Sample records for modeling selective pressures

  1. An Evidence-Based Cue-Selection Guide and Logic Model to Improve Pressure Ulcer Prevention in Long-term Care.

    PubMed

    Yap, Tracey L; Kennerly, Susan M; Bergstrom, Nancy; Hudak, Sandra L; Horn, Susan D

    2016-01-01

    Pressure ulcers have consistently resisted prevention efforts in long-term care facilities nationwide. Recent research has described cueing innovations that-when selected according to the assumptions and resources of particular facilities-support best practices of pressure ulcer prevention. This article synthesizes that research into a unified, dynamic logic model to facilitate effective staff implementation of a pressure ulcer prevention program.

  2. High Selection Pressure Promotes Increase in Cumulative Adaptive Culture

    PubMed Central

    Vegvari, Carolin; Foley, Robert A.

    2014-01-01

    The evolution of cumulative adaptive culture has received widespread interest in recent years, especially the factors promoting its occurrence. Current evolutionary models suggest that an increase in population size may lead to an increase in cultural complexity via a higher rate of cultural transmission and innovation. However, relatively little attention has been paid to the role of natural selection in the evolution of cultural complexity. Here we use an agent-based simulation model to demonstrate that high selection pressure in the form of resource pressure promotes the accumulation of adaptive culture in spite of small population sizes and high innovation costs. We argue that the interaction of demography and selection is important, and that neither can be considered in isolation. We predict that an increase in cultural complexity is most likely to occur under conditions of population pressure relative to resource availability. Our model may help to explain why culture change can occur without major environmental change. We suggest that understanding the interaction between shifting selective pressures and demography is essential for explaining the evolution of cultural complexity. PMID:24489724

  3. Continuous and discontinuous phase transitions in the evolution of a polygenic trait under stabilizing selective pressure

    NASA Astrophysics Data System (ADS)

    Fierro, Annalisa; Cocozza, Sergio; Monticelli, Antonella; Scala, Giovanni; Miele, Gennaro

    2017-06-01

    The presence of phenomena analogous to phase transition in Statistical Mechanics has been suggested in the evolution of a polygenic trait under stabilizing selection, mutation and genetic drift. By using numerical simulations of a model system, we analyze the evolution of a population of N diploid hermaphrodites in random mating regime. The population evolves under the effect of drift, selective pressure in form of viability on an additive polygenic trait, and mutation. The analysis allows to determine a phase diagram in the plane of mutation rate and strength of selection. The involved pattern of phase transitions is characterized by a line of critical points for weak selective pressure (smaller than a threshold), whereas discontinuous phase transitions, characterized by metastable hysteresis, are observed for strong selective pressure. A finite-size scaling analysis suggests the analogy between our system and the mean-field Ising model for selective pressure approaching the threshold from weaker values. In this framework, the mutation rate, which allows the system to explore the accessible microscopic states, is the parameter controlling the transition from large heterozygosity ( disordered phase) to small heterozygosity ( ordered one).

  4. Coupling Spatiotemporal Community Assembly Processes to Changes in Microbial Metabolism.

    PubMed

    Graham, Emily B; Crump, Alex R; Resch, Charles T; Fansler, Sarah; Arntzen, Evan; Kennedy, David W; Fredrickson, Jim K; Stegen, James C

    2016-01-01

    Community assembly processes generate shifts in species abundances that influence ecosystem cycling of carbon and nutrients, yet our understanding of assembly remains largely separate from ecosystem-level functioning. Here, we investigate relationships between assembly and changes in microbial metabolism across space and time in hyporheic microbial communities. We pair sampling of two habitat types (i.e., attached and planktonic) through seasonal and sub-hourly hydrologic fluctuation with null modeling and temporally explicit multivariate statistics. We demonstrate that multiple selective pressures-imposed by sediment and porewater physicochemistry-integrate to generate changes in microbial community composition at distinct timescales among habitat types. These changes in composition are reflective of contrasting associations of Betaproteobacteria and Thaumarchaeota with ecological selection and with seasonal changes in microbial metabolism. We present a conceptual model based on our results in which metabolism increases when oscillating selective pressures oppose temporally stable selective pressures. Our conceptual model is pertinent to both macrobial and microbial systems experiencing multiple selective pressures and presents an avenue for assimilating community assembly processes into predictions of ecosystem-level functioning.

  5. Experimental study of a generic high-speed civil transport

    NASA Technical Reports Server (NTRS)

    Belton, Pamela S.; Campbell, Richard L.

    1992-01-01

    An experimental study of generic high-speed civil transport was conducted in the NASA Langley 8-ft Transonic Pressure Tunnel. The data base was obtained for the purpose of assessing the accuracy of various levels of computational analysis. Two models differing only in wingtip geometry were tested with and without flow-through nacelles. The baseline model has a curved or crescent wingtip shape, while the second model has a more conventional straight wingtip shape. The study was conducted at Mach numbers from 0.30 to 1.19. Force data were obtained on both the straight wingtip model and the curved wingtip model. Only the curved wingtip model was instrumented for measuring pressures. Selected longitudinal, lateral, and directional data are presented for both models. Selected pressure distributions for the curved wingtip model are also presented.

  6. Alternating evolutionary pressure in a genetic algorithm facilitates protein model selection

    PubMed Central

    Offman, Marc N; Tournier, Alexander L; Bates, Paul A

    2008-01-01

    Background Automatic protein modelling pipelines are becoming ever more accurate; this has come hand in hand with an increasingly complicated interplay between all components involved. Nevertheless, there are still potential improvements to be made in template selection, refinement and protein model selection. Results In the context of an automatic modelling pipeline, we analysed each step separately, revealing several non-intuitive trends and explored a new strategy for protein conformation sampling using Genetic Algorithms (GA). We apply the concept of alternating evolutionary pressure (AEP), i.e. intermediate rounds within the GA runs where unrestrained, linear growth of the model populations is allowed. Conclusion This approach improves the overall performance of the GA by allowing models to overcome local energy barriers. AEP enabled the selection of the best models in 40% of all targets; compared to 25% for a normal GA. PMID:18673557

  7. Coupling Spatiotemporal Community Assembly Processes to Changes in Microbial Metabolism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graham, Emily B.; Crump, Alex R.; Resch, Charles T.

    Community assembly processes govern shifts in species abundances in response to environmental change, yet our understanding of assembly remains largely decoupled from ecosystem function. Here, we test hypotheses regarding assembly and function across space and time using hyporheic microbial communities as a model system. We pair sampling of two habitat types through hydrologic fluctuation with null modeling and multivariate statistics. We demonstrate that dual selective pressures assimilate to generate compositional changes at distinct timescales among habitat types, resulting in contrasting associations of Betaproteobacteria and Thaumarchaeota with selection and with seasonal changes in aerobic metabolism. Our results culminate in a conceptualmore » model in which selection from contrasting environments regulates taxon abundance and ecosystem function through time, with increases in function when oscillating selection opposes stable selective pressures. Our model is applicable within both macrobial and microbial ecology and presents an avenue for assimilating community assembly processes into predictions of ecosystem function.« less

  8. Reduced Lung Cancer Mortality With Lower Atmospheric Pressure.

    PubMed

    Merrill, Ray M; Frutos, Aaron

    2018-01-01

    Research has shown that higher altitude is associated with lower risk of lung cancer and improved survival among patients. The current study assessed the influence of county-level atmospheric pressure (a measure reflecting both altitude and temperature) on age-adjusted lung cancer mortality rates in the contiguous United States, with 2 forms of spatial regression. Ordinary least squares regression and geographically weighted regression models were used to evaluate the impact of climate and other selected variables on lung cancer mortality, based on 2974 counties. Atmospheric pressure was significantly positively associated with lung cancer mortality, after controlling for sunlight, precipitation, PM2.5 (µg/m 3 ), current smoker, and other selected variables. Positive county-level β coefficient estimates ( P < .05) for atmospheric pressure were observed throughout the United States, higher in the eastern half of the country. The spatial regression models showed that atmospheric pressure is positively associated with age-adjusted lung cancer mortality rates, after controlling for other selected variables.

  9. Phylogenetic divergence of cell biological features

    PubMed Central

    2018-01-01

    Most cellular features have a range of states, but understanding the mechanisms responsible for interspecific divergence is a challenge for evolutionary cell biology. Models are developed for the distribution of mean phenotypes likely to evolve under the joint forces of mutation and genetic drift in the face of constant selection pressures. Mean phenotypes will deviate from optimal states to a degree depending on the effective population size, potentially leading to substantial divergence in the absence of diversifying selection. The steady-state distribution for the mean can even be bimodal, with one domain being largely driven by selection and the other by mutation pressure, leading to the illusion of phenotypic shifts being induced by movement among alternative adaptive domains. These results raise questions as to whether lineage-specific selective pressures are necessary to account for interspecific divergence, providing a possible platform for the establishment of null models for the evolution of cell-biological traits. PMID:29927740

  10. C. botulinum inactivation kinetics implemented in a computational model of a high-pressure sterilization process.

    PubMed

    Juliano, Pablo; Knoerzer, Kai; Fryer, Peter J; Versteeg, Cornelis

    2009-01-01

    High-pressure, high-temperature (HPHT) processing is effective for microbial spore inactivation using mild preheating, followed by rapid volumetric compression heating and cooling on pressure release, enabling much shorter processing times than conventional thermal processing for many food products. A computational thermal fluid dynamic (CTFD) model has been developed to model all processing steps, including the vertical pressure vessel, an internal polymeric carrier, and food packages in an axis-symmetric geometry. Heat transfer and fluid dynamic equations were coupled to four selected kinetic models for the inactivation of C. botulinum; the traditional first-order kinetic model, the Weibull model, an nth-order model, and a combined discrete log-linear nth-order model. The models were solved to compare the resulting microbial inactivation distributions. The initial temperature of the system was set to 90 degrees C and pressure was selected at 600 MPa, holding for 220 s, with a target temperature of 121 degrees C. A representation of the extent of microbial inactivation throughout all processing steps was obtained for each microbial model. Comparison of the models showed that the conventional thermal processing kinetics (not accounting for pressure) required shorter holding times to achieve a 12D reduction of C. botulinum spores than the other models. The temperature distribution inside the vessel resulted in a more uniform inactivation distribution when using a Weibull or an nth-order kinetics model than when using log-linear kinetics. The CTFD platform could illustrate the inactivation extent and uniformity provided by the microbial models. The platform is expected to be useful to evaluate models fitted into new C. botulinum inactivation data at varying conditions of pressure and temperature, as an aid for regulatory filing of the technology as well as in process and equipment design.

  11. Detecting consistent patterns of directional adaptation using differential selection codon models.

    PubMed

    Parto, Sahar; Lartillot, Nicolas

    2017-06-23

    Phylogenetic codon models are often used to characterize the selective regimes acting on protein-coding sequences. Recent methodological developments have led to models explicitly accounting for the interplay between mutation and selection, by modeling the amino acid fitness landscape along the sequence. However, thus far, most of these models have assumed that the fitness landscape is constant over time. Fluctuations of the fitness landscape may often be random or depend on complex and unknown factors. However, some organisms may be subject to systematic changes in selective pressure, resulting in reproducible molecular adaptations across independent lineages subject to similar conditions. Here, we introduce a codon-based differential selection model, which aims to detect and quantify the fine-grained consistent patterns of adaptation at the protein-coding level, as a function of external conditions experienced by the organism under investigation. The model parameterizes the global mutational pressure, as well as the site- and condition-specific amino acid selective preferences. This phylogenetic model is implemented in a Bayesian MCMC framework. After validation with simulations, we applied our method to a dataset of HIV sequences from patients with known HLA genetic background. Our differential selection model detects and characterizes differentially selected coding positions specifically associated with two different HLA alleles. Our differential selection model is able to identify consistent molecular adaptations as a function of repeated changes in the environment of the organism. These models can be applied to many other problems, ranging from viral adaptation to evolution of life-history strategies in plants or animals.

  12. An Evidence-Based Cue-Selection Guide and Logic Model to Improve Pressure Ulcer Prevention in Long Term Care

    PubMed Central

    Yap, Tracey L.; Kennerly, Susan M.; Bergstrom, Nancy; Hudak, Sandra L.; Horn, Susan D.

    2015-01-01

    Pressure ulcers (PrUs) have consistently resisted prevention efforts in long term care (LTC) facilities nationwide. Recent research has described cueing innovations that – when selected according to the assumptions and resources of particular facilities – support best practices of PrU prevention. This paper synthesizes that research into a unified, dynamic logic model to facilitate effective staff implementation of a PrU prevention program. PMID:26066791

  13. An Interactive Tool For Semi-automated Statistical Prediction Using Earth Observations and Models

    NASA Astrophysics Data System (ADS)

    Zaitchik, B. F.; Berhane, F.; Tadesse, T.

    2015-12-01

    We developed a semi-automated statistical prediction tool applicable to concurrent analysis or seasonal prediction of any time series variable in any geographic location. The tool was developed using Shiny, JavaScript, HTML and CSS. A user can extract a predictand by drawing a polygon over a region of interest on the provided user interface (global map). The user can select the Climatic Research Unit (CRU) precipitation or Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS) as predictand. They can also upload their own predictand time series. Predictors can be extracted from sea surface temperature, sea level pressure, winds at different pressure levels, air temperature at various pressure levels, and geopotential height at different pressure levels. By default, reanalysis fields are applied as predictors, but the user can also upload their own predictors, including a wide range of compatible satellite-derived datasets. The package generates correlations of the variables selected with the predictand. The user also has the option to generate composites of the variables based on the predictand. Next, the user can extract predictors by drawing polygons over the regions that show strong correlations (composites). Then, the user can select some or all of the statistical prediction models provided. Provided models include Linear Regression models (GLM, SGLM), Tree-based models (bagging, random forest, boosting), Artificial Neural Network, and other non-linear models such as Generalized Additive Model (GAM) and Multivariate Adaptive Regression Splines (MARS). Finally, the user can download the analysis steps they used, such as the region they selected, the time period they specified, the predictand and predictors they chose and preprocessing options they used, and the model results in PDF or HTML format. Key words: Semi-automated prediction, Shiny, R, GLM, ANN, RF, GAM, MARS

  14. Identification and analysis of evolutionary selection pressures acting at the molecular level in five forkhead subfamilies.

    PubMed

    Fetterman, Christina D; Rannala, Bruce; Walter, Michael A

    2008-09-24

    Members of the forkhead gene family act as transcription regulators in biological processes including development and metabolism. The evolution of forkhead genes has not been widely examined and selection pressures at the molecular level influencing subfamily evolution and differentiation have not been explored. Here, in silico methods were used to examine selection pressures acting on the coding sequence of five multi-species FOX protein subfamily clusters; FoxA, FoxD, FoxI, FoxO and FoxP. Application of site models, which estimate overall selection pressures on individual codons throughout the phylogeny, showed that the amino acid changes observed were either neutral or under negative selection. Branch-site models, which allow estimated selection pressures along specified lineages to vary as compared to the remaining phylogeny, identified positive selection along branches leading to the FoxA3 and Protostomia clades in the FoxA cluster and the branch leading to the FoxO3 clade in the FoxO cluster. Residues that may differentiate paralogs were identified in the FoxA and FoxO clusters and residues that differentiate orthologs were identified in the FoxA cluster. Neutral amino acid changes were identified in the forkhead domain of the FoxA, FoxD and FoxP clusters while positive selection was identified in the forkhead domain of the Protostomia lineage of the FoxA cluster. A series of residues under strong negative selection adjacent to the N- and C-termini of the forkhead domain were identified in all clusters analyzed suggesting a new method for refinement of domain boundaries. Extrapolation of domains among cluster members in conjunction with selection pressure information allowed prediction of residue function in the FoxA, FoxO and FoxP clusters and exclusion of known domain function in residues of the FoxA and FoxI clusters. Consideration of selection pressures observed in conjunction with known functional information allowed prediction of residue function and refinement of domain boundaries. Identification of residues that differentiate orthologs and paralogs provided insight into the development and functional consequences of paralogs and forkhead subfamily composition differences among species. Overall we found that after gene duplication of forkhead family members, rapid differentiation and subsequent fixation of amino acid changes through negative selection has occurred.

  15. The 12-foot pressure wind tunnel restoration project model support systems

    NASA Technical Reports Server (NTRS)

    Sasaki, Glen E.

    1992-01-01

    The 12 Foot Pressure Wind Tunnel is a variable density, low turbulence wind tunnel that operates at subsonic speeds, and up to six atmospheres total pressure. The restoration of this facility is of critical importance to the future of the U.S. aerospace industry. As part of this project, several state of the art model support systems are furnished to provide an optimal balance between aerodynamic and operational efficiency parameters. Two model support systems, the Rear Strut Model Support, and the High Angle of Attack Model Support are discussed. This paper covers design parameters, constraints, development, description, and component selection.

  16. Tumor morphology and phenotypic evolution driven by selective pressure from the microenvironment.

    PubMed

    Anderson, Alexander R A; Weaver, Alissa M; Cummings, Peter T; Quaranta, Vito

    2006-12-01

    Emergence of invasive behavior in cancer is life-threatening, yet ill-defined due to its multifactorial nature. We present a multiscale mathematical model of cancer invasion, which considers cellular and microenvironmental factors simultaneously and interactively. Unexpectedly, the model simulations predict that harsh tumor microenvironment conditions (e.g., hypoxia, heterogenous extracellular matrix) exert a dramatic selective force on the tumor, which grows as an invasive mass with fingering margins, dominated by a few clones with aggressive traits. In contrast, mild microenvironment conditions (e.g., normoxia, homogeneous matrix) allow clones with similar aggressive traits to coexist with less aggressive phenotypes in a heterogeneous tumor mass with smooth, noninvasive margins. Thus, the genetic make-up of a cancer cell may realize its invasive potential through a clonal evolution process driven by definable microenvironmental selective forces. Our mathematical model provides a theoretical/experimental framework to quantitatively characterize this selective pressure for invasion and test ways to eliminate it.

  17. Divergent positive selection in rhodopsin from lake and riverine cichlid fishes.

    PubMed

    Schott, Ryan K; Refvik, Shannon P; Hauser, Frances E; López-Fernández, Hernán; Chang, Belinda S W

    2014-05-01

    Studies of cichlid evolution have highlighted the importance of visual pigment genes in the spectacular radiation of the African rift lake cichlids. Recent work, however, has also provided strong evidence for adaptive diversification of riverine cichlids in the Neotropics, which inhabit environments of markedly different spectral properties from the African rift lakes. These ecological and/or biogeographic differences may have imposed divergent selective pressures on the evolution of the cichlid visual system. To test these hypotheses, we investigated the molecular evolution of the dim-light visual pigment, rhodopsin. We sequenced rhodopsin from Neotropical and African riverine cichlids and combined these data with published sequences from African cichlids. We found significant evidence for positive selection using random sites codon models in all cichlid groups, with the highest levels in African lake cichlids. Tests using branch-site and clade models that partitioned the data along ecological (lake, river) and/or biogeographic (African, Neotropical) boundaries found significant evidence of divergent selective pressures among cichlid groups. However, statistical comparisons among these models suggest that ecological, rather than biogeographic, factors may be responsible for divergent selective pressures that have shaped the evolution of the visual system in cichlids. We found that branch-site models did not perform as well as clade models for our data set, in which there was evidence for positive selection in the background. One of our most intriguing results is that the amino acid sites found to be under positive selection in Neotropical and African lake cichlids were largely nonoverlapping, despite falling into the same three functional categories: spectral tuning, retinal uptake/release, and rhodopsin dimerization. Taken together, these results would imply divergent selection across cichlid clades, but targeting similar functions. This study highlights the importance of molecular investigations of ecologically important groups and the flexibility of clade models in explicitly testing ecological hypotheses.

  18. Coincidental match of numerical simulation and physics

    NASA Astrophysics Data System (ADS)

    Pierre, B.; Gudmundsson, J. S.

    2010-08-01

    Consequences of rapid pressure transients in pipelines range from increased fatigue to leakages and to complete ruptures of pipeline. Therefore, accurate predictions of rapid pressure transients in pipelines using numerical simulations are critical. State of the art modelling of pressure transient in general, and water hammer in particular include unsteady friction in addition to the steady frictional pressure drop, and numerical simulations rely on the method of characteristics. Comparison of rapid pressure transient calculations by the method of characteristics and a selected high resolution finite volume method highlights issues related to modelling of pressure waves and illustrates that matches between numerical simulations and physics are purely coincidental.

  19. Modeling selective pressures on phytoplankton in the global ocean.

    PubMed

    Bragg, Jason G; Dutkiewicz, Stephanie; Jahn, Oliver; Follows, Michael J; Chisholm, Sallie W

    2010-03-10

    Our view of marine microbes is transforming, as culture-independent methods facilitate rapid characterization of microbial diversity. It is difficult to assimilate this information into our understanding of marine microbe ecology and evolution, because their distributions, traits, and genomes are shaped by forces that are complex and dynamic. Here we incorporate diverse forces--physical, biogeochemical, ecological, and mutational--into a global ocean model to study selective pressures on a simple trait in a widely distributed lineage of picophytoplankton: the nitrogen use abilities of Synechococcus and Prochlorococcus cyanobacteria. Some Prochlorococcus ecotypes have lost the ability to use nitrate, whereas their close relatives, marine Synechococcus, typically retain it. We impose mutations for the loss of nitrogen use abilities in modeled picophytoplankton, and ask: in which parts of the ocean are mutants most disadvantaged by losing the ability to use nitrate, and in which parts are they least disadvantaged? Our model predicts that this selective disadvantage is smallest for picophytoplankton that live in tropical regions where Prochlorococcus are abundant in the real ocean. Conversely, the selective disadvantage of losing the ability to use nitrate is larger for modeled picophytoplankton that live at higher latitudes, where Synechococcus are abundant. In regions where we expect Prochlorococcus and Synechococcus populations to cycle seasonally in the real ocean, we find that model ecotypes with seasonal population dynamics similar to Prochlorococcus are less disadvantaged by losing the ability to use nitrate than model ecotypes with seasonal population dynamics similar to Synechococcus. The model predictions for the selective advantage associated with nitrate use are broadly consistent with the distribution of this ability among marine picocyanobacteria, and at finer scales, can provide insights into interactions between temporally varying ocean processes and selective pressures that may be difficult or impossible to study by other means. More generally, and perhaps more importantly, this study introduces an approach for testing hypotheses about the processes that underlie genetic variation among marine microbes, embedded in the dynamic physical, chemical, and biological forces that generate and shape this diversity.

  20. Emergent Stratification in Solid Tumors Selects for Reduced Cohesion of Tumor Cells: A Multi-Cell, Virtual-Tissue Model of Tumor Evolution Using CompuCell3D.

    PubMed

    Swat, Maciej H; Thomas, Gilberto L; Shirinifard, Abbas; Clendenon, Sherry G; Glazier, James A

    2015-01-01

    Tumor cells and structure both evolve due to heritable variation of cell behaviors and selection over periods of weeks to years (somatic evolution). Micro-environmental factors exert selection pressures on tumor-cell behaviors, which influence both the rate and direction of evolution of specific behaviors, especially the development of tumor-cell aggression and resistance to chemotherapies. In this paper, we present, step-by-step, the development of a multi-cell, virtual-tissue model of tumor somatic evolution, simulated using the open-source CompuCell3D modeling environment. Our model includes essential cell behaviors, microenvironmental components and their interactions. Our model provides a platform for exploring selection pressures leading to the evolution of tumor-cell aggression, showing that emergent stratification into regions with different cell survival rates drives the evolution of less cohesive cells with lower levels of cadherins and higher levels of integrins. Such reduced cohesivity is a key hallmark in the progression of many types of solid tumors.

  1. Emergent Stratification in Solid Tumors Selects for Reduced Cohesion of Tumor Cells: A Multi-Cell, Virtual-Tissue Model of Tumor Evolution Using CompuCell3D

    PubMed Central

    Swat, Maciej H.; Thomas, Gilberto L.; Shirinifard, Abbas; Clendenon, Sherry G.; Glazier, James A.

    2015-01-01

    Tumor cells and structure both evolve due to heritable variation of cell behaviors and selection over periods of weeks to years (somatic evolution). Micro-environmental factors exert selection pressures on tumor-cell behaviors, which influence both the rate and direction of evolution of specific behaviors, especially the development of tumor-cell aggression and resistance to chemotherapies. In this paper, we present, step-by-step, the development of a multi-cell, virtual-tissue model of tumor somatic evolution, simulated using the open-source CompuCell3D modeling environment. Our model includes essential cell behaviors, microenvironmental components and their interactions. Our model provides a platform for exploring selection pressures leading to the evolution of tumor-cell aggression, showing that emergent stratification into regions with different cell survival rates drives the evolution of less cohesive cells with lower levels of cadherins and higher levels of integrins. Such reduced cohesivity is a key hallmark in the progression of many types of solid tumors. PMID:26083246

  2. Investigating the potential of Bacillus subtilis alpha-amylase as a pressure-temperature-time indicator for high hydrostatic pressure pasteurization processes.

    PubMed

    Grauwet, Tara; Van der Plancken, Iesel; Vervoort, Liesbeth; Hendrickx, Marc E; Van Loey, Ann

    2009-01-01

    The potential of Bacillus subtilis alpha-amylase (BSA) as a pressure-temperature-time indicator (pTTI) for high pressure pasteurization processing (400-600 MPa; T(i) 10-40 degrees C; 1-15 min) was investigated. A stepwise approach was followed for the development of an enzyme-based, extrinsic, isolated pTTI. First, based on literature data on the pressure stability, BSA was selected as a candidate indicator. Next to the accuracy and ease of the measurement of the indicator's response (residual activity) to the pressure treatment, the storage and handling stability of BSA at atmospheric pressure was verified. Second, the stability of BSA at a constant temperature (T) and time in function of pressure (p) was investigated. Solvent engineering was used to shift the inactivation window of BSA in the processing range of interest. Third, the enzyme (1 g/L BSA-MES 0.05 M pH 5.0) was kinetically calibrated under isobaric-isothermal conditions. Time dependent changes in activity could be modeled best by a first-order model. Except for low pressures and high temperatures, a synergistic effect between pressure and temperature could be observed. Based on the model selected to describe the combined p,T-dependency of the inactivation rate constant, an elliptically shaped isorate contour plot could be constructed, illustrating the processing range where BSA can be used to demonstrate temperature gradients. Fourth, the validity of the kinetic model was tested successfully under dynamic conditions similar to those used in food industry. Finally, the indicator was found suitable to demonstrate nonuniformity in two-sectional planes of a vertical, single vessel system. (c) 2009 American Institute of Chemical Engineers. Biotechnol. Prog., 2009.

  3. The use of transmission line modelling to test the effectiveness of I-kaz as autonomous selection of intrinsic mode function

    NASA Astrophysics Data System (ADS)

    Yusop, Hanafi M.; Ghazali, M. F.; Yusof, M. F. M.; PiRemli, M. A.; Karollah, B.; Rusman

    2017-10-01

    Pressure transient signal occurred due to sudden changes in fluid propagation filled in pipelines system, which is caused by rapid pressure and flow fluctuation in a system, such as closing and opening valve rapidly. The application of Hilbert-Huang Transform (HHT) as the method to analyse the pressure transient signal utilised in this research. However, this method has the difficulty in selecting the suitable IMF for the further post-processing, which is Hilbert Transform (HT). This paper proposed the implementation of Integrated Kurtosis-based Algorithm for z-filter Technique (I-kaz) to kurtosis ratio (I-kaz-Kurtosis) for that allows automatic selection of intrinsic mode function (IMF) that’s should be used. This work demonstrated the synthetic pressure transient signal generates using transmission line modelling (TLM) in order to test the effectiveness of I-kaz as the autonomous selection of intrinsic mode function (IMF). A straight fluid network was designed using TLM fixing with higher resistance at some point act as a leak and connecting to the pipe feature (junction, pipefitting or blockage). The analysis results using I-kaz-kurtosis ratio revealed that the method can be utilised as an automatic selection of intrinsic mode function (IMF) although the noise level ratio of the signal is lower. I-kaz-kurtosis ratio is recommended and advised to be implemented as automatic selection of intrinsic mode function (IMF) through HHT analysis.

  4. Cost effectiveness of adding clostridial collagenase ointment to selective debridement in individuals with stage IV pressure ulcers.

    PubMed

    Carter, Marissa J; Gilligan, Adrienne M; Waycaster, Curtis R; Schaum, Kathleen; Fife, Caroline E

    2017-03-01

    The purpose of this study was to determine the cost effectiveness (from a payer's perspective) of adding clostridial collagenase ointment (CCO) to selective debridement compared with selective debridement alone (non-CCO) in the treatment of stage IV pressure ulcers among patients identified from the US Wound Registry. A 3-state Markov model was developed to determine costs and outcomes between the CCO and non-CCO groups over a 2-year time horizon. Outcome data were derived from a retrospective clinical study and included the proportion of pressure ulcers that were closed (epithelialized) over 2 years and the time to wound closure. Transition probabilities for the Markov states were estimated from the clinical study. In the Markov model, the clinical outcome is presented as ulcer-free weeks, which represents the time the wound is in the epithelialized state. Costs for each 4-week cycle were based on frequencies of clinic visits, debridement, and CCO application rates from the clinical study. The final model outputs were cumulative costs (in US dollars), clinical outcome (ulcer-free weeks), and incremental cost-effectiveness ratio (ICER) at 2 years. Compared with the non-CCO group, the CCO group incurred lower costs ($11,151 vs $17,596) and greater benefits (33.9 vs 16.8 ulcer-free weeks), resulting in an economically dominant ICER of -$375 per ulcer. Thus, for each additional ulcer-free week that can be gained, there is a concurrent cost savings of $375 if CCO treatment is selected. Over a 2-year period, an additional 17.2 ulcer-free weeks can be gained with concurrent cost savings of $6,445 for each patient. In this Markov model based on real-world data from the US Wound Registry, the addition of CCO to selective debridement in the treatment of pressure ulcers was economically dominant over selective debridement alone, resulting in greater benefit to the patient at lower cost.

  5. Model aerodynamic test results for two variable cycle engine coannular exhaust systems at simulated takeoff and cruise conditions. Comprehensive data report. Volume 3: Graphical data book 1

    NASA Technical Reports Server (NTRS)

    Nelson, D. P.

    1981-01-01

    A graphical presentation of the aerodynamic data acquired during coannular nozzle performance wind tunnel tests is given. The graphical data consist of plots of nozzle gross thrust coefficient, fan nozzle discharge coefficient, and primary nozzle discharge coefficient. Normalized model component static pressure distributions are presented as a function of primary total pressure, fan total pressure, and ambient static pressure for selected operating conditions. In addition, the supersonic cruise configuration data include plots of nozzle efficiency and secondary-to-fan total pressure pumping characteristics. Supersonic and subsonic cruise data are given.

  6. Recovery of Neonatal Head Turning to Decreased Sound Pressure Level.

    ERIC Educational Resources Information Center

    Tarquinio, Nancy; And Others

    1990-01-01

    Investigated newborns' responses to decreased sound pressure level (SPL) by means of a localized head turning habituation procedure. Findings, which demonstrated recovery of neonatal head turning to decreased SPL, were inconsistent with the selective receptor adaptation model. (RH)

  7. Why climate change will invariably alter selection pressures on phenology.

    PubMed

    Gienapp, Phillip; Reed, Thomas E; Visser, Marcel E

    2014-10-22

    The seasonal timing of lifecycle events is closely linked to individual fitness and hence, maladaptation in phenological traits may impact population dynamics. However, few studies have analysed whether and why climate change will alter selection pressures and hence possibly induce maladaptation in phenology. To fill this gap, we here use a theoretical modelling approach. In our models, the phenologies of consumer and resource are (potentially) environmentally sensitive and depend on two different but correlated environmental variables. Fitness of the consumer depends on the phenological match with the resource. Because we explicitly model the dependence of the phenologies on environmental variables, we can test how differential (heterogeneous) versus equal (homogeneous) rates of change in the environmental variables affect selection on consumer phenology. As expected, under heterogeneous change, phenotypic plasticity is insufficient and thus selection on consumer phenology arises. However, even homogeneous change leads to directional selection on consumer phenology. This is because the consumer reaction norm has historically evolved to be flatter than the resource reaction norm, owing to time lags and imperfect cue reliability. Climate change will therefore lead to increased selection on consumer phenology across a broad range of situations. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  8. A methodology for evaluation of parent-mutant competition using a generalized non-linear ecosystem model

    Treesearch

    Raymond L. Czaplewski

    1973-01-01

    A generalized, non-linear population dynamics model of an ecosystem is used to investigate the direction of selective pressures upon a mutant by studying the competition between parent and mutant populations. The model has the advantages of considering selection as operating on the phenotype, of retaining the interaction of the mutant population with the ecosystem as a...

  9. Experimental feasibility study of estimation of the normalized central blood pressure waveform from radial photoplethysmogram.

    PubMed

    Zahedi, Edmond; Sohani, Vahid; Ali, M A Mohd; Chellappan, Kalaivani; Beng, Gan Kok

    2015-01-01

    The feasibility of a novel system to reliably estimate the normalized central blood pressure (CBPN) from the radial photoplethysmogram (PPG) is investigated. Right-wrist radial blood pressure and left-wrist PPG were simultaneously recorded in five different days. An industry-standard applanation tonometer was employed for recording radial blood pressure. The CBP waveform was amplitude-normalized to determine CBPN. A total of fifteen second-order autoregressive models with exogenous input were investigated using system identification techniques. Among these 15 models, the model producing the lowest coefficient of variation (CV) of the fitness during the five days was selected as the reference model. Results show that the proposed model is able to faithfully reproduce CBPN (mean fitness = 85.2% ± 2.5%) from the radial PPG for all 15 segments during the five recording days. The low CV value of 3.35% suggests a stable model valid for different recording days.

  10. Life history consequences of mammal sibling rivalry.

    PubMed

    Stockley, P; Parker, G A

    2002-10-01

    Mammal life history traits relating to growth and reproduction are extremely diverse. Sibling rivalry may contribute to selection pressures influencing this diversity, because individuals that are relatively large at birth typically have an advantage in competition for milk. However, selection for increased growth rate is likely to be constrained by kin selection and physiological costs. Here, we present and test a model examining the ESS (evolutionarily stable strategy) balance between these constraints and advantages associated with increased prenatal growth in mammal sibling rivalry. Predictions of the model are supported by results of comparative analyses for the Carnivora and Insectivora, which demonstrate an increase in prenatal growth rate with increasing intensity of postnatal scramble competition, and a decrease in postnatal growth rate relative to size at birth. Because increased prenatal growth rates are predicted to select for reduced gestation length under certain conditions, our study also indicates that sibling rivalry may contribute to selection pressures influencing variation in altriciality and precociality among mammals.

  11. Review of the socket design and interface pressure measurement for transtibial prosthesis.

    PubMed

    Pirouzi, Gh; Abu Osman, N A; Eshraghi, A; Ali, S; Gholizadeh, H; Wan Abas, W A B

    2014-01-01

    Socket is an important part of every prosthetic limb as an interface between the residual limb and prosthetic components. Biomechanics of socket-residual limb interface, especially the pressure and force distribution, have effect on patient satisfaction and function. This paper aimed to review and evaluate studies conducted in the last decades on the design of socket, in-socket interface pressure measurement, and socket biomechanics. Literature was searched to find related keywords with transtibial amputation, socket-residual limb interface, socket measurement, socket design, modeling, computational modeling, and suspension system. In accordance with the selection criteria, 19 articles were selected for further analysis. It was revealed that pressure and stress have been studied in the last decaeds, but quantitative evaluations remain inapplicable in clinical settings. This study also illustrates prevailing systems, which may facilitate improvements in socket design for improved quality of life for individuals ambulating with transtibial prosthesis. It is hoped that the review will better facilitate the understanding and determine the clinical relevance of quantitative evaluations.

  12. Review of the Socket Design and Interface Pressure Measurement for Transtibial Prosthesis

    PubMed Central

    Pirouzi, Gh.; Abu Osman, N. A.; Eshraghi, A.; Ali, S.; Gholizadeh, H.; Wan Abas, W. A. B.

    2014-01-01

    Socket is an important part of every prosthetic limb as an interface between the residual limb and prosthetic components. Biomechanics of socket-residual limb interface, especially the pressure and force distribution, have effect on patient satisfaction and function. This paper aimed to review and evaluate studies conducted in the last decades on the design of socket, in-socket interface pressure measurement, and socket biomechanics. Literature was searched to find related keywords with transtibial amputation, socket-residual limb interface, socket measurement, socket design, modeling, computational modeling, and suspension system. In accordance with the selection criteria, 19 articles were selected for further analysis. It was revealed that pressure and stress have been studied in the last decaeds, but quantitative evaluations remain inapplicable in clinical settings. This study also illustrates prevailing systems, which may facilitate improvements in socket design for improved quality of life for individuals ambulating with transtibial prosthesis. It is hoped that the review will better facilitate the understanding and determine the clinical relevance of quantitative evaluations. PMID:25197716

  13. Influence of heat transfer rates on pressurization of liquid/slush hydrogen propellant tanks

    NASA Technical Reports Server (NTRS)

    Sasmal, G. P.; Hochstein, J. I.; Hardy, T. L.

    1993-01-01

    A multi-dimensional computational model of the pressurization process in liquid/slush hydrogen tank is developed and used to study the influence of heat flux rates at the ullage boundaries on the process. The new model computes these rates and performs an energy balance for the tank wall whereas previous multi-dimensional models required a priori specification of the boundary heat flux rates. Analyses of both liquid hydrogen and slush hydrogen pressurization were performed to expose differences between the two processes. Graphical displays are presented to establish the dependence of pressurization time, pressurant mass required, and other parameters of interest on ullage boundary heat flux rates and pressurant mass flow rate. Detailed velocity fields and temperature distributions are presented for selected cases to further illuminate the details of the pressurization process. It is demonstrated that ullage boundary heat flux rates do significantly effect the pressurization process and that minimizing heat loss from the ullage and maximizing pressurant flow rate minimizes the mass of pressurant gas required to pressurize the tank. It is further demonstrated that proper dimensionless scaling of pressure and time permit all the pressure histories examined during this study to be displayed as a single curve.

  14. Relating ranging ecology, limb length, and locomotor economy in terrestrial animals.

    PubMed

    Pontzer, Herman

    2012-03-07

    Ecomorphological analyses have identified a number of important evolutionary trends in vertebrate limb design, but the relationships between daily travel distance, locomotor ecology, and limb length in terrestrial animals remain poorly understood. In this paper I model the net rate of energy intake as a function of foraging efficiency, and thus of locomotor economy; improved economy leads to greater net energy intake. However, the relationship between locomotor economy and net intake is highly dependent on foraging efficiency; only species with low foraging efficiencies experience strong selection pressure for improved locomotor economy and increased limb length. Examining 237 terrestrial species, I find that nearly all taxa obtain sufficiently high foraging efficiencies that selection for further increases in economy is weak. Thus selection pressures for increased economy and limb length among living terrestrial animals may be relatively weak and similar in magnitude across ecologically diverse species. The Economy Selection Pressure model for locomotor economy may be useful in investigating the evolution of limb design in early terrestrial taxa and the coevolution of foraging ecology and locomotor anatomy in lineages with low foraging efficiencies. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Choked flow of fluid nitrogen with emphasis on the thermodynamic critical region

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Simoneau, R. J.; Ehlers, R. C.

    1972-01-01

    Experimental measurements of critical flow rate and pressure ratio for nitrogen flowing through a nozzle are presented. Data for selected stagnation isotherms from 87.5 to 234 K with pressures to 9.3 MN/m2 are compared to an equilibrium model with real fluid properties and also a nonequilibrium model. Critical flow pressure ratio along an isotherm tends to peak while the flow rate indicates an inflection. The point is closely associated with the transposed critical temperature and represents a change in the fluid structure.

  16. Moving Model Test of High-Speed Train Aerodynamic Drag Based on Stagnation Pressure Measurements

    PubMed Central

    Yang, Mingzhi; Du, Juntao; Huang, Sha; Zhou, Dan

    2017-01-01

    A moving model test method based on stagnation pressure measurements is proposed to measure the train aerodynamic drag coefficient. Because the front tip of a high-speed train has a high pressure area and because a stagnation point occurs in the center of this region, the pressure of the stagnation point is equal to the dynamic pressure of the sensor tube based on the obtained train velocity. The first derivation of the train velocity is taken to calculate the acceleration of the train model ejected by the moving model system without additional power. According to Newton’s second law, the aerodynamic drag coefficient can be resolved through many tests at different train speeds selected within a relatively narrow range. Comparisons are conducted with wind tunnel tests and numerical simulations, and good agreement is obtained, with differences of less than 6.1%. Therefore, the moving model test method proposed in this paper is feasible and reliable. PMID:28095441

  17. Occultation Lightcurves for Selected Pluto Volatile Transport Models

    NASA Astrophysics Data System (ADS)

    Young, L. A.

    2004-11-01

    The stellar occultations by Pluto in 1988 and 2002 are demonstrably sensitive to changes in Pluto's atmosphere near one microbar (Elliot and Young 1992, AJ 103, 991; Elliot et al. 2003, Nature 424, 165; Sicardy 2003, Nature 424, 168). However, Pluto volatile-transport models focus on the changes in the atmospheric pressure at the surface (e.g., Hansen and Paige 1996, Icarus 20, 247; Stansberry and Yelle 1999, Icarus 141, 299). What's lacking is a connection between predictions about the surface properties and either temperature and pressure profiles measurable from stellar occultations, or the occultation light curve morphology itself. Radiative-conductive models can illuminate this connection. I will illustrate how Pluto's changing surface pressure, temperature, and heliocentric distance may affect occultation light curves for a selection of existing volatile transport models. Changes in the light curve include the presence or absence of an observable ``kink'' (or departure from an isothermal light curve), the appearance of non-zero minimum flux levels, and the detectability of the solid surface. These light curves can serve as examples of what we may anticipate during the upcoming Pluto occultation season, as Pluto crosses the galactic plane.

  18. Spit-Hole Effects on the Ballistics of a 7.62-mm Cartridge

    DTIC Science & Technology

    2014-02-01

    barrel retains 0.50 in (12.7 mm) of rifling. The midchamber pressure transducer, Kistler Model 6215 (8), is consistent with previous experiments...Nemours and Company. 2 Kistler Model 9031A Load Washer (9). Force transducer selection was driven by the anticipated load and the necessity of an...Development and Engineering Center, Picatinny Arsenal, NJ, January 1986. 8. Kistler Operating Instructions, Quartz High-Pressure Sensor Type 6215

  19. Test Data Analysis of a Spray Bar Zero-Gravity Liquid Hydrogen Vent System for Upper Stages

    NASA Technical Reports Server (NTRS)

    Hedayat, A.; Bailey, J. W.; Hastings, L. J.; Flachbart, R. H.

    2003-01-01

    To support development of a zero-gravity pressure control capability for liquid hydrogen (LH2), a series of thermodynamic venting system (TVS) tests was conducted in 1996 and 1998 using the Marshall Space Flight Center (MSFC) multipurpose hydrogen test bed (MHTB). These tests were performed with ambient heat leaks =20 and 50 W for tank fill levels of 90%, 50%, and 25%. TVS performance testing revealed that the spray bar was highly effective in providing tank pressure control within a 7-kPa band (131-138 Wa), and complete destratification of the liquid and the ullage was achieved with all test conditions. Seven of the MHTB tests were correlated with the TVS performance analytical model. The tests were selected to encompass the range of tank fill levels, ambient heat leaks, operational modes, and ullage pressurants. The TVS model predicted ullage pressure and temperature and bulk liquid saturation pressure and temperature obtained from the TVS model were compared with the test data. During extended self-pressurization periods, following tank lockup, the model predicted faster pressure rise rates than were measured. However, once the system entered the cyclic mixing/venting operational mode, the modeled and measured data were quite similar.

  20. Model Selection and Accounting for Model Uncertainty in Graphical Models Using OCCAM’s Window

    DTIC Science & Technology

    1991-07-22

    mental work; C, strenuous physical work; D, systolic blood pressure: E. ratio of 13 and Qt proteins; F, family anamnesis of coronary heart disease...of F, family anamnesis . The models are shown in Figure 4. 12 Table 1: Risk factors for Coronary lfeart Disea:W B No Yes A No Yes No Yes F E D C...a link from smoking (A) to systolic blood pressure (D). There is decisive evidence in favour of the marginal independence of family anamnesis of

  1. Transducer selection and application in magnetoacoustic tomography with magnetic induction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Yuqi; Wang, Jiawei; Ma, Qingyu, E-mail: maqingyu@njnu.edu.cn

    2016-03-07

    As an acoustic receiver, transducer plays a vital role in signal acquisition and image reconstruction for magnetoacoustic tomography with magnetic induction (MAT-MI). In order to optimize signal acquisition, the expressions of acoustic pressure detection and waveform collection are theoretically studied based on the radiation theory of acoustic dipole and the reception pattern of transducer. Pressure distributions are simulated for a cylindrical phantom model using a planar piston transducer with different radii and bandwidths. The proposed theory is also verified by the experimental measurements of acoustic waveform detection for an aluminum foil cylinder. It is proved that acoustic pressure with sharpmore » and clear boundary peaks can be detected by the large-radius transducer with wide bandwidth, reflecting the differential of the induced Lorentz force accurately, which is helpful for precise conductivity reconstruction. To detect acoustic pressure with acceptable pressure amplitude, peak pressure ratio, amplitude ratio, and improved signal to noise ratio, the scanning radius of 5–10 times the radius of the object should be selected to improve the accuracy of image reconstruction. This study provides a theoretical and experimental basis for transducer selection and application in MAT-MI to obtain reconstructed images with improved resolution and definition.« less

  2. Design Optimization of a Centrifugal Fan with Splitter Blades

    NASA Astrophysics Data System (ADS)

    Heo, Man-Woong; Kim, Jin-Hyuk; Kim, Kwang-Yong

    2015-05-01

    Multi-objective optimization of a centrifugal fan with additionally installed splitter blades was performed to simultaneously maximize the efficiency and pressure rise using three-dimensional Reynolds-averaged Navier-Stokes equations and hybrid multi-objective evolutionary algorithm. Two design variables defining the location of splitter, and the height ratio between inlet and outlet of impeller were selected for the optimization. In addition, the aerodynamic characteristics of the centrifugal fan were investigated with the variation of design variables in the design space. Latin hypercube sampling was used to select the training points, and response surface approximation models were constructed as surrogate models of the objective functions. With the optimization, both the efficiency and pressure rise of the centrifugal fan with splitter blades were improved considerably compared to the reference model.

  3. Detecting site-specific physicochemical selective pressures: applications to the Class I HLA of the human major histocompatibility complex and the SRK of the plant sporophytic self-incompatibility system.

    PubMed

    Sainudiin, Raazesh; Wong, Wendy Shuk Wan; Yogeeswaran, Krithika; Nasrallah, June B; Yang, Ziheng; Nielsen, Rasmus

    2005-03-01

    Models of codon substitution are developed that incorporate physicochemical properties of amino acids. When amino acid sites are inferred to be under positive selection, these models suggest the nature and extent of the physicochemical properties under selection. This is accomplished by first partitioning the codons on the basis of some property of the encoded amino acids. This partition is used to parametrize the rates of property-conserving and property-altering base substitutions at the codon level by means of finite mixtures of Markov models that also account for codon and transition:transversion biases. Here, we apply this method to two positively selected receptors involved in ligand-recognition: the class I alleles of the human major histocompatibility complex (MHC) of known structure and the S-locus receptor kinase (SRK) of the sporophytic self-incompatibility system (SSI) in cruciferous plants (Brassicaceae), whose structure is unknown. Through likelihood ratio tests we demonstrate that at some sites, the positively selected MHC and SRK proteins are under physicochemical selective pressures to alter polarity, volume, polarity and/or volume, and charge to various extents. An empirical Bayes approach is used to identify sites that may be important for ligand recognition in these proteins.

  4. Study of cryogenic propellant systems for loading the space shuttle

    NASA Technical Reports Server (NTRS)

    Voth, R. O.; Steward, W. G.; Hall, W. J.

    1974-01-01

    Computer programs were written to model the liquid oxygen loading system for the space shuttle. The programs allow selection of input data through graphic displays which schematically depict the part of the system being modeled. The computed output is also displayed in the form of graphs and printed messages. Any one of six computation options may be selected. The first four of these pertain to thermal stresses, pressure surges, cooldown times, flow rates and pressures during cooldown. Options five and six deal with possible water hammer effects due to closing of valves, steady flow and transient response to changes in operating conditions after cooldown. Procedures are given for operation of the graphic display unit and minicomputer.

  5. Optimization of pressure gauge locations for water distribution systems using entropy theory.

    PubMed

    Yoo, Do Guen; Chang, Dong Eil; Jun, Hwandon; Kim, Joong Hoon

    2012-12-01

    It is essential to select the optimal pressure gauge location for effective management and maintenance of water distribution systems. This study proposes an objective and quantified standard for selecting the optimal pressure gauge location by defining the pressure change at other nodes as a result of demand change at a specific node using entropy theory. Two cases are considered in terms of demand change: that in which demand at all nodes shows peak load by using a peak factor and that comprising the demand change of the normal distribution whose average is the base demand. The actual pressure change pattern is determined by using the emitter function of EPANET to reflect the pressure that changes practically at each node. The optimal pressure gauge location is determined by prioritizing the node that processes the largest amount of information it gives to (giving entropy) and receives from (receiving entropy) the whole system according to the entropy standard. The suggested model is applied to one virtual and one real pipe network, and the optimal pressure gauge location combination is calculated by implementing the sensitivity analysis based on the study results. These analysis results support the following two conclusions. Firstly, the installation priority of the pressure gauge in water distribution networks can be determined with a more objective standard through the entropy theory. Secondly, the model can be used as an efficient decision-making guide for gauge installation in water distribution systems.

  6. Cryogenic Autogenous Pressurization Testing for Robotic Refueling Mission 3

    NASA Technical Reports Server (NTRS)

    Boyle, R.; DiPirro, M.; Tuttle, J.; Francis, J.; Mustafi, S.; Li, X.; Barfknecht, P.; DeLee, C. H.; McGuire, J.

    2015-01-01

    A wick-heater system has been selected for use to pressurize the Source Dewar of the Robotic Refueling Mission Phase 3 on-orbit cryogen transfer experiment payload for the International Space Station. Experimental results of autogenous pressurization of liquid argon and liquid nitrogen using a prototype wick-heater system are presented. The wick-heater generates gas to increase the pressure in the tank while maintaining a low bulk fluid temperature. Pressurization experiments were performed in 2013 to characterize the performance of the wick heater. This paper describes the experimental setup, pressurization results, and analytical model correlations.

  7. Evolution of sparsity and modularity in a model of protein allostery

    NASA Astrophysics Data System (ADS)

    Hemery, Mathieu; Rivoire, Olivier

    2015-04-01

    The sequence of a protein is not only constrained by its physical and biochemical properties under current selection, but also by features of its past evolutionary history. Understanding the extent and the form that these evolutionary constraints may take is important to interpret the information in protein sequences. To study this problem, we introduce a simple but physical model of protein evolution where selection targets allostery, the functional coupling of distal sites on protein surfaces. This model shows how the geometrical organization of couplings between amino acids within a protein structure can depend crucially on its evolutionary history. In particular, two scenarios are found to generate a spatial concentration of functional constraints: high mutation rates and fluctuating selective pressures. This second scenario offers a plausible explanation for the high tolerance of natural proteins to mutations and for the spatial organization of their least tolerant amino acids, as revealed by sequence analysis and mutagenesis experiments. It also implies a faculty to adapt to new selective pressures that is consistent with observations. The model illustrates how several independent functional modules may emerge within the same protein structure, depending on the nature of past environmental fluctuations. Our model thus relates the evolutionary history of proteins to the geometry of their functional constraints, with implications for decoding and engineering protein sequences.

  8. Independent Assessment of the Backshell Pressure Field for Mars Entry, Descent, and Landing Instrumentation 2 (MEDLI2)

    NASA Technical Reports Server (NTRS)

    Prince, Jill L.; Shoenenberger, Mark

    2017-01-01

    The Mars Entry, Descent, and Landing Instrumentation 2 (MEDLI2) project requested that the NASA Engineering and Safety Center (NESC) support a ballistic range test to measure backshell pressures on scale models of the Mars 2020 entry capsule. The MEDLI2 project needed the test to provide important dynamic pressure data to help select a backshell pressure port, quantify drag coefficient reconstruction uncertainties, and design the data acquisition hardware. This document contains the outcome of the NESC assessment.

  9. Mutation-profile-based methods for understanding selection forces in cancer somatic mutations: a comparative analysis.

    PubMed

    Zhou, Zhan; Zou, Yangyun; Liu, Gangbiao; Zhou, Jingqi; Wu, Jingcheng; Zhao, Shimin; Su, Zhixi; Gu, Xun

    2017-08-29

    Human genes exhibit different effects on fitness in cancer and normal cells. Here, we present an evolutionary approach to measure the selection pressure on human genes, using the well-known ratio of the nonsynonymous to synonymous substitution rate in both cancer genomes ( C N / C S ) and normal populations ( p N / p S ). A new mutation-profile-based method that adopts sample-specific mutation rate profiles instead of conventional substitution models was developed. We found that cancer-specific selection pressure is quite different from the selection pressure at the species and population levels. Both the relaxation of purifying selection on passenger mutations and the positive selection of driver mutations may contribute to the increased C N / C S values of human genes in cancer genomes compared with the p N / p S values in human populations. The C N / C S values also contribute to the improved classification of cancer genes and a better understanding of the onco-functionalization of cancer genes during oncogenesis. The use of our computational pipeline to identify cancer-specific positively and negatively selected genes may provide useful information for understanding the evolution of cancers and identifying possible targets for therapeutic intervention.

  10. Non-invasive continuous blood pressure measurement based on mean impact value method, BP neural network, and genetic algorithm.

    PubMed

    Tan, Xia; Ji, Zhong; Zhang, Yadan

    2018-04-25

    Non-invasive continuous blood pressure monitoring can provide an important reference and guidance for doctors wishing to analyze the physiological and pathological status of patients and to prevent and diagnose cardiovascular diseases in the clinical setting. Therefore, it is very important to explore a more accurate method of non-invasive continuous blood pressure measurement. To address the shortcomings of existing blood pressure measurement models based on pulse wave transit time or pulse wave parameters, a new method of non-invasive continuous blood pressure measurement - the GA-MIV-BP neural network model - is presented. The mean impact value (MIV) method is used to select the factors that greatly influence blood pressure from the extracted pulse wave transit time and pulse wave parameters. These factors are used as inputs, and the actual blood pressure values as outputs, to train the BP neural network model. The individual parameters are then optimized using a genetic algorithm (GA) to establish the GA-MIV-BP neural network model. Bland-Altman consistency analysis indicated that the measured and predicted blood pressure values were consistent and interchangeable. Therefore, this algorithm is of great significance to promote the clinical application of a non-invasive continuous blood pressure monitoring method.

  11. Parecoxib Increases Blood Pressure Through Inhibition of Cyclooxygenase-2 Messenger RNA in an Experimental Model.

    PubMed

    Vértiz-Hernández, Ángel Antonio; Martínez-Morales, Flavio; Valle-Aguilera, Roberto; López-Sánchez, Pedro; Villalobos-Molina, Rafael; Pérez-Urizar, José

    2015-01-01

    Cyclooxygenase-2 selective inhibitors have been developed to alleviate pain and inflammation; however, the use of a selective cyclooxygenase-2 inhibitor is associated with mild edema, hypertension, and cardiovascular risk. To evaluate, in an experimental model in normotensive rats, the effect of treatment with parecoxib in comparison with diclofenac and aspirin and L-NAME, a non-selective nitric oxide synthetase, on mean arterial blood pressure, and cyclooxygenase-1 and -2 messenger RNA and protein expression in aortic tissue. Rats were treated for seven days with parecoxib (10 mg/kg/day), diclofenac (3.2 mg/kg/day), aspirin (10 mg/kg/day), or L-NAME (10 mg/kg/day). Mean arterial blood pressure was evaluated in rat tail; cyclooxygenase-1 and -2 were evaluated by reverse transcription-polymerase chain reaction and Western blot analysis in aortic tissue. Parecoxib and L-NAME, but not aspirin and diclofenac, increased mean arterial blood pressure by about 50% (p < 0.05) without changes in cardiac frequency. Messenger RNA cyclooxygenase-1 expression in aortic tissue was not modified with any drug (p < 0.05). L-NAME and parecoxib treatment decreased messenger RNA cyclooxygenase-2 and cyclooxygenase-2 (p < 0.05). While cyclooxygenase-1 protein decreased with the three drugs tested but not with L-NAME (p < 0.05), the cyclooxygenase-2 protein decreased only with aspirin and parecoxib (p < 0.05). Parecoxib increases the blood pressure of normotensive rats by the suppression of COX-2 gene expression, which apparently induced cardiovascular control.

  12. Instrumentation for Examining Microbial Response to Changes In Environmental Pressures

    NASA Technical Reports Server (NTRS)

    Blaich, Justin; Storrs, Aaron; Wang, Jonathan; Ouandji, Cynthia; Arismendi, Dillon; Hernandez, Juliana; Sardesh, Nina; Ibanez, Cory; Owyang, Stephanie; Gentry, Diana

    2016-01-01

    The Automated Adaptive Directed Evolution Chamber (AADEC) is a device that allows operators to generate a micro-scale analog of real world systems that can be used to model the local-scale effects of climate change on microbial ecosystems. The AADEC uses an artificial environment to expose cultures of micro-organisms to environmental pressures, such as UV-C radiation, chemical toxins, and temperature. The AADEC autonomously exposes micro-organisms to selection pressures. This improves upon standard manual laboratory techniques: the process can take place over a longer period of time, involve more stressors, implement real-time adjustments based on the state of the population, and minimize the risk of contamination. We currently use UV-C radiation as the main selection pressure, UV-C is well studied both for its cell and DNA damaging effects as a type of selection pressure and for its related effectiveness as a mutagen; having these functions united makes it a good choice for a proof of concept. The AADEC roadmap includes expansion to different selection pressures, including heavy metal toxicity, temperature, and other forms of radiation.The AADEC uses closed-loop control to feedback the current state of the culture to the AADEC controller that modifies selection pressure intensity during experimentation, in this case culture density and growth rate. Culture density and growth rate are determined by measuring the optical density of the culture using 600 nm light. An array of 600 nm LEDs illuminate the culture and photodiodes are used to measure the shadow on the opposite side of the chamber.Previous experiments showed that we can produce a million fold increase to UV-C radiation over seven iterations. The most recent implements a microfluidic system that can expose cultures to multiple different selection pressures, perform non-survival based selection, and autonomously perform hundreds of exposure cycles. A scalable pump system gives the ability to pump in various different growth media to individual cultures and introduce chemical toxins during experimentation; AADEC can perform freeze and thaw cycles. We improved our baseline characterization by building a custom UV-C exposure hood, a shutter operates on a preset timer allowing the user to set exposure intensity consistently for multiple iterations.

  13. Impacts of invasive fish removal through angling on population characteristics and juvenile growth rate.

    PubMed

    Evangelista, Charlotte; Britton, Robert J; Cucherousset, Julien

    2015-06-01

    Exploitation can modify the characteristics of fish populations through the selective harvesting of individuals, with this potentially leading to rapid ecological and evolutionary changes. Despite the well-known effects of invasive fishes on aquatic ecosystems generally, the potential effects of their selective removal through angling, a strategy commonly used to manage invasive fish, are poorly understood. The aim of this field-based study was to use the North American pumpkinseed Lepomis gibbosus as the model species to investigate the consequences of selective removal on their population characteristics and juvenile growth rates across 10 populations in artificial lakes in southern France. We found that the maximal individual mass in populations decreased as removal pressure through angling increased, whereas we did not observed any changes in the maximal individual length in populations as removal pressure increased. Total population abundance did not decrease as removal pressure increased; instead, here was a U-shaped relationship between removal pressure and the abundance of medium-bodied individuals. In addition, population biomass had a U-shaped curve response to removal pressure, implying that invasive fish populations can modulate their characteristics to compensate for the negative effects of selective removals. In addition, individual lengths at age 2 and juvenile growth rates decreased as removal pressure through angling increased, suggesting a shift toward an earlier size at maturity and an overall slower growing phenotype. Therefore, these outputs challenge the efficiency of selective management methods, suggesting the use of more proactive strategies to control invasive populations, and the need to investigate the potential ecological and evolutionary repercussions of nonrandom removal.

  14. Impacts of invasive fish removal through angling on population characteristics and juvenile growth rate

    PubMed Central

    Evangelista, Charlotte; Britton, Robert J; Cucherousset, Julien

    2015-01-01

    Exploitation can modify the characteristics of fish populations through the selective harvesting of individuals, with this potentially leading to rapid ecological and evolutionary changes. Despite the well-known effects of invasive fishes on aquatic ecosystems generally, the potential effects of their selective removal through angling, a strategy commonly used to manage invasive fish, are poorly understood. The aim of this field-based study was to use the North American pumpkinseed Lepomis gibbosus as the model species to investigate the consequences of selective removal on their population characteristics and juvenile growth rates across 10 populations in artificial lakes in southern France. We found that the maximal individual mass in populations decreased as removal pressure through angling increased, whereas we did not observed any changes in the maximal individual length in populations as removal pressure increased. Total population abundance did not decrease as removal pressure increased; instead, here was a U-shaped relationship between removal pressure and the abundance of medium-bodied individuals. In addition, population biomass had a U-shaped curve response to removal pressure, implying that invasive fish populations can modulate their characteristics to compensate for the negative effects of selective removals. In addition, individual lengths at age 2 and juvenile growth rates decreased as removal pressure through angling increased, suggesting a shift toward an earlier size at maturity and an overall slower growing phenotype. Therefore, these outputs challenge the efficiency of selective management methods, suggesting the use of more proactive strategies to control invasive populations, and the need to investigate the potential ecological and evolutionary repercussions of nonrandom removal. PMID:26078856

  15. Tuning Spatial Profiles of Selection Pressure to Modulate the Evolution of Drug Resistance

    NASA Astrophysics Data System (ADS)

    De Jong, Maxwell G.; Wood, Kevin B.

    2018-06-01

    Spatial heterogeneity plays an important role in the evolution of drug resistance. While recent studies have indicated that spatial gradients of selection pressure can accelerate resistance evolution, much less is known about evolution in more complex spatial profiles. Here we use a stochastic toy model of drug resistance to investigate how different spatial profiles of selection pressure impact the time to fixation of a resistant allele. Using mean first passage time calculations, we show that spatial heterogeneity accelerates resistance evolution when the rate of spatial migration is sufficiently large relative to mutation but slows fixation for small migration rates. Interestingly, there exists an intermediate regime—characterized by comparable rates of migration and mutation—in which the rate of fixation can be either accelerated or decelerated depending on the spatial profile, even when spatially averaged selection pressure remains constant. Finally, we demonstrate that optimal tuning of the spatial profile can dramatically slow the spread and fixation of resistant subpopulations, even in the absence of a fitness cost for resistance. Our results may lay the groundwork for optimized, spatially resolved drug dosing strategies for mitigating the effects of drug resistance.

  16. Effect of Winglets on a First-Generation Jet Transport Wing. 2: Pressure and Spanwise Load Distributions for a Semispan Model at High Subsonic Speeds. [in the Langley 8 ft transonic tunnel

    NASA Technical Reports Server (NTRS)

    Montoya, L. C.; Flechner, S. G.; Jacobs, P. F.

    1977-01-01

    Pressure and spanwise load distributions on a first-generation jet transport semispan model at high subsonic speeds are presented for the basic wing and for configurations with an upper winglet only, upper and lower winglets, and a simple wing-tip extension. Selected data are discussed to show the general trends and effects of the various configurations.

  17. Data mining techniques for assisting the diagnosis of pressure ulcer development in surgical patients.

    PubMed

    Su, Chao-Ton; Wang, Pa-Chun; Chen, Yan-Cheng; Chen, Li-Fei

    2012-08-01

    Pressure ulcer is a serious problem during patient care processes. The high risk factors in the development of pressure ulcer remain unclear during long surgery. Moreover, past preventive policies are hard to implement in a busy operation room. The objective of this study is to use data mining techniques to construct the prediction model for pressure ulcers. Four data mining techniques, namely, Mahalanobis Taguchi System (MTS), Support Vector Machines (SVMs), decision tree (DT), and logistic regression (LR), are used to select the important attributes from the data to predict the incidence of pressure ulcers. Measurements of sensitivity, specificity, F(1), and g-means were used to compare the performance of four classifiers on the pressure ulcer data set. The results show that data mining techniques obtain good results in predicting the incidence of pressure ulcer. We can conclude that data mining techniques can help identify the important factors and provide a feasible model to predict pressure ulcer development.

  18. VAPOR PRESSURES AND HEATS OF VAPORIZATION OF PRIMARY COAL TARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eric M. Suuberg; Vahur Oja

    1997-07-01

    This project had as its main focus the determination of vapor pressures of coal pyrolysis tars. It involved performing measurements of these vapor pressures and from them, developing vapor pressure correlations suitable for use in advanced pyrolysis models (those models which explicitly account for mass transport limitations). This report is divided into five main chapters. Each chapter is a relatively stand-alone section. Chapter A reviews the general nature of coal tars and gives a summary of existing vapor pressure correlations for coal tars and model compounds. Chapter B summarizes the main experimental approaches for coal tar preparation and characterization whichmore » have been used throughout the project. Chapter C is concerned with the selection of the model compounds for coal pyrolysis tars and reviews the data available to us on the vapor pressures of high boiling point aromatic compounds. This chapter also deals with the question of identifying factors that govern the vapor pressures of coal tar model materials and their mixtures. Chapter D covers the vapor pressures and heats of vaporization of primary cellulose tars. Chapter E discusses the results of the main focus of this study. In summary, this work provides improved understanding of the volatility of coal and cellulose pyrolysis tars. It has resulted in new experimentally verified vapor pressure correlations for use in pyrolysis models. Further research on this topic should aim at developing general vapor pressure correlations for all coal tars, based on their molecular weight together with certain specific chemical characteristics i.e. hydroxyl group content.« less

  19. Earliest effects of sudden occlusions on pressure profiles in selected locations of the human systemic arterial system

    NASA Astrophysics Data System (ADS)

    Majka, Marcin; Gadda, Giacomo; Taibi, Angelo; Gałązka, Mirosław; Zieliński, Piotr

    2017-03-01

    We have developed a numerical simulation method for predicting the time dependence (wave form) of pressure at any location in the systemic arterial system in humans. The method uses the matlab-Simulink environment. The input data include explicitly the geometry of the arterial tree, treated up to an arbitrary bifurcation level, and the elastic properties of arteries as well as rheological parameters of blood. Thus, the impact of anatomic details of an individual subject can be studied. The method is applied here to reveal the earliest stages of mechanical reaction of the pressure profiles to sudden local blockages (thromboses or embolisms) of selected arteries. The results obtained with a purely passive model provide reference data indispensable for studies of longer-term effects due to neural and humoral mechanisms. The reliability of the results has been checked by comparison of two available sets of anatomic, elastic, and rheological data involving (i) 55 and (ii) 138 arterial segments. The remaining arteries have been replaced with the appropriate resistive elements. Both models are efficient in predicting an overall shift of pressure, whereas the accuracy of the 55-segment model in reproducing the detailed wave forms and stabilization times turns out dependent on the location of the blockage and the observation point.

  20. Silica-promoted Diels-Alder reactions in carbon dioxide from gaseous to supercritical conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weinstein, R.D.; Renslo, A.R.; Danheiser, R.L.

    1999-04-15

    Amorphous fumed silica (SiO{sub 2}) was shown to increase yields and selectivities of several Diels-Alder reactions in gaseous and supercritical CO{sub 2}. Pressure effects on the Diels-Alder reaction were explored using methyl vinyl ketone and penta-1,3-diene at 80 C. The selectivity of the reaction was not affected by pressure/density. As pressure was increased, the yield decreased. At the reaction temperature, adsorption isotherms at various pressures were obtained for the reactants and the Diels-Alder adduct. As expected when pressure is increased, the ratio of the amount of reactants adsorbed to the amount of reactants in the fluid phase decreases, thus causingmore » the yield to decrease. The Langmuir adsorption model fit the adsorption data. The Langmuir equilibrium partitioning constants all decreased with increasing pressure. The effect of temperature on adsorption was experimentally determined and traditional heats of adsorption were calculated. However, since supercritical CO{sub 2} is a highly compressible fluid, it is logical to examine the effect of temperature at constant density. In this case, entropies of adsorption were obtained. The thermodynamic properties that influence the real enthalpy and entropy of adsorption were derived. Methods of doping the silica and improving yields and selectivities were also explored.« less

  1. Host population structure and treatment frequency maintain balancing selection on drug resistance

    PubMed Central

    Baskerville, Edward B.; Colijn, Caroline; Hanage, William; Fraser, Christophe; Lipsitch, Marc

    2017-01-01

    It is a truism that antimicrobial drugs select for resistance, but explaining pathogen- and population-specific variation in patterns of resistance remains an open problem. Like other common commensals, Streptococcus pneumoniae has demonstrated persistent coexistence of drug-sensitive and drug-resistant strains. Theoretically, this outcome is unlikely. We modelled the dynamics of competing strains of S. pneumoniae to investigate the impact of transmission dynamics and treatment-induced selective pressures on the probability of stable coexistence. We find that the outcome of competition is extremely sensitive to structure in the host population, although coexistence can arise from age-assortative transmission models with age-varying rates of antibiotic use. Moreover, we find that the selective pressure from antibiotics arises not so much from the rate of antibiotic use per se but from the frequency of treatment: frequent antibiotic therapy disproportionately impacts the fitness of sensitive strains. This same phenomenon explains why serotypes with longer durations of carriage tend to be more resistant. These dynamics may apply to other potentially pathogenic, microbial commensals and highlight how population structure, which is often omitted from models, can have a large impact. PMID:28835542

  2. Perceived peer influence and peer selection on adolescent smoking.

    PubMed

    Hoffman, Beth R; Monge, Peter R; Chou, Chih-Ping; Valente, Thomas W

    2007-08-01

    Despite advances in tobacco control, adolescent smoking remains a problem. The smoking status of friends is one of the highest correlates with adolescent smoking. This homophily (commonality of friends based on a given attribute) may be due to either peer pressure, where adolescents adopt the smoking behaviors of their friends, or peer selection, where adolescents choose friends based on their smoking status. This study used structural equation modeling to test a model of peer influence and peer selection on ever smoking by adolescents. The primary analysis of the model did not reach significance, but post hoc analyses did result in a model with good fit. Results indicated that both peer influence and peer selection were occurring, and that peer influence was more salient in the population than was peer selection. Implications of these results for tobacco prevention programs are discussed.

  3. In vivo characterization of the novel imidazopyridine BYK191023 [2-[2-(4-methoxy-pyridin-2-yl)-ethyl]-3H-imidazo[4,5-b]pyridine], a potent and highly selective inhibitor of inducible nitric-oxide synthase.

    PubMed

    Lehner, Martin D; Marx, Degenhard; Boer, Rainer; Strub, Andreas; Hesslinger, Christian; Eltze, Manfrid; Ulrich, Wolf-Rüdiger; Schwoebel, Frank; Schermuly, Ralph Theo; Barsig, Johannes

    2006-04-01

    Excessive release of nitric oxide from inducible nitric-oxide synthase (iNOS) has been postulated to contribute to pathology in a number of inflammatory diseases. We recently identified imidazopyridine derivatives as a novel class of potent nitricoxide synthase inhibitors with high selectivity for the inducible isoform. In the present study, we tested the in vivo potency of BYK191023 [2-[2-(4-methoxy-pyridin-2-yl)-ethyl]-3H-imidazo-[4,5-b]pyridine], a selected member of this inhibitor class, in three different rat models of lipopolysaccharide-induced systemic inflammation. Delayed administration of BYK191023 dose-dependently suppressed the lipopolysaccharide-induced increase in plasma nitrate/nitrite (NO(x)) levels with an ED(50) of 14.9 micromol/kg/h. In a model of systemic hypotension following high-dose lipopolysaccharide challenge, curative administration of BYK191023 at a dose that inhibited 83% of the NO(x) increase completely prevented the gradual decrease in mean arterial blood pressure observed in vehicle-treated control animals. The vasopressor effect was specific for endotoxemic animals since BYK191023 did not affect blood pressure in saline-challenged controls. In addition, in a model of lipopolysaccharide-induced vascular hyporesponsiveness, BYK191023 infusion partially restored normal blood pressure responses to norepinephrine and sodium nitroprusside via an l-arginine competitive mechanism. Taken together, BYK191023 is a member of a novel class of highly isoform-selective iNOS inhibitors with promising in vivo activity suitable for mechanistic studies on the role of selective iNOS inhibition as well as clinical development.

