriko; Bandos, Hanna; Gavin, Patrick G.; Fumagalli, Debora; Goldstein, Lynn C.; Sneige, Nour; Burandt, Eike; Taniyama, Yusuke; Bohn, Olga L.; Lee, Ahwon; Kim, Seung-Il; Reilly, Megan L.; Remillard, Matthew Y.; Blackmon, Nicole L.; Kim, Seong-Rim; Horne, Zachary D.; Rastogi, Priya; Fehrenbacher, Louis; Romond, Edward H.; Swain, Sandra M.; Mamounas, Eleftherios P.; Wickerham, D. Lawrence; Geyer, Charles E.; Costantino, Joseph P.; Wolmark, Norman
2013-01-01
Background National Surgical Adjuvant Breast and Bowel Project (NSABP) trial B-31 suggested the efficacy of adjuvant trastuzumab, even in HER2-negative breast cancer. This finding prompted us to develop a predictive model for degree of benefit from trastuzumab using archived tumor blocks from B-31. Methods Case subjects with tumor blocks were randomly divided into discovery (n = 588) and confirmation cohorts (n = 991). A predictive model was built from the discovery cohort through gene expression profiling of 462 genes with nCounter assay. A predefined cut point for the predictive model was tested in the confirmation cohort. Gene-by-treatment interaction was tested with Cox models, and correlations between variables were assessed with Spearman correlation. Principal component analysis was performed on the final set of selected genes. All statistical tests were two-sided. Results Eight predictive genes associated with HER2 (ERBB2, c17orf37, GRB7) or ER (ESR1, NAT1, GATA3, CA12, IGF1R) were selected for model building. Three-dimensional subset treatment effect pattern plot using two principal components of these genes was used to identify a subset with no benefit from trastuzumab, characterized by intermediate-level ERBB2 and high-level ESR1 mRNA expression. In the confirmation set, the predefined cut points for this model classified patients into three subsets with differential benefit from trastuzumab with hazard ratios of 1.58 (95% confidence interval [CI] = 0.67 to 3.69; P = .29; n = 100), 0.60 (95% CI = 0.41 to 0.89; P = .01; n = 449), and 0.28 (95% CI = 0.20 to 0.41; P < .001; n = 442; P interaction between the model and trastuzumab < .001). Conclusions We developed a gene expression–based predictive model for degree of benefit from trastuzumab and demonstrated that HER2-negative tumors belong to the moderate benefit group, thus providing justification for testing trastuzumab in HER2-negative patients (NSABP B-47). PMID:24262440
NEXT Ion Thruster Thermal Model
NASA Technical Reports Server (NTRS)
VanNoord, Jonathan L.
2010-01-01
As the NEXT ion thruster progresses towards higher technology readiness, it is necessary to develop the tools that will support its implementation into flight programs. An ion thruster thermal model has been developed for the latest prototype model design to aid in predicting thruster temperatures for various missions. This model is comprised of two parts. The first part predicts the heating from the discharge plasma for various throttling points based on a discharge chamber plasma model. This model shows, as expected, that the internal heating is strongly correlated with the discharge power. Typically, the internal plasma heating increases with beam current and decreases slightly with beam voltage. The second is a model based on a finite difference thermal code used to predict the thruster temperatures. Both parts of the model will be described in this paper. This model has been correlated with a thermal development test on the NEXT Prototype Model 1 thruster with most predicted component temperatures within 5 to 10 C of test temperatures. The model indicates that heating, and hence current collection, is not based purely on the footprint of the magnet rings, but follows a 0.1:1:2:1 ratio for the cathode-to-conical-to-cylindrical-to-front magnet rings. This thermal model has also been used to predict the temperatures during the worst case mission profile that is anticipated for the thruster. The model predicts ample thermal margin for all of its components except the external cable harness under the hottest anticipated mission scenario. The external cable harness will be re-rated or replaced to meet the predicted environment.
NASA Technical Reports Server (NTRS)
Gallo, Christopher A.; Agui, Juan H.; Creager, Colin M.; Oravec, Heather A.
2012-01-01
An Excavation System Model has been written to simulate the collection and transportation of regolith on the moon. The calculations in this model include an estimation of the forces on the digging tool as a result of excavation into the regolith. Verification testing has been performed and the forces recorded from this testing were compared to the calculated theoretical data. The Northern Centre for Advanced Technology Inc. rovers were tested at the NASA Glenn Research Center Simulated Lunar Operations facility. This testing was in support of the In-Situ Resource Utilization program Innovative Partnership Program. Testing occurred in soils developed at the Glenn Research Center which are a mixture of different types of sands and whose soil properties have been well characterized. This testing is part of an ongoing correlation of actual field test data to the blade forces calculated by the Excavation System Model. The results from this series of tests compared reasonably with the predicted values from the code.
Chaitanya, Lakshmi; Breslin, Krystal; Zuñiga, Sofia; Wirken, Laura; Pośpiech, Ewelina; Kukla-Bartoszek, Magdalena; Sijen, Titia; Knijff, Peter de; Liu, Fan; Branicki, Wojciech; Kayser, Manfred; Walsh, Susan
2018-07-01
Forensic DNA Phenotyping (FDP), i.e. the prediction of human externally visible traits from DNA, has become a fast growing subfield within forensic genetics due to the intelligence information it can provide from DNA traces. FDP outcomes can help focus police investigations in search of unknown perpetrators, who are generally unidentifiable with standard DNA profiling. Therefore, we previously developed and forensically validated the IrisPlex DNA test system for eye colour prediction and the HIrisPlex system for combined eye and hair colour prediction from DNA traces. Here we introduce and forensically validate the HIrisPlex-S DNA test system (S for skin) for the simultaneous prediction of eye, hair, and skin colour from trace DNA. This FDP system consists of two SNaPshot-based multiplex assays targeting a total of 41 SNPs via a novel multiplex assay for 17 skin colour predictive SNPs and the previous HIrisPlex assay for 24 eye and hair colour predictive SNPs, 19 of which also contribute to skin colour prediction. The HIrisPlex-S system further comprises three statistical prediction models, the previously developed IrisPlex model for eye colour prediction based on 6 SNPs, the previous HIrisPlex model for hair colour prediction based on 22 SNPs, and the recently introduced HIrisPlex-S model for skin colour prediction based on 36 SNPs. In the forensic developmental validation testing, the novel 17-plex assay performed in full agreement with the Scientific Working Group on DNA Analysis Methods (SWGDAM) guidelines, as previously shown for the 24-plex assay. Sensitivity testing of the 17-plex assay revealed complete SNP profiles from as little as 63 pg of input DNA, equalling the previously demonstrated sensitivity threshold of the 24-plex HIrisPlex assay. Testing of simulated forensic casework samples such as blood, semen, saliva stains, of inhibited DNA samples, of low quantity touch (trace) DNA samples, and of artificially degraded DNA samples as well as concordance testing, demonstrated the robustness, efficiency, and forensic suitability of the new 17-plex assay, as previously shown for the 24-plex assay. Finally, we provide an update to the publically available HIrisPlex website https://hirisplex.erasmusmc.nl/, now allowing the estimation of individual probabilities for 3 eye, 4 hair, and 5 skin colour categories from HIrisPlex-S input genotypes. The HIrisPlex-S DNA test represents the first forensically validated tool for skin colour prediction, and reflects the first forensically validated tool for simultaneous eye, hair and skin colour prediction from DNA. Copyright © 2018 Elsevier B.V. All rights reserved.
Bakal, Gokhan; Talari, Preetham; Kakani, Elijah V; Kavuluru, Ramakanth
2018-06-01
Identifying new potential treatment options for medical conditions that cause human disease burden is a central task of biomedical research. Since all candidate drugs cannot be tested with animal and clinical trials, in vitro approaches are first attempted to identify promising candidates. Likewise, identifying different causal relations between biomedical entities is also critical to understand biomedical processes. Generally, natural language processing (NLP) and machine learning are used to predict specific relations between any given pair of entities using the distant supervision approach. To build high accuracy supervised predictive models to predict previously unknown treatment and causative relations between biomedical entities based only on semantic graph pattern features extracted from biomedical knowledge graphs. We used 7000 treats and 2918 causes hand-curated relations from the UMLS Metathesaurus to train and test our models. Our graph pattern features are extracted from simple paths connecting biomedical entities in the SemMedDB graph (based on the well-known SemMedDB database made available by the U.S. National Library of Medicine). Using these graph patterns connecting biomedical entities as features of logistic regression and decision tree models, we computed mean performance measures (precision, recall, F-score) over 100 distinct 80-20% train-test splits of the datasets. For all experiments, we used a positive:negative class imbalance of 1:10 in the test set to model relatively more realistic scenarios. Our models predict treats and causes relations with high F-scores of 99% and 90% respectively. Logistic regression model coefficients also help us identify highly discriminative patterns that have an intuitive interpretation. We are also able to predict some new plausible relations based on false positives that our models scored highly based on our collaborations with two physician co-authors. Finally, our decision tree models are able to retrieve over 50% of treatment relations from a recently created external dataset. We employed semantic graph patterns connecting pairs of candidate biomedical entities in a knowledge graph as features to predict treatment/causative relations between them. We provide what we believe is the first evidence in direct prediction of biomedical relations based on graph features. Our work complements lexical pattern based approaches in that the graph patterns can be used as additional features for weakly supervised relation prediction. Copyright © 2018 Elsevier Inc. All rights reserved.
Stress Mapping in Glass-to-Metal Seals using Indentation Crack Lengths.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strong, Kevin; Buchheit, Thomas E.; Diebold, Thomas Wayne
Predicting the residual stress which develops during fabrication of a glass-to-metal compression seal requires material models that can accurately predict the effects of processing on the sealing glass. Validation of the predictions requires measurements on representative test geometries to accurately capture the interaction between the seal materials during a processing cycle required to form the seal, which consists of a temperature excursion through the glass transition temperature of the sealing glass. To this end, a concentric seal test geometry, referred to as a short cylinder seal, consisting of a stainless steel shell enveloping a commercial sealing glass disk has beenmore » designed, fabricated, and characterized as a model validation test geometry. To obtain data to test/validate finite element (FE) stress model predictions of this geometry, spatially-resolved residual stress was calculated from the measured lengths of the cracks emanating from radially positioned Vickers indents in the glass disk portion of the seal. The indentation crack length method is described, and the spatially-resolved residual stress determined experimentally are compared to FE stress predictions made using a nonlinear viscoelastic material model adapted to inorganic sealing glasses and an updated rate dependent material model for 304L stainless steel. The measurement method is a first to achieve a degree of success for measuring spatially resolved residual stress in a glass-bearing geometry and a favorable comparison between measurements and simulation was observed.« less
Stress Mapping in Glass-to-Metal Seals using Indentation Crack Lengths
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buchheit, Thomas E.; Strong, Kevin; Newton, Clay S.
Predicting the residual stress which develops during fabrication of a glass-to-metal compression seal requires material models that can accurately predict the effects of processing on the sealing glass. Validation of the predictions requires measurements on representative test geometries to accurately capture the interaction between the seal materials during a processing cycle required to form the seal, which consists of a temperature excursion through the glass transition temperature of the sealing glass. To this end, a concentric seal test geometry, referred to as a short cylinder seal, consisting of a stainless steel shell enveloping a commercial sealing glass disk has beenmore » designed, fabricated, and characterized as a model validation test geometry. To obtain data to test/validate finite element (FE) stress model predictions of this geometry, spatially-resolved residual stress was calculated from the measured lengths of the cracks emanating from radially positioned Vickers indents in the glass disk portion of the seal. The indentation crack length method is described, and the spatially-resolved residual stress determined experimentally are compared to FE stress predictions made using a nonlinear viscoelastic material model adapted to inorganic sealing glasses and an updated rate dependent material model for 304L stainless steel. The measurement method is a first to achieve a degree of success for measuring spatially resolved residual stress in a glass-bearing geometry and a favorable comparison between measurements and simulation was observed.« less
Mohammed, Emad A; Naugler, Christopher
2017-01-01
Demand forecasting is the area of predictive analytics devoted to predicting future volumes of services or consumables. Fair understanding and estimation of how demand will vary facilitates the optimal utilization of resources. In a medical laboratory, accurate forecasting of future demand, that is, test volumes, can increase efficiency and facilitate long-term laboratory planning. Importantly, in an era of utilization management initiatives, accurately predicted volumes compared to the realized test volumes can form a precise way to evaluate utilization management initiatives. Laboratory test volumes are often highly amenable to forecasting by time-series models; however, the statistical software needed to do this is generally either expensive or highly technical. In this paper, we describe an open-source web-based software tool for time-series forecasting and explain how to use it as a demand forecasting tool in clinical laboratories to estimate test volumes. This tool has three different models, that is, Holt-Winters multiplicative, Holt-Winters additive, and simple linear regression. Moreover, these models are ranked and the best one is highlighted. This tool will allow anyone with historic test volume data to model future demand.
Mohammed, Emad A.; Naugler, Christopher
2017-01-01
Background: Demand forecasting is the area of predictive analytics devoted to predicting future volumes of services or consumables. Fair understanding and estimation of how demand will vary facilitates the optimal utilization of resources. In a medical laboratory, accurate forecasting of future demand, that is, test volumes, can increase efficiency and facilitate long-term laboratory planning. Importantly, in an era of utilization management initiatives, accurately predicted volumes compared to the realized test volumes can form a precise way to evaluate utilization management initiatives. Laboratory test volumes are often highly amenable to forecasting by time-series models; however, the statistical software needed to do this is generally either expensive or highly technical. Method: In this paper, we describe an open-source web-based software tool for time-series forecasting and explain how to use it as a demand forecasting tool in clinical laboratories to estimate test volumes. Results: This tool has three different models, that is, Holt-Winters multiplicative, Holt-Winters additive, and simple linear regression. Moreover, these models are ranked and the best one is highlighted. Conclusion: This tool will allow anyone with historic test volume data to model future demand. PMID:28400996
Jürgens, Tim; Ewert, Stephan D; Kollmeier, Birger; Brand, Thomas
2014-03-01
Consonant recognition was assessed in normal-hearing (NH) and hearing-impaired (HI) listeners in quiet as a function of speech level using a nonsense logatome test. Average recognition scores were analyzed and compared to recognition scores of a speech recognition model. In contrast to commonly used spectral speech recognition models operating on long-term spectra, a "microscopic" model operating in the time domain was used. Variations of the model (accounting for hearing impairment) and different model parameters (reflecting cochlear compression) were tested. Using these model variations this study examined whether speech recognition performance in quiet is affected by changes in cochlear compression, namely, a linearization, which is often observed in HI listeners. Consonant recognition scores for HI listeners were poorer than for NH listeners. The model accurately predicted the speech reception thresholds of the NH and most HI listeners. A partial linearization of the cochlear compression in the auditory model, while keeping audibility constant, produced higher recognition scores and improved the prediction accuracy. However, including listener-specific information about the exact form of the cochlear compression did not improve the prediction further.
Testing the Predictive Validity of the Hendrich II Fall Risk Model.
Jung, Hyesil; Park, Hyeoun-Ae
2018-03-01
Cumulative data on patient fall risk have been compiled in electronic medical records systems, and it is possible to test the validity of fall-risk assessment tools using these data between the times of admission and occurrence of a fall. The Hendrich II Fall Risk Model scores assessed during three time points of hospital stays were extracted and used for testing the predictive validity: (a) upon admission, (b) when the maximum fall-risk score from admission to falling or discharge, and (c) immediately before falling or discharge. Predictive validity was examined using seven predictive indicators. In addition, logistic regression analysis was used to identify factors that significantly affect the occurrence of a fall. Among the different time points, the maximum fall-risk score assessed between admission and falling or discharge showed the best predictive performance. Confusion or disorientation and having a poor ability to rise from a sitting position were significant risk factors for a fall.
Five-Hole Flow Angle Probe Calibration for the NASA Glenn Icing Research Tunnel
NASA Technical Reports Server (NTRS)
Gonsalez, Jose C.; Arrington, E. Allen
1999-01-01
A spring 1997 test section calibration program is scheduled for the NASA Glenn Research Center Icing Research Tunnel following the installation of new water injecting spray bars. A set of new five-hole flow angle pressure probes was fabricated to properly calibrate the test section for total pressure, static pressure, and flow angle. The probes have nine pressure ports: five total pressure ports on a hemispherical head and four static pressure ports located 14.7 diameters downstream of the head. The probes were calibrated in the NASA Glenn 3.5-in.-diameter free-jet calibration facility. After completing calibration data acquisition for two probes, two data prediction models were evaluated. Prediction errors from a linear discrete model proved to be no worse than those from a full third-order multiple regression model. The linear discrete model only required calibration data acquisition according to an abridged test matrix, thus saving considerable time and financial resources over the multiple regression model that required calibration data acquisition according to a more extensive test matrix. Uncertainties in calibration coefficients and predicted values of flow angle, total pressure, static pressure. Mach number. and velocity were examined. These uncertainties consider the instrumentation that will be available in the Icing Research Tunnel for future test section calibration testing.
Survival Regression Modeling Strategies in CVD Prediction.
Barkhordari, Mahnaz; Padyab, Mojgan; Sardarinia, Mahsa; Hadaegh, Farzad; Azizi, Fereidoun; Bozorgmanesh, Mohammadreza
2016-04-01
A fundamental part of prevention is prediction. Potential predictors are the sine qua non of prediction models. However, whether incorporating novel predictors to prediction models could be directly translated to added predictive value remains an area of dispute. The difference between the predictive power of a predictive model with (enhanced model) and without (baseline model) a certain predictor is generally regarded as an indicator of the predictive value added by that predictor. Indices such as discrimination and calibration have long been used in this regard. Recently, the use of added predictive value has been suggested while comparing the predictive performances of the predictive models with and without novel biomarkers. User-friendly statistical software capable of implementing novel statistical procedures is conspicuously lacking. This shortcoming has restricted implementation of such novel model assessment methods. We aimed to construct Stata commands to help researchers obtain the aforementioned statistical indices. We have written Stata commands that are intended to help researchers obtain the following. 1, Nam-D'Agostino X 2 goodness of fit test; 2, Cut point-free and cut point-based net reclassification improvement index (NRI), relative absolute integrated discriminatory improvement index (IDI), and survival-based regression analyses. We applied the commands to real data on women participating in the Tehran lipid and glucose study (TLGS) to examine if information relating to a family history of premature cardiovascular disease (CVD), waist circumference, and fasting plasma glucose can improve predictive performance of Framingham's general CVD risk algorithm. The command is adpredsurv for survival models. Herein we have described the Stata package "adpredsurv" for calculation of the Nam-D'Agostino X 2 goodness of fit test as well as cut point-free and cut point-based NRI, relative and absolute IDI, and survival-based regression analyses. We hope this work encourages the use of novel methods in examining predictive capacity of the emerging plethora of novel biomarkers.
An evaporative and engine-cycle model for fuel octane sensitivity prediction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moran, D.P.; Taylor, A.B.
The Motor Octane Number (MON) ranks fuels by their chemical resistance to knock. Evaporative cooling coupled with fuel chemistry determine Research Octane Number (RON) antiknock ratings. It is shown in this study that fuel Octane sensitivity (numerically RON minus MON) is liked to an important difference between the two test methods; the RON test allows each fuel`s evaporative cooling characteristics to affect gas temperature, while the MON test generally eliminates this effect by pre-evaporation. In order to establish RON test charge temperatures, a computer model of fuel evaporation was adapted to Octane Engine conditions, and simulations were compared with realmore » Octane Test Engine measurements including droplet and gas temperatures. A novel gas temperature probe yielded data that corresponded well with model predictions. Tests spanned single component fuels and blends of isomers, n-paraffins, aromatics and alcohols. Commercially available automotive and aviation gasolines were also tested. A good correlation was observed between the computer predictions and measured temperature data across the range of pure fuels and blends. A numerical method to estimate the effect of precombustion temperature differences on Octane sensitivity was developed and applied to analyze these data, and was found to predict the widely disparate sensitivities of the tested fuels with accuracy. Data are presented showing mixture temperature histories of various tested fuels, and consequent sensitivity predictions. It is concluded that a fuel`s thermal-evaporative behavior gives rise to fuel Octane sensitivity as measured by differences between the RON and MON tests. This is demonstrated by the success, over a wide range of fuels, of the sensitivity predictor method describes. Evaporative cooling, must therefore be regarded as an important parameter affecting the general road performance of automobiles.« less
SSME seal test program: Test results for smooth, hole-pattern and helically-grooved stators
NASA Technical Reports Server (NTRS)
Childs, Dara W.
1987-01-01
All of the listed seals were tested in a liquid Halon test facility at high Reynolds numbers. In addition, a helically-grooved-stator seal was tested in an air seal facility. An analysis of the test results with comparisons to theoretical predictions supports the following conclusions: (1) For small seals, the Hirs' friction-factor model is more restricted than had been thought; (2) For smooth seals, predictions of stiffness and damping improve markedly as the radical clearance is reduced; (3) Friction-factor data for hole-pattern-seal stators frequently deviates from the Hirs model; (4) Predictions of stiffness and damping coefficients for hole-pattern-stator seals is generally reasonable; (5) Tests for the hole-pattern stators at reduced clearances show no clear optimum for hole-pattern seals with respect to either hole-area ratio or hole depth to minimum clearance ratios; (6) Tests of these hole-pattern stators show no significant advantage in net damping over smooth seals; (7) Tests of helically-grooved seal stators in Halon show reasonable agreement between theory and prediction for leakage and direct stiffness but poor agreement for the net damping coefficient.
Hassel, Erlend; Stensvold, Dorthe; Halvorsen, Thomas; Wisløff, Ulrik; Langhammer, Arnulf; Steinshamn, Sigurd
2017-01-01
Peak oxygen uptake (VO2peak) is an indicator of cardiovascular health and a useful tool for risk stratification. Direct measurement of VO2peak is resource-demanding and may be contraindicated. There exist several non-exercise models to estimate VO2peak that utilize easily obtainable health parameters, but none of them includes lung function measures or hemoglobin concentrations. We aimed to test whether addition of these parameters could improve prediction of VO2peak compared to an established model that includes age, waist circumference, self-reported physical activity and resting heart rate. We included 1431 subjects aged 69-77 years that completed a laboratory test of VO2peak, spirometry, and a gas diffusion test. Prediction models for VO2peak were developed with multiple linear regression, and goodness of fit was evaluated. Forced expiratory volume in one second (FEV1), diffusing capacity of the lung for carbon monoxide and blood hemoglobin concentration significantly improved the ability of the established model to predict VO2peak. The explained variance of the model increased from 31% to 48% for men and from 32% to 38% for women (p<0.001). FEV1, diffusing capacity of the lungs for carbon monoxide and hemoglobin concentration substantially improved the accuracy of VO2peak prediction when added to an established model in an elderly population.
Orucevic, Amila; Bell, John L; McNabb, Alison P; Heidel, Robert E
2017-05-01
Oncotype DX (ODX) recurrence score (RS) breast cancer (BC) assay is costly, and performed in only ~1/3 of estrogen receptor (ER)-positive BC patients in the USA. We have now developed a user-friendly nomogram surrogate prediction model for ODX based on a large dataset from the National Cancer Data Base (NCDB) to assist in selecting patients for which further ODX testing may not be necessary and as a surrogate for patients for which ODX testing is not affordable or available. Six clinicopathologic variables of 27,719 ODX-tested ER+/HER2-/lymph node-negative patients with 6-50 mm tumor size captured by the NCDB from 2010 to 2012 were assessed with logistic regression to predict high-risk or low-risk ODXRS test results with TAILORx-trial and commercial cut-off values; 12,763 ODX-tested patients in 2013 were used for external validation. The predictive accuracy of the regression model was yielded using a Receiver Operator Characteristic analysis. Model fit was analyzed by plotting the predicted probabilities against the actual probabilities. A user-friendly calculator version of nomograms is available online at the University of Tennessee Medical Center website (Knoxville, TN). Grade and progesterone receptor status were the highest predictors of both low-risk and high-risk ODXRS, followed by age, tumor size, histologic tumor type and lymph-vascular invasion (C-indexes-.0.85 vs. 0.88 for TAILORx-trial vs. commercial cut-off values, respectively). This is the first study of this scale showing confidently that clinicopathologic variables can be used for prediction of low-risk or high-risk ODXRS using our nomogram models. These novel nomograms will be useful tools to help physicians and patients decide whether further ODX testing is necessary and are excellent surrogates for patients for which ODX testing is not affordable or available.