  4. Feature selection for elderly faller classification based on wearable sensors.

    PubMed

    Howcroft, Jennifer; Kofman, Jonathan; Lemaire, Edward D

    2017-05-30

    Wearable sensors can be used to derive numerous gait pattern features for elderly fall risk and faller classification; however, an appropriate feature set is required to avoid high computational costs and the inclusion of irrelevant features. The objectives of this study were to identify and evaluate smaller feature sets for faller classification from large feature sets derived from wearable accelerometer and pressure-sensing insole gait data. A convenience sample of 100 older adults (75.5 ± 6.7 years; 76 non-fallers, 24 fallers based on 6 month retrospective fall occurrence) walked 7.62 m while wearing pressure-sensing insoles and tri-axial accelerometers at the head, pelvis, left and right shanks. Feature selection was performed using correlation-based feature selection (CFS), fast correlation based filter (FCBF), and Relief-F algorithms. Faller classification was performed using multi-layer perceptron neural network, naïve Bayesian, and support vector machine classifiers, with 75:25 single stratified holdout and repeated random sampling. The best performing model was a support vector machine with 78% accuracy, 26% sensitivity, 95% specificity, 0.36 F1 score, and 0.31 MCC and one posterior pelvis accelerometer input feature (left acceleration standard deviation). The second best model achieved better sensitivity (44%) and used a support vector machine with 74% accuracy, 83% specificity, 0.44 F1 score, and 0.29 MCC. This model had ten input features: maximum, mean and standard deviation posterior acceleration; maximum, mean and standard deviation anterior acceleration; mean superior acceleration; and three impulse features. The best multi-sensor model sensitivity (56%) was achieved using posterior pelvis and both shank accelerometers and a naïve Bayesian classifier. The best single-sensor model sensitivity (41%) was achieved using the posterior pelvis accelerometer and a naïve Bayesian classifier. Feature selection provided models with smaller feature sets and improved faller classification compared to faller classification without feature selection. CFS and FCBF provided the best feature subset (one posterior pelvis accelerometer feature) for faller classification. However, better sensitivity was achieved by the second best model based on a Relief-F feature subset with three pressure-sensing insole features and seven head accelerometer features. Feature selection should be considered as an important step in faller classification using wearable sensors.

  5. Influence of Berdan and Boxer Primer Spit-Hole Diameter on 7.62-mm Cartridge Performance

    DTIC Science & Technology

    2014-06-01

    pressure transducer, Kistler Model 6215 (4), is consistent with previous experiments. Pressure is measured through a 3/32-in hole drilled into the...cartridge case forward of the midpoint, and case holes are sealed with 1-mil- thick DuPont Kapton* tape. The force transducer selected is the Kistler ...April 1986. 3. M14 Barrel, Drawing 7790190, Rev R, January 1986. 4. Kistler Operating Instructions, Quartz High-Pressure Sensor Type 6215, Kistler

  6. Effects of winglets on a first-generation jet transport wing. 7: Sideslip effects on winglet loads and selected wing loads at subsonic speeds for a full-span model

    NASA Technical Reports Server (NTRS)

    Meyer, Robert R., Jr.; Covell, Peter F.

    1986-01-01

    The effect of sideslip on winglet loads and selected wing loads was investigated at high and low subsonic Mach numbers. The investigation was conducted in two separate wind tunnel facilities, using two slightly different 0.035-scale full-span models. Results are presented which indicate that, in general, winglet loads as a result of sideslip are analogous to wing loads caused by angle of attack. The center-of-pressure locations on the winglets are somewhat different than might be expected for an analogous wing. The spanwise center of pressure for a winglet tends to be more inboard than for a wing. The most notable chordwise location is a forward center-of-pressure location on the winglet at high sideslip angles. The noted differences between a winglet and an analogous wing are the result of the influence of the wing on the winglet.

  7. Emerging prion disease drives host selection in a wildlife population

    USGS Publications Warehouse

    Robinson, Stacie J.; Samuel, Michael D.; Johnson, Chad J.; Adams, Marie; McKenzie, Debbie I.

    2012-01-01

    Infectious diseases are increasingly recognized as an important force driving population dynamics, conservation biology, and natural selection in wildlife populations. Infectious agents have been implicated in the decline of small or endangered populations and may act to constrain population size, distribution, growth rates, or migration patterns. Further, diseases may provide selective pressures that shape the genetic diversity of populations or species. Thus, understanding disease dynamics and selective pressures from pathogens is crucial to understanding population processes, managing wildlife diseases, and conserving biological diversity. There is ample evidence that variation in the prion protein gene (PRNP) impacts host susceptibility to prion diseases. Still, little is known about how genetic differences might influence natural selection within wildlife populations. Here we link genetic variation with differential susceptibility of white-tailed deer to chronic wasting disease (CWD), with implications for fitness and disease-driven genetic selection. We developed a single nucleotide polymorphism (SNP) assay to efficiently genotype deer at the locus of interest (in the 96th codon of the PRNP gene). Then, using a Bayesian modeling approach, we found that the more susceptible genotype had over four times greater risk of CWD infection; and, once infected, deer with the resistant genotype survived 49% longer (8.25 more months). We used these epidemiological parameters in a multi-stage population matrix model to evaluate relative fitness based on genotype-specific population growth rates. The differences in disease infection and mortality rates allowed genetically resistant deer to achieve higher population growth and obtain a long-term fitness advantage, which translated into a selection coefficient of over 1% favoring the CWD-resistant genotype. This selective pressure suggests that the resistant allele could become dominant in the population within an evolutionarily short time frame. Our work provides a rare example of a quantifiable disease-driven selection process in a wildlife population, demonstrating the potential for infectious diseases to alter host populations. This will have direct bearing on the epidemiology, dynamics, and future trends in CWD transmission and spread. Understanding genotype-specific epidemiology will improve predictive models and inform management strategies for CWD-affected cervid populations.

  8. A Theoretical Study of Methanol Oxidation on RuO 2(110): Bridging the Pressure Gap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Latimer, Allegra A.; Abild-Pedersen, Frank; Norskov, Jens K.

    Partial oxidation catalysis is often fraught with selectivity problems, largely because there is a tendency of oxidation products to be more reactive than the starting material. One industrial process that has successfully overcome this problem is partial oxidation of methanol to formaldehyde. This process has become a global success, with an annual production of 30 million tons. Although ruthenium catalysts have not shown activity as high as the current molybdena or silver-based industrial standards, the study of ruthenium systems has the potential to elucidate which catalyst properties facilitate the desired partial oxidation reaction as opposed to deep combustion due tomore » a pressure-dependent selectivity “switch” that has been observed in ruthenium-based catalysts. In this work, we find that we are able to successfully rationalize this “pressure gap” using near-ab initio steady-state microkinetic modeling on RuO 2(110). We obtain molecular desorption prefactors from experiment and determine all other energetics using density functional theory. We show that, under ambient pressure conditions, formaldehyde production is favored on RuO 2(110), whereas under ultrahigh vacuum pressure conditions, full combustion to CO 2 takes place. We glean from our model several insights regarding how coverage effects, oxygen activity, and rate-determining steps influence selectivity and activity. As a result, we believe the understanding gained in this work might advise and inspire the greater partial oxidation community and be applied to other catalytic processes which have not yet found industrial success.« less

  9. A Theoretical Study of Methanol Oxidation on RuO 2(110): Bridging the Pressure Gap

    DOE PAGES

    Latimer, Allegra A.; Abild-Pedersen, Frank; Norskov, Jens K.

    2017-05-26

    Partial oxidation catalysis is often fraught with selectivity problems, largely because there is a tendency of oxidation products to be more reactive than the starting material. One industrial process that has successfully overcome this problem is partial oxidation of methanol to formaldehyde. This process has become a global success, with an annual production of 30 million tons. Although ruthenium catalysts have not shown activity as high as the current molybdena or silver-based industrial standards, the study of ruthenium systems has the potential to elucidate which catalyst properties facilitate the desired partial oxidation reaction as opposed to deep combustion due tomore » a pressure-dependent selectivity “switch” that has been observed in ruthenium-based catalysts. In this work, we find that we are able to successfully rationalize this “pressure gap” using near-ab initio steady-state microkinetic modeling on RuO 2(110). We obtain molecular desorption prefactors from experiment and determine all other energetics using density functional theory. We show that, under ambient pressure conditions, formaldehyde production is favored on RuO 2(110), whereas under ultrahigh vacuum pressure conditions, full combustion to CO 2 takes place. We glean from our model several insights regarding how coverage effects, oxygen activity, and rate-determining steps influence selectivity and activity. As a result, we believe the understanding gained in this work might advise and inspire the greater partial oxidation community and be applied to other catalytic processes which have not yet found industrial success.« less

  10. A Microwave Pressure Sounder

    NASA Technical Reports Server (NTRS)

    Flower, D. A.; Peckham, G. E.

    1978-01-01

    An instrument to measure atmospheric pressure at the earth's surface from an orbiting satellite would be a valuable addition to the expanding inventory of remote sensors. The subject of this report is such an instrument - the Microwave Pressure Sounder (MPS). It is shown that global-ocean coverage is attainable with sufficient accuracy, resolution and observational frequency for meteorological, oceanographic and climate research applications. Surface pressure can be deduced from a measurement of the absorption by an atmospheric column at a frequency in the wing of the oxygen band centered on 60 GHz. An active multifrequency instrument is needed to make this measurement with sufficient accuracy. The selection of optimum operating frequencies is based upon accepted models of surface reflection, oxygen, water vapor and cloud absorption. Numerical simulation using a range of real atmospheres defined by radiosonde observations were used to validate the frequency selection procedure. Analyses are presented of alternative system configurations that define the balance between accuracy and achievable resolution.

  11. Boundary-Layer Transition on a Group of Blunt Nose Shapes at a Mach Number of 2.20

    NASA Technical Reports Server (NTRS)

    Jackson, Mary W.; Czarnecki, K. R.

    1961-01-01

    An investigation has been made to study boundary-layer transition on six axisymmetrical blunt bodies of revolution. Model shapes were selected with respect to the degree of favorable pressure gradient over the model surface. Tests were conducted at a Mach number of 2.20 and over a range of free-stream Reynolds number per foot of about 1.4 x 10(exp 6) to 6.5 x 10(exp 6). The tests were made at an angle of attack of 0 deg. with zero heat transfer. For the hemisphere, the flow remained essentially laminar over the model surface length for the entire pressure range of the tests. For a strong favorable pressure gradient followed by any weak favorable, neutral, or adverse gradient, the tendency was for transition to occur at or immediately behind the shoulder. A single strip of three-dimensional roughness in the region of strong favorable pressure gradient did not fix transition on the models at the roughness location except at the maximum test pressures, whereas a second roughness strip added in a region of neutral or adverse pressure gradient did fix transition. Experimental pressure coefficients agreed closely with modified Newtonian theory except in the shoulder region.

  12. Ares I Scale Model Acoustic Test Instrumentation for Acoustic and Pressure Measurements

    NASA Technical Reports Server (NTRS)

    Vargas, Magda B.; Counter, Douglas

    2011-01-01

    Ares I Scale Model Acoustic Test (ASMAT) is a 5% scale model test of the Ares I vehicle, launch pad and support structures conducted at MSFC to verify acoustic and ignition environments and evaluate water suppression systems Test design considerations 5% measurements must be scaled to full scale requiring high frequency measurements Users had different frequencies of interest Acoustics: 200 - 2,000 Hz full scale equals 4,000 - 40,000 Hz model scale Ignition Transient: 0 - 100 Hz full scale equals 0 - 2,000 Hz model scale Environment exposure Weather exposure: heat, humidity, thunderstorms, rain, cold and snow Test environments: Plume impingement heat and pressure, and water deluge impingement Several types of sensors were used to measure the environments Different instrument mounts were used according to the location and exposure to the environment This presentation addresses the observed effects of the selected sensors and mount design on the acoustic and pressure measurements

  13. Positive selection in the N-terminal extramembrane domain of lung surfactant protein C (SP-C) in marine mammals.

    PubMed

    Foot, Natalie J; Orgeig, Sandra; Donnellan, Stephen; Bertozzi, Terry; Daniels, Christopher B

    2007-07-01

    Maximum-likelihood models of codon and amino acid substitution were used to analyze the lung-specific surfactant protein C (SP-C) from terrestrial, semi-aquatic, and diving mammals to identify lineages and amino acid sites under positive selection. Site models used the nonsynonymous/synonymous rate ratio (omega) as an indicator of selection pressure. Mechanistic models used physicochemical distances between amino acid substitutions to specify nonsynonymous substitution rates. Site models strongly identified positive selection at different sites in the polar N-terminal extramembrane domain of SP-C in the three diving lineages: site 2 in the cetaceans (whales and dolphins), sites 7, 9, and 10 in the pinnipeds (seals and sea lions), and sites 2, 9, and 10 in the sirenians (dugongs and manatees). The only semi-aquatic contrast to indicate positive selection at site 10 was that including the polar bear, which had the largest body mass of the semi-aquatic species. Analysis of the biophysical properties that were influential in determining the amino acid substitutions showed that isoelectric point, chemical composition of the side chain, polarity, and hydrophobicity were the crucial determinants. Amino acid substitutions at these sites may lead to stronger binding of the N-terminal domain to the surfactant phospholipid film and to increased adsorption of the protein to the air-liquid interface. Both properties are advantageous for the repeated collapse and reinflation of the lung upon diving and resurfacing and may reflect adaptations to the high hydrostatic pressures experienced during diving.

  14. Supersonic turbulent boundary layers with periodic mechanical non-equilibrium

    NASA Astrophysics Data System (ADS)

    Ekoto, Isaac Wesley

    Previous studies have shown that favorable pressure gradients reduce the turbulence levels and length scales in supersonic flow. Wall roughness has been shown to reduce the large-scales in wall bounded flow. Based on these previous observations new questions have been raised. The fundamental questions this dissertation addressed are: (1) What are the effects of wall topology with sharp versus blunt leading edges? and (2) Is it possible that a further reduction of turbulent scales can occur if surface roughness and favorable pressure gradients are combined? To answer these questions and to enhance the current experimental database, an experimental analysis was performed to provide high fidelity documentation of the mean and turbulent flow properties along with surface and flow visualizations of a high-speed (M = 2.86), high Reynolds number (Retheta ≈ 60,000) supersonic turbulent boundary layer distorted by curvature-induced favorable pressure gradients and large-scale ( k+s ≈ 300) uniform surface roughness. Nine models were tested at three separate locations. Three pressure gradient models strengths (a nominally zero, a weak, and a strong favorable pressure gradient) and three roughness topologies (aerodynamically smooth, square, and diamond shaped roughness elements) were used. Highly resolved planar measurements of mean and fluctuating velocity components were accomplished using particle image velocimetry. Stagnation pressure profiles were acquired with a traversing Pitot probe. Surface pressure distributions were characterized using pressure sensitive paint. Finally flow visualization was accomplished using schlieren photographs. Roughness topology had a significant effect on the boundary layer mean and turbulent properties due to shock boundary layer interactions. Favorable pressure gradients had the expected stabilizing effect on turbulent properties, but the improvements were less significant for models with surface roughness near the wall due to increased tendency towards flow separation. It was documented that proper roughness selection coupled with a sufficiently strong favorable pressure gradient produced regions of "negative" production in the transport of turbulent stress. This led to localized areas of significant turbulence stress reduction. With proper roughness selection and sufficient favorable pressure gradient strength, it is believed that localized relaminarization of the boundary layer is possible.

  15. Pressure data for four analytically defined arrow wings in supersonic flow. [Langley Unitary Plan Wind Tunnel tests

    NASA Technical Reports Server (NTRS)

    Townsend, J. C.

    1980-01-01

    In order to provide experimental data for comparison with newly developed finite difference methods for computing supersonic flows over aircraft configurations, wind tunnel tests were conducted on four arrow wing models. The models were machined under numeric control to precisely duplicate analytically defined shapes. They were heavily instrumented with pressure orifices at several cross sections ahead of and in the region where there is a gap between the body and the wing trailing edge. The test Mach numbers were 2.36, 2.96, and 4.63. Tabulated pressure data for the complete test series are presented along with selected oil flow photographs. Comparisons of some preliminary numerical results at zero angle of attack show good to excellent agreement with the experimental pressure distributions.

  16. Zolmitriptan: a novel portal hypotensive agent which synergizes with propranolol in lowering portal pressure.

    PubMed

    Reboredo, Mercedes; Chang, Haisul C Y; Barbero, Roberto; Rodríguez-Ortigosa, Carlos M; Pérez-Vizcaíno, Francisco; Morán, Asunción; García, Mónica; Banales, Jesús M; Carreño, Norberto; Alegre, Félix; Herrero, Ignacio; Quiroga, Jorge; Prieto, Jesús; Sangro, Bruno

    2013-01-01

    Only a limited proportion of patients needing pharmacological control of portal hypertension are hemodynamic responders to propranolol. Here we analyzed the effects of zolmitriptan on portal pressure and its potential interaction with propranolol. ZOLMITRIPTAN, PROPRANOLOL OR BOTH WERE TESTED IN TWO RAT MODELS OF PORTAL HYPERTENSION: common bile duct ligation (CBDL) and CCl4-induced cirrhosis. In these animals we measured different hemodynamic parameters including portal venous pressure, arterial renal flow, portal blood flow and cardiac output. We also studied the changes in superior mesenteric artery perfusion pressure and in arterial wall cAMP levels induced by zolmitriptan, propranolol or both. Moreover, we determined the effect of splanchnic sympathectomy on the response of PVP to zolmitriptan. In both models of portal hypertension zolmitriptan induced a dose-dependent transient descent of portal pressure accompanied by reduction of portal flow with only slight decrease in renal flow. In cirrhotic rats, splanchnic sympathectomy intensified and prolonged zolmitriptan-induced portal pressure descent. Also, propranolol caused more intense and durable portal pressure fall when combined with zolmitriptan. Mesenteric artery perfusion pressure peaked for about 1 min upon zolmitriptan administration but showed no change with propranolol. However propranolol enhanced and prolonged the elevation in mesenteric artery perfusion pressure induced by zolmitriptan. In vitro studies showed that propranolol prevented the inhibitory effects of β2-agonists on zolmitriptan-induced vasoconstriction and the combination of propranolol and zolmitriptan significantly reduced the elevation of cAMP caused by β2-agonists. Zolmitriptan reduces portal hypertension and non-selective beta-blockers can improve this effect. Combination therapy deserves consideration for patients with portal hypertension failing to respond to non-selective beta-blockers.

  17. Selective pressure of antibiotic pollution on bacteria of importance to public health.

    PubMed

    Tello, Alfredo; Austin, Brian; Telfer, Trevor C

    2012-08-01

    Many bacteria of clinical importance survive and may grow in different environments. Antibiotic pollution may exert on them a selective pressure leading to an increase in the prevalence of resistance. In this study we sought to determine whether environmental concentrations of antibiotics and concentrations representing action limits used in environmental risk assessment may exert a selective pressure on clinically relevant bacteria in the environment. We used bacterial inhibition as an assessment end point to link antibiotic selective pressures to the prevalence of resistance in bacterial populations. Species sensitivity distributions were derived for three antibiotics by fitting log-logistic models to end points calculated from minimum inhibitory concentration (MIC) distributions based on worldwide data collated by the European Committee on Antimicrobial Susceptibility Testing (EUCAST). To place bacteria represented in these distributions in a broader context, we performed a brief phylogenetic analysis. The potentially affected fraction of bacterial genera at measured environmental concentrations of antibiotics and environmental risk assessment action limits was used as a proxy for antibiotic selective pressure. Measured environmental concentrations and environmental risk assessment action limits were also directly compared to wild-type cut-off values. The potentially affected fraction of bacterial genera estimated based on antibiotic concentrations measured in water environments is ≤ 7%. We estimated that measured environmental concentrations in river sediments, swine feces lagoons, liquid manure, and farmed soil inhibit wild-type populations in up to 60%, 92%, 100%, and 30% of bacterial genera, respectively. At concentrations used as action limits in environmental risk assessment, erythromycin and ciprofloxacin were estimated to inhibit wild-type populations in up to 25% and 76% of bacterial genera. Measured environmental concentrations of antibiotics, as well as concentrations representing environmental risk assessment action limits, are high enough to exert a selective pressure on clinically relevant bacteria that may lead to an increase in the prevalence of resistance.

  18. Subglacial Hydrology Model Intercomparison Project (SHMIP)

    NASA Astrophysics Data System (ADS)

    Werder, Mauro A.; de Fleurian, Basile; Creyts, Timothy T.; Damsgaard, Anders; Delaney, Ian; Dow, Christine F.; Gagliardini, Olivier; Hoffman, Matthew J.; Seguinot, Julien; Sommers, Aleah; Irarrazaval Bustos, Inigo; Downs, Jakob

    2017-04-01

    The SHMIP project is the first intercomparison project of subglacial drainage models (http://shmip.bitbucket.org). Its synthetic test suites and evaluation were designed such that any subglacial hydrology model producing effective pressure can participate. In contrast to ice deformation, the physical processes of subglacial hydrology (which in turn impacts basal sliding of glaciers) are poorly known. A further complication is that different glacial and geological settings can lead to different drainage physics. The aim of the project is therefore to qualitatively compare the outputs of the participating models for a wide range of water forcings and glacier geometries. This will allow to put existing studies, which use different drainage models, into context and will allow new studies to select the most suitable model for the problem at hand. We present the results from the just completed intercomparison exercise. Twelve models participated: eight 2D and four 1D models; nine include both an efficient and inefficient system, the other three one of the systems; all but two models use R-channels as efficient system, and/or a linked-cavity like inefficient system, one exception uses porous layers with different characteristic for each of the systems, the other exception is based on canals. The main variable used for the comparison is effective pressure, as that is a direct proxy for basal sliding of glaciers. The models produce large differences in the effective pressure fields, in particular for higher water input scenarios. This shows that the selection of a subglacial drainage model will likely impact the conclusions of a study significantly.

  19. High mean water vapour pressure promotes the transmission of bacillary dysentery.

    PubMed

    Li, Guo-Zheng; Shao, Feng-Feng; Zhang, Hao; Zou, Chun-Pu; Li, Hui-Hui; Jin, Jue

    2015-01-01

    Bacillary dysentery is an infectious disease caused by Shigella dysenteriae, which has a seasonal distribution. External environmental factors, including climate, play a significant role in its transmission. This paper identifies climate-related risk factors and their role in bacillary dysentery transmission. Harbin, in northeast China, with a temperate climate, and Quzhou, in southern China, with a subtropical climate, are chosen as the study locations. The least absolute shrinkage and selectionator operator is applied to select relevant climate factors involved in the transmission of bacillary dysentery. Based on the selected relevant climate factors and incidence rates, an AutoRegressive Integrated Moving Average (ARIMA) model is established successfully as a time series prediction model. The numerical results demonstrate that the mean water vapour pressure over the previous month results in a high relative risk for bacillary dysentery transmission in both cities, and the ARIMA model can successfully perform such a prediction. These results provide better explanations for the relationship between climate factors and bacillary dysentery transmission than those put forth in other studies that use only correlation coefficients or fitting models. The findings in this paper demonstrate that the mean water vapour pressure over the previous month is an important predictor for the transmission of bacillary dysentery.

  20. Modelling the impact of the long-term use of insecticide-treated bed nets on Anopheles mosquito biting time.

    PubMed

    Ferreira, Claudia P; Lyra, Silas P; Azevedo, Franciane; Greenhalgh, David; Massad, Eduardo

    2017-09-15

    Evidence of changing in biting and resting behaviour of the main malaria vectors has been mounting up in recent years as a result of selective pressure by the widespread and long-term use of insecticide-treated bed nets (ITNs), and indoor residual spraying. The impact of resistance behaviour on malaria intervention efficacy has important implications for the epidemiology and malaria control programmes. In this context, a theoretical framework is presented to understand the mechanisms determining the evolution of feeding behaviour under the pressure of use of ITNs. An agent-based stochastic model simulates the impact of insecticide-treated bed nets on mosquito fitness by reducing the biting rates, as well as increasing mortality rates. The model also incorporates a heritability function that provides the necessary genetic plasticity upon which natural selection would act to maximize the fitness under the pressure of the control strategy. The asymptotic equilibrium distribution of mosquito population versus biting time is shown for several daily uses of ITNs, and the expected disruptive selection on this mosquito trait is observed in the simulations. The relative fitness of strains that bite at much earlier time with respect to the wild strains, when a threshold of about 50% of ITNs coverage highlights the hypothesis of a behaviour selection. A sensitivity analysis has shown that the top three parameters that play a dominant role on the mosquito fitness are the proportion of individuals using bed nets and its effectiveness, the impact of bed nets on mosquito oviposition, and the mosquito genetic plasticity related to changing in biting time. By taking the evolutionary aspect into account, the model was able to show that the long-term use of ITNs, although representing an undisputed success in reducing malaria incidence and mortality in many affected areas, is not free of undesirable side effects. From the evolutionary point of view of the parasite virulence, it should be expected that plasmodium parasites would be under pressure to reduce their virulence. This speculative hypothesis can eventually be demonstrated in the medium to long-term use of ITNs.

  1. Model of the best-of-N nest-site selection process in honeybees.

    PubMed

    Reina, Andreagiovanni; Marshall, James A R; Trianni, Vito; Bose, Thomas

    2017-05-01

    The ability of a honeybee swarm to select the best nest site plays a fundamental role in determining the future colony's fitness. To date, the nest-site selection process has mostly been modeled and theoretically analyzed for the case of binary decisions. However, when the number of alternative nests is larger than two, the decision-process dynamics qualitatively change. In this work, we extend previous analyses of a value-sensitive decision-making mechanism to a decision process among N nests. First, we present the decision-making dynamics in the symmetric case of N equal-quality nests. Then, we generalize our findings to a best-of-N decision scenario with one superior nest and N-1 inferior nests, previously studied empirically in bees and ants. Whereas previous binary models highlighted the crucial role of inhibitory stop-signaling, the key parameter in our new analysis is the relative time invested by swarm members in individual discovery and in signaling behaviors. Our new analysis reveals conflicting pressures on this ratio in symmetric and best-of-N decisions, which could be solved through a time-dependent signaling strategy. Additionally, our analysis suggests how ecological factors determining the density of suitable nest sites may have led to selective pressures for an optimal stable signaling ratio.

  2. Model of the best-of-N nest-site selection process in honeybees

    NASA Astrophysics Data System (ADS)

    Reina, Andreagiovanni; Marshall, James A. R.; Trianni, Vito; Bose, Thomas

    2017-05-01

    The ability of a honeybee swarm to select the best nest site plays a fundamental role in determining the future colony's fitness. To date, the nest-site selection process has mostly been modeled and theoretically analyzed for the case of binary decisions. However, when the number of alternative nests is larger than two, the decision-process dynamics qualitatively change. In this work, we extend previous analyses of a value-sensitive decision-making mechanism to a decision process among N nests. First, we present the decision-making dynamics in the symmetric case of N equal-quality nests. Then, we generalize our findings to a best-of-N decision scenario with one superior nest and N -1 inferior nests, previously studied empirically in bees and ants. Whereas previous binary models highlighted the crucial role of inhibitory stop-signaling, the key parameter in our new analysis is the relative time invested by swarm members in individual discovery and in signaling behaviors. Our new analysis reveals conflicting pressures on this ratio in symmetric and best-of-N decisions, which could be solved through a time-dependent signaling strategy. Additionally, our analysis suggests how ecological factors determining the density of suitable nest sites may have led to selective pressures for an optimal stable signaling ratio.

  3. Evaluation of SSME test data reduction methods

    NASA Technical Reports Server (NTRS)

    Santi, L. Michael

    1994-01-01

    Accurate prediction of hardware and flow characteristics within the Space Shuttle Main Engine (SSME) during transient and main-stage operation requires a significant integration of ground test data, flight experience, and computational models. The process of integrating SSME test measurements with physical model predictions is commonly referred to as data reduction. Uncertainties within both test measurements and simplified models of the SSME flow environment compound the data integration problem. The first objective of this effort was to establish an acceptability criterion for data reduction solutions. The second objective of this effort was to investigate the data reduction potential of the ROCETS (Rocket Engine Transient Simulation) simulation platform. A simplified ROCETS model of the SSME was obtained from the MSFC Performance Analysis Branch . This model was examined and tested for physical consistency. Two modules were constructed and added to the ROCETS library to independently check the mass and energy balances of selected engine subsystems including the low pressure fuel turbopump, the high pressure fuel turbopump, the low pressure oxidizer turbopump, the high pressure oxidizer turbopump, the fuel preburner, the oxidizer preburner, the main combustion chamber coolant circuit, and the nozzle coolant circuit. A sensitivity study was then conducted to determine the individual influences of forty-two hardware characteristics on fourteen high pressure region prediction variables as returned by the SSME ROCETS model.

  4. IJS procedure for RELAP5 to TRACE input model conversion using SNAP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prosek, A.; Berar, O. A.

    2012-07-01

    The TRAC/RELAP Advanced Computational Engine (TRACE) advanced, best-estimate reactor systems code developed by the U.S. Nuclear Regulatory Commission comes with a graphical user interface called Symbolic Nuclear Analysis Package (SNAP). Much of efforts have been done in the past to develop the RELAP5 input decks. The purpose of this study is to demonstrate the Institut 'Josef Stefan' (IJS) conversion procedure from RELAP5 to TRACE input model of BETHSY facility. The IJS conversion procedure consists of eleven steps and is based on the use of SNAP. For calculations of the selected BETHSY 6.2TC test the RELAP5/MOD3.3 Patch 4 and TRACE V5.0more » Patch 1 were used. The selected BETHSY 6.2TC test was 15.24 cm equivalent diameter horizontal cold leg break in the reference pressurized water reactor without high pressure and low pressure safety injection. The application of the IJS procedure for conversion of BETHSY input model showed that it is important to perform the steps in proper sequence. The overall calculated results obtained with TRACE using the converted RELAP5 model were close to experimental data and comparable to RELAP5/MOD3.3 calculations. Therefore it can be concluded, that proposed IJS conversion procedure was successfully demonstrated on the BETHSY integral test facility input model. (authors)« less

  5. A scenario optimization model for dynamic reserve site selection

    Treesearch

    Stephanie A. Snyder; Robert G. Haight; Charles S. ReVelle

    2004-01-01

    Conservation planners are called upon to make choices and trade-offs about the preservation of natural areas for the protection of species in the face of development pressures. We addressed the problem of selecting sites for protection over time with the objective of maximizing species representation, with uncertainty about future site development, and with periodic...

  6. Selective Permeability of PVA Membranes. I: Radiation-Crosslinked Membranes

    NASA Technical Reports Server (NTRS)

    Katz, Moshe G.; Wydeven, Theodore, Jr.

    1981-01-01

    The water and salt transport properties of ionizing radiation crosslinked poly(vinyl alcohol) (PVA) membranes were investigated. The studied membranes showed high permeabilities and low selectivities for both water and salt. The results were found to be in accord with a modified solution-diffusion model for transport across the membranes, in which pressure-dependent permeability coefficients are employed.

  7. Selective permeability of PVA membranes. I - Radiation-crosslinked membranes

    NASA Technical Reports Server (NTRS)

    Katz, M. G.; Wydeven, T., Jr.

    1981-01-01

    The water and salt transport properties of ionizing radiation crosslinked poly(vinyl alcohol) (PVA) membranes were investigated. The studied membranes showed high permeabilities and low selectivities for both water and salt. The results were found to be in accord with a modified solution-diffusion model for transport across the membranes, in which pressure-dependent permeability coefficients are employed.

  8. Recombination enhances HIV-1 envelope diversity by facilitating the survival of latent genomic fragments in the plasma virus population

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Immonen, Taina T.; Conway, Jessica M.; Romero-Severson, Ethan O.

    HIV-1 is subject to immune pressure exerted by the host, giving variants that escape the immune response an advantage. Virus released from activated latent cells competes against variants that have continually evolved and adapted to host immune pressure. Nevertheless, there is increasing evidence that virus displaying a signal of latency survives in patient plasma despite having reduced fitness due to long-term immune memory. We investigated the survival of virus with latent envelope genomic fragments by simulating within-host HIV-1 sequence evolution and the cycling of viral lineages in and out of the latent reservoir. Our model incorporates a detailed mutation processmore » including nucleotide substitution, recombination, latent reservoir dynamics, diversifying selection pressure driven by the immune response, and purifying selection pressure asserted by deleterious mutations. We evaluated the ability of our model to capture sequence evolution in vivo by comparing our simulated sequences to HIV-1 envelope sequence data from 16 HIV-infected untreated patients. Empirical sequence divergence and diversity measures were qualitatively and quantitatively similar to those of our simulated HIV-1 populations, suggesting that our model invokes realistic trends of HIV-1 genetic evolution. Moreover, reconstructed phylogenies of simulated and patient HIV-1 populations showed similar topological structures. Our simulation results suggest that recombination is a key mechanism facilitating the persistence of virus with latent envelope genomic fragments in the productively infected cell population. Recombination increased the survival probability of latent virus forms approximately 13-fold. Prevalence of virus with latent fragments in productively infected cells was observed in only 2% of simulations when we ignored recombination, while the proportion increased to 27% of simulations when we allowed recombination. We also found that the selection pressures exerted by different fitness landscapes influenced the shape of phylogenies, diversity trends, and survival of virus with latent genomic fragments. Furthermore, our model predicts that the persistence of latent genomic fragments from multiple different ancestral origins increases sequence diversity in plasma for reasonable fitness landscapes.« less

  9. Recombination enhances HIV-1 envelope diversity by facilitating the survival of latent genomic fragments in the plasma virus population

    DOE PAGES

    Immonen, Taina T.; Conway, Jessica M.; Romero-Severson, Ethan O.; ...

    2015-12-22

    HIV-1 is subject to immune pressure exerted by the host, giving variants that escape the immune response an advantage. Virus released from activated latent cells competes against variants that have continually evolved and adapted to host immune pressure. Nevertheless, there is increasing evidence that virus displaying a signal of latency survives in patient plasma despite having reduced fitness due to long-term immune memory. We investigated the survival of virus with latent envelope genomic fragments by simulating within-host HIV-1 sequence evolution and the cycling of viral lineages in and out of the latent reservoir. Our model incorporates a detailed mutation processmore » including nucleotide substitution, recombination, latent reservoir dynamics, diversifying selection pressure driven by the immune response, and purifying selection pressure asserted by deleterious mutations. We evaluated the ability of our model to capture sequence evolution in vivo by comparing our simulated sequences to HIV-1 envelope sequence data from 16 HIV-infected untreated patients. Empirical sequence divergence and diversity measures were qualitatively and quantitatively similar to those of our simulated HIV-1 populations, suggesting that our model invokes realistic trends of HIV-1 genetic evolution. Moreover, reconstructed phylogenies of simulated and patient HIV-1 populations showed similar topological structures. Our simulation results suggest that recombination is a key mechanism facilitating the persistence of virus with latent envelope genomic fragments in the productively infected cell population. Recombination increased the survival probability of latent virus forms approximately 13-fold. Prevalence of virus with latent fragments in productively infected cells was observed in only 2% of simulations when we ignored recombination, while the proportion increased to 27% of simulations when we allowed recombination. We also found that the selection pressures exerted by different fitness landscapes influenced the shape of phylogenies, diversity trends, and survival of virus with latent genomic fragments. Furthermore, our model predicts that the persistence of latent genomic fragments from multiple different ancestral origins increases sequence diversity in plasma for reasonable fitness landscapes.« less

  10. Multinuclear NMR Study of the Pressure Dependence for Carbonate Exchange in the UO 2(CO 3) 3 4-(aq) Ion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Rene L.; Harley, Stephen J.; Ohlin, C. André

    2011-09-16

    Rates of carbonate exchange by two pH-sensitive pathways between aqueous carbonate ion and UO 2(CO 3) 3 4-(aq) (see picture) are measured by high-pressure NMR. To accomplish this, a custom pulse sequence is employed to achieve selective inversion. Rates of chemical exchange are determined by modeling the return to equilibrium.

  11. Multinuclear NMR study of the pressure dependence for carbonate exchange in the [UO2(CO3)3]4- (aq) ion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Rene L.; Harley, S. J.; Ohlin, C. A.

    2011-09-16

    Rates of carbonate exchange by two pH-sensitive pathways between aqueous carbonate ion and UO₂(CO₃)₃⁴⁻(aq) are measured by high-pressure NMR. To accomplish this, a custom pulse sequence is employed to achieve selective inversion. Rates of chemical exchange are determined by modeling the return to equilibrium.

  12. Genomic signature of natural and anthropogenic stress in wild populations of the waterflea Daphnia magna: validation in space, time and experimental evolution.

    PubMed

    Orsini, Luisa; Spanier, Katina I; DE Meester, Luc

    2012-05-01

    Natural populations are confronted with multiple selection pressures resulting in a mosaic of environmental stressors at the landscape level. Identifying the genetic underpinning of adaptation to these complex selection environments and assigning causes of natural selection within multidimensional selection regimes in the wild is challenging. The water flea Daphnia is a renowned ecological model system with its well-documented ecology, the possibility to analyse subfossil dormant egg banks and the short generation time allowing an experimental evolution approach. Capitalizing on the strengths of this model system, we here link candidate genome regions to three selection pressures, known to induce micro-evolutionary responses in Daphnia magna: fish predation, parasitism and land use. Using a genome scan approach in space, time and experimental evolution trials, we provide solid evidence of selection at the genome level under well-characterized environmental gradients in the wild and identify candidate genes linked to the three environmental stressors. Our study reveals differential selection at the genome level in Daphnia populations and provides evidence for repeatable patterns of local adaptation in a geographic mosaic of environmental stressors fuelled by standing genetic variation. Our results imply high evolutionary potential of local populations, which is relevant to understand the dynamics of trait changes in natural populations and their impact on community and ecosystem responses through eco-evolutionary feedbacks. © 2012 Blackwell Publishing Ltd.

  13. Tracheostomy Tube Type and Inner Cannula Selection Impact Pressure and Resistance to Air Flow.

    PubMed

    Pryor, Lee N; Baldwin, Claire E; Ward, Elizabeth C; Cornwell, Petrea L; O'Connor, Stephanie N; Chapman, Marianne J; Bersten, Andrew D

    2016-05-01

    Advancements in tracheostomy tube design now provide clinicians with a range of options to facilitate communication for individuals receiving ventilator assistance through a cuffed tube. Little is known about the impact of these modern design features on resistance to air flow. We undertook a bench model test to measure pressure-flow characteristics and resistance of a range of tubes of similar outer diameter, including those enabling subglottic suction and speech. A constant inspiratory ± expiratory air flow was generated at increasing flows up to 150 L/min through each tube (with or without optional, mandatory, or interchangeable inner cannula). Driving pressures were measured, and resistance was calculated (cm H2O/L/s). Pressures changed with increasing flow (P < .001) and tube type (P < .001), with differing patterns of pressure change according to the type of tube (P < .001) and direction of air flow. The single-lumen reference tube encountered the lowest inspiratory and expiratory pressures compared with all double-lumen tubes (P < .001); placement of an optional inner cannula increased bidirectional tube resistance by a factor of 3. For a tube with interchangeable inner cannulas, the type of cannula altered pressure and resistance differently (P < .001); the speech cannula in particular amplified pressure-flow changes and increased tube resistance by more than a factor of 4. Tracheostomy tube type and inner cannula selection imposed differing pressures and resistance to air flow during inspiration and expiration. These differences may be important when selecting airway equipment or when setting parameters for monitoring, particularly for patients receiving supported ventilation or during the weaning process. Copyright © 2016 by Daedalus Enterprises.

  14. The role of selection on evolutionary rescue

    NASA Astrophysics Data System (ADS)

    Amirjanov, Adil

    The paper investigates the role of selection on evolutionary rescue of population. The statistical mechanics technique is used to model dynamics of a population experiencing a natural selection and an abrupt change in the environment. The paper assesses the selective pressure produced by two different mechanisms: by strength of resistance and by strength of selection (by intraspecific competition). It is shown that both mechanisms are capable of providing an evolutionary rescue of population in particular conditions. However, for a small level of an extinction rate, the population cannot be rescued without intraspecific competition.

  15. Ares I Scale Model Acoustic Tests Instrumentation for Acoustic and Pressure Measurements

    NASA Technical Reports Server (NTRS)

    Vargas, Magda B.; Counter, Douglas D.

    2011-01-01

    The Ares I Scale Model Acoustic Test (ASMAT) was a development test performed at the Marshall Space Flight Center (MSFC) East Test Area (ETA) Test Stand 116. The test article included a 5% scale Ares I vehicle model and tower mounted on the Mobile Launcher. Acoustic and pressure data were measured by approximately 200 instruments located throughout the test article. There were four primary ASMAT instrument suites: ignition overpressure (IOP), lift-off acoustics (LOA), ground acoustics (GA), and spatial correlation (SC). Each instrumentation suite incorporated different sensor models which were selected based upon measurement requirements. These requirements included the type of measurement, exposure to the environment, instrumentation check-outs and data acquisition. The sensors were attached to the test article using different mounts and brackets dependent upon the location of the sensor. This presentation addresses the observed effect of the sensors and mounts on the acoustic and pressure measurements.

  16. Evaluation of Different Dose-Response Models for High Hydrostatic Pressure Inactivation of Microorganisms

    PubMed Central

    2017-01-01

    Modeling of microbial inactivation by high hydrostatic pressure (HHP) requires a plot of the log microbial count or survival ratio versus time data under a constant pressure and temperature. However, at low pressure and temperature values, very long holding times are needed to obtain measurable inactivation. Since the time has a significant effect on the cost of HHP processing it may be reasonable to fix the time at an appropriate value and quantify the inactivation with respect to pressure. Such a plot is called dose-response curve and it may be more beneficial than the traditional inactivation modeling since short holding times with different pressure values can be selected and used for the modeling of HHP inactivation. For this purpose, 49 dose-response curves (with at least 4 log10 reduction and ≥5 data points including the atmospheric pressure value (P = 0.1 MPa), and with holding time ≤10 min) for HHP inactivation of microorganisms obtained from published studies were fitted with four different models, namely the Discrete model, Shoulder model, Fermi equation, and Weibull model, and the pressure value needed for 5 log10 (P5) inactivation was calculated for all the models above. The Shoulder model and Fermi equation produced exactly the same parameter and P5 values, while the Discrete model produced similar or sometimes the exact same parameter values as the Fermi equation. The Weibull model produced the worst fit (had the lowest adjusted determination coefficient (R2adj) and highest mean square error (MSE) values), while the Fermi equation had the best fit (the highest R2adj and lowest MSE values). Parameters of the models and also P5 values of each model can be useful for the further experimental design of HHP processing and also for the comparison of the pressure resistance of different microorganisms. Further experiments can be done to verify the P5 values at given conditions. The procedure given in this study can also be extended for enzyme inactivation by HHP. PMID:28880255

  17. Viscosity models for pure hydrocarbons at extreme conditions: A review and comparative study

    DOE PAGES

    Baled, Hseen O.; Gamwo, Isaac K.; Enick, Robert M.; ...

    2018-01-12

    Here, viscosity is a critical fundamental property required in many applications in the chemical and oil industries. In this review the performance of seven select viscosity models, representative of various predictive and correlative approaches, is discussed and evaluated by comparison to experimental data of 52 pure hydrocarbons including straight-chain alkanes, branched alkanes, cycloalkanes, and aromatics. This analysis considers viscosity data to extremely high-temperature, high-pressure conditions up to 573 K and 300 MPa. Unsatisfactory results are found, particularly at high pressures, with the Chung-Ajlan-Lee-Starling, Pedersen-Fredenslund, and Lohrenz-Bray-Clark models commonly used for oil reservoir simulation. If sufficient experimental viscosity data are readilymore » available to determine model-specific parameters, the free volume theory and the expanded fluid theory models provide generally comparable results that are superior to those obtained with the friction theory, particularly at pressures higher than 100 MPa. Otherwise, the entropy scaling method by Lötgering-Lin and Gross is recommended as the best predictive model.« less

  18. Viscosity models for pure hydrocarbons at extreme conditions: A review and comparative study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baled, Hseen O.; Gamwo, Isaac K.; Enick, Robert M.

    Here, viscosity is a critical fundamental property required in many applications in the chemical and oil industries. In this review the performance of seven select viscosity models, representative of various predictive and correlative approaches, is discussed and evaluated by comparison to experimental data of 52 pure hydrocarbons including straight-chain alkanes, branched alkanes, cycloalkanes, and aromatics. This analysis considers viscosity data to extremely high-temperature, high-pressure conditions up to 573 K and 300 MPa. Unsatisfactory results are found, particularly at high pressures, with the Chung-Ajlan-Lee-Starling, Pedersen-Fredenslund, and Lohrenz-Bray-Clark models commonly used for oil reservoir simulation. If sufficient experimental viscosity data are readilymore » available to determine model-specific parameters, the free volume theory and the expanded fluid theory models provide generally comparable results that are superior to those obtained with the friction theory, particularly at pressures higher than 100 MPa. Otherwise, the entropy scaling method by Lötgering-Lin and Gross is recommended as the best predictive model.« less

  19. Conflict between biotic and climatic selective pressures acting on an extended phenotype in a subarctic, but not temperate, environment.

    PubMed

    Rohwer, V G; Bonier, F; Martin, P R

    2015-10-22

    Climatic selective pressures are thought to dominate biotic selective pressures at higher latitudes. However, few studies have experimentally tested how these selective pressures differentially act on traits across latitudes because traits can rarely be manipulated independently of the organism in nature. We overcame this challenge by using an extended phenotype-active bird nests-and conducted reciprocal transplant experiments between a subarctic and temperate site, separated by 14° of latitude. At the subarctic site, biotic selective pressures (nest predation) favoured smaller, non-local temperate nests, whereas climatic selective pressures (temperature) favoured larger local nests, particularly at colder temperatures. By contrast, at the temperate site, climatic and biotic selective pressures acted similarly on temperate and subarctic nests. Our results illustrate a functional trade-off in the subarctic between nest morphologies favoured by biotic versus climatic selective pressures, with climate favouring local nest morphologies. At our temperate site, however, allocative trade-offs in the time and effort devoted to nest construction favour smaller, local nests. Our findings illustrate a conflict between biotic and climatic selective pressures at the northern extremes of a species geographical range, and suggest that trade-offs between trait function and trait elaboration act differentially across latitude to create broad geographic variation in traits. © 2015 The Author(s).

  20. Conflict between biotic and climatic selective pressures acting on an extended phenotype in a subarctic, but not temperate, environment

    PubMed Central

    Rohwer, V. G.; Bonier, F.; Martin, P. R.

    2015-01-01

    Climatic selective pressures are thought to dominate biotic selective pressures at higher latitudes. However, few studies have experimentally tested how these selective pressures differentially act on traits across latitudes because traits can rarely be manipulated independently of the organism in nature. We overcame this challenge by using an extended phenotype—active bird nests—and conducted reciprocal transplant experiments between a subarctic and temperate site, separated by 14° of latitude. At the subarctic site, biotic selective pressures (nest predation) favoured smaller, non-local temperate nests, whereas climatic selective pressures (temperature) favoured larger local nests, particularly at colder temperatures. By contrast, at the temperate site, climatic and biotic selective pressures acted similarly on temperate and subarctic nests. Our results illustrate a functional trade-off in the subarctic between nest morphologies favoured by biotic versus climatic selective pressures, with climate favouring local nest morphologies. At our temperate site, however, allocative trade-offs in the time and effort devoted to nest construction favour smaller, local nests. Our findings illustrate a conflict between biotic and climatic selective pressures at the northern extremes of a species geographical range, and suggest that trade-offs between trait function and trait elaboration act differentially across latitude to create broad geographic variation in traits. PMID:26490789

  1. Cooperation and the evolution of intelligence

    PubMed Central

    McNally, Luke; Brown, Sam P.; Jackson, Andrew L.

    2012-01-01

    The high levels of intelligence seen in humans, other primates, certain cetaceans and birds remain a major puzzle for evolutionary biologists, anthropologists and psychologists. It has long been held that social interactions provide the selection pressures necessary for the evolution of advanced cognitive abilities (the ‘social intelligence hypothesis’), and in recent years decision-making in the context of cooperative social interactions has been conjectured to be of particular importance. Here we use an artificial neural network model to show that selection for efficient decision-making in cooperative dilemmas can give rise to selection pressures for greater cognitive abilities, and that intelligent strategies can themselves select for greater intelligence, leading to a Machiavellian arms race. Our results provide mechanistic support for the social intelligence hypothesis, highlight the potential importance of cooperative behaviour in the evolution of intelligence and may help us to explain the distribution of cooperation with intelligence across taxa. PMID:22496188

  2. Free-jet feasibility study of a thermal acoustic shield concept for AST/VCE application-dual stream nozzles. Comprehensive data report. Volume 2: Laser velocimeter and suppressor. Base pressure data

    NASA Technical Reports Server (NTRS)

    Janardan, B. A.; Brausch, J. F.; Price, A. O.

    1984-01-01

    Acoustic and diagnostic data that were obtained to determine the influence of selected geometric and aerodynamic flow variables of coannular nozzles with thermal acoustic shields are summarized in this comprehensive data report. A total of 136 static and simulated flight acoustic test points were conducted with 9 scale-model nozzles. Aerodynamic laser velocimeter measurements were made for four selected plumes. In addition, static pressure data in the chute base region of the suppressor configurations were obtained to assess the influence of the shield stream on the suppressor base drag.

  3. Experimental unsteady pressures at flutter on the Supercritical Wing Benchmark Model

    NASA Technical Reports Server (NTRS)

    Dansberry, Bryan E.; Durham, Michael H.; Bennett, Robert M.; Rivera, Jose A.; Silva, Walter A.; Wieseman, Carol D.; Turnock, David L.

    1993-01-01

    This paper describes selected results from the flutter testing of the Supercritical Wing (SW) model. This model is a rigid semispan wing having a rectangular planform and a supercritical airfoil shape. The model was flutter tested in the Langley Transonic Dynamics Tunnel (TDT) as part of the Benchmark Models Program, a multi-year wind tunnel activity currently being conducted by the Structural Dynamics Division of NASA Langley Research Center. The primary objective of this program is to assist in the development and evaluation of aeroelastic computational fluid dynamics codes. The SW is the second of a series of three similar models which are designed to be flutter tested in the TDT on a flexible mount known as the Pitch and Plunge Apparatus. Data sets acquired with these models, including simultaneous unsteady surface pressures and model response data, are meant to be used for correlation with analytical codes. Presented in this report are experimental flutter boundaries and corresponding steady and unsteady pressure distribution data acquired over two model chords located at the 60 and 95 percent span stations.

  4. Instrumentation

    for Examining

    Microbial Response

    to Changes In Environmental Pressures

    NASA Astrophysics Data System (ADS)

    Blaich, J.; Storrs, A.; Wang, J.; Ouandji, C.; Arismendi, D.; Hernandez, J.; Sardesh, N.; Ibanez, C. R.; Owyang, S.; Gentry, D.

    2016-12-01

    The Automated Adaptive Directed Evolution Chamber (AADEC) is a device that allows operators to generate a micro-scale analog of real world systems that can be used to model the local-scale effects of climate change on microbial ecosystems. The AADEC uses an artificial environment to expose cultures of micro-organisms to environmental pressures, such as UV-C radiation, chemical toxins, and temperature. The AADEC autonomously exposes micro-organisms to slection pressures. This improves upon standard manual laboratory techniques: the process can take place over a longer period of time, involve more stressors, implement real-time adjustments based on the state of the population, and minimize the risk of contamination. We currently use UV-C radiation as the main selection pressure, UV-C is well studied both for its cell and DNA damaging effects as a type of selection pressure and for its related effectiveness as a mutagen; having these functions united makes it a good choice for a proof of concept. The AADEC roadmap includes expansion to different selection pressures, including heavy metal toxicity, temperature, and other forms of radiation. The AADEC uses closed-loop control to feedback the current state of the culture to the AADEC controller that modifies selection pressure intensity during experimentation, in this case culture density and growth rate. Culture density and growth rate are determined by measuring the optical density of the culture using 600 nm light. An array of 600 nm LEDs illuminate the culture and photodiodes are used to measure the shadow on the opposite side of the chamber. Previous experiments showed that we can produce a million fold increase to UV-C radiation over seven iterations. The most recent implements a microfluidic system that can expose cultures to multiple different selection pressures, perform non-survival based selection, and autonomously perform hundreds of exposure cycles. A scalable pump system gives the ability to pump in various different growth media to individual cultures and introduce chemical toxins during experimentation; AADEC can perform freeze and thaw cycles. We improved our baseline characterization by building a custom UV-C exposure hood, a shutter operates on a preset timer allowing the user to set exposure intensity consistently for multiple iterations.

  5. Evolution of Swarming Behavior Is Shaped by How Predators Attack.

    PubMed

    Olson, Randal S; Knoester, David B; Adami, Christoph

    2016-01-01

    Animal grouping behaviors have been widely studied due to their implications for understanding social intelligence, collective cognition, and potential applications in engineering, artificial intelligence, and robotics. An important biological aspect of these studies is discerning which selection pressures favor the evolution of grouping behavior. In the past decade, researchers have begun using evolutionary computation to study the evolutionary effects of these selection pressures in predator-prey models. The selfish herd hypothesis states that concentrated groups arise because prey selfishly attempt to place their conspecifics between themselves and the predator, thus causing an endless cycle of movement toward the center of the group. Using an evolutionary model of a predator-prey system, we show that how predators attack is critical to the evolution of the selfish herd. Following this discovery, we show that density-dependent predation provides an abstraction of Hamilton's original formulation of domains of danger. Finally, we verify that density-dependent predation provides a sufficient selective advantage for prey to evolve the selfish herd in response to predation by coevolving predators. Thus, our work corroborates Hamilton's selfish herd hypothesis in a digital evolutionary model, refines the assumptions of the selfish herd hypothesis, and generalizes the domain of danger concept to density-dependent predation.

  6. Selection for the best ETS (error, trend, seasonal) model to forecast weather in the Aceh Besar District

    NASA Astrophysics Data System (ADS)

    Amora Jofipasi, Chesilia; Miftahuddin; Hizir

    2018-05-01

    Weather is a phenomenon that occurs in certain areas that indicate a change in natural activity. Weather can be predicted using data in previous periods over a period. The purpose of this study is to get the best ETS model to predict the weather in Aceh Besar. The ETS model is a time series univariate forecasting method; its use focuses on trend and seasonal components. The data used are air temperature, dew point, sea level pressure, station pressure, visibility, wind speed, and sea surface temperature from January 2006 to December 2016. Based on AIC, AICc and BIC the smallest values obtained the conclusion that the ETS (M, N, A) is used to predict air temperature, and sea surface temperature, ETS (A, N, A) is used to predict dew point, sea level pressure and station pressure, ETS (A, A, N) is used to predict visibility, and ETS (A, N, N) is used to predict wind speed.

  7. Links between physical fitness and cardiovascular reactivity and recovery to psychological stressors: A meta-analysis.

    PubMed

    Forcier, Kathleen; Stroud, Laura R; Papandonatos, George D; Hitsman, Brian; Reiches, Meredith; Krishnamoorthy, Jenelle; Niaura, Raymond

    2006-11-01

    A meta-analysis of published studies with adult human participants was conducted to evaluate whether physical fitness attenuates cardiovascular reactivity and improves recovery from acute psychological stressors. Thirty-three studies met selection criteria; 18 were included in recovery analyses. Effect sizes and moderator influences were calculated by using meta-analysis software. A fixed effects model was fit initially; however, between-studies heterogeneity could not be explained even after inclusion of moderators. Therefore, to account for residual heterogeneity, a random effects model was estimated. Under this model, fit individuals showed significantly attenuated heart rate and systolic blood pressure reactivity and a trend toward attenuated diastolic blood pressure reactivity. Fit individuals also showed faster heart rate recovery, but there were no significant differences in systolic blood pressure or diastolic blood pressure recovery. No significant moderators emerged. Results have important implications for elucidating mechanisms underlying effects of fitness on cardiovascular disease and suggest that fitness may be an important confound in studies of stress reactivity. Copyright 2006 APA, all rights reserved.

  8. Composite load spectra for select space propulsion structural components

    NASA Technical Reports Server (NTRS)

    Newell, J. F.; Ho, H. W.; Kurth, R. E.

    1991-01-01

    The work performed to develop composite load spectra (CLS) for the Space Shuttle Main Engine (SSME) using probabilistic methods. The three methods were implemented to be the engine system influence model. RASCAL was chosen to be the principal method as most component load models were implemented with the method. Validation of RASCAL was performed. High accuracy comparable to the Monte Carlo method can be obtained if a large enough bin size is used. Generic probabilistic models were developed and implemented for load calculations using the probabilistic methods discussed above. Each engine mission, either a real fighter or a test, has three mission phases: the engine start transient phase, the steady state phase, and the engine cut off transient phase. Power level and engine operating inlet conditions change during a mission. The load calculation module provides the steady-state and quasi-steady state calculation procedures with duty-cycle-data option. The quasi-steady state procedure is for engine transient phase calculations. In addition, a few generic probabilistic load models were also developed for specific conditions. These include the fixed transient spike model, the poison arrival transient spike model, and the rare event model. These generic probabilistic load models provide sufficient latitude for simulating loads with specific conditions. For SSME components, turbine blades, transfer ducts, LOX post, and the high pressure oxidizer turbopump (HPOTP) discharge duct were selected for application of the CLS program. They include static pressure loads and dynamic pressure loads for all four components, centrifugal force for the turbine blade, temperatures of thermal loads for all four components, and structural vibration loads for the ducts and LOX posts.

  9. Effect of progesterone-carbachol derivative on perfusion pressure and coronary resistance in isolated rat heart: via activation of the M2 muscarinic receptor.

    PubMed

    Figueroa-Valverde, Lauro; Diaz-Cedillo, Francisco; Garcia-Cervera, Elodia; Gomez, Eduardo Pool; Lopez-Ramos, Maria

    2014-01-01

    The present study was designed to investigate the effects of progesterone-carbachol derivative on perfusion pressure and coronary resistance in rats. An additional aim was to identify the molecular mechanisms involved. The Langendorff model was used to measure perfusion pressure and coronary resistance changes in isolated rat heart after progesterone-carbachol derivative alone and after the following compounds; mifepristone (progesterone receptor blocker), yohimbine (α2 adreno-receptor antagonist), ICI 118,551 (selective β2 receptor blocker), atropine (non-selective muscarinic receptor antagonist), methoctramine (antagonist of M2 receptor) and L-NAME (inhibitor of nitric oxide synthase). The results show that progesterone-carbachol derivative [10(-9) mM] significantly decreased perfusion pressure (P=0.005) and coronary resistance (P=0.006) in isolated rat heart. Additionally, the effect of progesterone-carbachol on perfusion pressure [10(-9) to 10(-4) mM] was only blocked in the presence of methoctramine and L-NAME. These data suggest that progesterone derivative exert its effect on perfusion pressure via activation of the M2 muscarinic. In addition, this phenomenon involves stimulation of nitric oxide synthase (NOS).

  10. Influenza virus drug resistance: a time-sampled population genetics perspective.

    PubMed

    Foll, Matthieu; Poh, Yu-Ping; Renzette, Nicholas; Ferrer-Admetlla, Anna; Bank, Claudia; Shim, Hyunjin; Malaspinas, Anna-Sapfo; Ewing, Gregory; Liu, Ping; Wegmann, Daniel; Caffrey, Daniel R; Zeldovich, Konstantin B; Bolon, Daniel N; Wang, Jennifer P; Kowalik, Timothy F; Schiffer, Celia A; Finberg, Robert W; Jensen, Jeffrey D

    2014-02-01

    The challenge of distinguishing genetic drift from selection remains a central focus of population genetics. Time-sampled data may provide a powerful tool for distinguishing these processes, and we here propose approximate Bayesian, maximum likelihood, and analytical methods for the inference of demography and selection from time course data. Utilizing these novel statistical and computational tools, we evaluate whole-genome datasets of an influenza A H1N1 strain in the presence and absence of oseltamivir (an inhibitor of neuraminidase) collected at thirteen time points. Results reveal a striking consistency amongst the three estimation procedures developed, showing strongly increased selection pressure in the presence of drug treatment. Importantly, these approaches re-identify the known oseltamivir resistance site, successfully validating the approaches used. Enticingly, a number of previously unknown variants have also been identified as being positively selected. Results are interpreted in the light of Fisher's Geometric Model, allowing for a quantification of the increased distance to optimum exerted by the presence of drug, and theoretical predictions regarding the distribution of beneficial fitness effects of contending mutations are empirically tested. Further, given the fit to expectations of the Geometric Model, results suggest the ability to predict certain aspects of viral evolution in response to changing host environments and novel selective pressures.

  11. The Models and Hard Cores: Selective Acculturation and Racial Stratification in Chinese Students' School Experience in Malaysia

    ERIC Educational Resources Information Center

    Kee, Geok Hwa

    2010-01-01

    Are the academic and social experiences of Chinese Malaysian students as much an outcome of the selective acculturation strategy of their parents as the linguistic assimilation policy of the government? Driven by economic necessity on one hand and pressured by cultural preservation on the other, Chinese parents first send their sons and daughters…

  12. Population dynamics and in vitro antibody pressure of porcine parvovirus indicate a decrease in variability.

    PubMed

    Streck, André Felipe; Homeier, Timo; Foerster, Tessa; Truyen, Uwe

    2013-09-01

    To estimate the impact of porcine parvovirus (PPV) vaccines on the emergence of new phenotypes, the population dynamic history of the virus was calculated using the Bayesian Markov chain Monte Carlo method with a Bayesian skyline coalescent model. Additionally, an in vitro model was performed with consecutive passages of the 'Challenge' strain (a virulent field strain) and NADL2 strain (a vaccine strain) in a PK-15 cell line supplemented with polyclonal antibodies raised against the vaccine strain. A decrease in genetic diversity was observed in the presence of antibodies in vitro or after vaccination (as estimated by the in silico model). We hypothesized that the antibodies induced a selective pressure that may reduce the incidence of neutral selection, which should play a major role in the emergence of new mutations. In this scenario, vaccine failures and non-vaccinated populations (e.g. wild boars) may have an important impact in the emergence of new phenotypes.

  13. The brown anole dewlap revisited: do predation pressure, sexual selection, and species recognition shape among-population signal diversity?

    PubMed Central

    Van Damme, Raoul

    2018-01-01

    Animal signalling structures are amongst the most variable characteristics, as they are subjected to a diversity of selection pressures. A well-known example of a diverse signalling system in the animal kingdom is the dewlap of Anolis lizards. Dewlap characteristics can vary remarkably among and within species, and also between sexes. Although a considerable amount of studies have attempted to disentangle the functional significance of the staggering dewlap diversity in Anolis, the underlying evolutionary processes remain elusive. In this study, we focus on the contribution of biotic selective pressures in shaping geographic variation in dewlap design (size, colour, and pattern) and dewlap display behaviour at the intraspecific level. Notably, we have tried to replicate and extend previously reported results hereof in both sexes of the brown anole lizard (Anolis sagrei). To do this, we assembled a dataset consisting of 17 A. sagrei heterogeneous island populations from the Caribbean and specifically tested whether predation pressure, sexual selection, or species recognition could explain interpopulational variation in an array of dewlap characteristics. Our findings show that in neither males nor females estimates of predation pressure (island size, tail break frequency, model attack rate, presence of predatory Leiocephalus lizards) or sexual selection (sexual size dimorphism) could explain variation in dewlap design. We did find that A. sagrei males from larger islands showed higher dewlap display intensities than males from smaller islands, but the direct connection with predation pressure remains ambiguous and demands further investigation. Last, we could show indirect support for species recognition only in males, as they are more likely to have a ‘spotted’ dewlap pattern when co-occurring with a higher number of syntopic Anolis species. In conclusion, we found overall limited support for the idea that the extensive interpopulational variability in dewlap design and use in A. sagrei is mediated by variation in their biotic environment. We propose a variety of conceptual and methodological explanations for this unexpected finding. PMID:29761044

  14. Discovery of aminofurazan-azabenzimidazoles as inhibitors of Rho-kinase with high kinase selectivity and antihypertensive activity.

    PubMed

    Stavenger, Robert A; Cui, Haifeng; Dowdell, Sarah E; Franz, Robert G; Gaitanopoulos, Dimitri E; Goodman, Krista B; Hilfiker, Mark A; Ivy, Robert L; Leber, Jack D; Marino, Joseph P; Oh, Hye-Ja; Viet, Andrew Q; Xu, Weiwei; Ye, Guosen; Zhang, Daohua; Zhao, Yongdong; Jolivette, Larry J; Head, Martha S; Semus, Simon F; Elkins, Patricia A; Kirkpatrick, Robert B; Dul, Edward; Khandekar, Sanjay S; Yi, Tracey; Jung, David K; Wright, Lois L; Smith, Gary K; Behm, David J; Doe, Christopher P; Bentley, Ross; Chen, Zunxuan X; Hu, Erding; Lee, Dennis

    2007-01-11

    The discovery, proposed binding mode, and optimization of a novel class of Rho-kinase inhibitors are presented. Appropriate substitution on the 6-position of the azabenzimidazole core provided subnanomolar enzyme potency in vitro while dramatically improving selectivity over a panel of other kinases. Pharmacokinetic data was obtained for the most potent and selective examples and one (6n) has been shown to lower blood pressure in a rat model of hypertension.

  15. In silico modelling of directed evolution: Implications for experimental design and stepwise evolution.

    PubMed

    Wedge, David C; Rowe, William; Kell, Douglas B; Knowles, Joshua

    2009-03-07

    We model the process of directed evolution (DE) in silico using genetic algorithms. Making use of the NK fitness landscape model, we analyse the effects of mutation rate, crossover and selection pressure on the performance of DE. A range of values of K, the epistatic interaction of the landscape, are considered, and high- and low-throughput modes of evolution are compared. Our findings suggest that for runs of or around ten generations' duration-as is typical in DE-there is little difference between the way in which DE needs to be configured in the high- and low-throughput regimes, nor across different degrees of landscape epistasis. In all cases, a high selection pressure (but not an extreme one) combined with a moderately high mutation rate works best, while crossover provides some benefit but only on the less rugged landscapes. These genetic algorithms were also compared with a "model-based approach" from the literature, which uses sequential fixing of the problem parameters based on fitting a linear model. Overall, we find that purely evolutionary techniques fare better than do model-based approaches across all but the smoothest landscapes.

  16. Recent transonic unsteady pressure measurements at the NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Sandford, M. C.; Ricketts, R. H.; Hess, R. W.

    1985-01-01

    Four semispan wing model configurations were studied in the Transonic Dynamics Tunnel (TDT). The first model had a clipped delta planform with a circular arc airfoil, the second model had a high aspect ratio planform with a supercritical airfoil, the third model has a rectangular planform with a supercritical airfoil and the fourth model had a high aspect ratio planform with a supercritical airfoil. To generate unsteady flow, the first and third models were equipped with pitch oscillation mechanisms and the first, second and fourth models were equipped with control surface oscillation mechanisms. The fourth model was similar in planform and airfoil shape to the second model, but it is the only one of the four models that has an elastic wing structure. The unsteady pressure studies of the four models are described and some typical results for each model are presented. Comparison of selected experimental data with analytical results also are included.

  17. The 727 airplane target thrust reverser static performance model test for refanned JT8D engines

    NASA Technical Reports Server (NTRS)

    Chow, C. T. P.; Atkey, E. N.

    1974-01-01

    The results of a scale model static performance test of target thrust reverser configurations for the Pratt and Whitney Aircraft JT8D-100 series engine are presented. The objective of the test was to select a series of suitable candidate reverser configurations for the subsequent airplane model wind tunnel ingestion and flight controls tests. Test results indicate that adequate reverse thrust performance with compatible engine airflow match is achievable for the selected configurations. Tapering of the lips results in loss of performance and only minimal flow directivity. Door pressure surveys were conducted on a selected number of lip and fence configurations to obtain data to support the design of the thrust reverser system.

  18. Colour variation in cichlid fish: Developmental mechanisms, selective pressures and evolutionary consequences☆

    PubMed Central

    Maan, Martine E.; Sefc, Kristina M.

    2013-01-01

    Cichlid fishes constitute one of the most species-rich families of vertebrates. In addition to complex social behaviour and morphological versatility, they are characterised by extensive diversity in colouration, both within and between species. Here, we review the cellular and molecular mechanisms underlying colour variation in this group and the selective pressures responsible for the observed variation. We specifically address the evidence for the hypothesis that divergence in colouration is associated with the evolution of reproductive isolation between lineages. While we conclude that cichlid colours are excellent models for understanding the role of animal communication in species divergence, we also identify taxonomic and methodological biases in the current research effort. We suggest that the integration of genomic approaches with ecological and behavioural studies, across the entire cichlid family and beyond it, will contribute to the utility of the cichlid model system for understanding the evolution of biological diversity. PMID:23665150

  19. Modeling Dynamic Anisotropic Behaviour and Spall Failure in Commercial Aluminium Alloys AA7010

    NASA Astrophysics Data System (ADS)

    Mohd Nor, M. K.; Ma'at, N.; Ho, C. S.

    2018-04-01

    This paper presents a finite strain constitutive model to predict a complex elastoplastic deformation behaviour involves very high pressures and shockwaves in orthotropic materials of aluminium alloys. The previous published constitutive model is used as a reference to start the development in this work. The proposed formulation that used a new definition of Mandel stress tensor to define Hill's yield criterion and a new shock equation of state (EOS) of the generalised orthotropic pressure is further enhanced with Grady spall failure model to closely predict shockwave propagation and spall failure in the chosen commercial aluminium alloy. This hyperelastic-plastic constitutive model is implemented as a new material model in the Lawrence Livermore National Laboratory (LLNL)-DYNA3D code of UTHM's version, named Material Type 92 (Mat92). The implementations of a new EOS of the generalised orthotropic pressure including the spall failure are also discussed in this paper. The capability of the proposed constitutive model to capture the complex behaviour of the selected material is validated against range of Plate Impact Test data at 234, 450 and 895 ms-1 impact velocities.

  20. Cyclone tolerance in new world arecaceae: biogeographic variation and abiotic natural selection.

    PubMed

    Griffith, M Patrick; Noblick, Larry R; Dowe, John L; Husby, Chad E; Calonje, Michael A

    2008-10-01

    Consistent abiotic factors can affect directional selection; cyclones are abiotic phenomena with near-discrete geographic limits. The current study investigates selective pressure of cyclones on plants at the species level, testing for possible natural selection. New World Arecaceae (palms) are used as a model system, as plants with monopodial, unbranched arborescent form are most directly affected by the selective pressure of wind load. Living specimens of known provenance grown at a common site were affected by the same cyclone. Data on percentage mortality were compiled and analysed in biogeographic and phylogenetic contexts. Palms of cyclone-prone provenance exhibited a much lower (one order of magnitude) range in cyclone tolerance, and significantly lower (P < 0.001) mean percentage mortality than collections from cyclone-free areas. Palms of cyclone-free provenance had much greater variation in tolerance, and significantly greater mean percentage mortality. A test for serial independence recovered no significant phylogenetic autocorrelation of percentage mortality. Variation in cyclone tolerance in New World Arecaceae correlates with biogeography, and is not confounded with phylogeny. These results suggest natural selection of cyclone tolerance in cyclone-prone areas.

  1. The evolutionary legacy of size-selective harvesting extends from genes to populations

    PubMed Central

    Uusi-Heikkilä, Silva; Whiteley, Andrew R; Kuparinen, Anna; Matsumura, Shuichi; Venturelli, Paul A; Wolter, Christian; Slate, Jon; Primmer, Craig R; Meinelt, Thomas; Killen, Shaun S; Bierbach, David; Polverino, Giovanni; Ludwig, Arne; Arlinghaus, Robert

    2015-01-01

    Size-selective harvesting is assumed to alter life histories of exploited fish populations, thereby negatively affecting population productivity, recovery, and yield. However, demonstrating that fisheries-induced phenotypic changes in the wild are at least partly genetically determined has proved notoriously difficult. Moreover, the population-level consequences of fisheries-induced evolution are still being controversially discussed. Using an experimental approach, we found that five generations of size-selective harvesting altered the life histories and behavior, but not the metabolic rate, of wild-origin zebrafish (Danio rerio). Fish adapted to high positively size selective fishing pressure invested more in reproduction, reached a smaller adult body size, and were less explorative and bold. Phenotypic changes seemed subtle but were accompanied by genetic changes in functional loci. Thus, our results provided unambiguous evidence for rapid, harvest-induced phenotypic and evolutionary change when harvesting is intensive and size selective. According to a life-history model, the observed life-history changes elevated population growth rate in harvested conditions, but slowed population recovery under a simulated moratorium. Hence, the evolutionary legacy of size-selective harvesting includes populations that are productive under exploited conditions, but selectively disadvantaged to cope with natural selection pressures that often favor large body size. PMID:26136825

  2. A polarized low-coherence interferometry demodulation algorithm by recovering the absolute phase of a selected monochromatic frequency.

    PubMed

    Jiang, Junfeng; Wang, Shaohua; Liu, Tiegen; Liu, Kun; Yin, Jinde; Meng, Xiange; Zhang, Yimo; Wang, Shuang; Qin, Zunqi; Wu, Fan; Li, Dingjie

    2012-07-30

    A demodulation algorithm based on absolute phase recovery of a selected monochromatic frequency is proposed for optical fiber Fabry-Perot pressure sensing system. The algorithm uses Fourier transform to get the relative phase and intercept of the unwrapped phase-frequency linear fit curve to identify its interference-order, which are then used to recover the absolute phase. A simplified mathematical model of the polarized low-coherence interference fringes was established to illustrate the principle of the proposed algorithm. Phase unwrapping and the selection of monochromatic frequency were discussed in detail. Pressure measurement experiment was carried out to verify the effectiveness of the proposed algorithm. Results showed that the demodulation precision by our algorithm could reach up to 0.15kPa, which has been improved by 13 times comparing with phase slope based algorithm.

  3. Mechanics and stability of vesicles and droplets in confined spaces

    PubMed Central

    Benet, Eduard; Vernerey, Franck J.

    2017-01-01

    The permeation and trapping of soft colloidal particles in the confined space of porous media are of critical importance in cell migration studies, design of drug delivery vehicles, and colloid separation devices. Our current understanding of these processes is however limited by the lack of quantitative models that can relate how the elasticity, size, and adhesion properties of the vesicle-pore complex affect colloid transport. We address this shortcoming by introducing a semianalytical model that predicts the equilibrium shapes of a soft vesicle driven by pressure in a narrow pore. Using this approach, the problem is recast in terms of pressure and energy diagrams that characterize the vesicle stability and permeation pressures in different conditions. We particularly show that the critical permeation pressure for a vesicle arises from a compromise between the critical entry pressure and exit pressure, both of which are sensitive to geometrical features, mechanics, and adhesion. We further find that these results can be leveraged to rationally design microfluidic devices and diodes that can help characterize, select, and separate colloids based on physical properties. PMID:28085314

  4. Modeling of the Kinetics of Supercritical Fluid Extraction of Lipids from Microalgae with Emphasis on Extract Desorption

    PubMed Central

    Sovová, Helena; Nobre, Beatriz P.; Palavra, António

    2016-01-01

    Microalgae contain valuable biologically active lipophilic substances such as omega-3 fatty acids and carotenoids. In contrast to the recovery of vegetable oils from seeds, where the extraction with supercritical CO2 is used as a mild and selective method, economically viable application of this method on similarly soluble oils from microalgae requires, in most cases, much higher pressure. This paper presents and verifies hypothesis that this difference is caused by high adsorption capacity of microalgae. Under the pressures usually applied in supercritical fluid extraction from plants, microalgae bind a large fraction of the extracted oil, while under extremely high CO2 pressures their adsorption capacity diminishes and the extraction rate depends on oil solubility in supercritical CO2. A mathematical model for the extraction from microalgae was derived and applied to literature data on the extraction kinetics in order to determine model parameters. PMID:28773546

  5. Small-molecule WNK inhibition regulates cardiovascular and renal function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamada, Ken; Park, Hyi-Man; Rigel, Dean F.

    The With-No-Lysine (K) (WNK) kinases play a critical role in blood pressure regulation and body fluid and electrolyte homeostasis. Herein, we introduce the first orally bioavailable pan-WNK-kinase inhibitor, WNK463, that exploits unique structural features of the WNK kinases for both affinity and kinase selectivity. In rodent models of hypertension, WNK463 affects blood pressure and body fluid and electro-lyte homeostasis, consistent with WNK-kinase-associated physiology and pathophysiology.

  6. Highly selective deuteration of pharmaceutically relevant nitrogen-containing heterocycles: a flow chemistry approach.

    PubMed

    Ötvös, Sándor B; Mándity, István M; Fülöp, Ferenc

    2011-08-01

    A simple and efficient flow-based technique is reported for the catalytic deuteration of several model nitrogen-containing heterocyclic compounds which are important building blocks of pharmacologically active materials. A continuous flow reactor was used in combination with on-demand pressure-controlled electrolytic D(2) production. The D(2) source was D(2)O, the consumption of which was very low. The experimental set-up allows the fine-tuning of pressure, temperature, and flow rate so as to determine the optimal conditions for the deuteration reactions. The described procedure lacks most of the drawbacks of the conventional batch deuteration techniques, and additionally is highly selective and reproducible.

  7. Optimization of stable quadruped locomotion using mutual information

    NASA Astrophysics Data System (ADS)

    Silva, Pedro; Santos, Cristina P.; Polani, Daniel

    2013-10-01

    Central Pattern Generators (CPG)s have been widely used in the field of robotics to address the task of legged locomotion generation. The adequate configuration of these structures for a given platform can be accessed through evolutionary strategies, according to task dependent selection pressures. Information driven evolution, accounts for information theoretical measures as selection pressures, as an alternative to a fully task dependent selection pressure. In this work we exploit this concept and evaluate the use of mean Mutual Information, as a selection pressure towards a CPG configuration capable of faster, yet more coordinated and stabler locomotion than when only a task dependent selection pressure is used.

  8. A human model of restricted upper esophageal sphincter opening and its pharyngeal and UES deglutitive pressure phenomena

    PubMed Central

    Jiao, Hongmei; Mei, Ling; Sharma, Tarun; Kern, Mark; Sanvanson, Patrick

    2016-01-01

    Oropharyngeal dysphagia due to upper esophageal sphincter (UES) dysfunction is commonly encountered in the clinical setting. Selective experimental perturbation of various components of the deglutitive apparatus can provide an opportunity to improve our understanding of the swallowing physiology and pathophysiology. The aim is to characterize the pharyngeal and UES deglutitive pressure phenomena in an experimentally induced restriction of UES opening in humans. We studied 14 volunteers without any dysphagic symptoms (7 men, 66 ± 11 yr) but with various supraesophageal reflux symptoms. To induce UES restriction, we used a handmade device that with adjustment could selectively apply 0, 20, 30, or 40 mmHg pressure perpendicularly to the cricoid cartilage. Deglutitive pharyngeal and UES pressure phenomena were determined during dry and 5- and 10-ml water swallows × 3 for each of the UES perturbations. External cricoid pressure against the UES resulted in a significant increase in hypopharyngeal intrabolus pressure and UES nadir deglutitive relaxation pressure for all tested swallowed volumes (P < 0.05). Application of external cricoid pressure increased the length of the UES high pressure zone from 2.5 ± 0.2 to 3.1 ± 0.2, 3.5 ± 0.1, and 3.7 ± 0.1 cm for 20, 30, and 40 mmHg cricoid pressure, respectively (P < 0.05). External cricoid pressure had no significant effect on pharyngeal peristalsis. On the other hand, irrespective of external cricoid pressure deglutitive velopharyngeal contractile integral progressively increased with increased swallowed volumes (P < 0.05). In conclusion, acute experimental restriction of UES opening by external cricoid pressure manifests the pressure characteristics of increased resistance to UES transsphincteric flow observed clinically without affecting the pharyngeal peristaltic contractile function. PMID:27198193

  9. The role of protozoa-driven selection in shaping human genetic variability.

    PubMed

    Pozzoli, Uberto; Fumagalli, Matteo; Cagliani, Rachele; Comi, Giacomo P; Bresolin, Nereo; Clerici, Mario; Sironi, Manuela

    2010-03-01

    Protozoa exert a strong selective pressure in humans. The selection signatures left by these pathogens can be exploited to identify genetic modulators of infection susceptibility. We show that protozoa diversity in different geographic locations is a good measure of protozoa-driven selective pressure; protozoa diversity captured selection signatures at known malaria resistance loci and identified several selected single nucleotide polymorphisms in immune and hemolytic anemia genes. A genome-wide search enabled us to identify 5180 variants mapping to 1145 genes that are subjected to protozoa-driven selective pressure. We provide a genome-wide estimate of protozoa-driven selective pressure and identify candidate susceptibility genes for protozoa-borne diseases. Copyright 2010 Elsevier Ltd. All rights reserved.

  10. Aerodynamic stability analysis of NASA J85-13/planar pressure pulse generator installation

    NASA Technical Reports Server (NTRS)

    Chung, K.; Hosny, W. M.; Steenken, W. G.

    1980-01-01

    A digital computer simulation model for the J85-13/Planar Pressure Pulse Generator (P3 G) test installation was developed by modifying an existing General Electric compression system model. This modification included the incorporation of a novel method for describing the unsteady blade lift force. This approach significantly enhanced the capability of the model to handle unsteady flows. In addition, the frequency response characteristics of the J85-13/P3G test installation were analyzed in support of selecting instrumentation locations to avoid standing wave nodes within the test apparatus and thus, low signal levels. The feasibility of employing explicit analytical expression for surge prediction was also studied.

  11. Animal Model Selection for Inhalational HCN Exposure

    DTIC Science & Technology

    2016-08-01

    temperature and pressure). Health Effects from CN Exposure Cardiovascular responses to CN are complex and include precordial pain and EKG abnormalities...thyroid) may be affected, the brain is selectively sensitive given its high oxygen consumption and low rhodanese content, an enzyme involved in CN...efficiency of oxygenation while in dorsal recumbency under anesthesia, is decreased slightly compared to humans. The alveolar ventilation and perfusion (VA/Q

  12. Jet-induced ground effects on a parametric flat-plate model in hover

    NASA Technical Reports Server (NTRS)

    Wardwell, Douglas A.; Hange, Craig E.; Kuhn, Richard E.; Stewart, Vearl R.

    1993-01-01

    The jet-induced forces generated on short takeoff and vertical landing (STOVL) aircraft when in close proximity to the ground can have a significant effect on aircraft performance. Therefore, accurate predictions of these aerodynamic characteristics are highly desirable. Empirical procedures for estimating jet-induced forces during the vertical/short takeoff and landing (V/STOL) portions of the flight envelope are currently limited in accuracy. The jet-induced force data presented significantly add to the current STOVL configurations data base. Further development of empirical prediction methods for jet-induced forces, to provide more configuration diversity and improved overall accuracy, depends on the viability of this STOVL data base. The data base may also be used to validate computational fluid dynamics (CFD) analysis codes. The hover data obtained at the NASA Ames Jet Calibration and Hover Test (JCAHT) facility for a parametric flat-plate model is presented. The model tested was designed to allow variations in the planform aspect ratio, number of jets, nozzle shape, and jet location. There were 31 different planform/nozzle configurations tested. Each configuration had numerous pressure taps installed to measure the pressures on the undersurface of the model. All pressure data along with the balance jet-induced lift and pitching-moment increments are tabulated. For selected runs, pressure data are presented in the form of contour plots that show lines of constant pressure coefficient on the model undersurface. Nozzle-thrust calibrations and jet flow-pressure survey information are also provided.

  13. Oil shale combustor model developed by Greek researchers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1986-09-01

    Work carried out in the Department of Chemical Engineering at the University of Thessaloniki, Thessaloniki, Greece has resulted in a model for the combustion of retorted oil shale in a fluidized bed combustor. The model is generally applicable to any hot-solids retorting process, whereby raw oil shale is retorted by mixing with a hot solids stream (usually combusted spent shale), and then the residual carbon is burned off the spent shale in a fluidized bed. Based on their modelling work, the following conclusions were drawn by the researchers. (1) For the retorted particle size distribution selected (average particle diameter 1600more » microns) complete carbon conversion is feasible at high pressures (2.7 atmosphere) and over the entire temperature range studied (894 to 978 K). (2) Bubble size was found to have an important effect, especially at conditions where reaction rates are high (high temperature and pressure). (3) Carbonate decomposition increases with combustor temperature and residence time. Complete carbon conversion is feasible at high pressures (2.7 atmosphere) with less than 20 percent carbonate decomposition. (4) At the preferred combustor operating conditions (high pressure, low temperature) the main reaction is dolomite decomposition while calcite decomposition is negligible. (5) Recombination of CO/sub 2/ with MgO occurs at low temperatures, high pressures, and long particle residence times.« less

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leskovar, Matjaz; Koncar, Bostjan

    An ex-vessel steam explosion may occur when during a severe reactor accident the reactor vessel fails and the molten core pours into the water in the reactor cavity. A steam explosion is a fuel coolant interaction process where the heat transfer from the melt to water is so intense and rapid that the timescale for heat transfer is shorter than the timescale for pressure relief. This can lead to the formation of shock waves and production of missiles at later times, during the expansion of the highly pressurized water vapor, that may endanger surrounding structures. In contrast to specialized steammore » explosion CFD codes, where the steam explosion is modeled on micro-scale using fundamental averaged multiphase flow conservation equations, in the presented approach the steam explosion is modeled in a simplified manner as an expanding high-pressure pre-mixture of dispersed molten fuel, liquid water and vapor. Applying the developed steam explosion model, a comprehensive analysis of the ex-vessel steam explosion in a typical PWR reactor cavity was done using the CFD code CFX-10. At four selected locations, which are of importance for the assessment of the vulnerability of cavity structures, the pressure histories were recorded and the corresponding pressure impulses calculated. The pressure impulses determine the destructive potential of the steam explosion and represent the input for the structural mechanical analysis of the cavity structures. The simulation results show that the pressure impulses depend mainly on the steam explosion energy conversion ratio, whereas the influence of the pre-mixture vapor volume fraction, which is a parameter in our model and determines the maximum steam explosion pressure, is not significant. (authors)« less

  15. A spatial model to improve site selection for seagrass restoration in shallow boating environments.

    PubMed

    Hotaling-Hagan, Althea; Swett, Robert; Ellis, L Rex; Frazer, Thomas K

    2017-01-15

    Due to widespread and continuing seagrass loss, restoration attempts occur worldwide. This article presents a geospatial modeling technique that ranks the suitability of sites for restoration based on light availability and boating activity, two factors cited in global studies of seagrass loss and restoration failures. The model presented here was created for Estero Bay, Florida and is a predictive model of light availability and boating pressure to aid seagrass restoration efforts. The model is adaptive and can be parameterized for different locations and updated as additional data is collected and knowledge of how factors impact seagrass improves. Light data used for model development were collected over one year from 50 sites throughout the bay. Coupled with high resolution bathymetric data, bottom mean light availability was predicted throughout the bay. Data collection throughout the year also allowed for prediction of light variability at sites, a possible indicator of seagrass growth and survival. Additionally, survey data on boating activities were used to identify areas, outside of marked navigation channels, that receive substantial boating pressure and are likely poor candidate sites for seagrass restoration. The final map product identifies areas where the light environment was suitable for seagrasses and boating pressure was low. A composite map showing the persistence of seagrass coverage in the study area over four years, between 1999 and 2006, was used to validate the model. Eighty-nine percent of the area where seagrass persisted (had been mapped all four years) was ranked as suitable for restoration: 42% with the highest rank (7), 28% with a rank of 6, and 19% with a rank of 5. The results show that the model is a viable tool for selection of seagrass restoration sites in Florida and elsewhere. With knowledge of the light environment and boating patterns, managers will be better equipped to set seagrass restoration and water quality improvement targets and select sites for restoration. The modeling approach outlined here is broadly applicable and will be of value to a large and diverse suite of scientists and marine resource managers. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Development of pressure containment and damage tolerance technology for composite fuselage structures in large transport aircraft

    NASA Technical Reports Server (NTRS)

    Smith, P. J.; Thomson, L. W.; Wilson, R. D.

    1986-01-01

    NASA sponsored composites research and development programs were set in place to develop the critical engineering technologies in large transport aircraft structures. This NASA-Boeing program focused on the critical issues of damage tolerance and pressure containment generic to the fuselage structure of large pressurized aircraft. Skin-stringer and honeycomb sandwich composite fuselage shell designs were evaluated to resolve these issues. Analyses were developed to model the structural response of the fuselage shell designs, and a development test program evaluated the selected design configurations to appropriate load conditions.

  17. Large eddy simulation of shock train in a convergent-divergent nozzle

    NASA Astrophysics Data System (ADS)

    Mousavi, Seyed Mahmood; Roohi, Ehsan

    2014-12-01

    This paper discusses the suitability of the Large Eddy Simulation (LES) turbulence modeling for the accurate simulation of the shock train phenomena in a convergent-divergent nozzle. To this aim, we selected an experimentally tested geometry and performed LES simulation for the same geometry. The structure and pressure recovery inside the shock train in the nozzle captured by LES model are compared with the experimental data, analytical expressions and numerical solutions obtained using various alternative turbulence models, including k-ɛ RNG, k-ω SST, and Reynolds stress model (RSM). Comparing with the experimental data, we observed that the LES solution not only predicts the "locations of the first shock" precisely, but also its results are quite accurate before and after the shock train. After validating the LES solution, we investigate the effects of the inlet total pressure on the shock train starting point and length. The effects of changes in the back pressure, nozzle inlet angle (NIA) and wall temperature on the behavior of the shock train are investigated by details.

  18. Inhibition of decay fungi using cotton cellulose hydrolysis as a model for wood decay

    Treesearch

    Frederick Green

    2000-01-01

    Environmental pressures to replace chromium and arsenic in fixed waterborne preservatives have been increasing. Potential inhibitors of brown-, white- and soft-rot fungi need to be evaluated as alternative preservatives by screening and testing in, in vitro model systems. This paper reports the inhibition of cellulose depolymerization and weight loss of selected decay...

  19. Local plantar pressure relief in therapeutic footwear: design guidelines from finite element models.

    PubMed

    Erdemir, Ahmet; Saucerman, Jeffrey J; Lemmon, David; Loppnow, Bryan; Turso, Brie; Ulbrecht, Jan S; Cavanagh, Peter Re

    2005-09-01

    A major goal of therapeutic footwear in patients with pain or those at risk for skin injury is to relieve focal loading under prominent metatarsal heads. One frequent approach is to place plugs of compliant material into the midsole of the shoe. This study investigated 36 plug designs, a combination of three materials, six geometries, and two placements using a two-dimensional (2D) finite element model. Realistic loading conditions were obtained from plantar pressures (PP) recorded during walking in five subjects who wore control midsoles manufactured using Microcell Puff. Measured peak pressures underneath the second metatarsal head were similar to the results of the control model. PP obtained from simulations with the plugs built into a firm midsole were compared to the simulation results of the control midsole. Large plugs (e.g. 40 mm width), made out of Microcell Puff Lite or Plastazote Medium, placed at peak pressure sites, resulted in highest reductions in peak pressures (18-28%). Smaller plugs benefited from tapering when placed at high pressure areas. Case studies were completed on a healthy male subject and a diabetic female patient to address the efficacy of a plug design favored by our simulations (pressure based placement, 40 x 20 mm, Plastazote Medium). Successful reductions of second metatarsal head pressures were observed with a mediolateral load redistribution that was not represented by our model. 2D computer simulations allowed systematic investigation of plug properties without the need for high volume experimentation on human subjects and established basic guidelines for plug selection. In particular, plugs that are placed based on plantar pressure measurements were proven to be more effective when compared to those positioned according to the projection of the bony landmark on the foot-shoe plantar contact area.

  20. A Novel Rat Model to Study the Role of Intracranial Pressure Modulation on Optic Neuropathies

    PubMed Central

    Roy Chowdhury, Uttio; Holman, Bradley H.; Fautsch, Michael P.

    2013-01-01

    Reduced intracranial pressure is considered a risk factor for glaucomatous optic neuropathies. All current data supporting intracranial pressure as a glaucoma risk factor comes from retrospective and prospective studies. Unfortunately, there are no relevant animal models for investigating this link experimentally. Here we report a novel rat model that can be used to study the role of intracranial pressure modulation on optic neuropathies. Stainless steel cannulae were inserted into the cisterna magna or the lateral ventricle of Sprague-Dawley and Brown Norway rats. The cannula was attached to a pressure transducer connected to a computer that recorded intracranial pressure in real-time. Intracranial pressure was modulated manually by adjusting the height of a column filled with artificial cerebrospinal fluid in relation to the animal’s head. After data collection the morphological appearance of the brain tissue was analyzed. Based on ease of surgery and ability to retain the cannula, Brown Norway rats with the cannula implanted in the lateral ventricle were selected for further studies. Baseline intracranial pressure for rats was 5.5±1.5 cm water (n=5). Lowering of the artificial cerebrospinal fluid column by 2 cm and 4 cm below head level reduced ICP to 3.7±1.0 cm water (n=5) and 1.5±0.6 cm water (n=4), a reduction of 33.0% and 72.7% below baseline. Raising the cerebrospinal fluid column by 4 cm increased ICP to 7.5±1.4 cm water (n=2) corresponding to a 38.3% increase in intracranial pressure. Histological studies confirmed correct cannula placement and indicated minimal invasive damage to brain tissues. Our data suggests that the intraventricular cannula model is a unique and viable model that can be used to study the effect of altered intracranial pressure on glaucomatous optic neuropathies. PMID:24367501

  1. Extraction of S- and N-compounds from the mixture of hydrocarbons by ionic liquids as selective solvents.

    PubMed

    Gabrić, Beata; Sander, Aleksandra; Cvjetko Bubalo, Marina; Macut, Dejan

    2013-01-01

    Liquid-liquid extraction is an alternative method that can be used for desulfurization and denitrification of gasoline and diesel fuels. Recent approaches employ different ionic liquids as selective solvents, due to their general immiscibility with gasoline and diesel, negligible vapor pressure, and high selectivity to sulfur- and nitrogen-containing compounds. For that reason, five imidazolium-based ionic liquids and one pyridinium-based ionic liquid were selected for extraction of thiophene, dibenzothiophene, and pyridine from two model solutions. The influences of hydrodynamic conditions, mass ratio, and number of stages were investigated. Increasing the mass ratio of ionic liquid/model fuel and multistage extraction promotes the desulfurization and denitrification abilities of the examined ionic liquids. All selected ionic liquids can be reused and regenerated by means of vacuum evaporation.

  2. Extraction of S- and N-Compounds from the Mixture of Hydrocarbons by Ionic Liquids as Selective Solvents

    PubMed Central

    Gabrić, Beata; Sander, Aleksandra; Cvjetko Bubalo, Marina; Macut, Dejan

    2013-01-01

    Liquid-liquid extraction is an alternative method that can be used for desulfurization and denitrification of gasoline and diesel fuels. Recent approaches employ different ionic liquids as selective solvents, due to their general immiscibility with gasoline and diesel, negligible vapor pressure, and high selectivity to sulfur- and nitrogen-containing compounds. For that reason, five imidazolium-based ionic liquids and one pyridinium-based ionic liquid were selected for extraction of thiophene, dibenzothiophene, and pyridine from two model solutions. The influences of hydrodynamic conditions, mass ratio, and number of stages were investigated. Increasing the mass ratio of ionic liquid/model fuel and multistage extraction promotes the desulfurization and denitrification abilities of the examined ionic liquids. All selected ionic liquids can be reused and regenerated by means of vacuum evaporation. PMID:23843736

  3. Monte Carlo simulations of parapatric speciation

    NASA Astrophysics Data System (ADS)

    Schwämmle, V.; Sousa, A. O.; de Oliveira, S. M.

    2006-06-01

    Parapatric speciation is studied using an individual-based model with sexual reproduction. We combine the theory of mutation accumulation for biological ageing with an environmental selection pressure that varies according to the individuals geographical positions and phenotypic traits. Fluctuations and genetic diversity of large populations are crucial ingredients to model the features of evolutionary branching and are intrinsic properties of the model. Its implementation on a spatial lattice gives interesting insights into the population dynamics of speciation on a geographical landscape and the disruptive selection that leads to the divergence of phenotypes. Our results suggest that assortative mating is not an obligatory ingredient to obtain speciation in large populations at low gene flow.

  4. Generational distribution of a Candida glabrata population: Resilient old cells prevail, while younger cells dominate in the vulnerable host.

    PubMed

    Bouklas, Tejas; Alonso-Crisóstomo, Luz; Székely, Tamás; Diago-Navarro, Elizabeth; Orner, Erika P; Smith, Kalie; Munshi, Mansa A; Del Poeta, Maurizio; Balázsi, Gábor; Fries, Bettina C

    2017-05-01

    Similar to other yeasts, the human pathogen Candida glabrata ages when it undergoes asymmetric, finite cell divisions, which determines its replicative lifespan. We sought to investigate if and how aging changes resilience of C. glabrata populations in the host environment. Our data demonstrate that old C. glabrata are more resistant to hydrogen peroxide and neutrophil killing, whereas young cells adhere better to epithelial cell layers. Consequently, virulence of old compared to younger C. glabrata cells is enhanced in the Galleria mellonella infection model. Electron microscopy images of old C. glabrata cells indicate a marked increase in cell wall thickness. Comparison of transcriptomes of old and young C. glabrata cells reveals differential regulation of ergosterol and Hog pathway associated genes as well as adhesion proteins, and suggests that aging is accompanied by remodeling of the fungal cell wall. Biochemical analysis supports this conclusion as older cells exhibit a qualitatively different lipid composition, leading to the observed increased emergence of fluconazole resistance when grown in the presence of fluconazole selection pressure. Older C. glabrata cells accumulate during murine and human infection, which is statistically unlikely without very strong selection. Therefore, we tested the hypothesis that neutrophils constitute the predominant selection pressure in vivo. When we altered experimentally the selection pressure by antibody-mediated removal of neutrophils, we observed a significantly younger pathogen population in mice. Mathematical modeling confirmed that differential selection of older cells is sufficient to cause the observed demographic shift in the fungal population. Hence our data support the concept that pathogenesis is affected by the generational age distribution of the infecting C. glabrata population in a host. We conclude that replicative aging constitutes an emerging trait, which is selected by the host and may even play an unanticipated role in the transition from a commensal to a pathogen state.

  5. Likelihood analysis of the chalcone synthase genes suggests the role of positive selection in morning glories (Ipomoea).

    PubMed

    Yang, Ji; Gu, Hongya; Yang, Ziheng

    2004-01-01

    Chalcone synthase (CHS) is a key enzyme in the biosynthesis of flavonoides, which are important for the pigmentation of flowers and act as attractants to pollinators. Genes encoding CHS constitute a multigene family in which the copy number varies among plant species and functional divergence appears to have occurred repeatedly. In morning glories (Ipomoea), five functional CHS genes (A-E) have been described. Phylogenetic analysis of the Ipomoea CHS gene family revealed that CHS A, B, and C experienced accelerated rates of amino acid substitution relative to CHS D and E. To examine whether the CHS genes of the morning glories underwent adaptive evolution, maximum-likelihood models of codon substitution were used to analyze the functional sequences in the Ipomoea CHS gene family. These models used the nonsynonymous/synonymous rate ratio (omega = d(N)/ d(S)) as an indicator of selective pressure and allowed the ratio to vary among lineages or sites. Likelihood ratio test suggested significant variation in selection pressure among amino acid sites, with a small proportion of them detected to be under positive selection along the branches ancestral to CHS A, B, and C. Positive Darwinian selection appears to have promoted the divergence of subfamily ABC and subfamily DE and is at least partially responsible for a rate increase following gene duplication.

  6. Modeling of sorption processes on solid-phase ion-exchangers

    NASA Astrophysics Data System (ADS)

    Dorofeeva, Ludmila; Kuan, Nguyen Anh

    2018-03-01

    Research of alkaline elements separation on solid-phase ion-exchangers is carried out to define the selectivity coefficients and height of an equivalent theoretical stage for both continuous and stepwise filling of column by ionite. On inorganic selective sorbents the increase in isotope enrichment factor up to 0.0127 is received. Also, parametrical models that are adequately describing dependence of the pressure difference and the magnitude expansion in the ion-exchange layer from the flow rate and temperature have been obtained. The concentration rate value under the optimum realization conditions of process and depending on type of a selective material changes in a range 1.021÷1.092. Calculated results show agreement with experimental data.

  7. Wavenumber-frequency Spectra of Pressure Fluctuations Measured via Fast Response Pressure Sensitive Paint

    NASA Technical Reports Server (NTRS)

    Panda, J.; Roozeboom, N. H.; Ross, J. C.

    2016-01-01

    The recent advancement in fast-response Pressure-Sensitive Paint (PSP) allows time-resolved measurements of unsteady pressure fluctuations from a dense grid of spatial points on a wind tunnel model. This capability allows for direct calculations of the wavenumber-frequency (k-?) spectrum of pressure fluctuations. Such data, useful for the vibro-acoustics analysis of aerospace vehicles, are difficult to obtain otherwise. For the present work, time histories of pressure fluctuations on a flat plate subjected to vortex shedding from a rectangular bluff-body were measured using PSP. The light intensity levels in the photographic images were then converted to instantaneous pressure histories by applying calibration constants, which were calculated from a few dynamic pressure sensors placed at selective points on the plate. Fourier transform of the time-histories from a large number of spatial points provided k-? spectra for pressure fluctuations. The data provides first glimpse into the possibility of creating detailed forcing functions for vibro-acoustics analysis of aerospace vehicles, albeit for a limited frequency range.

  8. Carrie Farberow | NREL

    Science.gov Websites

    important in addressing energy and environmental challenges Elucidating reaction mechanisms using combined selectivity under reaction conditions Developing improved models to bridge the pressure gap and materials gap Identity," ACS Catalysis (2016) "Density Functional Theory Calculations and Analysis of Reaction

  9. Numerical simulation of the plantar pressure distribution in the diabetic foot during the push-off stance.

    PubMed

    Actis, Ricardo L; Ventura, Liliana B; Smith, Kirk E; Commean, Paul K; Lott, Donovan J; Pilgram, Thomas K; Mueller, Michael J

    2006-08-01

    The primary objective of conservative care for the diabetic foot is to protect the foot from excessive pressures. Pressure reduction and redistribution may be achieved by designing and fabricating orthotic devices based on foot structure, tissue mechanics, and external loads on the diabetic foot. The purpose of this paper is to describe the process used for the development of patient-specific mathematical models of the second and third rays of the foot, their solution by the finite element method, and their sensitivity to model parameters and assumptions. We hypothesized that the least complex model to capture the pressure distribution in the region of the metatarsal heads would include the bony structure segmented as toe, metatarsal and support, with cartilage between the bones, plantar fascia and soft tissue. To check the hypothesis, several models were constructed with different levels of details. The process of numerical simulation is comprised of three constituent parts: model definition, numerical solution and prediction. In this paper the main considerations relating model selection and computation of approximate solutions by the finite element method are considered. The fit of forefoot plantar pressures estimated using the FEA models and those explicitly tested were good as evidenced by high Pearson correlations (r=0.70-0.98) and small bias and dispersion. We concluded that incorporating bone support, metatarsal and toes with linear material properties, tendon and fascia with linear material properties, soft tissue with nonlinear material properties, is sufficient for the determination of the pressure distribution in the metatarsal head region in the push-off position, both barefoot and with shoe and total contact insert. Patient-specific examples are presented.

  10. A model of directional selection applied to the evolution of drug resistance in HIV-1.

    PubMed

    Seoighe, Cathal; Ketwaroo, Farahnaz; Pillay, Visva; Scheffler, Konrad; Wood, Natasha; Duffet, Rodger; Zvelebil, Marketa; Martinson, Neil; McIntyre, James; Morris, Lynn; Hide, Winston

    2007-04-01

    Understanding how pathogens acquire resistance to drugs is important for the design of treatment strategies, particularly for rapidly evolving viruses such as HIV-1. Drug treatment can exert strong selective pressures and sites within targeted genes that confer resistance frequently evolve far more rapidly than the neutral rate. Rapid evolution at sites that confer resistance to drugs can be used to help elucidate the mechanisms of evolution of drug resistance and to discover or corroborate novel resistance mutations. We have implemented standard maximum likelihood methods that are used to detect diversifying selection and adapted them for use with serially sampled reverse transcriptase (RT) coding sequences isolated from a group of 300 HIV-1 subtype C-infected women before and after single-dose nevirapine (sdNVP) to prevent mother-to-child transmission. We have also extended the standard models of codon evolution for application to the detection of directional selection. Through simulation, we show that the directional selection model can provide a substantial improvement in sensitivity over models of diversifying selection. Five of the sites within the RT gene that are known to harbor mutations that confer resistance to nevirapine (NVP) strongly supported the directional selection model. There was no evidence that other mutations that are known to confer NVP resistance were selected in this cohort. The directional selection model, applied to serially sampled sequences, also had more power than the diversifying selection model to detect selection resulting from factors other than drug resistance. Because inference of selection from serial samples is unlikely to be adversely affected by recombination, the methods we describe may have general applicability to the analysis of positive selection affecting recombining coding sequences when serially sampled data are available.

  11. Evaluation of the impact of H2O, O2, and SO2 on postcombustion CO2 capture in metal-organic frameworks.

    PubMed

    Yu, Jiamei; Ma, Yuguang; Balbuena, Perla B

    2012-05-29

    Molecular modeling methods are used to estimate the influence of impurity species: water, O(2), and SO(2) in flue gas mixtures present in postcombustion CO(2) capture using a metal organic framework, HKUST-1, as a model sorbent material. Coordinated and uncoordinated water effects on CO(2) capture are analyzed. Increase of CO(2) adsorption is observed for both cases, which can be attributed to the enhanced binding energy between CO(2) and HKUST-1 due to the introduction of a small amount of water. Density functional theory calculations indicate that the binding energy between CO(2) and HKUST-1 with coordinated water is ~1 kcal/mol higher than that without coordinated water. It is found that the improvement of CO(2)/N(2) selectivity induced by coordinated water may mainly be attributed to the increased CO(2) adsorption on the hydrated HKUST-1. On the other hand, the enhanced selectivity induced by uncoordinated water in the flue gas mixture can be explained on the basis of the competition of adsorption sites between water and CO(2) (N(2)). At low pressures, a significant CO(2)/N(2) selectivity increase is due to the increase of CO(2) adsorption and decrease of N(2) adsorption as a consequence of competition of adsorption sites between water and N(2). However, with more water molecules adsorbed at higher pressures, the competition between water and CO(2) leads to the decrease of CO(2) adsorption capacity. Therefore, high pressure operation should be avoided in HKUST-1 sorbents for CO(2) capture. In addition, the effects of O(2) and SO(2) on CO(2) capture in HKUST-1 are investigated: The CO(2)/N(2) selectivity does not change much even with relatively high concentrations of O(2) in the flue gas (up to 8%). A slightly lower CO(2)/N(2) selectivity of a CO(2)/N(2)/H(2)O/SO(2) mixture is observed compared with that in a CO(2)/N(2)/H(2)O mixture, especially at high pressures, due to the strong SO(2) binding with HKUST-1.

  12. Sensor-model prediction, monitoring and in-situ control of liquid RTM advanced fiber architecture composite processing

    NASA Technical Reports Server (NTRS)

    Kranbuehl, D.; Kingsley, P.; Hart, S.; Loos, A.; Hasko, G.; Dexter, B.

    1992-01-01

    In-situ frequency dependent electromagnetic sensors (FDEMS) and the Loos resin transfer model have been used to select and control the processing properties of an epoxy resin during liquid pressure RTM impregnation and cure. Once correlated with viscosity and degree of cure the FDEMS sensor monitors and the RTM processing model predicts the reaction advancement of the resin, viscosity and the impregnation of the fabric. This provides a direct means for predicting, monitoring, and controlling the liquid RTM process in-situ in the mold throughout the fabrication process and the effects of time, temperature, vacuum and pressure. Most importantly, the FDEMS-sensor model system has been developed to make intelligent decisions, thereby automating the liquid RTM process and removing the need for operator direction.

  13. Synthesis of capillary pressure curves from post-stack seismic data with the use of intelligent estimators: A case study from the Iranian part of the South Pars gas field, Persian Gulf Basin

    NASA Astrophysics Data System (ADS)

    Golsanami, Naser; Kadkhodaie-Ilkhchi, Ali; Erfani, Amir

    2015-01-01

    Capillary pressure curves are important data for reservoir rock typing, analyzing pore throat distribution, determining height above free water level, and reservoir simulation. Laboratory experiments provide accurate data, however they are expensive, time-consuming and discontinuous through the reservoir intervals. The current study focuses on synthesizing artificial capillary pressure (Pc) curves from seismic attributes with the use of artificial intelligent systems including Artificial Neural Networks (ANNs), Fuzzy logic (FL) and Adaptive Neuro-Fuzzy Inference Systems (ANFISs). The synthetic capillary pressure curves were achieved by estimating pressure values at six mercury saturation points. These points correspond to mercury filled pore volumes of core samples (Hg-saturation) at 5%, 20%, 35%, 65%, 80%, and 90% saturations. To predict the synthetic Pc curve at each saturation point, various FL, ANFIS and ANN models were constructed. The varying neural network models differ in their training algorithm. Based on the performance function, the most accurately functioning models were selected as the final solvers to do the prediction process at each of the above-mentioned mercury saturation points. The constructed models were then tested at six depth points of the studied well which were already unforeseen by the models. The results show that the Fuzzy logic and neuro-fuzzy models were not capable of making reliable estimations, while the predictions from the ANN models were satisfyingly trustworthy. The obtained results showed a good agreement between the laboratory derived and synthetic capillary pressure curves. Finally, a 3D seismic cube was captured for which the required attributes were extracted and the capillary pressure cube was estimated by using the developed models. In the next step, the synthesized Pc cube was compared with the seismic cube and an acceptable correspondence was observed.

  14. Modeling and multi-response optimization of pervaporation of organic aqueous solutions using desirability function approach.

    PubMed

    Cojocaru, C; Khayet, M; Zakrzewska-Trznadel, G; Jaworska, A

    2009-08-15

    The factorial design of experiments and desirability function approach has been applied for multi-response optimization in pervaporation separation process. Two organic aqueous solutions were considered as model mixtures, water/acetonitrile and water/ethanol mixtures. Two responses have been employed in multi-response optimization of pervaporation, total permeate flux and organic selectivity. The effects of three experimental factors (feed temperature, initial concentration of organic compound in feed solution, and downstream pressure) on the pervaporation responses have been investigated. The experiments were performed according to a 2(3) full factorial experimental design. The factorial models have been obtained from experimental design and validated statistically by analysis of variance (ANOVA). The spatial representations of the response functions were drawn together with the corresponding contour line plots. Factorial models have been used to develop the overall desirability function. In addition, the overlap contour plots were presented to identify the desirability zone and to determine the optimum point. The optimal operating conditions were found to be, in the case of water/acetonitrile mixture, a feed temperature of 55 degrees C, an initial concentration of 6.58% and a downstream pressure of 13.99 kPa, while for water/ethanol mixture a feed temperature of 55 degrees C, an initial concentration of 4.53% and a downstream pressure of 9.57 kPa. Under such optimum conditions it was observed experimentally an improvement of both the total permeate flux and selectivity.

  15. Fiber-optic instrumentation: Cryogenic sensor model description. [for measurement of conditions in cryogenic liquid propellant tanks

    NASA Technical Reports Server (NTRS)

    Sharma, M. M.

    1979-01-01

    An assessment and determination of technology requirements for developing a demonstration model to evaluate feasibility of practical cryogenic liquid level, pressure, and temperature sensors is presented. The construction of a demonstration model to measure characteristics of the selected sensor and to develop test procedures are discussed as well as the development of an appropriate electronic subsystem to operate the sensors.

  16. Changing selective pressure during antigenic changes in human influenza H3.

    PubMed

    Blackburne, Benjamin P; Hay, Alan J; Goldstein, Richard A

    2008-05-02

    The rapid evolution of influenza viruses presents difficulties in maintaining the optimal efficiency of vaccines. Amino acid substitutions result in antigenic drift, a process whereby antisera raised in response to one virus have reduced effectiveness against future viruses. Interestingly, while amino acid substitutions occur at a relatively constant rate, the antigenic properties of H3 move in a discontinuous, step-wise manner. It is not clear why this punctuated evolution occurs, whether this represents simply the fact that some substitutions affect these properties more than others, or if this is indicative of a changing relationship between the virus and the host. In addition, the role of changing glycosylation of the haemagglutinin in these shifts in antigenic properties is unknown. We analysed the antigenic drift of HA1 from human influenza H3 using a model of sequence change that allows for variation in selective pressure at different locations in the sequence, as well as at different parts of the phylogenetic tree. We detect significant changes in selective pressure that occur preferentially during major changes in antigenic properties. Despite the large increase in glycosylation during the past 40 years, changes in glycosylation did not correlate either with changes in antigenic properties or with significantly more rapid changes in selective pressure. The locations that undergo changes in selective pressure are largely in places undergoing adaptive evolution, in antigenic locations, and in locations or near locations undergoing substitutions that characterise the change in antigenicity of the virus. Our results suggest that the relationship of the virus to the host changes with time, with the shifts in antigenic properties representing changes in this relationship. This suggests that the virus and host immune system are evolving different methods to counter each other. While we are able to characterise the rapid increase in glycosylation of the haemagglutinin during time in human influenza H3, an increase not present in influenza in birds, this increase seems unrelated to the observed changes in antigenic properties.

  17. High-pressure metamorphism in the southern New England Orogen: Implications for long-lived accretionary orogenesis in eastern Australia

    NASA Astrophysics Data System (ADS)

    Phillips, G.; Offler, R.; Rubatto, D.; Phillips, D.

    2015-09-01

    New geochemical, metamorphic, and isotopic data are presented from high-pressure metamorphic rocks in the southern New England Orogen (eastern Australia). Conventional and optimal thermobarometry are augmented by U-Pb zircon and 40Ar/39Ar phengite dating to define pressure-temperature-time (P-T-t) histories for the rocks. The P-T-t histories are compared with competing geodynamic models for the Tasmanides, which can be summarized as (i) a retreating orogen model, the Tasmanides formed above a continuous, west dipping, and eastward retreating subduction zone, and (ii) a punctuated orogen model, the Tasmanides formed by several arc accretion, subduction flip, and/or transference events. Whereas both scenarios are potentially supported by the new data, an overlap between the timing of metamorphic recrystallization and key stages of Tasmanides evolution favors a relationship between a single, long-lived subduction zone and the formation, exhumation, and exposure of the high-pressure rocks. By comparison with the retreating orogen model, the following links with the P-T-t histories emerge: (i) exhumation and underplating of oceanic eclogite during the Delamerian Orogeny, (ii) recrystallization of underplated and exhuming high-pressure rocks at amphibolite facies conditions coeval with a period of rollback, and (iii) selective recrystallization of high-pressure rocks at blueschist facies conditions, reflecting metamorphism in a cooled subduction zone. The retreating orogen model can also account for the anomalous location of the Cambrian-Ordovician high-pressure rocks in the Devonian-Carboniferous New England Orogen, where sequential rollback cycles detached and translated parts of the leading edge of the overriding plate to the next, younger orogenic cycle.

  18. Nanoindentation of ion-irradiated reactor pressure vessel steels - model-based interpretation and comparison with neutron irradiation

    NASA Astrophysics Data System (ADS)

    Röder, F.; Heintze, C.; Pecko, S.; Akhmadaliev, S.; Bergner, F.; Ulbricht, A.; Altstadt, E.

    2018-04-01

    Ion-irradiation-induced hardening is investigated on six selected reactor pressure vessel (RPV) steels. The steels were irradiated with 5 MeV Fe2+ ions at fluences ranging from 0.01 to 1.0 displacements per atom (dpa) and the induced hardening of the surface layer was probed with nanoindentation. To separate the indentation size effect and the substrate effect from the irradiation-induced hardness profile, we developed an analytic model with the plastic zone of the indentation approximated as a half sphere. This model allows the actual hardness profile to be retrieved and the measured hardness increase to be assigned to the respective fluence. The obtained values of hardness increase vs. fluence are compared for selected pairs of samples in order to extract effects of the RPV steel composition. We identify hardening effects due to increased levels of copper, manganese-nickel and phosphorous. Further comparison with available neutron-irradiated conditions of the same heats of RPV steels indicates pronounced differences of the considered effects of composition for irradiation with neutrons vs. ions.

  19. Resistance-associated point mutations in insecticide-insensitive acetylcholinesterase.

    PubMed

    Mutero, A; Pralavorio, M; Bride, J M; Fournier, D

    1994-06-21

    Extensive utilization of pesticides against insects provides us with a good model for studying the adaptation of a eukaryotic genome to a strong selective pressure. One mechanism of resistance is the alteration of acetylcholinesterase (EC 3.1.1.7), the molecular target for organophosphates and carbamates. Here, we report the sequence analysis of the Ace gene in several resistant field strains of Drosophila melanogaster. This analysis resulted in the identification of five point mutations associated with reduced sensitivities to insecticides. In some cases, several of these mutations were found to be combined in the same protein, leading to different resistance patterns. Our results suggest that recombination between resistant alleles preexisting in natural populations is a mechanism by which insects rapidly adapt to new selective pressures.

  20. Temperature and pressure correlation for volume of gas hydrates with crystal structures sI and sII

    NASA Astrophysics Data System (ADS)

    Vinš, Václav; Jäger, Andreas; Hielscher, Sebastian; Span, Roland; Hrubý, Jan; Breitkopf, Cornelia

    The temperature and pressure correlations for the volume of gas hydrates forming crystal structures sI and sII developed in previous study [Fluid Phase Equilib. 427 (2016) 268-281], focused on the modeling of pure gas hydrates relevant in CCS (carbon capture and storage), were revised and modified for the modeling of mixed hydrates in this study. A universal reference state at temperature of 273.15 K and pressure of 1 Pa is used in the new correlation. Coefficients for the thermal expansion together with the reference lattice parameter were simultaneously correlated to both the temperature data and the pressure data for the lattice parameter. A two-stage Levenberg Marquardt algorithm was employed for the parameter optimization. The pressure dependence described in terms of the bulk modulus remained unchanged compared to the original study. A constant value for the bulk modulus B0 = 10 GPa was employed for all selected hydrate formers. The new correlation is in good agreement with the experimental data over wide temperature and pressure ranges from 0 K to 293 K and from 0 to 2000 MPa, respectively. Compared to the original correlation used for the modeling of pure gas hydrates the new correlation provides significantly better agreement with the experimental data for sI hydrates. The results of the new correlation are comparable to the results of the old correlation in case of sII hydrates. In addition, the new correlation is suitable for modeling of mixed hydrates.

  1. Implementation of perturbed-chain statistical associating fluid theory (PC-SAFT), generalized (G)SAFT+cubic, and cubic-plus-association (CPA) for modeling thermophysical properties of selected 1-alkyl-3-methylimidazolium ionic liquids in a wide pressure range.

    PubMed

    Polishuk, Ilya

    2013-03-14

    This study is the first comparative investigation of predicting the isochoric and the isobaric heat capacities, the isothermal and the isentropic compressibilities, the isobaric thermal expansibilities, the thermal pressure coefficients, and the sound velocities of ionic liquids by statistical associating fluid theory (SAFT) equation of state (EoS) models and cubic-plus-association (CPA). It is demonstrated that, taking into account the high uncertainty of the literature data (excluding sound velocities), the generalized for heavy compounds version of SAFT+Cubic (GSAFT+Cubic) appears as a robust estimator of the auxiliary thermodynamic properties under consideration. In the case of the ionic liquids the performance of PC-SAFT seems to be less accurate in comparison to ordinary compounds. In particular, PC-SAFT substantially overestimates heat capacities and underestimates the temperature and pressure dependencies of sound velocities and compressibilities. An undesired phenomenon of predicting high fictitious critical temperatures of ionic liquids by PC-SAFT should be noticed as well. CPA is the less accurate estimator of the liquid phase properties, but it is advantageous in modeling vapor pressures and vaporization enthalpies of ionic liquids. At the same time, the preliminary results indicate that the inaccuracies in predicting the deep vacuum vapor pressures of ionic liquids do not influence modeling of phase equilibria in their mixtures at much higher pressures.

  2. The pathogen transmission avoidance theory of sexual selection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loehle, C.

    1997-08-01

    The current theory that sexual selection results from female preference for males with good genes suffers from several problems. An alternative explanation, the pathogen transmission avoidance hypothesis, argues that the primary function of showy traits is to provide a reliable signal of current disease status, so that sick individuals can be avoided during mating. This study shows that a significant risk of pathogen transmission occurs during mating and that showy traits are reliable indicators of current disease status. The origin of female choosiness is argued to lie in a general tendency to avoid sick individuals, even in the absence ofmore » showy traits, which originate as exaggerations of normal traits that are indicative of good health (bright feathers, vigorous movement, large size). Thus, in this new model the origins of both showy traits and female choosiness are not problematic and there is no threshold effect. This model predicts that when the possession of male showy traits does not help to reduce disease in the female, showy traits are unlikely to occur. This case corresponds to thorough exposure of every animal to all group pathogens, on average, in large groups. Such species are shown with a large data set on birds to be less likely to exhibit showy traits. The good-genes model does not make this prediction. The pathogen transmission avoidance model can also lead to the evolution of showy traits even when selection is not effective against a given pathogen (e.g., when there is no heritable variation for resistance), but can result in selection for resistance if such genes are present. Monogamy is argued to reduce selection pressures for showy traits; data show monogamous species to be both less parasitized and less showy. In the context of reduction of pathogen transmission rates in showy populations, selection pressure becomes inversely frequency-dependent, which makes showy traits likely to be self-limiting rather than runaway.« less

  3. Design study of test models of maneuvering aircraft configurations for the National Transonic Facility (NTF)

    NASA Technical Reports Server (NTRS)

    Griffin, S. A.; Madsen, A. P.; Mcclain, A. A.

    1984-01-01

    The feasibility of designing advanced technology, highly maneuverable, fighter aircraft models to achieve full scale Reynolds number in the National Transonic Facility (NTF) is examined. Each of the selected configurations are tested for aeroelastic effects through the use of force and pressure data. A review of materials and material processes is also included.

  4. Optimizing Parameters of Axial Pressure-Compounded Ultra-Low Power Impulse Turbines at Preliminary Design

    NASA Astrophysics Data System (ADS)

    Kalabukhov, D. S.; Radko, V. M.; Grigoriev, V. A.

    2018-01-01

    Ultra-low power turbine drives are used as energy sources in auxiliary power systems, energy units, terrestrial, marine, air and space transport within the confines of shaft power N td = 0.01…10 kW. In this paper we propose a new approach to the development of surrogate models for evaluating the integrated efficiency of multistage ultra-low power impulse turbine with pressure stages. This method is based on the use of existing mathematical models of ultra-low power turbine stage efficiency and mass. It has been used in a method for selecting the rational parameters of two-stage axial ultra-low power turbine. The article describes the basic features of an algorithm for two-stage turbine parameters optimization and for efficiency criteria evaluating. Pledged mathematical models are intended for use at the preliminary design of turbine drive. The optimization method was tested at preliminary design of an air starter turbine. Validation was carried out by comparing the results of optimization calculations and numerical gas-dynamic simulation in the Ansys CFX package. The results indicate a sufficient accuracy of used surrogate models for axial two-stage turbine parameters selection

  5. Modeling population dynamics of mitochondria in mammalian cells

    NASA Astrophysics Data System (ADS)

    Kornick, Kellianne; Das, Moumita

    Mitochondria are organelles located inside eukaryotic cells and are essential for several key cellular processes such as energy (ATP) production, cell signaling, differentiation, and apoptosis. All organisms are believed to have low levels of variation in mitochondrial DNA (mtDNA), and alterations in mtDNA are connected to a range of human health conditions, including epilepsy, heart failure, Parkinsons disease, diabetes, and multiple sclerosis. Therefore, understanding how changes in mtDNA accumulate over time and are correlated to changes in mitochondrial function and cell properties can have a profound impact on our understanding of cell physiology and the origins of some diseases. Motivated by this, we develop and study a mathematical model to determine which cellular parameters have the largest impact on mtDNA population dynamics. The model consists of coupled ODEs to describe subpopulations of healthy and dysfunctional mitochondria subject to mitochondrial fission, fusion, autophagy, and mutation. We study the time evolution and stability of each sub-population under specific selection biases and pressures by tuning specific terms in our model. Our results may provide insights into how sub-populations of mitochondria survive and evolve under different selection pressures. This work was supported by a Grant from the Moore Foundation.

  6. Antenatal blood pressure for prediction of pre-eclampsia, preterm birth, and small for gestational age babies: development and validation in two general population cohorts

    PubMed Central

    Silverwood, Richard J; de Stavola, Bianca L; Inskip, Hazel; Cooper, Cyrus; Godfrey, Keith M; Crozier, Sarah; Fraser, Abigail; Nelson, Scott M; Lawlor, Debbie A; Tilling, Kate

    2015-01-01

    Study question Can routine antenatal blood pressure measurements between 20 and 36 weeks’ gestation contribute to the prediction of pre-eclampsia and its associated adverse outcomes? Methods This study used repeated antenatal measurements of blood pressure from 12 996 women in the Avon Longitudinal Study of Parents and Children (ALSPAC) to develop prediction models and validated these in 3005 women from the Southampton Women’s Survey (SWS). A model based on maternal early pregnancy characteristics only (BMI, height, age, parity, smoking, existing and previous gestational hypertension and diabetes, and ethnicity) plus initial mean arterial pressure was compared with a model additionally including current mean arterial pressure, a model including the deviation of current mean arterial pressure from a stratified normogram, and a model including both at different gestational ages from 20-36 weeks. Study answer and limitations The addition of blood pressure measurements from 28 weeks onwards improved prediction models compared with use of early pregnancy risk factors alone, but they contributed little to the prediction of preterm birth or small for gestational age. Though multiple imputation of missing data was used to increase the sample size and minimise selection bias, the validation sample might have been slightly underpowered as the number of cases of pre-eclampsia was just below the recommended 100. Several risk factors were self reported, potentially introducing measurement error, but this reflects how information would be obtained in clinical practice. What this study adds The addition of routinely collected blood pressure measurements from 28 weeks onwards improves predictive models for pre-eclampsia based on blood pressure in early pregnancy and other characteristics, facilitating a reduction in scheduled antenatal care. Funding, competing interests, data sharing UK Wellcome Trust, US National Institutes of Health, and UK Medical Research Council. Other funding sources for authors are detailed in the full online paper. With the exceptions of CM-W, HMI, and KMG there were no competing interests. PMID:26578347

  7. Shuttle Upper Atmosphere Mass Spectrometer Experimental Flight Results

    NASA Technical Reports Server (NTRS)

    Blanchard, R. C.; Ozoroski, Thomas A.; Nicholson, John Y.

    1994-01-01

    Calibrated pressure measurements for species with mass-to-charge ratios up to 50 amu/e(-) were obtained trom the shuttle upper atmosphere mass spectrometer experiment during re-entry on the STS-35 mission. The principal experimental objective is to obtain measurements of freestream density in the hypersonic rarefied flow flight regime. Data were collected from 180 to about 87 km. However, data above 115 km were contaminated from a source of gas emanating from pressure transdueers connected in parallel to the mass spectrometer. At lower altitudes, the pressure transducer data are compared to the mass spectrometer total pressure with excellent agreement. Near the orifice entrance, a significant amount of CO2 was generated from chemical reactions. The freestream density in the rarefied flow flight regime is calculated using an orifice pressure coefficient model based upon direct simulation Monte Carlo results. This density, when compared with the 1976 U.S. Standard Atmosphere model, exhibits the wavelike nature seen on previous flights using accelerometry. Selected spectra are presented at higher altitudes (320 km) showing the effects of the ingestion of gases from a forward fuselage fuel dump.

  8. Parameter Optimization for Selected Correlation Analysis of Intracranial Pathophysiology.

    PubMed

    Faltermeier, Rupert; Proescholdt, Martin A; Bele, Sylvia; Brawanski, Alexander

    2015-01-01

    Recently we proposed a mathematical tool set, called selected correlation analysis, that reliably detects positive and negative correlations between arterial blood pressure (ABP) and intracranial pressure (ICP). Such correlations are associated with severe impairment of the cerebral autoregulation and intracranial compliance, as predicted by a mathematical model. The time resolved selected correlation analysis is based on a windowing technique combined with Fourier-based coherence calculations and therefore depends on several parameters. For real time application of this method at an ICU it is inevitable to adjust this mathematical tool for high sensitivity and distinct reliability. In this study, we will introduce a method to optimize the parameters of the selected correlation analysis by correlating an index, called selected correlation positive (SCP), with the outcome of the patients represented by the Glasgow Outcome Scale (GOS). For that purpose, the data of twenty-five patients were used to calculate the SCP value for each patient and multitude of feasible parameter sets of the selected correlation analysis. It could be shown that an optimized set of parameters is able to improve the sensitivity of the method by a factor greater than four in comparison to our first analyses.

  9. Parameter Optimization for Selected Correlation Analysis of Intracranial Pathophysiology

    PubMed Central

    Faltermeier, Rupert; Proescholdt, Martin A.; Bele, Sylvia; Brawanski, Alexander

    2015-01-01

    Recently we proposed a mathematical tool set, called selected correlation analysis, that reliably detects positive and negative correlations between arterial blood pressure (ABP) and intracranial pressure (ICP). Such correlations are associated with severe impairment of the cerebral autoregulation and intracranial compliance, as predicted by a mathematical model. The time resolved selected correlation analysis is based on a windowing technique combined with Fourier-based coherence calculations and therefore depends on several parameters. For real time application of this method at an ICU it is inevitable to adjust this mathematical tool for high sensitivity and distinct reliability. In this study, we will introduce a method to optimize the parameters of the selected correlation analysis by correlating an index, called selected correlation positive (SCP), with the outcome of the patients represented by the Glasgow Outcome Scale (GOS). For that purpose, the data of twenty-five patients were used to calculate the SCP value for each patient and multitude of feasible parameter sets of the selected correlation analysis. It could be shown that an optimized set of parameters is able to improve the sensitivity of the method by a factor greater than four in comparison to our first analyses. PMID:26693250

  10. Pervaporation study for the dehydration of tetrahydrofuran-water mixtures by polymeric and ceramic membranes.

    PubMed

    McGinness, Colleen A; Slater, C Stewart; Savelski, Mariano J

    2008-12-01

    Pervaporation technology can effectively separate a tetrahydrofuran (THF) solvent-water waste stream at an azeotropic concentration. The performance of a Sulzer 2210 polyvinyl alcohol (PVA) membrane and a Pervatech BV silica membrane were studied, as the operating variables feed temperature and permeate pressure, were varied. The silica membrane was found to exhibit a flux of almost double that of the PVA membrane, but both membranes had comparable separation ability in purifying the solvent-water mixture. At benchmark feed conditions of 96 wt% THF and 4 wt% water, 50 degrees C and 10 torr permeate pressure, the silica membrane flux was 0.276 kg/m(2)hr and selectivity was 365. For both membranes, flux was found to increase at an exponential rate as the feed temperature increased from 20 to 60 degrees C. The flux through the silica membrane increases at a 6% faster rate than the PVA membrane. Flux decreased as permeate pressure was increased from 5 to 25 torr for both membranes. The amount of water in the permeate decreased exponentially as the permeate pressure was increased, but increased linearly with increasing temperature. Optimum conditions for flux and selectivity are at low permeate pressure and high feed temperature. When a small amount of salt is added to the feed solution, an increase in flux is observed. Overall models for flux and permeate concentration were created from the experimental data. The models were used to predict scale-up performance in separating an azeotropic feed waste to produce dehydrated THF solvent for reuse and a permeate stream with a dilute THF concentration.

  11. Characterizing Structural and Stratigraphic Heterogeneities in a Faulted Aquifer Using Pump Tests with an Array of Westbay Multilevel Monitoring Wells

    NASA Astrophysics Data System (ADS)

    Johnson, B.; Zhurina, E. N.

    2001-12-01

    We are developing and assessing field testing and analysis methodologies for quantitative characterization of aquifer heterogenities using data measured in an array of multilevel monitoring wells (MLW) during pumping and recovery well tests. We have developed a unique field laboratory to determine the permeability field in a 20m by 40m by 70m volume in the fault partitioned, siliciclastic Hickory aquifer system in central Texas. The site incorporates both stratigraphic variations and a normal fault system that partially offsets the aquifer and impedes cross-fault flow. We constructed a high-resolution geologic model of the site based upon 1050 m of core and a suite of geophysical logs from eleven, closely spaced (3-10m), continuously cored boreholes to depths of 125 m. Westbay multilevel monitoring systems installed in eight holes provide 94 hydraulically isolated measurement zones and 25 injection zones. A good geologic model is critical to proper installation of the MLW. Packers are positioned at all significant fault piercements and selected, laterally extensive, clay-rich strata. Packers in adjacent MLW bracket selected hydrostratigraphic intervals. Pump tests utilized two, uncased, fully penetrating irrigation wells that straddle the fault system and are in close proximity (7 to 65 m) to the MLW. Pumping and recovery transient pressure histories were measured in 85 zones using pressure transducers with a resolution of 55 Pa (0.008 psi). The hydraulic response is that of an anisotropic, unconfined aquifer. The transient pressure histories vary significantly from zone to zone in a single MLW as well as between adjacent MLW. Derivative plots are especially useful for differentiating details of pressure histories. Based on the geologic model, the derivative curve of a zone reflects its absolute vertical position, vertical stratigraphic position, and proximity to either a fault or significant stratigraphic heterogeneity. Additional forward modeling is needed to assist qualitative interpretation of response curves. Prior geologic knowledge appears critical. Quantitative interpretation of the transient pressure histories requires utilizing a numerical aquifer response model coupled with a geophysical inversion algorithm.

  12. Fabric symmetry of low anisotropic rocks inferred from ultrasonic sounding: Implications for the geomechanical models

    NASA Astrophysics Data System (ADS)

    Přikryl, Richard; Lokajíček, Tomáš; Pros, Zdeněk; Klíma, Karel

    2007-02-01

    The geomechanical models were established based on the absence or presence of certain rock fabric elements — texture (crystallographic preferred orientation), microstructure (shape preferred orientation) and microcracks (flat voids). The proposed models include both (i) the ideal material showing random texture and structure but no microcracks, i.e. the material which is hardly to be found in nature, and (ii) the materials possessing various combinations of fabric elements that show different spatial arrangements. The mutual relationship between those parameters and seismic and geomechanical properties are discussed. Selected models were experimentally verified during laboratory experiments. These consist of measurement of P-wave velocities in 132 independent directions under several confining pressures in the range 0.1-400 MPa. From measured data 3D P-wave patterns can be constructed and the influence of microcracks and of texture and structure on the rock seismic anisotropy can be determined. The seismic anisotropy established at different levels of confining pressure can be used for the interpretation of rock fabric symmetry of rocks showing low anisotropy in macroscale and for the selection of directions in which the geomechanical test can be performed. The measured P-wave velocities were then mathematically processed by using a fitting function V=V+k·P-v·10 which reflects contribution of P-wave velocity in the mineral skeleton of an ideal sample without microcracks extrapolated to the atmospheric pressure level from high confining pressure interval (ca. 200-400 MPa) ( v0), linear compressibility of the samples ( kv), and confining pressure during which most of the cracks are closed ( P0). These parameters improve the understanding of the response of various rock fabric elements on increasing confinement and corresponding changes in elasticity. The observed seismic and geomechanical anisotropies reflect intensity of the fabric of rock-forming minerals and microcracks. The magnitude of seismic anisotropy measured at atmospheric pressure corresponds to the anisotropy of static elastic modulus and is governed by the spatial arrangement of microcracks. The magnitude of strength anisotropy (uniaxial compressive strength) correlates more likely to the seismic anisotropy determined at high confining pressure and is connected to the preferred orientations (either CPO or SPO or both) of rock-forming minerals.

  13. Mice from lines selectively bred for high voluntary wheel running exhibit lower blood pressure during withdrawal from wheel access.

    PubMed

    Kolb, Erik M; Kelly, Scott A; Garland, Theodore

    2013-03-15

    Exercise is known to be rewarding and have positive effects on mental and physical health. Excessive exercise, however, can be the result of an underlying behavioral/physiological addiction. Both humans who exercise regularly and rodent models of exercise addiction sometimes display behavioral withdrawal symptoms, including depression and anxiety, when exercise is denied. However, few studies have examined the physiological state that occurs during this withdrawal period. Alterations in blood pressure (BP) are common physiological indicators of withdrawal in a variety of addictions. In this study, we examined exercise withdrawal in four replicate lines of mice selectively bred for high voluntary wheel running (HR lines). Mice from the HR lines run almost 3-fold greater distances on wheels than those from non-selected control lines, and have altered brain activity as well as increased behavioral despair when wheel access is removed. We tested the hypothesis that male HR mice have an altered cardiovascular response (heart rate, systolic, diastolic, and mean arterial pressure [MAP]) during exercise withdrawal. Measurements using an occlusion tail-cuff system were taken during 8 days of baseline, 6 days of wheel access, and 2 days of withdrawal (wheel access blocked). During withdrawal, HR mice had significantly lower systolic BP, diastolic BP, and MAP than controls, potentially indicating a differential dependence on voluntary wheel running in HR mice. This is the first characterization of a cardiovascular withdrawal response in an animal model of high voluntary exercise. Copyright © 2013. Published by Elsevier Inc.

  14. The evolution of recombination in a heterogeneous environment.

    PubMed Central

    Lenormand, T; Otto, S P

    2000-01-01

    Most models describing the evolution of recombination have focused on the case of a single population, implicitly assuming that all individuals are equally likely to mate and that spatial heterogeneity in selection is absent. In these models, the evolution of recombination is driven by linkage disequilibria generated either by epistatic selection or drift. Models based on epistatic selection show that recombination can be favored if epistasis is negative and weak compared to directional selection and if the recombination modifier locus is tightly linked to the selected loci. In this article, we examine the joint effects of spatial heterogeneity in selection and epistasis on the evolution of recombination. In a model with two patches, each subject to different selection regimes, we consider the cases of mutation-selection and migration-selection balance as well as the spread of beneficial alleles. We find that including spatial heterogeneity extends the range of epistasis over which recombination can be favored. Indeed, recombination can be favored without epistasis, with negative and even with positive epistasis depending on environmental circumstances. The selection pressure acting on recombination-modifier loci is often much stronger with spatial heterogeneity, and even loosely linked modifiers and free linkage may evolve. In each case, predicting whether recombination is favored requires knowledge of both the type of environmental heterogeneity and epistasis, as none of these factors alone is sufficient to predict the outcome. PMID:10978305

  15. Factors associated with elevated plateau pressure in patients with acute lung injury receiving lower tidal volume ventilation.

    PubMed

    Prescott, Hallie C; Brower, Roy G; Cooke, Colin R; Phillips, Gary; O'Brien, James M

    2013-03-01

    Lung-protective ventilation with lower tidal volume and lower plateau pressure improves mortality in patients with acute lung injury and acute respiratory distress syndrome. We sought to determine the incidence of elevated plateau pressure in acute lung injury /acute respiratory distress syndrome patients receiving lower tidal volume ventilation and to determine the factors that predict elevated plateau pressure in these patients. We used data from 1398 participants in Acute Respiratory Distress Syndrome Network trials, who received lower tidal volume ventilation (≤ 6.5mL/kg predicted body weight). We considered patients with a plateau pressure greater than 30cm H2O and/or a tidal volume less than 5.5mL/kg predicted body weight on study day 1 to have "elevated plateau pressure." We used logistic regression to identify baseline clinical variables associated with elevated plateau pressure and to develop a model to predict elevated plateau pressure using a subset of 1,188 patients. We validated the model in the 210 patients not used for model development. Medical centers participating in Acute Respiratory Distress Syndrome Network clinical trials. None. Of the 1,398 patients in our study, 288 (20.6%) had elevated plateau pressure on day 1. Severity of illness indices and demographic factors (younger age, greater body mass index, and non-white race) were independently associated with elevated plateau pressure. The multivariable logistic regression model for predicting elevated plateau pressure had an area under the receiving operator characteristic curve of 0.71 for both the developmental and the validation subsets. acute lung injury patients receiving lower tidal volume ventilation often have a plateau pressure that exceeds Acute Respiratory Distress Syndrome Network goals. Race, body mass index, and severity of lung injury are each independently associated with elevated plateau pressure. Selecting a smaller initial tidal volume for non-white patients and patients with higher severity of illness may decrease the incidence of elevated plateau pressure. Prospective studies are needed to evaluate this approach.

  16. Models of Cultural Niche Construction with Selection and Assortative Mating

    PubMed Central

    Feldman, Marcus W.

    2012-01-01

    Niche construction is a process through which organisms modify their environment and, as a result, alter the selection pressures on themselves and other species. In cultural niche construction, one or more cultural traits can influence the evolution of other cultural or biological traits by affecting the social environment in which the latter traits may evolve. Cultural niche construction may include either gene-culture or culture-culture interactions. Here we develop a model of this process and suggest some applications of this model. We examine the interactions between cultural transmission, selection, and assorting, paying particular attention to the complexities that arise when selection and assorting are both present, in which case stable polymorphisms of all cultural phenotypes are possible. We compare our model to a recent model for the joint evolution of religion and fertility and discuss other potential applications of cultural niche construction theory, including the evolution and maintenance of large-scale human conflict and the relationship between sex ratio bias and marriage customs. The evolutionary framework we introduce begins to address complexities that arise in the quantitative analysis of multiple interacting cultural traits. PMID:22905167

  17. An improved method for predicting brittleness of rocks via well logs in tight oil reservoirs

    NASA Astrophysics Data System (ADS)

    Wang, Zhenlin; Sun, Ting; Feng, Cheng; Wang, Wei; Han, Chuang

    2018-06-01

    There can be no industrial oil production in tight oil reservoirs until fracturing is undertaken. Under such conditions, the brittleness of the rocks is a very important factor. However, it has so far been difficult to predict. In this paper, the selected study area is the tight oil reservoirs in Lucaogou formation, Permian, Jimusaer sag, Junggar basin. According to the transformation of dynamic and static rock mechanics parameters and the correction of confining pressure, an improved method is proposed for quantitatively predicting the brittleness of rocks via well logs in tight oil reservoirs. First, 19 typical tight oil core samples are selected in the study area. Their static Young’s modulus, static Poisson’s ratio and petrophysical parameters are measured. In addition, the static brittleness indices of four other tight oil cores are measured under different confining pressure conditions. Second, the dynamic Young’s modulus, Poisson’s ratio and brittleness index are calculated using the compressional and shear wave velocity. With combination of the measured and calculated results, the transformation model of dynamic and static brittleness index is built based on the influence of porosity and clay content. The comparison of the predicted brittleness indices and measured results shows that the model has high accuracy. Third, on the basis of the experimental data under different confining pressure conditions, the amplifying factor of brittleness index is proposed to correct for the influence of confining pressure on the brittleness index. Finally, the above improved models are applied to formation evaluation via well logs. Compared with the results before correction, the results of the improved models agree better with the experimental data, which indicates that the improved models have better application effects. The brittleness index prediction method of tight oil reservoirs is improved in this research. It is of great importance in the optimization of fracturing layer and fracturing construction schemes and the improvement of oil recovery.