Liou, Jing-Yang; Ting, Chien-Kun; Mandell, M Susan; Chang, Kuang-Yi; Teng, Wei-Nung; Huang, Yu-Yin; Tsou, Mei-Yung
2016-08-01
Selecting an effective dose of sedative drugs in combined upper and lower gastrointestinal endoscopy is complicated by varying degrees of pain stimulation. We tested the ability of 5 response surface models to predict depth of sedation after administration of midazolam and alfentanil in this complex model. The procedure was divided into 3 phases: esophagogastroduodenoscopy (EGD), colonoscopy, and the time interval between the 2 (intersession). The depth of sedation in 33 adult patients was monitored by Observer Assessment of Alertness/Scores. A total of 218 combinations of midazolam and alfentanil effect-site concentrations derived from pharmacokinetic models were used to test 5 response surface models in each of the 3 phases of endoscopy. Model fit was evaluated with objective function value, corrected Akaike Information Criterion (AICc), and Spearman ranked correlation. A model was arbitrarily defined as accurate if the predicted probability is <0.5 from the observed response. The effect-site concentrations tested ranged from 1 to 76 ng/mL and from 5 to 80 ng/mL for midazolam and alfentanil, respectively. Midazolam and alfentanil had synergistic effects in colonoscopy and EGD, but additivity was observed in the intersession group. Adequate prediction rates were 84% to 85% in the intersession group, 84% to 88% during colonoscopy, and 82% to 87% during EGD. The reduced Greco and Fixed alfentanil concentration required for 50% of the patients to achieve targeted response Hierarchy models performed better with comparable predictive strength. The reduced Greco model had the lowest AICc with strong correlation in all 3 phases of endoscopy. Dynamic, rather than fixed, γ and γalf in the Hierarchy model improved model fit. The reduced Greco model had the lowest objective function value and AICc and thus the best fit. This model was reliable with acceptable predictive ability based on adequate clinical correlation. We suggest that this model has practical clinical value for patients undergoing procedures with varying degrees of stimulation.
Adachi, Daiki; Nishiguchi, Shu; Fukutani, Naoto; Hotta, Takayuki; Tashiro, Yuto; Morino, Saori; Shirooka, Hidehiko; Nozaki, Yuma; Hirata, Hinako; Yamaguchi, Moe; Yorozu, Ayanori; Takahashi, Masaki; Aoyama, Tomoki
2017-05-01
The purpose of this study was to investigate which spatial and temporal parameters of the Timed Up and Go (TUG) test are associated with motor function in elderly individuals. This study included 99 community-dwelling women aged 72.9 ± 6.3 years. Step length, step width, single support time, variability of the aforementioned parameters, gait velocity, cadence, reaction time from starting signal to first step, and minimum distance between the foot and a marker placed to 3 in front of the chair were measured using our analysis system. The 10-m walk test, five times sit-to-stand (FTSTS) test, and one-leg standing (OLS) test were used to assess motor function. Stepwise multivariate linear regression analysis was used to determine which TUG test parameters were associated with each motor function test. Finally, we calculated a predictive model for each motor function test using each regression coefficient. In stepwise linear regression analysis, step length and cadence were significantly associated with the 10-m walk test, FTSTS and OLS test. Reaction time was associated with the FTSTS test, and step width was associated with the OLS test. Each predictive model showed a strong correlation with the 10-m walk test and OLS test (P < 0.01), which was not significant higher correlation than TUG test time. We showed which TUG test parameters were associated with each motor function test. Moreover, the TUG test time regarded as the lower extremity function and mobility has strong predictive ability in each motor function test. Copyright © 2017 The Japanese Orthopaedic Association. Published by Elsevier B.V. All rights reserved.
Yu, S; Gao, S; Gan, Y; Zhang, Y; Ruan, X; Wang, Y; Yang, L; Shi, J
2016-04-01
Quantitative structure-property relationship modelling can be a valuable alternative method to replace or reduce experimental testing. In particular, some endpoints such as octanol-water (KOW) and organic carbon-water (KOC) partition coefficients of polychlorinated biphenyls (PCBs) are easier to predict and various models have been already developed. In this paper, two different methods, which are multiple linear regression based on the descriptors generated using Dragon software and hologram quantitative structure-activity relationships, were employed to predict suspended particulate matter (SPM) derived log KOC and generator column, shake flask and slow stirring method derived log KOW values of 209 PCBs. The predictive ability of the derived models was validated using a test set. The performances of all these models were compared with EPI Suite™ software. The results indicated that the proposed models were robust and satisfactory, and could provide feasible and promising tools for the rapid assessment of the SPM derived log KOC and generator column, shake flask and slow stirring method derived log KOW values of PCBs.
NIR spectroscopic measurement of moisture content in Scots pine seeds.
Lestander, Torbjörn A; Geladi, Paul
2003-04-01
When tree seeds are used for seedling production it is important that they are of high quality in order to be viable. One of the factors influencing viability is moisture content and an ideal quality control system should be able to measure this factor quickly for each seed. Seed moisture content within the range 3-34% was determined by near-infrared (NIR) spectroscopy on Scots pine (Pinus sylvestris L.) single seeds and on bulk seed samples consisting of 40-50 seeds. The models for predicting water content from the spectra were made by partial least squares (PLS) and ordinary least squares (OLS) regression. Different conditions were simulated involving both using less wavelengths and going from samples to single seeds. Reflectance and transmission measurements were used. Different spectral pretreatment methods were tested on the spectra. Including bias, the lowest prediction errors for PLS models based on reflectance within 780-2280 nm from bulk samples and single seeds were 0.8% and 1.9%, respectively. Reduction of the single seed reflectance spectrum to 850-1048 nm gave higher biases and prediction errors in the test set. In transmission (850-1048 nm) the prediction error was 2.7% for single seeds. OLS models based on simulated 4-sensor single seed system consisting of optical filters with Gaussian transmission indicated more than 3.4% error in prediction. A practical F-test based on test sets to differentiate models is introduced.
Multivariate Models for Prediction of Human Skin Sensitization ...
One of the lnteragency Coordinating Committee on the Validation of Alternative Method's (ICCVAM) top priorities is the development and evaluation of non-animal approaches to identify potential skin sensitizers. The complexity of biological events necessary to produce skin sensitization suggests that no single alternative method will replace the currently accepted animal tests. ICCVAM is evaluating an integrated approach to testing and assessment based on the adverse outcome pathway for skin sensitization that uses machine learning approaches to predict human skin sensitization hazard. We combined data from three in chemico or in vitro assays - the direct peptide reactivity assay (DPRA), human cell line activation test (h-CLAT) and KeratinoSens TM assay - six physicochemical properties and an in silico read-across prediction of skin sensitization hazard into 12 variable groups. The variable groups were evaluated using two machine learning approaches , logistic regression and support vector machine, to predict human skin sensitization hazard. Models were trained on 72 substances and tested on an external set of 24 substances. The six models (three logistic regression and three support vector machine) with the highest accuracy (92%) used: (1) DPRA, h-CLAT and read-across; (2) DPRA, h-CLAT, read-across and KeratinoSens; or (3) DPRA, h-CLAT, read-across, KeratinoSens and log P. The models performed better at predicting human skin sensitization hazard than the murine
Icing Analysis of a Swept NACA 0012 Wing Using LEWICE3D Version 3.48
NASA Technical Reports Server (NTRS)
Bidwell, Colin S.
2014-01-01
Icing calculations were performed for a NACA 0012 swept wing tip using LEWICE3D Version 3.48 coupled with the ANSYS CFX flow solver. The calculated ice shapes were compared to experimental data generated in the NASA Glenn Icing Research Tunnel (IRT). The IRT tests were designed to test the performance of the LEWICE3D ice void density model which was developed to improve the prediction of swept wing ice shapes. Icing tests were performed for a range of temperatures at two different droplet inertia parameters and two different sweep angles. The predicted mass agreed well with the experiment with an average difference of 12%. The LEWICE3D ice void density model under-predicted void density by an average of 30% for the large inertia parameter cases and by 63% for the small inertia parameter cases. This under-prediction in void density resulted in an over-prediction of ice area by an average of 115%. The LEWICE3D ice void density model produced a larger average area difference with experiment than the standard LEWICE density model, which doesn't account for the voids in the swept wing ice shape, (115% and 75% respectively) but it produced ice shapes which were deemed more appropriate because they were conservative (larger than experiment). Major contributors to the overly conservative ice shape predictions were deficiencies in the leading edge heat transfer and the sensitivity of the void ice density model to the particle inertia parameter. The scallop features present on the ice shapes were thought to generate interstitial flow and horse shoe vortices which enhance the leading edge heat transfer. A set of changes to improve the leading edge heat transfer and the void density model were tested. The changes improved the ice shape predictions considerably. More work needs to be done to evaluate the performance of these modifications for a wider range of geometries and icing conditions.
Icing Analysis of a Swept NACA 0012 Wing Using LEWICE3D Version 3.48
NASA Technical Reports Server (NTRS)
Bidwell, Colin S.
2014-01-01
Icing calculations were performed for a NACA 0012 swept wing tip using LEWICE3D Version 3.48 coupled with the ANSYS CFX flow solver. The calculated ice shapes were compared to experimental data generated in the NASA Glenn Icing Research Tunnel (IRT). The IRT tests were designed to test the performance of the LEWICE3D ice void density model which was developed to improve the prediction of swept wing ice shapes. Icing tests were performed for a range of temperatures at two different droplet inertia parameters and two different sweep angles. The predicted mass agreed well with the experiment with an average difference of 12%. The LEWICE3D ice void density model under-predicted void density by an average of 30% for the large inertia parameter cases and by 63% for the small inertia parameter cases. This under-prediction in void density resulted in an over-prediction of ice area by an average of 115%. The LEWICE3D ice void density model produced a larger average area difference with experiment than the standard LEWICE density model, which doesn't account for the voids in the swept wing ice shape, (115% and 75% respectively) but it produced ice shapes which were deemed more appropriate because they were conservative (larger than experiment). Major contributors to the overly conservative ice shape predictions were deficiencies in the leading edge heat transfer and the sensitivity of the void ice density model to the particle inertia parameter. The scallop features present on the ice shapes were thought to generate interstitial flow and horse shoe vortices which enhance the leading edge heat transfer. A set of changes to improve the leading edge heat transfer and the void density model were tested. The changes improved the ice shape predictions considerably. More work needs to be done to evaluate the performance of these modifications for a wider range of geometries and icing conditions
A Flight Prediction for Performance of the SWAS Solar Array Deployment Mechanism
NASA Technical Reports Server (NTRS)
Seniderman, Gary; Daniel, Walter K.
1999-01-01
The focus of this paper is a comparison of ground-based solar array deployment tests with the on-orbit deployment. The discussion includes a summary of the mechanisms involved and the correlation of a dynamics model with ground based test results. Some of the unique characteristics of the mechanisms are explained through the analysis of force and angle data acquired from the test deployments. The correlated dynamics model is then used to predict the performance of the system in its flight application.
Acoustic results of the Boeing model 360 whirl tower test
NASA Astrophysics Data System (ADS)
Watts, Michael E.; Jordan, David
1990-09-01
An evaluation is presented for whirl tower test results of the Model 360 helicopter's advanced, high-performance four-bladed composite rotor system intended to facilitate over-200-knot flight. During these performance measurements, acoustic data were acquired by seven microphones. A comparison of whirl-tower tests with theory indicate that theoretical prediction accuracies vary with both microphone position and the inclusion of ground reflection. Prediction errors varied from 0 to 40 percent of the measured signal-to-peak amplitude.
NASA Astrophysics Data System (ADS)
Hirata, N.; Yokoi, S.; Nanjo, K. Z.; Tsuruoka, H.
2012-04-01
One major focus of the current Japanese earthquake prediction research program (2009-2013), which is now integrated with the research program for prediction of volcanic eruptions, is to move toward creating testable earthquake forecast models. For this purpose we started an experiment of forecasting earthquake activity in Japan under the framework of the Collaboratory for the Study of Earthquake Predictability (CSEP) through an international collaboration. We established the CSEP Testing Centre, an infrastructure to encourage researchers to develop testable models for Japan, and to conduct verifiable prospective tests of their model performance. We started the 1st earthquake forecast testing experiment in Japan within the CSEP framework. We use the earthquake catalogue maintained and provided by the Japan Meteorological Agency (JMA). The experiment consists of 12 categories, with 4 testing classes with different time spans (1 day, 3 months, 1 year, and 3 years) and 3 testing regions called "All Japan," "Mainland," and "Kanto." A total of 105 models were submitted, and are currently under the CSEP official suite of tests for evaluating the performance of forecasts. The experiments were completed for 92 rounds for 1-day, 6 rounds for 3-month, and 3 rounds for 1-year classes. For 1-day testing class all models passed all the CSEP's evaluation tests at more than 90% rounds. The results of the 3-month testing class also gave us new knowledge concerning statistical forecasting models. All models showed a good performance for magnitude forecasting. On the other hand, observation is hardly consistent in space distribution with most models when many earthquakes occurred at a spot. Now we prepare the 3-D forecasting experiment with a depth range of 0 to 100 km in Kanto region. The testing center is improving an evaluation system for 1-day class experiment to finish forecasting and testing results within one day. The special issue of 1st part titled Earthquake Forecast Testing Experiment in Japan was published on the Earth, Planets and Space Vol. 63, No.3, 2011 on March, 2011. The 2nd part of this issue, which is now on line, will be published soon. An outline of the experiment and activities of the Japanese Testing Center are published on our WEB site; http://wwweic.eri.u-tokyo.ac.jp/ZISINyosoku/wiki.en/wiki.cgi
Evaluation of SSME test data reduction methods
NASA Technical Reports Server (NTRS)
Santi, L. Michael
1994-01-01
Accurate prediction of hardware and flow characteristics within the Space Shuttle Main Engine (SSME) during transient and main-stage operation requires a significant integration of ground test data, flight experience, and computational models. The process of integrating SSME test measurements with physical model predictions is commonly referred to as data reduction. Uncertainties within both test measurements and simplified models of the SSME flow environment compound the data integration problem. The first objective of this effort was to establish an acceptability criterion for data reduction solutions. The second objective of this effort was to investigate the data reduction potential of the ROCETS (Rocket Engine Transient Simulation) simulation platform. A simplified ROCETS model of the SSME was obtained from the MSFC Performance Analysis Branch . This model was examined and tested for physical consistency. Two modules were constructed and added to the ROCETS library to independently check the mass and energy balances of selected engine subsystems including the low pressure fuel turbopump, the high pressure fuel turbopump, the low pressure oxidizer turbopump, the high pressure oxidizer turbopump, the fuel preburner, the oxidizer preburner, the main combustion chamber coolant circuit, and the nozzle coolant circuit. A sensitivity study was then conducted to determine the individual influences of forty-two hardware characteristics on fourteen high pressure region prediction variables as returned by the SSME ROCETS model.
Combining Gene Signatures Improves Prediction of Breast Cancer Survival
Zhao, Xi; Naume, Bjørn; Langerød, Anita; Frigessi, Arnoldo; Kristensen, Vessela N.; Børresen-Dale, Anne-Lise; Lingjærde, Ole Christian
2011-01-01
Background Several gene sets for prediction of breast cancer survival have been derived from whole-genome mRNA expression profiles. Here, we develop a statistical framework to explore whether combination of the information from such sets may improve prediction of recurrence and breast cancer specific death in early-stage breast cancers. Microarray data from two clinically similar cohorts of breast cancer patients are used as training (n = 123) and test set (n = 81), respectively. Gene sets from eleven previously published gene signatures are included in the study. Principal Findings To investigate the relationship between breast cancer survival and gene expression on a particular gene set, a Cox proportional hazards model is applied using partial likelihood regression with an L2 penalty to avoid overfitting and using cross-validation to determine the penalty weight. The fitted models are applied to an independent test set to obtain a predicted risk for each individual and each gene set. Hierarchical clustering of the test individuals on the basis of the vector of predicted risks results in two clusters with distinct clinical characteristics in terms of the distribution of molecular subtypes, ER, PR status, TP53 mutation status and histological grade category, and associated with significantly different survival probabilities (recurrence: p = 0.005; breast cancer death: p = 0.014). Finally, principal components analysis of the gene signatures is used to derive combined predictors used to fit a new Cox model. This model classifies test individuals into two risk groups with distinct survival characteristics (recurrence: p = 0.003; breast cancer death: p = 0.001). The latter classifier outperforms all the individual gene signatures, as well as Cox models based on traditional clinical parameters and the Adjuvant! Online for survival prediction. Conclusion Combining the predictive strength of multiple gene signatures improves prediction of breast cancer survival. The presented methodology is broadly applicable to breast cancer risk assessment using any new identified gene set. PMID:21423775
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gong, Y; Yu, J; Yeung, V
Purpose: Artificial neural networks (ANN) can be used to discover complex relations within datasets to help with medical decision making. This study aimed to develop an ANN method to predict two-year overall survival of patients with peri-ampullary cancer (PAC) following resection. Methods: Data were collected from 334 patients with PAC following resection treated in our institutional pancreatic tumor registry between 2006 and 2012. The dataset contains 14 variables including age, gender, T-stage, tumor differentiation, positive-lymph-node ratio, positive resection margins, chemotherapy, radiation therapy, and tumor histology.After censoring for two-year survival analysis, 309 patients were left, of which 44 patients (∼15%) weremore » randomly selected to form testing set. The remaining 265 cases were randomly divided into training set (211 cases, ∼80% of 265) and validation set (54 cases, ∼20% of 265) for 20 times to build 20 ANN models. Each ANN has one hidden layer with 5 units. The 20 ANN models were ranked according to their concordance index (c-index) of prediction on validation sets. To further improve prediction, the top 10% of ANN models were selected, and their outputs averaged for prediction on testing set. Results: By random division, 44 cases in testing set and the remaining 265 cases have approximately equal two-year survival rates, 36.4% and 35.5% respectively. The 20 ANN models, which were trained and validated on the 265 cases, yielded mean c-indexes as 0.59 and 0.63 on validation sets and the testing set, respectively. C-index was 0.72 when the two best ANN models (top 10%) were used in prediction on testing set. The c-index of Cox regression analysis was 0.63. Conclusion: ANN improved survival prediction for patients with PAC. More patient data and further analysis of additional factors may be needed for a more robust model, which will help guide physicians in providing optimal post-operative care. This project was supported by PA CURE Grant.« less
Space vehicle acoustics prediction improvement for payloads. [space shuttle
NASA Technical Reports Server (NTRS)
Dandridge, R. E.
1979-01-01
The modal analysis method was extensively modified for the prediction of space vehicle noise reduction in the shuttle payload enclosure, and this program was adapted to the IBM 360 computer. The predicted noise reduction levels for two test cases were compared with experimental results to determine the validity of the analytical model for predicting space vehicle payload noise environments in the 10 Hz one-third octave band regime. The prediction approach for the two test cases generally gave reasonable magnitudes and trends when compared with the measured noise reduction spectra. The discrepancies in the predictions could be corrected primarily by improved modeling of the vehicle structural walls and of the enclosed acoustic space to obtain a more accurate assessment of normal modes. Techniques for improving and expandng the noise prediction for a payload environment are also suggested.
Cole, Jeffrey C.; Maloney, Kelly O.; Schmid, Matthias; McKenna, James E.
2014-01-01
Water temperature is an important driver of many processes in riverine ecosystems. If reservoirs are present, their releases can greatly influence downstream water temperatures. Models are important tools in understanding the influence these releases may have on the thermal regimes of downstream rivers. In this study, we developed and tested a suite of models to predict river temperature at a location downstream of two reservoirs in the Upper Delaware River (USA), a section of river that is managed to support a world-class coldwater fishery. Three empirical models were tested, including a Generalized Least Squares Model with a cosine trend (GLScos), AutoRegressive Integrated Moving Average (ARIMA), and Artificial Neural Network (ANN). We also tested one mechanistic Heat Flux Model (HFM) that was based on energy gain and loss. Predictor variables used in model development included climate data (e.g., solar radiation, wind speed, etc.) collected from a nearby weather station and temperature and hydrologic data from upstream U.S. Geological Survey gages. Models were developed with a training dataset that consisted of data from 2008 to 2011; they were then independently validated with a test dataset from 2012. Model accuracy was evaluated using root mean square error (RMSE), Nash Sutcliffe efficiency (NSE), percent bias (PBIAS), and index of agreement (d) statistics. Model forecast success was evaluated using baseline-modified prime index of agreement (md) at the one, three, and five day predictions. All five models accurately predicted daily mean river temperature across the entire training dataset (RMSE = 0.58–1.311, NSE = 0.99–0.97, d = 0.98–0.99); ARIMA was most accurate (RMSE = 0.57, NSE = 0.99), but each model, other than ARIMA, showed short periods of under- or over-predicting observed warmer temperatures. For the training dataset, all models besides ARIMA had overestimation bias (PBIAS = −0.10 to −1.30). Validation analyses showed all models performed well; the HFM model was the most accurate compared other models (RMSE = 0.92, both NSE = 0.98, d = 0.99) and the ARIMA model was least accurate (RMSE = 2.06, NSE = 0.92, d = 0.98); however, all models had an overestimation bias (PBIAS = −4.1 to −10.20). Aside from the one day forecast ARIMA model (md = 0.53), all models forecasted fairly well at the one, three, and five day forecasts (md = 0.77–0.96). Overall, we were successful in developing models predicting daily mean temperature across a broad range of temperatures. These models, specifically the GLScos, ANN, and HFM, may serve as important tools for predicting conditions and managing thermal releases in regulated river systems such as the Delaware River. Further model development may be important in customizing predictions for particular biological or ecological needs, or for particular temporal or spatial scales.
NASA Astrophysics Data System (ADS)
Cole, Jeffrey C.; Maloney, Kelly O.; Schmid, Matthias; McKenna, James E.
2014-11-01
Water temperature is an important driver of many processes in riverine ecosystems. If reservoirs are present, their releases can greatly influence downstream water temperatures. Models are important tools in understanding the influence these releases may have on the thermal regimes of downstream rivers. In this study, we developed and tested a suite of models to predict river temperature at a location downstream of two reservoirs in the Upper Delaware River (USA), a section of river that is managed to support a world-class coldwater fishery. Three empirical models were tested, including a Generalized Least Squares Model with a cosine trend (GLScos), AutoRegressive Integrated Moving Average (ARIMA), and Artificial Neural Network (ANN). We also tested one mechanistic Heat Flux Model (HFM) that was based on energy gain and loss. Predictor variables used in model development included climate data (e.g., solar radiation, wind speed, etc.) collected from a nearby weather station and temperature and hydrologic data from upstream U.S. Geological Survey gages. Models were developed with a training dataset that consisted of data from 2008 to 2011; they were then independently validated with a test dataset from 2012. Model accuracy was evaluated using root mean square error (RMSE), Nash Sutcliffe efficiency (NSE), percent bias (PBIAS), and index of agreement (d) statistics. Model forecast success was evaluated using baseline-modified prime index of agreement (md) at the one, three, and five day predictions. All five models accurately predicted daily mean river temperature across the entire training dataset (RMSE = 0.58-1.311, NSE = 0.99-0.97, d = 0.98-0.99); ARIMA was most accurate (RMSE = 0.57, NSE = 0.99), but each model, other than ARIMA, showed short periods of under- or over-predicting observed warmer temperatures. For the training dataset, all models besides ARIMA had overestimation bias (PBIAS = -0.10 to -1.30). Validation analyses showed all models performed well; the HFM model was the most accurate compared other models (RMSE = 0.92, both NSE = 0.98, d = 0.99) and the ARIMA model was least accurate (RMSE = 2.06, NSE = 0.92, d = 0.98); however, all models had an overestimation bias (PBIAS = -4.1 to -10.20). Aside from the one day forecast ARIMA model (md = 0.53), all models forecasted fairly well at the one, three, and five day forecasts (md = 0.77-0.96). Overall, we were successful in developing models predicting daily mean temperature across a broad range of temperatures. These models, specifically the GLScos, ANN, and HFM, may serve as important tools for predicting conditions and managing thermal releases in regulated river systems such as the Delaware River. Further model development may be important in customizing predictions for particular biological or ecological needs, or for particular temporal or spatial scales.
Modeling the Afferent Dynamics of the Baroreflex Control System
Mahdi, Adam; Sturdy, Jacob; Ottesen, Johnny T.; Olufsen, Mette S.