  18. Development of intelligent model for personalized guidance on wheelchair tilt and recline usage for people with spinal cord injury: methodology and preliminary report.

    PubMed

    Fu, Jicheng; Jones, Maria; Jan, Yih-Kuen

    2014-01-01

    Wheelchair tilt and recline functions are two of the most desirable features for relieving seating pressure to decrease the risk of pressure ulcers. The effective guidance on wheelchair tilt and recline usage is therefore critical to pressure ulcer prevention. The aim of this study was to demonstrate the feasibility of using machine learning techniques to construct an intelligent model to provide personalized guidance to individuals with spinal cord injury (SCI). The motivation stems from the clinical evidence that the requirements of individuals vary greatly and that no universal guidance on tilt and recline usage could possibly satisfy all individuals with SCI. We explored all aspects involved in constructing the intelligent model and proposed approaches tailored to suit the characteristics of this preliminary study, such as the way of modeling research participants, using machine learning techniques to construct the intelligent model, and evaluating the performance of the intelligent model. We further improved the intelligent model's prediction accuracy by developing a two-phase feature selection algorithm to identify important attributes. Experimental results demonstrated that our approaches held the promise: they could effectively construct the intelligent model, evaluate its performance, and refine the participant model so that the intelligent model's prediction accuracy was significantly improved.

  19. A Case-by-Case Evolutionary Analysis of Four Imprinted Retrogenes

    PubMed Central

    McCole, Ruth B; Loughran, Noeleen B; Chahal, Mandeep; Fernandes, Luis P; Roberts, Roland G; Fraternali, Franca; O'Connell, Mary J; Oakey, Rebecca J

    2011-01-01

    Retroposition is a widespread phenomenon resulting in the generation of new genes that are initially related to a parent gene via very high coding sequence similarity. We examine the evolutionary fate of four retrogenes generated by such an event; mouse Inpp5f_v2, Mcts2, Nap1l5, and U2af1-rs1. These genes are all subject to the epigenetic phenomenon of parental imprinting. We first provide new data on the age of these retrogene insertions. Using codon-based models of sequence evolution, we show these retrogenes have diverse evolutionary trajectories, including divergence from the parent coding sequence under positive selection pressure, purifying selection pressure maintaining parent-retrogene similarity, and neutral evolution. Examination of the expression pattern of retrogenes shows an atypical, broad pattern across multiple tissues. Protein 3D structure modeling reveals that a positively selected residue in U2af1-rs1, not shared by its parent, may influence protein conformation. Our case-by-case analysis of the evolution of four imprinted retrogenes reveals that this interesting class of imprinted genes, while similar in regulation and sequence characteristics, follow very varied evolutionary paths. PMID:21166792

  20. Subject Specific Optimisation of the Stiffness of Footwear Material for Maximum Plantar Pressure Reduction.

    PubMed

    Chatzistergos, Panagiotis E; Naemi, Roozbeh; Healy, Aoife; Gerth, Peter; Chockalingam, Nachiappan

    2017-08-01

    Current selection of cushioning materials for therapeutic footwear and orthoses is based on empirical and anecdotal evidence. The aim of this investigation is to assess the biomechanical properties of carefully selected cushioning materials and to establish the basis for patient-specific material optimisation. For this purpose, bespoke cushioning materials with qualitatively similar mechanical behaviour but different stiffness were produced. Healthy volunteers were asked to stand and walk on materials with varying stiffness and their capacity for pressure reduction was assessed. Mechanical testing using a surrogate heel model was employed to investigate the effect of loading on optimum stiffness. Results indicated that optimising the stiffness of cushioning materials improved pressure reduction during standing and walking by at least 16 and 19% respectively. Moreover, the optimum stiffness was strongly correlated to body mass (BM) and body mass index (BMI), with stiffer materials needed in the case of people with higher BM or BMI. Mechanical testing confirmed that optimum stiffness increases with the magnitude of compressive loading. For the first time, this study provides quantitative data to support the importance of stiffness optimisation in cushioning materials and sets the basis for methods to inform optimum material selection in the clinic.

  1. An investigation to determine the static pressure distribution of the 0.00548 scale shuttle solid rocket booster (MSFC model number 468) during reentry in the NASA/MSFC 14 inch trisonic wind tunnel (SA28F)

    NASA Technical Reports Server (NTRS)

    Braddock, W. F.; Streby, G. D.

    1977-01-01

    The results of a pressure test of a .00548 scale 146 inch Space Shuttle Solid Rocket Booster (SRB) with and without protuberances, conducted in a 14 x 14 inch trisonic wind tunnel are presented. Static pressure distributions for the SRB at reentry attitudes and flight conditions were obtained. Local longitudinal and ring pressure distributions are presented in tabulated form. Integration of the pressure data was performed. The test was conducted at Mach numbers of 0.40 to 4.45 over an angle of attack range from 60 to 185 degrees. Roll angles of 0, 45, 90 and 315 degrees were investigated. Reynolds numbers per foot varied for selected Mach numbers.

  2. Current spring warming as a driver of selection on reproductive timing in a wild passerine.

    PubMed

    Marrot, Pascal; Charmantier, Anne; Blondel, Jacques; Garant, Dany

    2018-05-01

    Evolutionary adaptation as a response to climate change is expected for fitness-related traits affected by climate and exhibiting genetic variance. Although the relationship between warmer spring temperature and earlier timing of reproduction is well documented, quantifications and predictions of the impact of global warming on natural selection acting on phenology in wild populations remain rare. If global warming affects fitness in a similar way across individuals within a population, or if fitness consequences are independent of phenotypic variation in key-adaptive traits, then no evolutionary response is expected for these traits. Here, we quantified the selection pressures acting on laying date during a 24-year monitoring of blue tits in southern Mediterranean France, a hot spot of climate warming. We explored the temporal fluctuation in annual selection gradients and we determined its temperature-related drivers. We first investigated the month-specific warming since 1970 in our study site and tested its influence on selection pressures, using a model averaging approach. Then, we quantified the selection strength associated with temperature anomalies experienced by the blue tit population. We found that natural selection acting on laying date significantly fluctuated both in magnitude and in sign across years. After identifying a significant warming in spring and summer, we showed that warmer daily maximum temperatures in April were significantly associated with stronger selection pressures for reproductive timing. Our results indicated an increase in the strength of selection by 46% for every +1°C anomaly. Our results confirm the general assumption that recent climate change translates into strong selection favouring earlier breeders in passerine birds. Our findings also suggest that differences in fitness among individuals varying in their breeding phenology increase with climate warming. Such climate-driven influence on the strength of directional selection acting on laying date could favour an adaptive response in this trait, since it is heritable. © 2018 The Authors. Journal of Animal Ecology © 2018 British Ecological Society.

  3. Parallel selective pressures drive convergent diversification of phenotypes in pythons and boas.

    PubMed

    Esquerré, Damien; Scott Keogh, J

    2016-07-01

    Pythons and boas are globally distributed and distantly related radiations with remarkable phenotypic and ecological diversity. We tested whether pythons, boas and their relatives have evolved convergent phenotypes when they display similar ecology. We collected geometric morphometric data on head shape for 1073 specimens representing over 80% of species. We show that these two groups display strong and widespread convergence when they occupy equivalent ecological niches and that the history of phenotypic evolution strongly matches the history of ecological diversification, suggesting that both processes are strongly coupled. These results are consistent with replicated adaptive radiation in both groups. We argue that strong selective pressures related to habitat-use have driven this convergence. Pythons and boas provide a new model system for the study of macro-evolutionary patterns of morphological and ecological evolution and they do so at a deeper level of divergence and global scale than any well-established adaptive radiation model systems. © 2016 John Wiley & Sons Ltd/CNRS.

  4. Computational Flow Analysis of Ultra High Pressure Firefighting Technology with Application to Long Range Nozzle Design

    DTIC Science & Technology

    2010-03-01

    release; distribution unlimited. Ref AFRL/RXQ Public Affairs Case # 10-100. Document contains color images . Although aqueous fire fighting agent...in conjunction with the standard Eulerian multiphase flow model. The two- equation k- model was selected due to its wide industrial application in...energy (k) and its dissipation rate (). Because of their heuristic development, RANS models have applicable limitations and in general must be

  5. Predicting Renal Failure Progression in Chronic Kidney Disease Using Integrated Intelligent Fuzzy Expert System.

    PubMed

    Norouzi, Jamshid; Yadollahpour, Ali; Mirbagheri, Seyed Ahmad; Mazdeh, Mitra Mahdavi; Hosseini, Seyed Ahmad

    2016-01-01

    Chronic kidney disease (CKD) is a covert disease. Accurate prediction of CKD progression over time is necessary for reducing its costs and mortality rates. The present study proposes an adaptive neurofuzzy inference system (ANFIS) for predicting the renal failure timeframe of CKD based on real clinical data. This study used 10-year clinical records of newly diagnosed CKD patients. The threshold value of 15 cc/kg/min/1.73 m(2) of glomerular filtration rate (GFR) was used as the marker of renal failure. A Takagi-Sugeno type ANFIS model was used to predict GFR values. Variables of age, sex, weight, underlying diseases, diastolic blood pressure, creatinine, calcium, phosphorus, uric acid, and GFR were initially selected for the predicting model. Weight, diastolic blood pressure, diabetes mellitus as underlying disease, and current GFR(t) showed significant correlation with GFRs and were selected as the inputs of model. The comparisons of the predicted values with the real data showed that the ANFIS model could accurately estimate GFR variations in all sequential periods (Normalized Mean Absolute Error lower than 5%). Despite the high uncertainties of human body and dynamic nature of CKD progression, our model can accurately predict the GFR variations at long future periods.

  6. Study of the velocity distribution influence upon the pressure pulsations in draft tube model of hydro-turbine

    NASA Astrophysics Data System (ADS)

    Sonin, V.; Ustimenko, A.; Kuibin, P.; Litvinov, I.; Shtork, S.

    2016-11-01

    One of the mechanisms of generation of powerful pressure pulsations in the circuit of the turbine is a precessing vortex core, formed behind the runner at the operation points with partial or forced loads, when the flow has significant residual swirl. To study periodic pressure pulsations behind the runner the authors of this paper use approaches of experimental modeling and methods of computational fluid dynamics. The influence of velocity distributions at the output of the hydro turbine runner on pressure pulsations was studied based on analysis of the existing and possible velocity distributions in hydraulic turbines and selection of the distribution in the extended range. Preliminary numerical calculations have showed that the velocity distribution can be modeled without reproduction of the entire geometry of the circuit, using a combination of two blade cascades of the rotor and stator. Experimental verification of numerical results was carried out in an air bench, using the method of 3D-printing for fabrication of the blade cascades and the geometry of the draft tube of hydraulic turbine. Measurements of the velocity field at the input to a draft tube cone and registration of pressure pulsations due to precessing vortex core have allowed building correlations between the velocity distribution character and the amplitude-frequency characteristics of the pulsations.

  7. Simulation of VSPT Experimental Cascade Under High and Low Free-Stream Turbulence Conditions

    NASA Technical Reports Server (NTRS)

    Ameri, Ali A.; Giel, Paul W.; Flegel, Ashlie B.

    2014-01-01

    Variable-Speed Power Turbines (VSPT) for rotorcraft applications operate at low Reynolds number and over a wide range in incidence associated with shaft speed change. A comprehensive linear cascade data set obtained includes the effects of Reynolds number, free-stream turbulence and incidence is available and this paper concerns itself with the presentation and numerical simulation of conditions resulting in a selected set of those data. As such, post-dictions of blade pressure loading, total-pressure loss and exit flow angles under conditions of high and low turbulence intensity for a single Reynolds number are presented. Analyses are performed with the three-equation turbulence models of Walters-Leylek and Walters and Cokljat. Transition, loading, total-pressure loss and exit angle variations are presented and comparisons are made with experimental data as available. It is concluded that at the low freestream turbulence conditions the Walters-Cokljat model is better suited to predictions while for high freestream conditions the two models generate similar predications that are generally satisfactory.

  8. Simulation of VSPT Experimental Cascade Under High and Low Free-Stream Turbulence Conditions

    NASA Technical Reports Server (NTRS)

    Ameri, Ali A.; Giel, Paul W.; Flegel, Ashlie B.

    2015-01-01

    Variable-Speed Power Turbines (VSPT) for rotorcraft applications operate at low Reynolds number and over a wide range in incidence associated with shaft speed change. A comprehensive linear cascade data set obtained includes the effects of Reynolds number, free-stream turbulence and incidence is available and this paper concerns itself with the presentation and numerical simulation of conditions resulting in a selected set of those data. As such, post-dictions of blade pressure loading, total-pressure loss and exit flow angles under conditions of high and low turbulence intensity for a single Reynolds number are presented. Analyses are performed with the three-equation turbulence models of Walters- Leylek and Walters and Cokljat. Transition, loading, total-pressure loss and exit angle variations are presented and comparisons are made with experimental data as available. It is concluded that at the low freestream turbulence conditions the Walters-Cokljat model is better suited to predictions while for high freestream conditions the two models generate similar predications that are generally satisfactory.

  9. Multimodel predictive system for carbon dioxide solubility in saline formation waters.

    PubMed

    Wang, Zan; Small, Mitchell J; Karamalidis, Athanasios K

    2013-02-05

    The prediction of carbon dioxide solubility in brine at conditions relevant to carbon sequestration (i.e., high temperature, pressure, and salt concentration (T-P-X)) is crucial when this technology is applied. Eleven mathematical models for predicting CO(2) solubility in brine are compared and considered for inclusion in a multimodel predictive system. Model goodness of fit is evaluated over the temperature range 304-433 K, pressure range 74-500 bar, and salt concentration range 0-7 m (NaCl equivalent), using 173 published CO(2) solubility measurements, particularly selected for those conditions. The performance of each model is assessed using various statistical methods, including the Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC). Different models emerge as best fits for different subranges of the input conditions. A classification tree is generated using machine learning methods to predict the best-performing model under different T-P-X subranges, allowing development of a multimodel predictive system (MMoPS) that selects and applies the model expected to yield the most accurate CO(2) solubility prediction. Statistical analysis of the MMoPS predictions, including a stratified 5-fold cross validation, shows that MMoPS outperforms each individual model and increases the overall accuracy of CO(2) solubility prediction across the range of T-P-X conditions likely to be encountered in carbon sequestration applications.

  10. Selective pressures in the human bony pelvis: Decoupling sexual dimorphism in the anterior and posterior spaces.

    PubMed

    Brown, Kirsten M

    2015-07-01

    Sexual dimorphism in the human bony pelvis is commonly assumed to be related to the intensity of obstetrical selective pressures. With intense obstetrical selective pressures, there should be greater shape dimorphism; with minimal obstetrical selective pressures, there should be reduced shape dimorphism. This pattern is seen in the nondimorphic anterior spaces and highly dimorphic posterior spaces. Decoupling sexual dimorphism in these spaces may in turn be related to the differential influence of other selective pressures, such as biomechanical ones. The relationship between sexual dimorphism and selective pressures in the human pelvis was examined using five skeletal samples (total female n = 101; male n = 103). Pelvic shape was quantified by collecting landmark coordinate data on articulated pelves. Euclidean distance matrix analysis was used to extract the distances that defined the anterior and posterior pelvic spaces. Sex and body mass were used as proxies for obstetrical and biomechanical selective pressures, respectively. MANCOVA analyses demonstrate significant effects of sex and body mass on distances in both the anterior and the posterior spaces. A comparison of the relative contribution of shape variance attributed to each of these factors suggests that the posterior space is more influenced by sex, and obstetrics by proxy, whereas the anterior space is more influenced by body mass, and biomechanics by proxy. Although the overall shape of the pelvis has been influenced by obstetrical and biomechanical selective pressures, there is a differential response within the pelvis to these factors. These results provide new insight into the ongoing debate on the obstetrical dilemma hypothesis. © 2015 Wiley Periodicals, Inc.

  11. Size-selective separation of polydisperse gold nanoparticles in supercritical ethane.

    PubMed

    Williams, Dylan P; Satherley, John

    2009-04-09

    The aim of this study was to use supercritical ethane to selectively disperse alkanethiol-stabilized gold nanoparticles of one size from a polydisperse sample in order to recover a monodisperse fraction of the nanoparticles. A disperse sample of metal nanoparticles with diameters in the range of 1-5 nm was prepared using established techniques then further purified by Soxhlet extraction. The purified sample was subjected to supercritical ethane at a temperature of 318 K in the pressure range 50-276 bar. Particles were characterized by UV-vis absorption spectroscopy, TEM, and MALDI-TOF mass spectroscopy. The results show that with increasing pressure the dispersibility of the nanoparticles increases, this effect is most pronounced for smaller nanoparticles. At the highest pressure investigated a sample of the particles was effectively stripped of all the smaller particles leaving a monodisperse sample. The relationship between dispersibility and supercritical fluid density for two different size samples of alkanethiol-stabilized gold nanoparticles was considered using the Chrastil chemical equilibrium model.

  12. The effect of different classes of beta-antagonists on clinical and experimental hypertension.

    PubMed

    Fitzgerald, J D

    1982-01-01

    The reference beta adrenoceptor antagonist propranolol reduces blood pressure in about 60% of patients with essential hypertension. Pressure is reduced in the supine, and erect positions without postural hypotension as well as during exercise. The average extent of pressure reduction is approximately 26/16 mm.Hg. Though all clinically available beta antagonists reduce blood pressure, the profile may be modified by both adrenotropic and non-adrenotropic ancillary properties. Of the adrenotropic properties, potency influences dose frequency and total body burden of drug. Selective beta 1 antagonism may enhance safety without reducing efficacy in patients with obstructive airways disease. Selective beta 2 blockade does not reduce blood pressure in experimental models or normal subjects, but the response in patients is unknown. Partial agonism may reduce efficacy if the degree of stimulant activity is too great. Of the non-adrenotropic properties, membrane stabilising properties are of relevance only in so far as such agents undergo extensive biotransformation resulting in either reduced efficacy when drugs are used at fixed doses or the formation of biologically active metabolites. The additional properties of either alpha adrenergic blockade or inhibition of vascular smooth muscle tone modify both the speed of onset and the haemodynamic profile. The interaction of these ancillary pharmacological properties is evaluated in this review.

  13. Thermal infrared spectroscopy and modeling of experimentally shocked basalts

    USGS Publications Warehouse

    Johnson, J. R.; Staid, M.I.; Kraft, M.D.

    2007-01-01

    New measurements of thermal infrared emission spectra (250-1400 cm-1; ???7-40 ??m) of experimentally shocked basalt and basaltic andesite (17-56 GPa) exhibit changes in spectral features with increasing pressure consistent with changes in the structure of plagioclase feldspars. Major spectral absorptions in unshocked rocks between 350-700 cm-1 (due to Si-O-Si octahedral bending vibrations) and between 1000-1250 cm-1 (due to Si-O antisymmetric stretch motions of the silica tetrahedra) transform at pressures >20-25 GPa to two broad spectral features centered near 950-1050 and 400-450 cm-1. Linear deconvolution models using spectral libraries composed of common mineral and glass spectra replicate the spectra of shocked basalt relatively well up to shock pressures of 20-25 GPa, above which model errors increase substantially, coincident with the onset of diaplectic glass formation in plagioclase. Inclusion of shocked feldspar spectra in the libraries improves fits for more highly shocked basalt. However, deconvolution models of the basaltic andesite select shocked feldspar end-members even for unshocked samples, likely caused by the higher primary glass content in the basaltic andesite sample.

  14. A hypothesis to explain accuracy of wasp resemblances.

    PubMed

    Boppré, Michael; Vane-Wright, Richard I; Wickler, Wolfgang

    2017-01-01

    Mimicry is one of the oldest concepts in biology, but it still presents many puzzles and continues to be widely debated. Simulation of wasps with a yellow-black abdominal pattern by other insects (commonly called "wasp mimicry") is traditionally considered a case of resemblance of unprofitable by profitable prey causing educated predators to avoid models and mimics to the advantage of both (Figure 1a). However, as wasps themselves are predators of insects, wasp mimicry can also be seen as a case of resemblance to one's own potential antagonist. We here propose an additional hypothesis to Batesian and Müllerian mimicry (both typically involving selection by learning vertebrate predators; cf. Table 1) that reflects another possible scenario for the evolution of multifold and in particular very accurate resemblances to wasps: an innate, visual inhibition of aggression among look-alike wasps, based on their social organization and high abundance. We argue that wasp species resembling each other need not only be Müllerian mutualists and that other insects resembling wasps need not only be Batesian mimics, but an innate ability of wasps to recognize each other during hunting is the driver in the evolution of a distinct kind of masquerade, in which model, mimic, and selecting agent belong to one or several species (Figure  1b). Wasp mimics resemble wasps not (only) to be mistaken by educated predators but rather, or in addition, to escape attack from their wasp models. Within a given ecosystem, there will be selection pressures leading to masquerade driven by wasps and/or to mimicry driven by other predators that have to learn to avoid them. Different pressures by guilds of these two types of selective agents could explain the widely differing fidelity with respect to the models in assemblages of yellow jackets and yellow jacket look-alikes.

  15. Implications of Operational Pressure on CSSE PGS Design

    NASA Technical Reports Server (NTRS)

    Lee, Ryan

    2008-01-01

    The Constellation Spacesuit Element (CSSE) was required to support crew survival (CS); launch, entry, and abort (LEA) scenarios; zero gravity (0-g) extravehicular activity (EVA) (both unscheduled and contingency); and planetary EVA. Operation of the CSSE in all of these capacities required a pressure garment subsystem (PGS) that would operate efficiently through various pressure profiles. The PGS team initiated a study to determine the appropriate operational pressure profile of the CSSE and how this selection would affect the design of the CSSE PGS. This study included an extensive review of historical PGS operational pressure selection and the operational effects of those pressures, the presentation of four possible pressure paradigm options for use by the CSSE, the risks and design impacts of these options, and the down-selected pressure option.

  16. Bigger Is Fitter? Quantitative Genetic Decomposition of Selection Reveals an Adaptive Evolutionary Decline of Body Mass in a Wild Rodent Population.

    PubMed

    Bonnet, Timothée; Wandeler, Peter; Camenisch, Glauco; Postma, Erik

    2017-01-01

    In natural populations, quantitative trait dynamics often do not appear to follow evolutionary predictions. Despite abundant examples of natural selection acting on heritable traits, conclusive evidence for contemporary adaptive evolution remains rare for wild vertebrate populations, and phenotypic stasis seems to be the norm. This so-called "stasis paradox" highlights our inability to predict evolutionary change, which is especially concerning within the context of rapid anthropogenic environmental change. While the causes underlying the stasis paradox are hotly debated, comprehensive attempts aiming at a resolution are lacking. Here, we apply a quantitative genetic framework to individual-based long-term data for a wild rodent population and show that despite a positive association between body mass and fitness, there has been a genetic change towards lower body mass. The latter represents an adaptive response to viability selection favouring juveniles growing up to become relatively small adults, i.e., with a low potential adult mass, which presumably complete their development earlier. This selection is particularly strong towards the end of the snow-free season, and it has intensified in recent years, coinciding which a change in snowfall patterns. Importantly, neither the negative evolutionary change, nor the selective pressures that drive it, are apparent on the phenotypic level, where they are masked by phenotypic plasticity and a non causal (i.e., non genetic) positive association between body mass and fitness, respectively. Estimating selection at the genetic level enabled us to uncover adaptive evolution in action and to identify the corresponding phenotypic selective pressure. We thereby demonstrate that natural populations can show a rapid and adaptive evolutionary response to a novel selective pressure, and that explicitly (quantitative) genetic models are able to provide us with an understanding of the causes and consequences of selection that is superior to purely phenotypic estimates of selection and evolutionary change.

  17. Bigger Is Fitter? Quantitative Genetic Decomposition of Selection Reveals an Adaptive Evolutionary Decline of Body Mass in a Wild Rodent Population

    PubMed Central

    Wandeler, Peter; Camenisch, Glauco

    2017-01-01

    In natural populations, quantitative trait dynamics often do not appear to follow evolutionary predictions. Despite abundant examples of natural selection acting on heritable traits, conclusive evidence for contemporary adaptive evolution remains rare for wild vertebrate populations, and phenotypic stasis seems to be the norm. This so-called “stasis paradox” highlights our inability to predict evolutionary change, which is especially concerning within the context of rapid anthropogenic environmental change. While the causes underlying the stasis paradox are hotly debated, comprehensive attempts aiming at a resolution are lacking. Here, we apply a quantitative genetic framework to individual-based long-term data for a wild rodent population and show that despite a positive association between body mass and fitness, there has been a genetic change towards lower body mass. The latter represents an adaptive response to viability selection favouring juveniles growing up to become relatively small adults, i.e., with a low potential adult mass, which presumably complete their development earlier. This selection is particularly strong towards the end of the snow-free season, and it has intensified in recent years, coinciding which a change in snowfall patterns. Importantly, neither the negative evolutionary change, nor the selective pressures that drive it, are apparent on the phenotypic level, where they are masked by phenotypic plasticity and a non causal (i.e., non genetic) positive association between body mass and fitness, respectively. Estimating selection at the genetic level enabled us to uncover adaptive evolution in action and to identify the corresponding phenotypic selective pressure. We thereby demonstrate that natural populations can show a rapid and adaptive evolutionary response to a novel selective pressure, and that explicitly (quantitative) genetic models are able to provide us with an understanding of the causes and consequences of selection that is superior to purely phenotypic estimates of selection and evolutionary change. PMID:28125583

  18. Rocket ascent G-limited moment-balanced optimization program (RAGMOP)

    NASA Technical Reports Server (NTRS)

    Lyons, J. T.; Woltosz, W. S.; Abercrombie, G. E.; Gottlieb, R. G.

    1972-01-01

    This document describes the RAGMOP (Rocket Ascent G-limited Momentbalanced Optimization Program) computer program for parametric ascent trajectory optimization. RAGMOP computes optimum polynomial-form attitude control histories, launch azimuth, engine burn-time, and gross liftoff weight for space shuttle type vehicles using a search-accelerated, gradient projection parameter optimization technique. The trajectory model available in RAGMOP includes a rotating oblate earth model, the option of input wind tables, discrete and/or continuous throttling for the purposes of limiting the thrust acceleration and/or the maximum dynamic pressure, limitation of the structural load indicators (the product of dynamic pressure with angle-of-attack and sideslip angle), and a wide selection of intermediate and terminal equality constraints.

  19. Validating spatiotemporal predictions of an important pest of small grains.

    PubMed

    Merrill, Scott C; Holtzer, Thomas O; Peairs, Frank B; Lester, Philip J

    2015-01-01

    Arthropod pests are typically managed using tactics applied uniformly to the whole field. Precision pest management applies tactics under the assumption that within-field pest pressure differences exist. This approach allows for more precise and judicious use of scouting resources and management tactics. For example, a portion of a field delineated as attractive to pests may be selected to receive extra monitoring attention. Likely because of the high variability in pest dynamics, little attention has been given to developing precision pest prediction models. Here, multimodel synthesis was used to develop a spatiotemporal model predicting the density of a key pest of wheat, the Russian wheat aphid, Diuraphis noxia (Kurdjumov). Spatially implicit and spatially explicit models were synthesized to generate spatiotemporal pest pressure predictions. Cross-validation and field validation were used to confirm model efficacy. A strong within-field signal depicting aphid density was confirmed with low prediction errors. Results show that the within-field model predictions will provide higher-quality information than would be provided by traditional field scouting. With improvements to the broad-scale model component, the model synthesis approach and resulting tool could improve pest management strategy and provide a template for the development of spatially explicit pest pressure models. © 2014 Society of Chemical Industry.

  20. Rebuilding fish communities: the ghost of fisheries past and the virtue of patience.

    PubMed

    Collie, Jeremy; Rochet, Marie-Joëlle; Bell, Richard

    2013-03-01

    The ecosystem approach to management requires the status of individual species to be considered in a community context. We conducted a comparative ecosystem analysis of the Georges Bank and North Sea fish communities to determine the extent to which biological diversity is restored when fishing pressure is reduced. First, fishing mortality estimates were combined to quantify the community-level intensity and selectivity of fishing pressure. Second, standardized bottom-trawl survey data were used to investigate the temporal trends in community metrics. Third, a size-based, multispecies model (LeMans) was simulated to test the response of community metrics to both hypothetical and observed changes in fishing pressure in the two communities. These temperate North Atlantic fish communities have much in common, including a history of overfishing. In recent decades fishing pressure has been reduced, and some species have started to rebuild. The Georges Bank fishery has been more selective, and fishing pressure was reduced sooner. The two communities have similar levels of size diversity and biomass per unit area, but fundamentally different community structure. The North Sea is dominated by smaller species and has lower evenness than Georges Bank. These fundamental differences in community structure are not explained by recent fishing patterns. The multispecies model was able to predict the observed changes in community metrics better on Georges Bank, where rebuilding is more apparent than in the North Sea. Model simulations predicted hysteresis in rebuilding community metrics toward their unfished levels, particularly in the North Sea. Species in the community rebuild at different rates, with smaller prey species outpacing their large predators and overshooting their pre-exploitation abundances. This indirect effect of predator release delays the rebuilding of community structure and biodiversity. Therefore community rebuilding is not just the sum of single-species rebuilding plans. Management strategies that account for interspecific interactions will be needed to restore biodiversity and community structure.

  1. Resistance-associated point mutations in insecticide-insensitive acetylcholinesterase.

    PubMed Central

    Mutero, A; Pralavorio, M; Bride, J M; Fournier, D

    1994-01-01

    Extensive utilization of pesticides against insects provides us with a good model for studying the adaptation of a eukaryotic genome to a strong selective pressure. One mechanism of resistance is the alteration of acetylcholinesterase (EC 3.1.1.7), the molecular target for organophosphates and carbamates. Here, we report the sequence analysis of the Ace gene in several resistant field strains of Drosophila melanogaster. This analysis resulted in the identification of five point mutations associated with reduced sensitivities to insecticides. In some cases, several of these mutations were found to be combined in the same protein, leading to different resistance patterns. Our results suggest that recombination between resistant alleles preexisting in natural populations is a mechanism by which insects rapidly adapt to new selective pressures. Images PMID:8016090

  2. Usefulness of a Darwinian System in a Biotechnological Application: Evolution of Optical Window Fluorescent Protein Variants under Selective Pressure

    PubMed Central

    Ng, David; Pauli, Jutta; Resch-Genger, Ute; Kühn, Enrico; Heuer, Steffen; Beisker, Wolfgang; Köster, Reinhard W.; Zitzelsberger, Horst; Caldwell, Randolph B

    2014-01-01

    With rare exceptions, natural evolution is an extremely slow process. One particularly striking exception in the case of protein evolution is in the natural production of antibodies. Developing B cells activate and diversify their immunoglobulin (Ig) genes by recombination, gene conversion (GC) and somatic hypermutation (SHM). Iterative cycles of hypermutation and selection continue until antibodies of high antigen binding specificity emerge (affinity maturation). The avian B cell line DT40, a cell line which is highly amenable to genetic manipulation and exhibits a high rate of targeted integration, utilizes both GC and SHM. Targeting the DT40's diversification machinery onto transgenes of interest inserted into the Ig loci and coupling selective pressure based on the desired outcome mimics evolution. Here we further demonstrate the usefulness of this platform technology by selectively pressuring a large shift in the spectral properties of the fluorescent protein eqFP615 into the highly stable and advanced optical imaging expediting fluorescent protein Amrose. The method is advantageous as it is time and cost effective and no prior knowledge of the outcome protein's structure is necessary. Amrose was evolved to have high excitation at 633 nm and excitation/emission into the far-red, which is optimal for whole-body and deep tissue imaging as we demonstrate in the zebrafish and mouse model. PMID:25192257

  3. Usefulness of a Darwinian system in a biotechnological application: evolution of optical window fluorescent protein variants under selective pressure.

    PubMed

    Schoetz, Ulrike; Deliolanis, Nikolaos C; Ng, David; Pauli, Jutta; Resch-Genger, Ute; Kühn, Enrico; Heuer, Steffen; Beisker, Wolfgang; Köster, Reinhard W; Zitzelsberger, Horst; Caldwell, Randolph B

    2014-01-01

    With rare exceptions, natural evolution is an extremely slow process. One particularly striking exception in the case of protein evolution is in the natural production of antibodies. Developing B cells activate and diversify their immunoglobulin (Ig) genes by recombination, gene conversion (GC) and somatic hypermutation (SHM). Iterative cycles of hypermutation and selection continue until antibodies of high antigen binding specificity emerge (affinity maturation). The avian B cell line DT40, a cell line which is highly amenable to genetic manipulation and exhibits a high rate of targeted integration, utilizes both GC and SHM. Targeting the DT40's diversification machinery onto transgenes of interest inserted into the Ig loci and coupling selective pressure based on the desired outcome mimics evolution. Here we further demonstrate the usefulness of this platform technology by selectively pressuring a large shift in the spectral properties of the fluorescent protein eqFP615 into the highly stable and advanced optical imaging expediting fluorescent protein Amrose. The method is advantageous as it is time and cost effective and no prior knowledge of the outcome protein's structure is necessary. Amrose was evolved to have high excitation at 633 nm and excitation/emission into the far-red, which is optimal for whole-body and deep tissue imaging as we demonstrate in the zebrafish and mouse model.

  4. Linear and Nonlinear Viscoelastic Modeling of Aorta and Carotid Pressure-Area Dynamics under in vivo and ex vivo Conditions

    PubMed Central

    Valdez-Jasso, Daniela; Bia, Daniel; Zócalo, Yanina; Armentano, Ricardo L.; Haider, Mansoor A.; Olufsen, Mette S.

    2013-01-01

    A better understanding of the biomechanical properties of the arterial wall provides important insight into arterial vascular biology under normal (healthy) and pathological conditions. This insight has potential to improve tracking of disease progression and to aid in vascular graft design and implementation. In this study, we use linear and nonlinear viscoelastic models to predict biomechanical properties of the thoracic descending aorta and the carotid artery under ex vivo and in vivo conditions in ovine and human arteries. Models analyzed include a four-parameter (linear) Kelvin viscoelastic model and two five-parameter nonlinear viscoelastic models (an arctangent and a sigmoid model) that relate changes in arterial blood pressure to the vessel cross-sectional area (via estimation of vessel strain). These models were developed using the framework of Quasilinear Viscoelasticity (QLV) theory and were validated using measurements from the thoracic descending aorta and the carotid artery obtained from human and ovine arteries. In vivo measurements were obtained from ten ovine aortas and ten human carotid arteries. Ex vivo measurements (from both locations) were made in eleven male Merino sheep. Biomechanical properties were obtained through constrained estimation of model parameters. To further investigate the parameter estimates we computed standard errors and confidence intervals and we used analysis of variance to compare results within and between groups. Overall, our results indicate that optimal model selection depends on the arterial type. Results showed that for the thoracic descending aorta (under both experimental conditions) the best predictions were obtained with the nonlinear sigmoid model, while under healthy physiological pressure loading the carotid arteries nonlinear stiffening with increasing pressure is negligible, and consequently, the linear (Kelvin) viscoelastic model better describes the pressure-area dynamics in this vessel. Results comparing biomechanical properties show that the Kelvin and sigmoid models were able to predict the zero-pressure vessel radius; that under ex vivo conditions vessels are more rigid, and comparatively, that the carotid artery is stiffer than the thoracic descending aorta; and that the viscoelastic gain and relaxation parameters do not differ significantly between vessels or experimental conditions. In conclusion, our study demonstrates that the proposed models can predict pressure-area dynamics and that model parameters can be extracted for further interpretation of biomechanical properties. PMID:21203846

  5. A Two-Step Method to Select Major Surge-Producing Extratropical Cyclones from a 10,000-Year Stochastic Catalog

    NASA Astrophysics Data System (ADS)

    Keshtpoor, M.; Carnacina, I.; Yablonsky, R. M.

    2016-12-01

    Extratropical cyclones (ETCs) are the primary driver of storm surge events along the UK and northwest mainland Europe coastlines. In an effort to evaluate the storm surge risk in coastal communities in this region, a stochastic catalog is developed by perturbing the historical storm seeds of European ETCs to account for 10,000 years of possible ETCs. Numerical simulation of the storm surge generated by the full 10,000-year stochastic catalog, however, is computationally expensive and may take several months to complete with available computational resources. A new statistical regression model is developed to select the major surge-generating events from the stochastic ETC catalog. This regression model is based on the maximum storm surge, obtained via numerical simulations using a calibrated version of the Delft3D-FM hydrodynamic model with a relatively coarse mesh, of 1750 historical ETC events that occurred over the past 38 years in Europe. These numerically-simulated surge values were regressed to the local sea level pressure and the U and V components of the wind field at the location of 196 tide gauge stations near the UK and northwest mainland Europe coastal areas. The regression model suggests that storm surge values in the area of interest are highly correlated to the U- and V-component of wind speed, as well as the sea level pressure. Based on these correlations, the regression model was then used to select surge-generating storms from the 10,000-year stochastic catalog. Results suggest that roughly 105,000 events out of 480,000 stochastic storms are surge-generating events and need to be considered for numerical simulation using a hydrodynamic model. The selected stochastic storms were then simulated in Delft3D-FM, and the final refinement of the storm population was performed based on return period analysis of the 1750 historical event simulations at each of the 196 tide gauges in preparation for Delft3D-FM fine mesh simulations.

  6. Complexity in models of cultural niche construction with selection and homophily.

    PubMed

    Creanza, Nicole; Feldman, Marcus W

    2014-07-22

    Niche construction is the process by which organisms can alter the ecological environment for themselves, their descendants, and other species. As a result of niche construction, differences in selection pressures may be inherited across generations. Homophily, the tendency of like phenotypes to mate or preferentially associate, influences the evolutionary dynamics of these systems. Here we develop a model that includes selection and homophily as independent culturally transmitted traits that influence the fitness and mate choice determined by another focal cultural trait. We study the joint dynamics of a focal set of beliefs, a behavior that can differentially influence the fitness of those with certain beliefs, and a preference for partnering based on similar beliefs. Cultural transmission, selection, and homophily interact to produce complex evolutionary dynamics, including oscillations, stable polymorphisms of all cultural phenotypes, and simultaneous stability of oscillation and fixation, which have not previously been observed in models of cultural evolution or gene-culture interactions. We discuss applications of this model to the interaction of beliefs and behaviors regarding education, contraception, and animal domestication.

  7. Effect of breast feeding in infancy on blood pressure in later life: systematic review and meta-analysis

    PubMed Central

    Owen, Christopher G; Whincup, Peter H; Gilg, Julie A; Cook, Derek G

    2003-01-01

    Objective To determine whether breast feeding in infancy compared with bottle feeding formula milk is associated with lower mean blood pressure at different ages. Design Systematic review. Data sources Embase, Medline, and Web of Science databases. Study selection Studies showing the effects of feeding in infancy on blood pressure at different ages. Data extraction Pooled mean differences in blood pressure between breast fed infants and those bottle fed formula milk, based on random effects models. Data synthesis The pooled mean difference in systolic blood pressure was -1.10 mm Hg (95% confidence interval -1.79 to -0.42 mm Hg) but with significant heterogeneity between estimates (P < 0.001). The difference was largest in studies of < 300 participants (-2.05 mm Hg, -3.30 to -0.80 mm Hg), intermediate in studies of 300-1000 participants (1.13 mm Hg, -2.53 to 0.27 mm Hg), and smallest in studies of > 1000 participants (-0.16 mm Hg, -0.60 to 0.28 mm Hg). An Egger test but not Begg test was statistically significant for publication bias. The difference was unaltered by adjustment for current size and was independent of age at measurement of blood pressure and year of birth. Diastolic blood pressure was not significantly related to type of feeding in infancy. Conclusions Selective publication of small studies with positive findings may have exaggerated claims that breast feeding in infancy reduces systolic blood pressure in later life. The results of larger studies suggest that feeding in infancy has at most a modest effect on blood pressure, which is of limited clinical or public health importance. PMID:14630752

  8. Relationships between sudden weather changes in summer and mortality in the Czech Republic, 1986-2005

    NASA Astrophysics Data System (ADS)

    Plavcová, Eva; Kyselý, Jan

    2010-09-01

    The study examines the relationship between sudden changes in weather conditions in summer, represented by (1) sudden air temperature changes, (2) sudden atmospheric pressure changes, and (3) passages of strong atmospheric fronts; and variations in daily mortality in the population of the Czech Republic. The events are selected from data covering 1986-2005 and compared with the database of daily excess all-cause mortality for the whole population and persons aged 70 years and above. Relative deviations of mortality, i.e., ratios of the excess mortality to the expected number of deaths, were averaged over the selected events for days D-2 (2 days before a change) up to D+7 (7 days after), and their statistical significance was tested by means of the Monte Carlo method. We find that the periods around weather changes are associated with pronounced patterns in mortality: a significant increase in mortality is found after large temperature increases and on days of large pressure drops; a decrease in mortality (partly due to a harvesting effect) occurs after large temperature drops, pressure increases, and passages of strong cold fronts. The relationship to variations in excess mortality is better expressed for sudden air temperature/pressure changes than for passages of atmospheric fronts. The mortality effects are usually more pronounced in the age group 70 years and above. The impacts associated with large negative changes of pressure are statistically independent of the effects of temperature; the corresponding dummy variable is found to be a significant predictor in the ARIMA model for relative deviations of mortality. This suggests that sudden weather changes should be tested also in time series models for predicting excess mortality as they may enhance their performance.

  9. Treatment of sleep-disordered breathing with positive airway pressure devices: technology update.

    PubMed

    Johnson, Karin Gardner; Johnson, Douglas Clark

    2015-01-01

    Many types of positive airway pressure (PAP) devices are used to treat sleep-disordered breathing including obstructive sleep apnea, central sleep apnea, and sleep-related hypoventilation. These include continuous PAP, autoadjusting CPAP, bilevel PAP, adaptive servoventilation, and volume-assured pressure support. Noninvasive PAP has significant leak by design, which these devices adjust for in different manners. Algorithms to provide pressure, detect events, and respond to events vary greatly between the types of devices, and vary among the same category between companies and different models by the same company. Many devices include features designed to improve effectiveness and patient comfort. Data collection systems can track compliance, pressure, leak, and efficacy. Understanding how each device works allows the clinician to better select the best device and settings for a given patient. This paper reviews PAP devices, including their algorithms, settings, and features.

  10. Quasi-adiabatic compression heating of selected foods

    NASA Astrophysics Data System (ADS)

    Landfeld, Ales; Strohalm, Jan; Halama, Radek; Houska, Milan

    2011-03-01

    The quasi-adiabatic temperature increase due to compression heating, during high-pressure (HP) processing (HPP), was studied using specially designed equipment. The temperature increase was evaluated as the difference in temperature, during compression, between atmospheric pressure and nominal pressure. The temperature was measured using a thermocouple in the center of a polyoxymethylene cup, which contained the sample. Fresh meat balls, pork meat pate, and tomato purée temperature increases were measured at three initial temperature levels between 40 and 80 °C. Nominal pressure was either 400 or 500 MPa. Results showed that the fat content had a positive effect on temperature increases. Empirical equations were developed to calculate the temperature increase during HPP at different initial temperatures for pressures of 400 and 500 MPa. This thermal effect data can be used for numerical modeling of temperature histories of foods during HP-assisted pasteurization or sterilization processes.

  11. CRISTAPRESS: an optical cell for structure development in high-pressure crystallization.

    PubMed

    Boyer, S A E; Fournier, F E J; Gandin, Ch-A; Haudin, J-M

    2014-01-01

    An original optical high-pressure cell, named CRISTAPRESS, has been especially designed to investigate phase transitions of complex liquids, i.e., polymers, polymer blends, nano-composites, etc. The design of the cell is based on the optical properties of morphological entities through in situ light depolarizing microscopic observations. Pressure up to 200 MPa with a fine temperature control up to 300 °C can be applied. A striking advantage of this cell is the possibility to select the pressure transmitting medium that can be water, silicone oil, a fluid in the supercritical state, etc. The potential of the novel technique was demonstrated by carrying out time-resolved measurements during polymer crystallization induced by water pressure. These preliminary experimental investigations permit to discriminate the role of the barometric and thermal histories on the kinetics of polymer growth, as well as on the subsequent morphologies. It should lead to new reliable crystallization kinetics models.

  12. Spatial Selection and Local Adaptation Jointly Shape Life-History Evolution during Range Expansion.

    PubMed

    Van Petegem, Katrien H P; Boeye, Jeroen; Stoks, Robby; Bonte, Dries

    2016-11-01

    In the context of climate change and species invasions, range shifts increasingly gain attention because the rates at which they occur in the Anthropocene induce rapid changes in biological assemblages. During range shifts, species experience multiple selection pressures. For poleward expansions in particular, it is difficult to interpret observed evolutionary dynamics because of the joint action of evolutionary processes related to spatial selection and to adaptation toward local climatic conditions. To disentangle the effects of these two processes, we integrated stochastic modeling and data from a common garden experiment, using the spider mite Tetranychus urticae as a model species. By linking the empirical data with those derived form a highly parameterized individual-based model, we infer that both spatial selection and local adaptation contributed to the observed latitudinal life-history divergence. Spatial selection best described variation in dispersal behavior, while variation in development was best explained by adaptation to the local climate. Divergence in life-history traits in species shifting poleward could consequently be jointly determined by contemporary evolutionary dynamics resulting from adaptation to the environmental gradient and from spatial selection. The integration of modeling with common garden experiments provides a powerful tool to study the contribution of these evolutionary processes on life-history evolution during range expansion.

  13. Neutrality and evolvability of designed protein sequences

    NASA Astrophysics Data System (ADS)

    Bhattacherjee, Arnab; Biswas, Parbati

    2010-07-01

    The effect of foldability on protein’s evolvability is analyzed by a two-prong approach consisting of a self-consistent mean-field theory and Monte Carlo simulations. Theory and simulation models representing protein sequences with binary patterning of amino acid residues compatible with a particular foldability criteria are used. This generalized foldability criterion is derived using the high temperature cumulant expansion approximating the free energy of folding. The effect of cumulative point mutations on these designed proteins is studied under neutral condition. The robustness, protein’s ability to tolerate random point mutations is determined with a selective pressure of stability (ΔΔG) for the theory designed sequences, which are found to be more robust than that of Monte Carlo and mean-field-biased Monte Carlo generated sequences. The results show that this foldability criterion selects viable protein sequences more effectively compared to the Monte Carlo method, which has a marked effect on how the selective pressure shapes the evolutionary sequence space. These observations may impact de novo sequence design and its applications in protein engineering.

  14. Improved Measurement of Blood Pressure by Extraction of Characteristic Features from the Cuff Oscillometric Waveform

    PubMed Central

    Lim, Pooi Khoon; Ng, Siew-Cheok; Jassim, Wissam A.; Redmond, Stephen J.; Zilany, Mohammad; Avolio, Alberto; Lim, Einly; Tan, Maw Pin; Lovell, Nigel H.

    2015-01-01

    We present a novel approach to improve the estimation of systolic (SBP) and diastolic blood pressure (DBP) from oscillometric waveform data using variable characteristic ratios between SBP and DBP with mean arterial pressure (MAP). This was verified in 25 healthy subjects, aged 28 ± 5 years. The multiple linear regression (MLR) and support vector regression (SVR) models were used to examine the relationship between the SBP and the DBP ratio with ten features extracted from the oscillometric waveform envelope (OWE). An automatic algorithm based on relative changes in the cuff pressure and neighbouring oscillometric pulses was proposed to remove outlier points caused by movement artifacts. Substantial reduction in the mean and standard deviation of the blood pressure estimation errors were obtained upon artifact removal. Using the sequential forward floating selection (SFFS) approach, we were able to achieve a significant reduction in the mean and standard deviation of differences between the estimated SBP values and the reference scoring (MLR: mean ± SD = −0.3 ± 5.8 mmHg; SVR and −0.6 ± 5.4 mmHg) with only two features, i.e., Ratio2 and Area3, as compared to the conventional maximum amplitude algorithm (MAA) method (mean ± SD = −1.6 ± 8.6 mmHg). Comparing the performance of both MLR and SVR models, our results showed that the MLR model was able to achieve comparable performance to that of the SVR model despite its simplicity. PMID:26087370

  15. Effect of hurricane paths on storm surge response at Tianjin, China

    NASA Astrophysics Data System (ADS)

    Feng, Xingru; Yin, Baoshu; Yang, Dezhou

    2012-06-01

    A hurricane induced storm surge simulation system was developed for Tianjin coast, which consists of a hurricane model and a storm surge model. The peak storm surge result of the simulation agreed well with that of the observation. Three observed paths (Rita, Mimie and WINNIE) and a hypothetical path (Rita2) were chosen as the selective hurricane paths according to their positions relative to Tianjin. The sensitivity of Tianjin storm surge to the four paths was investigated using the validated storm surge simulation system. Three groups of experiments were done. In group one, the models were forced by the wind field and air pressure; in group two and three the models were forced by the wind only and the air pressure only respectively. In the experiments, the hurricane moved with a fixed speed and an intensity of 50 year return period. The simulation results show that path of the type Rita2 is the easiest to cause storm surge disaster in Tianjin, and the effect of air pressure forcing is most evident for path of the type Rita in Tianjin storm surge process. The above conclusions were analyzed through the evolution of the wind fields and the air pressure distributions. Comparing the experiment results of Group one, two and three, it can be seen that the storm surge is mainly induced by the wind forcing and the nonlinear interaction between the effect of wind forcing and air pressure forcing on the storm surge tends to weaken the storm surge.

  16. Analytical considerations and dimensionless analysis for a description of particle interactions in high pressure processes

    NASA Astrophysics Data System (ADS)

    Rauh, Cornelia; Delgado, Antonio

    2010-12-01

    High pressures of up to several hundreds of MPa are utilized in a wide range of applications in chemical, bio-, and food engineering, aiming at selective control of (bio-)chemical reactions. Non-uniformity of process conditions may threaten the safety and quality of the resulting products because processing conditions such as pressure, temperature, and treatment history are crucial for the course of (bio-)chemical reactions. Therefore, thermofluid-dynamical phenomena during the high pressure process have to be examined, and numerical tools to predict process uniformity and to optimize the processes have to be developed. Recently applied mathematical models and numerical simulations of laboratory and industrial scale high pressure processes investigating the mentioned crucial phenomena are based on continuum balancing models of thermofluid dynamics. Nevertheless, biological systems are complex fluids containing the relevant (bio-)chemical compounds (enzymes and microorganisms). These compounds are particles that interact with the surrounding medium and between each other. This contribution deals with thermofluid-dynamical interactions of the relevant particulate (bio-)chemical compounds (enzymes and microorganisms) with the surrounding fluid. By consideration of characteristic time and length scales and particle forces, the motion of the (bio-)chemical compounds is characterized.

  17. Thermal and pressure histories of the Malay Basin, offshore Malaysia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yusoff, W.I.; Swarbrick, R.E.

    1994-07-01

    The Malay Basin is a Neogene intracratonic basin characterized by high heat flow and rapid sedimentation; moderate to high overpressure is common in deeper reservoirs. Thermal conductivity and temperature data from 55 wells have been used to reassess the areal and vertical heat-flow distribution within the basin. Anomalously high temperatures have been observed in some sandstone intervals above the overpressured reservoir section. A narrow to rather abrupt pressure transition zone could be recognized. All hydrocarbon-filled reservoirs seemed to be associated with high heat flow (i.e., about 90 mW/m[sup 2]). Overpressure in some wells is approaching critical fracture pressure (i.e., 0.85more » psi/ft. pressure gradient) in the region. In the central part of the basin, the overpressured sections are found within the shallower (<2000 m) hydrocarbon-bearing units. Selective studies of the temporal development of the pore pressure indicated that overpressure development is associated with episodes of rapid sedimentation. A preliminary fluid flow model supported by pressure modeling is proposed whereby hot fluids are currently being expelled from deeper overpressured sandstone and mudrocks through a fractured seal induced by overpressure. The latter is caused by relatively rapid burial since late Tertiary times. Hydrocarbon migration may have been aided by this fluid movement.« less

  18. Wind-tunnel measurements of the chordwise pressure distribution and profile drag of a research airplane model incorporating a 17-percent-thick supercritical wing

    NASA Technical Reports Server (NTRS)

    Ferris, J. C.

    1973-01-01

    The Langley 8-foot transonic pressure tunnel to determine the wing chordwise pressure distribution for a 0.09-scale model of a research airplane incorporating a 17-percent-thick supercritical wing. Airfoil profile drag was determined from wake pressure measurements at the 42-percent-semispan wing station. The investigation was conducted at Mach numbers from 0.30 to 0.80 over an angle-of-attack range sufficient to include buffet onset. The Reynolds number based on the mean geometric chord varied from 2 x 10 to the 6th power at Mach number 0.30 to 3.33 x 10 to the 6th power at Mach number 0.65 and was maintained at a constant value of 3.86 x 10 to the 6th power at Mach numbers from 0.70 to 0.80. Pressure coefficients for four wing semispan stations and wing-section normal-force and pitching-moment coefficients for two semispan stations are presented in tabular form over the Mach number range from 0.30 to 0.80. Plotted chordwise pressure distributions and wake profiles are given for a selected range of section normal-force coefficients over the same Mach number range.

  19. The origin of Korotkoff sounds and the accuracy of auscultatory blood pressure measurements.

    PubMed

    Babbs, Charles F

    2015-12-01

    This study explores the hypothesis that the sharper, high frequency Korotkoff sounds come from resonant motion of the arterial wall, which begins after the artery transitions from a buckled state to an expanding state. The motions of one mass, two nonlinear springs, and one damper, driven by transmural pressure under the cuff, are used to model and compute the Korotkoff sounds according to principles of classical Newtonian physics. The natural resonance of this spring-mass-damper system provides a concise, yet rigorous, explanation for the origin of Korotkoff sounds. Fundamentally, wall stretching in expansion requires more force than wall bending in buckling. At cuff pressures between systolic and diastolic arterial pressure, audible vibrations (> 40 Hz) occur during early expansion of the artery wall beyond its zero pressure radius after the outward moving mass of tissue experiences sudden deceleration, caused by the discontinuity in stiffness between bucked and expanded states. The idealized spring-mass-damper model faithfully reproduces the time-domain waveforms of actual Korotkoff sounds in humans. Appearance of arterial sounds occurs at or just above the level of systolic pressure. Disappearance of arterial sounds occurs at or just above the level of diastolic pressure. Muffling of the sounds is explained by increased resistance of the artery to collapse, caused by downstream venous engorgement. A simple analytical model can define the physical origin of Korotkoff sounds, suggesting improved mechanical or electronic filters for their selective detection and confirming the disappearance of the Korotkoff sounds as the optimal diastolic end point. Copyright © 2015 American Society of Hypertension. Published by Elsevier Inc. All rights reserved.

  20. Comparison of results of experimental research with numerical calculations of a model one-sided seal

    NASA Astrophysics Data System (ADS)

    Joachimiak, Damian; Krzyślak, Piotr

    2015-06-01

    Paper presents the results of experimental and numerical research of a model segment of a labyrinth seal for a different wear level. The analysis covers the extent of leakage and distribution of static pressure in the seal chambers and the planes upstream and downstream of the segment. The measurement data have been compared with the results of numerical calculations obtained using commercial software. Based on the flow conditions occurring in the area subjected to calculations, the size of the mesh defined by parameter y+ has been analyzed and the selection of the turbulence model has been described. The numerical calculations were based on the measurable thermodynamic parameters in the seal segments of steam turbines. The work contains a comparison of the mass flow and distribution of static pressure in the seal chambers obtained during the measurement and calculated numerically in a model segment of the seal of different level of wear.

  1. Evaluation of innovative rocket engines for single-stage earth-to-orbit vehicles

    NASA Astrophysics Data System (ADS)

    Manski, Detlef; Martin, James A.

    1988-07-01

    Computer models of rocket engines and single-stage-to-orbit vehicles that were developed by the authors at DFVLR and NASA have been combined. The resulting code consists of engine mass, performance, trajectory and vehicle sizing models. The engine mass model includes equations for each subsystem and describes their dependences on various propulsion parameters. The engine performance model consists of multidimensional sets of theoretical propulsion properties and a complete thermodynamic analysis of the engine cycle. The vehicle analyses include an optimized trajectory analysis, mass estimation, and vehicle sizing. A vertical-takeoff, horizontal-landing, single-stage, winged, manned, fully reusable vehicle with a payload capability of 13.6 Mg (30,000 lb) to low earth orbit was selected. Hydrogen, methane, propane, and dual-fuel engines were studied with staged-combustion, gas-generator, dual bell, and the dual-expander cycles. Mixture ratio, chamber pressure, nozzle exit pressure liftoff acceleration, and dual fuel propulsive parameters were optimized.

  2. Evaluation of innovative rocket engines for single-stage earth-to-orbit vehicles

    NASA Technical Reports Server (NTRS)

    Manski, Detlef; Martin, James A.

    1988-01-01

    Computer models of rocket engines and single-stage-to-orbit vehicles that were developed by the authors at DFVLR and NASA have been combined. The resulting code consists of engine mass, performance, trajectory and vehicle sizing models. The engine mass model includes equations for each subsystem and describes their dependences on various propulsion parameters. The engine performance model consists of multidimensional sets of theoretical propulsion properties and a complete thermodynamic analysis of the engine cycle. The vehicle analyses include an optimized trajectory analysis, mass estimation, and vehicle sizing. A vertical-takeoff, horizontal-landing, single-stage, winged, manned, fully reusable vehicle with a payload capability of 13.6 Mg (30,000 lb) to low earth orbit was selected. Hydrogen, methane, propane, and dual-fuel engines were studied with staged-combustion, gas-generator, dual bell, and the dual-expander cycles. Mixture ratio, chamber pressure, nozzle exit pressure liftoff acceleration, and dual fuel propulsive parameters were optimized.

  3. Pressure dynamics in the trays caused by differences of the various impression materials and thickness of the relief in the maxillary edentulous model.

    PubMed

    Iwasaki, Masatoshi; Kawara, Misao; Inoue, Sayumi; Komiyama, Osamu; Iida, Takashi; Asano, Takashi

    2016-04-01

    The purpose of this study is to compare the pressure dynamics in the trays caused by differences in the various impression materials and in the thickness of the relief provided for the trays. In this study, two types of polyvinylsiloxane elastomers, one type of polyether elastomer and one type of alginate impression material were used. Pressure sensors were embedded at eight locations in a model of an edentulous maxilla, and used a simulation model covered with a pseudomucosa. For each impression material, the measurement was performed five times for each of the three types of trays, and the mean values were determined. Statistical analysis was carried out using one-way analysis of variance and the Tukey's HDS method, and the various pressure sensor values for each of the impression materials were compared 10s and 20s after the start of the measurement. Additionally, we compared differences among the three types of trays after 20s. The pressure values for sensors placed in the relief region tended to become uniform. Furthermore, we saw a tendency for the pressure to increase at the alveolar crests of the first molars on the left and right and at the posterior border of the palate, all of which support the denture, when relief was provided. The above results suggest that making the final impression for the denture using the selective pressure technique, with consideration given to the pressure dynamic, may lead to a good outcome in terms of preservation of the alveolar ridge. Copyright © 2015 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  4. [Natural selection associated with color vision defects in some population groups of Eurasia].

    PubMed

    Evsiukov, A N

    2014-01-01

    Fitness coefficients and other quantitative parameters of selection associated with the generalized color blindness gene CB+ were obtained for three ethnogeographic population groups, including Belarusians from Belarus, ethnic populations of the Volga-Ural region, and ethnic populations of Siberia and the Far East of Russia. All abnormalities encoded by the OPN1LW and OPN1MW loci were treated as deviations from normal color perception. Coefficients were estimated from an approximation of the observed CB+ frequency distributions to the theoretical stationary distribution for the Wright island model. This model takes into account the pressure of migrations, selection, and random genetic drift, while the selection parameters are represented in the form of the distribution parameters. In the populations of Siberia and Far East, directional selection in favor of normal color vision and the corresponding allele CB- was observed. In the Belarusian and ethnic populations of the Volga-Ural region, stabilizing selection was observed. The selection intensity constituted 0.03 in the Belarusian; 0.22 in the ethnic populations of the Volga-Ural region; and 0.24 in ethnic populations of Siberia and Far East.

  5. Ram Pressure Stripping: Observations Meet Simulations

    NASA Astrophysics Data System (ADS)

    Past, Matthew; Ruszkowski, Mateusz; Sharon, Keren

    2017-01-01

    Ram pressure stripping occurs when a galaxy falls into the potential well of a cluster, removing gas and dust as the galaxy travels through the intracluster medium. This interaction leads to filamentary gas tails stretching behind the galaxy and plays an important role in galaxy evolution. Previously, these “jellyfish” galaxies had only been observed in nearby clusters, but recently, higher redshift (z > 0.3) examples have been found from HST data imaging.Recent work has shown that cosmic rays injected by supernovae can cause galactic disks to thicken due to cosmic ray pressure. We run three-dimensional magneto-hydrodynamical simulations of ram pressure stripping including cosmic rays to compare to previous models. We study how the efficiency of the ram pressure stripping of the gas, and the morphology of the filamentary tails, depend on the magnitude of the cosmic ray pressure support. We generate mock X-ray images and radio polarization data. Simultaneously, we perform an exhaustive search of the HST archive to increase the sample of jellyfish galaxies and compare selected cases to simulations.

  6. Supercritical fluid chromatography of metoprolol and analogues on aminopropyl and ethylpyridine silica without any additives.

    PubMed

    Lundgren, Johanna; Salomonsson, John; Gyllenhaal, Olle; Johansson, Erik

    2007-06-22

    Metoprolol and a number of related amino alcohols and similar analytes have been chromatographed on aminopropyl (APS) and ethylpyridine (EPS) silica columns. The mobile phase was carbon dioxide with methanol as modifier and no amine additive was present. Optimal isocratic conditions for the selectivity were evaluated based on experiments using design of experiments. A central composite circumscribed model for each column was used. Factors were column temperature, back-pressure and % (v/v) of modifier. The responses were retention and selectivity versus metoprolol. The % of modifier mainly controlled the retention on both columns but pressure and temperature could also be important for optimizing the selectivity between the amino alcohols. The compounds could be divided into four and five groups on both columns, with respect to the selectivity. Furthermore, on the aminopropyl silica the analytes were more spread out whereas on the ethylpyridine silica, due to its aromaticity, retention and selectivity were closer. For optimal conditions the column temperature and back-pressure should be high and the modifier concentration low. A comparison of the selectivity using optimized conditions show a few switches of retention order between the two columns. On aminopropyl silica an aldehyde failed to be eluted owing to Schiff-base formation. Peak symmetry and column efficiency were briefly studied for some structurally close analogues. This revealed some activity from the columns that affected analytes that had less protected amino groups, a methyl group instead of isopropyl. The tailing was more marked with the ethylpyridine column even with the more bulky alkyl substituents. Plate number N was a better measure than the asymmetry factor since some analyte peaks broadened without serious deterioration of symmetry compared to homologues.

  7. Development and application of a new grey dynamic hierarchy analysis system (GDHAS) for evaluating urban ecological security.

    PubMed

    Shao, Chaofeng; Tian, Xiaogang; Guan, Yang; Ju, Meiting; Xie, Qiang

    2013-05-21

    Selecting indicators based on the characteristics and development trends of a given study area is essential for building a framework for assessing urban ecological security. However, few studies have focused on how to select the representative indicators systematically, and quantitative research is lacking. We developed an innovative quantitative modeling approach called the grey dynamic hierarchy analytic system (GDHAS) for both the procedures of indicator selection and quantitative assessment of urban ecological security. Next, a systematic methodology based on the GDHAS is developed to assess urban ecological security comprehensively and dynamically. This assessment includes indicator selection, driving force-pressure-state-impact-response (DPSIR) framework building, and quantitative evaluation. We applied this systematic methodology to assess the urban ecological security of Tianjin, which is a typical coastal super megalopolis and the industry base in China. This case study highlights the key features of our approach. First, 39 representative indicators are selected for the evaluation index system from 62 alternative ones available through the GDHAS. Second, the DPSIR framework is established based on the indicators selected, and the quantitative assessment of the eco-security of Tianjin is conducted. The results illustrate the following: urban ecological security of Tianjin in 2008 was in alert level but not very stable; the driving force and pressure subsystems were in good condition, but the eco-security levels of the remainder of the subsystems were relatively low; the pressure subsystem was the key to urban ecological security; and 10 indicators are defined as the key indicators for five subsystems. These results can be used as the basis for urban eco-environmental management.

  8. Development and Application of a New Grey Dynamic Hierarchy Analysis System (GDHAS) for Evaluating Urban Ecological Security

    PubMed Central

    Shao, Chaofeng; Tian, Xiaogang; Guan, Yang; Ju, Meiting; Xie, Qiang

    2013-01-01

    Selecting indicators based on the characteristics and development trends of a given study area is essential for building a framework for assessing urban ecological security. However, few studies have focused on how to select the representative indicators systematically, and quantitative research is lacking. We developed an innovative quantitative modeling approach called the grey dynamic hierarchy analytic system (GDHAS) for both the procedures of indicator selection and quantitative assessment of urban ecological security. Next, a systematic methodology based on the GDHAS is developed to assess urban ecological security comprehensively and dynamically. This assessment includes indicator selection, driving force-pressure-state-impact-response (DPSIR) framework building, and quantitative evaluation. We applied this systematic methodology to assess the urban ecological security of Tianjin, which is a typical coastal super megalopolis and the industry base in China. This case study highlights the key features of our approach. First, 39 representative indicators are selected for the evaluation index system from 62 alternative ones available through the GDHAS. Second, the DPSIR framework is established based on the indicators selected, and the quantitative assessment of the eco-security of Tianjin is conducted. The results illustrate the following: urban ecological security of Tianjin in 2008 was in alert level but not very stable; the driving force and pressure subsystems were in good condition, but the eco-security levels of the remainder of the subsystems were relatively low; the pressure subsystem was the key to urban ecological security; and 10 indicators are defined as the key indicators for five subsystems. These results can be used as the basis for urban eco-environmental management. PMID:23698700

  9. Simulating Air-Entrapment in Low Permeability Mudrocks using a Macroscopic Invasion Percolation Model

    NASA Astrophysics Data System (ADS)

    Singh, A.; Holt, R. M.; Ramarao, B.; Clemo, T.

    2011-12-01

    Three radioactive waste disposal landfills at the Waste Control Specialists (WCS) facility in Andrews County, Texas are constructed below grade, within the low-permeability Dockum Group mudrocks (Cooper Canyon Formation) of Triassic age. Recent site investigations at the WCS disposal facilities indicate the presence of a trapped and compressed gas phase in the mudrocks. The Dockum is a low-permeability medium with vertical and horizontal effective hydraulic conductivities of 1.2E-9 cm/s and 2.9E-7 cm/s. The upper 300+ feet of the Dockum is in the unsaturated zone, with an average saturation of 0.87 and average capillary pressure of 2.8 MPa determined from core samples. Air entry pressures on core samples range from from 0.016 to 9.8 MPa, with a mean of 1.0 MPa. Heat dissipation sensors, thermocouple psychrometers, and advanced tensiometers installed in Dockum borehole arrays generally show capillary pressures one order of magnitude less than those measured on core samples. These differences with core data are attributed to the presence of a trapped and compressed gas phase within Dockum materials. In the vicinity of an instrumented borehole, the gas phase pressure equilibrates with atmospheric pressure, lowering the capillary pressure. We have developed a new macroscopic invasion percolation (MIP) model to illustrate the origin of the trapped gas phase in the Dockum rocks. An MIP model differs from invasion percolation (IP) through the definition of macro-scale capillarity. Individual pore throats and necks are not considered. Instead, a near pore-scale block is defined and characterized by a local threshold spanning pressure (a local block-scale breakthrough pressure) that represents the behavior of the subscale network. The model domain is discretized into an array of grid blocks with assigned spanning pressures. An invasion pressure for each block is then determined by the sum of spanning pressure, buoyance forces, and viscous forces. An IP algorithm sorts the invadable blocks, selects the block connected to the growing cluster with the lowest invasion pressure, and invades it. Our new MIP model incorporates several new features, including an efficient three-dimensional clustering algorithm; simultaneous invasion/reinvasion of water and air phases; hysteresis in water and air drainage curves; capability for distributed porosities and drainage parameters; and gas-phase compression and trapping. We apply this model in simulations representing the WCS site and illustrate the origin of the trapped and compressed gas phase in Dockum mudrocks.

  10. A Study on the Model of Detecting the Liquid Level of Sealed Containers Based on Kirchhoff Approximation Theory.

    PubMed

    Zhang, Bin; Song, Wen-Ai; Wei, Yue-Juan; Zhang, Dong-Song; Liu, Wen-Yi

    2017-06-15

    By simulating the sound field of a round piston transducer with the Kirchhoff integral theorem and analyzing the shape of ultrasound beams and propagation characteristics in a metal container wall, this study presents a model for calculating the echo sound pressure by using the Kirchhoff paraxial approximation theory, based on which and according to different ultrasonic impedance between gas and liquid media, a method for detecting the liquid level from outside of sealed containers is proposed. Then, the proposed method is evaluated through two groups of experiments. In the first group, three kinds of liquid media with different ultrasonic impedance are used as detected objects; the echo sound pressure is calculated by using the proposed model under conditions of four sets of different wall thicknesses. The changing characteristics of the echo sound pressure in the entire detection process are analyzed, and the effects of different ultrasonic impedance of liquids on the echo sound pressure are compared. In the second group, taking water as an example, two transducers with different radii are selected to measure the liquid level under four sets of wall thickness. Combining with sound field characteristics, the influence of different size transducers on the pressure calculation and detection resolution are discussed and analyzed. Finally, the experimental results indicate that measurement uncertainly is better than ±5 mm, which meets the industrial inspection requirements.

  11. A Study on the Model of Detecting the Liquid Level of Sealed Containers Based on Kirchhoff Approximation Theory

    PubMed Central

    Zhang, Bin; Song, Wen-Ai; Wei, Yue-Juan; Zhang, Dong-Song; Liu, Wen-Yi

    2017-01-01

    By simulating the sound field of a round piston transducer with the Kirchhoff integral theorem and analyzing the shape of ultrasound beams and propagation characteristics in a metal container wall, this study presents a model for calculating the echo sound pressure by using the Kirchhoff paraxial approximation theory, based on which and according to different ultrasonic impedance between gas and liquid media, a method for detecting the liquid level from outside of sealed containers is proposed. Then, the proposed method is evaluated through two groups of experiments. In the first group, three kinds of liquid media with different ultrasonic impedance are used as detected objects; the echo sound pressure is calculated by using the proposed model under conditions of four sets of different wall thicknesses. The changing characteristics of the echo sound pressure in the entire detection process are analyzed, and the effects of different ultrasonic impedance of liquids on the echo sound pressure are compared. In the second group, taking water as an example, two transducers with different radii are selected to measure the liquid level under four sets of wall thickness. Combining with sound field characteristics, the influence of different size transducers on the pressure calculation and detection resolution are discussed and analyzed. Finally, the experimental results indicate that measurement uncertainly is better than ±5 mm, which meets the industrial inspection requirements. PMID:28617326

  12. Modeling and stability of electro-hydraulic servo of hydraulic excavator

    NASA Astrophysics Data System (ADS)

    Jia, Wenhua; Yin, Chenbo; Li, Guo; Sun, Menghui

    2017-11-01

    The condition of the hydraulic excavator is complicated and the working environment is bad. The safety and stability of the control system is influenced by the external factors. This paper selects hydraulic excavator electro-hydraulic servo system as the research object. A mathematical model and simulation model using AMESIM of servo system is established. Then the pressure and flow characteristics are analyzed. The design and optimization of electro-hydraulic servo system and its application in engineering machinery is provided.