2013-01-01
In this study we develop a modeling framework for predicting baroreceptor firing rate as a function of blood pressure. We test models within this framework both quantitatively and qualitatively using data from rats. The models describe three components: arterial wall deformation, stimulation of mechanoreceptors located in the BR nerve-endings, and modulation of the action potential frequency. The three sub-systems are modeled individually following well-established biological principles. The first submodel, predicting arterial wall deformation, uses blood pressure as an input and outputs circumferential strain. The mechanoreceptor stimulation model, uses circumferential strain as an input, predicting receptor deformation as an output. Finally, the neural model takes receptor deformation as an input predicting the BR firing rate as an output. Our results show that nonlinear dependence of firing rate on pressure can be accounted for by taking into account the nonlinear elastic properties of the artery wall. This was observed when testing the models using multiple experiments with a single set of parameters. We find that to model the response to a square pressure stimulus, giving rise to post-excitatory depression, it is necessary to include an integrate-and-fire model, which allows the firing rate to cease when the stimulus falls below a given threshold. We show that our modeling framework in combination with sensitivity analysis and parameter estimation can be used to test and compare models. Finally, we demonstrate that our preferred model can exhibit all known dynamics and that it is advantageous to combine qualitative and quantitative analysis methods. PMID:24348231
Shi, Xiaohu; Zhang, Jingfen; He, Zhiquan; Shang, Yi; Xu, Dong
2011-09-01
One of the major challenges in protein tertiary structure prediction is structure quality assessment. In many cases, protein structure prediction tools generate good structural models, but fail to select the best models from a huge number of candidates as the final output. In this study, we developed a sampling-based machine-learning method to rank protein structural models by integrating multiple scores and features. First, features such as predicted secondary structure, solvent accessibility and residue-residue contact information are integrated by two Radial Basis Function (RBF) models trained from different datasets. Then, the two RBF scores and five selected scoring functions developed by others, i.e., Opus-CA, Opus-PSP, DFIRE, RAPDF, and Cheng Score are synthesized by a sampling method. At last, another integrated RBF model ranks the structural models according to the features of sampling distribution. We tested the proposed method by using two different datasets, including the CASP server prediction models of all CASP8 targets and a set of models generated by our in-house software MUFOLD. The test result shows that our method outperforms any individual scoring function on both best model selection, and overall correlation between the predicted ranking and the actual ranking of structural quality.
Textile composite processing science
NASA Technical Reports Server (NTRS)
Loos, Alfred C.; Hammond, Vincent H.; Kranbuehl, David E.; Hasko, Gregory H.
1993-01-01
A multi-dimensional model of the Resin Transfer Molding (RTM) process was developed for the prediction of the infiltration behavior of a resin into an anisotropic fiber preform. Frequency dependent electromagnetic sensing (FDEMS) was developed for in-situ monitoring of the RTM process. Flow visualization and mold filling experiments were conducted to verify sensor measurements and model predictions. Test results indicated good agreement between model predictions, sensor readings, and experimental data.
NASA Astrophysics Data System (ADS)
Johns, Jesse M.; Burkes, Douglas
2017-07-01
In this work, a multilayered perceptron (MLP) network is used to develop predictive isothermal time-temperature-transformation (TTT) models covering a range of U-Mo binary and ternary alloys. The selected ternary alloys for model development are U-Mo-Ru, U-Mo-Nb, U-Mo-Zr, U-Mo-Cr, and U-Mo-Re. These model's ability to predict 'novel' U-Mo alloys is shown quite well despite the discrepancies between literature sources for similar alloys which likely arise from different thermal-mechanical processing conditions. These models are developed with the primary purpose of informing experimental decisions. Additional experimental insight is necessary in order to reduce the number of experiments required to isolate ideal alloys. These models allow test planners to evaluate areas of experimental interest; once initial tests are conducted, the model can be updated and further improve follow-on testing decisions. The model also improves analysis capabilities by reducing the number of data points necessary from any particular test. For example, if one or two isotherms are measured during a test, the model can construct the rest of the TTT curve over a wide range of temperature and time. This modeling capability reduces the cost of experiments while also improving the value of the results from the tests. The reduced costs could result in improved material characterization and therefore improved fundamental understanding of TTT dynamics. As additional understanding of phenomena driving TTTs is acquired, this type of MLP model can be used to populate unknowns (such as material impurity and other thermal mechanical properties) from past literature sources.
Mapping Nuclear Fallout Using the Weather Research & Forecasting (WRF) Model
2012-09-01
relevant modules, originally designed to predict the settling of volcanic ash, such that a stabilized cloud of nuclear particulate is initialized...within the model. This modified code is then executed for various atmospheric test explosions and the results are qualitatively and quantitatively...HYSPLIT Simulation ....................................... 44 Figure 7. WRF Fallout Prediction for Test Shot George, 0.8 R/h at H+1
ERIC Educational Resources Information Center
Malloch, Douglas C.; Michael, William B.
1981-01-01
This study was designed to determine whether an unweighted linear combination of community college students' scores on standardized achievement tests and a measure of motivational constructs derived from Vroom's expectance theory model of motivation was predictive of academic success (grade point average earned during one quarter of an academic…
Fatigue life prediction of liquid rocket engine combustor with subscale test verification
NASA Astrophysics Data System (ADS)
Sung, In-Kyung
Reusable rocket systems such as the Space Shuttle introduced a new era in propulsion system design for economic feasibility. Practical reusable systems require an order of magnitude increase in life. To achieve this improved methods are needed to assess failure mechanisms and to predict life cycles of rocket combustor. A general goal of the research was to demonstrate the use of subscale rocket combustor prototype in a cost-effective test program. Life limiting factors and metal behaviors under repeated loads were surveyed and reviewed. The life prediction theories are presented, with an emphasis on studies that used subscale test hardware for model validation. From this review, low cycle fatigue (LCF) and creep-fatigue interaction (ratcheting) were identified as the main life limiting factors of the combustor. Several life prediction methods such as conventional and advanced viscoplastic models were used to predict life cycle due to low cycle thermal stress, transient effects, and creep rupture damage. Creep-fatigue interaction and cyclic hardening were also investigated. A prediction method based on 2D beam theory was modified using 3D plate deformation theory to provide an extended prediction method. For experimental validation two small scale annular plug nozzle thrusters were designed, built and tested. The test article was composed of a water-cooled liner, plug annular nozzle and 200 psia precombustor that used decomposed hydrogen peroxide as the oxidizer and JP-8 as the fuel. The first combustor was tested cyclically at the Advanced Propellants and Combustion Laboratory at Purdue University. Testing was stopped after 140 cycles due to an unpredicted failure mechanism due to an increasing hot spot in the location where failure was predicted. A second combustor was designed to avoid the previous failure, however, it was over pressurized and deformed beyond repair during cold-flow test. The test results are discussed and compared to the analytical and numerical predictions. A detailed comparison was not performed, however, due to the lack of test data resulting from a failure of the test article. Some theoretical and experimental aspects such as fin effect and round corner were found to reduce the discrepancy between prediction and test results.
Chen, Shangying; Zhang, Peng; Liu, Xin; Qin, Chu; Tao, Lin; Zhang, Cheng; Yang, Sheng Yong; Chen, Yu Zong; Chui, Wai Keung
2016-06-01
The overall efficacy and safety profile of a new drug is partially evaluated by the therapeutic index in clinical studies and by the protective index (PI) in preclinical studies. In-silico predictive methods may facilitate the assessment of these indicators. Although QSAR and QSTR models can be used for predicting PI, their predictive capability has not been evaluated. To test this capability, we developed QSAR and QSTR models for predicting the activity and toxicity of anticonvulsants at accuracy levels above the literature-reported threshold (LT) of good QSAR models as tested by both the internal 5-fold cross validation and external validation method. These models showed significantly compromised PI predictive capability due to the cumulative errors of the QSAR and QSTR models. Therefore, in this investigation a new quantitative structure-index relationship (QSIR) model was devised and it showed improved PI predictive capability that superseded the LT of good QSAR models. The QSAR, QSTR and QSIR models were developed using support vector regression (SVR) method with the parameters optimized by using the greedy search method. The molecular descriptors relevant to the prediction of anticonvulsant activities, toxicities and PIs were analyzed by a recursive feature elimination method. The selected molecular descriptors are primarily associated with the drug-like, pharmacological and toxicological features and those used in the published anticonvulsant QSAR and QSTR models. This study suggested that QSIR is useful for estimating the therapeutic index of drug candidates. Copyright © 2016. Published by Elsevier Inc.
Initial comparison of single cylinder Stirling engine computer model predictions with test results
NASA Technical Reports Server (NTRS)
Tew, R. C., Jr.; Thieme, L. G.; Miao, D.
1979-01-01
A NASA developed digital computer code for a Stirling engine, modelling the performance of a single cylinder rhombic drive ground performance unit (GPU), is presented and its predictions are compared to test results. The GPU engine incorporates eight regenerator/cooler units and the engine working space is modelled by thirteen control volumes. The model calculates indicated power and efficiency for a given engine speed, mean pressure, heater and expansion space metal temperatures and cooler water inlet temperature and flow rate. Comparison of predicted and observed powers implies that the reference pressure drop calculations underestimate actual pressure drop, possibly due to oil contamination in the regenerator/cooler units, methane contamination in the working gas or the underestimation of mechanical loss. For a working gas of hydrogen, the predicted values of brake power are from 0 to 6% higher than experimental values, and brake efficiency is 6 to 16% higher, while for helium the predicted brake power and efficiency are 2 to 15% higher than the experimental.
Prediction Accuracy of Error Rates for MPTB Space Experiment
NASA Technical Reports Server (NTRS)
Buchner, S. P.; Campbell, A. B.; Davis, D.; McMorrow, D.; Petersen, E. L.; Stassinopoulos, E. G.; Ritter, J. C.
1998-01-01
This paper addresses the accuracy of radiation-induced upset-rate predictions in space using the results of ground-based measurements together with standard environmental and device models. The study is focused on two part types - 16 Mb NEC DRAM's (UPD4216) and 1 Kb SRAM's (AMD93L422) - both of which are currently in space on board the Microelectronics and Photonics Test Bed (MPTB). To date, ground-based measurements of proton-induced single event upset (SEM cross sections as a function of energy have been obtained and combined with models of the proton environment to predict proton-induced error rates in space. The role played by uncertainties in the environmental models will be determined by comparing the modeled radiation environment with the actual environment measured aboard MPTB. Heavy-ion induced upsets have also been obtained from MPTB and will be compared with the "predicted" error rate following ground testing that will be done in the near future. These results should help identify sources of uncertainty in predictions of SEU rates in space.
Random forest models to predict aqueous solubility.
Palmer, David S; O'Boyle, Noel M; Glen, Robert C; Mitchell, John B O
2007-01-01
Random Forest regression (RF), Partial-Least-Squares (PLS) regression, Support Vector Machines (SVM), and Artificial Neural Networks (ANN) were used to develop QSPR models for the prediction of aqueous solubility, based on experimental data for 988 organic molecules. The Random Forest regression model predicted aqueous solubility more accurately than those created by PLS, SVM, and ANN and offered methods for automatic descriptor selection, an assessment of descriptor importance, and an in-parallel measure of predictive ability, all of which serve to recommend its use. The prediction of log molar solubility for an external test set of 330 molecules that are solid at 25 degrees C gave an r2 = 0.89 and RMSE = 0.69 log S units. For a standard data set selected from the literature, the model performed well with respect to other documented methods. Finally, the diversity of the training and test sets are compared to the chemical space occupied by molecules in the MDL drug data report, on the basis of molecular descriptors selected by the regression analysis.
NASA Astrophysics Data System (ADS)
Shen, Fuhui; Lian, Junhe; Münstermann, Sebastian
2018-05-01
Experimental and numerical investigations on the forming limit diagram (FLD) of a ferritic stainless steel were performed in this study. The FLD of this material was obtained by Nakajima tests. Both the Marciniak-Kuczynski (MK) model and the modified maximum force criterion (MMFC) were used for the theoretical prediction of the FLD. From the results of uniaxial tensile tests along different loading directions with respect to the rolling direction, strong anisotropic plastic behaviour was observed in the investigated steel. A recently proposed anisotropic evolving non-associated Hill48 (enHill48) plasticity model, which was developed from the conventional Hill48 model based on the non-associated flow rule with evolving anisotropic parameters, was adopted to describe the anisotropic hardening behaviour of the investigated material. In the previous study, the model was coupled with the MMFC for FLD prediction. In the current study, the enHill48 was further coupled with the MK model. By comparing the predicted forming limit curves with the experimental results, the influences of anisotropy in terms of flow rule and evolving features on the forming limit prediction were revealed and analysed. In addition, the forming limit predictive performances of the MK and the MMFC models in conjunction with the enHill48 plasticity model were compared and evaluated.
NASA Astrophysics Data System (ADS)
Isingizwe Nturambirwe, J. Frédéric; Perold, Willem J.; Opara, Umezuruike L.
2016-02-01
Near infrared (NIR) spectroscopy has gained extensive use in quality evaluation. It is arguably one of the most advanced spectroscopic tools in non-destructive quality testing of food stuff, from measurement to data analysis and interpretation. NIR spectral data are interpreted through means often involving multivariate statistical analysis, sometimes associated with optimisation techniques for model improvement. The objective of this research was to explore the extent to which genetic algorithms (GA) can be used to enhance model development, for predicting fruit quality. Apple fruits were used, and NIR spectra in the range from 12000 to 4000 cm-1 were acquired on both bruised and healthy tissues, with different degrees of mechanical damage. GAs were used in combination with partial least squares regression methods to develop bruise severity prediction models, and compared to PLS models developed using the full NIR spectrum. A classification model was developed, which clearly separated bruised from unbruised apple tissue. GAs helped improve prediction models by over 10%, in comparison with full spectrum-based models, as evaluated in terms of error of prediction (Root Mean Square Error of Cross-validation). PLS models to predict internal quality, such as sugar content and acidity were developed and compared to the versions optimized by genetic algorithm. Overall, the results highlighted the potential use of GA method to improve speed and accuracy of fruit quality prediction.
NASA Technical Reports Server (NTRS)
Smith, Andrew; Harrison, Phil
2010-01-01
The National Aeronautics and Space Administration (NASA) Constellation Program (CxP) has identified a series of tests to provide insight into the design and development of the Crew Launch Vehicle (CLV) and Crew Exploration Vehicle (CEV). Ares I-X was selected as the first suborbital development flight test to help meet CxP objectives. The Ares I-X flight test vehicle (FTV) is an early operational model of CLV, with specific emphasis on CLV and ground operation characteristics necessary to meet Ares I-X flight test objectives. The in-flight part of the test includes a trajectory to simulate maximum dynamic pressure during flight and perform a stage separation of the Upper Stage Simulator (USS) from the First Stage (FS). The in-flight test also includes recovery of the FS. The random vibration response from the ARES 1-X flight will be reconstructed for a few specific locations that were instrumented with accelerometers. This recorded data will be helpful in validating and refining vibration prediction tools and methodology. Measured vibroacoustic environments associated with lift off and ascent phases of the Ares I-X mission will be compared with pre-flight vibration predictions. The measured flight data was given as time histories which will be converted into power spectral density plots for comparison with the maximum predicted environments. The maximum predicted environments are documented in the Vibroacoustics and Shock Environment Data Book, AI1-SYS-ACOv4.10 Vibration predictions made using statistical energy analysis (SEA) VAOne computer program will also be incorporated in the comparisons. Ascent and lift off measured acoustics will also be compared to predictions to assess whether any discrepancies between the predicted vibration levels and measured vibration levels are attributable to inaccurate acoustic predictions. These comparisons will also be helpful in assessing whether adjustments to prediction methodologies are needed to improve agreement between the predicted and measured flight data. Future assessment will incorporate hybrid methods in VAOne analysis (i.e., boundary element methods, BEM and finite element methods, FEM). These hybrid methods will enable the ability to import NASTRAN models providing much more detailed modeling of the underlying beams and support structure of the ARES 1-X test vehicle. Measured acoustic data will be incorporated into these analyses to improve correlation for additional post flight analysis.
NASA Astrophysics Data System (ADS)
Hardikar, Kedar Y.; Liu, Bill J. J.; Bheemreddy, Venkata
2016-09-01
Gaining an understanding of degradation mechanisms and their characterization are critical in developing relevant accelerated tests to ensure PV module performance warranty over a typical lifetime of 25 years. As newer technologies are adapted for PV, including new PV cell technologies, new packaging materials, and newer product designs, the availability of field data over extended periods of time for product performance assessment cannot be expected within the typical timeframe for business decisions. In this work, to enable product design decisions and product performance assessment for PV modules utilizing newer technologies, Simulation and Mechanism based Accelerated Reliability Testing (SMART) methodology and empirical approaches to predict field performance from accelerated test results are presented. The method is demonstrated for field life assessment of flexible PV modules based on degradation mechanisms observed in two accelerated tests, namely, Damp Heat and Thermal Cycling. The method is based on design of accelerated testing scheme with the intent to develop relevant acceleration factor models. The acceleration factor model is validated by extensive reliability testing under different conditions going beyond the established certification standards. Once the acceleration factor model is validated for the test matrix a modeling scheme is developed to predict field performance from results of accelerated testing for particular failure modes of interest. Further refinement of the model can continue as more field data becomes available. While the demonstration of the method in this work is for thin film flexible PV modules, the framework and methodology can be adapted to other PV products.
Predicted Turbine Heat Transfer for a Range of Test Conditions
NASA Technical Reports Server (NTRS)
Boyle, R. J.; Lucci, B. L.
1996-01-01
Comparisons are shown between predictions and experimental data for blade and endwall heat transfer. The comparisons of computational domain parisons are given for both vane and rotor geometries over an extensive range of Reynolds and Mach numbers. Comparisons are made with experimental data from a variety of sources. A number of turbulence models are available for predicting blade surface heat transfer, as well as aerodynamic performance. The results of an investigation to determine the turbulence model which gives the best agreement with experimental data over a wide range of test conditions are presented.
ERIC Educational Resources Information Center
Lee, Chien-Sing
2007-01-01
Models represent a set of generic patterns to test hypotheses. This paper presents the CogMoLab student model in the context of an integrated learning environment. Three aspects are discussed: diagnostic and predictive modeling with respect to the issues of credit assignment and scalability and compositional modeling of the student profile in the…
A Prospective Test of Cognitive Vulnerability Models of Depression With Adolescent Girls
Bohon, Cara; Stice, Eric; Burton, Emily; Fudell, Molly; Nolen-Hoeksema, Susan
2009-01-01
This study sought to provide a more rigorous prospective test of two cognitive vulnerability models of depression with longitudinal data from 496 adolescent girls. Results supported the cognitive vulnerability model in that stressors predicted future increases in depressive symptoms and onset of clinically significant major depression for individuals with a negative attributional style, but not for those with a positive attributional style, although these effects were small. This model appeared to be specific to depression, in that it did not predict future increases in bulimia nervosa or substance abuse symptoms. In contrast, results did not support the integrated cognitive vulnerability self-esteem model that asserts stressors should only predict increased depression for individuals with a confluence of negative attributional style and low self-esteem, and this model did not appear to be specific to depression. PMID:18328873
Valerio, Laura; North, Ace; Collins, C. Matilda; Mumford, John D.; Facchinelli, Luca; Spaccapelo, Roberta; Benedict, Mark Q.
2016-01-01
The persistence of transgenes in the environment is a consideration in risk assessments of transgenic organisms. Combining mathematical models that predict the frequency of transgenes and experimental demonstrations can validate the model predictions, or can detect significant biological deviations that were neither apparent nor included as model parameters. In order to assess the correlation between predictions and observations, models were constructed to estimate the frequency of a transgene causing male sexual sterility in simulated populations of a malaria mosquito Anopheles gambiae that were seeded with transgenic females at various proportions. Concurrently, overlapping-generation laboratory populations similar to those being modeled were initialized with various starting transgene proportions, and the subsequent proportions of transgenic individuals in populations were determined weekly until the transgene disappeared. The specific transgene being tested contained a homing endonuclease gene expressed in testes, I-PpoI, that cleaves the ribosomal DNA and results in complete male sexual sterility with no effect on female fertility. The transgene was observed to disappear more rapidly than the model predicted in all cases. The period before ovipositions that contained no transgenic progeny ranged from as little as three weeks after cage initiation to as long as 11 weeks. PMID:27669312
Modelling the multidimensional niche by linking functional traits to competitive performance
Maynard, Daniel S.; Leonard, Kenneth E.; Drake, John M.; Hall, David W.; Crowther, Thomas W.; Bradford, Mark A.
2015-01-01
Linking competitive outcomes to environmental conditions is necessary for understanding species' distributions and responses to environmental change. Despite this importance, generalizable approaches for predicting competitive outcomes across abiotic gradients are lacking, driven largely by the highly complex and context-dependent nature of biotic interactions. Here, we present and empirically test a novel niche model that uses functional traits to model the niche space of organisms and predict competitive outcomes of co-occurring populations across multiple resource gradients. The model makes no assumptions about the underlying mode of competition and instead applies to those settings where relative competitive ability across environments correlates with a quantifiable performance metric. To test the model, a series of controlled microcosm experiments were conducted using genetically related strains of a widespread microbe. The model identified trait microevolution and performance differences among strains, with the predicted competitive ability of each organism mapped across a two-dimensional carbon and nitrogen resource space. Areas of coexistence and competitive dominance between strains were identified, and the predicted competitive outcomes were validated in approximately 95% of the pairings. By linking trait variation to competitive ability, our work demonstrates a generalizable approach for predicting and modelling competitive outcomes across changing environmental contexts. PMID:26136444
A noise assessment and prediction system
NASA Technical Reports Server (NTRS)
Olsen, Robert O.; Noble, John M.
1990-01-01
A system has been designed to provide an assessment of noise levels that result from testing activities at Aberdeen Proving Ground, Md. The system receives meteorological data from surface stations and an upper air sounding system. The data from these systems are sent to a meteorological model, which provides forecasting conditions for up to three hours from the test time. The meteorological data are then used as input into an acoustic ray trace model which projects sound level contours onto a two-dimensional display of the surrounding area. This information is sent to the meteorological office for verification, as well as the range control office, and the environmental office. To evaluate the noise level predictions, a series of microphones are located off the reservation to receive the sound and transmit this information back to the central display unit. The computer models are modular allowing for a variety of models to be utilized and tested to achieve the best agreement with data. This technique of prediction and model validation will be used to improve the noise assessment system.
The Prediction of Item Parameters Based on Classical Test Theory and Latent Trait Theory
ERIC Educational Resources Information Center
Anil, Duygu
2008-01-01
In this study, the prediction power of the item characteristics based on the experts' predictions on conditions try-out practices cannot be applied was examined for item characteristics computed depending on classical test theory and two-parameters logistic model of latent trait theory. The study was carried out on 9914 randomly selected students…
Risk Prediction Models in Psychiatry: Toward a New Frontier for the Prevention of Mental Illnesses.
Bernardini, Francesco; Attademo, Luigi; Cleary, Sean D; Luther, Charles; Shim, Ruth S; Quartesan, Roberto; Compton, Michael T
2017-05-01
We conducted a systematic, qualitative review of risk prediction models designed and tested for depression, bipolar disorder, generalized anxiety disorder, posttraumatic stress disorder, and psychotic disorders. Our aim was to understand the current state of research on risk prediction models for these 5 disorders and thus future directions as our field moves toward embracing prediction and prevention. Systematic searches of the entire MEDLINE electronic database were conducted independently by 2 of the authors (from 1960 through 2013) in July 2014 using defined search criteria. Search terms included risk prediction, predictive model, or prediction model combined with depression, bipolar, manic depressive, generalized anxiety, posttraumatic, PTSD, schizophrenia, or psychosis. We identified 268 articles based on the search terms and 3 criteria: published in English, provided empirical data (as opposed to review articles), and presented results pertaining to developing or validating a risk prediction model in which the outcome was the diagnosis of 1 of the 5 aforementioned mental illnesses. We selected 43 original research reports as a final set of articles to be qualitatively reviewed. The 2 independent reviewers abstracted 3 types of data (sample characteristics, variables included in the model, and reported model statistics) and reached consensus regarding any discrepant abstracted information. Twelve reports described models developed for prediction of major depressive disorder, 1 for bipolar disorder, 2 for generalized anxiety disorder, 4 for posttraumatic stress disorder, and 24 for psychotic disorders. Most studies reported on sensitivity, specificity, positive predictive value, negative predictive value, and area under the (receiver operating characteristic) curve. Recent studies demonstrate the feasibility of developing risk prediction models for psychiatric disorders (especially psychotic disorders). The field must now advance by (1) conducting more large-scale, longitudinal studies pertaining to depression, bipolar disorder, anxiety disorders, and other psychiatric illnesses; (2) replicating and carrying out external validations of proposed models; (3) further testing potential selective and indicated preventive interventions; and (4) evaluating effectiveness of such interventions in the context of risk stratification using risk prediction models. © Copyright 2017 Physicians Postgraduate Press, Inc.
Accuracy and Calibration of High Explosive Thermodynamic Equations of State
2010-08-01
physics descriptions, but can also mean increased calibration complexity. A generalized extent of aluminum reaction, the Jones-Wilkins-Lee ( JWL ) based...predictions compared to experiments 3 3 PAX-30 JWL and JWLB cylinder test predictions compared to experiments 4 4 PAX-29 JWL and JWLB cylinder test...predictions compared to experiments 5 5 Experiment and modeling comparisons for HMX/AI 85/15 7 TABLES 1 LX-14 JWL and JWLB cylinder test velocity
THE ORIGIN OF THE HOT GAS IN THE GALACTIC HALO: TESTING GALACTIC FOUNTAIN MODELS' X-RAY EMISSION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henley, David B.; Shelton, Robin L.; Kwak, Kyujin
2015-02-20
We test the X-ray emission predictions of galactic fountain models against XMM-Newton measurements of the emission from the Milky Way's hot halo. These measurements are from 110 sight lines, spanning the full range of Galactic longitudes. We find that a magnetohydrodynamical simulation of a supernova-driven interstellar medium, which features a flow of hot gas from the disk to the halo, reproduces the temperature but significantly underpredicts the 0.5-2.0 keV surface brightness of the halo (by two orders of magnitude, if we compare the median predicted and observed values). This is true for versions of the model with and without anmore » interstellar magnetic field. We consider different reasons for the discrepancy between the model predictions and the observations. We find that taking into account overionization in cooled halo plasma, which could in principle boost the predicted X-ray emission, is unlikely in practice to bring the predictions in line with the observations. We also find that including thermal conduction, which would tend to increase the surface brightnesses of interfaces between hot and cold gas, would not overcome the surface brightness shortfall. However, charge exchange emission from such interfaces, not included in the current model, may be significant. The faintness of the model may also be due to the lack of cosmic ray driving, meaning that the model may underestimate the amount of material transported from the disk to the halo. In addition, an extended hot halo of accreted material may be important, by supplying hot electrons that could boost the emission of the material driven out from the disk. Additional model predictions are needed to test the relative importance of these processes in explaining the observed halo emission.« less
The Origin of the Hot Gas in the Galactic Halo: Testing Galactic Fountain Models' X-Ray Emission
NASA Astrophysics Data System (ADS)
Henley, David B.; Shelton, Robin L.; Kwak, Kyujin; Hill, Alex S.; Mac Low, Mordecai-Mark
2015-02-01
We test the X-ray emission predictions of galactic fountain models against XMM-Newton measurements of the emission from the Milky Way's hot halo. These measurements are from 110 sight lines, spanning the full range of Galactic longitudes. We find that a magnetohydrodynamical simulation of a supernova-driven interstellar medium, which features a flow of hot gas from the disk to the halo, reproduces the temperature but significantly underpredicts the 0.5-2.0 keV surface brightness of the halo (by two orders of magnitude, if we compare the median predicted and observed values). This is true for versions of the model with and without an interstellar magnetic field. We consider different reasons for the discrepancy between the model predictions and the observations. We find that taking into account overionization in cooled halo plasma, which could in principle boost the predicted X-ray emission, is unlikely in practice to bring the predictions in line with the observations. We also find that including thermal conduction, which would tend to increase the surface brightnesses of interfaces between hot and cold gas, would not overcome the surface brightness shortfall. However, charge exchange emission from such interfaces, not included in the current model, may be significant. The faintness of the model may also be due to the lack of cosmic ray driving, meaning that the model may underestimate the amount of material transported from the disk to the halo. In addition, an extended hot halo of accreted material may be important, by supplying hot electrons that could boost the emission of the material driven out from the disk. Additional model predictions are needed to test the relative importance of these processes in explaining the observed halo emission.
Shaking table test and dynamic response prediction on an earthquake-damaged RC building
NASA Astrophysics Data System (ADS)
Xianguo, Ye; Jiaru, Qian; Kangning, Li
2004-12-01
This paper presents the results from shaking table tests of a one-tenth-scale reinforced concrete (RC) building model. The test model is a protype of a building that was seriously damaged during the 1985 Mexico earthquake. The input ground excitation used during the test was from the records obtained near the site of the prototype building during the 1985 and 1995 Mexico earthquakes. The tests showed that the damage pattern of the test model agreed well with that of the prototype building. Analytical prediction of earthquake response has been conducted for the prototype building using a sophisticated 3-D frame model. The input motion used for the dynamic analysis was the shaking table test measurements with similarity transformation. The comparison of the analytical results and the shaking table test results indicates that the response of the RC building to minor and the moderate earthquakes can be predicated well. However, there is difference between the predication and the actual response to the major earthquake.
Nonequilibrium Ablation of Phenolic Impregnated Carbon Ablator
NASA Technical Reports Server (NTRS)
Milos, Frank S.; Chen, Yih K.; Gokcen, Tahir
2012-01-01
In previous work, an equilibrium ablation and thermal response model for Phenolic Impregnated Carbon Ablator was developed. In general, over a wide range of test conditions, model predictions compared well with arcjet data for surface recession, surface temperature, in-depth temperature at multiple thermocouples, and char depth. In this work, additional arcjet tests were conducted at stagnation conditions down to 40 W/sq cm and 1.6 kPa. The new data suggest that nonequilibrium effects become important for ablation predictions at heat flux or pressure below about 80 W/sq cm or 10 kPa, respectively. Modifications to the ablation model to account for nonequilibrium effects are investigated. Predictions of the equilibrium and nonequilibrium models are compared with the arcjet data.
ERIC Educational Resources Information Center
Peterson, Robin L.; Pennington, Bruce F.; Olson, Richard K.
2013-01-01
We investigated the phonological and surface subtypes of developmental dyslexia in light of competing predictions made by two computational models of single word reading, the Dual-Route Cascaded Model (DRC; Coltheart, Rastle, Perry, Langdon, & Ziegler, 2001) and Harm and Seidenberg's connectionist model (HS model; Harm & Seidenberg, 1999). The…
Testing the Predictions of the Central Capacity Sharing Model
ERIC Educational Resources Information Center
Tombu, Michael; Jolicoeur, Pierre
2005-01-01
The divergent predictions of 2 models of dual-task performance are investigated. The central bottleneck and central capacity sharing models argue that a central stage of information processing is capacity limited, whereas stages before and after are capacity free. The models disagree about the nature of this central capacity limitation. The…
Testing DRAINMOD-FOREST for predicting evapotranspiration in a mid-rotation pine plantation
Shiying Tian; Mohamed A. Youssef; Ge Sun; George M. Chescheir; Asko Noormets; Devendra M. Amatya; R. Wayne Skaggs; John S. King; Steve McNulty; Michael Gavazzi; Guofang Miao; Jean-Christophe Domec
2015-01-01
Evapotranspiration (ET) is a key component of the hydrologic cycle in terrestrial ecosystems and accurate description of ET processes is essential for developing reliable ecohydrological models. This study investigated the accuracy of ET prediction by the DRAINMOD-FOREST after its calibration/validation for predicting commonly measured hydrological variables. The model...
NASA Technical Reports Server (NTRS)
Schmidt, Rodney C.; Patankar, Suhas V.
1988-01-01
The use of low Reynolds number (LRN) forms of the k-epsilon turbulence model in predicting transitional boundary layer flow characteristic of gas turbine blades is developed. The research presented consists of: (1) an evaluation of two existing models; (2) the development of a modification to current LRN models; and (3) the extensive testing of the proposed model against experimental data. The prediction characteristics and capabilities of the Jones-Launder (1972) and Lam-Bremhorst (1981) LRN k-epsilon models are evaluated with respect to the prediction of transition on flat plates. Next, the mechanism by which the models simulate transition is considered and the need for additional constraints is discussed. Finally, the transition predictions of a new model are compared with a wide range of different experiments, including transitional flows with free-stream turbulence under conditions of flat plate constant velocity, flat plate constant acceleration, flat plate but strongly variable acceleration, and flow around turbine blade test cascades. In general, calculational procedure yields good agreement with most of the experiments.
2013-01-01
Background The measurement of the Erythrocyte Sedimentation Rate (ESR) value is a standard procedure performed during a typical blood test. In order to formulate a unified standard of establishing reference ESR values, this paper presents a novel prediction model in which local normal ESR values and corresponding geographical factors are used to predict reference ESR values using multi-layer feed-forward artificial neural networks (ANN). Methods and findings Local normal ESR values were obtained from hospital data, while geographical factors that include altitude, sunshine hours, relative humidity, temperature and precipitation were obtained from the National Geographical Data Information Centre in China. The results show that predicted values are statistically in agreement with measured values. Model results exhibit significant agreement between training data and test data. Consequently, the model is used to predict the unseen local reference ESR values. Conclusions Reference ESR values can be established with geographical factors by using artificial intelligence techniques. ANN is an effective method for simulating and predicting reference ESR values because of its ability to model nonlinear and complex relationships. PMID:23497145
Developing an in silico minimum inhibitory concentration panel test for Klebsiella pneumoniae
Nguyen, Marcus; Brettin, Thomas; Long, S. Wesley; ...
2018-01-11
Here, antimicrobial resistant infections are a serious public health threat worldwide. Whole genome sequencing approaches to rapidly identify pathogens and predict antibiotic resistance phenotypes are becoming more feasible and may offer a way to reduce clinical test turnaround times compared to conventional culture-based methods, and in turn, improve patient outcomes. In this study, we use whole genome sequence data from 1668 clinical isolates of Klebsiella pneumoniae to develop a XGBoost-based machine learning model that accurately predicts minimum inhibitory concentrations (MICs) for 20 antibiotics. The overall accuracy of the model, within ± 1 two-fold dilution factor, is 92%. Individual accuracies aremore » >= 90% for 15/20 antibiotics. We show that the MICs predicted by the model correlate with known antimicrobial resistance genes. Importantly, the genome-wide approach described in this study offers a way to predict MICs for isolates without knowledge of the underlying gene content. This study shows that machine learning can be used to build a complete in silico MIC prediction panel for K. pneumoniae and provides a framework for building MIC prediction models for other pathogenic bacteria.« less
Developing an in silico minimum inhibitory concentration panel test for Klebsiella pneumoniae
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Marcus; Brettin, Thomas; Long, S. Wesley
Here, antimicrobial resistant infections are a serious public health threat worldwide. Whole genome sequencing approaches to rapidly identify pathogens and predict antibiotic resistance phenotypes are becoming more feasible and may offer a way to reduce clinical test turnaround times compared to conventional culture-based methods, and in turn, improve patient outcomes. In this study, we use whole genome sequence data from 1668 clinical isolates of Klebsiella pneumoniae to develop a XGBoost-based machine learning model that accurately predicts minimum inhibitory concentrations (MICs) for 20 antibiotics. The overall accuracy of the model, within ± 1 two-fold dilution factor, is 92%. Individual accuracies aremore » >= 90% for 15/20 antibiotics. We show that the MICs predicted by the model correlate with known antimicrobial resistance genes. Importantly, the genome-wide approach described in this study offers a way to predict MICs for isolates without knowledge of the underlying gene content. This study shows that machine learning can be used to build a complete in silico MIC prediction panel for K. pneumoniae and provides a framework for building MIC prediction models for other pathogenic bacteria.« less
Yang, Qingsheng; Mwenda, Kevin M; Ge, Miao
2013-03-12
The measurement of the Erythrocyte Sedimentation Rate (ESR) value is a standard procedure performed during a typical blood test. In order to formulate a unified standard of establishing reference ESR values, this paper presents a novel prediction model in which local normal ESR values and corresponding geographical factors are used to predict reference ESR values using multi-layer feed-forward artificial neural networks (ANN). Local normal ESR values were obtained from hospital data, while geographical factors that include altitude, sunshine hours, relative humidity, temperature and precipitation were obtained from the National Geographical Data Information Centre in China.The results show that predicted values are statistically in agreement with measured values. Model results exhibit significant agreement between training data and test data. Consequently, the model is used to predict the unseen local reference ESR values. Reference ESR values can be established with geographical factors by using artificial intelligence techniques. ANN is an effective method for simulating and predicting reference ESR values because of its ability to model nonlinear and complex relationships.
NASA Astrophysics Data System (ADS)
Sarkar, A.; Chakravartty, J. K.
2013-10-01
A model is developed to predict the constitutive flow behavior of cadmium during compression test using artificial neural network (ANN). The inputs of the neural network are strain, strain rate, and temperature, whereas flow stress is the output. Experimental data obtained from compression tests in the temperature range -30 to 70 °C, strain range 0.1 to 0.6, and strain rate range 10-3 to 1 s-1 are employed to develop the model. A three-layer feed-forward ANN is trained with Levenberg-Marquardt training algorithm. It has been shown that the developed ANN model can efficiently and accurately predict the deformation behavior of cadmium. This trained network could predict the flow stress better than a constitutive equation of the type.
Lin, Chun-Yuan; Wang, Yen-Ling
2014-01-01
Checkpoint kinase 2 (Chk2) has a great effect on DNA-damage and plays an important role in response to DNA double-strand breaks and related lesions. In this study, we will concentrate on Chk2 and the purpose is to find the potential inhibitors by the pharmacophore hypotheses (PhModels), combinatorial fusion, and virtual screening techniques. Applying combinatorial fusion into PhModels and virtual screening techniques is a novel design strategy for drug design. We used combinatorial fusion to analyze the prediction results and then obtained the best correlation coefficient of the testing set (r test) with the value 0.816 by combining the Best(train)Best(test) and Fast(train)Fast(test) prediction results. The potential inhibitors were selected from NCI database by screening according to Best(train)Best(test) + Fast(train)Fast(test) prediction results and molecular docking with CDOCKER docking program. Finally, the selected compounds have high interaction energy between a ligand and a receptor. Through these approaches, 23 potential inhibitors for Chk2 are retrieved for further study.
AEETES - A solar reflux receiver thermal performance numerical model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hogan, R.E. Jr.
1994-02-01
Reflux solar receivers for dish-Stirling electric power generation systems are currently being investigated by several companies and laboratories. In support of these efforts, the AEETES thermal performance numerical model has been developed to predict thermal performance of pool-boiler and heat-pipe reflux receivers. The formulation of the AEETES numerical model, which is applicable to axisymmetric geometries with asymmetric incident fluxes, is presented in detail. Thermal efficiency predictions agree to within 4.1% with test data from on-sun tests of a pool-boiler reflux receiver. Predicted absorber and sidewall temperatures agree with thermocouple data to within 3.3 and 7.3%, respectively. The importance of accountingmore » for the asymmetric incident fluxes is demonstrated in comparisons with predictions using azimuthally averaged variables. The predicted receiver heat losses are characterized in terms of convective, solar radiative, and infrared radiative, and conductive heat transfer mechanisms.« less
Erosion modeling and test of slip-cast fused silica
NASA Astrophysics Data System (ADS)
Weiskopf, Francis B., Jr.; Lin, Jeffrey S.; Drobnick, Rudy A.; Feather, Brian K.
1990-10-01
This paper summarizes a test program to verify the Balageas erosion model for Slip Cast Fused Silica in a flight-like erosive environment. The test program is summarized with particular attention paid to documenting the erosive environment. The Balageas model was found to over predict the erosion for these tests and a revised model which gives reasonable agreement with the data is proposed.
Consumer preference models: fuzzy theory approach
NASA Astrophysics Data System (ADS)
Turksen, I. B.; Wilson, I. A.
1993-12-01
Consumer preference models are widely used in new product design, marketing management, pricing and market segmentation. The purpose of this article is to develop and test a fuzzy set preference model which can represent linguistic variables in individual-level models implemented in parallel with existing conjoint models. The potential improvements in market share prediction and predictive validity can substantially improve management decisions about what to make (product design), for whom to make it (market segmentation) and how much to make (market share prediction).
Damping Effects of Drogue Parachutes on Orion Crew Module Dynamics
NASA Technical Reports Server (NTRS)
Aubuchon, Vanessa V.
2013-01-01
Currently, simulation predictions of the Orion Crew Module (CM) dynamics with drogue parachutes deployed are under-predicting the amount of damping as seen in free-flight tests. The Apollo Legacy Chute Damping model has been resurrected and applied to the Orion system. The legacy model has been applied to predict CM damping under drogue parachutes for both Vertical Spin Tunnel free flights and the Pad Abort-1 flight test. Comparisons between the legacy Apollo prediction method and test data are favorable. A key hypothesis in the Apollo legacy drogue damping analysis is that the drogue parachutes' net load vector aligns with the CM drogue attachment point velocity vector. This assumption seems reasonable and produces good results, but has never been quantitatively proven. The wake of the CM influences the drogue parachutes, which makes performance predictions of the parachutes difficult. Many of these effects are not currently modeled in the simulations. A forced oscillation test of the CM with parachutes was conducted in the NASA LaRC 20-Ft Vertical Spin Tunnel (VST) to gather additional data to validate and refine the Apollo legacy drogue model. A second loads balance was added to the original Orion VST model to measure the drogue parachute loads independently of the CM. The objective of the test was to identify the contribution of the drogues to CM damping and provide additional information to quantify wake effects and the interactions between the CM and parachutes. The drogue parachute force vector was shown to be highly dependent on the CM wake characteristics. Based on these wind tunnel test data, the Apollo Legacy Chute Damping model was determined to be a sufficient approximation of the parachute dynamics in relationship to the CM dynamics for preliminary entry vehicle system design. More wake effects should be included to better model the system. These results are being used to improve simulation model fidelity of CM flight with drogues deployed, which has been identified by the project as key to a successful Orion Critical Design Review.
Pan, Feng; Reifsnider, Odette; Zheng, Ying; Proskorovsky, Irina; Li, Tracy; He, Jianming; Sorensen, Sonja V
2018-04-01
Treatment landscape in prostate cancer has changed dramatically with the emergence of new medicines in the past few years. The traditional survival partition model (SPM) cannot accurately predict long-term clinical outcomes because it is limited by its ability to capture the key consequences associated with this changing treatment paradigm. The objective of this study was to introduce and validate a discrete-event simulation (DES) model for prostate cancer. A DES model was developed to simulate overall survival (OS) and other clinical outcomes based on patient characteristics, treatment received, and disease progression history. We tested and validated this model with clinical trial data from the abiraterone acetate phase III trial (COU-AA-302). The model was constructed with interim data (55% death) and validated with the final data (96% death). Predicted OS values were also compared with those from the SPM. The DES model's predicted time to chemotherapy and OS are highly consistent with the final observed data. The model accurately predicts the OS hazard ratio from the final data cut (predicted: 0.74; 95% confidence interval [CI] 0.64-0.85 and final actual: 0.74; 95% CI 0.6-0.88). The log-rank test to compare the observed and predicted OS curves indicated no statistically significant difference between observed and predicted curves. However, the predictions from the SPM based on interim data deviated significantly from the final data. Our study showed that a DES model with properly developed risk equations presents considerable improvements to the more traditional SPM in flexibility and predictive accuracy of long-term outcomes. Copyright © 2018 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.
Modeling Heavy/Medium-Duty Fuel Consumption Based on Drive Cycle Properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Lijuan; Duran, Adam; Gonder, Jeffrey
This paper presents multiple methods for predicting heavy/medium-duty vehicle fuel consumption based on driving cycle information. A polynomial model, a black box artificial neural net model, a polynomial neural network model, and a multivariate adaptive regression splines (MARS) model were developed and verified using data collected from chassis testing performed on a parcel delivery diesel truck operating over the Heavy Heavy-Duty Diesel Truck (HHDDT), City Suburban Heavy Vehicle Cycle (CSHVC), New York Composite Cycle (NYCC), and hydraulic hybrid vehicle (HHV) drive cycles. Each model was trained using one of four drive cycles as a training cycle and the other threemore » as testing cycles. By comparing the training and testing results, a representative training cycle was chosen and used to further tune each method. HHDDT as the training cycle gave the best predictive results, because HHDDT contains a variety of drive characteristics, such as high speed, acceleration, idling, and deceleration. Among the four model approaches, MARS gave the best predictive performance, with an average absolute percent error of -1.84% over the four chassis dynamometer drive cycles. To further evaluate the accuracy of the predictive models, the approaches were first applied to real-world data. MARS outperformed the other three approaches, providing an average absolute percent error of -2.2% of four real-world road segments. The MARS model performance was then compared to HHDDT, CSHVC, NYCC, and HHV drive cycles with the performance from Future Automotive System Technology Simulator (FASTSim). The results indicated that the MARS method achieved a comparative predictive performance with FASTSim.« less
Evaluation of a locally homogeneous flow model of spray combustion
NASA Technical Reports Server (NTRS)
Mao, C. P.; Szekely, G. A., Jr.; Faeth, G. M.
1980-01-01
A model of spray combustion which employs a second-order turbulence model was developed. The assumption of locally homogeneous flow is made, implying infinitely fast transport rates between the phase. Measurements to test the model were completed for a gaseous n-propane flame and an air atomized n-pentane spray flame, burning in stagnant air at atmospheric pressure. Profiles of mean velocity and temperature, as well as velocity fluctuations and Reynolds stress, were measured in the flames. The predictions for the gas flame were in excellent agreement with the measurements. The predictions for the spray were qualitatively correct, but effects of finite rate interphase transport were evident, resulting in a overstimation of the rate development of the flow. Predictions of spray penetration length at high pressures, including supercritical combustion conditions, were also completed for comparison with earlier measurements. Test conditions involved a pressure atomized n-pentane spray, burning in stagnant air at pressures of 3, 5, and 9 MPa. The comparison between predictions and measurements was fair. This is not a very sensitive test of the model, however, and further high pressure experimental and theoretical results are needed before a satisfactory assessment of the locally homogeneous flow approximation can be made.
Westphal, Michael F; Stewart, Joseph A E; Tennant, Erin N; Butterfield, H Scott; Sinervo, Barry
2016-01-01
Extreme weather events can provide unique opportunities for testing models that predict the effect of climate change. Droughts of increasing severity have been predicted under numerous models, thus contemporary droughts may allow us to test these models prior to the onset of the more extreme effects predicted with a changing climate. In the third year of an ongoing severe drought, surveys failed to detect neonate endangered blunt-nosed leopard lizards in a subset of previously surveyed populations where we expected to see them. By conducting surveys at a large number of sites across the range of the species over a short time span, we were able to establish a strong positive correlation between winter precipitation and the presence of neonate leopard lizards over geographic space. Our results are consistent with those of numerous longitudinal studies and are in accordance with predictive climate change models. We suggest that scientists can take immediate advantage of droughts while they are still in progress to test patterns of occurrence in other drought-sensitive species and thus provide for more robust models of climate change effects on biodiversity.
A Demonstration of Regression False Positive Selection in Data Mining
ERIC Educational Resources Information Center
Pinder, Jonathan P.
2014-01-01
Business analytics courses, such as marketing research, data mining, forecasting, and advanced financial modeling, have substantial predictive modeling components. The predictive modeling in these courses requires students to estimate and test many linear regressions. As a result, false positive variable selection ("type I errors") is…
Analysis of NASA JP-4 fire tests data and development of a simple fire model
NASA Technical Reports Server (NTRS)
Raj, P.
1980-01-01
The temperature, velocity and species concentration data obtained during the NASA fire tests (3m, 7.5m and 15m diameter JP-4 fires) were analyzed. Utilizing the data analysis, a sample theoretical model was formulated to predict the temperature and velocity profiles in JP-4 fires. The theoretical model, which does not take into account the detailed chemistry of combustion, is capable of predicting the extent of necking of the fire near its base.
Pretreatment data is highly predictive of liver chemistry signals in clinical trials.
Cai, Zhaohui; Bresell, Anders; Steinberg, Mark H; Silberg, Debra G; Furlong, Stephen T
2012-01-01
The goal of this retrospective analysis was to assess how well predictive models could determine which patients would develop liver chemistry signals during clinical trials based on their pretreatment (baseline) information. Based on data from 24 late-stage clinical trials, classification models were developed to predict liver chemistry outcomes using baseline information, which included demographics, medical history, concomitant medications, and baseline laboratory results. Predictive models using baseline data predicted which patients would develop liver signals during the trials with average validation accuracy around 80%. Baseline levels of individual liver chemistry tests were most important for predicting their own elevations during the trials. High bilirubin levels at baseline were not uncommon and were associated with a high risk of developing biochemical Hy's law cases. Baseline γ-glutamyltransferase (GGT) level appeared to have some predictive value, but did not increase predictability beyond using established liver chemistry tests. It is possible to predict which patients are at a higher risk of developing liver chemistry signals using pretreatment (baseline) data. Derived knowledge from such predictions may allow proactive and targeted risk management, and the type of analysis described here could help determine whether new biomarkers offer improved performance over established ones.