  13. Phase I Experimental Testing of a Generic Submarine Model in the DSTO Low Speed Wind Tunnel

    DTIC Science & Technology

    2012-07-01

    used during the tests , along with the test methodology . A sub-set of the data gathered is also presented and briefly discussed. Overall, the force...total pressure probe when positioned close to the model. 4. Results Selected results from the testing of the generic submarine model in the...Appendix B summaries the test conditions. 4.3.1 Smoke Generator and Probe An Aerotech smoke generator and probe were used for visualisation of

  14. Hidden long evolutionary memory in a model biochemical network

    NASA Astrophysics Data System (ADS)

    Ali, Md. Zulfikar; Wingreen, Ned S.; Mukhopadhyay, Ranjan

    2018-04-01

    We introduce a minimal model for the evolution of functional protein-interaction networks using a sequence-based mutational algorithm, and apply the model to study neutral drift in networks that yield oscillatory dynamics. Starting with a functional core module, random evolutionary drift increases network complexity even in the absence of specific selective pressures. Surprisingly, we uncover a hidden order in sequence space that gives rise to long-term evolutionary memory, implying strong constraints on network evolution due to the topology of accessible sequence space.

  15. Adsorption of CO₂, CH₄, and N₂ on ordered mesoporous carbon: approach for greenhouse gases capture and biogas upgrading.

    PubMed

    Yuan, Bin; Wu, Xiaofei; Chen, Yingxi; Huang, Jianhan; Luo, Hongmei; Deng, Shuguang

    2013-05-21

    Separation of CO₂ and N₂ from CH₄ is significantly important in natural gas upgrading, and capture/removal of CO₂, CH₄ from air (N₂) is essential to greenhouse gas emission control. Adsorption equilibrium and kinetics of CO₂, CH₄, and N₂ on an ordered mesoporous carbon (OMC) sample were systematically investigated to evaluate its capability in the above two applications. The OMC was synthesized and characterized with TEM, TGA, small-angle XRD, and nitrogen adsorption/desorption measurements. Pure component adsorption isotherms of CO₂, CH₄, and N₂ were measured at 278, 298, and 318 K and pressures up to 100 kPa, and correlated with the Langmuir model. These data were used to estimate the separation selectivities for CO₂/CH₄, CH₄/N₂, and CO₂/N₂ binary mixtures at different compositions and pressures according to the ideal adsorbed solution theory (IAST) model. At 278 K and 100 kPa, the predicted selectivities for equimolar CO₂/CH₄, CH4/N₂, and CO₂/N₂ are 3.4, 3.7, and 12.8, respectively; and the adsorption capacities for CH₄ and CO₂ are 1.3 and 3.0 mmol/g, respectively. This is the first report of a versatile mesoporous material that displays both high selectivities and large adsorption capacities for separating CO₂/CH₄, CH₄/N₂, and CO₂/N₂ mixtures.

  16. It's a bear market: evolutionary and ecological effects of predation on two wild sockeye salmon populations

    PubMed Central

    Lin, J E; Hard, J J; Naish, K A; Peterson, D; Hilborn, R; Hauser, L

    2016-01-01

    Predation can affect both phenotypic variation and population productivity in the wild, but quantifying evolutionary and demographic effects of predation in natural environments is challenging. The aim of this study was to estimate selection differentials and coefficients associated with brown bear (Ursus arctos) predation in wild sockeye salmon (Oncorhynchus nerka) populations spawning in pristine habitat that is often subject to intense predation pressure. Using reconstructed genetic pedigrees, individual reproductive success (RS) was estimated in two sockeye salmon populations for two consecutive brood years with very different predation intensities across brood years. Phenotypic data on individual adult body length, body depth, stream entry timing and reproductive lifespan were used to calculate selection coefficients based on RS, and genetic variance components were estimated using animal models. Bears consistently killed larger and more recently arrived adults, although selection differentials were small. In both populations, mean RS was higher in the brood year experiencing lower predation intensity. Selection coefficients were similar across brood years with different levels of predation, often indicating stabilizing selection on reproductive lifespan as well as directional selection for longer reproductive lifespan. Despite these selection pressures, genetic covariation of morphology, phenology and lifespan appears to have maintained variation in spawner body size and stream entry timing in both populations. Our results therefore suggest considerable demographic but limited evolutionary effects of bear predation in the two study populations. PMID:26860201

  17. It's a bear market: evolutionary and ecological effects of predation on two wild sockeye salmon populations.

    PubMed

    Lin, J E; Hard, J J; Naish, K A; Peterson, D; Hilborn, R; Hauser, L

    2016-05-01

    Predation can affect both phenotypic variation and population productivity in the wild, but quantifying evolutionary and demographic effects of predation in natural environments is challenging. The aim of this study was to estimate selection differentials and coefficients associated with brown bear (Ursus arctos) predation in wild sockeye salmon (Oncorhynchus nerka) populations spawning in pristine habitat that is often subject to intense predation pressure. Using reconstructed genetic pedigrees, individual reproductive success (RS) was estimated in two sockeye salmon populations for two consecutive brood years with very different predation intensities across brood years. Phenotypic data on individual adult body length, body depth, stream entry timing and reproductive lifespan were used to calculate selection coefficients based on RS, and genetic variance components were estimated using animal models. Bears consistently killed larger and more recently arrived adults, although selection differentials were small. In both populations, mean RS was higher in the brood year experiencing lower predation intensity. Selection coefficients were similar across brood years with different levels of predation, often indicating stabilizing selection on reproductive lifespan as well as directional selection for longer reproductive lifespan. Despite these selection pressures, genetic covariation of morphology, phenology and lifespan appears to have maintained variation in spawner body size and stream entry timing in both populations. Our results therefore suggest considerable demographic but limited evolutionary effects of bear predation in the two study populations.

  18. Posttest REALP4 analysis of LOFT experiment L1-3A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, J.R.; Holmstrom, H.L.O.

    This report presents selected results of posttest RELAP4 modeling of LOFT loss-of-coolant experiment L1-3A, a double-ended isothermal cold leg break with lower plenum emergency core coolant injection. Comparisons are presented between the pretest prediction, the posttest analysis, and the experimental data. It is concluded that pressurizer modeling is important for accurately predicting system behavior during the initial portion of saturated blowdown. Using measured initial conditions rather than nominal specified initial conditions did not influence the system model results significantly. Using finer nodalization in the reactor vessel improved the prediction of the system pressure history by minimizing steam condensation effects. Unequalmore » steam condensation between the downcomer and core volumes appear to cause the manometer oscillations observed in both the pretest and posttest RELAP4 analysis.« less

  19. Selection of NIR H2O absorption transitions for in-cylinder measurement of temperature in IC engines

    NASA Astrophysics Data System (ADS)

    Zhou, Xin; Liu, Xiang; Jeffries, Jay B.; Hanson, Ronald K.

    2005-12-01

    The water vapour spectrum in the 1.25-1.65 µm region is systematically analysed to find the best absorption transitions for sensitive measurement of in-cylinder gas temperature over short paths in an internal combustion engine. The strategy to select the optimum wavelength regions and absorption line combinations is developed for the time-varying pressures and temperatures expected during the compression portion of an engine cycle. We have identified 14 transitions of water vapour in this spectral region as promising for this application. From these transitions, 16 potential line pairs were considered for a wavelength-modulated absorption sensor for in-cylinder gas temperature during the compression stroke. Expected performance is modelled for the intake portion of two engine cycles that produce extreme temperature and pressure variations during compression.

  20. Compressed storage of arterial pressure waveforms by selection of significant points.

    PubMed

    de Graaf, P M; van Goudoever, J; Wesseling, K H

    1997-09-01

    Continuous records of arterial blood pressure can be obtained non-invasively with Finapres, even for periods of 24 hours. Increasingly, storage of such records is done digitally, requiring large disc capacities. It is therefore necessary to find methods to store blood pressure waveforms in compressed form. The method of selection of significant points known from ECG data compression is adapted. Points are selected as significant wherever the first derivative of the pressure wave changes sign. As a second stage recursive partitioning is used to select additional points such that the difference between the selected points, linearly interpolated, and the original curve remains below a maximum. This method is tested on finger arterial pressure waveform epochs of 60 s duration taken from 32 patients with a wide range of blood pressures and heart rates. An average compression factor of 4.6 (SD 1.0) is obtained when accepting a maximum difference of 3 mmHg. The root mean squared error is 1 mmHg averaged over the group of patient waveforms. Clinically relevant parameters such as systolic, diastolic and mean pressure are reproduced with an offset error of less than 0.5 (0.3) mmHg and scatter less than 0.6 (0.1) mmHg. It is concluded that a substantial compression factor can be achieved with a simple and computationally fast algorithm and little deterioration in waveform quality and pressure level accuracy.

  1. HIGH PRESSURE COAL COMBUSTON KINETICS PROJECT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stefano Orsino

    As part of the U.S. Department of Energy (DoE) initiative to improve the efficiency of coal-fired power plants and reduce the pollution generated by these facilities, DOE has funded the High-Pressure Coal Combustion Kinetics (HPCCK) Projects. A series of laboratory experiments were conducted on selected pulverized coals at elevated pressures with the specific goals to provide new data for pressurized coal combustion that will help extend to high pressure and validate models for burnout, pollutant formation, and generate samples of solid combustion products for analyses to fill crucial gaps in knowledge of char morphology and fly ash formation. Two seriesmore » of high-pressure coal combustion experiments were performed using SRI's pressurized radiant coal flow reactor. The first series of tests characterized the near burner flame zone (NBFZ). Three coals were tested, two high volatile bituminous (Pittsburgh No.8 and Illinois No.6), and one sub-bituminous (Powder River Basin), at pressures of 1, 2, and 3 MPa (10, 20, and 30 atm). The second series of experiments, which covered high-pressure burnout (HPBO) conditions, utilized a range of substantially longer combustion residence times to produce char burnout levels from 50% to 100%. The same three coals were tested at 1, 2, and 3 MPa, as well as at 0.2 MPa. Tests were also conducted on Pittsburgh No.8 coal in CO2 entrainment gas at 0.2, 1, and 2 MPa to begin establishing a database of experiments relevant to carbon sequestration techniques. The HPBO test series included use of an impactor-type particle sampler to measure the particle size distribution of fly ash produced under complete burnout conditions. The collected data have been interpreted with the help of CFD and detailed kinetics simulation to extend and validate devolatilization, char combustion and pollutant model at elevated pressure. A global NOX production sub-model has been proposed. The submodel reproduces the performance of the detailed chemical reaction mechanism for the NBFZ tests.« less

  2. Composite load spectra for select space propulsion structural components

    NASA Technical Reports Server (NTRS)

    Newell, James F.; Ho, Hing W.

    1991-01-01

    This report summarizes the development for: (1) correlation fields; (2) applications to liquid oxygen post; (3) models for pressure fluctuatios and vibration loads fluctuations; (4) additions to expert systems; and (5) scaling criteria. Implementation to computer code is also described. Demonstration sample cases are included with additional applications to engine duct and pipe bend.

  3. Public Elementary and Secondary Education in the '80s.

    ERIC Educational Resources Information Center

    Broudy, H. S.

    Privatism, vouchers, too many pressure groups, and a deemphasis of citizenship present the worst stumbling blocks to education. A five-point curriculum model includes: (1) the symbolics of information--the skills of language and computation; (2) the key concepts of a selected set of the physical sciences and mathematics; (3) developmental studies…

  4. Evolutionary Inference across Eukaryotes Identifies Specific Pressures Favoring Mitochondrial Gene Retention.

    PubMed

    Johnston, Iain G; Williams, Ben P

    2016-02-24

    Since their endosymbiotic origin, mitochondria have lost most of their genes. Although many selective mechanisms underlying the evolution of mitochondrial genomes have been proposed, a data-driven exploration of these hypotheses is lacking, and a quantitatively supported consensus remains absent. We developed HyperTraPS, a methodology coupling stochastic modeling with Bayesian inference, to identify the ordering of evolutionary events and suggest their causes. Using 2015 complete mitochondrial genomes, we inferred evolutionary trajectories of mtDNA gene loss across the eukaryotic tree of life. We find that proteins comprising the structural cores of the electron transport chain are preferentially encoded within mitochondrial genomes across eukaryotes. A combination of high GC content and high protein hydrophobicity is required to explain patterns of mtDNA gene retention; a model that accounts for these selective pressures can also predict the success of artificial gene transfer experiments in vivo. This work provides a general method for data-driven inference of the ordering of evolutionary and progressive events, here identifying the distinct features shaping mitochondrial genomes of present-day species. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Mixture optimization for mixed gas Joule-Thomson cycle

    NASA Astrophysics Data System (ADS)

    Detlor, J.; Pfotenhauer, J.; Nellis, G.

    2017-12-01

    An appropriate gas mixture can provide lower temperatures and higher cooling power when used in a Joule-Thomson (JT) cycle than is possible with a pure fluid. However, selecting gas mixtures to meet specific cooling loads and cycle parameters is a challenging design problem. This study focuses on the development of a computational tool to optimize gas mixture compositions for specific operating parameters. This study expands on prior research by exploring higher heat rejection temperatures and lower pressure ratios. A mixture optimization model has been developed which determines an optimal three-component mixture based on the analysis of the maximum value of the minimum value of isothermal enthalpy change, ΔhT , that occurs over the temperature range. This allows optimal mixture compositions to be determined for a mixed gas JT system with load temperatures down to 110 K and supply temperatures above room temperature for pressure ratios as small as 3:1. The mixture optimization model has been paired with a separate evaluation of the percent of the heat exchanger that exists in a two-phase range in order to begin the process of selecting a mixture for experimental investigation.

  6. Continuous Negative Abdominal Pressure Reduces Ventilator-induced Lung Injury in a Porcine Model.

    PubMed

    Yoshida, Takeshi; Engelberts, Doreen; Otulakowski, Gail; Katira, Bhushan; Post, Martin; Ferguson, Niall D; Brochard, Laurent; Amato, Marcelo B P; Kavanagh, Brian P

    2018-04-27

    In supine patients with acute respiratory distress syndrome, the lung typically partitions into regions of dorsal atelectasis and ventral aeration ("baby lung"). Positive airway pressure is often used to recruit atelectasis, but often overinflates ventral (already aerated) regions. A novel approach to selective recruitment of dorsal atelectasis is by "continuous negative abdominal pressure." A randomized laboratory study was performed in anesthetized pigs. Lung injury was induced by surfactant lavage followed by 1 h of injurious mechanical ventilation. Randomization (five pigs in each group) was to positive end-expiratory pressure (PEEP) alone or PEEP with continuous negative abdominal pressure (-5 cm H2O via a plexiglass chamber enclosing hindlimbs, pelvis, and abdomen), followed by 4 h of injurious ventilation (high tidal volume, 20 ml/kg; low expiratory transpulmonary pressure, -3 cm H2O). The level of PEEP at the start was ≈7 (vs. ≈3) cm H2O in the PEEP (vs. PEEP plus continuous negative abdominal pressure) groups. Esophageal pressure, hemodynamics, and electrical impedance tomography were recorded, and injury determined by lung wet/dry weight ratio and interleukin-6 expression. All animals survived, but cardiac output was decreased in the PEEP group. Addition of continuous negative abdominal pressure to PEEP resulted in greater oxygenation (PaO2/fractional inspired oxygen 316 ± 134 vs. 80 ± 24 mmHg at 4 h, P = 0.005), compliance (14.2 ± 3.0 vs. 10.3 ± 2.2 ml/cm H2O, P = 0.049), and homogeneity of ventilation, with less pulmonary edema (≈10% less) and interleukin-6 expression (≈30% less). Continuous negative abdominal pressure added to PEEP reduces ventilator-induced lung injury in a pig model compared with PEEP alone, despite targeting identical expiratory transpulmonary pressure.

  7. Flight Dynamics and Control of a Morphing UAV: Bio inspired by Natural Fliers

    DTIC Science & Technology

    2017-02-17

    Approved for public release: distribution unlimited. IV Modelling and Sizing Tornado Vortex Lattice Method (VLM) was used for aerodynamic prediction... Tornado is a Vortex Lattice Method software programmed in MATLAB; it was selected due to its fast solving time and ability to be controlled through...custom MATLAB scripts. Tornado VLM models the wing as thin sheet of discrete vortices and computes the pressure and force distributions around the

  8. Geo-mechanical modeling and selection of suitable layer for hydraulic fracturing operation in an oil reservoir (south west of Iran)

    NASA Astrophysics Data System (ADS)

    Darvish, Hoda; Nouri-Taleghani, Morteza; Shokrollahi, Amin; Tatar, Afshin

    2015-11-01

    According to the growth of demands to oil resources, increasing the rate of oil production seems necessary. However, oil production declines with time as a result of pressure drop in reservoir as well as sealing of microscopic cracks and pores in the reservoir rock. Hydraulic fracturing is one of the common methods with high performance, which is widely applied to oil and gas reservoirs. In this study, wells in three sections of east, center, and west sides of a field are compared regarding the suitable layer for hydraulic fracturing operation. Firstly, elastic modulus were obtained in both dynamic and static conditions, then uniaxial compressive strength (UCS), type of shear and tensile failures, the most accurate model of failure in wells, safe and stable mud window, the best zone and layers, and finally reference pressures are determined as nominates for hydraulic fracturing. Types of shear failure in minimum, and maximum range of model and in tensile model were determined to be "Shear failure wide breakout (SWBO)", "Shear narrow breakout (SNBO)", and "Tensile vertical failure (TVER)", respectively. The range of safe mud window (SMW) in the studied wells was almost in the same range as it was in every three spots of the field. This range was determined between 5200-8800psi and 5800-10100psi for Ilam and Sarvak zones, respectively. Initial fracture pressure ranges for selected layers were determined 11,759-14,722, 11,910-14,164, and 11,848-14,953psi for the eastern, central, and western wells. Thus, western wells have the best situation for Hydraulic fracturing operation. Finally, it was concluded that the operation is more economic in Sarvak zone and western wells.

  9. Membranes: A Variety of Energy Landscapes for Many Transfer Opportunities.

    PubMed

    Bacchin, Patrice

    2018-02-22

    A membrane can be represented by an energy landscape that solutes or colloids must cross. A model accounting for the momentum and the mass balances in the membrane energy landscape establishes a new way of writing for the Darcy law. The counter-pressure in the Darcy law is no longer written as the result of an osmotic pressure difference but rather as a function of colloid-membrane interactions. The ability of the model to describe the physics of the filtration is discussed in detail. This model is solved in a simplified energy landscape to derive analytical relationships that describe the selectivity and the counter-pressure from ab initio operating conditions. The model shows that the stiffness of the energy landscape has an impact on the process efficiency: a gradual increase in interactions (such as with hourglass pore shape) can reduce the separation energetic cost. It allows the introduction of a new paradigm to increase membrane efficiency: the accumulation that is inherent to the separation must be distributed across the membrane. Asymmetric interactions thus lead to direction-dependent transfer properties and the membrane exhibits diode behavior. These new transfer opportunities are discussed.

  10. Membranes: A Variety of Energy Landscapes for Many Transfer Opportunities

    PubMed Central

    2018-01-01

    A membrane can be represented by an energy landscape that solutes or colloids must cross. A model accounting for the momentum and the mass balances in the membrane energy landscape establishes a new way of writing for the Darcy law. The counter-pressure in the Darcy law is no longer written as the result of an osmotic pressure difference but rather as a function of colloid-membrane interactions. The ability of the model to describe the physics of the filtration is discussed in detail. This model is solved in a simplified energy landscape to derive analytical relationships that describe the selectivity and the counter-pressure from ab initio operating conditions. The model shows that the stiffness of the energy landscape has an impact on the process efficiency: a gradual increase in interactions (such as with hourglass pore shape) can reduce the separation energetic cost. It allows the introduction of a new paradigm to increase membrane efficiency: the accumulation that is inherent to the separation must be distributed across the membrane. Asymmetric interactions thus lead to direction-dependent transfer properties and the membrane exhibits diode behavior. These new transfer opportunities are discussed. PMID:29470440

  11. Composite Load Spectra for Select Space Propulsion Structural Components

    NASA Technical Reports Server (NTRS)

    Ho, Hing W.; Newell, James F.

    1994-01-01

    Generic load models are described with multiple levels of progressive sophistication to simulate the composite (combined) load spectra (CLS) that are induced in space propulsion system components, representative of Space Shuttle Main Engines (SSME), such as transfer ducts, turbine blades and liquid oxygen (LOX) posts. These generic (coupled) models combine the deterministic models for composite load dynamic, acoustic, high-pressure and high rotational speed, etc., load simulation using statistically varying coefficients. These coefficients are then determined using advanced probabilistic simulation methods with and without strategically selected experimental data. The entire simulation process is included in a CLS computer code. Applications of the computer code to various components in conjunction with the PSAM (Probabilistic Structural Analysis Method) to perform probabilistic load evaluation and life prediction evaluations are also described to illustrate the effectiveness of the coupled model approach.

  12. Controlling and assessing pressure conditions during treatment of tar sands formations

    DOEpatents

    Zhang, Etuan; Beer, Gary Lee

    2015-11-10

    A method for treating a tar sands formation includes providing heat to at least part of a hydrocarbon layer in the tar sands formation from a plurality of heaters located in the formation. Heat is allowed to transfer from the heaters to at least a portion of the formation. A pressure in the portion of the formation is controlled such that the pressure remains below a fracture pressure of the formation overburden while allowing the portion of the formation to heat to a selected average temperature of at least about 280.degree. C. and at most about 300.degree. C. The pressure in the portion of the formation is reduced to a selected pressure after the portion of the formation reaches the selected average temperature.

  13. Allele frequencies of variants in ultra conserved elements identify selective pressure on transcription factor binding.

    PubMed

    Silla, Toomas; Kepp, Katrin; Tai, E Shyong; Goh, Liang; Davila, Sonia; Catela Ivkovic, Tina; Calin, George A; Voorhoeve, P Mathijs

    2014-01-01

    Ultra-conserved genes or elements (UCGs/UCEs) in the human genome are extreme examples of conservation. We characterized natural variations in 2884 UCEs and UCGs in two distinct populations; Singaporean Chinese (n = 280) and Italian (n = 501) by using a pooled sample, targeted capture, sequencing approach. We identify, with high confidence, in these regions the abundance of rare SNVs (MAF<0.5%) of which 75% is not present in dbSNP137. UCEs association studies for complex human traits can use this information to model expected background variation and thus necessary power for association studies. By combining our data with 1000 Genome Project data, we show in three independent datasets that prevalent UCE variants (MAF>5%) are more often found in relatively less-conserved nucleotides within UCEs, compared to rare variants. Moreover, prevalent variants are less likely to overlap transcription factor binding site. Using SNPfold we found no significant influence of RNA secondary structure on UCE conservation. All together, these results suggest UCEs are not under selective pressure as a stretch of DNA but are under differential evolutionary pressure on the single nucleotide level.

  14. New Linear Partitioning Models Based on Experimental Water: Supercritical CO2 Partitioning Data of Selected Organic Compounds.

    PubMed

    Burant, Aniela; Thompson, Christopher; Lowry, Gregory V; Karamalidis, Athanasios K

    2016-05-17

    Partitioning coefficients of organic compounds between water and supercritical CO2 (sc-CO2) are necessary to assess the risk of migration of these chemicals from subsurface CO2 storage sites. Despite the large number of potential organic contaminants, the current data set of published water-sc-CO2 partitioning coefficients is very limited. Here, the partitioning coefficients of thiophene, pyrrole, and anisole were measured in situ over a range of temperatures and pressures using a novel pressurized batch-reactor system with dual spectroscopic detectors: a near-infrared spectrometer for measuring the organic analyte in the CO2 phase and a UV detector for quantifying the analyte in the aqueous phase. Our measured partitioning coefficients followed expected trends based on volatility and aqueous solubility. The partitioning coefficients and literature data were then used to update a published poly parameter linear free-energy relationship and to develop five new linear free-energy relationships for predicting water-sc-CO2 partitioning coefficients. A total of four of the models targeted a single class of organic compounds. Unlike models that utilize Abraham solvation parameters, the new relationships use vapor pressure and aqueous solubility of the organic compound at 25 °C and CO2 density to predict partitioning coefficients over a range of temperature and pressure conditions. The compound class models provide better estimates of partitioning behavior for compounds in that class than does the model built for the entire data set.

  15. New Linear Partitioning Models Based on Experimental Water: Supercritical CO 2 Partitioning Data of Selected Organic Compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burant, Aniela; Thompson, Christopher; Lowry, Gregory V.

    2016-05-17

    Partitioning coefficients of organic compounds between water and supercritical CO2 (sc-CO2) are necessary to assess the risk of migration of these chemicals from subsurface CO2 storage sites. Despite the large number of potential organic contaminants, the current data set of published water-sc-CO2 partitioning coefficients is very limited. Here, the partitioning coefficients of thiophene, pyrrole, and anisole were measured in situ over a range of temperatures and pressures using a novel pressurized batch reactor system with dual spectroscopic detectors: a near infrared spectrometer for measuring the organic analyte in the CO2 phase, and a UV detector for quantifying the analyte inmore » the aqueous phase. Our measured partitioning coefficients followed expected trends based on volatility and aqueous solubility. The partitioning coefficients and literature data were then used to update a published poly-parameter linear free energy relationship and to develop five new linear free energy relationships for predicting water-sc-CO2 partitioning coefficients. Four of the models targeted a single class of organic compounds. Unlike models that utilize Abraham solvation parameters, the new relationships use vapor pressure and aqueous solubility of the organic compound at 25 °C and CO2 density to predict partitioning coefficients over a range of temperature and pressure conditions. The compound class models provide better estimates of partitioning behavior for compounds in that class than the model built for the entire dataset.« less

  16. Selective indication for positive airway pressure (PAP) in sleep-related breathing disorders with obstruction

    PubMed Central

    Stasche, Norbert

    2006-01-01

    Positive airway pressure (PAP) is the therapy of choice for most sleep-related breathing disorders (SRBD). A variety of PAP devices using positive airway pressure (CPAP, BiPAP, APAP, ASV) must be carefully considered before application. This overview aims to provide criteria for choosing the optimal PAP device according to severity and type of sleep-related breathing disorder. In addition, the range of therapeutic applications, constraints and side effects as well as alternative methods to PAP will be discussed. This review is based on an analysis of current literature and clinical experience. The data is presented from an ENT-sleep-laboratory perspective and is designed to help the ENT practitioner initiate treatment and provide support. Different titration methods, current devices and possible applications will be described. In addition to constant pressure devices (CPAP), most commonly used for symptomatic obstructive sleep apnoea (OSA) without complicating conditions, BiPAP models will be introduced. These allow two different positive pressure settings and are thus especially suitable for patients with cardiopulmonary diseases or patients with pressure intolerance, increasing compliance in this subgroup considerably. Compliance can also be increased in patients during first night of therapy, patients with highly variable pressure demands or position-dependent OSA, by using self-regulating Auto-adjust PAP devices (Automatic positive airway pressure, APAP). Patients with Cheyne-Stokes breathing, a subtype of central sleep apnoea, benefit from adaptive servo-ventilation (ASV), which analyzes breathing patterns continually and adjusts the actual ventilation pressure accordingly. This not only reduces daytime sleepiness, but can also influence heart disease positively. Therapy with positive airway pressure is very effective in eliminating obstruction-related sleep diseases and symptoms. However, because therapy is generally applied for life, the optimal PAP device must be carefully selected, taking into account side effects that influence compliance. PMID:22073075

  17. Inference of epistatic effects in a key mitochondrial protein

    NASA Astrophysics Data System (ADS)

    Nelson, Erik D.; Grishin, Nick V.

    2018-06-01

    We use Potts model inference to predict pair epistatic effects in a key mitochondrial protein—cytochrome c oxidase subunit 2—for ray-finned fishes. We examine the effect of phylogenetic correlations on our predictions using a simple exact fitness model, and we find that, although epistatic effects are underpredicted, they maintain a roughly linear relationship to their true (model) values. After accounting for this correction, epistatic effects in the protein are still relatively weak, leading to fitness valleys of depth 2 N s ≃-5 in compensatory double mutants. Interestingly, positive epistasis is more pronounced than negative epistasis, and the strongest positive effects capture nearly all sites subject to positive selection in fishes, similar to virus proteins evolving under selection pressure in the context of drug therapy.

  18. Evolution of Homospermidine Synthase in the Convolvulaceae: A Story of Gene Duplication, Gene Loss, and Periods of Various Selection Pressures[C][W][OA

    PubMed Central

    Kaltenegger, Elisabeth; Eich, Eckart; Ober, Dietrich

    2013-01-01

    Homospermidine synthase (HSS), the first pathway-specific enzyme of pyrrolizidine alkaloid biosynthesis, is known to have its origin in the duplication of a gene encoding deoxyhypusine synthase. To study the processes that followed this gene duplication event and gave rise to HSS, we identified sequences encoding HSS and deoxyhypusine synthase from various species of the Convolvulaceae. We show that HSS evolved only once in this lineage. This duplication event was followed by several losses of a functional gene copy attributable to gene loss or pseudogenization. Statistical analyses of sequence data suggest that, in those lineages in which the gene copy was successfully recruited as HSS, the gene duplication event was followed by phases of various selection pressures, including purifying selection, relaxed functional constraints, and possibly positive Darwinian selection. Site-specific mutagenesis experiments have confirmed that the substitution of sites predicted to be under positive Darwinian selection is sufficient to convert a deoxyhypusine synthase into a HSS. In addition, analyses of transcript levels have shown that HSS and deoxyhypusine synthase have also diverged with respect to their regulation. The impact of protein–protein interaction on the evolution of HSS is discussed with respect to current models of enzyme evolution. PMID:23572540

  19. Pressure attenuation during high-frequency airway clearance therapy across different size endotracheal tubes: An in vitro study.

    PubMed

    Smallwood, Craig D; Bullock, Kevin J; Gouldstone, Andrew

    2016-08-01

    High-frequency airway clearance therapy is a positive pressure secretion clearance modality used in pediatric and adult applications. However, pressure attenuation across different size endotracheal tubes (ETT) has not been adequately described. This study quantifies attenuation in an in vitro model. The MetaNeb® System was used to deliver high-frequency pressure pulses to 3.0, 4.0, 6.0 and 8.0mm ID ETTs connected to a test lung during mechanical ventilation. The experimental setup included a 3D-printed trachea model and imbedded pressure sensors. The pressure attenuation (Patt%) was calculated: Patt%=[(Pproximal-Pdistal)/Pproximal]x100. The effect of pulse frequency on Pdistal and Pproximal was quantified. Patt% was inversely and linearly related to ETT ID and (y=-7.924x+74.36; R(2)=0.9917, P=.0042 for 4.0Hz pulse frequency and y=-7.382+9.445, R(2)=0.9964, P=.0018 for 3.0Hz pulse frequency). Patt% across the 3.0, 4.0, 6.0 and 8.0mm I.D. ETTs was 48.88±10.25%, 40.87±5.22%, 27.97±5.29%, and 9.90±1.9% respectively. Selecting the 4.0Hz frequency mode demonstrated higher Pproximal and Pdistal compared to the 3.0Hz frequency mode (P=.0049 and P=.0065). Observed Pdistal was <30cmH2O for all experiments. In an in vitro model, pressure attenuation was linearly related to the inner diameter of the endotracheal tube; with decreasing attenuation as the ETT size increased. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Does evaluative pressure make you less or more distractible? Role of top-down attentional control over response selection.

    PubMed

    Normand, Alice; Bouquet, Cédric A; Croizet, Jean-Claude

    2014-06-01

    People's ability to resist cognitive distraction is crucial in many situations. The present research examines individuals' resistance to attentional distraction under conditions of evaluative pressure. In a series of 4 studies, participants had to complete various attentional tasks while believing their intelligence was or was not under the scrutiny of an experimenter. Using a spatial cuing paradigm, Studies 1 through 3 demonstrated that feeling evaluated led participants to implement stronger feature-based attentional control, which resulted in more (or less) distraction when irrelevant information matched (did not match) the searched-for target. Study 4 ruled out the possibility that the above effects were due to voluntary shifts of attention and demonstrated that the control settings implemented under evaluative pressure resulted in stronger goal-contingent response priming. Thus, the way individuals relate to the task-the performance context in which they are-induces strong attentional selection biases. Altogether, the present findings highlight an overlooked form of top-down modulation of attention based on performance self-relevance. Implications for both the current models of attentional control and the current hypotheses on the impact of evaluative pressure on cognition, as well as the consequences for more complex performances, are discussed. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  1. Thermal infrared spectroscopy and modeling of experimentally shocked plagioclase feldspars

    USGS Publications Warehouse

    Johnson, J. R.; Horz, F.; Staid, M.I.

    2003-01-01

    Thermal infrared emission and reflectance spectra (250-1400 cm-1; ???7???40 ??m) of experimentally shocked albite- and anorthite-rich rocks (17-56 GPa) demonstrate that plagioclase feldspars exhibit characteristic degradations in spectral features with increasing pressure. New measurements of albite (Ab98) presented here display major spectral absorptions between 1000-1250 cm-1 (8-10 ??m) (due to Si-O antisymmetric stretch motions of the silica tetrahedra) and weaker absorptions between 350-700 cm-1 (14-29 ??m) (due to Si-O-Si octahedral bending vibrations). Many of these features persist to higher pressures compared to similar features in measurements of shocked anorthite, consistent with previous thermal infrared absorption studies of shocked feldspars. A transparency feature at 855 cm-1 (11.7 ??m) observed in powdered albite spectra also degrades with increasing pressure, similar to the 830 cm-1 (12.0 ??m) transparency feature in spectra of powders of shocked anorthite. Linear deconvolution models demonstrate that combinations of common mineral and glass spectra can replicate the spectra of shocked anorthite relatively well until shock pressures of 20-25 GPa, above which model errors increase substantially, coincident with the onset of diaplectic glass formation. Albite deconvolutions exhibit higher errors overall but do not change significantly with pressure, likely because certain clay minerals selected by the model exhibit absorption features similar to those in highly shocked albite. The implication for deconvolution of thermal infrared spectra of planetary surfaces (or laboratory spectra of samples) is that the use of highly shocked anorthite spectra in end-member libraries could be helpful in identifying highly shocked calcic plagioclase feldspars.

  2. Extraction of benzene and cyclohexane using [BMIM][N(CN)2] and their equilibrium modeling

    NASA Astrophysics Data System (ADS)

    Ismail, Marhaina; Bustam, M. Azmi; Man, Zakaria

    2017-12-01

    The separation of aromatic compound from aliphatic mixture is one of the essential industrial processes for an economically green process. In order to determine the separation efficiency of ionic liquid (IL) as a solvent in the separation, the ternary diagram of liquid-liquid extraction (LLE) 1-butyl-3-methylimidazolium dicyanamide [BMIM][N(CN)2] with benzene and cyclohexane was studied at T=298.15 K and atmospheric pressure. The solute distribution coefficient and solvent selectivity derived from the equilibrium data were used to evaluate if the selected ionic liquid can be considered as potential solvent for the separation of benzene from cyclohexane. The experimental tie line data was correlated using non-random two liquid model (NRTL) and Margules model. It was found that the solute distribution coefficient is (0.4430-0.0776) and selectivity of [BMIM][N(CN)2] for benzene is (53.6-13.9). The ternary diagram showed that the selected IL can perform the separation of benzene and cyclohexane as it has extractive capacity and selectivity. Therefore, [BMIM][N(CN)2] can be considered as a potential extracting solvent for the LLE of benzene and cyclohexane.

  3. Selected topics from the structural acoustics program for the B-1 aircraft

    NASA Technical Reports Server (NTRS)

    Belcher, P. M.

    1979-01-01

    The major elements of the structural acoustics program for the B-1 aircraft are considered. Acoustic pressures measured at 280 sites on the surface of the vehicle were used to develop pressure models for a resizing of airframe components for aircraft No. 4 (A/C4). Acoustical fatigue design data for two dynamically complex structural configurations were acquired in laboratory programs, the conceptions for and executions of which detailed significant departures from the conventional. Design requirements for mechanical fasteners for configurations other than these two made use of analytical extensions of regrettably limited available information.

  4. Space shuttle: Stability and control effectiveness at high and low angles of attack and effects of variations in engine shround, fin, and drag petal configurations for the Boeing 0.008899-scale pressure-fed ballistic recoverable booster, model 979-160

    NASA Technical Reports Server (NTRS)

    Hanson, R. L.; Obrien, R. G.; Oiye, M. Y.; Vanderleest, S.

    1972-01-01

    Experimental aerodynamic investigations were carried out in the Boeing transonic and supersonic wind tunnels on a 0.008899-scale model of a proposed pressure-fed ballistic recoverable booster (BRB) configuration. The purpose of the test program was to determine the stability and control effectiveness of the basic configuration at high and low angles of attack, and to conduct parametric studies of various engine shroud, fin, and drag petal configurations. Six-component force data and base pressure data were obtained over a Mach number range of 0.35 to 4.0 at angles of attack of -5 to 25 and 55 to 85 at zero degrees sideslip and over a sideslip range of -10 to +10 at angles of attack ranging from -10 to 72.5. Two-component force data were also obtained with a fin balance on selected runs.

  5. Development of hypersonic engine seals: Flow effects of preload and engine pressures

    NASA Technical Reports Server (NTRS)

    Cai, Zhong; Mutharasan, Rajakkannu; Ko, Frank K.; Steinetz, Bruce M.

    1993-01-01

    A new type of engine seal is being developed to meet the needs of advanced hypersonic engines. A seal braided of emerging high temperature ceramic fibers comprised of a sheath-core construction was selected for study based on its low leakage rates. Flexible, low-leakage, high temperature seals are required to seal the movable engine panels of advanced ramjet-scramjet engines either preventing potentially dangerous leakage into backside engine cavities or limiting the purge coolant flow rates through the seals. To predict the leakage through these flexible, porous seal structures as a function of preload and engine pressures, new analytical flow models are required. An empirical leakage resistance/preload model is proposed to characterize the observed decrease in leakage with increasing preload. Empirically determined compression modulus and preload factor are used to correlate experimental leakage data for a wide range of seal architectures. Good agreement between measured and predicted values are observed over a range of engine pressures and seal preloads.

  6. Cuff-less blood pressure measurement using pulse arrival time and a Kalman filter

    NASA Astrophysics Data System (ADS)

    Zhang, Qiang; Chen, Xianxiang; Fang, Zhen; Xue, Yongjiao; Zhan, Qingyuan; Yang, Ting; Xia, Shanhong

    2017-02-01

    The present study designs an algorithm to increase the accuracy of continuous blood pressure (BP) estimation. Pulse arrival time (PAT) has been widely used for continuous BP estimation. However, because of motion artifact and physiological activities, PAT-based methods are often troubled with low BP estimation accuracy. This paper used a signal quality modified Kalman filter to track blood pressure changes. A Kalman filter guarantees that BP estimation value is optimal in the sense of minimizing the mean square error. We propose a joint signal quality indice to adjust the measurement noise covariance, pushing the Kalman filter to weigh more heavily on measurements from cleaner data. Twenty 2 h physiological data segments selected from the MIMIC II database were used to evaluate the performance. Compared with straightforward use of the PAT-based linear regression model, the proposed model achieved higher measurement accuracy. Due to low computation complexity, the proposed algorithm can be easily transplanted into wearable sensor devices.

  7. Prey from the eyes of predators: Color discriminability of aposematic and mimetic butterflies from an avian visual perspective.

    PubMed

    Su, Shiyu; Lim, Matthew; Kunte, Krushnamegh

    2015-11-01

    Predation exerts strong selection on mimetic butterfly wing color patterns, which also serve other functions such as sexual selection. Therefore, specific selection pressures may affect the sexes and signal components differentially. We tested three predictions about the evolution of mimetic resemblance by comparing wing coloration of aposematic butterflies and their Batesian mimics: (a) females gain greater mimetic advantage than males and therefore are better mimics, (b) due to intersexual genetic correlations, sexually monomorphic mimics are better mimics than female-limited mimics, and (c) mimetic resemblance is better on the dorsal wing surface that is visible to predators in flight. Using a physiological model of avian color vision, we quantified mimetic resemblance from predators' perspective, which showed that female butterflies were better mimics than males. Mimetic resemblance in female-limited mimics was comparable to that in sexually monomorphic mimics, suggesting that intersexual genetic correlations did not constrain adaptive response to selection for female-limited mimicry. Mimetic resemblance on the ventral wing surface was better than that on the dorsal wing surface, implying stronger natural and sexual selection on ventral and dorsal surfaces, respectively. These results suggest that mimetic resemblance in butterfly mimicry rings has evolved under various selective pressures acting in a sex- and wing surface-specific manner. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.

  8. Population genetics inference for longitudinally-sampled mutants under strong selection.

    PubMed

    Lacerda, Miguel; Seoighe, Cathal

    2014-11-01

    Longitudinal allele frequency data are becoming increasingly prevalent. Such samples permit statistical inference of the population genetics parameters that influence the fate of mutant variants. To infer these parameters by maximum likelihood, the mutant frequency is often assumed to evolve according to the Wright-Fisher model. For computational reasons, this discrete model is commonly approximated by a diffusion process that requires the assumption that the forces of natural selection and mutation are weak. This assumption is not always appropriate. For example, mutations that impart drug resistance in pathogens may evolve under strong selective pressure. Here, we present an alternative approximation to the mutant-frequency distribution that does not make any assumptions about the magnitude of selection or mutation and is much more computationally efficient than the standard diffusion approximation. Simulation studies are used to compare the performance of our method to that of the Wright-Fisher and Gaussian diffusion approximations. For large populations, our method is found to provide a much better approximation to the mutant-frequency distribution when selection is strong, while all three methods perform comparably when selection is weak. Importantly, maximum-likelihood estimates of the selection coefficient are severely attenuated when selection is strong under the two diffusion models, but not when our method is used. This is further demonstrated with an application to mutant-frequency data from an experimental study of bacteriophage evolution. We therefore recommend our method for estimating the selection coefficient when the effective population size is too large to utilize the discrete Wright-Fisher model. Copyright © 2014 by the Genetics Society of America.

  9. Methods for selecting fixed-effect models for heterogeneous codon evolution, with comments on their application to gene and genome data.

    PubMed

    Bao, Le; Gu, Hong; Dunn, Katherine A; Bielawski, Joseph P

    2007-02-08

    Models of codon evolution have proven useful for investigating the strength and direction of natural selection. In some cases, a priori biological knowledge has been used successfully to model heterogeneous evolutionary dynamics among codon sites. These are called fixed-effect models, and they require that all codon sites are assigned to one of several partitions which are permitted to have independent parameters for selection pressure, evolutionary rate, transition to transversion ratio or codon frequencies. For single gene analysis, partitions might be defined according to protein tertiary structure, and for multiple gene analysis partitions might be defined according to a gene's functional category. Given a set of related fixed-effect models, the task of selecting the model that best fits the data is not trivial. In this study, we implement a set of fixed-effect codon models which allow for different levels of heterogeneity among partitions in the substitution process. We describe strategies for selecting among these models by a backward elimination procedure, Akaike information criterion (AIC) or a corrected Akaike information criterion (AICc). We evaluate the performance of these model selection methods via a simulation study, and make several recommendations for real data analysis. Our simulation study indicates that the backward elimination procedure can provide a reliable method for model selection in this setting. We also demonstrate the utility of these models by application to a single-gene dataset partitioned according to tertiary structure (abalone sperm lysin), and a multi-gene dataset partitioned according to the functional category of the gene (flagellar-related proteins of Listeria). Fixed-effect models have advantages and disadvantages. Fixed-effect models are desirable when data partitions are known to exhibit significant heterogeneity or when a statistical test of such heterogeneity is desired. They have the disadvantage of requiring a priori knowledge for partitioning sites. We recommend: (i) selection of models by using backward elimination rather than AIC or AICc, (ii) use a stringent cut-off, e.g., p = 0.0001, and (iii) conduct sensitivity analysis of results. With thoughtful application, fixed-effect codon models should provide a useful tool for large scale multi-gene analyses.

  10. Prevalence of Pressure Ulcer and Nutritional Factors Affecting Wound Closure Success in Thailand.

    PubMed

    Auiwattanakul, Supakrit; Ungpinitpong, Winai; Yutthakasemsunt, Surakrant; Buranapin, Supawan; Chittawatanarat, Kaweesak

    2017-09-01

    The authors aimed to estimate the prevalence of pressure ulcers and to explore the nutritional effects of the prognostic factors on successful pressure ulcer closure in a public tertiary care hospital in Thailand. The study was a retrospective cohort analysis of seven-year census (2008 - 2014) at Surin hospital in Thailand. There were 424 of total 240,826 patients aged over than 15 years admitted to surgery, orthopedics and medicine wards during the study period with documented pressure ulcers (ICD 10TM). We analyzed four hundred and ten patients after excluding 14 patients with non-pressure ulcers (due to burning/ diabetic/ ischemic neuropathic ulcers, and less than 24 hours of admission) and loss medical record. We selected independent factors from demographic data, nutritional factors, pressure ulcer characteristics, and management data. The outcome of interest was successful pressure ulcer closure. The analysis method was the semi-parametric Cox regression model and reported as Hazard Ratios (HR) with 95% confidence interval (95% CI). The total hospital admission was 240,826 patients between 2008 - 2014. 410 patients were developing pressure ulcers, of these, 7% (28/410) success in ulcer closure, and 77% (314/410) failure in closure requiring for additional procedures (excisional debridement). The rest of patients (16%, 68/410) was non-operative care. The prevalence of pressure ulcers was 1.7 per 1,000 person-year. The multivariable model found that only the Nottingham Hospital Screening Tool (NS) score was a statistically significant nutritional variable, and additional subgroup analysis of two models of sepsis and spinal cord co-morbidities was also significant. Adjusted hazard ratios (HR) for NS score = 0.355 (95% CI: 0.187, 0.674), p=0.002), for sepsis = 0.312 (95% CI: 0.140, 0.695), p=0.004), and for spinal cord co-morbidity = 0.420 (95% CI: 0.184, 0.958), p=0.039). The annual prevalence was 1.7 per 1,000 persons. NS score was strongly associated with ulcer closure success.

  11. High hunting pressure selects for earlier birth date: Wild boar as a case study

    USGS Publications Warehouse

    Gamelon, M.; Besnard, A.; Gaillard, J.-M.; Servanty, S.; Baubet, E.; Brandt, S.; Gimenez, O.

    2011-01-01

    Exploitation by humans affects the size and structure of populations. This has evolutionary and demographic consequences that have typically being studied independent of one another. We here applied a framework recently developed applying quantitative tools from population ecology and selection gradient analysis to quantify the selection on a quantitative trait-birth date-through its association with multiple fitness components. From the long-term monitoring (22 years) of a wild boar (Sus scrofa scrofa) population subject to markedly increasing hunting pressure, we found that birth dates have advanced by up to 12 days throughout the study period. During the period of low hunting pressure, there was no detectable selection. However, during the period of high hunting pressure, the selection gradient linking breeding probability in the first year of life to birth date was negative, supporting current life-history theory predicting selection for early births to reproduce within the first year of life with increasing adult mortality. ?? 2011 The Author(s). Evolution?? 2011 The Society for the Study of Evolution..

  12. Pressure and temperature effects on degradation kinetics and storage stability of total anthocyanins in blueberry juice.

    PubMed

    Buckow, Roman; Kastell, Anja; Terefe, Netsanet Shiferaw; Versteeg, Cornelis

    2010-09-22

    The degradation kinetics of total anthocyanins in blueberry (Vaccinium myrtillus) juice were studied during thermal processing by treatment at selected temperatures (60-121 °C) and combined high pressure-temperature processing (100-700 MPa, 40-121 °C). Anthocyanin stability was also studied for several of these treatments during storage at 4, 25, and 40 °C. Both pressure and temperature increased d, the degradation rate of total anthocyanins in blueberry juice, meaning that at constant temperature, anthocyanins were more rapidly degraded with increasing pressure. For example, 32% degradation of anthocyanins was observed after 20 min heating at 100 °C and atmospheric pressure, whereas at 100 °C and 600 MPa, approximately 50% of total anthocyanins were lost. Degradation of anthocyanins was significantly accelerated with increasing storage temperatures. Combined pressure-temperature treatment of pasteurized juice led to a slightly faster degradation of total anthocyanins during storage compared to heat treatments at ambient pressure. Degradation of anthocyanins was best described by a 1.4th-order reaction at all conditions investigated. A mathematical model describing the degradation of blueberry anthocyanins in juice as a function of pressure, temperature, and treatment time is presented.

  13. From Metaphors to Formalism: A Heuristic Approach to Holistic Assessments of Ecosystem Health.

    PubMed

    Fock, Heino O; Kraus, Gerd

    2016-01-01

    Environmental policies employ metaphoric objectives such as ecosystem health, resilience and sustainable provision of ecosystem services, which influence corresponding sustainability assessments by means of normative settings such as assumptions on system description, indicator selection, aggregation of information and target setting. A heuristic approach is developed for sustainability assessments to avoid ambiguity and applications to the EU Marine Strategy Framework Directive (MSFD) and OSPAR assessments are presented. For MSFD, nineteen different assessment procedures have been proposed, but at present no agreed assessment procedure is available. The heuristic assessment framework is a functional-holistic approach comprising an ex-ante/ex-post assessment framework with specifically defined normative and systemic dimensions (EAEPNS). The outer normative dimension defines the ex-ante/ex-post framework, of which the latter branch delivers one measure of ecosystem health based on indicators and the former allows to account for the multi-dimensional nature of sustainability (social, economic, ecological) in terms of modeling approaches. For MSFD, the ex-ante/ex-post framework replaces the current distinction between assessments based on pressure and state descriptors. The ex-ante and the ex-post branch each comprise an inner normative and a systemic dimension. The inner normative dimension in the ex-post branch considers additive utility models and likelihood functions to standardize variables normalized with Bayesian modeling. Likelihood functions allow precautionary target setting. The ex-post systemic dimension considers a posteriori indicator selection by means of analysis of indicator space to avoid redundant indicator information as opposed to a priori indicator selection in deconstructive-structural approaches. Indicator information is expressed in terms of ecosystem variability by means of multivariate analysis procedures. The application to the OSPAR assessment for the southern North Sea showed, that with the selected 36 indicators 48% of ecosystem variability could be explained. Tools for the ex-ante branch are risk and ecosystem models with the capability to analyze trade-offs, generating model output for each of the pressure chains to allow for a phasing-out of human pressures. The Bayesian measure of ecosystem health is sensitive to trends in environmental features, but robust to ecosystem variability in line with state space models. The combination of the ex-ante and ex-post branch is essential to evaluate ecosystem resilience and to adopt adaptive management. Based on requirements of the heuristic approach, three possible developments of this concept can be envisioned, i.e. a governance driven approach built upon participatory processes, a science driven functional-holistic approach requiring extensive monitoring to analyze complete ecosystem variability, and an approach with emphasis on ex-ante modeling and ex-post assessment of well-studied subsystems.

  14. From Metaphors to Formalism: A Heuristic Approach to Holistic Assessments of Ecosystem Health

    PubMed Central

    Kraus, Gerd

    2016-01-01

    Environmental policies employ metaphoric objectives such as ecosystem health, resilience and sustainable provision of ecosystem services, which influence corresponding sustainability assessments by means of normative settings such as assumptions on system description, indicator selection, aggregation of information and target setting. A heuristic approach is developed for sustainability assessments to avoid ambiguity and applications to the EU Marine Strategy Framework Directive (MSFD) and OSPAR assessments are presented. For MSFD, nineteen different assessment procedures have been proposed, but at present no agreed assessment procedure is available. The heuristic assessment framework is a functional-holistic approach comprising an ex-ante/ex-post assessment framework with specifically defined normative and systemic dimensions (EAEPNS). The outer normative dimension defines the ex-ante/ex-post framework, of which the latter branch delivers one measure of ecosystem health based on indicators and the former allows to account for the multi-dimensional nature of sustainability (social, economic, ecological) in terms of modeling approaches. For MSFD, the ex-ante/ex-post framework replaces the current distinction between assessments based on pressure and state descriptors. The ex-ante and the ex-post branch each comprise an inner normative and a systemic dimension. The inner normative dimension in the ex-post branch considers additive utility models and likelihood functions to standardize variables normalized with Bayesian modeling. Likelihood functions allow precautionary target setting. The ex-post systemic dimension considers a posteriori indicator selection by means of analysis of indicator space to avoid redundant indicator information as opposed to a priori indicator selection in deconstructive-structural approaches. Indicator information is expressed in terms of ecosystem variability by means of multivariate analysis procedures. The application to the OSPAR assessment for the southern North Sea showed, that with the selected 36 indicators 48% of ecosystem variability could be explained. Tools for the ex-ante branch are risk and ecosystem models with the capability to analyze trade-offs, generating model output for each of the pressure chains to allow for a phasing-out of human pressures. The Bayesian measure of ecosystem health is sensitive to trends in environmental features, but robust to ecosystem variability in line with state space models. The combination of the ex-ante and ex-post branch is essential to evaluate ecosystem resilience and to adopt adaptive management. Based on requirements of the heuristic approach, three possible developments of this concept can be envisioned, i.e. a governance driven approach built upon participatory processes, a science driven functional-holistic approach requiring extensive monitoring to analyze complete ecosystem variability, and an approach with emphasis on ex-ante modeling and ex-post assessment of well-studied subsystems. PMID:27509185

  15. Beamforming synthesis of binaural responses from computer simulations of acoustic spaces.

    PubMed

    Poletti, Mark A; Svensson, U Peter

    2008-07-01

    Auditorium designs can be evaluated prior to construction by numerical modeling of the design. High-accuracy numerical modeling produces the sound pressure on a rectangular grid, and subjective assessment of the design requires auralization of the sampled sound field at a desired listener position. This paper investigates the production of binaural outputs from the sound pressure at a selected number of grid points by using a least squares beam forming approach. Low-frequency axisymmetric emulations are derived by assuming a solid sphere model of the head, and a spherical array of 640 microphones is used to emulate ten measured head-related transfer function (HRTF) data sets from the CIPIC database for half the audio bandwidth. The spherical array can produce high-accuracy band-limited emulation of any human subject's measured HRTFs for a fixed listener position by using individual sets of beam forming impulse responses.

  16. The effects of pressure sensor acoustics on airdata derived from a High-angle-of-attack Flush Airdata Sensing (HI-FADS) system

    NASA Technical Reports Server (NTRS)

    Whitmore, Stephen A.; Moes, Timothy R.

    1991-01-01

    The accuracy of a nonintrusive high angle-of-attack flush airdata sensing (HI-FADS) system was verified for quasi-steady flight conditions up to 55 deg angle of attack during the F-18 High Alpha Research Vehicle (HARV) Program. The system is a matrix of nine pressure ports arranged in annular rings on the aircraft nose. The complete airdata set is estimated using nonlinear regression. Satisfactory frequency response was verified to the system Nyquist frequency (12.5 Hz). The effects of acoustical distortions within the individual pressure sensors of the nonintrusive pressure matrix on overall system performance are addressed. To quantify these effects, a frequency-response model describing the dynamics of acoustical distortion is developed and simple design criteria are derived. The model adjusts measured HI-FADS pressure data for the acoustical distortion and quantifies the effects of internal sensor geometries on system performance. Analysis results indicate that sensor frequency response characteristics very greatly with altitude, thus it is difficult to select satisfactory sensor geometry for all altitudes. The solution used presample filtering to eliminate resonance effects, and short pneumatic tubing sections to reduce lag effects. Without presample signal conditioning the system designer must use the pneumatic transmission line to attenuate the resonances and accept the resulting altitude variability.

  17. Study of the strength of molybdenum under high pressure using electromagnetically applied compression-shear ramp loading

    NASA Astrophysics Data System (ADS)

    Ding, Jow; Alexander, C. Scott; Asay, James

    2015-06-01

    MAPS (Magnetically Applied Pressure Shear) is a new technique that has the potential to study material strength under mega-bar pressures. By applying a mixed-mode pressure-shear loading and measuring the resultant material responses, the technique provides explicit and direct information on material strength under high pressure. In order to apply sufficient shear traction to the test sample, the driver must have substantial strength. Molybdenum was selected for this reason along with its good electrical conductivity. In this work, the mechanical behavior of molybdenum under MAPS loading was studied. To understand the experimental data, a viscoplasticity model with tension-compression asymmetry was also developed. Through a combination of experimental characterization, model development, and numerical simulation, many unique insights were gained on the inelastic behavior of molybdenum such as the effects of strength on the interplay between longitudinal and shear stresses, potential interaction between the magnetic field and molybdenum strength, and the possible tension-compression asymmetry of the inelastic material response. Sandia National Labs is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corp., for the U.S. Dept. of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  18. Statistical prediction of dynamic distortion of inlet flow using minimum dynamic measurement. An application to the Melick statistical method and inlet flow dynamic distortion prediction without RMS measurements

    NASA Technical Reports Server (NTRS)

    Schweikhard, W. G.; Chen, Y. S.

    1986-01-01

    The Melick method of inlet flow dynamic distortion prediction by statistical means is outlined. A hypothetic vortex model is used as the basis for the mathematical formulations. The main variables are identified by matching the theoretical total pressure rms ratio with the measured total pressure rms ratio. Data comparisons, using the HiMAT inlet test data set, indicate satisfactory prediction of the dynamic peak distortion for cases with boundary layer control device vortex generators. A method for the dynamic probe selection was developed. Validity of the probe selection criteria is demonstrated by comparing the reduced-probe predictions with the 40-probe predictions. It is indicated that the the number of dynamic probes can be reduced to as few as two and still retain good accuracy.

  19. Selective epitaxial growth of Ge1-xSnx on Si by using metal-organic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Washizu, Tomoya; Ike, Shinichi; Inuzuka, Yuki; Takeuchi, Wakana; Nakatsuka, Osamu; Zaima, Shigeaki

    2017-06-01

    Selective epitaxial growth of Ge and Ge1-xSnx layers on Si substrates was performed by using metal-organic chemical vapor deposition (MOCVD) with precursors of tertiary-butyl-germane (t-BGe) and tri-butyl-vinyl-tin (TBVSn). We investigated the effects of growth temperature and total pressure during growth on the selectivity and the crystallinity of the Ge and Ge1-xSnx epitaxial layers. Under low total pressure growth conditions, the dominant mechanism of the selective growth of Ge epitaxial layers is the desorption of the Ge precursors. At a high total pressure case, it is needed to control the surface migration of precursors to realize the selectivity because the desorption of Ge precursors was suppressed. The selectivity of Ge growth was improved by diffusion of the Ge precursors on the SiO2 surfaces when patterned substrates were used at a high total pressure. The selective epitaxial growth of Ge1-xSnx layer was also realized using MOCVD. We found that the Sn precursors less likely to desorb from the SiO2 surfaces than the Ge precursors.

  20. Computational modeling of HHH therapy and impact of blood pressure and hematocrit.

    PubMed

    Robinson, Joe Sam; Walid, M Sami; Hyun, Sinjae; O'Connell, Robert; Menard, Chris; Bohleber, Brandi

    2010-01-01

    After an aneurysmal subarachnoid hemorrhage, cerebral microcirculatory changes occur as a result cerebral vasospasm. The objective of this study is to investigate, with a computational model, how various degrees of vasospasm are influenced by increasing the mean blood pressure and decreasing the blood viscosity. Using ANSYS CFX software, a computational model was constructed to simulate steady-state fully developed laminar blood flow through a rigid wall system consisting of the internal carotid artery (ICA), anterior cerebral artery, posterior cerebral artery, and middle cerebral artery (MCA). The MCA was selected for the site of a single acute vasospasm. Five severities of vasospasm were studied: 3 mm (normal), 2.5, 2, 1.5, and 1 mm. The ICA was assumed to have a constant inlet flow rate of 315 mL/min. The anterior cerebral artery and posterior cerebral artery were assumed to have constant outlet flow rates of 105 mL/min and 30 mL/min, respectively. The MCA was assumed to have a constant outlet pressure of 92 mL/min. Two different hematocrits, 45% and 32%, were simulated using the models. For a hematocrit of 45, the mean ICA inlet pressure required to pump blood through the system was 104 mm Hg for the 3-mm diameter MCA and 105, 108, 116, and 158 mm Hg for vasospasm diameters of 2.5, 2, 1.5, and 1 mm, respectively. For a hematocrit of 32, the mean ICA inlet pressure required was 102, 103, 105, 113, and 152 mm Hg, respectively. The MCA required a large increase in mean ICA inlet pressure for vasospasm diameters less than 1.5 mm, which suggests that for vasospasms more than 50% diameter reduction, the blood pressure must be increased dramatically. Decreasing the hematocrit had minimal impact on blood flow in a constricted vessel. Copyright © 2010 Elsevier Inc. All rights reserved.

  1. High-Fidelity Thermal Radiation Models and Measurements for High-Pressure Reacting Laminar and Turbulent Flows

    DTIC Science & Technology

    2013-06-26

    flow code used ( OpenFOAM ) to include differential diffusion and cell-based stochastic RTE solvers. The models were validated by simulation of laminar...wavenumber selection is improved about by a factor of 10. (5) OpenFOAM Improvements for Laminar Flames A laminar-diffusion combustion solver, taking into...account the effects of differential diffusion, was developed within the open source CFD package OpenFOAM [18]. In addition, OpenFOAM was augmented to take

  2. Retrieval of ammonia abundances and cloud opacities on Jupiter from Voyager IRIS spectra

    NASA Technical Reports Server (NTRS)

    Conrath, B. J.; Gierasch, P. J.

    1986-01-01

    Gaseous ammonia abundances and cloud opacities are retrieved from Voyager IRIS 5- and 45-micron data on the basis of a simplified atmospheric model and a two-stream radiative transfer approximation, assuming a single cloud layer with 680-mbar base pressure and 0.14 gas scale height. Brightness temperature measurements obtained as a function of emission angle from selected planetary locations are used to verify the model and constrain a number of its parameters.

  3. A method for subject-specific modelling and optimisation of the cushioning properties of insole materials used in diabetic footwear.

    PubMed

    Chatzistergos, Panagiotis E; Naemi, Roozbeh; Chockalingam, Nachiappan

    2015-06-01

    This study aims to develop a numerical method that can be used to investigate the cushioning properties of different insole materials on a subject-specific basis. Diabetic footwear and orthotic insoles play an important role for the reduction of plantar pressure in people with diabetes (type-2). Despite that, little information exists about their optimum cushioning properties. A new in-vivo measurement based computational procedure was developed which entails the generation of 2D subject-specific finite element models of the heel pad based on ultrasound indentation. These models are used to inverse engineer the material properties of the heel pad and simulate the contact between plantar soft tissue and a flat insole. After its validation this modelling procedure was utilised to investigate the importance of plantar soft tissue stiffness, thickness and loading for the correct selection of insole material. The results indicated that heel pad stiffness and thickness influence plantar pressure but not the optimum insole properties. On the other hand loading appears to significantly influence the optimum insole material properties. These results indicate that parameters that affect the loading of the plantar soft tissues such as body mass or a person's level of physical activity should be carefully considered during insole material selection. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.

  4. Efficacy of Precordial Percussion Pacing Assessed in a Cardiac Standstill Microminipig Model.

    PubMed

    Wada, Takeshi; Ohara, Hiroshi; Nakamura, Yuji; Cao, Xin; Izumi-Nakaseko, Hiroko; Ando, Kentaro; Honda, Mitsuru; Yoshihara, Katsunori; Nakazato, Yuji; Lurie, Keith G; Sugiyama, Atsushi

    2017-07-25

    Potential cardiovascular benefits of precordial percussion pacing (PPP) during cardiac standstill are unknown.Methods and Results:A cardiac standstill model in amicrominipigwas created by inducing complete atrioventricular block with a catheter ablation technique (n=7). Next, the efficacy of cardiopulmonary resuscitation by standard chest compressions (S-CPR), PPP and ventricular electrical pacing in this model were analyzed in series (n=4). To assess the mechanism of PPP, a non-selective, stretch-activated channel blocker, amiloride, was administered during PPP (n=3). Peak systolic and diastolic arterial pressures during S-CPR, PPP and ventricular electrical pacing were statistically similar. However, the duration of developed arterial pressure with PPP was comparable to that with ventricular electrical pacing, and significantly greater than that with S-CPR. Amiloride decreased the induction rate of ventricular electrical activity by PPP in a dose-related manner. Each animal survived without any neurological deficit at 24, 48 h and 1 week, even with up to 2 h of continuous PPP. In amicrominipigmodel of cardiac standstill, PPP can become a novel means to significantly improve physiological outcomes after cardiac standstill or symptomatic bradyarrhythmias in the absence of cardiac pacing. Activation of the non-selective stretch-activated channels may mediate some of the mechanophysiological effects of PPP. Further study of PPP by itself and together with S-CPR is warranted using cardiac arrest models of atrioventricular block and asystole.

  5. Optimal allocation of invasive species surveillance with the maximum expected coverage concept

    Treesearch

    Denys Yemshanov; Robert G. Haight; Frank H. Koch; Bo Lu; Robert Venette; D. Barry Lyons; Taylor Scarr; Krista Ryall; Brian. Leung

    2015-01-01

    We address the problem of geographically allocating scarce survey resources to detect pests in their pathways of introduction given information about their likelihood of movement between origins and destinations. We introduce a model for selecting destination sites for survey that departs from the aim of reducing propagule pressure (PP) in pest destinations and instead...

  6. Lethality Prediction for Escherichia Coli O157:H7 and Uropathogenic E. coli in Ground Chicken Treated with High Pressure Processing and Trans-Cinnamaldehyde.

    PubMed

    Sheen, Shiowshuh; Huang, Chi-Yun; Ramos, Rommel; Chien, Shih-Yung; Scullen, O Joseph; Sommers, Christopher

    2018-03-01

    Pathogenic Escherichia coli, intestinal (O157:H7) as well as extraintestinal types (for example, Uropathogenic E. coli [UPEC]) are commonly found in many foods including raw chicken meat. The resistance of E. coli O157:H7 to UPEC in chicken meat under the stresses of high hydrostatic Pressure (HHP, also known as HPP-high pressure processing) and trans-cinnamaldehyde (an essential oil) was investigated and compared. UPEC was found slightly less resistant than O157:H7 in our test parameter ranges. With the addition of trans-cinnamaldehyde as an antimicrobial to meat, HPP lethality enhanced both O157:H7 and UPEC inactivation. To facilitate the predictive model development, a central composite design (CCD) was used to assess the 3-parameter effects, that is, pressure (300 to 400 MPa), trans-cinnamaldehyde dose (0.2 to 0.5%, w/w), and pressure-holding time (15 to 25 min), on the inactivation of E. coli O157:H7 and UPEC in ground chicken. Linear models were developed to estimate the lethality of E. coli O157:H7 (R 2 = 0.86) and UPEC (R 2 = 0.85), as well as dimensionless nonlinear models. All models were validated with data obtained from separated CCD combinations. Because linear models of O157:H7 and UPEC had similar R 2 and the significant lethality difference of CCD points was only 9 in 20; all data were combined to generate models to include both O157:H7 and UPEC. The results provide useful information/tool to predict how pathogenic E. coli may survive HPP in the presence of trans-cinnamaldehyde and to achieve a great than 5 log CFU/g reduction in chicken meat. The models may be used for process optimization, product development and to assist the microbial risk assessment. The study provided an effective means to reduce the high hydrostatic pressure level with incorporation of antimicrobial compound to achieve a 5-log reduction of pathogenic E. coli without damaging the raw meat quality. The developed models may be used to predict the high pressure processing lethality (and process optimization), product development (ingredient selection), and to assist the microbial risk assessment. © 2018 Institute of Food Technologists®.

  7. A Model based Examination of Conditions for Ignition of Turbidity Currents on Slopes

    NASA Astrophysics Data System (ADS)

    Mehta, A. J.; Krishna, G.

    2009-12-01

    Turbidity currents form a major mechanism for the movement of sediment in the natural environment. Self-accelerating turbidity currents over continental slopes are of considerable scientific and engineering interest due to their role as agents for submarine sediment transportation from the shelf to the seabed. Such currents are called ignitive provided they eventually reach a catastrophic state as acceleration results in high sediment loads due to erosion of the sloping bed. A numerical model, which treats the fluid and the particles as two separate phases, is applied to investigate the effects of particle size, initial flow friction velocity and mild bed slope on the ignitive condition. Laboratory experimental data have been included as part of the analysis for qualitative comparison purposes. Ignition for the smallest of the three selected sizes (0.21mm) of medium sand typical of Florida beaches was found to depend on the initial conditions at the head of the slope as determined by the pressure gradient. Bed slope seemed to be of secondary importance. For the two sands with larger grain sizes (0.28mm and 0.35mm) the slope was found to play a more important role when compared to the initial pressure gradient. For a given pressure gradient, increasing the slope increased the likelihood of self-acceleration. It is concluded that in general ignition cannot be defined merely in terms of positive values of the velocity gradient and the sediment flux gradient along the slope. Depending on particle size the initial pressure gradient can also play a role. For the selected initial conditions (grain size, pressure gradient and bed slope), out of the 54 combinations tested, all except three satisfied the Knapp-Bagnold criterion for auto-suspension irrespective of whether the turbid current was ignitive or non-ignitive. In all 54 cases the current was found to erode the bed. Further use of the model will require accommodation of wider ranges of sediment size and bed density, and a thorough verification against experimental data.

  8. CenH3 evolution reflects meiotic symmetry as predicted by the centromere drive model

    PubMed Central

    Zedek, František; Bureš, Petr

    2016-01-01

    The centromere drive model explaining rapid evolution of eukaryotic centromeres predicts higher frequency of positive selection acting on centromeric histone H3 (CenH3) in clades with asymmetric meiosis compared to the clades with only symmetric meiosis. However, despite the impression one might get from the literature, this key prediction of the centromere drive model has not only never been confirmed, but it has never been tested, because all the previous studies dealt only with the presence or absence instead of the frequency of positive selection. To provide evidence for or against different frequencies of positively selected CenH3 in asymmetrics and symmetrics, we have inferred the selective pressures acting on CenH3 in seventeen eukaryotic clades, including plants, animals, fungi, ciliates and apicomplexa, using codon-substitution models, and compared the inferred frequencies between asymmetrics and symmetrics in a quantitative manner. We have found that CenH3 has been evolving adaptively much more frequently in clades with asymmetric meiosis compared with clades displaying only symmetric meiosis which confirms the prediction of centromere drive model. Our findings indicate that the evolution of asymmetric meiosis required CenH3 to evolve adaptively more often to counterbalance the negative consequences of centromere drive. PMID:27629066

  9. Sequential Sampling Models in Cognitive Neuroscience: Advantages, Applications, and Extensions.

    PubMed

    Forstmann, B U; Ratcliff, R; Wagenmakers, E-J

    2016-01-01

    Sequential sampling models assume that people make speeded decisions by gradually accumulating noisy information until a threshold of evidence is reached. In cognitive science, one such model--the diffusion decision model--is now regularly used to decompose task performance into underlying processes such as the quality of information processing, response caution, and a priori bias. In the cognitive neurosciences, the diffusion decision model has recently been adopted as a quantitative tool to study the neural basis of decision making under time pressure. We present a selective overview of several recent applications and extensions of the diffusion decision model in the cognitive neurosciences.

  10. Modeling Tumor Clonal Evolution for Drug Combinations Design.

    PubMed

    Zhao, Boyang; Hemann, Michael T; Lauffenburger, Douglas A

    2016-03-01

    Cancer is a clonal evolutionary process. This presents challenges for effective therapeutic intervention, given the constant selective pressure towards drug resistance. Mathematical modeling from population genetics, evolutionary dynamics, and engineering perspectives are being increasingly employed to study tumor progression, intratumoral heterogeneity, drug resistance, and rational drug scheduling and combinations design. In this review, we discuss promising opportunities these inter-disciplinary approaches hold for advances in cancer biology and treatment. We propose that quantitative modeling perspectives can complement emerging experimental technologies to facilitate enhanced understanding of disease progression and improved capabilities for therapeutic drug regimen designs.

  11. Development of braided rope seals for hypersonic engine applications. Part 2: Flow modeling

    NASA Technical Reports Server (NTRS)

    Mutharasan, Rajakkannu; Steinetz, Bruce M.; Tao, Xiaoming; Ko, Frank

    1991-01-01

    Two models based on the Kozeny-Carmen equation were developed to analyze the fluid flow through a new class of braided rope seals under development for advanced hypersonic engines. A hybrid seal geometry consisting of a braided sleeve and a substantial amount of longitudinal fibers with high packing density was selected for development based on its low leakage rates. The models developed allow prediction of the gas leakage rate as a function of fiber diameter, fiber packing density, gas properties, and pressure drop across the seal.