NASA Technical Reports Server (NTRS)
Polanco, Michael A.; Kellas, Sotiris; Jackson, Karen
2009-01-01
The performance of material models to simulate a novel composite honeycomb Deployable Energy Absorber (DEA) was evaluated using the nonlinear explicit dynamic finite element code LS-DYNA(Registered TradeMark). Prototypes of the DEA concept were manufactured using a Kevlar/Epoxy composite material in which the fibers are oriented at +/-45 degrees with respect to the loading axis. The development of the DEA has included laboratory tests at subcomponent and component levels such as three-point bend testing of single hexagonal cells, dynamic crush testing of single multi-cell components, and impact testing of a full-scale fuselage section fitted with a system of DEA components onto multi-terrain environments. Due to the thin nature of the cell walls, the DEA was modeled using shell elements. In an attempt to simulate the dynamic response of the DEA, it was first represented using *MAT_LAMINATED_COMPOSITE_FABRIC, or *MAT_58, in LS-DYNA. Values for each parameter within the material model were generated such that an in-plane isotropic configuration for the DEA material was assumed. Analytical predictions showed that the load-deflection behavior of a single-cell during three-point bending was within the range of test data, but predicted the DEA crush response to be very stiff. In addition, a *MAT_PIECEWISE_LINEAR_PLASTICITY, or *MAT_24, material model in LS-DYNA was developed, which represented the Kevlar/Epoxy composite as an isotropic elastic-plastic material with input from +/-45 degrees tensile coupon data. The predicted crush response matched that of the test and localized folding patterns of the DEA were captured under compression, but the model failed to predict the single-cell three-point bending response.
Real-time flutter boundary prediction based on time series models
NASA Astrophysics Data System (ADS)
Gu, Wenjing; Zhou, Li
2018-03-01
For the purpose of predicting the flutter boundary in real time during flutter flight tests, two time series models accompanied with corresponding stability criterion are adopted in this paper. The first method simplifies a long nonstationary response signal as many contiguous intervals and each is considered to be stationary. The traditional AR model is then established to represent each interval of signal sequence. While the second employs a time-varying AR model to characterize actual measured signals in flutter test with progression variable speed (FTPVS). To predict the flutter boundary, stability parameters are formulated by the identified AR coefficients combined with Jury's stability criterion. The behavior of the parameters is examined using both simulated and wind-tunnel experiment data. The results demonstrate that both methods show significant effectiveness in predicting the flutter boundary at lower speed level. A comparison between the two methods is also given in this paper.
NASA Technical Reports Server (NTRS)
Paine, D. A.; Zack, J. W.; Kaplan, M. L.
1979-01-01
The progress and problems associated with the dynamical forecast system which was developed to predict severe storms are examined. The meteorological problem of severe convective storm forecasting is reviewed. The cascade hypothesis which forms the theoretical core of the nested grid dynamical numerical modelling system is described. The dynamical and numerical structure of the model used during the 1978 test period is presented and a preliminary description of a proposed multigrid system for future experiments and tests is provided. Six cases from the spring of 1978 are discussed to illustrate the model's performance and its problems. Potential solutions to the problems are examined.
NASA Technical Reports Server (NTRS)
Dhanasekharan, M.; Huang, H.; Kokini, J. L.; Janes, H. W. (Principal Investigator)
1999-01-01
The measured rheological behavior of hard wheat flour dough was predicted using three nonlinear differential viscoelastic models. The Phan-Thien Tanner model gave good zero shear viscosity prediction, but overpredicted the shear viscosity at higher shear rates and the transient and extensional properties. The Giesekus-Leonov model gave similar predictions to the Phan-Thien Tanner model, but the extensional viscosity prediction showed extension thickening. Using high values of the mobility factor, extension thinning behavior was observed but the predictions were not satisfactory. The White-Metzner model gave good predictions of the steady shear viscosity and the first normal stress coefficient but it was unable to predict the uniaxial extensional viscosity as it exhibited asymptotic behavior in the tested extensional rates. It also predicted the transient shear properties with moderate accuracy in the transient phase, but very well at higher times, compared to the Phan-Thien Tanner model and the Giesekus-Leonov model. None of the models predicted all observed data consistently well. Overall the White-Metzner model appeared to make the best predictions of all the observed data.
Multi-component testing using HZ-PAN and AgZ-PAN Sorbents for OSPREY Model validation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garn, Troy G.; Greenhalgh, Mitchell; Lyon, Kevin L.
2015-04-01
In efforts to further develop the capability of the Off-gas SeParation and RecoverY (OSPREY) model, multi-component tests were completed using both HZ-PAN and AgZ-PAN sorbents. The primary purpose of this effort was to obtain multi-component xenon and krypton capacities for comparison to future OSPREY predicted multi-component capacities using previously acquired Langmuir equilibrium parameters determined from single component isotherms. Experimental capacities were determined for each sorbent using two feed gas compositions of 1000 ppmv xenon and 150 ppmv krypton in either a helium or air balance. Test temperatures were consistently held at 220 K and the gas flowrate was 50 sccm.more » Capacities were calculated from breakthrough curves using TableCurve® 2D software by Jandel Scientific. The HZ-PAN sorbent was tested in the custom designed cryostat while the AgZ-PAN was tested in a newly installed cooling apparatus. Previous modeling validation efforts indicated the OSPREY model can be used to effectively predict single component xenon and krypton capacities for both engineered form sorbents. Results indicated good agreement with the experimental and predicted capacity values for both krypton and xenon on the sorbents. Overall, the model predicted slightly elevated capacities for both gases which can be partially attributed to the estimation of the parameters and the uncertainty associated with the experimental measurements. Currently, OSPREY is configured such that one species adsorbs and one does not (i.e. krypton in helium). Modification of OSPREY code is currently being performed to incorporate multiple adsorbing species and non-ideal interactions of gas phase species with the sorbent and adsorbed phases. Once these modifications are complete, the sorbent capacities determined in the present work will be used to validate OSPREY multicomponent adsorption predictions.« less
First Results of the Regional Earthquake Likelihood Models Experiment
Schorlemmer, D.; Zechar, J.D.; Werner, M.J.; Field, E.H.; Jackson, D.D.; Jordan, T.H.
2010-01-01
The ability to successfully predict the future behavior of a system is a strong indication that the system is well understood. Certainly many details of the earthquake system remain obscure, but several hypotheses related to earthquake occurrence and seismic hazard have been proffered, and predicting earthquake behavior is a worthy goal and demanded by society. Along these lines, one of the primary objectives of the Regional Earthquake Likelihood Models (RELM) working group was to formalize earthquake occurrence hypotheses in the form of prospective earthquake rate forecasts in California. RELM members, working in small research groups, developed more than a dozen 5-year forecasts; they also outlined a performance evaluation method and provided a conceptual description of a Testing Center in which to perform predictability experiments. Subsequently, researchers working within the Collaboratory for the Study of Earthquake Predictability (CSEP) have begun implementing Testing Centers in different locations worldwide, and the RELM predictability experiment-a truly prospective earthquake prediction effort-is underway within the U. S. branch of CSEP. The experiment, designed to compare time-invariant 5-year earthquake rate forecasts, is now approximately halfway to its completion. In this paper, we describe the models under evaluation and present, for the first time, preliminary results of this unique experiment. While these results are preliminary-the forecasts were meant for an application of 5 years-we find interesting results: most of the models are consistent with the observation and one model forecasts the distribution of earthquakes best. We discuss the observed sample of target earthquakes in the context of historical seismicity within the testing region, highlight potential pitfalls of the current tests, and suggest plans for future revisions to experiments such as this one. ?? 2010 The Author(s).
First Results of the Regional Earthquake Likelihood Models Experiment
NASA Astrophysics Data System (ADS)
Schorlemmer, Danijel; Zechar, J. Douglas; Werner, Maximilian J.; Field, Edward H.; Jackson, David D.; Jordan, Thomas H.
2010-08-01
The ability to successfully predict the future behavior of a system is a strong indication that the system is well understood. Certainly many details of the earthquake system remain obscure, but several hypotheses related to earthquake occurrence and seismic hazard have been proffered, and predicting earthquake behavior is a worthy goal and demanded by society. Along these lines, one of the primary objectives of the Regional Earthquake Likelihood Models (RELM) working group was to formalize earthquake occurrence hypotheses in the form of prospective earthquake rate forecasts in California. RELM members, working in small research groups, developed more than a dozen 5-year forecasts; they also outlined a performance evaluation method and provided a conceptual description of a Testing Center in which to perform predictability experiments. Subsequently, researchers working within the Collaboratory for the Study of Earthquake Predictability (CSEP) have begun implementing Testing Centers in different locations worldwide, and the RELM predictability experiment—a truly prospective earthquake prediction effort—is underway within the U.S. branch of CSEP. The experiment, designed to compare time-invariant 5-year earthquake rate forecasts, is now approximately halfway to its completion. In this paper, we describe the models under evaluation and present, for the first time, preliminary results of this unique experiment. While these results are preliminary—the forecasts were meant for an application of 5 years—we find interesting results: most of the models are consistent with the observation and one model forecasts the distribution of earthquakes best. We discuss the observed sample of target earthquakes in the context of historical seismicity within the testing region, highlight potential pitfalls of the current tests, and suggest plans for future revisions to experiments such as this one.
Predicting Middle Level State Standardized Test Results Using Family and Community Demographic Data
ERIC Educational Resources Information Center
Tienken, Christopher H.; Colella, Anthony; Angelillo, Christian; Fox, Meredith; McCahill, Kevin R.; Wolfe, Adam
2017-01-01
The use of standardized test results to drive school administrator evaluations pervades education policymaking in more than 40 states. However, the results of state standardized tests are strongly influenced by non-school factors. The models of best fit (n = 18) from this correlational, explanatory, longitudinal study predicted accurately the…
Adsorbent testing and mathematical modeling of a solid amine regenerative CO2 and H2O removal system
NASA Technical Reports Server (NTRS)
Jeng, F. F.; Williamson, R. G.; Quellette, F. A.; Edeen, M. A.; Lin, C. H.
1991-01-01
The paper examines the design and the construction details of the test bed built for testing a solid-amine-based Regenerable CO2 Removal System (RCRS) built at the NASA/Johnson Space Center for the extended Orbiter missions. The results of tests are presented, including those for the adsorption breakthrough and the adsorption and desorption of CO2 and H2O vapor. A model for predicting the performance of regenerative CO2 and H2O vapor adsorption of the solid amine system under various operating conditions was developed in parallel with the testing of the test stand, using the coefficient of mass transfer calculated from test results. The results of simulations are shown to predict the adsorption performance of the Extended Duration Orbiter test bed fairly well. For the application to the RCRS at various operating conditions the model has to be modified.
Doucet, O; Lanvin, M; Thillou, C; Linossier, C; Pupat, C; Merlin, B; Zastrow, L
2006-06-01
The aim of this study was to evaluate the interest of a new three-dimensional epithelial model cultivated from human corneal cells to replace animal testing in the assessment of eye tolerance. To this end, 65 formulated cosmetic products and 36 chemicals were tested by means of this in vitro model using a simplified toxicokinetic approach. The chemicals were selected from the ECETOC data bank and the EC/HO International validation study list. Very satisfactory results were obtained in terms of concordance with the Draize test data for the formulated cosmetic products. Moreover, the response of the corneal model appeared predictive of human ocular response clinically observed by ophthalmologists. The in vitro scores for the chemicals tested strongly correlated with their respective scores in vivo. For all the compounds tested, the response of the corneal model to irritants was similar regardless of their chemical structure, suggesting a good robustness of the prediction model proposed. We concluded that this new three-dimensional epithelial model, developed from human corneal cells, could be promising for the prediction of eye irritation induced by chemicals and complex formulated products, and that these two types of materials should be tested using a similar protocol. A simple shortening of the exposure period was required for the chemicals assumed to be more aggressively irritant to the epithelial tissues than the cosmetic formulae.
Correlation of Wissler Human Thermal Model Blood Flow and Shiver Algorithms
NASA Technical Reports Server (NTRS)
Bue, Grant; Makinen, Janice; Cognata, Thomas
2010-01-01
The Wissler Human Thermal Model (WHTM) is a thermal math model of the human body that has been widely used to predict the human thermoregulatory response to a variety of cold and hot environments. The model has been shown to predict core temperature and skin temperatures higher and lower, respectively, than in tests of subjects in crew escape suit working in a controlled hot environments. Conversely the model predicts core temperature and skin temperatures lower and higher, respectively, than in tests of lightly clad subjects immersed in cold water conditions. The blood flow algorithms of the model has been investigated to allow for more and less flow, respectively, for the cold and hot case. These changes in the model have yielded better correlation of skin and core temperatures in the cold and hot cases. The algorithm for onset of shiver did not need to be modified to achieve good agreement in cold immersion simulations
NASA Technical Reports Server (NTRS)
Zhang, D.; Anthes, R. A.
1982-01-01
A one-dimensional, planetary boundary layer (PBL) model is presented and verified using April 10, 1979 SESAME data. The model contains two modules to account for two different regimes of turbulent mixing. Separate parameterizations are made for stable and unstable conditions, with a predictive slab model for surface temperature. Atmospheric variables in the surface layer are calculated with a prognostic model, with moisture included in the coupled surface/PBL modeling. Sensitivity tests are performed for factors such as moisture availability, albedo, surface roughness, and thermal capacity, and a 24 hr simulation is summarized for day and night conditions. The comparison with the SESAME data comprises three hour intervals, using a time-dependent geostrophic wind. Close correlations were found with daytime conditions, but not in nighttime thermal structure, while the turbulence was faithfully predicted. Both geostrophic flow and surface characteristics were shown to have significant effects on the model predictions
Prediction and visualization of redox conditions in the groundwater of Central Valley, California
Rosecrans, Celia Z.; Nolan, Bernard T.; Gronberg, JoAnn M.
2017-01-01
Regional-scale, three-dimensional continuous probability models, were constructed for aspects of redox conditions in the groundwater system of the Central Valley, California. These models yield grids depicting the probability that groundwater in a particular location will have dissolved oxygen (DO) concentrations less than selected threshold values representing anoxic groundwater conditions, or will have dissolved manganese (Mn) concentrations greater than selected threshold values representing secondary drinking water-quality contaminant levels (SMCL) and health-based screening levels (HBSL). The probability models were constrained by the alluvial boundary of the Central Valley to a depth of approximately 300 m. Probability distribution grids can be extracted from the 3-D models at any desired depth, and are of interest to water-resource managers, water-quality researchers, and groundwater modelers concerned with the occurrence of natural and anthropogenic contaminants related to anoxic conditions.Models were constructed using a Boosted Regression Trees (BRT) machine learning technique that produces many trees as part of an additive model and has the ability to handle many variables, automatically incorporate interactions, and is resistant to collinearity. Machine learning methods for statistical prediction are becoming increasing popular in that they do not require assumptions associated with traditional hypothesis testing. Models were constructed using measured dissolved oxygen and manganese concentrations sampled from 2767 wells within the alluvial boundary of the Central Valley, and over 60 explanatory variables representing regional-scale soil properties, soil chemistry, land use, aquifer textures, and aquifer hydrologic properties. Models were trained on a USGS dataset of 932 wells, and evaluated on an independent hold-out dataset of 1835 wells from the California Division of Drinking Water. We used cross-validation to assess the predictive performance of models of varying complexity, as a basis for selecting final models. Trained models were applied to cross-validation testing data and a separate hold-out dataset to evaluate model predictive performance by emphasizing three model metrics of fit: Kappa; accuracy; and the area under the receiver operator characteristic curve (ROC). The final trained models were used for mapping predictions at discrete depths to a depth of 304.8 m. Trained DO and Mn models had accuracies of 86–100%, Kappa values of 0.69–0.99, and ROC values of 0.92–1.0. Model accuracies for cross-validation testing datasets were 82–95% and ROC values were 0.87–0.91, indicating good predictive performance. Kappas for the cross-validation testing dataset were 0.30–0.69, indicating fair to substantial agreement between testing observations and model predictions. Hold-out data were available for the manganese model only and indicated accuracies of 89–97%, ROC values of 0.73–0.75, and Kappa values of 0.06–0.30. The predictive performance of both the DO and Mn models was reasonable, considering all three of these fit metrics and the low percentages of low-DO and high-Mn events in the data.
Fang, Jiansong; Yang, Ranyao; Gao, Li; Zhou, Dan; Yang, Shengqian; Liu, Ai-Lin; Du, Guan-hua
2013-11-25
Butyrylcholinesterase (BuChE, EC 3.1.1.8) is an important pharmacological target for Alzheimer's disease (AD) treatment. However, the currently available BuChE inhibitor screening assays are expensive, labor-intensive, and compound-dependent. It is necessary to develop robust in silico methods to predict the activities of BuChE inhibitors for the lead identification. In this investigation, support vector machine (SVM) models and naive Bayesian models were built to discriminate BuChE inhibitors (BuChEIs) from the noninhibitors. Each molecule was initially represented in 1870 structural descriptors (1235 from ADRIANA.Code, 334 from MOE, and 301 from Discovery studio). Correlation analysis and stepwise variable selection method were applied to figure out activity-related descriptors for prediction models. Additionally, structural fingerprint descriptors were added to improve the predictive ability of models, which were measured by cross-validation, a test set validation with 1001 compounds and an external test set validation with 317 diverse chemicals. The best two models gave Matthews correlation coefficient of 0.9551 and 0.9550 for the test set and 0.9132 and 0.9221 for the external test set. To demonstrate the practical applicability of the models in virtual screening, we screened an in-house data set with 3601 compounds, and 30 compounds were selected for further bioactivity assay. The assay results showed that 10 out of 30 compounds exerted significant BuChE inhibitory activities with IC50 values ranging from 0.32 to 22.22 μM, at which three new scaffolds as BuChE inhibitors were identified for the first time. To our best knowledge, this is the first report on BuChE inhibitors using machine learning approaches. The models generated from SVM and naive Bayesian approaches successfully predicted BuChE inhibitors. The study proved the feasibility of a new method for predicting bioactivities of ligands and discovering novel lead compounds.
Stadnicka-Michalak, Julita; Tanneberger, Katrin; Schirmer, Kristin; Ashauer, Roman
2014-01-01
Effect concentrations in the toxicity assessment of chemicals with fish and fish cells are generally based on external exposure concentrations. External concentrations as dose metrics, may, however, hamper interpretation and extrapolation of toxicological effects because it is the internal concentration that gives rise to the biological effective dose. Thus, we need to understand the relationship between the external and internal concentrations of chemicals. The objectives of this study were to: (i) elucidate the time-course of the concentration of chemicals with a wide range of physicochemical properties in the compartments of an in vitro test system, (ii) derive a predictive model for toxicokinetics in the in vitro test system, (iii) test the hypothesis that internal effect concentrations in fish (in vivo) and fish cell lines (in vitro) correlate, and (iv) develop a quantitative in vitro to in vivo toxicity extrapolation method for fish acute toxicity. To achieve these goals, time-dependent amounts of organic chemicals were measured in medium, cells (RTgill-W1) and the plastic of exposure wells. Then, the relation between uptake, elimination rate constants, and log KOW was investigated for cells in order to develop a toxicokinetic model. This model was used to predict internal effect concentrations in cells, which were compared with internal effect concentrations in fish gills predicted by a Physiologically Based Toxicokinetic model. Our model could predict concentrations of non-volatile organic chemicals with log KOW between 0.5 and 7 in cells. The correlation of the log ratio of internal effect concentrations in fish gills and the fish gill cell line with the log KOW was significant (r>0.85, p = 0.0008, F-test). This ratio can be predicted from the log KOW of the chemical (77% of variance explained), comprising a promising model to predict lethal effects on fish based on in vitro data. PMID:24647349
[Application of ARIMA model on prediction of malaria incidence].
Jing, Xia; Hua-Xun, Zhang; Wen, Lin; Su-Jian, Pei; Ling-Cong, Sun; Xiao-Rong, Dong; Mu-Min, Cao; Dong-Ni, Wu; Shunxiang, Cai
2016-01-29
To predict the incidence of local malaria of Hubei Province applying the Autoregressive Integrated Moving Average model (ARIMA). SPSS 13.0 software was applied to construct the ARIMA model based on the monthly local malaria incidence in Hubei Province from 2004 to 2009. The local malaria incidence data of 2010 were used for model validation and evaluation. The model of ARIMA (1, 1, 1) (1, 1, 0) 12 was tested as relatively the best optimal with the AIC of 76.085 and SBC of 84.395. All the actual incidence data were in the range of 95% CI of predicted value of the model. The prediction effect of the model was acceptable. The ARIMA model could effectively fit and predict the incidence of local malaria of Hubei Province.
Arantes, Joana
2008-06-01
The present research tested the generality of the "context effect" previously reported in experiments using temporal double bisection tasks [e.g., Arantes, J., Machado, A. Context effects in a temporal discrimination task: Further tests of the Scalar Expectancy Theory and Learning-to-Time models. J. Exp. Anal. Behav., in press]. Pigeons learned two temporal discriminations in which all the stimuli appear successively: 1s (red) vs. 4s (green) and 4s (blue) vs. 16s (yellow). Then, two tests were conducted to compare predictions of two timing models, Scalar Expectancy Theory (SET) and the Learning-to-Time (LeT) model. In one test, two psychometric functions were obtained by presenting pigeons with intermediate signal durations (1-4s and 4-16s). Results were mixed. In the critical test, pigeons were exposed to signals ranging from 1 to 16s and followed by the green or the blue key. Whereas SET predicted that the relative response rate to each of these keys should be independent of the signal duration, LeT predicted that the relative response rate to the green key (compared with the blue key) should increase with the signal duration. Results were consistent with LeT's predictions, showing that the context effect is obtained even when subjects do not need to make a choice between two keys presented simultaneously.
Model for forecasting Olea europaea L. airborne pollen in South-West Andalusia, Spain
NASA Astrophysics Data System (ADS)
Galán, C.; Cariñanos, Paloma; García-Mozo, Herminia; Alcázar, Purificación; Domínguez-Vilches, Eugenio
Data on predicted average and maximum airborne pollen concentrations and the dates on which these maximum values are expected are of undoubted value to allergists and allergy sufferers, as well as to agronomists. This paper reports on the development of predictive models for calculating total annual pollen output, on the basis of pollen and weather data compiled over the last 19 years (1982-2000) for Córdoba (Spain). Models were tested in order to predict the 2000 pollen season; in addition, and in view of the heavy rainfall recorded in spring 2000, the 1982-1998 data set was used to test the model for 1999. The results of the multiple regression analysis show that the variables exerting the greatest influence on the pollen index were rainfall in March and temperatures over the months prior to the flowering period. For prediction of maximum values and dates on which these values might be expected, the start of the pollen season was used as an additional independent variable. Temperature proved the best variable for this prediction. Results improved when the 5-day moving average was taken into account. Testing of the predictive model for 1999 and 2000 yielded fairly similar results. In both cases, the difference between expected and observed pollen data was no greater than 10%. However, significant differences were recorded between forecast and expected maximum and minimum values, owing to the influence of rainfall during the flowering period.
Modeling and Testing of the Viscoelastic Properties of a Graphite Nanoplatelet/Epoxy Composite
NASA Technical Reports Server (NTRS)
Odegard, Gregory M.; Gates, Thomas S.
2005-01-01
In order to facilitate the interpretation of experimental data, a micromechanical modeling procedure is developed to predict the viscoelastic properties of a graphite nanoplatelet/epoxy composite as a function of volume fraction and nanoplatelet diameter. The predicted storage and loss moduli for the composite are compared to measured values from the same material using three test methods; Dynamical Mechanical Analysis, nanoindentation, and quasi-static tensile tests. In most cases, the model and experiments indicate that for increasing volume fractions of nanoplatelets, both the storage and loss moduli increase. Also, the results indicate that for nanoplatelet sizes above 15 microns, nanoindentation is capable of measuring properties of individual constituents of a composite system. Comparison of the predicted values to the measured data helps illustrate the relative similarities and differences between the bulk and local measurement techniques.
NREL Improves Building Energy Simulation Programs Through Diagnostic Testing (Fact Sheet)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2012-01-01
This technical highlight describes NREL research to develop Building Energy Simulation Test for Existing Homes (BESTEST-EX) to increase the quality and accuracy of energy analysis tools for the building retrofit market. Researchers at the National Renewable Energy Laboratory (NREL) have developed a new test procedure to increase the quality and accuracy of energy analysis tools for the building retrofit market. The Building Energy Simulation Test for Existing Homes (BESTEST-EX) is a test procedure that enables software developers to evaluate the performance of their audit tools in modeling energy use and savings in existing homes when utility bills are available formore » model calibration. Similar to NREL's previous energy analysis tests, such as HERS BESTEST and other BESTEST suites included in ANSI/ASHRAE Standard 140, BESTEST-EX compares software simulation findings to reference results generated with state-of-the-art simulation tools such as EnergyPlus, SUNREL, and DOE-2.1E. The BESTEST-EX methodology: (1) Tests software predictions of retrofit energy savings in existing homes; (2) Ensures building physics calculations and utility bill calibration procedures perform to a minimum standard; and (3) Quantifies impacts of uncertainties in input audit data and occupant behavior. BESTEST-EX includes building physics and utility bill calibration test cases. The diagram illustrates the utility bill calibration test cases. Participants are given input ranges and synthetic utility bills. Software tools use the utility bills to calibrate key model inputs and predict energy savings for the retrofit cases. Participant energy savings predictions using calibrated models are compared to NREL predictions using state-of-the-art building energy simulation programs.« less
Prediction of adolescent and adult adiposity outcomes from early life anthropometrics.
Graversen, Lise; Sørensen, Thorkild I A; Gerds, Thomas A; Petersen, Liselotte; Sovio, Ulla; Kaakinen, Marika; Sandbaek, Annelli; Laitinen, Jaana; Taanila, Anja; Pouta, Anneli; Järvelin, Marjo-Riitta; Obel, Carsten
2015-01-01
Maternal body mass index (BMI), birth weight, and preschool BMI may help identify children at high risk of overweight as they are (1) similarly linked to adolescent overweight at different stages of the obesity epidemic, (2) linked to adult obesity and metabolic alterations, and (3) easily obtainable in health examinations in young children. The aim was to develop early childhood prediction models of adolescent overweight, adult overweight, and adult obesity. Prediction models at various ages in the Northern Finland Birth Cohort born in 1966 (NFBC1966) were developed. Internal validation was tested using a bootstrap design, and external validation was tested for the model predicting adolescent overweight using the Northern Finland Birth Cohort born in 1986 (NFBC1986). A prediction model developed in the NFBC1966 to predict adolescent overweight, applied to the NFBC1986, and aimed at labelling 10% as "at risk" on the basis of anthropometric information collected until 5 years of age showed that half of those at risk in fact did become overweight. This group constituted one-third of all who became overweight. Our prediction model identified a subgroup of children at very high risk of becoming overweight, which may be valuable in public health settings dealing with obesity prevention. © 2014 The Obesity Society.
Ecological niche modelling of bank voles in Western Europe.
Amirpour Haredasht, Sara; Barrios, Miguel; Farifteh, Jamshid; Maes, Piet; Clement, Jan; Verstraeten, Willem W; Tersago, Katrien; Van Ranst, Marc; Coppin, Pol; Berckmans, Daniel; Aerts, Jean-Marie
2013-01-28
The bank vole (Myodes glareolus) is the natural host of Puumala virus (PUUV) in vast areas of Europe. PUUV is one of the hantaviruses which are transmitted to humans by infected rodents. PUUV causes a general mild form of hemorrhagic fever with renal syndrome (HFRS) called nephropathia epidemica (NE). Vector-borne and zoonotic diseases generally display clear spatial patterns due to different space-dependent factors. Land cover influences disease transmission by controlling both the spatial distribution of vectors or hosts, as well as by facilitating the human contact with them. In this study the use of ecological niche modelling (ENM) for predicting the geographical distribution of bank vole population on the basis of spatial climate information is tested. The Genetic Algorithm for Rule-set Prediction (GARP) is used to model the ecological niche of bank voles in Western Europe. The meteorological data, land cover types and geo-referenced points representing the locations of the bank voles (latitude/longitude) in the study area are used as the primary model input value. The predictive accuracy of the bank vole ecologic niche model was significant (training accuracy of 86%). The output of the GARP models based on the 50% subsets of points used for testing the model showed an accuracy of 75%. Compared with random models, the probability of such high predictivity was low (χ(2) tests, p < 10(-6)). As such, the GARP models were predictive and the used ecologic niche model indeed indicates the ecologic requirements of bank voles. This approach successfully identified the areas of infection risk across the study area. The result suggests that the niche modelling approach can be implemented in a next step towards the development of new tools for monitoring the bank vole's population.
Ecological Niche Modelling of Bank Voles in Western Europe
Amirpour Haredasht, Sara; Barrios, Miguel; Farifteh, Jamshid; Maes, Piet; Clement, Jan; Verstraeten, Willem W.; Tersago, Katrien; Van Ranst, Marc; Coppin, Pol; Berckmans, Daniel; Aerts, Jean-Marie
2013-01-01
The bank vole (Myodes glareolus) is the natural host of Puumala virus (PUUV) in vast areas of Europe. PUUV is one of the hantaviruses which are transmitted to humans by infected rodents. PUUV causes a general mild form of hemorrhagic fever with renal syndrome (HFRS) called nephropathia epidemica (NE). Vector-borne and zoonotic diseases generally display clear spatial patterns due to different space-dependent factors. Land cover influences disease transmission by controlling both the spatial distribution of vectors or hosts, as well as by facilitating the human contact with them. In this study the use of ecological niche modelling (ENM) for predicting the geographical distribution of bank vole population on the basis of spatial climate information is tested. The Genetic Algorithm for Rule-set Prediction (GARP) is used to model the ecological niche of bank voles in Western Europe. The meteorological data, land cover types and geo-referenced points representing the locations of the bank voles (latitude/longitude) in the study area are used as the primary model input value. The predictive accuracy of the bank vole ecologic niche model was significant (training accuracy of 86%). The output of the GARP models based on the 50% subsets of points used for testing the model showed an accuracy of 75%. Compared with random models, the probability of such high predictivity was low (χ2 tests, p < 10−6). As such, the GARP models were predictive and the used ecologic niche model indeed indicates the ecologic requirements of bank voles. This approach successfully identified the areas of infection risk across the study area. The result suggests that the niche modelling approach can be implemented in a next step towards the development of new tools for monitoring the bank vole’s population. PMID:23358234
Fine-scale habitat modeling of a top marine predator: do prey data improve predictive capacity?
Torres, Leigh G; Read, Andrew J; Halpin, Patrick
2008-10-01
Predators and prey assort themselves relative to each other, the availability of resources and refuges, and the temporal and spatial scale of their interaction. Predictive models of predator distributions often rely on these relationships by incorporating data on environmental variability and prey availability to determine predator habitat selection patterns. This approach to predictive modeling holds true in marine systems where observations of predators are logistically difficult, emphasizing the need for accurate models. In this paper, we ask whether including prey distribution data in fine-scale predictive models of bottlenose dolphin (Tursiops truncatus) habitat selection in Florida Bay, Florida, U.S.A., improves predictive capacity. Environmental characteristics are often used as predictor variables in habitat models of top marine predators with the assumption that they act as proxies of prey distribution. We examine the validity of this assumption by comparing the response of dolphin distribution and fish catch rates to the same environmental variables. Next, the predictive capacities of four models, with and without prey distribution data, are tested to determine whether dolphin habitat selection can be predicted without recourse to describing the distribution of their prey. The final analysis determines the accuracy of predictive maps of dolphin distribution produced by modeling areas of high fish catch based on significant environmental characteristics. We use spatial analysis and independent data sets to train and test the models. Our results indicate that, due to high habitat heterogeneity and the spatial variability of prey patches, fine-scale models of dolphin habitat selection in coastal habitats will be more successful if environmental variables are used as predictor variables of predator distributions rather than relying on prey data as explanatory variables. However, predictive modeling of prey distribution as the response variable based on environmental variability did produce high predictive performance of dolphin habitat selection, particularly foraging habitat.
Huo, Dezheng; Senie, Ruby T.; Daly, Mary; Buys, Saundra S.; Cummings, Shelly; Ogutha, Jacqueline; Hope, Kisha; Olopade, Olufunmilayo I.
2009-01-01
Purpose BRCAPRO, a BRCA mutation carrier prediction model, was developed on the basis of studies in individuals of Ashkenazi Jewish and European ancestry. We evaluated the performance of the BRCAPRO model among clinic-based minority families. We also assessed the clinical utility of mutation status of probands (the first individual tested in a family) in the recommendation of BRCA mutation testing for other at-risk family members. Patients and Methods A total of 292 minority families with at least one member who was tested for BRCA mutations were identified through the Breast Cancer Family Registry and the University of Chicago. Using the BRCAPRO model, the predicted likelihood of carrying BRCA mutations was generated. Area under the receiver operating characteristic curves (AUCs) were calculated. Results There were 104 African American, 130 Hispanic, 37 Asian-American, and 21 other minority families. The AUC was 0.748 (95% CI, 0.672 to 0.823) for all minorities combined. There was a statistically nonsignificant trend for BRCAPRO to perform better in Hispanic families than in other minority families. After taking into account the mutation status of probands, BRCAPRO performance in additional tested family members was improved: the AUC increased from 0.760 to 0.902. Conclusion The findings support the use of BRCAPRO in pretest BRCA mutation prediction among minority families in clinical settings, but there is room for improvement in ethnic groups other than Hispanics. Knowledge of the mutation status of the proband provides additional predictive value, which may guide genetic counselors in recommending BRCA testing of additional relatives when a proband has tested negative. PMID:19188678
DOE Office of Scientific and Technical Information (OSTI.GOV)
Puskar, Joseph David; Quintana, Michael A.; Sorensen, Neil Robert
A program is underway at Sandia National Laboratories to predict long-term reliability of photovoltaic (PV) systems. The vehicle for the reliability predictions is a Reliability Block Diagram (RBD), which models system behavior. Because this model is based mainly on field failure and repair times, it can be used to predict current reliability, but it cannot currently be used to accurately predict lifetime. In order to be truly predictive, physics-informed degradation processes and failure mechanisms need to be included in the model. This paper describes accelerated life testing of metal foil tapes used in thin-film PV modules, and how tape jointmore » degradation, a possible failure mode, can be incorporated into the model.« less
Krajcsi, Attila; Lengyel, Gábor; Kojouharova, Petia
2018-01-01
HIGHLIGHTS We test whether symbolic number comparison is handled by an analog noisy system.Analog system model has systematic biases in describing symbolic number comparison.This suggests that symbolic and non-symbolic numbers are processed by different systems. Dominant numerical cognition models suppose that both symbolic and non-symbolic numbers are processed by the Analog Number System (ANS) working according to Weber's law. It was proposed that in a number comparison task the numerical distance and size effects reflect a ratio-based performance which is the sign of the ANS activation. However, increasing number of findings and alternative models propose that symbolic and non-symbolic numbers might be processed by different representations. Importantly, alternative explanations may offer similar predictions to the ANS prediction, therefore, former evidence usually utilizing only the goodness of fit of the ANS prediction is not sufficient to support the ANS account. To test the ANS model more rigorously, a more extensive test is offered here. Several properties of the ANS predictions for the error rates, reaction times, and diffusion model drift rates were systematically analyzed in both non-symbolic dot comparison and symbolic Indo-Arabic comparison tasks. It was consistently found that while the ANS model's prediction is relatively good for the non-symbolic dot comparison, its prediction is poorer and systematically biased for the symbolic Indo-Arabic comparison. We conclude that only non-symbolic comparison is supported by the ANS, and symbolic number comparisons are processed by other representation. PMID:29491845
NASA Astrophysics Data System (ADS)
Maljaars, E.; Felici, F.; Blanken, T. C.; Galperti, C.; Sauter, O.; de Baar, M. R.; Carpanese, F.; Goodman, T. P.; Kim, D.; Kim, S. H.; Kong, M.; Mavkov, B.; Merle, A.; Moret, J. M.; Nouailletas, R.; Scheffer, M.; Teplukhina, A. A.; Vu, N. M. T.; The EUROfusion MST1-team; The TCV-team
2017-12-01
The successful performance of a model predictive profile controller is demonstrated in simulations and experiments on the TCV tokamak, employing a profile controller test environment. Stable high-performance tokamak operation in hybrid and advanced plasma scenarios requires control over the safety factor profile (q-profile) and kinetic plasma parameters such as the plasma beta. This demands to establish reliable profile control routines in presently operational tokamaks. We present a model predictive profile controller that controls the q-profile and plasma beta using power requests to two clusters of gyrotrons and the plasma current request. The performance of the controller is analyzed in both simulation and TCV L-mode discharges where successful tracking of the estimated inverse q-profile as well as plasma beta is demonstrated under uncertain plasma conditions and the presence of disturbances. The controller exploits the knowledge of the time-varying actuator limits in the actuator input calculation itself such that fast transitions between targets are achieved without overshoot. A software environment is employed to prepare and test this and three other profile controllers in parallel in simulations and experiments on TCV. This set of tools includes the rapid plasma transport simulator RAPTOR and various algorithms to reconstruct the plasma equilibrium and plasma profiles by merging the available measurements with model-based predictions. In this work the estimated q-profile is merely based on RAPTOR model predictions due to the absence of internal current density measurements in TCV. These results encourage to further exploit model predictive profile control in experiments on TCV and other (future) tokamaks.
Dynamic Finite Element Predictions for Mars Sample Return Cellular Impact Test #4
NASA Technical Reports Server (NTRS)
Fasanella, Edwin L.; Billings, Marcus D.
2001-01-01
The nonlinear finite element program MSC.Dytran was used to predict the impact pulse for (he drop test of an energy absorbing cellular structure. This pre-test simulation was performed to aid in the design of an energy absorbing concept for a highly reliable passive Earth Entry Vehicle (EEV) that will directly impact the Earth without a parachute. In addition, a goal of the simulation was to bound the acceleration pulse produced and delivered to the simulated space cargo container. EEV's are designed to return materials from asteroids, comets, or planets for laboratory analysis on Earth. The EEV concept uses an energy absorbing cellular structure designed to contain and limit the acceleration of space exploration samples during Earth impact. The spherical shaped cellular structure is composed of solid hexagonal and pentagonal foam-filled cells with hybrid graphite-epoxy/Kevlar cell walls. Space samples fit inside a smaller sphere at the enter of the EEV's cellular structure. The material models and failure criteria were varied to determine their effect on the resulting acceleration pulse. Pre-test analytical predictions using MSC.Dytran were compared with the test results obtained from impact test #4 using bungee accelerator located at the NASA Langley Research Center Impact Dynamics Research Facility. The material model used to represent the foam and the proper failure criteria for the cell walls were critical in predicting the impact loads of the cellular structure. It was determined that a FOAMI model for the foam and a 20% failure strain criteria for the cell walls gave an accurate prediction of the acceleration pulse for drop test #4.
2014-01-01
Background It is important to predict the quality of a protein structural model before its native structure is known. The method that can predict the absolute local quality of individual residues in a single protein model is rare, yet particularly needed for using, ranking and refining protein models. Results We developed a machine learning tool (SMOQ) that can predict the distance deviation of each residue in a single protein model. SMOQ uses support vector machines (SVM) with protein sequence and structural features (i.e. basic feature set), including amino acid sequence, secondary structures, solvent accessibilities, and residue-residue contacts to make predictions. We also trained a SVM model with two new additional features (profiles and SOV scores) on 20 CASP8 targets and found that including them can only improve the performance when real deviations between native and model are higher than 5Å. The SMOQ tool finally released uses the basic feature set trained on 85 CASP8 targets. Moreover, SMOQ implemented a way to convert predicted local quality scores into a global quality score. SMOQ was tested on the 84 CASP9 single-domain targets. The average difference between the residue-specific distance deviation predicted by our method and the actual distance deviation on the test data is 2.637Å. The global quality prediction accuracy of the tool is comparable to other good tools on the same benchmark. Conclusion SMOQ is a useful tool for protein single model quality assessment. Its source code and executable are available at: http://sysbio.rnet.missouri.edu/multicom_toolbox/. PMID:24776231
Cao, Renzhi; Wang, Zheng; Wang, Yiheng; Cheng, Jianlin
2014-04-28
It is important to predict the quality of a protein structural model before its native structure is known. The method that can predict the absolute local quality of individual residues in a single protein model is rare, yet particularly needed for using, ranking and refining protein models. We developed a machine learning tool (SMOQ) that can predict the distance deviation of each residue in a single protein model. SMOQ uses support vector machines (SVM) with protein sequence and structural features (i.e. basic feature set), including amino acid sequence, secondary structures, solvent accessibilities, and residue-residue contacts to make predictions. We also trained a SVM model with two new additional features (profiles and SOV scores) on 20 CASP8 targets and found that including them can only improve the performance when real deviations between native and model are higher than 5Å. The SMOQ tool finally released uses the basic feature set trained on 85 CASP8 targets. Moreover, SMOQ implemented a way to convert predicted local quality scores into a global quality score. SMOQ was tested on the 84 CASP9 single-domain targets. The average difference between the residue-specific distance deviation predicted by our method and the actual distance deviation on the test data is 2.637Å. The global quality prediction accuracy of the tool is comparable to other good tools on the same benchmark. SMOQ is a useful tool for protein single model quality assessment. Its source code and executable are available at: http://sysbio.rnet.missouri.edu/multicom_toolbox/.
Gettings, S D; Lordo, R A; Hintze, K L; Bagley, D M; Casterton, P L; Chudkowski, M; Curren, R D; Demetrulias, J L; Dipasquale, L C; Earl, L K; Feder, P I; Galli, C L; Glaza, S M; Gordon, V C; Janus, J; Kurtz, P J; Marenus, K D; Moral, J; Pape, W J; Renskers, K J; Rheins, L A; Roddy, M T; Rozen, M G; Tedeschi, J P; Zyracki, J
1996-01-01
The CTFA Evaluation of Alternatives Program is an evaluation of the relationship between data from the Draize primary eye irritation test and comparable data from a selection of promising in vitro eye irritation tests. In Phase III, data from the Draize test and 41 in vitro endpoints on 25 representative surfactant-based personal care formulations were compared. As in Phase I and Phase II, regression modelling of the relationship between maximum average Draize score (MAS) and in vitro endpoint was the primary approach adopted for evaluating in vitro assay performance. The degree of confidence in prediction of MAS for a given in vitro endpoint is quantified in terms of the relative widths of prediction intervals constructed about the fitted regression curve. Prediction intervals reflect not only the error attributed to the model but also the material-specific components of variation in both the Draize and the in vitro assays. Among the in vitro assays selected for regression modeling in Phase III, the relationship between MAS and in vitro score was relatively well defined. The prediction bounds on MAS were most narrow for materials at the lower or upper end of the effective irritation range (MAS = 0-45), where variability in MAS was smallest. This, the confidence with which the MAS of surfactant-based formulations is predicted is greatest when MAS approaches zero or when MAS approaches 45 (no comment is made on prediction of MAS > 45 since extrapolation beyond the range of observed data is not possible). No single in vitro endpoint was found to exhibit relative superiority with regard to prediction of MAS. Variability associated with Draize test outcome (e.g. in MAS values) must be considered in any future comparisons of in vivo and in vitro test results if the purpose is to predict in vivo response using in vitro data.
A post audit of a model-designed ground water extraction system.
Andersen, Peter F; Lu, Silong
2003-01-01
Model post audits test the predictive capabilities of ground water models and shed light on their practical limitations. In the work presented here, ground water model predictions were used to design an extraction/treatment/injection system at a military ammunition facility and then were re-evaluated using site-specific water-level data collected approximately one year after system startup. The water-level data indicated that performance specifications for the design, i.e., containment, had been achieved over the required area, but that predicted water-level changes were greater than observed, particularly in the deeper zones of the aquifer. Probable model error was investigated by determining the changes that were required to obtain an improved match to observed water-level changes. This analysis suggests that the originally estimated hydraulic properties were in error by a factor of two to five. These errors may have resulted from attributing less importance to data from deeper zones of the aquifer and from applying pumping test results to a volume of material that was larger than the volume affected by the pumping test. To determine the importance of these errors to the predictions of interest, the models were used to simulate the capture zones resulting from the originally estimated and updated parameter values. The study suggests that, despite the model error, the ground water model contributed positively to the design of the remediation system.
Evaluation of methodology for detecting/predicting migration of forest species
Dale S. Solomon; William B. Leak
1996-01-01
Available methods for analyzing migration of forest species are evaluated, including simulation models, remeasured plots, resurveys, pollen/vegetation analysis, and age/distance trends. Simulation models have provided some of the most drastic estimates of species changes due to predicted changes in global climate. However, these models require additional testing...
PTSITE--a new method of site evaluation for loblolly pine: model development and user's guide
Constance A. Harrington
1991-01-01
A model, named PTSITE, was developed to predict site index for loblolly pine based on soil characteristics, site location on the landscape, and land history. The model was tested with data from several sources and judged to predict site index within + 4 feet (P
Predicting Naming Latencies with an Analogical Model
ERIC Educational Resources Information Center
Chandler, Steve
2008-01-01
Skousen's (1989, Analogical modeling of language, Kluwer Academic Publishers, Dordrecht) Analogical Model (AM) predicts behavior such as spelling pronunciation by comparing the characteristics of a test item (a given input word) to those of individual exemplars in a data set of previously encountered items. While AM and other exemplar-based models…
Mathematical model for predicting human vertebral fracture
NASA Technical Reports Server (NTRS)
Benedict, J. V.
1973-01-01
Mathematical model has been constructed to predict dynamic response of tapered, curved beam columns in as much as human spine closely resembles this form. Model takes into consideration effects of impact force, mass distribution, and material properties. Solutions were verified by dynamic tests on curved, tapered, elastic polyethylene beam.
Dick, Taylor J M; Biewener, Andrew A; Wakeling, James M
2017-05-01
Hill-type models are ubiquitous in the field of biomechanics, providing estimates of a muscle's force as a function of its activation state and its assumed force-length and force-velocity properties. However, despite their routine use, the accuracy with which Hill-type models predict the forces generated by muscles during submaximal, dynamic tasks remains largely unknown. This study compared human gastrocnemius forces predicted by Hill-type models with the forces estimated from ultrasound-based measures of tendon length changes and stiffness during cycling, over a range of loads and cadences. We tested both a traditional model, with one contractile element, and a differential model, with two contractile elements that accounted for independent contributions of slow and fast muscle fibres. Both models were driven by subject-specific, ultrasound-based measures of fascicle lengths, velocities and pennation angles and by activation patterns of slow and fast muscle fibres derived from surface electromyographic recordings. The models predicted, on average, 54% of the time-varying gastrocnemius forces estimated from the ultrasound-based methods. However, differences between predicted and estimated forces were smaller under low speed-high activation conditions, with models able to predict nearly 80% of the gastrocnemius force over a complete pedal cycle. Additionally, the predictions from the Hill-type muscle models tested here showed that a similar pattern of force production could be achieved for most conditions with and without accounting for the independent contributions of different muscle fibre types. © 2017. Published by The Company of Biologists Ltd.
Development of a clinical decision model for thyroid nodules.
Stojadinovic, Alexander; Peoples, George E; Libutti, Steven K; Henry, Leonard R; Eberhardt, John; Howard, Robin S; Gur, David; Elster, Eric A; Nissan, Aviram
2009-08-10
Thyroid nodules represent a common problem brought to medical attention. Four to seven percent of the United States adult population (10-18 million people) has a palpable thyroid nodule, however the majority (>95%) of thyroid nodules are benign. While, fine needle aspiration remains the most cost effective and accurate diagnostic tool for thyroid nodules in current practice, over 20% of patients undergoing FNA of a thyroid nodule have indeterminate cytology (follicular neoplasm) with associated malignancy risk prevalence of 20-30%. These patients require thyroid lobectomy/isthmusectomy purely for the purpose of attaining a definitive diagnosis. Given that the majority (70-80%) of these patients have benign surgical pathology, thyroidectomy in these patients is conducted principally with diagnostic intent. Clinical models predictive of malignancy risk are needed to support treatment decisions in patients with thyroid nodules in order to reduce morbidity associated with unnecessary diagnostic surgery. Data were analyzed from a completed prospective cohort trial conducted over a 4-year period involving 216 patients with thyroid nodules undergoing ultrasound (US), electrical impedance scanning (EIS) and fine needle aspiration cytology (FNA) prior to thyroidectomy. A Bayesian model was designed to predict malignancy in thyroid nodules based on multivariate dependence relationships between independent covariates. Ten-fold cross-validation was performed to estimate classifier error wherein the data set was randomized into ten separate and unique train and test sets consisting of a training set (90% of records) and a test set (10% of records). A receiver-operating-characteristics (ROC) curve of these predictions and area under the curve (AUC) were calculated to determine model robustness for predicting malignancy in thyroid nodules. Thyroid nodule size, FNA cytology, US and EIS characteristics were highly predictive of malignancy. Cross validation of the model created with Bayesian Network Analysis effectively predicted malignancy [AUC = 0.88 (95%CI: 0.82-0.94)] in thyroid nodules. The positive and negative predictive values of the model are 83% (95%CI: 76%-91%) and 79% (95%CI: 72%-86%), respectively. An integrated predictive decision model using Bayesian inference incorporating readily obtainable thyroid nodule measures is clinically relevant, as it effectively predicts malignancy in thyroid nodules. This model warrants further validation testing in prospective clinical trials.