  12. Using degrees of rate control to improve selective n-butane oxidation over model MOF-encapsulated catalysts: sterically-constrained Ag 3 Pd(111)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dix, Sean T.; Scott, Joseph K.; Getman, Rachel B.

    2016-01-01

    Metal nanoparticles encapsulated within metal organic frameworks (MOFs) offer steric restrictions near the catalytic metal that can improve selectivity, much like in enzymes. A microkinetic model is developed for the regio-selective oxidation ofn-butane to 1-butanol with O 2over a model for MOF-encapsulated bimetallic nanoparticles. The model consists of a Ag 3Pd(111) surface decorated with a 2-atom-thick ring of (immobile) helium atoms which creates an artificial pore of similar size to that in common MOFs, which sterically constrains the adsorbed reaction intermediates. The kinetic parameters are based on energies calculated using density functional theory (DFT). The microkinetic model was analysed atmore » 423 K to determine the dominant pathways and which species (adsorbed intermediates and transition states in the reaction mechanism) have energies that most sensitively affect the reaction rates to the different products, using degree-of-rate-control (DRC) analysis. This analysis revealed that activation of the C–H bond is assisted by adsorbed oxygen atoms, O*. Unfortunately, O* also abstracts H from adsorbed 1-butanol and butoxy as well, leading to butanal as the only significant product. This suggested to (1) add water to produce more OH*, thus inhibiting these undesired steps which produce OH*, and (2) eliminate most of the O 2pressure to reduce the O* coverage, thus also inhibiting these steps. Combined with increasing butane pressure, this dramatically improved the 1-butanol selectivity (from 0 to 95%) and the rate (to 2 molecules per site per s). Moreover, 40% less O 2was consumed per oxygen atom in the products. Under these conditions, a terminal H in butane is directly eliminated to the Pd site, and the resulting adsorbed butyl combines with OH* to give the desired 1-butanol. These results demonstrate that DRC analysis provides a powerful approach for optimizing catalytic process conditions, and that highly selectivity oxidation can sometimes be achieved by using a mixture of O 2and H 2O as the oxidant. This was further demonstrated by DRC analysis of a second microkinetic model based on a related but hypothetical catalyst, where the activation energies for two of the steps were modified.« less

  13. Optimization of enhanced coal-bed methane recovery using numerical simulation

    NASA Astrophysics Data System (ADS)

    Perera, M. S. A.; Ranjith, P. G.; Ranathunga, A. S.; Koay, A. Y. J.; Zhao, J.; Choi, S. K.

    2015-02-01

    Although the enhanced coal-bed methane (ECBM) recovery process is one of the potential coal bed methane production enhancement techniques, the effectiveness of the process is greatly dependent on the seam and the injecting gas properties. This study has therefore aimed to obtain a comprehensive knowledge of all possible major ECBM process-enhancing techniques by developing a novel 3D numerical model by considering a typical coal seam using the COMET 3 reservoir simulator. Interestingly, according to the results of the model, the generally accepted concept that there is greater CBM (coal-bed methane) production enhancement from CO2 injection, compared to the traditional water removal technique, is true only for high CO2 injection pressures. Generally, the ECBM process can be accelerated by using increased CO2 injection pressures and reduced temperatures, which are mainly related to the coal seam pore space expansion and reduced CO2 adsorption capacity, respectively. The model shows the negative influences of increased coal seam depth and moisture content on ECBM process optimization due to the reduced pore space under these conditions. However, the injection pressure plays a dominant role in the process optimization. Although the addition of a small amount of N2 into the injecting CO2 can greatly enhance the methane production process, the safe N2 percentage in the injection gas should be carefully predetermined as it causes early breakthroughs in CO2 and N2 in the methane production well. An increased number of production wells may not have a significant influence on long-term CH4 production (50 years for the selected coal seam), although it significantly enhances short-term CH4 production (10 years for the selected coal seam). Interestingly, increasing the number of injection and production wells may have a negative influence on CBM production due to the coincidence of pressure contours created by each well and the mixing of injected CO2 with CH4.

  14. Adaptations to local environments in modern human populations.

    PubMed

    Jeong, Choongwon; Di Rienzo, Anna

    2014-12-01

    After leaving sub-Saharan Africa around 50000-100000 years ago, anatomically modern humans have quickly occupied extremely diverse environments. Human populations were exposed to further environmental changes resulting from cultural innovations, such as the spread of farming, which gave rise to new selective pressures related to pathogen exposures and dietary shifts. In addition to changing the frequency of individual adaptive alleles, natural selection may also shape the overall genetic architecture of adaptive traits. Here, we review recent advances in understanding the genetic architecture of adaptive human phenotypes based on insights from the studies of lactase persistence, skin pigmentation and high-altitude adaptation. These adaptations evolved in parallel in multiple human populations, providing a chance to investigate independent realizations of the evolutionary process. We suggest that the outcome of adaptive evolution is often highly variable even under similar selective pressures. Finally, we highlight a growing need for detecting adaptations that did not follow the classical sweep model and for incorporating new sources of genetic evidence such as information from ancient DNA. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Reverse spin-crossover and high-pressure kinetics of the heme iron center relevant for the operation of heme proteins under deep-sea conditions.

    PubMed

    Troeppner, Oliver; Lippert, Rainer; Shubina, Tatyana E; Zahl, Achim; Jux, Norbert; Ivanović-Burmazović, Ivana

    2014-10-20

    By design of a heme model complex with a binding pocket of appropriate size and flexibility, and by elucidating its kinetics and thermodynamics under elevated pressures, some of the pressure effects are demonstrated relevant for operation of heme-proteins under deep-sea conditions. Opposite from classical paradigms of the spin-crossover and reaction kinetics, a pressure increase can cause deceleration of the small-molecule binding to the vacant coordination site of the heme-center in a confined space and stabilize a high-spin state of its Fe center. This reverse high-pressure behavior can be achieved only if the volume changes related to the conformational transformation of the cavity can offset the volume changes caused by the substrate binding. It is speculated that based on these criteria nature could make a selection of structures of heme pockets that assist in reducing metabolic activity and enzymatic side reactions under extreme pressure conditions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Diagnostic Value of Selected Echocardiographic Variables to Identify Pulmonary Hypertension in Dogs with Myxomatous Mitral Valve Disease.

    PubMed

    Tidholm, A; Höglund, K; Häggström, J; Ljungvall, I

    2015-01-01

    Pulmonary hypertension (PH) is commonly associated with myxomatous mitral valve disease (MMVD). Because dogs with PH present without measureable tricuspid regurgitation (TR), it would be useful to investigate echocardiographic variables that can identify PH. To investigate associations between estimated systolic TR pressure gradient (TRPG) and dog characteristics and selected echocardiographic variables. 156 privately owned dogs. Prospective observational study comparing the estimations of TRPG with dog characteristics and selected echocardiographic variables in dogs with MMVD and measureable TR. Tricuspid regurgitation pressure gradient was significantly (P < .05) associated with body weight corrected right (RVIDDn) and left (LVIDDn) ventricular end-diastolic and systolic (LVIDSn) internal diameters, pulmonary arterial (PA) acceleration to deceleration time ratio (AT/DT), heart rate, left atrial to aortic root ratio (LA/Ao), and the presence of congestive heart failure. Four variables remained significant in the multiple regression analysis with TRPG as a dependent variable: modeled as linear variables LA/Ao (P < .0001) and RVIDDn (P = .041), modeled as second order polynomial variables: AT/DT (P = .0039) and LVIDDn (P < .0001) The adjusted R(2) -value for the final model was 0.45 and receiver operating characteristic curve analysis suggested the model's performance to predict PH, defined as 36, 45, and 55 mmHg as fair (area under the curve [AUC] = 0.80), good (AUC = 0.86), and excellent (AUC = 0.92), respectively. In dogs with MMVD, the presence of PH might be suspected with the combination of decreased PA AT/DT, increased RVIDDn and LA/Ao, and a small or great LVIDDn. Copyright © 2015 The Authors Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  17. Tumor evolution in space: the effects of competition colonization tradeoffs on tumor invasion dynamics.

    PubMed

    Orlando, Paul A; Gatenby, Robert A; Brown, Joel S

    2013-01-01

    We apply competition colonization tradeoff models to tumor growth and invasion dynamics to explore the hypothesis that varying selection forces will result in predictable phenotypic differences in cells at the tumor invasive front compared to those in the core. Spatially, ecologically, and evolutionarily explicit partial differential equation models of tumor growth confirm that spatial invasion produces selection pressure for motile phenotypes. The effects of the invasive phenotype on normal adjacent tissue determine the patterns of growth and phenotype distribution. If tumor cells do not destroy their environment, colonizer and competitive phenotypes coexist with the former localized at the invasion front and the latter, to the tumor interior. If tumors cells do destroy their environment, then cell motility is strongly selected resulting in accelerated invasion speed with time. Our results suggest that the widely observed genetic heterogeneity within cancers may not be the stochastic effect of random mutations. Rather, it may be the consequence of predictable variations in environmental selection forces and corresponding phenotypic adaptations.

  18. Tumor Evolution in Space: The Effects of Competition Colonization Tradeoffs on Tumor Invasion Dynamics

    PubMed Central

    Orlando, Paul A.; Gatenby, Robert A.; Brown, Joel S.

    2013-01-01

    We apply competition colonization tradeoff models to tumor growth and invasion dynamics to explore the hypothesis that varying selection forces will result in predictable phenotypic differences in cells at the tumor invasive front compared to those in the core. Spatially, ecologically, and evolutionarily explicit partial differential equation models of tumor growth confirm that spatial invasion produces selection pressure for motile phenotypes. The effects of the invasive phenotype on normal adjacent tissue determine the patterns of growth and phenotype distribution. If tumor cells do not destroy their environment, colonizer and competitive phenotypes coexist with the former localized at the invasion front and the latter, to the tumor interior. If tumors cells do destroy their environment, then cell motility is strongly selected resulting in accelerated invasion speed with time. Our results suggest that the widely observed genetic heterogeneity within cancers may not be the stochastic effect of random mutations. Rather, it may be the consequence of predictable variations in environmental selection forces and corresponding phenotypic adaptations. PMID:23508890

  19. A microelectromechanical system artificial basilar membrane based on a piezoelectric cantilever array and its characterization using an animal model.

    PubMed

    Jang, Jongmoon; Lee, JangWoo; Woo, Seongyong; Sly, David J; Campbell, Luke J; Cho, Jin-Ho; O'Leary, Stephen J; Park, Min-Hyun; Han, Sungmin; Choi, Ji-Wong; Jang, Jeong Hun; Choi, Hongsoo

    2015-07-31

    We proposed a piezoelectric artificial basilar membrane (ABM) composed of a microelectromechanical system cantilever array. The ABM mimics the tonotopy of the cochlea: frequency selectivity and mechanoelectric transduction. The fabricated ABM exhibits a clear tonotopy in an audible frequency range (2.92-12.6 kHz). Also, an animal model was used to verify the characteristics of the ABM as a front end for potential cochlear implant applications. For this, a signal processor was used to convert the piezoelectric output from the ABM to an electrical stimulus for auditory neurons. The electrical stimulus for auditory neurons was delivered through an implanted intra-cochlear electrode array. The amplitude of the electrical stimulus was modulated in the range of 0.15 to 3.5 V with incoming sound pressure levels (SPL) of 70.1 to 94.8 dB SPL. The electrical stimulus was used to elicit an electrically evoked auditory brainstem response (EABR) from deafened guinea pigs. EABRs were successfully measured and their magnitude increased upon application of acoustic stimuli from 75 to 95 dB SPL. The frequency selectivity of the ABM was estimated by measuring the magnitude of EABRs while applying sound pressure at the resonance and off-resonance frequencies of the corresponding cantilever of the selected channel. In this study, we demonstrated a novel piezoelectric ABM and verified its characteristics by measuring EABRs.

  20. Intersexual allometry differences and ontogenetic shifts of coloration patterns in two aquatic turtles, Graptemys oculifera and Graptemys flavimaculata

    USGS Publications Warehouse

    Ennen, Joshua R.; Lindeman, Peter V.; Lovich, Jeffrey E.

    2015-01-01

    Coloration can play critical roles in a species' biology. The allometry of color patterns may be useful for elucidating the evolutionary mechanisms responsible for shaping the traits. We measured characteristics relating to eight aspects of color patterns from Graptemys oculifera and G. flavimaculata to investigate the allometric differences among male, female, and unsexed juvenile specimens. Additionally, we investigated ontogenetic shifts by incorporating the unsexed juveniles into the male and female datasets. In general, male color traits were isometric (i.e., color scaled with body size), while females and juvenile color traits were hypoallometric, growing in size more slowly than the increase in body size. When we included unsexed juveniles in our male and female datasets, our linear regression analyses found all relationships to be hypoallometric and our model selection analysis found support for nonlinear models describing the relationship between body size and color patterns, suggestive of an ontogenetic shift in coloration traits for both sexes at maturity. Although color is critical for many species' biology and therefore under strong selective pressure in many other species, our results are likely explained by an epiphenomenon related to the different selection pressures on body size and growth rates between juveniles and adults and less attributable to the evolution of color patterns themselves.

  1. Design Space Approach in Optimization of Fluid Bed Granulation and Tablets Compression Process

    PubMed Central

    Djuriš, Jelena; Medarević, Djordje; Krstić, Marko; Vasiljević, Ivana; Mašić, Ivana; Ibrić, Svetlana

    2012-01-01

    The aim of this study was to optimize fluid bed granulation and tablets compression processes using design space approach. Type of diluent, binder concentration, temperature during mixing, granulation and drying, spray rate, and atomization pressure were recognized as critical formulation and process parameters. They were varied in the first set of experiments in order to estimate their influences on critical quality attributes, that is, granules characteristics (size distribution, flowability, bulk density, tapped density, Carr's index, Hausner's ratio, and moisture content) using Plackett-Burman experimental design. Type of diluent and atomization pressure were selected as the most important parameters. In the second set of experiments, design space for process parameters (atomization pressure and compression force) and its influence on tablets characteristics was developed. Percent of paracetamol released and tablets hardness were determined as critical quality attributes. Artificial neural networks (ANNs) were applied in order to determine design space. ANNs models showed that atomization pressure influences mostly on the dissolution profile, whereas compression force affects mainly the tablets hardness. Based on the obtained ANNs models, it is possible to predict tablet hardness and paracetamol release profile for any combination of analyzed factors. PMID:22919295

  2. Evaluation of the Carefusion Alaris PC infusion pump for hyperbaric oxygen therapy conditions: Technical report.

    PubMed

    Smale, Andrew; Tsouras, Theo

    2017-01-01

    We present a standardized test methodology and results for our evaluation of the Carefusion Alaris PC infusion pump, comprising the model 8015 PC Unit and the model 8100 Large Volume Pump (LVP) module. The evaluation consisted of basic suitability testing, internal component inspection, surface temperature measurement of selected internal components, and critical performance testing (infusion rate accuracy and occlusion alarm pressure) during conditions of typical hyperbaric oxygen (HBO₂) treatment in our facility's class A multiplace chamber. We have found that the pumps pose no enhanced risk as an ignition source, and that the pumps operate within manufacturer's specifications for flow rate and occlusion alarms at all stages of HBO₂ treatments, up to 4.0 ATA and pressurization and depressurization rates up to 180 kPa/minute. The pumps do not require purging with air or nitrogen and can be used unmodified, subject to the following conditions: pumps are undamaged, clean, fully charged, and absent from alcohol cleaning residue; pumps are powered from the internal NiMH battery only; maximum pressure exposure 4.0 ATA; maximum pressurization and depressurization rate of 180 kPa/minute; LVP modules locked in place with retaining screws. Copyright© Undersea and Hyperbaric Medical Society.

  3. Genetic Variation of Goat Interferon Regulatory Factor 3 Gene and Its Implication in Goat Evolution

    PubMed Central

    Shu, Liping; Zhang, Yesheng; Wang, Yangzi; Sanni, Timothy M.; Imumorin, Ikhide G.; Peters, Sunday O.; Zhang, Jiajin; Dong, Yang; Wang, Wen

    2016-01-01

    The immune systems are fundamentally vital for evolution and survival of species; as such, selection patterns in innate immune loci are of special interest in molecular evolutionary research. The interferon regulatory factor (IRF) gene family control many different aspects of the innate and adaptive immune responses in vertebrates. Among these, IRF3 is known to take active part in very many biological processes. We assembled and evaluated 1356 base pairs of the IRF3 gene coding region in domesticated goats from Africa (Nigeria, Ethiopia and South Africa) and Asia (Iran and China) and the wild goat (Capra aegagrus). Five segregating sites with θ value of 0.0009 for this gene demonstrated a low diversity across the goats’ populations. Fu and Li tests were significantly positive but Tajima’s D test was significantly negative, suggesting its deviation from neutrality. Neighbor joining tree of IRF3 gene in domesticated goats, wild goat and sheep showed that all domesticated goats have a closer relationship than with the wild goat and sheep. Maximum likelihood tree of the gene showed that different domesticated goats share a common ancestor and suggest single origin. Four unique haplotypes were observed across all the sequences, of which, one was particularly common to African goats (MOCH-K14-0425, Poitou and WAD). In assessing the evolution mode of the gene, we found that the codon model dN/dS ratio for all goats was greater than one. Phylogenetic Analysis by Maximum Likelihood (PAML) gave a ω0 (dN/dS) value of 0.067 with LnL value of -6900.3 for the first Model (M1) while ω2 = 1.667 in model M2 with LnL value of -6900.3 with positive selection inferred in 3 codon sites. Mechanistic empirical combination (MEC) model for evaluating adaptive selection pressure on particular codons also confirmed adaptive selection pressure in three codons (207, 358 and 408) in IRF3 gene. Positive diversifying selection inferred with recent evolutionary changes in domesticated goat IRF3 led us to conclude that the gene evolution may have been influenced by domestication processes in goats. PMID:27598391

  4. Genetic Variation of Goat Interferon Regulatory Factor 3 Gene and Its Implication in Goat Evolution.

    PubMed

    Okpeku, Moses; Esmailizadeh, Ali; Adeola, Adeniyi C; Shu, Liping; Zhang, Yesheng; Wang, Yangzi; Sanni, Timothy M; Imumorin, Ikhide G; Peters, Sunday O; Zhang, Jiajin; Dong, Yang; Wang, Wen

    2016-01-01

    The immune systems are fundamentally vital for evolution and survival of species; as such, selection patterns in innate immune loci are of special interest in molecular evolutionary research. The interferon regulatory factor (IRF) gene family control many different aspects of the innate and adaptive immune responses in vertebrates. Among these, IRF3 is known to take active part in very many biological processes. We assembled and evaluated 1356 base pairs of the IRF3 gene coding region in domesticated goats from Africa (Nigeria, Ethiopia and South Africa) and Asia (Iran and China) and the wild goat (Capra aegagrus). Five segregating sites with θ value of 0.0009 for this gene demonstrated a low diversity across the goats' populations. Fu and Li tests were significantly positive but Tajima's D test was significantly negative, suggesting its deviation from neutrality. Neighbor joining tree of IRF3 gene in domesticated goats, wild goat and sheep showed that all domesticated goats have a closer relationship than with the wild goat and sheep. Maximum likelihood tree of the gene showed that different domesticated goats share a common ancestor and suggest single origin. Four unique haplotypes were observed across all the sequences, of which, one was particularly common to African goats (MOCH-K14-0425, Poitou and WAD). In assessing the evolution mode of the gene, we found that the codon model dN/dS ratio for all goats was greater than one. Phylogenetic Analysis by Maximum Likelihood (PAML) gave a ω0 (dN/dS) value of 0.067 with LnL value of -6900.3 for the first Model (M1) while ω2 = 1.667 in model M2 with LnL value of -6900.3 with positive selection inferred in 3 codon sites. Mechanistic empirical combination (MEC) model for evaluating adaptive selection pressure on particular codons also confirmed adaptive selection pressure in three codons (207, 358 and 408) in IRF3 gene. Positive diversifying selection inferred with recent evolutionary changes in domesticated goat IRF3 led us to conclude that the gene evolution may have been influenced by domestication processes in goats.

  5. Chemical recovery process using break up steam control to prevent smelt explosions

    DOEpatents

    Kohl, Arthur L.; Stewart, Albert E.

    1988-08-02

    An improvement in a chemical recovery process in which a hot liquid smelt is introduced into a dissolving tank containing a pool of green liquor. The improvement comprises preventing smelt explosions in the dissolving tank by maintaining a first selected superatmospheric pressure in the tank during normal operation of the furnace; sensing the pressure in the tank; and further impinging a high velocity stream of steam upon the stream of smelt whenever the pressure in the tank decreases below a second selected superatmospheric pressure which is lower than said first pressure.

  6. Effects of parental hypertension on longitudinal trends in blood pressure and plasma metabolic profile: mixed-effects model analysis.

    PubMed

    Mitsumata, Kaneto; Saitoh, Shigeyuki; Ohnishi, Hirofumi; Akasaka, Hiroshi; Miura, Tetsuji

    2012-11-01

    The mechanism underlying the association of parental hypertension with cardiovascular events in offspring remains unclear. In this study, the effects of parental hypertension on longitudinal trends of blood pressure and metabolic parameters were examined by mixed-effects model analysis. From 1977 to 2006, 5198 subjects participated in the Tanno-Sobetsu Study, and we selected 2607 subjects (1095 men and 1512 women) for whom data on parental history of hypertension were available. In both men and women with and without parental hypertension, systolic blood pressure and fasting blood glucose levels consistently increased from the third to eighth decades of life, whereas diastolic blood pressure and serum triglyceride levels followed biphasic (inverted U shape) time courses during that period. However, the relationships between the parameters and age were significantly shifted upward (by ≈5.3 mm Hg in systolic blood pressure, 2.8 mm Hg in diastolic blood pressure, 0.30 mmol/L in blood glucose, and 0.09 mmol/L in triglyceride) in the group with parental hypertension compared with those in the group without parental hypertension. Both paternal and maternal histories of hypertension were determinants of systolic blood pressure and diastolic blood pressure, and there was no significant interaction between the sides of parental history. There were no significant effects of parental hypertension on age-dependent or body mass index-dependent changes in serum low-density lipoprotein cholesterol or high-density lipoprotein cholesterol level. The present results indicate that parental hypertension has an age-independent impact on elevation of blood pressure, plasma glucose, and triglyceride levels, which may underlie the reported increase in cardiovascular events by family history of hypertension.

  7. Electronic scanning pressure measuring system and transducer package

    NASA Technical Reports Server (NTRS)

    Coe, C. F. (Inventor); Parra, G. T.

    1984-01-01

    An electronic scanning pressure system that includes a plurality of pressure transducers is examined. A means obtains an electrical signal indicative of a pressure measurement from each of the plurality of pressure transducers. A multiplexing means is connected for selectivity supplying inputs from the plurality of pressure transducers to the signal obtaining means. A data bus connects the plurality of pressure transducers to the multiplexing means. A latch circuit is connected to supply control inputs to the multiplexing means. An address bus is connected to supply an address signal of a selected one of the plurality of pressure transducers to the latch circuit. In operation, each of the pressure transducers is successively scanned by the multiplexing means in response to address signals supplied on the address bus to the latch circuit.

  8. Stress and Dilatancy Relation of Methane Hydrate Bearing Sand with Various Fines Content

    NASA Astrophysics Data System (ADS)

    Hyodo, M.

    2016-12-01

    This study presents an experimental and numerical study on the shear behaviour of methane hydrate bearing sand with variable confining pressures and methane hydrate saturations. A representative grading curve of Nankai Trough is selected as the grain size distribution of host sand to artificially produce the methane hydrate bearing sand. A shear strength estimation equation for methane hydrate bearing sand from test results is established. A simple constitutive model has been proposed to predict the stress-strain response of methane hydrate bearing sand based on a few well-known relationships. Experimental results indicate that the inclination of stress-dilatancy curve becomes steeper with a rise in methane hydrate saturation. A revised stress-dilatancy equation has been integrated with this simple model to consider the variance in the inclination of stress-dilatancy curve. The mean stress Pcr at critical state when the peak stress ratio reduces to the residual stress ratio increases with the level of methane hydrate saturation. The dilatancy parameter a tends to increase with the methane hydrate saturation. The shear deformability parameter A exhibits a decreasing tendency with the rise in methane hydrate saturation at each confining pressure. This model is capable of reasonably predicting the strength and stiffness enhancement and the dilation behaviour as methane hydrate saturation increases. The volumetric variation from contraction to expansion of MH bearing sand at a lower confining pressure and only pure volumetric contraction a higher confining pressure can be represented by this simple model.

  9. Optimizing Surgical Quality Datasets to Care for Older Adults: Lessons from the American College of Surgeons NSQIP Geriatric Surgery Pilot.

    PubMed

    Berian, Julia R; Zhou, Lynn; Hornor, Melissa A; Russell, Marcia M; Cohen, Mark E; Finlayson, Emily; Ko, Clifford Y; Robinson, Thomas N; Rosenthal, Ronnie A

    2017-12-01

    Surgical quality datasets can be better tailored toward older adults. The American College of Surgeons (ACS) NSQIP Geriatric Surgery Pilot collected risk factors and outcomes in 4 geriatric-specific domains: cognition, decision-making, function, and mobility. This study evaluated the contributions of geriatric-specific factors to risk adjustment in modeling 30-day outcomes and geriatric-specific outcomes (postoperative delirium, new mobility aid use, functional decline, and pressure ulcers). Using ACS NSQIP Geriatric Surgery Pilot data (January 2014 to December 2016), 7 geriatric-specific risk factors were evaluated for selection in 14 logistic models (morbidities/mortality) in general-vascular and orthopaedic surgery subgroups. Hierarchical models evaluated 4 geriatric-specific outcomes, adjusting for hospitals-level effects and including Bayesian-type shrinkage, to estimate hospital performance. There were 36,399 older adults who underwent operations at 31 hospitals in the ACS NSQIP Geriatric Surgery Pilot. Geriatric-specific risk factors were selected in 10 of 14 models in both general-vascular and orthopaedic surgery subgroups. After risk adjustment, surrogate consent (odds ratio [OR] 1.5; 95% CI 1.3 to 1.8) and use of a mobility aid (OR 1.3; 95% CI 1.1 to 1.4) increased the risk for serious morbidity or mortality in the general-vascular cohort. Geriatric-specific factors were selected in all 4 geriatric-specific outcomes models. Rates of geriatric-specific outcomes were: postoperative delirium in 12.1% (n = 3,650), functional decline in 42.9% (n = 13,000), new mobility aid in 29.7% (n = 9,257), and new or worsened pressure ulcers in 1.7% (n = 527). Geriatric-specific risk factors are important for patient-centered care and contribute to risk adjustment in modeling traditional and geriatric-specific outcomes. To provide optimal patient care for older adults, surgical datasets should collect measures that address cognition, decision-making, mobility, and function. Copyright © 2017 American College of Surgeons. All rights reserved.

  10. Molecular adaptation in Rubisco: Discriminating between convergent evolution and positive selection using mechanistic and classical codon models.

    PubMed

    Parto, Sahar; Lartillot, Nicolas

    2018-01-01

    Rubisco (Ribulose-1, 5-biphosphate carboxylase/oxygenase) is the most important enzyme on earth, catalyzing the first step of photosynthetic CO2 fixation. So, without it, there would be no storing of the sun's energy in plants. Molecular adaptation of Rubisco to C4 photosynthetic pathway has attracted a lot of attention. C4 plants, which comprise less than 5% of land plants, have evolved more efficient photosynthesis compared to C3 plants. Interestingly, a large number of independent transitions from C3 to C4 phenotype have occurred. Each time, the Rubisco enzyme has been subject to similar changes in selective pressure, thus providing an excellent model for convergent evolution at the molecular level. Molecular adaptation is often identified with positive selection and is typically characterized by an elevated ratio of non-synonymous to synonymous substitution rate (dN/dS). However, convergent adaptation is expected to leave a different molecular signature, taking the form of repeated transitions toward identical or similar amino acids. Here, we used a previously introduced codon-based differential-selection model to detect and quantify consistent patterns of convergent adaptation in Rubisco in eudicots. We further contrasted our results with those obtained by classical codon models based on the estimation of dN/dS. We found that the two classes of models tend to select distinct, although overlapping, sets of positions. This discrepancy in the results illustrates the conceptual difference between these models while emphasizing the need to better discriminate between qualitatively different selective regimes, by using a broader class of codon models than those currently considered in molecular evolutionary studies.

  11. Crucial nesting habitat for gunnison sage-grouse: A spatially explicit hierarchical approach

    USGS Publications Warehouse

    Aldridge, Cameron L.; Saher, D.J.; Childers, T.M.; Stahlnecker, K.E.; Bowen, Z.H.

    2012-01-01

    Gunnison sage-grouse (Centrocercus minimus) is a species of special concern and is currently considered a candidate species under Endangered Species Act. Careful management is therefore required to ensure that suitable habitat is maintained, particularly because much of the species' current distribution is faced with exurban development pressures. We assessed hierarchical nest site selection patterns of Gunnison sage-grouse inhabiting the western portion of the Gunnison Basin, Colorado, USA, at multiple spatial scales, using logistic regression-based resource selection functions. Models were selected using Akaike Information Criterion corrected for small sample sizes (AIC c) and predictive surfaces were generated using model averaged relative probabilities. Landscape-scale factors that had the most influence on nest site selection included the proportion of sagebrush cover >5%, mean productivity, and density of 2 wheel-drive roads. The landscape-scale predictive surface captured 97% of known Gunnison sage-grouse nests within the top 5 of 10 prediction bins, implicating 57% of the basin as crucial nesting habitat. Crucial habitat identified by the landscape model was used to define the extent for patch-scale modeling efforts. Patch-scale variables that had the greatest influence on nest site selection were the proportion of big sagebrush cover >10%, distance to residential development, distance to high volume paved roads, and mean productivity. This model accurately predicted independent nest locations. The unique hierarchical structure of our models more accurately captures the nested nature of habitat selection, and allowed for increased discrimination within larger landscapes of suitable habitat. We extrapolated the landscape-scale model to the entire Gunnison Basin because of conservation concerns for this species. We believe this predictive surface is a valuable tool which can be incorporated into land use and conservation planning as well the assessment of future land-use scenarios. ?? 2011 The Wildlife Society.

  12. Adaptive evolution in locomotor performance: How selective pressures and functional relationships produce diversity.

    PubMed

    Scales, Jeffrey A; Butler, Marguerite A

    2016-01-01

    Despite the complexity of nature, most comparative studies of phenotypic evolution consider selective pressures in isolation. When competing pressures operate on the same system, it is commonly expected that trade-offs will occur that will limit the evolution of phenotypic diversity, however, it is possible that interactions among selective pressures may promote diversity instead. We explored the evolution of locomotor performance in lizards in relation to possible selective pressures using the Ornstein-Uhlenbeck process. Here, we show that a combination of selection based on foraging mode and predator escape is required to explain variation in performance phenotypes. Surprisingly, habitat use contributed little explanatory power. We find that it is possible to evolve very different abilities in performance which were previously thought to be tightly correlated, supporting a growing literature that explores the many-to-one mapping of morphological design. Although we generally find the expected trade-off between maximal exertion and speed, this relationship surprisingly disappears when species experience selection for both performance types. We conclude that functional integration need not limit adaptive potential, and that an integrative approach considering multiple major influences on a phenotype allows a more complete understanding of adaptation and the evolution of diversity. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.

  13. Composite load spectra for select space propulsion structural components

    NASA Technical Reports Server (NTRS)

    Newell, J. F.; Kurth, R. E.; Ho, H.

    1991-01-01

    The objective of this program is to develop generic load models with multiple levels of progressive sophistication to simulate the composite (combined) load spectra that are induced in space propulsion system components, representative of Space Shuttle Main Engines (SSME), such as transfer ducts, turbine blades, and liquid oxygen posts and system ducting. The first approach will consist of using state of the art probabilistic methods to describe the individual loading conditions and combinations of these loading conditions to synthesize the composite load spectra simulation. The second approach will consist of developing coupled models for composite load spectra simulation which combine the deterministic models for composite load dynamic, acoustic, high pressure, and high rotational speed, etc., load simulation using statistically varying coefficients. These coefficients will then be determined using advanced probabilistic simulation methods with and without strategically selected experimental data.

  14. Biophysical Fitness Landscapes for Transcription Factor Binding Sites

    PubMed Central

    Haldane, Allan; Manhart, Michael; Morozov, Alexandre V.

    2014-01-01

    Phenotypic states and evolutionary trajectories available to cell populations are ultimately dictated by complex interactions among DNA, RNA, proteins, and other molecular species. Here we study how evolution of gene regulation in a single-cell eukaryote S. cerevisiae is affected by interactions between transcription factors (TFs) and their cognate DNA sites. Our study is informed by a comprehensive collection of genomic binding sites and high-throughput in vitro measurements of TF-DNA binding interactions. Using an evolutionary model for monomorphic populations evolving on a fitness landscape, we infer fitness as a function of TF-DNA binding to show that the shape of the inferred fitness functions is in broad agreement with a simple functional form inspired by a thermodynamic model of two-state TF-DNA binding. However, the effective parameters of the model are not always consistent with physical values, indicating selection pressures beyond the biophysical constraints imposed by TF-DNA interactions. We find little statistical support for the fitness landscape in which each position in the binding site evolves independently, indicating that epistasis is common in the evolution of gene regulation. Finally, by correlating TF-DNA binding energies with biological properties of the sites or the genes they regulate, we are able to rule out several scenarios of site-specific selection, under which binding sites of the same TF would experience different selection pressures depending on their position in the genome. These findings support the existence of universal fitness landscapes which shape evolution of all sites for a given TF, and whose properties are determined in part by the physics of protein-DNA interactions. PMID:25010228

  15. Selectivity curves of the capture of mangrove crab (Ucides cordatus) on the northern coast of Brazil using bayesian inference.

    PubMed

    Furtado-Junior, I; Abrunhosa, F A; Holanda, F C A F; Tavares, M C S

    2016-06-01

    Fishing selectivity of the mangrove crab Ucides cordatus in the north coast of Brazil can be defined as the fisherman's ability to capture and select individuals from a certain size or sex (or a combination of these factors) which suggests an empirical selectivity. Considering this hypothesis, we calculated the selectivity curves for males and females crabs using the logit function of the logistic model in the formulation. The Bayesian inference consisted of obtaining the posterior distribution by applying the Markov chain Monte Carlo (MCMC) method to software R using the OpenBUGS, BRugs, and R2WinBUGS libraries. The estimated results of width average carapace selection for males and females compared with previous studies reporting the average width of the carapace of sexual maturity allow us to confirm the hypothesis that most mature individuals do not suffer from fishing pressure; thus, ensuring their sustainability.

  16. A Quantitative Quasispecies Theory-Based Model of Virus Escape Mutation Under Immune Selection

    DTIC Science & Technology

    2012-01-01

    immune pressure, and their capacity for rapid escape mutation underlies many of the difficulties in combating pathogens, including HIV -1. In a typical...interpreted as the total number of virions within a finite sys- tem. The HIV -1 viral load during the acute infection phase can reach up to 104 ∼ 106...therefore models both the de- crease of the mean fitness away from WT and the distribution of neutral, deleterious, and beneficial mutants for a

  17. Carbon dioxide (hydrogen sulfide) membrane separations and WGS membrane reactor modeling for fuel cells

    NASA Astrophysics Data System (ADS)

    Huang, Jin

    Acid-gas removal is of great importance in many environmental or energy-related processes. Compared to current commercial technologies, membrane-based CO2 and H2S capture has the advantages of low energy consumption, low weight and space requirement, simplicity of installation/operation, and high process flexibility. However, the large-scale application of the membrane separation technology is limited by the relatively low transport properties. In this study, CO2 (H2S)-selective polymeric membranes with high permeability and high selectivity have been studied based on the facilitated transport mechanism. The membrane showed facilitated effect for both CO2 and H2S. A CO2 permeability of above 2000 Barrers, a CO2/H2 selectivity of greater than 40, and a CO2/N2 selectivity of greater than 200 at 100--150°C were observed. As a result of higher reaction rate and smaller diffusing compound, the H2S permeability and H2S/H2 selectivity were about three times higher than those properties for CO2. The novel CO2-selective membrane has been applied to capture CO 2 from flue gas and natural gas. In the CO2 capture experiments from a gas mixture with N2 and H2, a permeate CO 2 dry concentration of greater than 98% was obtained by using steam as the sweep gas. In CO2/CH4 separation, decent CO 2 transport properties were obtained with a feed pressure up to 500 psia. With the thin-film composite membrane structure, significant increase on the CO2 flux was achieved with the decrease of the selective layer thickness. With the continuous removal of CO2, CO2-selective water-gas-shift (WGS) membrane reactor is a promising approach to enhance CO conversion and increase the purity of H2 at process pressure under relatively low temperature. The simultaneous reaction and transport process in the countercurrent WGS membrane reactor was simulated by using a one-dimensional non-isothermal model. The modeling results show that a CO concentration of less than 10 ppm and a H2 recovery of greater than 97% are achievable from reforming syngases. In an experimental study, the reversible WGS was shifted forward by removing CO2 so that the CO concentration was significantly decreased to less than 10 ppm. The modeling results agreed well with the experimental data.

  18. Exploratory studies of the cruise performance of upper surface blown configurations. Experimental program: Test facilities, model design instrumentation, and lowspeed, high-lift tests

    NASA Technical Reports Server (NTRS)

    Braden, J. A.; Hancock, J. P.; Burdges, K. P.; Hackett, J. E.

    1980-01-01

    The model hardware, test facilities and instrumentation utilized in an experimental study of upper surface blown configurations at cruise is described. The high speed (subsonic) experimental work, studying the aerodynamic effects of wing nacelle geometric variations, was conducted around semispan model configurations composed of diversified, interchangeable components. Power simulation was provided by high pressure air ducted through closed forebody nacelles. Nozzle geometry was varied across size, exit aspect ratio, exit position and boattail angle. Three dimensional force and two dimensional pressure measurements were obtained at cruise Mach numbers from 0.5 to 0.8 and at nozzle pressure ratios up to about 3.0. The experimental investigation was supported by an analytical synthesis of the system using a vortex lattice representation with first order power effects. Results are also presented from a compatibility study in which a short haul transport is designed on the basis of the aerodynamic findings in the experimental study as well as acoustical data obtained in a concurrent program. High lift test data are used to substantiate the projected performance of the selected transport design.

  19. Pathologic changes of wound tissue in rats with stage III pressure ulcers treated by transplantation of human amniotic epithelial cells.

    PubMed

    Zheng, Xilan; Jiang, Zhixia; Zhou, Aiting; Yu, Limei; Quan, Mingtao; Cheng, Huagang

    2015-01-01

    This study aims to determine the impact of orthotopic transplantation of human amniotic epithelial cells (hAECs) on the pathologic changes of wound tissues in a self-prepared rat stage III pressure ulcer model. Ninety-six SD rats were randomly divided into the model group (group M), hAEC transplantation group (group H), traditional treatment group (group T), and the control group (group C), with 24 rats in each group. The wound healing time was observed in 6 rats from each group, and 6 rats of each group were selected for post-modeling on day(s) (D) 1, 3, and 7 for HE staining to compare the pathological changes. The healing time of group H was significantly shorter than the other three groups. Moreover, pathological observations revealed that group H exhibited significant proliferation of fibrous tissues and vessels in the dermal layer, and the appearance time and degree of skin appendages were significantly greater than that observed in the other three groups. Pathological observations showed that hAEC transplantation could significantly speed up the healing of stage III pressure ulcer.

  20. The effects of non-Newtonian blood flow on curved stenotic coronary artery

    NASA Astrophysics Data System (ADS)

    Li, Shuang; Chin, Cheng; Monty, Jason; Barlis, Peter; Ooi, Andrew

    2017-11-01

    Direct numerical simulations (DNS) are carried out using both Newtonian and non-Newtonian viscosity models under a pulsatile physiological flow condition to study the influences of the non-Newtonian blood property on the flow fields in the idealised curved stenotic artery model. Quemada model is adopted to simulate the non-Newtonian blood in the simulations. Both time-averaged and selected instantaneous velocity, vorticity and pressure data are examined and the differences between the Newtonian and non-Newtonian flows are examined. The non-Newtonian simulations tend to have blunted axial velocity profile compared to the Newtonian cases. In the proximal of post-stenotic region, smaller recirculation bubbles are observed because of the non-Newtonian effects. Decreased secondary flow strengths are observed upstream of stenosis while higher magnitudes of secondary flows are found out downstream of stenosis. The deviation of mean cross-sectionally axial vorticity is minimal except at the peak systole, where an additional vortice appears near the centre of the 90 degrees plane that is more pronounced in the Newtonian case. The influence of blood-analog viscosity increases the mean pressure drops. However, lower instantaneous pressure losses at peak systole are observed in contrast to the Newtonian blood analog fluid.

  1. The effect of reservoir geometry, injection and production parameters and permeability structure on induced seismicity

    NASA Astrophysics Data System (ADS)

    Hosseini, S. M.; Goebel, T.; Aminzadeh, F.

    2015-12-01

    The recent increase in injection induced seismicity (IIS) in previously less seismically active regions highlighted a need for better mitigation strategies and physics-based models of induced seismicity. Previous models of pressure diffusion and fluid flow investigated the change in Coulomb stress as a result of induced pore-pressure perturbations (e.g. Zhang et al., 2013; Keranen et al., 2014; Hornbach et al., 2015; Segall and Lu, 2015). Here, we consider the additional effects of permeability structure, operational parameters and reservoir geometry. We numerically investigate the influence of net fluid injection volumes; linear, radial, and spherical reservoir geometry; as well as reservoir size. The latter can have a substantial effect on changes in Coulomb stress and subsequent induced seismicity. We report on results from two series of model runs, which explored pressure changes caused by wastewater disposal and water flooding. We observed that a typical water flooding operation that includes production wells and injectors has a lower probability of inducing seismicity. Our observations are in agreement with assessment by National Research Council report on induced seismicity (2012). We developed a third suite of models that investigate the effect of permeability structure on injection-induced seismicity. We examine two cases of wastewater disposal in proximity to active faults: 1) in Central Illinois Basin and 2) in central California. In both cases, we observed that the size of the reservoir, presence of faults, and permeability contrast relative to the host rock, strongly influences the pressure changes with distance and time. These pressure changes vary widely but can easily lead to fault instability and seismic activity at up to 10 km distance from the injection well. The results of this study may help to select safe injection sites and operational conditions in order to minimize injection induced seismicity hazard.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Procarione, J.A.

    This research concerns the development of two models - a mine and a haulage shaft for ventilation studies. The model mine for instructional study of pressures and quantities was designed and built of 12-inch diameter furnace duct. It consists of a north and south sections in the hallway ceiling space in the third floor of the W.C. Browning Building. A fan section, consisting of three fans in Room 314, is attached to it. Both fan and duct sections may be operated singly, in parallel, and in series with each other. A blowing or exhausting mode allows a total of thirty-twomore » combinations. Through a system of air flow measurement stations, solenoid valves, and relays, pressures and velocities may be determined with a micromanometer or a pressure transducer whose output is processed by a computer. A control panel, made up of switches, permits the selection of the various fan-duct combinations and measurements. The 120 foot model shaft is for the study of shock losses when two skips are moving in an airflow within its confines. Air is directed from a fan downward through the 10 inch diameter aluminum shaft installed inside the former rubbish chute of the Browning Building. For data collection from which shock losses may be determined, sixteen strategically located measuring stations connect to pressure transducers. Voltage outputs from the transducers are sampled and processed by the computer in Room 314. In addition to the pressure readings, the skip speed and the air temperature in the model are also recorded by the computer system for later use in data reduction. Provisions are made for changing skip sizes and speeds as well as shaft wall roughness. With one skip size and speed and with smooth shaft walls, data was collected and processed to prove proper operation of the complete system.« less

  3. An economic appraisal of the Australian Medical Sheepskin for the prevention of sacral pressure ulcers from a nursing home perspective

    PubMed Central

    2010-01-01

    Background Many devices are in use to prevent pressure ulcers, but from most little is known about their effects and costs. One such preventive device is the Australian Medical Sheepskin that has been proven effective in three randomized trials. In this study the costs and savings from the use of the Australian Medical Sheepskin were investigated from the perspective of a nursing home. Methods An economic model was developed in which monetary costs and monetary savings in respect of the sheepskin were balanced against each other. The model was applied to a fictional (Dutch) nursing home with 100 beds for rehabilitation patients and a time horizon of one year. Input variables for the model consisted of investment costs for using the sheepskin (purchase and laundry), and savings through the prevented cases of pressure ulcers. The input values for the investment costs and for the effectiveness were empirically based on a trial with newly admitted rehabilitation patients from eight nursing homes. The input values for the costs of pressure ulcer treatment were estimated by means of four different approaches. Results Investment costs for using the Australian Medical Sheepskin were larger than the monetary savings obtained by preventing pressure ulcers. Use of the Australian Medical Sheepskin involves an additional cost of approximately €2 per patient per day. Preventing one case of a sacral pressure ulcer by means of the Australian Medical Sheepskin involves an investment of €2,974 when the sheepskin is given to all patients. When the sheepskin is selectively used for more critical patients only, the investment to prevent one case of sacral pressure ulcers decreases to €2,479 (pressure ulcer risk patients) or €1,847 (ADL-severely impaired patients). The factors with the strongest influence on the balance are the frequency of changing the sheepskin and the costs of washing related to this. The economic model was hampered by considerable uncertainty in the estimations of the costs of pressure ulcer treatment. Conclusions From a nursing home perspective, the investment costs for use of the Australian Medical Sheepskin in newly admitted rehabilitation patients are larger than the monetary savings obtained by preventing pressure ulcers. PMID:20687915

  4. Modeling the competition between PHA-producing and non-PHA-producing bacteria in feast-famine SBR and staged CSTR systems.

    PubMed

    Marang, Leonie; van Loosdrecht, Mark C M; Kleerebezem, Robbert

    2015-12-01

    Although the enrichment of specialized microbial cultures for the production of polyhydroxyalkanoates (PHA) is generally performed in sequencing batch reactors (SBRs), the required feast-famine conditions can also be established using two or more continuous stirred-tank reactors (CSTRs) in series with partial biomass recirculation. The use of CSTRs offers several advantages, but will result in distributed residence times and a less strict separation between feast and famine conditions. The aim of this study was to investigate the impact of the reactor configuration, and various process and biomass-specific parameters, on the enrichment of PHA-producing bacteria. A set of mathematical models was developed to predict the growth of Plasticicumulans acidivorans-as a model PHA producer-in competition with a non-storing heterotroph. A macroscopic model considering lumped biomass and an agent-based model considering individual cells were created to study the effect of residence time distribution and the resulting distributed bacterial states. The simulations showed that in the 2-stage CSTR system the selective pressure for PHA-producing bacteria is significantly lower than in the SBR, and strongly affected by the chosen feast-famine ratio. This is the result of substrate competition based on both the maximum specific substrate uptake rate and substrate affinity. Although the macroscopic model overestimates the selective pressure in the 2-stage CSTR system, it provides a quick and fairly good impression of the reactor performance and the impact of process and biomass-specific parameters. © 2015 Wiley Periodicals, Inc.

  5. The impact of atherosclerosis and vascular collagen on energy-based vessel sealing.

    PubMed

    Martin, Kimberly; Krugman, Kimberly; Latimer, Cassandra; Moore, Camille

    2013-12-01

    Bipolar energy ligation of vessels in surgery is common. Although rare, serious failures occur. Atherosclerosis may contribute to seal failures by altering vascular compressibility and collagen content; however, no data exist. Femoral and iliac arteries of six Yucatan swine with an identified genetic locus predisposing them to atherosclerosis were denuded with a Fogarty catheter. Animals were fed a high-fat diet for 28 wk. A Yorkshire pig was used as a normal control and fed a standard diet. At 28 wk, arteries were measured for their diameters, sealed, and divided in vivo with LigaSure. The sealed artery sections were excised and subjected to burst pressure testing. Half of the seal distal to the aorta was kept intact for histology and collagen and elastin quantification. A multiple linear regression model was used to assess variables contributing to burst pressure. Covariates included were vessel diameter, degree of atherosclerosis, and collagen content. Experimental animals were hypercholesterolemic. Atherosclerosis occurred in 90% of seals in induced animals, with severe atherosclerosis in 62% of seals. There was site-selective deposition of atherosclerotic plaques in larger diameter iliac vessels. A model including collagen and size best predicted burst pressure. Every 10-U increase in collagen resulted in 15% increase in burst pressure (95% confidence interval = 0.2%-32%, P = 0.047, R(2) = 0.36). Atherosclerosis was unrelated to burst pressure controlling for collagen and size. Collagen and size provide the best model fit for predicting burst pressure. Quantitative research in human vasculature is warranted to better understand the influence of atherosclerosis and collagen content on seal failures. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. On the factors affecting porosity dissolution in selective laser sintering process

    NASA Astrophysics Data System (ADS)

    Ly, H.-B.; Monteiro, E.; Dal, M.; Regnier, G.

    2018-05-01

    Selective Laser Sintering process is one of the additive manufacturing techniques in which parts are manufactured layer by layer. During such process, gas bubbles are formed in the melted polymer due to faster polymer grains coalescence at surface than deeper in the powder bed. Although gas diffusion is possible through the polymer melt, it's usual that some porosities remain in the final part if their initial sizes are too big and solidification time too short. In this contribution, a bubble dissolution model involving fluid dynamics and mass transport has been developed to study factors affecting porosity resorption kinetic. In this model, gas diffusion follows Fick's laws and the melted polymer is supposed Newtonian. At the polymer/gas interface, surface tension is considered and Henry's law is used to relate the partial pressure of gas with its concentration in the fluid. This problem is solved numerically by means of the finite element method in 1D. After validation of the numerical tool, the influence on dissolution time of several parameters (e.g. the initial size and form of gas porosities, the viscosity, the diffusion coefficient, the surface tension constant or the ambient pressure) has been examined.

  7. Parametric investigations of plasma characteristics in a remote inductively coupled plasma system

    NASA Astrophysics Data System (ADS)

    Shukla, Prasoon; Roy, Abhra; Jain, Kunal; Bhoj, Ananth

    2016-09-01

    Designing a remote plasma system involves source chamber sizing, selection of coils and/or electrodes to power the plasma, designing the downstream tubes, selection of materials used in the source and downstream regions, locations of inlets and outlets and finally optimizing the process parameter space of pressure, gas flow rates and power delivery. Simulations can aid in spatial and temporal plasma characterization in what are often inaccessible locations for experimental probes in the source chamber. In this paper, we report on simulations of a remote inductively coupled Argon plasma system using the modeling platform CFD-ACE +. The coupled multiphysics model description successfully address flow, chemistry, electromagnetics, heat transfer and plasma transport in the remote plasma system. The SimManager tool enables easy setup of parametric simulations to investigate the effect of varying the pressure, power, frequency, flow rates and downstream tube lengths. It can also enable the automatic solution of the varied parameters to optimize a user-defined objective function, which may be the integral ion and radical fluxes at the wafer. The fast run time coupled with the parametric and optimization capabilities can add significant insight and value in design and optimization.

  8. Solubilities of selected organic electronic materials in pressurized hot water and estimations of aqueous solubilities at 298.15 K.

    PubMed

    Karásek, Pavel; Hohnová, Barbora; Planeta, Josef; Št'avíková, Lenka; Roth, Michal

    2013-02-01

    Increasing production and disposal of organic light-emitting diode (OLED) displays for smartphones and tablets may have impact on the environment depending on the aqueous solubility of the pertinent chemicals. Here, aqueous solubilities are presented for several compounds, mostly aromatic amines, used as hole transport materials in the OLED displays. Solute selection includes 1,4-bis(diphenylamino)benzene, tetra-N-phenylbenzidine, 4,4'-bis(N-carbazolyl)-1,1'-biphenyl, 1,3,5-tris(diphenylamino)benzene, and 9,10-bis(phenylethynyl)anthracene. The solubilities are those in pressurized hot water (PHW), i.e., measured at elevated temperature (up to 260 °C) and pressure. The semi-quantitative estimates of room-temperature solubilities of the solutes have been obtained from extrapolations of the solubilities in PHW. For the compounds studied, the estimated aqueous solubilities at room temperature do not exceed 2×10(-11) g of the solute per 1 kg of water. Aqueous solubilities of triphenylamine have also been measured and used to upgrade a recent group-contribution model of aqueous solubilities of organic nonelectrolytes with the parameters for the nitrogen atom in aromatic amines. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Application of low temperature plasmas for restoration/conservation of archaeological objects

    NASA Astrophysics Data System (ADS)

    Krčma, F.; Blahová, L.; Fojtíková, P.; Graham, W. G.; Grossmannová, H.; Hlochová, L.; Horák, J.; Janová, D.; Kelsey, C. P.; Kozáková, Z.; Mazánková, V.; Procházka, M.; Přikryl, R.; Řádková, L.; Sázavská, V.; Vašíček, M.; Veverková, R.; Zmrzlý, M.

    2014-12-01

    The low-temperature low-pressure hydrogen based plasmas were used to study the influence of processes and discharge conditions on corrosion removal. The capacitive coupled RF discharge in the continuous or pulsed regime was used at operating pressure of 100-200 Pa. Plasma treatment was monitored by optical emission spectroscopy. To be able to study influence of various process parameters, the model corroded samples with and without sandy incrustation were prepared. The SEM-EDX analyzes were carried out to verify corrosion removal efficiency. Experimental conditions were optimized for the selected most frequent materials of original metallic archaeological objects (iron, bronze, copper, and brass). Chlorides removal is based on hydrogen ion reactions while oxides are removed mainly by neutral species interactions. A special focus was kept for the samples temperature because it was necessary to avoid any metallographic changes in the material structure. The application of higher power pulsed regime with low duty cycle seems be the best treatment regime. The low pressure hydrogen plasma is not applicable for objects with a very broken structure or for nonmetallic objects due to the non-uniform heat stress. Due to this fact, the new developed plasmas generated in liquids were applied on selected original archaeological glass materials.

  10. Predator confusion is sufficient to evolve swarming behaviour

    PubMed Central

    Olson, Randal S.; Hintze, Arend; Dyer, Fred C.; Knoester, David B.; Adami, Christoph

    2013-01-01

    Swarming behaviours in animals have been extensively studied owing to their implications for the evolution of cooperation, social cognition and predator–prey dynamics. An important goal of these studies is discerning which evolutionary pressures favour the formation of swarms. One hypothesis is that swarms arise because the presence of multiple moving prey in swarms causes confusion for attacking predators, but it remains unclear how important this selective force is. Using an evolutionary model of a predator–prey system, we show that predator confusion provides a sufficient selection pressure to evolve swarming behaviour in prey. Furthermore, we demonstrate that the evolutionary effect of predator confusion on prey could in turn exert pressure on the structure of the predator's visual field, favouring the frontally oriented, high-resolution visual systems commonly observed in predators that feed on swarming animals. Finally, we provide evidence that when prey evolve swarming in response to predator confusion, there is a change in the shape of the functional response curve describing the predator's consumption rate as prey density increases. Thus, we show that a relatively simple perceptual constraint—predator confusion—could have pervasive evolutionary effects on prey behaviour, predator sensory mechanisms and the ecological interactions between predators and prey. PMID:23740485

  11. Predator confusion is sufficient to evolve swarming behaviour.

    PubMed

    Olson, Randal S; Hintze, Arend; Dyer, Fred C; Knoester, David B; Adami, Christoph

    2013-08-06

    Swarming behaviours in animals have been extensively studied owing to their implications for the evolution of cooperation, social cognition and predator-prey dynamics. An important goal of these studies is discerning which evolutionary pressures favour the formation of swarms. One hypothesis is that swarms arise because the presence of multiple moving prey in swarms causes confusion for attacking predators, but it remains unclear how important this selective force is. Using an evolutionary model of a predator-prey system, we show that predator confusion provides a sufficient selection pressure to evolve swarming behaviour in prey. Furthermore, we demonstrate that the evolutionary effect of predator confusion on prey could in turn exert pressure on the structure of the predator's visual field, favouring the frontally oriented, high-resolution visual systems commonly observed in predators that feed on swarming animals. Finally, we provide evidence that when prey evolve swarming in response to predator confusion, there is a change in the shape of the functional response curve describing the predator's consumption rate as prey density increases. Thus, we show that a relatively simple perceptual constraint--predator confusion--could have pervasive evolutionary effects on prey behaviour, predator sensory mechanisms and the ecological interactions between predators and prey.

  12. Analytical model for screening potential CO2 repositories

    USGS Publications Warehouse

    Okwen, R.T.; Stewart, M.T.; Cunningham, J.A.

    2011-01-01

    Assessing potential repositories for geologic sequestration of carbon dioxide using numerical models can be complicated, costly, and time-consuming, especially when faced with the challenge of selecting a repository from a multitude of potential repositories. This paper presents a set of simple analytical equations (model), based on the work of previous researchers, that could be used to evaluate the suitability of candidate repositories for subsurface sequestration of carbon dioxide. We considered the injection of carbon dioxide at a constant rate into a confined saline aquifer via a fully perforated vertical injection well. The validity of the analytical model was assessed via comparison with the TOUGH2 numerical model. The metrics used in comparing the two models include (1) spatial variations in formation pressure and (2) vertically integrated brine saturation profile. The analytical model and TOUGH2 show excellent agreement in their results when similar input conditions and assumptions are applied in both. The analytical model neglects capillary pressure and the pressure dependence of fluid properties. However, simulations in TOUGH2 indicate that little error is introduced by these simplifications. Sensitivity studies indicate that the agreement between the analytical model and TOUGH2 depends strongly on (1) the residual brine saturation, (2) the difference in density between carbon dioxide and resident brine (buoyancy), and (3) the relationship between relative permeability and brine saturation. The results achieved suggest that the analytical model is valid when the relationship between relative permeability and brine saturation is linear or quasi-linear and when the irreducible saturation of brine is zero or very small. ?? 2011 Springer Science+Business Media B.V.

  13. Clinical Issues-November 2017.

    PubMed

    Johnstone, Esther M

    2017-11-01

    Heating, ventilation, and air-conditioning (HVAC) systems in the OR Key words: airborne contaminants, HVAC system, air pressure, air quality, temperature and humidity. Air changes and positive pressure Key words: air changes, positive pressure airflow, unidirectional airflow, outdoor air, recirculated air. Product selection Key word: product evaluation, product selection, selection committee. Entry into practice Key words: associate degree in nursing, bachelor of science in nursing, entry-level position, advanced education, BSN-prepared RNs. Mentoring in perioperative nursing Key words: mentor, novice, practice improvement, nursing workforce. Copyright © 2017 AORN, Inc. Published by Elsevier Inc. All rights reserved.

  14. Wind conditions in urban layout - Numerical and experimental research

    NASA Astrophysics Data System (ADS)

    Poćwierz, Marta; Zielonko-Jung, Katarzyna

    2018-01-01

    This paper presents research which compares the numerical and the experimental results for different cases of airflow around a few urban layouts. The study is concerned mostly with the analysis of parameters, such as pressure and velocity fields, which are essential in the building industry. Numerical simulations have been performed by the commercial software Fluent, with the use of a few different turbulence models, including popular k-ɛ, k-ɛ realizable or k-ω. A particular attention has been paid to accurate description of the conditions on the inlet and the selection of suitable computing grid. The pressure measurement near buildings and oil visualization were undertaken and described accordingly.

  15. Effect of the tubular-fan drum shapes on the performance of cleaning head module

    NASA Astrophysics Data System (ADS)

    Hong, C. K.; Y Cho, M.; Kim, Y. J.

    2013-12-01

    The geometrical effects of a tubular-fan drum on the performance improvement of the cleaning head module of a vacuum cleaner were investigated. In this study, the number of blades and the width of the blade were selected as the design parameters. Static pressure, eccentric vortex, turbulence kinetic energy (TKE) and suction efficiency were analysed and tabulated. Three-dimensional computational fluid dynamics method was used with an SST (Shear Stress Transfer) turbulence model to simulate the flow field at the suction of the cleaning head module using the commercial code ANSYS-CFX. Suction pressure distributions were graphically depicted for different values of the design parameters.

  16. Use of hydrostatic pressure for modulation of protein chemical modification and enzymatic selectivity.

    PubMed

    Makarov, Alexey A; Helmy, Roy; Joyce, Leo; Reibarkh, Mikhail; Maust, Mathew; Ren, Sumei; Mergelsberg, Ingrid; Welch, Christopher J

    2016-05-11

    Using hydrostatic pressure to induce protein conformational changes can be a powerful tool for altering the availability of protein reactive sites and for changing the selectivity of enzymatic reactions. Using a pressure apparatus, it has been demonstrated that hydrostatic pressure can be used to modulate the reactivity of lysine residues of the protein ubiquitin with a water-soluble amine-specific homobifunctional coupling agent. Fewer reactive lysine residues were observed when the reaction was carried out under elevated pressure of 3 kbar, consistent with a pressure-induced conformational change of ubiquitin that results in fewer exposed lysine residues. Additionally, modulation of the stereoselectivity of an enzymatic transamination reaction was observed at elevated hydrostatic pressure. In one case, the minor diasteromeric product formed at atmospheric pressure became the major product at elevated pressure. Such pressure-induced alterations of protein reactivity may provide an important new tool for enzymatic reactions and the chemical modification of proteins.

  17. Influence of monitoring data selection for optimization of a steady state multimedia model on the magnitude and nature of the model prediction bias.

    PubMed

    Kim, Hee Seok; Lee, Dong Soo

    2017-11-01

    SimpleBox is an important multimedia model used to estimate the predicted environmental concentration for screening-level exposure assessment. The main objectives were (i) to quantitatively assess how the magnitude and nature of prediction bias of SimpleBox vary with the selection of observed concentration data set for optimization and (ii) to present the prediction performance of the optimized SimpleBox. The optimization was conducted using a total of 9604 observed multimedia data for 42 chemicals of four groups (i.e., polychlorinated dibenzo-p-dioxins/furans (PCDDs/Fs), polybrominated diphenyl ethers (PBDEs), phthalates, and polycyclic aromatic hydrocarbons (PAHs)). The model performance was assessed based on the magnitude and skewness of prediction bias. Monitoring data selection in terms of number of data and kind of chemicals plays a significant role in optimization of the model. The coverage of the physicochemical properties was found to be very important to reduce the prediction bias. This suggests that selection of observed data should be made such that the physicochemical property (such as vapor pressure, octanol-water partition coefficient, octanol-air partition coefficient, and Henry's law constant) range of the selected chemical groups be as wide as possible. With optimization, about 55%, 90%, and 98% of the total number of the observed concentration ratios were predicted within factors of three, 10, and 30, respectively, with negligible skewness. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Methods and Systems for Configuring Sensor Acquisition Based on Pressure Steps

    NASA Technical Reports Server (NTRS)

    DeDonato, Mathew (Inventor)

    2015-01-01

    Technologies are provided for underwater measurements. A system includes an underwater vessels including: a plurality of sensors disposed thereon for measuring underwater properties; and a programmable controller configured to selectively activate the plurality of sensors based at least in part on underwater pressure. A user may program at what pressure ranges certain sensors are activated to measure selected properties, and may also program the ascent/descent rate of the underwater vessel, which is correlated with the underwater pressure.

  19. Space Shuttle Main Engine performance analysis

    NASA Technical Reports Server (NTRS)

    Santi, L. Michael

    1993-01-01

    For a number of years, NASA has relied primarily upon periodically updated versions of Rocketdyne's power balance model (PBM) to provide space shuttle main engine (SSME) steady-state performance prediction. A recent computational study indicated that PBM predictions do not satisfy fundamental energy conservation principles. More recently, SSME test results provided by the Technology Test Bed (TTB) program have indicated significant discrepancies between PBM flow and temperature predictions and TTB observations. Results of these investigations have diminished confidence in the predictions provided by PBM, and motivated the development of new computational tools for supporting SSME performance analysis. A multivariate least squares regression algorithm was developed and implemented during this effort in order to efficiently characterize TTB data. This procedure, called the 'gains model,' was used to approximate the variation of SSME performance parameters such as flow rate, pressure, temperature, speed, and assorted hardware characteristics in terms of six assumed independent influences. These six influences were engine power level, mixture ratio, fuel inlet pressure and temperature, and oxidizer inlet pressure and temperature. A BFGS optimization algorithm provided the base procedure for determining regression coefficients for both linear and full quadratic approximations of parameter variation. Statistical information relative to data deviation from regression derived relations was also computed. A new strategy for integrating test data with theoretical performance prediction was also investigated. The current integration procedure employed by PBM treats test data as pristine and adjusts hardware characteristics in a heuristic manner to achieve engine balance. Within PBM, this integration procedure is called 'data reduction.' By contrast, the new data integration procedure, termed 'reconciliation,' uses mathematical optimization techniques, and requires both measurement and balance uncertainty estimates. The reconciler attempts to select operational parameters that minimize the difference between theoretical prediction and observation. Selected values are further constrained to fall within measurement uncertainty limits and to satisfy fundamental physical relations (mass conservation, energy conservation, pressure drop relations, etc.) within uncertainty estimates for all SSME subsystems. The parameter selection problem described above is a traditional nonlinear programming problem. The reconciler employs a mixed penalty method to determine optimum values of SSME operating parameters associated with this problem formulation.

  20. The process of trying to quit smoking from the perspective of patients with chronic obstructive pulmonary disease.

    PubMed

    Lundh, Lena; Hylander, Ingrid; Törnkvist, Lena

    2012-09-01

    To investigate why some patients with chronic obstructive pulmonary disease (COPD) have difficulty quitting smoking and to develop a theoretical model that describes their perspectives on these difficulties. Grounded theory method was used from the selection of participants to the analyses of semi-structured interviews with 14 patients with COPD. Four additional interviews were conducted to ensure relevance. The analysis resulted in a theoretical model that illustrates the process of 'Patients with COPD trying to quit smoking'. The model illuminates factors related to the decision to try to quit smoking, including pressure-filled mental states and constructive or destructive pressure-relief strategies. The constructive strategies lead either to success in quitting or to continuing to try to quit. The destructive strategies can lead to losing hope and becoming resigned to continuing to smoke. The theoretical model 'Patients trying to quit smoking' contributes to a better understanding of the pressure-filled mental states and destructive strategies experienced by some patients with COPD in the process of trying to quit. This better understanding can help nurses individualise counselling. Moreover, patients' own awareness of these states and strategies may facilitate their efforts to quit. The information in the model can also be used as a supplement to methods such as motivational interviewing (MI). © 2011 The Authors. Scandinavian Journal of Caring Sciences © 2011 Nordic College of Caring Science.

  1. Pulse pressure and diabetes treatments: Blood pressure and pulse pressure difference among glucose lowering modality groups in type 2 diabetes.

    PubMed

    Alemi, Hamid; Khaloo, Pegah; Mansournia, Mohammad Ali; Rabizadeh, Soghra; Salehi, Salome Sadat; Mirmiranpour, Hossein; Meftah, Neda; Esteghamati, Alireza; Nakhjavani, Manouchehr

    2018-02-01

    Type 2 diabetes is associated with higher pulse pressure. In this study, we assessed and compared effects of classic diabetes treatments on pulse pressure (PP), systolic blood pressure (SBP), and diastolic blood pressure (DBP) in patients with type 2 diabetes.In a retrospective cohort study, 718 non-hypertensive patients with type 2 diabetes were selected and divided into 4 groups including metformin, insulin, glibenclamide+metformin, and metformin+insulin. They were followed for 4 consecutive visits lasting about 45.5 months. Effects of drug regimens on pulse and blood pressure over time were assessed separately and compared in regression models with generalized estimating equation method and were adjusted for age, duration of diabetes, sex, smoking, and body mass index (BMI).Studied groups had no significant change in PP, SBP, and DBP over time. No significant difference in PP and DBP among studied groups was observed (PP:P = 0.090; DBP:P = 0.063). Pairwise comparisons of PP, SBP, and DBP showed no statistically significant contrast between any 2 studied groups. Interactions of time and treatment were not different among groups.Our results demonstrate patients using metformin got higher PP and SBP over time. Averagely, pulse and blood pressure among groups were not different. Trends of variation in pulse and blood pressure were not different among studied diabetes treatments.

  2. Patient compliance with antihypertensive medication.

    PubMed Central

    Hershey, J C; Morton, B G; Davis, J B; Reichgott, M J

    1980-01-01

    Self-reported medication taking compliance behavior of 132 high blood pressure patients was analyzed using an expanded version of the health belief model. Subjects were selected through random sampling procedures from regular hypertension program sessions at a large urban hospital. A questionnaire was constructed to measure the model components, and interviews were conducted with each patient. Bivariate analysis showed that control over health matters, dependence on providers, perceived barriers, duration of treatment, and others' nonconfirming experience were significantly related to compliance (p < .05). Log-linear multivariate analysis revealed that three of these five variables--control over health matters, perceived barriers, and duration of treatment--contributed independently to patient compliance. Self-reported medication taking was significantly related to blood pressure control (p < .02). These data provide the basis for developing interventions for providers to facilitate the medication taking behavior of clinic patients. PMID:7416325

  3. Analysis of cavitation damage on the Space Shuttle main engine high pressure oxidizer turbopump

    NASA Technical Reports Server (NTRS)

    Stinebring, D. R.

    1985-01-01

    The performance of the Space Shuttle Main Engines (SSME) has met or exceeded specifications. However, the durability for selected components has not met the desired lifetime criteria. Thus, the High-Pressure Oxidizer Turbopump (HPOTP) has experienced cavitation erosion problems in a number of locations in the pump. An investigation was conducted, taking into account an analysis of the cavitation damage, the development of a flow model for the pump, and the recommendation of design changes which would increase the life expectancy of the unit. The present paper is concerned with the cavitation damage analysis. A model is presented which relates the heavy damage on the housing and over the inducer blades to unsteady blade surface cavitation. This cavitation occurs on the inducer blades in the wakes downstream of the pump inlet housing vanes.

  4. Microbial Evolution at High Pressure: Deep Sea and Laboratory Studies

    NASA Astrophysics Data System (ADS)

    Bartlett, D. H.

    2011-12-01

    Elevated hydrostatic pressures are present in deep-sea and deep-Earth environments where this physical parameter has influenced the evolution and characteristics of life. Piezophilic (high-pressure-adapted) microbes have been isolated from diverse deep-sea settings, and would appear likely to occur in deep-subsurface habitats as well. In order to discern the factors enabling life at high pressure my research group has explored these adaptations at various levels, most recently including molecular analyses of deep-sea trench communities, and through the selective evolution of the model microbe Escherichia coli in the laboratory to progressively higher pressures. Much of the field work has focused on the microbes present in the deeper portions of the Puerto Rico Trench (PRT)and in the Peru-Chile Trench (PCT), from 6-8.5 km below the sea surface (~60-85 megapascals pressure). Culture-independent phylogenetic data on the Bacteria and Archaea present on particles or free-living, along with data on the microeukarya present was complemented with genomic analyses and the isolation and characterization of microbes in culture. Metagenomic analyses of the PRT revealed increased genome sizes and an overrepresentation at depth of sulfatases for the breakdown of sulfated polysaccharides and specific categories of transporters, including those associated with the transport of diverse cations or carboxylate ions, or associated with heavy metal resistance. Single-cell genomic studies revealed several linneages which recruited to the PRT metagenome far better than existing marine microbial genome sequences. analyses. Novel high pressure culture approaches have yielded new piezophiles including species preferring very low nutrient levels, those living off of hydrocarbons, and those adapted to various electron donor/electron acceptor combinations. In order to more specifically focus on functions enabling life at increased pressure selective evolution experiments were performed with Escherichia coli during laboratory cultivation. More than 60 subcultures were obtained at progressively increasing hydrostatic pressures ranging from 28 - 62 megapascals. A strain isolated from the 63rd subculture displayed dramatically improved growth over the parental strain at 59 megapascals but reduced growth rate relative to the parental strain at atmospheric pressure. The mutant also produced far more unsaturated fatty acids than its parent and also acquired the ability to upregulate these fatty acids species at elevated pressure. Solexa sequencing revealed mutations within an operon (acpP operon) governing unsaturated fatty acid production, and these have been examined as a function of generation at high pressure. These and other results indicate that a large number and variety of microbes are adapted to life at high pressure, that the selective constraints of pressure increases up to ~60 megapascals are not so severe as to preclude the rapid evolution to a piezotolerant phenotype, and that the production of increased levels of unsaturated fatty acids correlates with adaptation to this stressor. This work was supported by grants from the National Science Foundation (EF-0801793 and EF-0827051) and the National Aeronautics and Space Administration (NASA SSC NNX10AR13G).