Smyczynska, Joanna; Hilczer, Maciej; Smyczynska, Urszula; Stawerska, Renata; Tadeusiewicz, Ryszard; Lewinski, Andrzej
2015-01-01
The leading method for prediction of growth hormone (GH) therapy effectiveness are multiple linear regression (MLR) models. Best of our knowledge, we are the first to apply artificial neural networks (ANN) to solve this problem. For ANN there is no necessity to assume the functions linking independent and dependent variables. The aim of study is to compare ANN and MLR models of GH therapy effectiveness. Analysis comprised the data of 245 GH-deficient children (170 boys) treated with GH up to final height (FH). Independent variables included: patients' height, pre-treatment height velocity, chronological age, bone age, gender, pubertal status, parental heights, GH peak in 2 stimulation tests, IGF-I concentration. The output variable was FH. For testing dataset, MLR model predicted FH SDS with average error (RMSE) 0.64 SD, explaining 34.3% of its variability; ANN model derived on the same pre-processed data predicted FH SDS with RMSE 0.60 SD, explaining 42.0% of its variability; ANN model derived on raw data predicted FH with RMSE 3.9 cm (0.63 SD), explaining 78.7% of its variability. ANN seem to be valuable tool in prediction of GH treatment effectiveness, especially since they can be applied to raw clinical data.
ERIC Educational Resources Information Center
Raiker, Joseph S.; Rapport, Mark D.; Kofler, Michael J.; Sarver, Dustin E.
2012-01-01
Impulsivity is a hallmark of two of the three DSM-IV ADHD subtypes and is associated with myriad adverse outcomes. Limited research, however, is available concerning the mechanisms and processes that contribute to impulsive responding by children with ADHD. The current study tested predictions from two competing models of ADHD--working memory (WM)…
NASA Technical Reports Server (NTRS)
Melis, Matthew E.; Brand, Jeremy H.; Pereira, J. Michael; Revilock, Duane M.
2007-01-01
Following the tragedy of the Space Shuttle Columbia on February 1, 2003, a major effort commenced to develop a better understanding of debris impacts and their effect on the Space Shuttle subsystems. An initiative to develop and validate physics-based computer models to predict damage from such impacts was a fundamental component of this effort. To develop the models it was necessary to physically characterize Reinforced Carbon-Carbon (RCC) and various debris materials which could potentially shed on ascent and impact the Orbiter RCC leading edges. The validated models enabled the launch system community to use the impact analysis software LS DYNA to predict damage by potential and actual impact events on the Orbiter leading edge and nose cap thermal protection systems. Validation of the material models was done through a three-level approach: fundamental tests to obtain independent static and dynamic material model properties of materials of interest, sub-component impact tests to provide highly controlled impact test data for the correlation and validation of the models, and full-scale impact tests to establish the final level of confidence for the analysis methodology. This paper discusses the second level subcomponent test program in detail and its application to the LS DYNA model validation process. The level two testing consisted of over one hundred impact tests in the NASA Glenn Research Center Ballistic Impact Lab on 6 by 6 in. and 6 by 12 in. flat plates of RCC and evaluated three types of debris projectiles: BX 265 External Tank foam, ice, and PDL 1034 External Tank foam. These impact tests helped determine the level of damage generated in the RCC flat plates by each projectile. The information obtained from this testing validated the LS DYNA damage prediction models and provided a certain level of confidence to begin performing analysis for full-size RCC test articles for returning NASA to flight with STS 114 and beyond.
Study of indoor radon distribution using measurements and CFD modeling.
Chauhan, Neetika; Chauhan, R P; Joshi, M; Agarwal, T K; Aggarwal, Praveen; Sahoo, B K
2014-10-01
Measurement and/or prediction of indoor radon ((222)Rn) concentration are important due to the impact of radon on indoor air quality and consequent inhalation hazard. In recent times, computational fluid dynamics (CFD) based modeling has become the cost effective replacement of experimental methods for the prediction and visualization of indoor pollutant distribution. The aim of this study is to implement CFD based modeling for studying indoor radon gas distribution. This study focuses on comparison of experimentally measured and CFD modeling predicted spatial distribution of radon concentration for a model test room. The key inputs for simulation viz. radon exhalation rate and ventilation rate were measured as a part of this study. Validation experiments were performed by measuring radon concentration at different locations of test room using active (continuous radon monitor) and passive (pin-hole dosimeters) techniques. Modeling predictions have been found to be reasonably matching with the measurement results. The validated model can be used to understand and study factors affecting indoor radon distribution for more realistic indoor environment. Copyright © 2014 Elsevier Ltd. All rights reserved.
Marchioro, C A; Krechemer, F S; de Moraes, C P; Foerster, L A
2015-12-01
The diamondback moth, Plutella xylostella (L.), is a cosmopolitan pest of brassicaceous crops occurring in regions with highly distinct climate conditions. Several studies have investigated the relationship between temperature and P. xylostella development rate, providing degree-day models for populations from different geographical regions. However, there are no data available to date to demonstrate the suitability of such models to make reliable projections on the development time for this species in field conditions. In the present study, 19 models available in the literature were tested regarding their ability to accurately predict the development time of two cohorts of P. xylostella under field conditions. Only 11 out of the 19 models tested accurately predicted the development time for the first cohort of P. xylostella, but only seven for the second cohort. Five models correctly predicted the development time for both cohorts evaluated. Our data demonstrate that the accuracy of the models available for P. xylostella varies widely and therefore should be used with caution for pest management purposes.
Martin, Benjamin T; Jager, Tjalling; Nisbet, Roger M; Preuss, Thomas G; Grimm, Volker
2013-04-01
Individual-based models (IBMs) are increasingly used to link the dynamics of individuals to higher levels of biological organization. Still, many IBMs are data hungry, species specific, and time-consuming to develop and analyze. Many of these issues would be resolved by using general theories of individual dynamics as the basis for IBMs. While such theories have frequently been examined at the individual level, few cross-level tests exist that also try to predict population dynamics. Here we performed a cross-level test of dynamic energy budget (DEB) theory by parameterizing an individual-based model using individual-level data of the water flea, Daphnia magna, and comparing the emerging population dynamics to independent data from population experiments. We found that DEB theory successfully predicted population growth rates and peak densities but failed to capture the decline phase. Further assumptions on food-dependent mortality of juveniles were needed to capture the population dynamics after the initial population peak. The resulting model then predicted, without further calibration, characteristic switches between small- and large-amplitude cycles, which have been observed for Daphnia. We conclude that cross-level tests help detect gaps in current individual-level theories and ultimately will lead to theory development and the establishment of a generic basis for individual-based models and ecology.
Using Biowin, Bayes, and batteries to predict ready biodegradability.
Boethling, Robert S; Lynch, David G; Jaworska, Joanna S; Tunkel, Jay L; Thom, Gary C; Webb, Simon
2004-04-01
Whether or not a given chemical substance is readily biodegradable is an important piece of information in risk screening for both new and existing chemicals. Despite the relatively low cost of Organization for Economic Cooperation and Development tests, data are often unavailable and biodegradability must be estimated. In this paper, we focus on the predictive value of selected Biowin models and model batteries using Bayesian analysis. Posterior probabilities, calculated based on performance with the model training sets using Bayes' theorem, were closely matched by actual performance with an expanded set of 374 premanufacture notice (PMN) substances. Further analysis suggested that a simple battery consisting of Biowin3 (survey ultimate biodegradation model) and Biowin5 (Ministry of International Trade and Industry [MITI] linear model) would have enhanced predictive power in comparison to individual models. Application of the battery to PMN substances showed that performance matched expectation. This approach significantly reduced both false positives for ready biodegradability and the overall misclassification rate. Similar results were obtained for a set of 63 pharmaceuticals using a battery consisting of Biowin3 and Biowin6 (MITI nonlinear model). Biodegradation data for PMNs tested in multiple ready tests or both inherent and ready biodegradation tests yielded additional insights that may be useful in risk screening.
Pérez-Garrido, Alfonso; Helguera, Aliuska Morales; Rodríguez, Francisco Girón; Cordeiro, M Natália D S
2010-05-01
The purpose of this study is to develop a quantitative structure-activity relationship (QSAR) model that can distinguish mutagenic from non-mutagenic species with alpha,beta-unsaturated carbonyl moiety using two endpoints for this activity - Ames test and mammalian cell gene mutation test - and also to gather information about the molecular features that most contribute to eliminate the mutagenic effects of these chemicals. Two data sets were used for modeling the two mutagenicity endpoints: (1) Ames test and (2) mammalian cells mutagenesis. The first one comprised 220 molecules, while the second one 48 substances, ranging from acrylates, methacrylates to alpha,beta-unsaturated carbonyl compounds. The QSAR models were developed by applying linear discriminant analysis (LDA) along with different sets of descriptors computed using the DRAGON software. For both endpoints, there was a concordance of 89% in the prediction and 97% confidentiality by combining the three models for the Ames test mutagenicity. We have also identified several structural alerts to assist the design of new monomers. These individual models and especially their combination are attractive from the point of view of molecular modeling and could be used for the prediction and design of new monomers that do not pose a human health risk. 2010 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Life Modeling and Design Analysis for Ceramic Matrix Composite Materials
NASA Technical Reports Server (NTRS)
2005-01-01
The primary research efforts focused on characterizing and modeling static failure, environmental durability, and creep-rupture behavior of two classes of ceramic matrix composites (CMC), silicon carbide fibers in a silicon carbide matrix (SiC/SiC) and carbon fibers in a silicon carbide matrix (C/SiC). An engineering life prediction model (Probabilistic Residual Strength model) has been developed specifically for CMCs. The model uses residual strength as the damage metric for evaluating remaining life and is posed probabilistically in order to account for the stochastic nature of the material s response. In support of the modeling effort, extensive testing of C/SiC in partial pressures of oxygen has been performed. This includes creep testing, tensile testing, half life and residual tensile strength testing. C/SiC is proposed for airframe and propulsion applications in advanced reusable launch vehicles. Figures 1 and 2 illustrate the models predictive capabilities as well as the manner in which experimental tests are being selected in such a manner as to ensure sufficient data is available to aid in model validation.
The EST Model for Predicting Progressive Damage and Failure of Open Hole Bending Specimens
NASA Technical Reports Server (NTRS)
Joseph, Ashith P. K.; Waas, Anthony M.; Pineda, Evan J.
2016-01-01
Progressive damage and failure in open hole composite laminate coupons subjected to flexural loading is modeled using Enhanced Schapery Theory (EST). Previous studies have demonstrated that EST can accurately predict the strength of open hole coupons under remote tensile and compressive loading states. This homogenized modeling approach uses single composite shell elements to represent the entire laminate in the thickness direction and significantly reduces computational cost. Therefore, when delaminations are not of concern or are active in the post-peak regime, the version of EST presented here is a good engineering tool for predicting deformation response. Standard coupon level tests provides all the input data needed for the model and they are interpreted in conjunction with finite element (FE) based simulations. Open hole bending test results of three different IM7/8552 carbon fiber composite layups agree well with EST predictions. The model is able to accurately capture the curvature change and deformation localization in the specimen at and during the post catastrophic load drop event.
Dallmann, André; Ince, Ibrahim; Coboeken, Katrin; Eissing, Thomas; Hempel, Georg
2017-09-18
Physiologically based pharmacokinetic modeling is considered a valuable tool for predicting pharmacokinetic changes in pregnancy to subsequently guide in-vivo pharmacokinetic trials in pregnant women. The objective of this study was to extend and verify a previously developed physiologically based pharmacokinetic model for pregnant women for the prediction of pharmacokinetics of drugs metabolized via several cytochrome P450 enzymes. Quantitative information on gestation-specific changes in enzyme activity available in the literature was incorporated in a pregnancy physiologically based pharmacokinetic model and the pharmacokinetics of eight drugs metabolized via one or multiple cytochrome P450 enzymes was predicted. The tested drugs were caffeine, midazolam, nifedipine, metoprolol, ondansetron, granisetron, diazepam, and metronidazole. Pharmacokinetic predictions were evaluated by comparison with in-vivo pharmacokinetic data obtained from the literature. The pregnancy physiologically based pharmacokinetic model successfully predicted the pharmacokinetics of all tested drugs. The observed pregnancy-induced pharmacokinetic changes were qualitatively and quantitatively reasonably well predicted for all drugs. Ninety-seven percent of the mean plasma concentrations predicted in pregnant women fell within a twofold error range and 63% within a 1.25-fold error range. For all drugs, the predicted area under the concentration-time curve was within a 1.25-fold error range. The presented pregnancy physiologically based pharmacokinetic model can quantitatively predict the pharmacokinetics of drugs that are metabolized via one or multiple cytochrome P450 enzymes by integrating prior knowledge of the pregnancy-related effect on these enzymes. This pregnancy physiologically based pharmacokinetic model may thus be used to identify potential exposure changes in pregnant women a priori and to eventually support informed decision making when clinical trials are designed in this special population.
NASA Astrophysics Data System (ADS)
Cowdery, E.; Dietze, M.
2016-12-01
As atmospheric levels of carbon dioxide levels continue to increase, it is critical that terrestrial ecosystem models can accurately predict ecological responses to the changing environment. Current predictions of net primary productivity (NPP) in response to elevated atmospheric CO2 concentration are highly variable and contain a considerable amount of uncertainty.The Predictive Ecosystem Analyzer (PEcAn) is an informatics toolbox that wraps around an ecosystem model and can be used to help identify which factors drive uncertainty. We tested a suite of models (LPJ-GUESS, MAESPA, GDAY, CLM5, DALEC, ED2), which represent a range from low to high structural complexity, across a range of Free-Air CO2 Enrichment (FACE) experiments: the Kennedy Space Center Open Top Chamber Experiment, the Rhinelander FACE experiment, the Duke Forest FACE experiment and the Oak Ridge Experiment on CO2 Enrichment. These tests were implemented in a novel benchmarking workflow that is automated, repeatable, and generalized to incorporate different sites and ecological models. Observational data from the FACE experiments represent a first test of this flexible, extensible approach aimed at providing repeatable tests of model process representation.To identify and evaluate the assumptions causing inter-model differences we used PEcAn to perform model sensitivity and uncertainty analysis, not only to assess the components of NPP, but also to examine system processes such nutrient uptake and and water use. Combining the observed patterns of uncertainty between multiple models with results of the recent FACE-model data synthesis project (FACE-MDS) can help identify which processes need further study and additional data constraints. These findings can be used to inform future experimental design and in turn can provide informative starting point for data assimilation.
NASA Technical Reports Server (NTRS)
Park, Sang C.; Carnahan, Timothy M.; Cohen, Lester M.; Congedo, Cherie B.; Eisenhower, Michael J.; Ousley, Wes; Weaver, Andrew; Yang, Kan
2017-01-01
The JWST Optical Telescope Element (OTE) assembly is the largest optically stable infrared-optimized telescope currently being manufactured and assembled, and is scheduled for launch in 2018. The JWST OTE, including the 18 segment primary mirror, secondary mirror, and the Aft Optics Subsystem (AOS) are designed to be passively cooled and operate near 45K. These optical elements are supported by a complex composite backplane structure. As a part of the structural distortion model validation efforts, a series of tests are planned during the cryogenic vacuum test of the fully integrated flight hardware at NASA JSC Chamber A. The successful ends to the thermal-distortion phases are heavily dependent on the accurate temperature knowledge of the OTE structural members. However, the current temperature sensor allocations during the cryo-vac test may not have sufficient fidelity to provide accurate knowledge of the temperature distributions within the composite structure. A method based on an inverse distance relationship among the sensors and thermal model nodes was developed to improve the thermal data provided for the nanometer scale WaveFront Error (WFE) predictions. The Linear Distance Weighted Interpolation (LDWI) method was developed to augment the thermal model predictions based on the sparse sensor information. This paper will encompass the development of the LDWI method using the test data from the earlier pathfinder cryo-vac tests, and the results of the notional and as tested WFE predictions from the structural finite element model cases to characterize the accuracies of this LDWI method.
Testing and Life Prediction for Composite Rotor Hub Flexbeams
NASA Technical Reports Server (NTRS)
Murri, Gretchen B.
2004-01-01
A summary of several studies of delamination in tapered composite laminates with internal ply-drops is presented. Initial studies used 2D FE models to calculate interlaminar stresses at the ply-ending locations in linear tapered laminates under tension loading. Strain energy release rates for delamination in these laminates indicated that delamination would likely start at the juncture of the tapered and thin regions and grow unstably in both directions. Tests of glass/epoxy and graphite/epoxy linear tapered laminates under axial tension delaminated as predicted. Nonlinear tapered specimens were cut from a full-size helicopter rotor hub and were tested under combined constant axial tension and cyclic transverse bending loading to simulate the loading experienced by a rotorhub flexbeam in flight. For all the tested specimens, delamination began at the tip of the outermost dropped ply group and grew first toward the tapered region. A 2D FE model was created that duplicated the test flexbeam layup, geometry, and loading. Surface strains calculated by the model agreed very closely with the measured surface strains in the specimens. The delamination patterns observed in the tests were simulated in the model by releasing pairs of MPCs along those interfaces. Strain energy release rates associated with the delamination growth were calculated for several configurations and using two different FE analysis codes. Calculations from the codes agreed very closely. The strain energy release rate results were used with material characterization data to predict fatigue delamination onset lives for nonlinear tapered flexbeams with two different ply-dropping schemes. The predicted curves agreed well with the test data for each case studied.
Development of a Skin Burn Predictive Model adapted to Laser Irradiation
NASA Astrophysics Data System (ADS)
Sonneck-Museux, N.; Scheer, E.; Perez, L.; Agay, D.; Autrique, L.
2016-12-01
Laser technology is increasingly used, and it is crucial for both safety and medical reasons that the impact of laser irradiation on human skin can be accurately predicted. This study is mainly focused on laser-skin interactions and potential lesions (burns). A mathematical model dedicated to heat transfers in skin exposed to infrared laser radiations has been developed. The model is validated by studying heat transfers in human skin and simultaneously performing experimentations an animal model (pig). For all experimental tests, pig's skin surface temperature is recorded. Three laser wavelengths have been tested: 808 nm, 1940 nm and 10 600 nm. The first is a diode laser producing radiation absorbed deep within the skin. The second wavelength has a more superficial effect. For the third wavelength, skin is an opaque material. The validity of the developed models is verified by comparison with experimental results (in vivo tests) and the results of previous studies reported in the literature. The comparison shows that the models accurately predict the burn degree caused by laser radiation over a wide range of conditions. The results show that the important parameter for burn prediction is the extinction coefficient. For the 1940 nm wavelength especially, significant differences between modeling results and literature have been observed, mainly due to this coefficient's value. This new model can be used as a predictive tool in order to estimate the amount of injury induced by several types (couple power-time) of laser aggressions on the arm, the face and on the palm of the hand.
ERIC Educational Resources Information Center
Maij-de Meij, Annette M.; Kelderman, Henk; van der Flier, Henk
2008-01-01
Mixture item response theory (IRT) models aid the interpretation of response behavior on personality tests and may provide possibilities for improving prediction. Heterogeneity in the population is modeled by identifying homogeneous subgroups that conform to different measurement models. In this study, mixture IRT models were applied to the…
Using a GIS model to assess terrestrial salamander response to alternative forest management plans
Eric J. Gustafson; Nathan L. Murphy; Thomas R. Crow
2001-01-01
A GIS model predicting the spatial distribution of terrestrial salamander abundance based on topography and forest age was developed using parameters derived from the literature. The model was tested by sampling salamander abundance across the full range of site conditions used in the model. A regression of the predictions of our GIS model against these sample data...
Nonlinear and progressive failure aspects of transport composite fuselage damage tolerance
NASA Technical Reports Server (NTRS)
Walker, Tom; Ilcewicz, L.; Murphy, Dan; Dopker, Bernhard
1993-01-01
The purpose is to provide an end-user's perspective on the state of the art in life prediction and failure analysis by focusing on subsonic transport fuselage issues being addressed in the NASA/Boeing Advanced Technology Composite Aircraft Structure (ATCAS) contract and a related task-order contract. First, some discrepancies between the ATCAS tension-fracture test database and classical prediction methods is discussed, followed by an overview of material modeling work aimed at explaining some of these discrepancies. Finally, analysis efforts associated with a pressure-box test fixture are addressed, as an illustration of modeling complexities required to model and interpret tests.
Predictive modeling of surimi cake shelf life at different storage temperatures
NASA Astrophysics Data System (ADS)
Wang, Yatong; Hou, Yanhua; Wang, Quanfu; Cui, Bingqing; Zhang, Xiangyu; Li, Xuepeng; Li, Yujin; Liu, Yuanping
2017-04-01
The Arrhenius model of the shelf life prediction which based on the TBARS index was established in this study. The results showed that the significant changed of AV, POV, COV and TBARS with temperature increased, and the reaction rate constants k was obtained by the first order reaction kinetics model. Then the secondary model fitting was based on the Arrhenius equation. There was the optimal fitting accuracy of TBARS in the first and the secondary model fitting (R2≥0.95). The verification test indicated that the relative error between the shelf life model prediction value and actual value was within ±10%, suggesting the model could predict the shelf life of surimi cake.
2D-QSAR and 3D-QSAR Analyses for EGFR Inhibitors
Zhao, Manman; Zheng, Linfeng; Qiu, Chun
2017-01-01
Epidermal growth factor receptor (EGFR) is an important target for cancer therapy. In this study, EGFR inhibitors were investigated to build a two-dimensional quantitative structure-activity relationship (2D-QSAR) model and a three-dimensional quantitative structure-activity relationship (3D-QSAR) model. In the 2D-QSAR model, the support vector machine (SVM) classifier combined with the feature selection method was applied to predict whether a compound was an EGFR inhibitor. As a result, the prediction accuracy of the 2D-QSAR model was 98.99% by using tenfold cross-validation test and 97.67% by using independent set test. Then, in the 3D-QSAR model, the model with q2 = 0.565 (cross-validated correlation coefficient) and r2 = 0.888 (non-cross-validated correlation coefficient) was built to predict the activity of EGFR inhibitors. The mean absolute error (MAE) of the training set and test set was 0.308 log units and 0.526 log units, respectively. In addition, molecular docking was also employed to investigate the interaction between EGFR inhibitors and EGFR. PMID:28630865
NASA Technical Reports Server (NTRS)
Kana, D. D.; Vargas, L. M.
1977-01-01
Transient excitation forces were applied separately to simple beam-and-mass launch vehicle and payload models to develop complex admittance functions for the interface and other appropriate points on the structures. These measured admittances were then analytically combined by a matrix representation to obtain a description of the coupled system dynamic characteristics. Response of the payload model to excitation of the launch vehicle model was predicted and compared with results measured on the combined models. These results are also compared with results of earlier work in which a similar procedure was employed except that steady-state sinusoidal excitation techniques were included. It is found that the method employing transient tests produces results that are better overall than the steady state methods. Furthermore, the transient method requires far less time to implement, and provides far better resolution in the data. However, the data acquisition and handling problem is more complex for this method. It is concluded that the transient test and admittance matrix prediction method can be a valuable tool for development of payload vibration tests.
Propeller aircraft interior noise model utilization study and validation
NASA Technical Reports Server (NTRS)
Pope, L. D.
1984-01-01
Utilization and validation of a computer program designed for aircraft interior noise prediction is considered. The program, entitled PAIN (an acronym for Propeller Aircraft Interior Noise), permits (in theory) predictions of sound levels inside propeller driven aircraft arising from sidewall transmission. The objective of the work reported was to determine the practicality of making predictions for various airplanes and the extent of the program's capabilities. The ultimate purpose was to discern the quality of predictions for tonal levels inside an aircraft occurring at the propeller blade passage frequency and its harmonics. The effort involved three tasks: (1) program validation through comparisons of predictions with scale-model test results; (2) development of utilization schemes for large (full scale) fuselages; and (3) validation through comparisons of predictions with measurements taken in flight tests on a turboprop aircraft. Findings should enable future users of the program to efficiently undertake and correctly interpret predictions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gu, Lianhong; Pallardy, Stephen G.; Yang, Bai
Testing complex land surface models has often proceeded by asking the question: does the model prediction agree with the observation? This approach has yet led to high-performance terrestrial models that meet the challenges of climate and ecological studies. Here we test the Community Land Model (CLM) by asking the question: does the model behave like an ecosystem? We pursue its answer by testing CLM in the ecosystem functional space (EFS) at the Missouri Ozark AmeriFlux (MOFLUX) forest site in the Central U.S., focusing on carbon and water flux responses to precipitation regimes and associated stresses. In the observed EFS, precipitationmore » regimes and associated water and heat stresses controlled seasonal and interannual variations of net ecosystem exchange (NEE) of CO 2 and evapotranspiration in this deciduous forest ecosystem. Such controls were exerted more strongly by precipitation variability than by the total precipitation amount per se. A few simply constructed climate variability indices captured these controls, suggesting a high degree of potential predictability. While the interannual fluctuation in NEE was large, a net carbon sink was maintained even during an extreme drought year. Although CLM predicted seasonal and interanual variations in evapotranspiration reasonably well, its predictions of net carbon uptake were too small across the observed range of climate variability. Also, the model systematically underestimated the sensitivities of NEE and evapotranspiration to climate variability and overestimated the coupling strength between carbon and water fluxes. Its suspected that the modeled and observed trajectories of ecosystem fluxes did not overlap in the EFS and the model did not behave like the ecosystem it attempted to simulate. A definitive conclusion will require comprehensive parameter and structural sensitivity tests in a rigorous mathematical framework. We also suggest that future model improvements should focus on better representation and parameterization of process responses to environmental stresses and on more complete and robust representations of carbon-specific processes so that adequate responses to climate variability and a proper degree of coupling between carbon and water exchanges are captured.« less
Gu, Lianhong; Pallardy, Stephen G.; Yang, Bai; ...
2016-07-14
Testing complex land surface models has often proceeded by asking the question: does the model prediction agree with the observation? This approach has yet led to high-performance terrestrial models that meet the challenges of climate and ecological studies. Here we test the Community Land Model (CLM) by asking the question: does the model behave like an ecosystem? We pursue its answer by testing CLM in the ecosystem functional space (EFS) at the Missouri Ozark AmeriFlux (MOFLUX) forest site in the Central U.S., focusing on carbon and water flux responses to precipitation regimes and associated stresses. In the observed EFS, precipitationmore » regimes and associated water and heat stresses controlled seasonal and interannual variations of net ecosystem exchange (NEE) of CO 2 and evapotranspiration in this deciduous forest ecosystem. Such controls were exerted more strongly by precipitation variability than by the total precipitation amount per se. A few simply constructed climate variability indices captured these controls, suggesting a high degree of potential predictability. While the interannual fluctuation in NEE was large, a net carbon sink was maintained even during an extreme drought year. Although CLM predicted seasonal and interanual variations in evapotranspiration reasonably well, its predictions of net carbon uptake were too small across the observed range of climate variability. Also, the model systematically underestimated the sensitivities of NEE and evapotranspiration to climate variability and overestimated the coupling strength between carbon and water fluxes. Its suspected that the modeled and observed trajectories of ecosystem fluxes did not overlap in the EFS and the model did not behave like the ecosystem it attempted to simulate. A definitive conclusion will require comprehensive parameter and structural sensitivity tests in a rigorous mathematical framework. We also suggest that future model improvements should focus on better representation and parameterization of process responses to environmental stresses and on more complete and robust representations of carbon-specific processes so that adequate responses to climate variability and a proper degree of coupling between carbon and water exchanges are captured.« less
CFD Modeling of Launch Vehicle Aerodynamic Heating
NASA Technical Reports Server (NTRS)
Tashakkor, Scott B.; Canabal, Francisco; Mishtawy, Jason E.
2011-01-01
The Loci-CHEM 3.2 Computational Fluid Dynamics (CFD) code is being used to predict Ares-I launch vehicle aerodynamic heating. CFD has been used to predict both ascent and stage reentry environments and has been validated against wind tunnel tests and the Ares I-X developmental flight test. Most of the CFD predictions agreed with measurements. On regions where mismatches occurred, the CFD predictions tended to be higher than measured data. These higher predictions usually occurred in complex regions, where the CFD models (mainly turbulence) contain less accurate approximations. In some instances, the errors causing the over-predictions would cause locations downstream to be affected even though the physics were still being modeled properly by CHEM. This is easily seen when comparing to the 103-AH data. In the areas where predictions were low, higher grid resolution often brought the results closer to the data. Other disagreements are attributed to Ares I-X hardware not being present in the grid, as a result of computational resources limitations. The satisfactory predictions from CHEM provide confidence that future designs and predictions from the CFD code will provide an accurate approximation of the correct values for use in design and other applications
The Role of Multimodel Combination in Improving Streamflow Prediction
NASA Astrophysics Data System (ADS)
Arumugam, S.; Li, W.
2008-12-01
Model errors are the inevitable part in any prediction exercise. One approach that is currently gaining attention to reduce model errors is by optimally combining multiple models to develop improved predictions. The rationale behind this approach primarily lies on the premise that optimal weights could be derived for each model so that the developed multimodel predictions will result in improved predictability. In this study, we present a new approach to combine multiple hydrological models by evaluating their predictability contingent on the predictor state. We combine two hydrological models, 'abcd' model and Variable Infiltration Capacity (VIC) model, with each model's parameter being estimated by two different objective functions to develop multimodel streamflow predictions. The performance of multimodel predictions is compared with individual model predictions using correlation, root mean square error and Nash-Sutcliffe coefficient. To quantify precisely under what conditions the multimodel predictions result in improved predictions, we evaluate the proposed algorithm by testing it against streamflow generated from a known model ('abcd' model or VIC model) with errors being homoscedastic or heteroscedastic. Results from the study show that streamflow simulated from individual models performed better than multimodels under almost no model error. Under increased model error, the multimodel consistently performed better than the single model prediction in terms of all performance measures. The study also evaluates the proposed algorithm for streamflow predictions in two humid river basins from NC as well as in two arid basins from Arizona. Through detailed validation in these four sites, the study shows that multimodel approach better predicts the observed streamflow in comparison to the single model predictions.
NASA Technical Reports Server (NTRS)
Hanna, Gregory J.; Stephens, Craig A.
1991-01-01
A two dimensional finite difference thermal model was developed to predict the effects of heating profile, fill level, and cryogen type prior to experimental testing the Generic Research Cryogenic Tank (GRCT). These numerical predictions will assist in defining test scenarios, sensor locations, and venting requirements for the GRCT experimental tests. Boiloff rates, tank-wall and fluid temperatures, and wall heat fluxes were determined for 20 computational test cases. The test cases spanned three discrete fill levels and three heating profiles for hydrogen and nitrogen.
Testing Bayesian and heuristic predictions of mass judgments of colliding objects
Sanborn, Adam N.
2014-01-01
Mass judgments of colliding objects have been used to explore people's understanding of the physical world because they are ecologically relevant, yet people display biases that are most easily explained by a small set of heuristics. Recent work has challenged the heuristic explanation, by producing the same biases from a model that copes with perceptual uncertainty by using Bayesian inference with a prior based on the correct combination rules from Newtonian mechanics (noisy Newton). Here I test the predictions of the leading heuristic model (Gilden and Proffitt, 1989) against the noisy Newton model using a novel manipulation of the standard mass judgment task: making one of the objects invisible post-collision. The noisy Newton model uses the remaining information to predict above-chance performance, while the leading heuristic model predicts chance performance when one or the other final velocity is occluded. An experiment using two different types of occlusion showed better-than-chance performance and response patterns that followed the predictions of the noisy Newton model. The results demonstrate that people can make sensible physical judgments even when information critical for the judgment is missing, and that a Bayesian model can serve as a guide in these situations. Possible algorithmic-level accounts of this task that more closely correspond to the noisy Newton model are explored. PMID:25206345
Matchett, John R.; Stark, Philip B.; Ostoja, Steven M.; Knapp, Roland A.; McKenny, Heather C.; Brooks, Matthew L.; Langford, William T.; Joppa, Lucas N.; Berlow, Eric L.
2015-01-01
Statistical models often use observational data to predict phenomena; however, interpreting model terms to understand their influence can be problematic. This issue poses a challenge in species conservation where setting priorities requires estimating influences of potential stressors using observational data. We present a novel approach for inferring influence of a rare stressor on a rare species by blending predictive models with nonparametric permutation tests. We illustrate the approach with two case studies involving rare amphibians in Yosemite National Park, USA. The endangered frog, Rana sierrae, is known to be negatively impacted by non-native fish, while the threatened toad, Anaxyrus canorus, is potentially affected by packstock. Both stressors and amphibians are rare, occurring in ~10% of potential habitat patches. We first predict amphibian occupancy with a statistical model that includes all predictors but the stressor to stratify potential habitat by predicted suitability. A stratified permutation test then evaluates the association between stressor and amphibian, all else equal. Our approach confirms the known negative relationship between fish and R. sierrae, but finds no evidence of a negative relationship between current packstock use and A. canorus breeding. Our statistical approach has potential broad application for deriving understanding (not just prediction) from observational data.
Matchett, J. R.; Stark, Philip B.; Ostoja, Steven M.; Knapp, Roland A.; McKenny, Heather C.; Brooks, Matthew L.; Langford, William T.; Joppa, Lucas N.; Berlow, Eric L.
2015-01-01
Statistical models often use observational data to predict phenomena; however, interpreting model terms to understand their influence can be problematic. This issue poses a challenge in species conservation where setting priorities requires estimating influences of potential stressors using observational data. We present a novel approach for inferring influence of a rare stressor on a rare species by blending predictive models with nonparametric permutation tests. We illustrate the approach with two case studies involving rare amphibians in Yosemite National Park, USA. The endangered frog, Rana sierrae, is known to be negatively impacted by non-native fish, while the threatened toad, Anaxyrus canorus, is potentially affected by packstock. Both stressors and amphibians are rare, occurring in ~10% of potential habitat patches. We first predict amphibian occupancy with a statistical model that includes all predictors but the stressor to stratify potential habitat by predicted suitability. A stratified permutation test then evaluates the association between stressor and amphibian, all else equal. Our approach confirms the known negative relationship between fish and R. sierrae, but finds no evidence of a negative relationship between current packstock use and A. canorus breeding. Our statistical approach has potential broad application for deriving understanding (not just prediction) from observational data. PMID:26031755
ERIC Educational Resources Information Center
Wick, Michael R.; Kleine, Patricia A.; Nelson, Andrew J.
2011-01-01
This article presents the development, testing, and application of an enrollment model. The model incorporates incoming freshman enrollment class size and historical persistence, transfer, and graduation rates to predict a six-year enrollment window and associated annual graduate production. The model predicts six-year enrollment to within 0.67…
Development and testing of watershed-scale models for poorly drained soils
Glenn P. Fernandez; George M. Chescheir; R. Wayne Skaggs; Devendra M. Amatya
2005-01-01
Watershed-scale hydrology and water quality models were used to evaluate the crrmulative impacts of land use and management practices on dowrzstream hydrology and nitrogen loading of poorly drained watersheds. Field-scale hydrology and nutrient dyyrutmics are predicted by DRAINMOD in both models. In the first model (DRAINMOD-DUFLOW), field-scale predictions are coupled...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Boyun; Duguid, Andrew; Nygaard, Ronar
The objective of this project is to develop a computerized statistical model with the Integrated Neural-Genetic Algorithm (INGA) for predicting the probability of long-term leak of wells in CO 2 sequestration operations. This object has been accomplished by conducting research in three phases: 1) data mining of CO 2-explosed wells, 2) INGA computer model development, and 3) evaluation of the predictive performance of the computer model with data from field tests. Data mining was conducted for 510 wells in two CO 2 sequestration projects in the Texas Gulf Coast region. They are the Hasting West field and Oyster Bayou fieldmore » in the Southern Texas. Missing wellbore integrity data were estimated using an analytical and Finite Element Method (FEM) model. The INGA was first tested for performances of convergence and computing efficiency with the obtained data set of high dimension. It was concluded that the INGA can handle the gathered data set with good accuracy and reasonable computing time after a reduction of dimension with a grouping mechanism. A computerized statistical model with the INGA was then developed based on data pre-processing and grouping. Comprehensive training and testing of the model were carried out to ensure that the model is accurate and efficient enough for predicting the probability of long-term leak of wells in CO 2 sequestration operations. The Cranfield in the southern Mississippi was select as the test site. Observation wells CFU31F2 and CFU31F3 were used for pressure-testing, formation-logging, and cement-sampling. Tools run in the wells include Isolation Scanner, Slim Cement Mapping Tool (SCMT), Cased Hole Formation Dynamics Tester (CHDT), and Mechanical Sidewall Coring Tool (MSCT). Analyses of the obtained data indicate no leak of CO 2 cross the cap zone while it is evident that the well cement sheath was invaded by the CO 2 from the storage zone. This observation is consistent with the result predicted by the INGA model which indicates the well has a CO 2 leak-safe probability of 72%. This comparison implies that the developed INGA model is valid for future use in predicting well leak probability.« less
Fenlon, Caroline; O'Grady, Luke; Butler, Stephen; Doherty, Michael L; Dunnion, John
2017-01-01
Herd fertility in pasture-based dairy farms is a key driver of farm economics. Models for predicting nulliparous reproductive outcomes are rare, but age, genetics, weight, and BCS have been identified as factors influencing heifer conception. The aim of this study was to create a simulation model of heifer conception to service with thorough evaluation. Artificial Insemination service records from two research herds and ten commercial herds were provided to build and evaluate the models. All were managed as spring-calving pasture-based systems. The factors studied were related to age, genetics, and time of service. The data were split into training and testing sets and bootstrapping was used to train the models. Logistic regression (with and without random effects) and generalised additive modelling were selected as the model-building techniques. Two types of evaluation were used to test the predictive ability of the models: discrimination and calibration. Discrimination, which includes sensitivity, specificity, accuracy and ROC analysis, measures a model's ability to distinguish between positive and negative outcomes. Calibration measures the accuracy of the predicted probabilities with the Hosmer-Lemeshow goodness-of-fit, calibration plot and calibration error. After data cleaning and the removal of services with missing values, 1396 services remained to train the models and 597 were left for testing. Age, breed, genetic predicted transmitting ability for calving interval, month and year were significant in the multivariate models. The regression models also included an interaction between age and month. Year within herd was a random effect in the mixed regression model. Overall prediction accuracy was between 77.1% and 78.9%. All three models had very high sensitivity, but low specificity. The two regression models were very well-calibrated. The mean absolute calibration errors were all below 4%. Because the models were not adept at identifying unsuccessful services, they are not suggested for use in predicting the outcome of individual heifer services. Instead, they are useful for the comparison of services with different covariate values or as sub-models in whole-farm simulations. The mixed regression model was identified as the best model for prediction, as the random effects can be ignored and the other variables can be easily obtained or simulated.
Bellows flow-induced vibrations
NASA Technical Reports Server (NTRS)
Tygielski, P. J.; Smyly, H. M.; Gerlach, C. R.
1983-01-01
The bellows flow excitation mechanism and results of comprehensive test program are summarized. The analytical model for predicting bellows flow induced stress is refined. The model includes the effects of an upstream elbow, arbitrary geometry, and multiple piles. A refined computer code for predicting flow induced stress is described which allows life prediction if a material S-N diagram is available.
Universally Sloppy Parameter Sensitivities in Systems Biology Models
Gutenkunst, Ryan N; Waterfall, Joshua J; Casey, Fergal P; Brown, Kevin S; Myers, Christopher R; Sethna, James P
2007-01-01
Quantitative computational models play an increasingly important role in modern biology. Such models typically involve many free parameters, and assigning their values is often a substantial obstacle to model development. Directly measuring in vivo biochemical parameters is difficult, and collectively fitting them to other experimental data often yields large parameter uncertainties. Nevertheless, in earlier work we showed in a growth-factor-signaling model that collective fitting could yield well-constrained predictions, even when it left individual parameters very poorly constrained. We also showed that the model had a “sloppy” spectrum of parameter sensitivities, with eigenvalues roughly evenly distributed over many decades. Here we use a collection of models from the literature to test whether such sloppy spectra are common in systems biology. Strikingly, we find that every model we examine has a sloppy spectrum of sensitivities. We also test several consequences of this sloppiness for building predictive models. In particular, sloppiness suggests that collective fits to even large amounts of ideal time-series data will often leave many parameters poorly constrained. Tests over our model collection are consistent with this suggestion. This difficulty with collective fits may seem to argue for direct parameter measurements, but sloppiness also implies that such measurements must be formidably precise and complete to usefully constrain many model predictions. We confirm this implication in our growth-factor-signaling model. Our results suggest that sloppy sensitivity spectra are universal in systems biology models. The prevalence of sloppiness highlights the power of collective fits and suggests that modelers should focus on predictions rather than on parameters. PMID:17922568
Universally sloppy parameter sensitivities in systems biology models.
Gutenkunst, Ryan N; Waterfall, Joshua J; Casey, Fergal P; Brown, Kevin S; Myers, Christopher R; Sethna, James P
2007-10-01
Quantitative computational models play an increasingly important role in modern biology. Such models typically involve many free parameters, and assigning their values is often a substantial obstacle to model development. Directly measuring in vivo biochemical parameters is difficult, and collectively fitting them to other experimental data often yields large parameter uncertainties. Nevertheless, in earlier work we showed in a growth-factor-signaling model that collective fitting could yield well-constrained predictions, even when it left individual parameters very poorly constrained. We also showed that the model had a "sloppy" spectrum of parameter sensitivities, with eigenvalues roughly evenly distributed over many decades. Here we use a collection of models from the literature to test whether such sloppy spectra are common in systems biology. Strikingly, we find that every model we examine has a sloppy spectrum of sensitivities. We also test several consequences of this sloppiness for building predictive models. In particular, sloppiness suggests that collective fits to even large amounts of ideal time-series data will often leave many parameters poorly constrained. Tests over our model collection are consistent with this suggestion. This difficulty with collective fits may seem to argue for direct parameter measurements, but sloppiness also implies that such measurements must be formidably precise and complete to usefully constrain many model predictions. We confirm this implication in our growth-factor-signaling model. Our results suggest that sloppy sensitivity spectra are universal in systems biology models. The prevalence of sloppiness highlights the power of collective fits and suggests that modelers should focus on predictions rather than on parameters.
Testing process predictions of models of risky choice: a quantitative model comparison approach
Pachur, Thorsten; Hertwig, Ralph; Gigerenzer, Gerd; Brandstätter, Eduard
2013-01-01
This article presents a quantitative model comparison contrasting the process predictions of two prominent views on risky choice. One view assumes a trade-off between probabilities and outcomes (or non-linear functions thereof) and the separate evaluation of risky options (expectation models). Another view assumes that risky choice is based on comparative evaluation, limited search, aspiration levels, and the forgoing of trade-offs (heuristic models). We derived quantitative process predictions for a generic expectation model and for a specific heuristic model, namely the priority heuristic (Brandstätter et al., 2006), and tested them in two experiments. The focus was on two key features of the cognitive process: acquisition frequencies (i.e., how frequently individual reasons are looked up) and direction of search (i.e., gamble-wise vs. reason-wise). In Experiment 1, the priority heuristic predicted direction of search better than the expectation model (although neither model predicted the acquisition process perfectly); acquisition frequencies, however, were inconsistent with both models. Additional analyses revealed that these frequencies were primarily a function of what Rubinstein (1988) called “similarity.” In Experiment 2, the quantitative model comparison approach showed that people seemed to rely more on the priority heuristic in difficult problems, but to make more trade-offs in easy problems. This finding suggests that risky choice may be based on a mental toolbox of strategies. PMID:24151472
An Analysis of Model Scale Data Transformation to Full Scale Flight Using Chevron Nozzles
NASA Technical Reports Server (NTRS)
Brown, Clifford; Bridges, James
2003-01-01
Ground-based model scale aeroacoustic data is frequently used to predict the results of flight tests while saving time and money. The value of a model scale test is therefore dependent on how well the data can be transformed to the full scale conditions. In the spring of 2000, a model scale test was conducted to prove the value of chevron nozzles as a noise reduction device for turbojet applications. The chevron nozzle reduced noise by 2 EPNdB at an engine pressure ratio of 2.3 compared to that of the standard conic nozzle. This result led to a full scale flyover test in the spring of 2001 to verify these results. The flyover test confirmed the 2 EPNdB reduction predicted by the model scale test one year earlier. However, further analysis of the data revealed that the spectra and directivity, both on an OASPL and PNL basis, do not agree in either shape or absolute level. This paper explores these differences in an effort to improve the data transformation from model scale to full scale.
FUEL ASSEMBLY SHAKER TEST SIMULATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klymyshyn, Nicholas A.; Sanborn, Scott E.; Adkins, Harold E.
This report describes the modeling of a PWR fuel assembly under dynamic shock loading in support of the Sandia National Laboratories (SNL) shaker test campaign. The focus of the test campaign is on evaluating the response of used fuel to shock and vibration loads that a can occur during highway transport. Modeling began in 2012 using an LS-DYNA fuel assembly model that was first created for modeling impact scenarios. SNL’s proposed test scenario was simulated through analysis and the calculated results helped guide the instrumentation and other aspects of the testing. During FY 2013, the fuel assembly model was refinedmore » to better represent the test surrogate. Analysis of the proposed loads suggested the frequency band needed to be lowered to attempt to excite the lower natural frequencies of the fuel assembly. Despite SNL’s expansion of lower frequency components in their five shock realizations, pretest predictions suggested a very mild dynamic response to the test loading. After testing was completed, one specific shock case was modeled, using recorded accelerometer data to excite the model. Direct comparison of predicted strain in the cladding was made to the recorded strain gauge data. The magnitude of both sets of strain (calculated and recorded) are very low, compared to the expected yield strength of the Zircaloy-4 material. The model was accurate enough to predict that no yielding of the cladding was expected, but its precision at predicting micro strains is questionable. The SNL test data offers some opportunity for validation of the finite element model, but the specific loading conditions of the testing only excite the fuel assembly to respond in a limited manner. For example, the test accelerations were not strong enough to substantially drive the fuel assembly out of contact with the basket. Under this test scenario, the fuel assembly model does a reasonable job of approximating actual fuel assembly response, a claim that can be verified through direct comparison of model results to recorded test results. This does not offer validation for the fuel assembly model in all conceivable cases, such as high kinetic energy shock cases where the fuel assembly might lift off the basket floor to strike to basket ceiling. This type of nonlinear behavior was not witnessed in testing, so the model does not have test data to be validated against.a basis for validation in cases that substantially alter the fuel assembly response range. This leads to a gap in knowledge that is identified through this modeling study. The SNL shaker testing loaded a surrogate fuel assembly with a certain set of artificially-generated time histories. One thing all the shock cases had in common was an elimination of low frequency components, which reduces the rigid body dynamic response of the system. It is not known if the SNL test cases effectively bound all highway transportation scenarios, or if significantly greater rigid body motion than was tested is credible. This knowledge gap could be filled through modeling the vehicle dynamics of a used fuel conveyance, or by collecting acceleration time history data from an actual conveyance under highway conditions.« less
Emerging approaches in predictive toxicology.
Zhang, Luoping; McHale, Cliona M; Greene, Nigel; Snyder, Ronald D; Rich, Ivan N; Aardema, Marilyn J; Roy, Shambhu; Pfuhler, Stefan; Venkatactahalam, Sundaresan
2014-12-01
Predictive toxicology plays an important role in the assessment of toxicity of chemicals and the drug development process. While there are several well-established in vitro and in vivo assays that are suitable for predictive toxicology, recent advances in high-throughput analytical technologies and model systems are expected to have a major impact on the field of predictive toxicology. This commentary provides an overview of the state of the current science and a brief discussion on future perspectives for the field of predictive toxicology for human toxicity. Computational models for predictive toxicology, needs for further refinement and obstacles to expand computational models to include additional classes of chemical compounds are highlighted. Functional and comparative genomics approaches in predictive toxicology are discussed with an emphasis on successful utilization of recently developed model systems for high-throughput analysis. The advantages of three-dimensional model systems and stem cells and their use in predictive toxicology testing are also described. © 2014 Wiley Periodicals, Inc.
Emerging Approaches in Predictive Toxicology
Zhang, Luoping; McHale, Cliona M.; Greene, Nigel; Snyder, Ronald D.; Rich, Ivan N.; Aardema, Marilyn J.; Roy, Shambhu; Pfuhler, Stefan; Venkatactahalam, Sundaresan
2016-01-01
Predictive toxicology plays an important role in the assessment of toxicity of chemicals and the drug development process. While there are several well-established in vitro and in vivo assays that are suitable for predictive toxicology, recent advances in high-throughput analytical technologies and model systems are expected to have a major impact on the field of predictive toxicology. This commentary provides an overview of the state of the current science and a brief discussion on future perspectives for the field of predictive toxicology for human toxicity. Computational models for predictive toxicology, needs for further refinement and obstacles to expand computational models to include additional classes of chemical compounds are highlighted. Functional and comparative genomics approaches in predictive toxicology are discussed with an emphasis on successful utilization of recently developed model systems for high-throughput analysis. The advantages of three-dimensional model systems and stem cells and their use in predictive toxicology testing are also described. PMID:25044351