  5. Quantifying Selective Pressures Driving Bacterial Evolution Using Lineage Analysis

    NASA Astrophysics Data System (ADS)

    Lambert, Guillaume; Kussell, Edo

    2015-01-01

    Organisms use a variety of strategies to adapt to their environments and maximize long-term growth potential, but quantitative characterization of the benefits conferred by the use of such strategies, as well as their impact on the whole population's rate of growth, remains challenging. Here, we use a path-integral framework that describes how selection acts on lineages—i.e., the life histories of individuals and their ancestors—to demonstrate that lineage-based measurements can be used to quantify the selective pressures acting on a population. We apply this analysis to Escherichia coli bacteria exposed to cyclical treatments of carbenicillin, an antibiotic that interferes with cell-wall synthesis and affects cells in an age-dependent manner. While the extensive characterization of the life history of thousands of cells is necessary to accurately extract the age-dependent selective pressures caused by carbenicillin, the same measurement can be recapitulated using lineage-based statistics of a single surviving cell. Population-wide evolutionary pressures can be extracted from the properties of the surviving lineages within a population, providing an alternative and efficient procedure to quantify the evolutionary forces acting on a population. Importantly, this approach is not limited to age-dependent selection, and the framework can be generalized to detect signatures of other trait-specific selection using lineage-based measurements. Our results establish a powerful way to study the evolutionary dynamics of life under selection and may be broadly useful in elucidating selective pressures driving the emergence of antibiotic resistance and the evolution of survival strategies in biological systems.

  6. Quantifying selective pressures driving bacterial evolution using lineage analysis

    PubMed Central

    Lambert, Guillaume; Kussell, Edo

    2015-01-01

    Organisms use a variety of strategies to adapt to their environments and maximize long-term growth potential, but quantitative characterization of the benefits conferred by the use of such strategies, as well as their impact on the whole population’s rate of growth, remains challenging. Here, we use a path-integral framework that describes how selection acts on lineages –i.e. the life-histories of individuals and their ancestors– to demonstrate that lineage-based measurements can be used to quantify the selective pressures acting on a population. We apply this analysis to E. coli bacteria exposed to cyclical treatments of carbenicillin, an antibiotic that interferes with cell-wall synthesis and affects cells in an age-dependent manner. While the extensive characterization of the life-history of thousands of cells is necessary to accurately extract the age-dependent selective pressures caused by carbenicillin, the same measurement can be recapitulated using lineage-based statistics of a single surviving cell. Population-wide evolutionary pressures can be extracted from the properties of the surviving lineages within a population, providing an alternative and efficient procedure to quantify the evolutionary forces acting on a population. Importantly, this approach is not limited to age-dependent selection, and the framework can be generalized to detect signatures of other trait-specific selection using lineage-based measurements. Our results establish a powerful way to study the evolutionary dynamics of life under selection, and may be broadly useful in elucidating selective pressures driving the emergence of antibiotic resistance and the evolution of survival strategies in biological systems. PMID:26213639

  7. Molecular evolution of the enzymes involved in the sphingolipid metabolism of Leishmania: selection pressure in relation to functional divergence and conservation.

    PubMed

    Mandlik, Vineetha; Shinde, Sonali; Singh, Shailza

    2014-06-21

    Selection pressure governs the relative mutability and the conservedness of a protein across the protein family. Biomolecules (DNA, RNA and proteins) continuously evolve under the effect of evolutionary pressure that arises as a consequence of the host parasite interaction. IPCS (Inositol phosphorylceramide synthase), SPL (Sphingosine-1-P lyase) and SPT (Serine palmitoyl transferase) represent three important enzymes involved in the sphingolipid metabolism of Leishmania. These enzymes are responsible for maintaining the viability and infectivity of the parasite and have been classified as druggable targets in the parasite metabolome. The present work relates to the role of selection pressure deciding functional conservedness and divergence of the drug targets. IPCS and SPL protein families appear to diverge from the SPT family. The three protein families were largely under the influence of purifying selection and were moderately conserved baring two residues in the IPCS protein which were under the influence of positive selection. To further explore the selection pressure at the codon level, codon usage bias indices were calculated to analyze genes for their synonymous codon usage pattern. IPCS gene exhibited slightly lower codon bias as compared to SPL and SPT protein families. Evolutionary tracing of the proposed drug targets has been done with a viewpoint that the amino-acids lining the drug binding pocket should have a lower evolvability. Sites under positive selection (HIS20 and CYS30 of IPCS) should be avoided during devising strategies for inhibitor design.

  8. Analytical solution for shear bands in cold-rolled 1018 steel

    NASA Astrophysics Data System (ADS)

    Voyiadjis, George Z.; Almasri, Amin H.; Faghihi, Danial; Palazotto, Anthony N.

    2012-06-01

    Cold-rolled 1018 (CR-1018) carbon steel has been well known for its susceptibility to adiabatic shear banding under dynamic loadings. Analysis of these localizations highly depends on the selection of the constitutive model. To deal with this issue, a constitutive model that takes temperature and strain rate effect into account is proposed. The model is motivated by two physical-based models: the Zerilli and Armstrong and the Voyiadjis and Abed models. This material model, however, incorporates a simple softening term that is capable of simulating the softening behavior of CR-1018 steel. Instability, localization, and evolution of adiabatic shear bands are discussed and presented graphically. In addition, the effect of hydrostatic pressure is illustrated.

  9. Archaeological data reveal slow rates of evolution during plant domestication.

    PubMed

    Purugganan, Michael D; Fuller, Dorian Q

    2011-01-01

    Domestication is an evolutionary process of species divergence in which morphological and physiological changes result from the cultivation/tending of plant or animal species by a mutualistic partner, most prominently humans. Darwin used domestication as an analogy to evolution by natural selection although there is strong debate on whether this process of species evolution by human association is an appropriate model for evolutionary study. There is a presumption that selection under domestication is strong and most models assume rapid evolution of cultivated species. Using archaeological data for 11 species from 60 archaeological sites, we measure rates of evolution in two plant domestication traits--nonshattering and grain/seed size increase. Contrary to previous assumptions, we find the rates of phenotypic evolution during domestication are slow, and significantly lower or comparable to those observed among wild species subjected to natural selection. Our study indicates that the magnitudes of the rates of evolution during the domestication process, including the strength of selection, may be similar to those measured for wild species. This suggests that domestication may be driven by unconscious selection pressures similar to that observed for natural selection, and the study of the domestication process may indeed prove to be a valid model for the study of evolutionary change. © 2010 The Author(s). Evolution© 2010 The Society for the Study of Evolution.

  10. Ultra high pressure homogenization (UHPH) inactivation of Bacillus amyloliquefaciens spores in phosphate buffered saline (PBS) and milk

    PubMed Central

    Dong, Peng; Georget, Erika S.; Aganovic, Kemal; Heinz, Volker; Mathys, Alexander

    2015-01-01

    Ultra high pressure homogenization (UHPH) opens up new areas for dynamic high pressure assisted thermal sterilization of liquids. Bacillus amyloliquefaciens spores are resistant to high isostatic pressure and temperature and were suggested as potential surrogate for high pressure thermal sterilization validation. B. amyloliquefaciens spores suspended in PBS buffer (0.01 M, pH 7.0), low fat milk (1.5%, pH 6.7), and whole milk (3.5%, pH 6.7) at initial concentration of ~106 CFU/mL were subjected to UHPH treatments at 200, 300, and 350 MPa with an inlet temperature at ~80°C. Thermal inactivation kinetics of B. amyloliquefaciens spores in PBS and milk were assessed with thin wall glass capillaries and modeled using first-order and Weibull models. The residence time during UHPH treatments was estimated to determine the contribution of temperature to spore inactivation by UHPH. No sublethal injury was detected after UHPH treatments using sodium chloride as selective component in the nutrient agar medium. The inactivation profiles of spores in PBS buffer and milk were compared and fat provided no clear protective effect for spores against treatments. Treatment at 200 MPa with valve temperatures lower than 125°C caused no reduction of spores. A reduction of 3.5 log10CFU/mL of B. amyloliquefaciens spores was achieved by treatment at 350 MPa with a valve temperature higher than 150°C. The modeled thermal inactivation and observed inactivation during UHPH treatments suggest that temperature could be the main lethal effect driving inactivation. PMID:26236296

  11. Method and apparatus for the selective separation of gaseous coal gasification products by pressure swing adsorption

    DOEpatents

    Ghate, Madhav R.; Yang, Ralph T.

    1987-01-01

    Bulk separation of the gaseous components of multi-component gases provided by the gasification of coal including hydrogen, carbon monoxide, methane, and acid gases (carbon dioxide plus hydrogen sulfide) are selectively adsorbed by a pressure swing adsorption technique using activated carbon, zeolite or a combination thereof as the adsorbent. By charging a column containing the adsorbent with a gas mixture and pressurizing the column to a pressure sufficient to cause the adsorption of the gases and then reducing the partial pressure of the contents of the column, the gases are selectively and sequentially desorbed. Hydrogen, the least absorbable gas of the gaseous mixture, is the first gas to be desorbed and is removed from the column in a co-current direction followed by the carbon monoxide, hydrogen and methane. With the pressure in the column reduced to about atmospheric pressure the column is evacuated in a countercurrent direction to remove the acid gases from the column. The present invention is particularly advantageous as a producer of high parity hydrogen from gaseous products of coal gasification and as an acid gas scrubber.

  12. Protective Effects of Micronized Purified Flavonoid Fraction (MPFF) on a Novel Experimental Model of Chronic Venous Hypertension.

    PubMed

    das Graças C de Souza, Maria; Cyrino, Fatima Zga; de Carvalho, Jorge J; Blanc-Guillemaud, Vanessa; Bouskela, Eliete

    2018-05-01

    To assess protective effects of micronized purified flavonoid fraction (MPFF) on microcirculation in an original chronic model of hind limb venous hypertension with low blood flow in small animals. Vein ligatures were performed on male hamsters, as follows: A-right femoral vein; A + B-right femoral vein and its right branch; A + C-right femoral vein and its left branch; A + B + C-right femoral and its right and left branches; D-external right iliac vein. In sham operated groups, similar vascular dissections were performed without ligatures. Superficial (epigastric) and central (jugular) venous pressure evaluations were made during a 10 week period. Hamsters subjected to A + B + C and D ligatures were selected for leukocyte rolling and sticking, functional capillary density (FCD), and venular and arteriolar diameter observations. D ligature was selected to evaluate pharmacological treatment efficacy. MPFF (100 mg/kg), concomitant active flavonoids of MPFF (diosmetin, hesperidin, linarin, and isorhoifolin) (10 mg/kg), diosmin (100 mg/kg) or drug vehicle were administered orally during 2 weeks before vein ligature and 6 weeks thereafter. A, A + B and A + C models maintained venous return through collaterals. From the 2 nd to the 10 th weeks after vein ligatures, A + B + C and D models elicited a progressive increase of superficial venous pressure (3.83 ± 0.65 vs. 8.56 ± 0.72 mmHg, p < .001 and 4.13 ± 0.65 vs. 9.35 ± 0.65 mmHg, p < .001, respectively) with significant changes to the microcirculation. As D model significantly increased superficial venous pressure without affecting central venous pressure, it was used to evaluate the long-term effects of treatment. Compared with vehicle, MPFF, concomitant active flavonoids of MPFF, and diosmin, significantly decreased leukocyte-endothelium interaction and prevented FCD reduction. Only MPFF significantly prevented venular enlargement as observed in the vehicle treated group. MPFF was more effective than diosmin in improving all microvascular variables. The superiority of MPFF over diosmin alone can be explained by the synergistic beneficial effects of the association between diosmin and active flavonoids of MPFF. Copyright © 2018 European Society for Vascular Surgery. Published by Elsevier B.V. All rights reserved.

  13. Exfoliation Propensity of Oxide Scale in Heat Exchangers Used for Supercritical CO2 Power Cycles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sabau, Adrian S; Shingledecker, John P.; Kung, Steve

    2016-01-01

    Supercritical CO2 (sCO2) Brayton cycle systems offer the possibility of improved efficiency in future fossil energy power generation plants operating at temperatures of 650 C and above. As there are few data on the oxidation/corrosion behavior of structural alloys in sCO2 at these temperatures, modeling to predict the propensity for oxide exfoliation is not well developed, thus hindering materials selection for these novel cycles. The ultimate goal of this effort is to provide needed data on scale exfoliation behavior in sCO2 for confident alloy selection. To date, a model developed by ORNL and EPRI for the exfoliation of oxide scalesmore » formed on boiler tubes in high-temperature, high-pressure steam has proven useful for managing exfoliation in conventional steam plants. A major input provided by the model is the ability to predict the likelihood of scale failure and loss based on understanding of the evolution of the oxide morphologies and the conditions that result in susceptibility to exfoliation. This paper describes initial steps taken to extend the existing model for exfoliation of steam-side oxide scales to sCO2 conditions. The main differences between high-temperature, high-pressure steam and sCO2 that impact the model involve (i) significant geometrical differences in the heat exchangers, ranging from standard pressurized tubes seen typically in steam-producing boilers to designs for sCO2 that employ variously-curved thin walls to create shaped flow paths for extended heat transfer area and small channel cross-sections to promote thermal convection and support pressure loads; (ii) changed operating characteristics with sCO2 due to the differences in physical and thermal properties compared to steam; and (iii) possible modification of the scale morphologies, hence properties that influence exfoliation behavior, due to reaction with carbon species from sCO2. The numerical simulations conducted were based on an assumed sCO2 operating schedule and several generic heat exchanger channel shapes and cross-sectional areas. Implications for the evolution of stresses in the oxide scales formed on sCO2 heat exchangers, and ensuing critical oxide thicknesses for exfoliation, were derived and compared with expectations for an equivalent conventional tubular heat exchanger in a steam cycle (for a given alloy).« less

  14. Interstitial distribution of charged macromolecules in the dog lung: a kinetic model.

    PubMed

    Parker, J C; Miniati, M; Pitt, R; Taylor, A E

    1987-01-01

    A mathematic model was constructed to investigate conflicting physiologic data concerning the charge effect of continuous capillaries to macromolecules in the lung. We simulated the equilibration kinetics of lactate dehydrogenase (MR 4.2 nM) isozymes LDH 1 (pI = 5.0) and LDH 5 (pI = 7.9) between plasma and lymph using previously measured permeability coefficients, lung tissue distribution volumes (VA) and plasma concentrations (CP) in lung tissue. Our hypothesis is that the fixed anionic charges in interstitium, basement membrane, and cell surfaces determine equilibration rather than charged membrane effects at the capillary barrier, so the same capillary permeability coefficients were used for both isozymes. Capillary filtration rates and protein fluxes were calculated using conventional flux equations. Initial conditions at baseline and increased left atrial pressures (PLA) were those measured in animal studies. Simulated equilibration of isozymes over 30 h in the model at baseline capillary pressures accurately predicted the observed differences in lymph/plasma concentration ratios (CL/CP) between isotopes at 4 h and equilibration of these ratios at 24 h. Quantitative prediction of isozyme CL/CP ratios was also obtained at increased PLA. However, an additional cation selective compartment representing the surface glycocalyx was required to accurately simulate the initial higher transcapillary clearances of cationic LDH 5. Thus experimental data supporting the negative barrier, positive barrier, and no charge barrier hypotheses were accurately reproduced by the model using only the observed differences in interstitial partitioning of isozymes without differences in capillary selectivity.

  15. Modeling Tumor Clonal Evolution for Drug Combinations Design

    PubMed Central

    Zhao, Boyang; Hemann, Michael T.; Lauffenburger, Douglas A.

    2016-01-01

    Cancer is a clonal evolutionary process. This presents challenges for effective therapeutic intervention, given the constant selective pressure towards drug resistance. Mathematical modeling from population genetics, evolutionary dynamics, and engineering perspectives are being increasingly employed to study tumor progression, intratumoral heterogeneity, drug resistance, and rational drug scheduling and combinations design. In this review, we discuss promising opportunities these inter-disciplinary approaches hold for advances in cancer biology and treatment. We propose that quantitative modeling perspectives can complement emerging experimental technologies to facilitate enhanced understanding of disease progression and improved capabilities for therapeutic drug regimen designs. PMID:28435907

  16. Investigation on the energy absorption performance of a fixed-bottom pressure-differential wave energy converter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Babarit, A.; Wendt, F.; Yu, Y. -H.

    2017-04-01

    In this article, we investigate the energy absorption performance of a fixed-bottom pressure-differential wave energy converter. Two versions of the technology are considered: one has the moving surfaces on the bottom of the air chambers whereas the other has the moving surfaces on the top. We developed numerical models in the frequency domain, thereby enabling the power absorption of the two versions of the device to be assessed. It is observed that the moving surfaces on the top allow for easier tuning of the natural period of the system. Taking into account stroke limitations, the design is optimized. Results indicatemore » that the pressure-differential wave energy converter is a highly efficient technology both with respect to energy absorption and selected economic performance indicators.« less

  17. Efficient detection of wound-bed and peripheral skin with statistical colour models.

    PubMed

    Veredas, Francisco J; Mesa, Héctor; Morente, Laura

    2015-04-01

    A pressure ulcer is a clinical pathology of localised damage to the skin and underlying tissue caused by pressure, shear or friction. Reliable diagnosis supported by precise wound evaluation is crucial in order to success on treatment decisions. This paper presents a computer-vision approach to wound-area detection based on statistical colour models. Starting with a training set consisting of 113 real wound images, colour histogram models are created for four different tissue types. Back-projections of colour pixels on those histogram models are used, from a Bayesian perspective, to get an estimate of the posterior probability of a pixel to belong to any of those tissue classes. Performance measures obtained from contingency tables based on a gold standard of segmented images supplied by experts have been used for model selection. The resulting fitted model has been validated on a training set consisting of 322 wound images manually segmented and labelled by expert clinicians. The final fitted segmentation model shows robustness and gives high mean performance rates [(AUC: .9426 (SD .0563); accuracy: .8777 (SD .0799); F-score: 0.7389 (SD .1550); Cohen's kappa: .6585 (SD .1787)] when segmenting significant wound areas that include healing tissues.

  18. Bridging Scales: A Model-Based Assessment of the Technical Tidal-Stream Energy Resource off Massachusetts, USA

    NASA Astrophysics Data System (ADS)

    Cowles, G. W.; Hakim, A.; Churchill, J. H.

    2016-02-01

    Tidal in-stream energy conversion (TISEC) facilities provide a highly predictable and dependable source of energy. Given the economic and social incentives to migrate towards renewable energy sources there has been tremendous interest in the technology. Key challenges to the design process stem from the wide range of problem scales extending from device to array. In the present approach we apply a multi-model approach to bridge the scales of interest and select optimal device geometries to estimate the technical resource for several realistic sites in the coastal waters of Massachusetts, USA. The approach links two computational models. To establish flow conditions at site scales ( 10m), a barotropic setup of the unstructured grid ocean model FVCOM is employed. The model is validated using shipboard and fixed ADCP as well as pressure data. For device scale, the structured multiblock flow solver SUmb is selected. A large ensemble of simulations of 2D cross-flow tidal turbines is used to construct a surrogate design model. The surrogate model is then queried using velocity profiles extracted from the tidal model to determine the optimal geometry for the conditions at each site. After device selection, the annual technical yield of the array is evaluated with FVCOM using a linear momentum actuator disk approach to model the turbines. Results for several key Massachusetts sites including comparison with theoretical approaches will be presented.

  19. System identification of closed-loop cardiovascular control: effects of posture and autonomic blockade

    NASA Technical Reports Server (NTRS)

    Mullen, T. J.; Appel, M. L.; Mukkamala, R.; Mathias, J. M.; Cohen, R. J.

    1997-01-01

    We applied system identification to the analysis of fluctuations in heart rate (HR), arterial blood pressure (ABP), and instantaneous lung volume (ILV) to characterize quantitatively the physiological mechanisms responsible for the couplings between these variables. We characterized two autonomically mediated coupling mechanisms [the heart rate baroreflex (HR baroreflex) and respiratory sinus arrhythmia (ILV-HR)] and two mechanically mediated coupling mechanisms [the blood pressure wavelet generated with each cardiac contraction (circulatory mechanics) and the direct mechanical effects of respiration on blood pressure (ILV-->ABP)]. We evaluated the method in humans studied in the supine and standing postures under control conditions and under conditions of beta-sympathetic and parasympathetic pharmacological blockades. Combined beta-sympathetic and parasympathetic blockade abolished the autonomically mediated couplings while preserving the mechanically mediated coupling. Selective autonomic blockade and postural changes also altered the couplings in a manner consistent with known physiological mechanisms. System identification is an "inverse-modeling" technique that provides a means for creating a closed-loop model of cardiovascular regulation for an individual subject without altering the underlying physiological control mechanisms.

  20. Evaluation of a multi-point method for determining acoustic impedance

    NASA Technical Reports Server (NTRS)

    Jones, Michael G.; Parrott, Tony L.

    1988-01-01

    An investigation was conducted to explore potential improvements provided by a Multi-Point Method (MPM) over the Standing Wave Method (SWM) and Two-Microphone Method (TMM) for determining acoustic impedance. A wave propagation model was developed to model the standing wave pattern in an impedance tube. The acoustic impedance of a test specimen was calculated from a best fit of this standing wave pattern to pressure measurements obtained along the impedance tube centerline. Three measurement spacing distributions were examined: uniform, random, and selective. Calculated standing wave patterns match the point pressure measurement distributions with good agreement for a reflection factor magnitude range of 0.004 to 0.999. Comparisons of results using 2, 3, 6, and 18 measurement points showed that the most consistent results are obtained when using at least 6 evenly spaced pressure measurements per half-wavelength. Also, data were acquired with broadband noise added to the discrete frequency noise and impedances were calculated using the MPM and TMM algorithms. The results indicate that the MPM will be superior to the TMM in the presence of significant broadband noise levels associated with mean flow.

  1. Steady and unsteady blade stresses within the SSME ATD/HPOTP inducer

    NASA Technical Reports Server (NTRS)

    Gross, R. Steven

    1994-01-01

    There were two main goals of the ATD HPOTP (alternate turbopump development)(high pressure oxygen turbopump). First, determine the steady and unsteady inducer blade surface strains produced by hydrodynamic sources as a function of flow capacity (Q/N), suction specific speed (Nss), and Reynolds number (Re). Second, to identify the hydrodynamic source(s) of the unsteady blade strains. The reason the aforementioned goals are expressed in terms of blade strains as opposed to blade hydrodynamic pressures is because of the interest regarding the high cycle life of the inducer blades. This report focuses on the first goal of the test program which involves the determination of the steady and unsteady strain (stress) values at various points within the inducer blades. Strain gages were selected as the strain measuring devices. Concurrent with the experimental program, an analytical study was undertaken to produce a complete NASTRAN finite-element model of the inducer. Computational fluid dynamics analyses were utilized to provide the estimated steady-state blade surface pressure loading needed as load input to the NASTRAN inducer model.

  2. Time-resolved Small Angle X-ray Scattering During the Formation of Detonation Nano-Carbon Condensates

    NASA Astrophysics Data System (ADS)

    Bagge-Hansen, Michael; Hammons, Josh; Nielsen, Mike; Lauderbach, Lisa; Hodgin, Ralph; Bastea, Sorin; van Buuren, Tony; Pagoria, Phil; May, Chadd; Jensen, Brian; Gustavsen, Rick; Watkins, Erik; Firestone, Millie; Dattelbaum, Dana; Fried, Larry; Cowan, Matt; Willey, Trevor

    2017-06-01

    Carbon nanomaterials are spontaneously generated under high pressure and temperature conditions present during the detonation of many high explosive (HE) materials. Thermochemical modeling suggests that the phase, size, and morphology of carbon condensates are strongly dependent on the type of HE used and associated evolution of temperature and pressure during the very early stages of detonation. Experimental validation of carbon condensation under these extreme conditions has been technically challenging. Here, we present synchrotron-based, time-resolved small-angle x-ray scattering (TR-SAXS) measurements collected during HE detonations, acquired from discrete sub-100 ps x-ray pulses, every 153.4 ns. We select from various HE materials and geometries to explore a range of achievable pressures and temperatures that span detonation conditions and, correspondingly, generate an array of nano-carbon products, including nano-diamonds and nano-onions. The TR-SAXS patterns evolve rapidly over the first few hundred nanoseconds. Comparing the results with modeling offers significant progress towards a general carbon equation of state. Prepared by LLNL under Contract DE-AC52-07NA27344.

  3. INTEGRATION OF COST MODELS AND PROCESS SIMULATION TOOLS FOR OPTIMUM COMPOSITE MANUFACTURING PROCESS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pack, Seongchan; Wilson, Daniel; Aitharaju, Venkat

    Manufacturing cost of resin transfer molded composite parts is significantly influenced by the cycle time, which is strongly related to the time for both filling and curing of the resin in the mold. The time for filling can be optimized by various injection strategies, and by suitably reducing the length of the resin flow distance during the injection. The curing time can be reduced by the usage of faster curing resins, but it requires a high pressure injection equipment, which is capital intensive. Predictive manufacturing simulation tools that are being developed recently for composite materials are able to provide variousmore » scenarios of processing conditions virtually well in advance of manufacturing the parts. In the present study, we integrate the cost models with process simulation tools to study the influence of various parameters such as injection strategies, injection pressure, compression control to minimize high pressure injection, resin curing rate, and demold time on the manufacturing cost as affected by the annual part volume. A representative automotive component was selected for the study and the results are presented in this paper« less

  4. Pore pressure migration during hydraulic stimulation due to permeability enhancement by low-pressure subcritical fracture slip

    NASA Astrophysics Data System (ADS)

    Mukuhira, Yusuke; Moriya, Hirokazu; Ito, Takatoshi; Asanuma, Hiroshi; Häring, Markus

    2017-04-01

    Understanding the details of pressure migration during hydraulic stimulation is important for the design of an energy extraction system and reservoir management, as well as for the mitigation of hazardous-induced seismicity. Based on microseismic and regional stress information, we estimated the pore pressure increase required to generate shear slip on an existing fracture during stimulation. Spatiotemporal analysis of pore pressure migration revealed that lower pore pressure migrates farther and faster and that higher pore pressure migrates more slowly. These phenomena can be explained by the relationship between fracture permeability and stress state criticality. Subcritical fractures experience shear slip following smaller increases of pore pressure and promote migration of pore pressure because of their enhanced permeability. The difference in migration rates between lower and higher pore pressures suggests that the optimum wellhead pressure is the one that can stimulate relatively permeable fractures, selectively. Its selection optimizes economic benefits and minimizes seismic risk.

  5. Physiological control of a rotary blood pump with selectable therapeutic options: control of pulsatility gradient.

    PubMed

    Arndt, Andreas; Nüsser, Peter; Graichen, Kurt; Müller, Johannes; Lampe, Bernhard

    2008-10-01

    A control strategy for rotary blood pumps meeting different user-selectable control objectives is proposed: maximum support with the highest feasible flow rate versus medium support with maximum ventricular washout and controlled opening of the aortic valve (AoV). A pulsatility index (PI) is calculated from the pressure difference, which is deduced from the axial thrust measured by the magnetic bearing of the pump. The gradient of PI with respect to pump speed (GPI) is estimated via online system identification. The outer loop of a cascaded controller regulates GPI to a reference value satisfying the selected control objective. The inner loop controls the PI to a reference value set by the outer loop. Adverse pumping states such as suction and regurgitation can be detected on the basis of the GPI estimates and corrected by the controller. A lumped-parameter computer model of the assisted circulation was used to simulate variations of ventricular contractility, pulmonary venous pressure, and aortic pressure. The performance of the outer control loop was demonstrated by transitions between the two control modes. Fast reaction of the inner loop was tested by stepwise reduction of venous return. For maximum support, a low PI was maintained without inducing ventricular collapse. For maximum washout, the pump worked at a high PI in the transition region between the opening and the permanently closed AoV. The cascaded control of GPI and PI is able to meet different control objectives and is worth testing in vitro and in vivo.

  6. Relating Alfvén Wave Heating Model to Observations of a Solar Active Region

    NASA Astrophysics Data System (ADS)

    Yoritomo, J. Y.; Van Ballegooijen, A. A.

    2012-12-01

    We compared images from the Solar Dynamics Observatory's (SDO) Atmospheric Imaging Assembly (AIA) with simulations of propagating and dissipating Alfvén waves from a three-dimensional magnetohydrodynamic (MHD) model (van Ballegooijen et. al 2011; Asgari-Targhi & van Ballegooijen 2012). The goal was to search for observational evidence of Alfvén waves in the solar corona and understand their role in coronal heating. We looked at one particular active region on the 5th of May 2012. Certain distinct loops in the SDO/AIA observations were selected and expanded. Movies were created from these selections in an attempt to discover transverse motions that may be Alfvén waves. Using a magnetogram of that day and the corresponding synoptic map, a potential field model was created for the active region. Three-dimensional MHD models for several loops in different locations in the active region were created. Each model specifies the temperature, pressure, magnetic field strength, average heating rate, and other parameters along the loop. We find that the heating is intermittent in the loops and reflection occurs at the transition region. For loops at larger and larger height, a point is reached where thermal non-equilibrium occurs. In the center this critical height is much higher than in the periphery of the active region. Lastly, we find that the average heating rate and coronal pressure decrease with increasing height in the corona. This research was supported by an NSF grant for the Smithsonian Astrophysical Observatory (SAO) Solar REU program and a SDO/AIA grant for the Smithsonian Astrophysical Observatory.

  7. Development of a relative risk model for evaluating ecological risk of water environment in the Haihe River Basin estuary area.

    PubMed

    Chen, Qiuying; Liu, Jingling; Ho, Kin Chung; Yang, Zhifeng

    2012-03-15

    Ecological risk assessment for water environment is significant to water resource management of basin. Effective environmental management and systems restoration such as the Haihe River Basin require holistic understanding of the relative importance of various stressor-related impacts throughout the basin. As an effective technical tool for evaluating the ecological risk, relative risk model (RRM) was applied in regional scale successfully. In this study, the risk transfer from upstream of basin was considered and the RRM was developed through introducing the source-stressor-habitat exposure filter (SSH), the endpoint-habitat exposure filter (EH) and the stressor-endpoint effect filter (SE) to reflect the meaning of exposure and effect more explicit. Water environment which includes water quality, water quantity and aquatic ecosystems was selected as the assessment endpoints. We created a conceptual model which depicting potential and effect pathways from source to stressor to habitat to endpoint. The Haihe River Basin estuary (HRBE) was selected as the model case. The results showed that there were two low risk regions, one medium risk region and two high risk regions in the HRBE. The results also indicated that urbanization was the biggest source, the second was shipping and the third was industry, their risk scores are 5.65, 4.71 and 3.68 respectively. Furthermore, habitat destruction was the largest stressor with the risk scores (2.66), the second was oxygen consuming organic pollutants (1.75) and the third was pathogens (1.75). So these three stressors were the main influencing factors of the ecological pressure in the study area. For habitats, open waters (9.59) and intertidal mudflat were enduring the bigger pressure and should be taken considerable attention. Ecological service values damaged (30.54) and biodiversity decreased were facing the biggest risk pressure. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Research and Development of the Aeroturbine Engine,

    DTIC Science & Technology

    1981-04-15

    whether the selection of a turbojet or turbofan carries increased power. Afterwards, the engine cycle parameters (such as the pressurized ratio of the gns...into production. Conclusion The emergence of a new model aviation turbine engine is the achievement of the collective labors of a multitude of people...under unified organiza- tional leadership. Each organization and individual engaged in aviation turbine engine research and development resemble each

  9. Investigating the Effectiveness of a Constructivist-Based Teaching Model on Student Understanding of the Dissolution of Gases in Liquids

    ERIC Educational Resources Information Center

    Calik, Muammer; Ayas, Alipasa; Coll, Richard K.; Unal, Suat; Costu, Bayram

    2007-01-01

    The research presented in this paper consisted of an investigation of the effectiveness of a four-step constructivist-based teaching activity on student understanding of how pressure and temperature influence the dissolution of a gas in a liquid. Some 44 Grade 9 students (18 boys and 26 girls) selected purposively from two school classes in the…

  10. Multicomponent Comparison of Optical and Mass Spectrometric Diagnostics in Low-Pressure Flames

    DTIC Science & Technology

    1992-04-01

    flame chemistry relevant to gaseous flames of burning propellants. This instrument incorporates several spectral techniques in one apparatus so that...Rev. 2-89) Precribed by ANSI Std 31-11 298.102 ThiTENTIONALLY LEFr BLANK TABLE OF CONTENTS LIST OF FIGURES...known. Propellant selection and optimization are dependent upon burning characteristics and the products formed. Much modeling effort has been

  11. HPLC/EC (High Pressure Liquid Chromatography/Electrochemical Detection) Studies of Selected Explosive Components, Nitroanilines, and Nitrophenols with Dual Electrode Electrochemical Detection.

    DTIC Science & Technology

    1985-09-01

    advantage of HPLC/EC for the separation and detection of electroactive species is well documented in the literature (1-5). It has been demonstrated that...Zorbax, Alltech Spherisorb or BAS Biophase columns. The injection valve was a Rheodyne Model 7120 fitted with a 20 pL loop and mounted vertically for

  12. Unified Application of Vapor Screen Flow Visualization and Pressure Sensitive Paint Measurement Techniques to Vortex- and Shock Wave-Dominated Flow Fields

    NASA Technical Reports Server (NTRS)

    Erickson, Gary E.

    2010-01-01

    Laser vapor screen (LVS) flow visualization and pressure sensitive paint (PSP) techniques were applied in a unified approach to wind tunnel testing of slender wing and missile configurations dominated by vortex flows and shock waves at subsonic, transonic, and supersonic speeds. The off-surface cross-flow patterns using the LVS technique were combined with global PSP surface static pressure mappings to characterize the leading-edge vortices and shock waves that coexist and interact at high angles of attack. The synthesis of LVS and PSP techniques was also effective in identifying the significant effects of passive surface porosity and the presence of vertical tail surfaces on the flow topologies. An overview is given of LVS and PSP applications in selected experiments on small-scale models of generic slender wing and missile configurations in the NASA Langley Research Center (NASA LaRC) Unitary Plan Wind Tunnel (UPWT) and 8-Foot Transonic Pressure Tunnel (8-Foot TPT).

  13. Unified Application Vapor Screen Flow Visualization and Pressure Sensitive Paint Measurement Techniques to Vortex- and Shock Wave-Dominated Flow Fields

    NASA Technical Reports Server (NTRS)

    Erickson, Gary E.

    2008-01-01

    Laser vapor screen (LVS) flow visualization and pressure sensitive paint (PSP) techniques were applied in a unified approach to wind tunnel testing of slender wing and missile configurations dominated by vortex flows and shock waves at subsonic, transonic, and supersonic speeds. The off-surface cross-flow patterns using the LVS technique were combined with global PSP surface static pressure mappings to characterize the leading-edge vortices and shock waves that coexist and interact at high angles of attack (alpha). The synthesis of LVS and PSP techniques was also effective in identifying the significant effects of passive surface porosity and the presence of vertical tail surfaces on the flow topologies. An overview is given of LVS and PSP applications in selected experiments on small-scale models of generic slender wing and missile configurations in the NASA Langley Research Center (NASA LaRC) Unitary Plan Wind Tunnel (UPWT) and 8-Foot Transonic Pressure Tunnel (8-Foot TPT).

  14. Prediction of Burst Pressure in Multistage Tube Hydroforming of Aerospace Alloys.

    PubMed

    Saboori, M; Gholipour, J; Champliaud, H; Wanjara, P; Gakwaya, A; Savoie, J

    2016-08-01

    Bursting, an irreversible failure in tube hydroforming (THF), results mainly from the local plastic instabilities that occur when the biaxial stresses imparted during the process exceed the forming limit strains of the material. To predict the burst pressure, Oyan's and Brozzo's decoupled ductile fracture criteria (DFC) were implemented as user material models in a dynamic nonlinear commercial 3D finite-element (FE) software, ls-dyna. THF of a round to V-shape was selected as a generic representative of an aerospace component for the FE simulations and experimental trials. To validate the simulation results, THF experiments up to bursting were carried out using Inconel 718 (IN 718) tubes with a thickness of 0.9 mm to measure the internal pressures during the process. When comparing the experimental and simulation results, the burst pressure predicated based on Oyane's decoupled damage criterion was found to agree better with the measured data for IN 718 than Brozzo's fracture criterion.

  15. Ego depletion and attention regulation under pressure: is a temporary loss of self-control strength indeed related to impaired attention regulation?

    PubMed

    Englert, Chris; Zwemmer, Kris; Bertrams, Alex; Oudejans, Raôul R

    2015-04-01

    In the current study we investigated whether ego depletion negatively affects attention regulation under pressure in sports by assessing participants' dart throwing performance and accompanying gaze behavior. According to the strength model of self-control, the most important aspect of self-control is attention regulation. Because higher levels of state anxiety are associated with impaired attention regulation, we chose a mixed design with ego depletion (yes vs. no) as between-subjects and anxiety level (high vs. low) as within-subjects factor. Participants performed a perceptual-motor task requiring selective attention, namely, dart throwing. In line with our expectations, depleted participants in the high-anxiety condition performed worse and displayed a shorter final fixation on bull's eye, demonstrating that when one's self-control strength is depleted, attention regulation under pressure cannot be maintained. This is the first study that directly supports the general assumption that ego depletion is a major factor in influencing attention regulation under pressure.

  16. Toward an improved model of maple sap exudation: the location and role of osmotic barriers in sugar maple, butternut and white birch.

    PubMed

    Cirelli, Damián; Jagels, Richard; Tyree, Melvin T

    2008-08-01

    Two theories have been proposed to explain how high positive pressures are developed in sugar maple stems when temperatures fluctuate around freezing. The Milburn-O'Malley theory proposes that pressure development is purely physical and does not require living cells or sucrose. The osmotic theory invokes the involvement of living cells and sucrose to generate an osmotic pressure difference between fibers and vessels, which are assumed to be separated by an osmotic barrier. We analyzed wood of Acer saccharum Marsh., Juglans cinerea L. and Betula papyrifera Marsh. (all generate positive pressures) examining three critical components of the osmotic model: pits in cell walls, selectivity of the osmotic barrier and stability of air bubbles under positive xylem pressure. We examined the distribution and type of pits directly by light and scanning electron microscopy (SEM), and indirectly by perfusion of branch segments with fluorescent dyes with molecular masses similar to sucrose. The latter approach allowed us to use osmotic surrogates for sucrose that could be tracked by epifluorescence. Infusion experiments were used to assess the compartmentalization of sucrose and to determine the behavior of gas bubbles as predicted by Fick's and Henry's laws. The SEM images of sugar maple revealed a lack of pitting between fibers and vessels but connections between fiber-tracheids and vessels were present. Fluorescein-perfusion experiments demonstrated that large molecules do not diffuse into libriform fibers but are confined within the domain of vessels, parenchyma and fiber-tracheids. Results of the infusion experiments were in agreement with those of the fluorescein perfusions and further indicated the necessity of a compartmentalized osmolyte to drive stem pressure, as well as the inability of air bubbles to maintain such pressure because of instability. These results support the osmotic model and demonstrate that the secondary cell wall is an effective osmotic barrier for molecules larger than 300 g mol(-1).

  17. Effects of axisymmetric and normal air jet plumes and solid plume on cylindrical afterbody pressure distributions at Mach numbers from 1.65 to 2.50

    NASA Technical Reports Server (NTRS)

    Covell, P. F.

    1982-01-01

    A wind tunnel investigation of the interference effects of axisymmetric nozzle air plumes, a solid plume, and normal air jet plumes on the afterbody pressure distributions and base pressures of a cylindrical afterbody model was conducted at Mach numbers from 1.65 to 2.50. The axisymmetric nozzles, which varied in exit lip Mach number from 1.7 to 2.7, and the normal air jet nozzle were tested at jet pressure ratios from 1 (jet off) to 615. The tests were conducted at an angle of attack of 0 deg and a Reynolds number per meter of 6.56 million. The results of the investigation show that the solid plume induces greater interference effects than those induced by the axisymmetric nozzle plumes at the selected underexpanded design conditions. A thrust coefficient parameter based on nozzle lip conditons was found to correlate the afterbody disturbance distance and the base pressure between the different axisymmetric nozzles. The normal air jet plume and the solid plume induce afterbody disturbance distances similar to those induced by the axisymmetric air plumes when base pressure is held constant.

  18. Resistant Traits in Digital Organisms Do Not Revert Preselection Status despite Extended Deselection: Implications to Microbial Antibiotics Resistance

    PubMed Central

    Castillo, Clarence F. G.; Ling, Maurice H. T.

    2014-01-01

    Antibiotics resistance is a serious biomedical issue as formally susceptible organisms gain resistance under its selective pressure. There have been contradictory results regarding the prevalence of resistance following withdrawal and disuse of the specific antibiotics. Here, we use experimental evolution in “digital organisms” to examine the rate of gain and loss of resistance under the assumption that there is no fitness cost for maintaining resistance. Our results show that selective pressure is likely to result in maximum resistance with respect to the selective pressure. During deselection as a result of disuse of the specific antibiotics, a large initial loss and prolonged stabilization of resistance are observed, but resistance is not lost to the stage of preselection. This suggests that a pool of partial persists organisms persist long after withdrawal of selective pressure at a relatively constant proportion. Hence, contradictory results regarding the prevalence of resistance following withdrawal and disuse of the specific antibiotics may be a statistical variation about constant proportion. Our results also show that subsequent reintroduction of the same selective pressure results in rapid regain of maximal resistance. Thus, our simulation results suggest that complete elimination of specific antibiotics resistance is unlikely after the disuse of antibiotics once a resistant pool of microorganisms has been established. PMID:24977157

  19. Criterion for Identifying Vortices in High-Pressure Flows

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Okong'o, Nora

    2007-01-01

    A study of four previously published computational criteria for identifying vortices in high-pressure flows has led to the selection of one of them as the best. This development can be expected to contribute to understanding of high-pressure flows, which occur in diverse settings, including diesel, gas turbine, and rocket engines and the atmospheres of Jupiter and other large gaseous planets. Information on the atmospheres of gaseous planets consists mainly of visual and thermal images of the flows over the planets. Also, validation of recently proposed computational models of high-pressure flows entails comparison with measurements, which are mainly of visual nature. Heretofore, the interpretation of images of high-pressure flows to identify vortices has been based on experience with low-pressure flows. However, high-pressure flows have features distinct from those of low-pressure flows, particularly in regions of high pressure gradient magnitude caused by dynamic turbulent effects and by thermodynamic mixing of chemical species. Therefore, interpretations based on low-pressure behavior may lead to misidentification of vortices and other flow structures in high-pressure flows. The study reported here was performed in recognition of the need for one or more quantitative criteria for identifying coherent flow structures - especially vortices - from previously generated flow-field data, to complement or supersede the determination of flow structures by visual inspection of instantaneous fields or flow animations. The focus in the study was on correlating visible images of flow features with various quantities computed from flow-field data.

  20. Ecological and genetic factors influencing the transition between host-use strategies in sympatric Heliconius butterflies.

    PubMed

    Merrill, R M; Naisbit, R E; Mallet, J; Jiggins, C D

    2013-09-01

    Shifts in host-plant use by phytophagous insects have played a central role in their diversification. Evolving host-use strategies will reflect a trade-off between selection pressures. The ecological niche of herbivorous insects is partitioned along several dimensions, and if populations remain in contact, recombination will break down associations between relevant loci. As such, genetic architecture can profoundly affect the coordinated divergence of traits and subsequently the ability to exploit novel habitats. The closely related species Heliconius cydno and H. melpomene differ in mimetic colour pattern, habitat and host-plant use. We investigate the selection pressures and genetic basis underlying host-use differences in these two species. Host-plant surveys reveal that H. melpomene specializes on a single species of Passiflora. This is also true for the majority of other Heliconius species in secondary growth forest at our study site, as expected under a model of interspecific competition. In contrast, H. cydno, which uses closed-forest habitats where both Heliconius and Passiflora are less common, appears not to be restricted by competition and uses a broad selection of the available Passiflora. However, other selection pressures are likely involved, and field experiments reveal that early larval survival of both butterfly species is highest on Passiflora menispermifolia, but most markedly so for H. melpomene, the specialist on that host. Finally, we demonstrate an association between host-plant acceptance and colour pattern amongst interspecific hybrids, suggesting that major loci underlying these important ecological traits are physically linked in the genome. Together, our results reveal ecological and genetic associations between shifts in habitat, host use and mimetic colour pattern that have likely facilitated both speciation and coexistence. © 2013 The Authors. Journal of Evolutionary Biology © 2013 European Society For Evolutionary Biology.

  1. Sexual Dimorphism and Retinal Mosaic Diversification following the Evolution of a Violet Receptor in Butterflies.

    PubMed

    McCulloch, Kyle J; Yuan, Furong; Zhen, Ying; Aardema, Matthew L; Smith, Gilbert; Llorente-Bousquets, Jorge; Andolfatto, Peter; Briscoe, Adriana D

    2017-09-01

    Numerous animal lineages have expanded and diversified the opsin-based photoreceptors in their eyes underlying color vision behavior. However, the selective pressures giving rise to new photoreceptors and their spectral tuning remain mostly obscure. Previously, we identified a violet receptor (UV2) that is the result of a UV opsin gene duplication specific to Heliconius butterflies. At the same time the violet receptor evolved, Heliconius evolved UV-yellow coloration on their wings, due to the pigment 3-hydroxykynurenine (3-OHK) and the nanostructure architecture of the scale cells. In order to better understand the selective pressures giving rise to the violet receptor, we characterized opsin expression patterns using immunostaining (14 species) and RNA-Seq (18 species), and reconstructed evolutionary histories of visual traits in five major lineages within Heliconius and one species from the genus Eueides. Opsin expression patterns are hyperdiverse within Heliconius. We identified six unique retinal mosaics and three distinct forms of sexual dimorphism based on ommatidial types within the genus Heliconius. Additionally, phylogenetic analysis revealed independent losses of opsin expression, pseudogenization events, and relaxation of selection on UVRh2 in one lineage. Despite this diversity, the newly evolved violet receptor is retained across most species and sexes surveyed. Discriminability modeling of behaviorally preferred 3-OHK yellow wing coloration suggests that the violet receptor may facilitate Heliconius color vision in the context of conspecific recognition. Our observations give insights into the selective pressures underlying the origins of new visual receptors. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Early constraints in sexual dimorphism: survival benefits of feminized phenotypes.

    PubMed

    López-Rull, I; Vergara, P; Martínez-Padilla, J; Fargallo, J A

    2016-02-01

    Sexual dimorphism (SD) has evolved in response to selection pressures that differ between sexes. Since such pressures change across an individual's life, SD may vary within age classes. Yet, little is known about how selection on early phenotypes may drive the final SD observed in adults. In many dimorphic species, juveniles resemble adult females rather than adult males, meaning that out of the selective pressures established by sexual selection feminized phenotypes may be adaptive. If true, fitness benefits of early female-like phenotypes may constrain the expression of male phenotypes in adulthood. Using the common kestrel Falco tinnunculus as a study model, we evaluated the fitness advantages of expressing more feminized phenotypes at youth. Although more similar to adult females than to adult males, common kestrel fledglings are still sexually dimorphic in size and coloration. Integrating morphological and chromatic variables, we analysed the phenotypic divergence between sexes as a measure of how much each individual looks like the sex to which it belongs (phenotypic sexual resemblance, PSR). We then tested the fitness benefits associated with PSR by means of the probability of recruitment in the population. We found a significant interaction between PSR and sex, showing that in both sexes more feminized phenotypes recruited more into the population than less feminized phenotypes. Moreover, males showed lower PSR than females and a higher proportion of incorrect sex classifications. These findings suggest that the mechanisms in males devoted to resembling female phenotypes in youth, due to a trend to increase fitness through more feminized phenotypes, may provide a mechanism to constrain the SD in adulthood. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.

  3. Abdominal insufflation for laparoscopy increases intracranial and intrathoracic pressure in human subjects.

    PubMed

    Kamine, Tovy Haber; Elmadhun, Nassrene Y; Kasper, Ekkehard M; Papavassiliou, Efstathios; Schneider, Benjamin E

    2016-09-01

    Laparoscopy has emerged as an alternative to laparotomy in select trauma patients. In animal models, increasing abdominal pressure is associated with an increase in intrathoracic and intracranial pressures. We conducted a prospective trial of human subjects who underwent laparoscopic-assisted ventriculoperitoneal shunt placement (lap VPS) with intraoperative measurement of intrathoracic, intracranial and cerebral perfusion pressures. Ten patients undergoing lap VPS were recruited. Abdominal insufflation was performed using CO2 to 0, 8, 10, 12 and 15 mmHg. ICP was measured through the ventricular catheter simultaneously with insufflation and with desufflation using a manometer. Peak inspiratory pressures (PIP) were measured through the endotracheal tube. Blood pressure was measured using a noninvasive blood pressure cuff. End-tidal CO2 (ETCO2) was measured for each set of abdominal pressure level. Pressure measurements from all points of insufflation were compared using a two-way ANOVA with a post hoc Bonferroni test. Mean changes in pressures were compared using t test. ICP and PIP increased significantly with increasing abdominal pressure (both p < 0.01), whereas cerebral perfusion pressure (CPP) and mean arterial pressure did not significantly change with increasing abdominal pressure over the range tested. Higher abdominal pressure values were associated with decreased ETCO2 values. Increased ICP and PIP appear to be a direct result of increasing abdominal pressure, since ETCO2 did not increase. Though CPP did not change over the range tested, the ICP in some patients with 15 mmHg abdominal insufflation reached values as high as 32 cmH2O, which is considered above tolerance, regardless of the CPP. Laparoscopy should be used cautiously, in patients who present with baseline elevated ICP or head trauma as abdominal insufflation affects intracranial pressure.

  4. Investigation of transient cavitating flow in viscoelastic pipes

    NASA Astrophysics Data System (ADS)

    Keramat, A.; Tijsseling, A. S.; Ahmadi, A.

    2010-08-01

    A study on water hammer in viscoelastic pipes when the fluid pressure drops to liquid vapour pressure is performed. Two important concepts including column separation and the effects of retarded strains in the pipe wall on the fluid response have been investigated separately in recent works, but there is some curiosity as to how the results for pressure and discharge are when column separation occurs in a viscoelastic pipe. For pipes made of plastic such as polyethylene (PE) and polyvinyl chloride (PVC), viscoelasticity is a crucial mechanical property which changes the hydraulic and structural transient responses. Based on previous developments in the analysis of water hammer, a model which is capable of analysing column separation in viscoelastic pipes is presented and used for solving the selected case studies. For the column-separation modelling the Discrete Vapour Cavity Model (DVCM) is utilised and the viscoelasticity property of the pipe wall is modelled by Kelvin-Voigt elements. The effects of viscoelasticity play an important role in the column separation phenomenon because it changes the water hammer fundamental frequency and so affects the time of opening or collapse of the cavities. Verification of the implemented computer code is performed for the effects of viscoelasticity and column separation - separately and simultaneously - using experimental results from the literature. In the provided examples the focus is placed on the simultaneous effect of viscoelasticity and column separation on the hydraulic transient response. The final conclusions drawn are that if rectangular grids are utilised the DVCM gives acceptable predictions of the phenomenon and that the pipe wall material's retarded behaviour strongly dampens the pressure spikes caused by column separation.

  5. A microelectromechanical system artificial basilar membrane based on a piezoelectric cantilever array and its characterization using an animal model

    PubMed Central

    Jang, Jongmoon; Lee, JangWoo; Woo, Seongyong; Sly, David J.; Campbell, Luke J.; Cho, Jin-Ho; O’Leary, Stephen J.; Park, Min-Hyun; Han, Sungmin; Choi, Ji-Wong; Hun Jang, Jeong; Choi, Hongsoo

    2015-01-01

    We proposed a piezoelectric artificial basilar membrane (ABM) composed of a microelectromechanical system cantilever array. The ABM mimics the tonotopy of the cochlea: frequency selectivity and mechanoelectric transduction. The fabricated ABM exhibits a clear tonotopy in an audible frequency range (2.92–12.6 kHz). Also, an animal model was used to verify the characteristics of the ABM as a front end for potential cochlear implant applications. For this, a signal processor was used to convert the piezoelectric output from the ABM to an electrical stimulus for auditory neurons. The electrical stimulus for auditory neurons was delivered through an implanted intra-cochlear electrode array. The amplitude of the electrical stimulus was modulated in the range of 0.15 to 3.5 V with incoming sound pressure levels (SPL) of 70.1 to 94.8 dB SPL. The electrical stimulus was used to elicit an electrically evoked auditory brainstem response (EABR) from deafened guinea pigs. EABRs were successfully measured and their magnitude increased upon application of acoustic stimuli from 75 to 95 dB SPL. The frequency selectivity of the ABM was estimated by measuring the magnitude of EABRs while applying sound pressure at the resonance and off-resonance frequencies of the corresponding cantilever of the selected channel. In this study, we demonstrated a novel piezoelectric ABM and verified its characteristics by measuring EABRs. PMID:26227924

  6. A microelectromechanical system artificial basilar membrane based on a piezoelectric cantilever array and its characterization using an animal model

    NASA Astrophysics Data System (ADS)

    Jang, Jongmoon; Lee, Jangwoo; Woo, Seongyong; Sly, David J.; Campbell, Luke J.; Cho, Jin-Ho; O'Leary, Stephen J.; Park, Min-Hyun; Han, Sungmin; Choi, Ji-Wong; Hun Jang, Jeong; Choi, Hongsoo

    2015-07-01

    We proposed a piezoelectric artificial basilar membrane (ABM) composed of a microelectromechanical system cantilever array. The ABM mimics the tonotopy of the cochlea: frequency selectivity and mechanoelectric transduction. The fabricated ABM exhibits a clear tonotopy in an audible frequency range (2.92-12.6 kHz). Also, an animal model was used to verify the characteristics of the ABM as a front end for potential cochlear implant applications. For this, a signal processor was used to convert the piezoelectric output from the ABM to an electrical stimulus for auditory neurons. The electrical stimulus for auditory neurons was delivered through an implanted intra-cochlear electrode array. The amplitude of the electrical stimulus was modulated in the range of 0.15 to 3.5 V with incoming sound pressure levels (SPL) of 70.1 to 94.8 dB SPL. The electrical stimulus was used to elicit an electrically evoked auditory brainstem response (EABR) from deafened guinea pigs. EABRs were successfully measured and their magnitude increased upon application of acoustic stimuli from 75 to 95 dB SPL. The frequency selectivity of the ABM was estimated by measuring the magnitude of EABRs while applying sound pressure at the resonance and off-resonance frequencies of the corresponding cantilever of the selected channel. In this study, we demonstrated a novel piezoelectric ABM and verified its characteristics by measuring EABRs.

  7. The basic science and mathematics of random mutation and natural selection.

    PubMed

    Kleinman, Alan

    2014-12-20

    The mutation and natural selection phenomenon can and often does cause the failure of antimicrobial, herbicidal, pesticide and cancer treatments selection pressures. This phenomenon operates in a mathematically predictable behavior, which when understood leads to approaches to reduce and prevent the failure of the use of these selection pressures. The mathematical behavior of mutation and selection is derived using the principles given by probability theory. The derivation of the equations describing the mutation and selection phenomenon is carried out in the context of an empirical example. Copyright © 2014 John Wiley & Sons, Ltd.

  8. Model atmospheres for cool stars. [varying chemical composition

    NASA Technical Reports Server (NTRS)

    Johnson, H. R.

    1974-01-01

    This report contains an extensive series of model atmospheres for cool stars having a wide range in chemical composition. Model atmospheres (temperature, pressure, density, etc.) are tabulated, along with emergent energy flux distributions, limb darkening, and information on convection for selected models. The models are calculated under the usual assumptions of hydrostatic equilibrium, constancy of total energy flux (including transport both by radiation and convection) and local thermodynamic equilibrium. Some molecular and atomic line opacity is accounted for as a straight mean. While cool star atmospheres are regimes of complicated physical conditions, and these atmospheres are necessarily approximate, they should be useful for a number of kinds of spectral and atmospheric analysis.

  9. Experimental Database with Baseline CFD Solutions: 2-D and Axisymmetric Hypersonic Shock-Wave/Turbulent-Boundary-Layer Interactions

    NASA Technical Reports Server (NTRS)

    Marvin, Joseph G.; Brown, James L.; Gnoffo, Peter A.

    2013-01-01

    A database compilation of hypersonic shock-wave/turbulent boundary layer experiments is provided. The experiments selected for the database are either 2D or axisymmetric, and include both compression corner and impinging type SWTBL interactions. The strength of the interactions range from attached to incipient separation to fully separated flows. The experiments were chosen based on criterion to ensure quality of the datasets, to be relevant to NASA's missions and to be useful for validation and uncertainty assessment of CFD Navier-Stokes predictive methods, both now and in the future. An emphasis on datasets selected was on surface pressures and surface heating throughout the interaction, but include some wall shear stress distributions and flowfield profiles. Included, for selected cases, are example CFD grids and setup information, along with surface pressure and wall heating results from simulations using current NASA real-gas Navier-Stokes codes by which future CFD investigators can compare and evaluate physics modeling improvements and validation and uncertainty assessments of future CFD code developments. The experimental database is presented tabulated in the Appendices describing each experiment. The database is also provided in computer-readable ASCII files located on a companion DVD.

  10. Bridging the gap between chemistry, physiology, and evolution: quantifying the functionality of sperm whale myoglobin mutants.

    PubMed

    Dasmeh, Pouria; Kepp, Kasper P

    2012-01-01

    This work merges a large set of previously reported thermochemical data for myoglobin (Mb) mutants with a physiological model of O(2)-transport and -storage. The model allows a quantification of the functional proficiency of myoglobin (Mb) mutants under various physiological conditions, i.e. O(2)-consumption rate resembling workload, O(2) partial pressure resembling hypoxic stress, muscle cell size, and Mb concentration, resembling different organism-specific and compensatory variables. We find that O(2)-storage and -transport are distinct functions that rank mutants and wild type differently depending on O(2) partial pressure. Specifically, the wild type is near-optimal for storage at all conditions, but for transport only at severely hypoxic conditions. At normoxic conditions, low-affinity mutants are in fact better O(2)-transporters because they still have empty sites for O(2), giving rise to a larger [MbO(2)] gradient (more varying saturation curve). The distributions of functionality reveal that many mutants are near-neutral with respect to function, whereas only a few are strongly affected, and the variation in functionality increases dramatically at lower O(2) pressure. These results together show that conserved residues in wild type (WT) Mb were fixated under a selection pressure of low P(O2). Copyright © 2011 Elsevier Inc. All rights reserved.

  11. CFD code calibration and inlet-fairing effects on a 3D hypersonic powered-simulation model

    NASA Technical Reports Server (NTRS)

    Huebner, Lawrence D.; Tatum, Kenneth E.

    1993-01-01

    A three-dimensional (3D) computational study has been performed addressing issues related to the wind tunnel testing of a hypersonic powered-simulation model. The study consisted of three objectives. The first objective was to calibrate a state-of-the-art computational fluid dynamics (CFD) code in its ability to predict hypersonic powered-simulation flows by comparing CFD solutions with experimental surface pressure dam. Aftbody lower surface pressures were well predicted, but lower surface wing pressures were less accurately predicted. The second objective was to determine the 3D effects on the aftbody created by fairing over the inlet; this was accomplished by comparing the CFD solutions of two closed-inlet powered configurations with a flowing-inlet powered configuration. Although results at four freestream Mach numbers indicate that the exhaust plume tends to isolate the aftbody surface from most forebody flowfield differences, a smooth inlet fairing provides the least aftbody force and moment variation compared to a flowing inlet. The final objective was to predict and understand the 3D characteristics of exhaust plume development at selected points on a representative flight path. Results showed a dramatic effect of plume expansion onto the wings as the freestream Mach number and corresponding nozzle pressure ratio are increased.

  12. CFD Code Calibration and Inlet-Fairing Effects On a 3D Hypersonic Powered-Simulation Model

    NASA Technical Reports Server (NTRS)

    Huebner, Lawrence D.; Tatum, Kenneth E.

    1993-01-01

    A three-dimensional (3D) computational study has been performed addressing issues related to the wind tunnel testing of a hypersonic powered-simulation model. The study consisted of three objectives. The first objective was to calibrate a state-of-the-art computational fluid dynamics (CFD) code in its ability to predict hypersonic powered-simulation flows by comparing CFD solutions with experimental surface pressure data. Aftbody lower surface pressures were well predicted, but lower surface wing pressures were less accurately predicted. The second objective was to determine the 3D effects on the aftbody created by fairing over the inlet; this was accomplished by comparing the CFD solutions of two closed-inlet powered configurations with a flowing- inlet powered configuration. Although results at four freestream Mach numbers indicate that the exhaust plume tends to isolate the aftbody surface from most forebody flow- field differences, a smooth inlet fairing provides the least aftbody force and moment variation compared to a flowing inlet. The final objective was to predict and understand the 3D characteristics of exhaust plume development at selected points on a representative flight path. Results showed a dramatic effect of plume expansion onto the wings as the freestream Mach number and corresponding nozzle pressure ratio are increased.

  13. The Evolution of Phenotypic Switching in Subdivided Populations

    PubMed Central

    Carja, Oana; Liberman, Uri; Feldman, Marcus W.

    2014-01-01

    Stochastic switching is an example of phenotypic bet hedging, where offspring can express a phenotype different from that of their parents. Phenotypic switching is well documented in viruses, yeast, and bacteria and has been extensively studied when the selection pressures vary through time. However, there has been little work on the evolution of phenotypic switching under both spatially and temporally fluctuating selection pressures. Here we use a population genetic model to explore the interaction of temporal and spatial variation in determining the evolutionary dynamics of phenotypic switching. We find that the stable switching rate is mainly determined by the rate of environmental change and the migration rate. This stable rate is also a decreasing function of the recombination rate, although this is a weaker effect than those of either the period of environmental change or the migration rate. This study highlights the interplay of spatial and temporal environmental variability, offering new insights into how migration can influence the evolution of phenotypic switching rates, mutation rates, or other sources of phenotypic variation. PMID:24496012

  14. Amino acid mutations in Ebola virus glycoprotein of the 2014 epidemic.

    PubMed

    Giovanetti, Marta; Grifoni, Alba; Lo Presti, Alessandra; Cella, Eleonora; Montesano, Carla; Zehender, Gianguglielmo; Colizzi, Vittorio; Amicosante, Massimo; Ciccozzi, Massimo

    2015-06-01

    Zaire Ebola virus (EBOV) is an enveloped non-segmented negative strand RNA virus of 19 kb in length belonging to the family Filoviridae. The virus was isolated and identified in 1976 during the epidemic of hemorrhagic fever in Zaire. The most recent outbreak of EBOV among humans, was that occurred in the forested areas of south eastern Guinea, that began in February 2014 and is still ongoing. The recent Ebola outbreak, is affecting other countries in West Africa, in addiction to Guinea: Liberia, Nigeria, and Sierra Leone. In this article, a selective pressure analysis and homology modeling based on the G Glycoprotein (GP) sequences retrieved from public databases were used to investigate the genetic diversity and modification of antibody response in the recent outbreak of Ebola Virus. Structural and the evolutionary analysis underline the 2014 epidemic virus being under negative selective pressure does not change with respect to the old epidemic in terms of genome adaptation. © 2015 Wiley Periodicals, Inc.

  15. Neural net controller for inlet pressure control of rocket engine testing

    NASA Technical Reports Server (NTRS)

    Trevino, Luis C.

    1994-01-01

    Many dynamic systems operate in select operating regions, each exhibiting characteristic modes of behavior. It is traditional to employ standard adjustable gain proportional-integral-derivative (PID) loops in such systems where no apriori model information is available. However, for controlling inlet pressure for rocket engine testing, problems in fine tuning, disturbance accommodation, and control gains for new profile operating regions (for research and development) are typically encountered. Because of the capability of capturing I/O peculiarities, using NETS, a back propagation trained neural network is specified. For select operating regions, the neural network controller is simulated to be as robust as the PID controller. For a comparative analysis, the higher order moment neural array (HOMNA) method is used to specify a second neural controller by extracting critical exemplars from the I/O data set. Furthermore, using the critical exemplars from the HOMNA method, a third neural controller is developed using NETS back propagation algorithm. All controllers are benchmarked against each other.

  16. Different selection pressures give rise to distinct ethnic phenomena : a functionalist framework with illustrations from the Peruvian Altiplano.

    PubMed

    Moya, Cristina; Boyd, Robert

    2015-03-01

    Many accounts of ethnic phenomena imply that processes such as stereotyping, essentialism, ethnocentrism, and intergroup hostility stem from a unitary adaptation for reasoning about groups. This is partly justified by the phenomena's co-occurrence in correlational studies. Here we argue that these behaviors are better modeled as functionally independent adaptations that arose in response to different selection pressures throughout human evolution. As such, different mechanisms may be triggered by different group boundaries within a single society. We illustrate this functionalist framework using ethnographic work from the Quechua-Aymara language boundary in the Peruvian Altiplano. We show that different group boundaries motivate different ethnic phenomena. For example, people have strong stereotypes about socioeconomic categories, which are not cooperative units, whereas they hold fewer stereotypes about communities, which are the primary focus of cooperative activity. We also show that, despite the cross-cultural importance of ethnolinguistic boundaries, the Quechua-Aymara linguistic distinction does not strongly motivate any of these intergroup processes.

  17. Different Selection Pressures Give Rise to Distinct Ethnic Phenomena

    PubMed Central

    Moya, Cristina; Boyd, Robert

    2015-01-01

    Many accounts of ethnic phenomena imply that processes such as stereotyping, essentialism, ethnocentrism, and intergroup hostility stem from a unitary adaptation for reasoning about groups. This is partly justified by the phenomena’s co-occurrence in correlational studies. Here we argue that these behaviors are better modeled as functionally independent adaptations that arose in response to different selection pressures throughout human evolution. As such, different mechanisms may be triggered by different group boundaries within a single society. We illustrate this functionalist framework using ethnographic work from the Quechua-Aymara language boundary in the Peruvian Altiplano. We show that different group boundaries motivate different ethnic phenomena. For example, people have strong stereotypes about socioeconomic categories, which are not cooperative units, whereas they hold fewer stereotypes about communities, which are the primary focus of cooperative activity. We also show that, despite the cross-cultural importance of ethnolinguistic boundaries, the Quechua-Aymara linguistic distinction does not strongly motivate any of these intergroup processes. PMID:25731969

  18. A Methodology for Modeling Nuclear Power Plant Passive Component Aging in Probabilistic Risk Assessment under the Impact of Operating Conditions, Surveillance and Maintenance Activities

    NASA Astrophysics Data System (ADS)

    Guler Yigitoglu, Askin

    In the context of long operation of nuclear power plants (NPPs) (i.e., 60-80 years, and beyond), investigation of the aging of passive systems, structures and components (SSCs) is important to assess safety margins and to decide on reactor life extension as indicated within the U.S. Department of Energy (DOE) Light Water Reactor Sustainability (LWRS) Program. In the traditional probabilistic risk assessment (PRA) methodology, evaluating the potential significance of aging of passive SSCs on plant risk is challenging. Although passive SSC failure rates can be added as initiating event frequencies or basic event failure rates in the traditional event-tree/fault-tree methodology, these failure rates are generally based on generic plant failure data which means that the true state of a specific plant is not reflected in a realistic manner on aging effects. Dynamic PRA methodologies have gained attention recently due to their capability to account for the plant state and thus address the difficulties in the traditional PRA modeling of aging effects of passive components using physics-based models (and also in the modeling of digital instrumentation and control systems). Physics-based models can capture the impact of complex aging processes (e.g., fatigue, stress corrosion cracking, flow-accelerated corrosion, etc.) on SSCs and can be utilized to estimate passive SSC failure rates using realistic NPP data from reactor simulation, as well as considering effects of surveillance and maintenance activities. The objectives of this dissertation are twofold: The development of a methodology for the incorporation of aging modeling of passive SSC into a reactor simulation environment to provide a framework for evaluation of their risk contribution in both the dynamic and traditional PRA; and the demonstration of the methodology through its application to pressurizer surge line pipe weld and steam generator tubes in commercial nuclear power plants. In the proposed methodology, a multi-state physics based model is selected to represent the aging process. The model is modified via sojourn time approach to reflect the operational and maintenance history dependence of the transition rates. Thermal-hydraulic parameters of the model are calculated via the reactor simulation environment and uncertainties associated with both parameters and the models are assessed via a two-loop Monte Carlo approach (Latin hypercube sampling) to propagate input probability distributions through the physical model. The effort documented in this thesis towards this overall objective consists of : i) defining a process for selecting critical passive components and related aging mechanisms, ii) aging model selection, iii) calculating the probability that aging would cause the component to fail, iv) uncertainty/sensitivity analyses, v) procedure development for modifying an existing PRA to accommodate consideration of passive component failures, and, vi) including the calculated failure probability in the modified PRA. The proposed methodology is applied to pressurizer surge line pipe weld aging and steam generator tube degradation in pressurized water reactors.

  19. Design of a mercury Propellant Storage and Distribution assembly

    NASA Technical Reports Server (NTRS)

    Holcomb, L. B.; Womack, J. R.

    1973-01-01

    A study has been conducted of a Propellant Storage and Distribution (PSD) assembly for a solar electric propulsion (SEP) thrust subsystem. As a result of the trade-off study an elastomeric diaphragm propellant tank with nitrogen blowdown pressurization was the method selected for propellant expulsion. This study included the following propellant management devices: surface tension, metallic bellows, and metallic and elastomeric diaphragms. Pressurant supply concepts investigated were blowdown, externally pressure regulated, vaporizing Freon 113, and heated CO2/Zeolite. The configuration selected consists of a single propellant tank, a single main propellant latching-solenoid valve, and individual thruster latching-solenoid valves. Stainless steel was the selected tankage material and AF-E-332 was the selected diaphragm material. The PSD design characteristics and interfaces are summarized.

  20. An Analysis of Predator Selection to Affect Aposematic Coloration in a Poison Frog Species.

    PubMed

    Dreher, Corinna E; Cummings, Molly E; Pröhl, Heike

    2015-01-01

    Natural selection is widely noted to drive divergence of phenotypic traits. Predation pressure can facilitate morphological divergence, for example the evolution of both cryptic and conspicuous coloration in animals. In this context Dendrobatid frogs have been used to study evolutionary forces inducing diversity in protective coloration. The polytypic strawberry poison frog (Oophaga pumilio) shows strong divergence in aposematic coloration among populations. To investigate whether predation pressure is important for color divergence among populations of O. pumilio we selected four mainland populations and two island populations from Costa Rica and Panama. Spectrometric measurements of body coloration were used to calculate color and brightness contrasts of frogs as an indicator of conspicuousness for the visual systems of several potential predators (avian, crab and snake) and a conspecific observer. Additionally, we conducted experiments using clay model frogs of different coloration to investigate whether the local coloration of frogs is better protected than non-local color morphs, and if predator communities vary among populations. Overall predation risk differed strongly among populations and interestingly was higher on the two island populations. Imprints on clay models indicated that birds are the main predators while attacks of other predators were rare. Furthermore, clay models of local coloration were equally likely to be attacked as those of non-local coloration. Overall conspicuousness (and brightness contrast) of local frogs was positively correlated with attack rates by birds across populations. Together with results from earlier studies we conclude that conspicuousness honestly indicates toxicity to avian predators. The different coloration patterns among populations of strawberry poison frogs in combination with behavior and toxicity might integrate into equally efficient anti-predator strategies depending on local predation and other ecological factors.

  1. An Analysis of Predator Selection to Affect Aposematic Coloration in a Poison Frog Species

    PubMed Central

    Dreher, Corinna E.; Cummings, Molly E.; Pröhl, Heike

    2015-01-01

    Natural selection is widely noted to drive divergence of phenotypic traits. Predation pressure can facilitate morphological divergence, for example the evolution of both cryptic and conspicuous coloration in animals. In this context Dendrobatid frogs have been used to study evolutionary forces inducing diversity in protective coloration. The polytypic strawberry poison frog (Oophaga pumilio) shows strong divergence in aposematic coloration among populations. To investigate whether predation pressure is important for color divergence among populations of O. pumilio we selected four mainland populations and two island populations from Costa Rica and Panama. Spectrometric measurements of body coloration were used to calculate color and brightness contrasts of frogs as an indicator of conspicuousness for the visual systems of several potential predators (avian, crab and snake) and a conspecific observer. Additionally, we conducted experiments using clay model frogs of different coloration to investigate whether the local coloration of frogs is better protected than non-local color morphs, and if predator communities vary among populations. Overall predation risk differed strongly among populations and interestingly was higher on the two island populations. Imprints on clay models indicated that birds are the main predators while attacks of other predators were rare. Furthermore, clay models of local coloration were equally likely to be attacked as those of non-local coloration. Overall conspicuousness (and brightness contrast) of local frogs was positively correlated with attack rates by birds across populations. Together with results from earlier studies we conclude that conspicuousness honestly indicates toxicity to avian predators. The different coloration patterns among populations of strawberry poison frogs in combination with behavior and toxicity might integrate into equally efficient anti-predator strategies depending on local predation and other ecological factors. PMID:26110826

  2. Design principles for high–pressure force fields: Aqueous TMAO solutions from ambient to kilobar pressures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hölzl, Christoph; Horinek, Dominik, E-mail: dominik.horinek@ur.de; Kibies, Patrick

    Accurate force fields are one of the major pillars on which successful molecular dynamics simulations of complex biomolecular processes rest. They have been optimized for ambient conditions, whereas high-pressure simulations become increasingly important in pressure perturbation studies, using pressure as an independent thermodynamic variable. Here, we explore the design of non-polarizable force fields tailored to work well in the realm of kilobar pressures – while avoiding complete reparameterization. Our key is to first compute the pressure-induced electronic and structural response of a solute by combining an integral equation approach to include pressure effects on solvent structure with a quantum-chemical treatmentmore » of the solute within the embedded cluster reference interaction site model (EC-RISM) framework. Next, the solute’s response to compression is taken into account by introducing pressure-dependence into selected parameters of a well-established force field. In our proof-of-principle study, the full machinery is applied to N,N,N-trimethylamine-N-oxide (TMAO) in water being a potent osmolyte that counteracts pressure denaturation. EC-RISM theory is shown to describe well the charge redistribution upon compression of TMAO(aq) to 10 kbar, which is then embodied in force field molecular dynamics by pressure-dependent partial charges. The performance of the high pressure force field is assessed by comparing to experimental and ab initio molecular dynamics data. Beyond its broad usefulness for designing non-polarizable force fields for extreme thermodynamic conditions, a good description of the pressure-response of solutions is highly recommended when constructing and validating polarizable force fields.« less

  3. Design principles for high-pressure force fields: Aqueous TMAO solutions from ambient to kilobar pressures.

    PubMed

    Hölzl, Christoph; Kibies, Patrick; Imoto, Sho; Frach, Roland; Suladze, Saba; Winter, Roland; Marx, Dominik; Horinek, Dominik; Kast, Stefan M

    2016-04-14

    Accurate force fields are one of the major pillars on which successful molecular dynamics simulations of complex biomolecular processes rest. They have been optimized for ambient conditions, whereas high-pressure simulations become increasingly important in pressure perturbation studies, using pressure as an independent thermodynamic variable. Here, we explore the design of non-polarizable force fields tailored to work well in the realm of kilobar pressures--while avoiding complete reparameterization. Our key is to first compute the pressure-induced electronic and structural response of a solute by combining an integral equation approach to include pressure effects on solvent structure with a quantum-chemical treatment of the solute within the embedded cluster reference interaction site model (EC-RISM) framework. Next, the solute's response to compression is taken into account by introducing pressure-dependence into selected parameters of a well-established force field. In our proof-of-principle study, the full machinery is applied to N,N,N-trimethylamine-N-oxide (TMAO) in water being a potent osmolyte that counteracts pressure denaturation. EC-RISM theory is shown to describe well the charge redistribution upon compression of TMAO(aq) to 10 kbar, which is then embodied in force field molecular dynamics by pressure-dependent partial charges. The performance of the high pressure force field is assessed by comparing to experimental and ab initio molecular dynamics data. Beyond its broad usefulness for designing non-polarizable force fields for extreme thermodynamic conditions, a good description of the pressure-response of solutions is highly recommended when constructing and validating polarizable force fields.

  4. Sexual conflict explains the extraordinary diversity of mechanisms regulating mitochondrial inheritance.

    PubMed

    Radzvilavicius, Arunas L; Lane, Nick; Pomiankowski, Andrew

    2017-10-26

    Mitochondria are predominantly inherited from the maternal gamete, even in unicellular organisms. Yet an extraordinary array of mechanisms enforce uniparental inheritance, which implies shifting selection pressures and multiple origins. We consider how this high turnover in mechanisms controlling uniparental inheritance arises using a novel evolutionary model in which control of mitochondrial transmission occurs either during spermatogenesis (by paternal nuclear genes) or at/after fertilization (by maternal nuclear genes). The model treats paternal leakage as an evolvable trait. Our evolutionary analysis shows that maternal control consistently favours strict uniparental inheritance with complete exclusion of sperm mitochondria, whereas some degree of paternal leakage of mitochondria is an expected outcome under paternal control. This difference arises because mito-nuclear linkage builds up with maternal control, allowing the greater variance created by asymmetric inheritance to boost the efficiency of purifying selection and bring benefits in the long term. In contrast, under paternal control, mito-nuclear linkage tends to be much weaker, giving greater advantage to the mixing of cytotypes, which improves mean fitness in the short term, even though it imposes a fitness cost to both mating types in the long term. Sexual conflict is an inevitable outcome when there is competition between maternal and paternal control of mitochondrial inheritance. If evolution has led to complete uniparental inheritance through maternal control, it creates selective pressure on the paternal nucleus in favour of subversion through paternal leakage, and vice versa. This selective divergence provides a reason for the repeated evolution of novel mechanisms that regulate the transmission of paternal mitochondria, both in the fertilized egg and spermatogenesis. Our analysis suggests that the widespread occurrence of paternal leakage and prevalence of heteroplasmy are natural outcomes of this sexual conflict.

  5. Wet atmospheric generation apparatus

    NASA Technical Reports Server (NTRS)

    Hamner, Richard M. (Inventor); Allen, Janice K. (Inventor)

    1990-01-01

    The invention described relates to an apparatus for providing a selectively humidified gas to a camera canister containing cameras and film used in space. A source of pressurized gas (leak test gas or motive gas) is selected by a valve, regulated to a desired pressure by a regulator, and routed through an ejector (venturi device). A regulated source of water vapor in the form of steam from a heated reservoir is coupled to a low pressure region of the ejector which mixes with high velocity gas flow through the ejector. This mixture is sampled by a dew point sensor to obtain dew point thereof (ratio of water vapor to gas) and the apparatus adjusted by varying gas pressure or water vapor to provide a mixture at a connector having selected humidity content.

  6. Exploring the potential uses of value-added metrics in the context of postgraduate medical education.

    PubMed

    Gregory, Simon; Patterson, Fiona; Baron, Helen; Knight, Alec; Walsh, Kieran; Irish, Bill; Thomas, Sally

    2016-10-01

    Increasing pressure is being placed on external accountability and cost efficiency in medical education and training internationally. We present an illustrative data analysis of the value-added of postgraduate medical education. We analysed historical selection (entry) and licensure (exit) examination results for trainees sitting the UK Membership of the Royal College of General Practitioners (MRCGP) licensing examination (N = 2291). Selection data comprised: a clinical problem solving test (CPST); a situational judgement test (SJT); and a selection centre (SC). Exit data was an applied knowledge test (AKT) from MRCGP. Ordinary least squares (OLS) regression analyses were used to model differences in attainment in the AKT based on performance at selection (the value-added score). Results were aggregated to the regional level for comparisons. We discovered significant differences in the value-added score between regional training providers. Whilst three training providers confer significant value-added, one training provider was significantly lower than would be predicted based on the attainment of trainees at selection. Value-added analysis in postgraduate medical education potentially offers useful information, although the methodology is complex, controversial, and has significant limitations. Developing models further could offer important insights to support continuous improvement in medical education in future.

  7. Dihydrofolate-Reductase Mutations in Plasmodium knowlesi Appear Unrelated to Selective Drug Pressure from Putative Human-To-Human Transmission in Sabah, Malaysia.

    PubMed

    Grigg, Matthew J; Barber, Bridget E; Marfurt, Jutta; Imwong, Mallika; William, Timothy; Bird, Elspeth; Piera, Kim A; Aziz, Ammar; Boonyuen, Usa; Drakeley, Christopher J; Cox, Jonathan; White, Nicholas J; Cheng, Qin; Yeo, Tsin W; Auburn, Sarah; Anstey, Nicholas M

    2016-01-01

    Malaria caused by zoonotic Plasmodium knowlesi is an emerging threat in Eastern Malaysia. Despite demonstrated vector competency, it is unknown whether human-to-human (H-H) transmission is occurring naturally. We sought evidence of drug selection pressure from the antimalarial sulfadoxine-pyrimethamine (SP) as a potential marker of H-H transmission. The P. knowlesi dihdyrofolate-reductase (pkdhfr) gene was sequenced from 449 P. knowlesi malaria cases from Sabah (Malaysian Borneo) and genotypes evaluated for association with clinical and epidemiological factors. Homology modelling using the pvdhfr template was used to assess the effect of pkdhfr mutations on the pyrimethamine binding pocket. Fourteen non-synonymous mutations were detected, with the most common being at codon T91P (10.2%) and R34L (10.0%), resulting in 21 different genotypes, including the wild-type, 14 single mutants, and six double mutants. One third of the P. knowlesi infections were with pkdhfr mutants; 145 (32%) patients had single mutants and 14 (3%) had double-mutants. In contrast, among the 47 P. falciparum isolates sequenced, three pfdhfr genotypes were found, with the double mutant 108N+59R being fixed and the triple mutants 108N+59R+51I and 108N+59R+164L occurring with frequencies of 4% and 8%, respectively. Two non-random spatio-temporal clusters were identified with pkdhfr genotypes. There was no association between pkdhfr mutations and hyperparasitaemia or malaria severity, both hypothesized to be indicators of H-H transmission. The orthologous loci associated with resistance in P. falciparum were not mutated in pkdhfr. Subsequent homology modelling of pkdhfr revealed gene loci 13, 53, 120, and 173 as being critical for pyrimethamine binding, however, there were no mutations at these sites among the 449 P. knowlesi isolates. Although moderate diversity was observed in pkdhfr in Sabah, there was no evidence this reflected selective antifolate drug pressure in humans.

  8. The bioinformatics of nucleotide sequence coding for proteins requiring metal coenzymes and proteins embedded with metals

    NASA Astrophysics Data System (ADS)

    Tremberger, G.; Dehipawala, Sunil; Cheung, E.; Holden, T.; Sullivan, R.; Nguyen, A.; Lieberman, D.; Cheung, T.

    2015-09-01

    All metallo-proteins need post-translation metal incorporation. In fact, the isotope ratio of Fe, Cu, and Zn in physiology and oncology have emerged as an important tool. The nickel containing F430 is the prosthetic group of the enzyme methyl coenzyme M reductase which catalyzes the release of methane in the final step of methano-genesis, a prime energy metabolism candidate for life exploration space mission in the solar system. The 3.5 Gyr early life sulfite reductase as a life switch energy metabolism had Fe-Mo clusters. The nitrogenase for nitrogen fixation 3 billion years ago had Mo. The early life arsenite oxidase needed for anoxygenic photosynthesis energy metabolism 2.8 billion years ago had Mo and Fe. The selection pressure in metal incorporation inside a protein would be quantifiable in terms of the related nucleotide sequence complexity with fractal dimension and entropy values. Simulation model showed that the studied metal-required energy metabolism sequences had at least ten times more selection pressure relatively in comparison to the horizontal transferred sequences in Mealybug, guided by the outcome histogram of the correlation R-sq values. The metal energy metabolism sequence group was compared to the circadian clock KaiC sequence group using magnesium atomic level bond shifting mechanism in the protein, and the simulation model would suggest a much higher selection pressure for the energy life switch sequence group. The possibility of using Kepler 444 as an example of ancient life in Galaxy with the associated exoplanets has been proposed and is further discussed in this report. Examples of arsenic metal bonding shift probed by Synchrotron-based X-ray spectroscopy data and Zn controlled FOXP2 regulated pathways in human and chimp brain studied tissue samples are studied in relationship to the sequence bioinformatics. The analysis results suggest that relatively large metal bonding shift amount is associated with low probability correlation R-sq outcome in the bioinformatics simulation.

  9. Perceptions of selected science careers by African American high school males

    NASA Astrophysics Data System (ADS)

    Ijames, Erika Denise

    Research indicates that internal and external factors such as role models, stereotypes, and pressures placed on African American males by their family and friends influence their perceptions of science careers (Assibey-Mensah, 1997; Hess & Leal, 1997; Jacobowitz, 1983; Maple & Stage, 1991; Thomas, 1989; Ware & Lee, 1988). The purpose of this research was to investigate the perceptions of African American high school males about selected science careers based on apparent internal and external factors. Two questions guided this research: (1) What are high school African American males' perceptions of science careers? (2) What influences high school African American males' perceptions of science careers? This research was based on a pilot study in which African American college males perceived a selection of science careers along racial and gender lines. The follow-up investigation was conducted at Rockriver High School in Acorn County, and the participants were three college-bound African American males. The decision to choose males was based on the concept of occupational niching along gender lines. In biology, niching is defined as the role of a particular species regarding space and reproduction, and its interactions with other factors. During the seven-week period of the students' senior year, they met with the researcher to discuss their perceptions of science careers. An ethnographic approach was used to allow a richer and thicker narrative to occur. Critical theory was used to describe and interpret the voices of the participants from a social perspective. The data collected were analyzed using a constant comparative analysis technique. The participants revealed role models, negative stereotypes, peer pressure, social pressures, and misconceptions as some of the factors that influenced their perceptions of science careers. Results of this research suggest that by dispelling the misconceptions, educators can positively influence the attitudes and perceptions of their students about science careers and possibly increase the number of African American men as well as other minorities currently underrepresented in some science careers.

  10. Braze alloy process and strength characterization studies for 18 nickel grade 200 maraging steel with application to wind tunnel models

    NASA Technical Reports Server (NTRS)

    Bradshaw, James F.; Sandefur, Paul G., Jr.; Young, Clarence P., Jr.

    1991-01-01

    A comprehensive study of braze alloy selection process and strength characterization with application to wind tunnel models is presented. The applications for this study include the installation of stainless steel pressure tubing in model airfoil sections make of 18 Ni 200 grade maraging steel and the joining of wing structural components by brazing. Acceptable braze alloys for these applications are identified along with process, thermal braze cycle data, and thermal management procedures. Shear specimens are used to evaluate comparative shear strength properties for the various alloys at both room and cryogenic (-300 F) temperatures and include the effects of electroless nickel plating. Nickel plating was found to significantly enhance both the wetability and strength properties for the various braze alloys studied. The data are provided for use in selecting braze alloys for use with 18 Ni grade 200 steel in the design of wind tunnel models to be tested in an ambient or cryogenic environment.

  11. Initial development of an ablative leading edge for the space shuttle orbiter

    NASA Technical Reports Server (NTRS)

    Daforno, G.; Rose, L.; Graham, J.; Roy, P.

    1974-01-01

    A state-of-the-art preliminary design for typical wing areas is developed. Seven medium-density ablators (with/without honeycomb, flown on Apollo, Prime, X15A2) are evaluated. The screening tests include: (1) leading-edge models sequentially subjected to ascent heating, cold soak, entry heating, post-entry pressure fluctuations, and touchdown shock, and (2) virgin/charred models subjected to bondline strains. Two honeycomb reinforced 30 pcf elastomeric ablators were selected. Roughness/recession degradation of low speed aerodynamics appears acceptable. The design, including attachments, substructure and joints, is presented.

  12. Metabolic benefits of 1-(3-(4-(o-tolyl)piperazin-1-yl)propyl)pyrrolidin-2-one: a non-selective α-adrenoceptor antagonist.

    PubMed

    Kotańska, Magdalena; Kulig, Katarzyna; Marcinkowska, Monika; Bednarski, Marek; Malawska, Katarzyna; Zaręba, Paula

    2018-05-01

    Previous studies have shown that several components of the metabolic syndrome, such as hypertension, obesity or imbalanced lipid and carbohydrate homeostasis, are associated with the sympathetic nervous system overactivity. Therefore, the inhibition of the adrenergic nervous system seems to be a reasonable and appropriate therapeutic approach for the treatment of metabolic disturbances. It has been suggested that non-selective adrenoceptor antagonists could be particularly beneficial, since α 1 -adrenoceptor antagonists can improve disrupted lipid and carbohydrate profiles, while the inhibition of the α 2 -adrenoceptor may contribute to body weight reduction. The aim of the present study was to investigate the metabolic benefits deriving from administration of a non-selective α-adrenoceptor antagonist from the group of pyrrolidin-2-one derivatives. The aim of the present study was to investigate the potential metabolic benefits deriving from chronic administration of a non-selective α-adrenoceptor antagonist, from the group of pyrrolidin-2-one derivatives. The α 1 - and α 2 -adrenoreceptor affinities of the tested compound-1-(3-(4-(o-tolyl)piperazin-1-yl)propyl)pyrrolidin-2-one had been investigated previously by means of the radioligand binding assay. In the present study, we extended the pharmacological profile characteristics of the selected molecule by additional intrinistic activity assays. Next, we investigated the influence of the tested compound on body weight, hyperglycemia, hypertriglyceridemia, blood pressure in the animal model of obesity induced by a high-fat diet, and additionally we measured the spontaneous activity and body temperature. The intrinistic activity studies revealed that the tested compound is a potent, non-selective antagonist of α 1B and α 2A -adrenoceptors. After the chronic administration of the tested compound, we observed reduced level of triglycerides and glucose in the rat plasma. Interestingly, the tested did not reduce the body weight and did not influence the blood pressure in normotensive animals. Additionally, the administration of the tested compound did not change the animals' spontaneous activity and body temperature. Non-selective α-adrenoceptor antagonist seems to carry potential benefits in the improvement of the reduction of elevated glucose and triglyceride level. The lack of influence on blood pressure suggests that compounds with such a pharmacological profile may be particulary beneficial for the patients with disturbed lipid and carbohydrate profile, who do not suffer from hypertension. These results are particulary valuable, since currently there are no safe α 2A -adrenoceptor antagonist drugs available in clinical use with the ability to modulate hyperglycemia that would not affect blood pressure.

  13. Experimental Verification of Buffet Calculation Procedure Using Unsteady PSP

    NASA Technical Reports Server (NTRS)

    Panda, Jayanta

    2016-01-01

    Typically a limited number of dynamic pressure sensors are employed to determine the unsteady aerodynamic forces on large, slender aerospace structures. The estimated forces are known to be very sensitive to the number of the dynamic pressure sensors and the details of the integration scheme. This report describes a robust calculation procedure, based on frequency-specific correlation lengths, that is found to produce good estimation of fluctuating forces from a few dynamic pressure sensors. The validation test was conducted on a flat panel, placed on the floor of a wind tunnel, and was subjected to vortex shedding from a rectangular bluff-body. The panel was coated with fast response Pressure Sensitive Paint (PSP), which allowed time-resolved measurements of unsteady pressure fluctuations on a dense grid of spatial points. The first part of the report describes the detail procedure used to analyze the high-speed, PSP camera images. The procedure includes steps to reduce contamination by electronic shot noise, correction for spatial non-uniformities, and lamp brightness variation, and finally conversion of fluctuating light intensity to fluctuating pressure. The latter involved applying calibration constants from a few dynamic pressure sensors placed at selective points on the plate. Excellent comparison in the spectra, coherence and phase, calculated via PSP and dynamic pressure sensors validated the PSP processing steps. The second part of the report describes the buffet validation process, for which the first step was to use pressure histories from all PSP points to determine the "true" force fluctuations. In the next step only a selected number of pixels were chosen as "virtual sensors" and a correlation-length based buffet calculation procedure was applied to determine "modeled" force fluctuations. By progressively decreasing the number of virtual sensors it was observed that the present calculation procedure was able to make a close estimate of the "true" unsteady forces only from four sensors. It is believed that the present work provides the first validation of the buffet calculation procedure which has been used for the development of many space vehicles.

  14. Animal model of neuropathic tachycardia syndrome

    NASA Technical Reports Server (NTRS)

    Carson, R. P.; Appalsamy, M.; Diedrich, A.; Davis, T. L.; Robertson, D.

    2001-01-01

    Clinically relevant autonomic dysfunction can result from either complete or partial loss of sympathetic outflow to effector organs. Reported animal models of autonomic neuropathy have aimed to achieve complete lesions of sympathetic nerves, but incomplete lesions might be more relevant to certain clinical entities. We hypothesized that loss of sympathetic innervation would result in a predicted decrease in arterial pressure and a compensatory increase in heart rate. Increased heart rate due to loss of sympathetic innervation is seemingly paradoxical, but it provides a mechanistic explanation for clinical autonomic syndromes such as neuropathic postural tachycardia syndrome. Partially dysautonomic animals were generated by selectively lesioning postganglionic sympathetic neurons with 150 mg/kg 6-hydroxydopamine hydrobromide in male Sprague-Dawley rats. Blood pressure and heart rate were monitored using radiotelemetry. Systolic blood pressure decreased within hours postlesion (Delta>20 mm Hg). Within 4 days postlesion, heart rate rose and remained elevated above control levels. The severity of the lesion was determined functionally and pharmacologically by spectral analysis and responsiveness to tyramine. Low-frequency spectral power of systolic blood pressure was reduced postlesion and correlated with the diminished tyramine responsiveness (r=0.9572, P=0.0053). The tachycardia was abolished by treatment with the beta-antagonist propranolol, demonstrating that it was mediated by catecholamines acting on cardiac beta-receptors. Partial lesions of the autonomic nervous system have been hypothesized to underlie many disorders, including neuropathic postural tachycardia syndrome. This animal model may help us better understand the pathophysiology of autonomic dysfunction and lead to development of therapeutic interventions.

  15. Research of working pulsation in closed angle based on rotating-sleeve distributing-flow system

    NASA Astrophysics Data System (ADS)

    Zhang, Yanjun; Zhang, Hongxin; Zhao, Qinghai; Jiang, Xiaotian; Cheng, Qianchang

    2017-08-01

    In order to reduce negative effects including hydraulic impact, noise and mechanical vibration, compression and expansion of piston pump in closed volume are used to optimize the angle between valve port and chamber. In addition, the mathematical model about pressurization and depressurization in pump chamber are analyzed based on distributing-flow characteristic, and it is necessary to use simulation software Fluent to simulate the distributing-flow fluid model so as to select the most suitable closed angle. As a result, when compression angle is 3°, the angle is closest to theoretical analysis and has the minimum influence on flow and pump pressure characteristic. Meanwhile, cavitation phenomenon appears in pump chamber in different closed angle on different degrees. Besides the flow pulsation is increasingly smaller with increasing expansion angle. Thus when expansion angle is 2°, the angle is more suitable for distributing-flow system.

  16. Results of transonic wind tunnel tests on an 0.010-scale space shuttle mated vehicle model 72-OTS in the LaRC 8-foot TPT (IA43)

    NASA Technical Reports Server (NTRS)

    Petrozzi, M. T.; Milam, M. D.

    1975-01-01

    Experimental aerodynamic investigations were conducted in NASA/Langley 8-Foot transonic pressure tunnel on a sting mounted 0.010-scale outer mold line model of 104A/B configuration of the Rockwell International space shuttle vehicle. Component aerodynamic force and moment data and base and balance cavity pressures were recorded over an angle of attack range of -10 deg to +10 deg at Mach numbers of 0.6, 0.8, 0.9, 0.98, 1.13, and 1.2. Selected configurations were tested at sideslip angles from -10 deg to +10 deg. For all configurations involving the orbit, wing bending and torsion were measured on the right wing. Inboard elevon setting of 0 deg, +4 deg and +8 deg and outboard settings of 0 deg, +4 deg and +8 deg were tested.

  17. Semiclassical Calculation of Reaction Rate Constants for Homolytical Dissociations

    NASA Technical Reports Server (NTRS)

    Cardelino, Beatriz H.

    2002-01-01

    There is growing interest in extending organometallic chemical vapor deposition (OMCVD) to III-V materials that exhibit large thermal decomposition at their optimum growth temperature, such as indium nitride. The group III nitrides are candidate materials for light-emitting diodes and semiconductor lasers operating into the blue and ultraviolet regions. To overcome decomposition of the deposited compound, the reaction must be conducted at high pressures, which causes problems of uniformity. Microgravity may provide the venue for maintaining conditions of laminar flow under high pressure. Since the selection of optimized parameters becomes crucial when performing experiments in microgravity, efforts are presently geared to the development of computational OMCVD models that will couple the reactor fluid dynamics with its chemical kinetics. In the present study, we developed a method to calculate reaction rate constants for the homolytic dissociation of III-V compounds for modeling OMCVD. The method is validated by comparing calculations with experimental reaction rate constants.

  18. The impact of satellite temperature soundings on the forecasts of a small national meteorological service

    NASA Technical Reports Server (NTRS)

    Wolfson, N.; Thomasell, A.; Alperson, Z.; Brodrick, H.; Chang, J. T.; Gruber, A.; Ohring, G.

    1984-01-01

    The impact of introducing satellite temperature sounding data on a numerical weather prediction model of a national weather service is evaluated. A dry five level, primitive equation model which covers most of the Northern Hemisphere, is used for these experiments. Series of parallel forecast runs out to 48 hours are made with three different sets of initial conditions: (1) NOSAT runs, only conventional surface and upper air observations are used; (2) SAT runs, satellite soundings are added to the conventional data over oceanic regions and North Africa; and (3) ALLSAT runs, the conventional upper air observations are replaced by satellite soundings over the entire model domain. The impact on the forecasts is evaluated by three verification methods: the RMS errors in sea level pressure forecasts, systematic errors in sea level pressure forecasts, and errors in subjective forecasts of significant weather elements for a selected portion of the model domain. For the relatively short range of the present forecasts, the major beneficial impacts on the sea level pressure forecasts are found precisely in those areas where the satellite sounding are inserted and where conventional upper air observations are sparse. The RMS and systematic errors are reduced in these regions. The subjective forecasts of significant weather elements are improved with the use of the satellite data. It is found that the ALLSAT forecasts are of a quality comparable to the SAR forecasts.

  19. Evolution of egg target size: an analysis of selection on correlated characters.

    PubMed

    Podolsky, R D

    2001-12-01

    In broadcast-spawning marine organisms, chronic sperm limitation should select for traits that improve chances of sperm-egg contact. One mechanism may involve increasing the size of the physical or chemical target for sperm. However, models of fertilization kinetics predict that increasing egg size can reduce net zygote production due to an associated decline in fecundity. An alternate method for increasing physical target size is through addition of energetically inexpensive external structures, such as the jelly coats typical of eggs in species from several phyla. In selection experiments on eggs of the echinoid Dendraster excentricus, in which sperm was used as the agent of selection, eggs with larger overall targets were favored in fertilization. Actual shifts in target size following selection matched quantitative predictions of a model that assumed fertilization was proportional to target size. Jelly volume and ovum volume, two characters that contribute to target size, were correlated both within and among females. A cross-sectional analysis of selection partitioned the independent effects of these characters on fertilization success and showed that they experience similar direct selection pressures. Coupled with data on relative organic costs of the two materials, these results suggest that, under conditions where fertilization is limited by egg target size, selection should favor investment in low-cost accessory structures and may have a relatively weak effect on the evolution of ovum size.

  20. Method and apparatus for the selective separation of gaseous coal gasification products by pressure swing adsorption

    DOEpatents

    Ghate, M.R.; Yang, R.T.

    1985-10-03

    Bulk separation of the gaseous components of multi-component gases provided by the gasification of coal including hydrogen, carbon monoxide, methane, and acid gases (carbon dioxide plus hydrogen sulfide) are selectively adsorbed by a pressure swing adsorption technique using activated carbon zeolite or a combination thereof as the adsorbent. By charging a column containing the adsorbent with a gas mixture and pressurizing the column to a pressure sufficient to cause the adsorption of the gases and then reducing the partial pressure of the contents of the column, the gases are selectively and sequentially desorbed. Hydrogen, the least absorbable gas of the gaseous mixture, is the first gas to be desorbed and is removed from the column in a co-current direction followed by the carbon monoxide, hydrogen and methane. With the pressure in the column reduced to about atmospheric pressure the column is evacuated in a countercurrent direction to remove the acid gases from the column. The present invention is particularly advantageous as a producer of high purity hydrogen from gaseous products of coal gasification and as an acid gas scrubber. 2 figs., 2 tabs.

  1. Experimental Investigation of Inlet Distortion in a Multistage Axial Compressor

    NASA Astrophysics Data System (ADS)

    Rusu, Razvan

    The primary objective of this research is to present results and methodologies used to study total pressure inlet distortion in a multi-stage axial compressor environment. The study was performed at the Purdue 3-Stage Axial Compressor Facility (P3S) which models the final three stages of a production turbofan engine's high-pressure compressor (HPC). The goal of this study was twofold; first, to design, implement, and validate a circumferentially traversable total pressure inlet distortion generation system, and second, to demonstrate data acquisition methods to characterize the inter-stage total pressure flow fields to study the propagation and attenuation of a one-per-rev total pressure distortion. The datasets acquired for this study are intended to support the development and validation of novel computational tools and flow physics models for turbomachinery flow analysis. Total pressure inlet distortion was generated using a series of low-porosity wire gauze screens placed upstream of the compressor in the inlet duct. The screens are mounted to a rotatable duct section that can be precisely controlled. The P3S compressor features fixed instrumentation stations located at the aerodynamic interface plane (AIP) and downstream and upstream of each vane row. Furthermore, the compressor features individually indexable stator vanes which can be traverse by up to two vane passages. Using a series of coordinated distortion and vane traverses, the total pressure flow field at the AIP and subsequent inter-stage stations was characterized with a high circumferential resolution. The uniformity of the honeycomb carrier was demonstrated by characterizing the flow field at the AIP while no distortion screens where installed. Next, the distortion screen used for this study was selected following three iterations of porosity reduction. The selected screen consisted of a series of layered screens with a 100% radial extent and a 120° circumferential extent. A detailed total pressure flow field characterization of the AIP was performed using the selected screen at nominal, low, and high compressor loading. Thermal anemometry was used to characterize the spatial variation in turbulence intensity at the AIP in an effort to further define inlet boundary conditions for future computational investigations. Two data acquisition methods for the study of distortion propagation and attenuation were utilized in this study. The first method approximated the bulk flow through each vane passage using a single rake measurement positioned near the center of the passage. All vane passages were measured virtually by rotating the distortion upstream by an increment equal to one vane passage. This method proved successful in tracking the distortion propagation and attenuation from the AIP up until the compressor exit. A second, more detailed, inter-stage flow field characterization method was used that generated a total pressure field with a circumferential resolution of 880 increments, or one every 0.41°. The resulting fields demonstrated the importance of secondary flows in the propagation of a total pressure distortion at the different loading conditions investigated. A second objective of this research was to document proposals and design efforts to outfit the existing P3S research compressor with a strain gage telemetry system. The purpose of this system is to validate and supplement existing blade tip timing data on the embedded rotor stage to support the development and validation of novel aeromechanical analysis tools. Integration strategies and telemetry considerations are discussed based on proposals and consultation provided by suppliers.

  2. Strawberry puree processed by thermal, high pressure, or power ultrasound: Process energy requirements and quality modeling during storage.

    PubMed

    Sulaiman, Alifdalino; Farid, Mohammed; Silva, Filipa Vm

    2017-06-01

    Strawberry puree was processed for 15 min using thermal (65 ℃), high-pressure processing (600 MPa, 48 ℃), and ultrasound (24 kHz, 1.3 W/g, 33 ℃). These conditions were selected based on similar polyphenoloxidase inactivation (11%-18%). The specific energies required for the above-mentioned thermal, high-pressure processing, and power ultrasound processes were 240, 291, and 1233 kJ/kg, respectively. Then, the processed strawberry was stored at 3 ℃ and room temperature for 30 days. The constant pH (3.38±0.03) and soluble solids content (9.03 ± 0.25°Brix) during storage indicated a microbiological stability. Polyphenoloxidase did not reactivate during storage. The high-pressure processing and ultrasound treatments retained the antioxidant activity (70%-74%) better than the thermal process (60%), and high-pressure processing was the best treatment after 30 days of ambient storage to preserve antioxidant activity. Puree treated with ultrasound presented more color retention after processing and after ambient storage than the other preservation methods. For the three treatments, the changes of antioxidant activity and total color difference during storage were described by the fractional conversion model with rate constants k ranging between 0.03-0.09 and 0.06-0.22 day  - 1 , respectively. In resume, high-pressure processing and thermal processes required much less energy than ultrasound for the same polyphenoloxidase inactivation in strawberry. While high-pressure processing retained better the antioxidant activity of the strawberry puree during storage, the ultrasound treatment was better in terms of color retention.

  3. A History of Collapse Factor Modeling and Empirical Data for Cryogenic Propellant Tanks

    NASA Technical Reports Server (NTRS)

    deQuay, Laurence; Hodge, B. Keith

    2010-01-01

    One of the major technical problems associated with cryogenic liquid propellant systems used to supply rocket engines and their subassemblies and components is the phenomenon of propellant tank pressurant and ullage gas collapse. This collapse is mainly caused by heat transfer from ullage gas to tank walls and interfacing propellant, which are both at temperatures well below those of this gas. Mass transfer between ullage gas and cryogenic propellant can also occur and have minor to significant secondary effects that can increase or decrease ullage gas collapse. Pressurant gas is supplied into cryogenic propellant tanks in order to initially pressurize these tanks and then maintain required pressures as propellant is expelled from these tanks. The net effect of pressurant and ullage gas collapse is increased total mass and mass flow rate requirements of pressurant gases. For flight vehicles this leads to significant and undesirable weight penalties. For rocket engine component and subassembly ground test facilities this results in significantly increased facility hardware, construction, and operational costs. "Collapse Factor" is a parameter used to quantify the pressurant and ullage gas collapse. Accurate prediction of collapse factors, through analytical methods and modeling tools, and collection and evaluation of collapse factor data has evolved over the years since the start of space exploration programs in the 1950 s. Through the years, numerous documents have been published to preserve results of studies associated with the collapse factor phenomenon. This paper presents a summary and selected details of prior literature that document the aforementioned studies. Additionally other literature that present studies and results of heat and mass transfer processes, related to or providing important insights or analytical methods for the studies of collapse factor, are presented.

  4. Growth, efficiency, and yield of commercial broilers from 1957, 1978, and 20051

    PubMed Central

    Zuidhof, M. J.; Schneider, B. L.; Carney, V. L.; Korver, D. R.; Robinson, F. E.

    2014-01-01

    The effect of commercial selection on the growth, efficiency, and yield of broilers was studied using 2 University of Alberta Meat Control strains unselected since 1957 and 1978, and a commercial Ross 308 strain (2005). Mixed-sex chicks (n = 180 per strain) were placed into 4 replicate pens per strain, and grown on a current nutritional program to 56 d of age. Weekly front and side profile photographs of 8 birds per strain were collected. Growth rate, feed intake, and measures of feed efficiency including feed conversion ratio, residual feed intake, and residual maintenance energy requirements were characterized. A nonlinear mixed Gompertz growth model was used to predict BW and BW variation, useful for subsequent stochastic growth simulation. Dissections were conducted on 8 birds per strain semiweekly from 21 to 56 d of age to characterize allometric growth of pectoralis muscles, leg meat, abdominal fat pad, liver, gut, and heart. A novel nonlinear analysis of covariance was used to test the hypothesis that allometric growth patterns have changed as a result of commercial selection pressure. From 1957 to 2005, broiler growth increased by over 400%, with a concurrent 50% reduction in feed conversion ratio, corresponding to a compound annual rate of increase in 42 d live BW of 3.30%. Forty-two-day FCR decreased by 2.55% each year over the same 48-yr period. Pectoralis major growth potential increased, whereas abdominal fat decreased due to genetic selection pressure over the same time period. From 1957 to 2005, pectoralis minor yield at 42 d of age was 30% higher in males and 37% higher in females; pectoralis major yield increased by 79% in males and 85% in females. Over almost 50 yr of commercial quantitative genetic selection pressure, intended beneficial changes have been achieved. Unintended changes such as enhanced sexual dimorphism are likely inconsequential, though musculoskeletal, immune function, and parent stock management challenges may require additional attention in future selection programs. PMID:25260522

  5. Impact of droplet evaporation rate on resulting in vitro performance parameters of pressurized metered dose inhalers.

    PubMed

    Sheth, Poonam; Grimes, Matthew R; Stein, Stephen W; Myrdal, Paul B

    2017-08-07

    Pressurized metered dose inhalers (pMDIs) are widely used for the treatment of pulmonary diseases. The overall efficiency of pMDI drug delivery may be defined by in vitro parameters such as the amount of drug that deposits on the model throat and the proportion of the emitted dose that has particles that are sufficiently small to deposit in the lung (i.e., fine particle fraction, FPF). The study presented examines product performance of ten solution pMDI formulations containing a variety of cosolvents with diverse chemical characteristics by cascade impaction with three inlets (USP induction port, Alberta Idealized Throat, and a large volume chamber). Through the data generated in support of this study, it was demonstrated that throat deposition, cascade impactor deposition, FPF, and mass median aerodynamic diameter of solution pMDIs depend on the concentration and vapor pressure of the cosolvent, and the selection of model throat. Theoretical droplet lifetimes were calculated for each formulation using a discrete two-stage evaporation process model and it was determined that the droplet lifetime is highly correlated to throat deposition and FPF indicating that evaporation kinetics significantly influences pMDI drug delivery. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. A general procedure to generate models for urban environmental-noise pollution using feature selection and machine learning methods.

    PubMed

    Torija, Antonio J; Ruiz, Diego P

    2015-02-01

    The prediction of environmental noise in urban environments requires the solution of a complex and non-linear problem, since there are complex relationships among the multitude of variables involved in the characterization and modelling of environmental noise and environmental-noise magnitudes. Moreover, the inclusion of the great spatial heterogeneity characteristic of urban environments seems to be essential in order to achieve an accurate environmental-noise prediction in cities. This problem is addressed in this paper, where a procedure based on feature-selection techniques and machine-learning regression methods is proposed and applied to this environmental problem. Three machine-learning regression methods, which are considered very robust in solving non-linear problems, are used to estimate the energy-equivalent sound-pressure level descriptor (LAeq). These three methods are: (i) multilayer perceptron (MLP), (ii) sequential minimal optimisation (SMO), and (iii) Gaussian processes for regression (GPR). In addition, because of the high number of input variables involved in environmental-noise modelling and estimation in urban environments, which make LAeq prediction models quite complex and costly in terms of time and resources for application to real situations, three different techniques are used to approach feature selection or data reduction. The feature-selection techniques used are: (i) correlation-based feature-subset selection (CFS), (ii) wrapper for feature-subset selection (WFS), and the data reduction technique is principal-component analysis (PCA). The subsequent analysis leads to a proposal of different schemes, depending on the needs regarding data collection and accuracy. The use of WFS as the feature-selection technique with the implementation of SMO or GPR as regression algorithm provides the best LAeq estimation (R(2)=0.94 and mean absolute error (MAE)=1.14-1.16 dB(A)). Copyright © 2014 Elsevier B.V. All rights reserved.

  7. A comparison of mandibular denture base deformation with different impression techniques for implant overdentures.

    PubMed

    Elsyad, Moustafa Abdou; El-Waseef, Fatma Ahmad; Al-Mahdy, Yasmeen Fathy; Fouad, Mohammed Mohammed

    2013-08-01

    This study aimed to evaluate mandibular denture base deformation along with three impression techniques used for implant-retained overdenture. Ten edentulous patients (five men and five women) received two implants in the canine region of the mandible and three duplicate mandibular overdentures which were constructed with mucostatic, selective pressure, and definitive pressure impression techniques. Ball abutments and respective gold matrices were used to connect the overdentures to the implants. Six linear strain gauges were bonded to the lingual polished surface of each duplicate overdenture at midline and implant areas to measure strain during maximal clenching and gum chewing. The strains recorded at midline were compressive while strains at implant areas were tensile. Clenching recorded significant higher strain when compared with gum chewing for all techniques. The mucostatic technique recorded the highest strain and the definite pressure technique recorded the lowest. There was no significant difference between the strain recorded with mucostatic technique and that registered with selective pressure technique. The highest strain was recorded at the level of ball abutment's top with the mucostatic technique during clenching. Definite pressure impression technique for implant-retained mandibular overdenture is associated with minimal denture deformation during function when compared with mucostatic and selective pressure techniques. Reinforcement of the denture base over the implants may be recommended to increase resistance of fracture when mucostatic or selective pressure impression technique is used. © 2012 John Wiley & Sons A/S.

  8. Genome sequencing reveals loci under artificial selection that underlie disease phenotypes in the laboratory rat.

    PubMed

    Atanur, Santosh S; Diaz, Ana Garcia; Maratou, Klio; Sarkis, Allison; Rotival, Maxime; Game, Laurence; Tschannen, Michael R; Kaisaki, Pamela J; Otto, Georg W; Ma, Man Chun John; Keane, Thomas M; Hummel, Oliver; Saar, Kathrin; Chen, Wei; Guryev, Victor; Gopalakrishnan, Kathirvel; Garrett, Michael R; Joe, Bina; Citterio, Lorena; Bianchi, Giuseppe; McBride, Martin; Dominiczak, Anna; Adams, David J; Serikawa, Tadao; Flicek, Paul; Cuppen, Edwin; Hubner, Norbert; Petretto, Enrico; Gauguier, Dominique; Kwitek, Anne; Jacob, Howard; Aitman, Timothy J

    2013-08-01

    Large numbers of inbred laboratory rat strains have been developed for a range of complex disease phenotypes. To gain insights into the evolutionary pressures underlying selection for these phenotypes, we sequenced the genomes of 27 rat strains, including 11 models of hypertension, diabetes, and insulin resistance, along with their respective control strains. Altogether, we identified more than 13 million single-nucleotide variants, indels, and structural variants across these rat strains. Analysis of strain-specific selective sweeps and gene clusters implicated genes and pathways involved in cation transport, angiotensin production, and regulators of oxidative stress in the development of cardiovascular disease phenotypes in rats. Many of the rat loci that we identified overlap with previously mapped loci for related traits in humans, indicating the presence of shared pathways underlying these phenotypes in rats and humans. These data represent a step change in resources available for evolutionary analysis of complex traits in disease models. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Genome Sequencing Reveals Loci under Artificial Selection that Underlie Disease Phenotypes in the Laboratory Rat

    PubMed Central

    Atanur, Santosh S.; Diaz, Ana Garcia; Maratou, Klio; Sarkis, Allison; Rotival, Maxime; Game, Laurence; Tschannen, Michael R.; Kaisaki, Pamela J.; Otto, Georg W.; Ma, Man Chun John; Keane, Thomas M.; Hummel, Oliver; Saar, Kathrin; Chen, Wei; Guryev, Victor; Gopalakrishnan, Kathirvel; Garrett, Michael R.; Joe, Bina; Citterio, Lorena; Bianchi, Giuseppe; McBride, Martin; Dominiczak, Anna; Adams, David J.; Serikawa, Tadao; Flicek, Paul; Cuppen, Edwin; Hubner, Norbert; Petretto, Enrico; Gauguier, Dominique; Kwitek, Anne; Jacob, Howard; Aitman, Timothy J.

    2013-01-01

    Summary Large numbers of inbred laboratory rat strains have been developed for a range of complex disease phenotypes. To gain insights into the evolutionary pressures underlying selection for these phenotypes, we sequenced the genomes of 27 rat strains, including 11 models of hypertension, diabetes, and insulin resistance, along with their respective control strains. Altogether, we identified more than 13 million single-nucleotide variants, indels, and structural variants across these rat strains. Analysis of strain-specific selective sweeps and gene clusters implicated genes and pathways involved in cation transport, angiotensin production, and regulators of oxidative stress in the development of cardiovascular disease phenotypes in rats. Many of the rat loci that we identified overlap with previously mapped loci for related traits in humans, indicating the presence of shared pathways underlying these phenotypes in rats and humans. These data represent a step change in resources available for evolutionary analysis of complex traits in disease models. PaperClip PMID:23890820

  10. Selective deposition of a crystalline Si film by a chemical sputtering process in a high pressure hydrogen plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohmi, Hiromasa, E-mail: ohmi@prec.eng.osaka-u.ac.jp; Yasutake, Kiyoshi; Research Center for Ultra-Precision Science and Technology, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871

    2015-07-28

    The selective deposition of Si films was demonstrated using a chemical sputtering process induced by a high pressure hydrogen plasma at 52.6 kPa (400 Torr). In this chemical sputtering process, the initial deposition rate (R{sub d}) is dependent upon the substrate type. At the initial stage of Si film formation, R{sub d} on glass substrates increased with elapsed time and reached to a constant value. In contrast, R{sub d} on Si substrates remained constant during the deposition. The selective deposition of Si films can be achieved by adjusting the substrate temperature (T{sub sub}) and hydrogen concentration (C{sub H2}) in the process atmosphere.more » For any given deposition time, it was found that an optimum C{sub H2} exists for a given T{sub sub} to realize the selective deposition of a Si film, and the optimum T{sub sub} value tends to increase with decreasing C{sub H2}. According to electron diffraction patterns obtained from the samples, the selectively prepared Si films showed epitaxial-like growth, although the Si films contained many defects. It was revealed by Raman scattering spectroscopy that some of the defects in the Si films were platelet defects induced by excess hydrogen incorporated during Si film formation. Raman spectrum also suggested that Si related radicals (SiH{sub 2}, SiH, Si) with high reactivity contribute to the Si film formation. Simple model was derived as the guideline for achieving the selective growth.« less

  11. Generating a Simulated Fluid Flow Over an Aircraft Surface Using Anisotropic Diffusion

    NASA Technical Reports Server (NTRS)

    Rodriguez, David L. (Inventor); Sturdza, Peter (Inventor)

    2013-01-01

    A fluid-flow simulation over a computer-generated aircraft surface is generated using a diffusion technique. The surface is comprised of a surface mesh of polygons. A boundary-layer fluid property is obtained for a subset of the polygons of the surface mesh. A pressure-gradient vector is determined for a selected polygon, the selected polygon belonging to the surface mesh but not one of the subset of polygons. A maximum and minimum diffusion rate is determined along directions determined using a pressure gradient vector corresponding to the selected polygon. A diffusion-path vector is defined between a point in the selected polygon and a neighboring point in a neighboring polygon. An updated fluid property is determined for the selected polygon using a variable diffusion rate, the variable diffusion rate based on the minimum diffusion rate, maximum diffusion rate, and angular difference between the diffusion-path vector and the pressure-gradient vector.

  12. Developing and upgrading of solar system thermal energy storage simulation models. Technical progress report, March 1, 1979-February 29, 1980

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuhn, J K; von Fuchs, G F; Zob, A P

    1980-05-01

    Two water tank component simulation models have been selected and upgraded. These models are called the CSU Model and the Extended SOLSYS Model. The models have been standardized and links have been provided for operation in the TRNSYS simulation program. The models are described in analytical terms as well as in computer code. Specific water tank tests were performed for the purpose of model validation. Agreement between model data and test data is excellent. A description of the limitations has also been included. Streamlining results and criteria for the reduction of computer time have also been shown for both watermore » tank computer models. Computer codes for the models and instructions for operating these models in TRNSYS have also been included, making the models readily available for DOE and industry use. Rock bed component simulation models have been reviewed and a model selected and upgraded. This model is a logical extension of the Mumma-Marvin model. Specific rock bed tests have been performed for the purpose of validation. Data have been reviewed for consistency. Details of the test results concerned with rock characteristics and pressure drop through the bed have been explored and are reported.« less

  13. Examples of Mass Wasting and Hemipelagic Sedimentation of Brazos-Trinity Basin #4 and Ursa Basin, Northern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Schneider, J.; Moerz, T.; Bartetzko, A.; Iturrino, G. J.; Edeskar, T. M.; Flemings, P. B.; Behrmann, J. H.; John, C. M.

    2005-12-01

    Pleistocene sea level changes influenced the sedimentation history on the passive continental margin of the northern Gulf of Mexico coast. During IODP Expedition 308, the Brazos-Trinity #4 and Ursa Basin were drilled to study -overpressure, fluid flow and deformation processes in a passive margin setting. The Brazos-Trinity Basin #4 is located 200 km south of Galveston, Texas (USA) in ~1400 m water depth below an extended shelf section. Ursa Basin is located 150 km south of New Orleans, Louisiana (USA) in ~1000 m water depth south of the Mississippi river mouth. Despite their similar geotectonic setting both basins show fundamental differences in their style of mass wasting and drape sedimentation. Here we use core descriptions, core photographs, Formation MicroScanner (FMS) data and selected physical properties measurements (magnetic susceptibility, GRAPE density) to illustrate and compare styles of mass wasting and drape sedimentation on selected intervals for the first 4 Marine Isotope Stages. Special emphasis is given to the thickness and frequency of single depositional events. One aim is to estimate the mass wasting / hemipelagic accumulation ratio for both basins and compare it to the average sedimentation rates based on the preliminary shipboard age models. This information will be used in the future to study how sedimentation processes control permeability and pore pressure. In this upcoming project, starting in mid 2006, will use well-logging data to compute continuous porosity, permeability, and pore pressure profiles. These computations require input and reference data obtained from petrophysical and geotechnical core analyses and in situ measurements (e.g. matrix density to calculate porosity from the density log, permeability and porosity to derive porosity-permeability relations, effective stress to calculate pore pressure). Permeability and effective stress will be measured using oedometer tests on undisturbed samples. The detailed lithostratigraphic information, particularly turbidite thickness, and the permeability and pore pressure profiles will be used as input data for one-dimensional modeling of the compression history of two Sites using the civil engineering modeling software PLAXIS.

  14. Predicting mixed-gas adsorption equilibria on activated carbon for precombustion CO2 capture.

    PubMed

    García, S; Pis, J J; Rubiera, F; Pevida, C

    2013-05-21

    We present experimentally measured adsorption isotherms of CO2, H2, and N2 on a phenol-formaldehyde resin-based activated carbon, which had been previously synthesized for the separation of CO2 in a precombustion capture process. The single component adsorption isotherms were measured in a magnetic suspension balance at three different temperatures (298, 318, and 338 K) and over a large range of pressures (from 0 to 3000-4000 kPa). These values cover the temperature and pressure conditions likely to be found in a precombustion capture scenario, where CO2 needs to be separated from a CO2/H2/N2 gas stream at high pressure (~1000-1500 kPa) and with a high CO2 concentration (~20-40 vol %). Data on the pure component isotherms were correlated using the Langmuir, Sips, and dual-site Langmuir (DSL) models, i.e., a two-, three-, and four-parameter model, respectively. By using the pure component isotherm fitting parameters, adsorption equilibrium was then predicted for multicomponent gas mixtures by the extended models. The DSL model was formulated considering the energetic site-matching concept, recently addressed in the literature. Experimental gas-mixture adsorption equilibrium data were calculated from breakthrough experiments conducted in a lab-scale fixed-bed reactor and compared with the predictions from the models. Breakthrough experiments were carried out at a temperature of 318 K and five different pressures (300, 500, 1000, 1500, and 2000 kPa) where two different CO2/H2/N2 gas mixtures were used as the feed gas in the adsorption step. The DSL model was found to be the one that most accurately predicted the CO2 adsorption equilibrium in the multicomponent mixture. The results presented in this work highlight the importance of performing experimental measurements of mixture adsorption equilibria, as they are of utmost importance to discriminate between models and to correctly select the one that most closely reflects the actual process.

  15. High-pressure studies on Ba-doped cobalt perovskites by neutron diffraction

    NASA Astrophysics Data System (ADS)

    Cao, Huibo; Garlea, Vasile; Wang, Fangwei; Dos Santos, Antonio; Cheng, Zhaohua

    2012-02-01

    Cobalt perovskite possess rich structural, magnetic and electrical properties depending on the subtle balance of the interactions among the spin, charge, and orbital degrees of freedom. Divalent hole-doped cobalt perovskites LaA^2+CoO3 exhibit structural phase transitions, metal-insulator transitions, and multi-magnetic phase transitions. High-pressure measurement is believed to mimic the size effects of the doped ions. We performed neutron diffraction experiments on selected Ba-doped LaCoO3 under pressures up to 6.3 GPa at SNAP at Spallation Neutron Source of ORNL. This work focuses on the high-pressure effects of the selected Ba-doped samples and the change of the phase diagram with pressure.

  16. Measuring bacterial activity and community composition at high hydrostatic pressure using a novel experimental approach: a pilot study.

    PubMed

    Wannicke, Nicola; Frindte, Katharina; Gust, Giselher; Liskow, Iris; Wacker, Alexander; Meyer, Andreas; Grossart, Hans-Peter

    2015-05-01

    In this pilot study, we describe a high-pressure incubation system allowing multiple subsampling of a pressurized culture without decompression. The system was tested using one piezophilic (Photobacterium profundum), one piezotolerant (Colwellia maris) bacterial strain and a decompressed sample from the Mediterranean deep sea (3044 m) determining bacterial community composition, protein production (BPP) and cell multiplication rates (BCM) up to 27 MPa. The results showed elevation of BPP at high pressure was by a factor of 1.5 ± 1.4 and 3.9 ± 2.3 for P. profundum and C. maris, respectively, compared to ambient-pressure treatments and by a factor of 6.9 ± 3.8 fold in the field samples. In P. profundum and C. maris, BCM at high pressure was elevated (3.1 ± 1.5 and 2.9 ± 1.7 fold, respectively) compared to the ambient-pressure treatments. After 3 days of incubation at 27 MPa, the natural bacterial deep-sea community was dominated by one phylum of the genus Exiguobacterium, indicating the rapid selection of piezotolerant bacteria. In future studies, our novel incubation system could be part of an isopiestic pressure chain, allowing more accurate measurement of bacterial activity rates which is important both for modeling and for predicting the efficiency of the oceanic carbon pump. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Regulation of intraocular pressure in mice: structural analysis of dopaminergic and serotonergic systems in response to cabergoline.

    PubMed

    Platania, Chiara Bianca Maria; Leggio, Gian Marco; Drago, Filippo; Salomone, Salvatore; Bucolo, Claudio

    2013-11-01

    Elevated intraocular pressure (IOP) is the main recognized risk factor of glaucoma. To investigate the contribution of dopaminergic and serotonergic systems in IOP regulation, we used cabergoline, a mixed dopamine and serotonin agonist, in C57BL/6J WT and dopamine D₃ receptor knock-out (D₃R⁻/⁻) mice with normal eye pressure or steroid-induced ocular hypertension. Furthermore, we studied the structural basis of the cabergoline-mediated activation of the dopaminergic and serotonergic systems by molecular modeling. Topical application of cabergoline, significantly decreased, in a dose-dependent manner, the intraocular pressure in WT mice, both in an ocular normotensive group (-9, -5 and -2 mmHg with 5%, 1%, and 0.1%, respectively) and an ocular hypertensive group, with a prolonged effect in this latter group. No change of intraocular pressure was observed after topical application of cabergoline in D₃R⁻/⁻ mice. We modeled and optimized, with molecular dynamics, structures of hD₃, h5HT(1A) and h5HT(2A-C) receptors; thereafter we carried out molecular docking of cabergoline. Docking revealed that binding of cabergoline into D₃ and 5HT(1A) receptors is associated with a better desolvation energy in comparison to 5HT(2A-C) binding. In conclusion, the present study support the hypothesis that dopaminergic system is pivotal to regulate IOP and that D₃R represents an intriguing target in the treatment of glaucoma. Furthermore, the structure-based computational approach adopted in this study is able to build and refine structure models of homologous dopaminergic and serotonergic receptors that may be of interest for structure-based drug discovery of ligands, with dopaminergic selectivity or with multi-pharmacological profile, potentially useful to treat optic neuropathies. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Distributed All-Optical Sensor to Detect dCO2 in Aqueous Environments

    NASA Astrophysics Data System (ADS)

    Bhatia, S.; Coelho, J.; Melo, L.; Davies, B.; Ahmed, F.; Bao, B.; Wild, P.; Risk, D. A.; Sinton, D.; Jun, M.

    2012-12-01

    Already a proven technology for temperature and stress measurements, an all-optical sensor to detect dCO2 is being developed for deployment in challenging environments. Optical sensors function under high pressure, do not require electronics and therefore experience no magnetic interference. They are also able to transmit signals over long distances with minimal losses. The dCO2 sensor's principal application is in measurement monitoring and verification of carbon capture and storage sites; however, it could also be useful in ocean, fresh water, and transition environments. The objective for the first phase of development was to detect a CO2 signal in laboratory tests. The developmental program incorporated experiments to detect CO2 under high pressure (1400 psi) in aqueous environments. Laboratory testing involved a custom pressure cell, off-the-shelf and custom long period gratings written in SMF125 fiber. Femptosecond laser micromachining was used to test alternative long period grating (LPG) and cutout shapes to maximize evanescent field interaction with the environment. A comprehensive program of geochemical modeling using PHREEQC 2 was used to identify the diversity of species in environments of interest that could exert confounding influence. Purchased UV-LPG responded to changes in concentration of scCO2 in brine at high pressure. Signal differences between CO2-saturated brine and pure brine were also noted under the same, high pressure conditions. Geochemical modeling software, PHREEQC 2, revealed a diversity of species in environments of interest whose concentrations varied strongly with temperature and pH. The modeling program's detailed characterization of environments informed work currently being undertaken as part of Phase 2, to develop a CO2-selective membrane to filter out measurement artifact.

  19. Natural allelic variations of xenobiotic-metabolizing enzymes affect sexual dimorphism in Oryzias latipes.

    PubMed

    Katsumura, Takafumi; Oda, Shoji; Nakagome, Shigeki; Hanihara, Tsunehiko; Kataoka, Hiroshi; Mitani, Hiroshi; Kawamura, Shoji; Oota, Hiroki

    2014-12-22

    Sexual dimorphisms, which are phenotypic differences between males and females, are driven by sexual selection. Interestingly, sexually selected traits show geographical variations within species despite strong directional selective pressures. This paradox has eluded many evolutionary biologists for some time, and several models have been proposed (e.g. 'indicator model' and 'trade-off model'). However, disentangling which of these theories explains empirical patterns remains difficult, because genetic polymorphisms that cause variation in sexual differences are still unknown. In this study, we show that polymorphisms in cytochrome P450 (CYP) 1B1, which encodes a xenobiotic-metabolizing enzyme, are associated with geographical differences in sexual dimorphism in the anal fin morphology of medaka fish (Oryzias latipes). Biochemical assays and genetic cross experiments show that high- and low-activity CYP1B1 alleles enhanced and declined sex differences in anal fin shapes, respectively. Behavioural and phylogenetic analyses suggest maintenance of the high-activity allele by sexual selection, whereas the low-activity allele possibly has experienced positive selection due to by-product effects of CYP1B1 in inferred ancestral populations. The present data can elucidate evolutionary mechanisms behind genetic variations in sexual dimorphism and indicate trade-off interactions between two distinct mechanisms acting on the two alleles with pleiotropic effects of xenobiotic-metabolizing enzymes. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  20. Atmospheric Models For Over-Ocean Propagation Loss

    DTIC Science & Technology

    2015-08-24

    Radiosonde balloons are launched daily at selected loca- tions, and measure temperature, dew point temperature, and air pressure as they ascend. Radiosondes...different times of year and locations. The result was used to estimate high-reliability SHF/EHF air -to-surface radio link performance in a maritime...environment. I. INTRODUCTION Air -to-surface radio links differ from typical satellite com- munications links in that the path elevation angles are lower

  1. Aging with spinal cord injury: changes in selected health indices and life satisfaction.

    PubMed

    Charlifue, Susan; Lammertse, Daniel P; Adkins, Rodney H

    2004-11-01

    To document the impact of age, age at injury, years postinjury, and injury severity on changes over time in selected physical and psychosocial outcomes of people aging with spinal cord injury (SCI), and to identify the best predictors of these outcomes. Retrospective cross-sectional and longitudinal examination of people with SCI. Follow-up of people who received initial rehabilitation in a regional Model Spinal Cord Injury System. People who meet the inclusion criteria for the National Spinal Cord Injury Database were studied at 5, 10, 15, 20, and 25 years postinjury. Not applicable. Number of pressure ulcers, number of times rehospitalized, number of days rehospitalized, perceived health status, satisfaction with life, and pain during the most recent follow-up year. The number of days rehospitalized and frequency of rehospitalizations decreased and the number of pressure ulcers increased as time passed. For the variables of pressure ulcers, poor perceived health, the perception of pain and lower life satisfaction, the best predictor of each outcome was the previous existence or poor rating of that same outcome. Common complications of SCI often herald the recurrence of those same complications at a later point in time, highlighting the importance of early intervention to prevent future health and psychosocial difficulties.

  2. Studies of the permeation properties of glomerular basement membrane: cross-linking renders glomerular basement membrane permeable to protein.

    PubMed

    Walton, H A; Byrne, J; Robinson, G B

    1992-03-20

    Cross-linking glomerular basement membrane (GBM) has been shown to render it more permeable to protein. Isolated pig GBM was cross-linked with dimethylmalonimidate which reacts selectively with lysine epsilon-NH2 groups or with glutaraldehyde, a less selective cross-linking agent. Studies of the ultrafiltration properties of these materials in vitro using cytochrome c, myoglobin, bovine serum albumin and immunoglobulin showed that cross-linking had markedly increased solvent and protein fluxes as compared with native membranes particularly at higher pressures. Filtration studies with serum demonstrated that the cross-linked membranes were more permeable to serum proteins. Thickness measurements under pressure indicated that cross-linked membrane was less compressed than native membrane as pressure was increased. Pore theory did not provide a suitable model for analysis of the results, but analysis of the results using the fibre-matrix hypothesis indicated that cross-linking had the effect of bundling together the fibres (type IV collagen) in the GBM matrix. The effect of cross-linking on filtration could be explained by a combination of contraction of the membrane, fibre bundling and increased rigidity compared with native membrane. Cross-linking of GBM might lead to long-term damage of the glomerular capillary wall in nephritis, so promoting proteinuria.

  3. ANALYSIS OF SELECTED PYRETHROID PESTICIDES USING REVERSE PHASE HIGH PRESSURE LIQUID CHROMATOGRAPHY/UV

    EPA Science Inventory

    This research was conducted in cooperation with EPA Region 4 in Athens, GA to develop a method to analyze selected pyrethroid pesticides using Reverse Phase-High Pressure Liquid Chromatography (HPLC). This HPLC method will aid researchers in separating and identifying these py...

  4. Determination of Polychlorinated Biphenyls in Soil and Sediment by Selective Pressurized Liquid Extraction with Immunochemical Detection

    EPA Science Inventory

    A selective liquid pressurized extraction (SPLE) method was developed as a streamlined sample preparation/cleanup procedure for determining Aroclors and coplanar polychlorinated biphenyls (PCBs) in soil and sediment matrices. The SPLE method was coupled with an enzyme-linked imm...

  5. Carbon-Water-Energy Relations for Selected River Basins

    NASA Technical Reports Server (NTRS)

    Choudhury, B. J.

    1998-01-01

    A biophysical process-based model was run using satellite, assimilated and ancillary data for four years (1987-1990) to calculate components of total evaporation (transpiration, interception, soil and snow evaporation), net radiation, absorbed photosynthetically active radiation and net primary productivity over the global land surface. Satellite observations provided fractional vegetation cover, solar and photosynthetically active radiation incident of the surface, surface albedo, fractional cloud cover, air temperature and vapor pressure. The friction velocity and surface air pressure are obtained from a four dimensional data assimilation results, while precipitation is either only surface observations or a blended product of surface and satellite observations. All surface and satellite data are monthly mean values; precipitation has been disaggregated into daily values. All biophysical parameters of the model are prescribed according to published records. From these global land surface calculations results for river basins are derived using digital templates of basin boundaries. Comparisons with field observations (micrometeorologic, catchment water balance, biomass production) and atmospheric water budget analysis for monthly evaporation from six river basins have been done to assess errors in the calculations. Comparisons are also made with previous estimates of zonal variations of evaporation and net primary productivity. Efficiencies of transpiration, total evaporation and radiation use, and evaporative fraction for selected river basins will be presented.

  6. Behavioral study of selected microorganisms in an aqueous electrohydrodynamic liquid bridge.

    PubMed

    Paulitsch-Fuchs, Astrid H; Zsohár, Andrea; Wexler, Adam D; Zauner, Andrea; Kittinger, Clemens; de Valença, Joeri; Fuchs, Elmar C

    2017-07-01

    An aqueous electrohydrodynamic (EHD) floating liquid bridge is a unique environment for studying the influence of protonic currents (mA cm -2 ) in strong DC electric fields (kV cm -1 ) on the behavior of microorganisms. It forms in between two beakers filled with water when high-voltage is applied to these beakers. We recently discovered that exposure to this bridge has a stimulating effect on Escherichia coli. . In this work we show that the survival is due to a natural Faraday cage effect of the cell wall of these microorganisms using a simple 2D model. We further confirm this hypothesis by measuring and simulating the behavior of Bacillus subtilis subtilis , Neochloris oleoabundans, Saccharomyces cerevisiae and THP-1 monocytes. Their behavior matches the predictions of the model: cells without a natural Faraday cage like algae and monocytes are mostly killed and weakened, whereas yeast and Bacillus subtilis subtilis survive. The effect of the natural Faraday cage is twofold: First, it diverts the current from passing through the cell (and thereby killing it); secondly, because it is protonic it maintains the osmotic pressure in the cell wall, thereby mitigating cytolysis which would normally occur due to the low osmotic pressure of the surrounding medium. The method presented provides the basis for selective disinfection of solutions containing different microorganisms.

  7. On-line calibration of high-response pressure transducers during jet-engine testing

    NASA Technical Reports Server (NTRS)

    Armentrout, E. C.

    1974-01-01

    Jet engine testing is reported concerned with the effect of inlet pressure and temperature distortions on engine performance and involves the use of numerous miniature pressure transducers. Despite recent improvements in the manufacture of miniature pressure transducers, they still exhibit sensitivity change and zero-shift with temperature and time. To obtain meaningful data, a calibration system is needed to determine these changes. A system has been developed which provides for computer selection of appropriate reference pressures selected from nine different sources to provide a two- or three-point calibration. Calibrations are made on command, before and sometimes after each data point. A unique no leak matrix valve design is used in the reference pressure system. Zero-shift corrections are measured and the values are automatically inserted into the data reduction program.

  8. Evolutionary stasis in Euphorbiaceae pollen: selection and constraints.

    PubMed

    Matamoro-Vidal, A; Furness, C A; Gouyon, P-H; Wurdack, K J; Albert, B

    2012-06-01

    Although much attention has been paid to the role of stabilizing selection, empirical analyses testing the role of developmental constraints in evolutionary stasis remain rare, particularly for plants. This topic is studied here with a focus on the evolution of a pollen ontogenetic feature, the last points of callose deposition (LPCD) pattern, involved in the determination of an adaptive morphological pollen character (aperture pattern). The LPCD pattern exhibits a low level of evolution in eudicots, as compared to the evolution observed in monocots. Stasis in this pattern might be explained by developmental constraints expressed during male meiosis (microsporogenesis) or by selective pressures expressed through the adaptive role of the aperture pattern. Here, we demonstrate that the LPCD pattern is conserved in Euphorbiaceae s.s. and that this conservatism is primarily due to selective pressures. A phylogenetic association was found between the putative removal of selective pressures on pollen morphology after the origin of inaperturate pollen, and the appearance of variation in microsporogenesis and in the resulting LPCD pattern, suggesting that stasis was due to these selective pressures. However, even in a neutral context, variation in microsporogenesis was biased. This should therefore favour the appearance of some developmental and morphological phenotypes rather than others. © 2012 The Authors. Journal of Evolutionary Biology © 2012 European Society For Evolutionary Biology.

  9. A Darwinian approach to the origin of life cycles with group properties.

    PubMed

    Rashidi, Armin; Shelton, Deborah E; Michod, Richard E

    2015-06-01

    A selective explanation for the evolution of multicellular organisms from unicellular ones requires knowledge of both selective pressures and factors affecting the response to selection. Understanding the response to selection is particularly challenging in the case of evolutionary transitions in individuality, because these transitions involve a shift in the very units of selection. We develop a conceptual framework in which three fundamental processes (growth, division, and splitting) are the scaffold for unicellular and multicellular life cycles alike. We (i) enumerate the possible ways in which these processes can be linked to create more complex life cycles, (ii) introduce three genes based on growth, division and splitting that, acting in concert, determine the architecture of the life cycles, and finally, (iii) study the evolution of the simplest five life cycles using a heuristic model of coupled ordinary differential equations in which mutations are allowed in the three genes. We demonstrate how changes in the regulation of three fundamental aspects of colonial form (cell size, colony size, and colony cell number) could lead unicellular life cycles to evolve into primitive multicellular life cycles with group properties. One interesting prediction of the model is that selection generally favors cycles with group level properties when intermediate body size is associated with lowest mortality. That is, a universal requirement for the evolution of group cycles in the model is that the size-mortality curve be U-shaped. Furthermore, growth must decelerate with size. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Automatic transducer switching provides accurate wide range measurement of pressure differential

    NASA Technical Reports Server (NTRS)

    Yoder, S. K.

    1967-01-01

    Automatic pressure transducer switching network sequentially selects any one of a number of limited-range transducers as gas pressure rises or falls, extending the range of measurement and lessening the chances of damage due to high pressure.

  11. Signatures of positive selection and local adaptation to urbanization in white-footed mice (Peromyscus leucopus).

    PubMed

    Harris, Stephen E; Munshi-South, Jason

    2017-11-01

    Urbanization significantly alters natural ecosystems and has accelerated globally. Urban wildlife populations are often highly fragmented by human infrastructure, and isolated populations may adapt in response to local urban pressures. However, relatively few studies have identified genomic signatures of adaptation in urban animals. We used a landscape genomic approach to examine signatures of selection in urban populations of white-footed mice (Peromyscus leucopus) in New York City. We analysed 154,770 SNPs identified from transcriptome data from 48 P. leucopus individuals from three urban and three rural populations and used outlier tests to identify evidence of urban adaptation. We accounted for demography by simulating a neutral SNP data set under an inferred demographic history as a null model for outlier analysis. We also tested whether candidate genes were associated with environmental variables related to urbanization. In total, we detected 381 outlier loci and after stringent filtering, identified and annotated 19 candidate loci. Many of the candidate genes were involved in metabolic processes and have well-established roles in metabolizing lipids and carbohydrates. Our results indicate that white-footed mice in New York City are adapting at the biomolecular level to local selective pressures in urban habitats. Annotation of outlier loci suggests selection is acting on metabolic pathways in urban populations, likely related to novel diets in cities that differ from diets in less disturbed areas. © 2017 John Wiley & Sons Ltd.

  12. Subtle differences in selective pressures applied on the envelope gene of HIV-1 in pregnant versus non-pregnant women.

    PubMed

    Ransy, Doris G; Lord, Etienne; Caty, Martine; Lapointe, Normand; Boucher, Marc; Diallo, Abdoulaye Baniré; Soudeyns, Hugo

    2018-04-17

    Pregnancy is associated with modulations of maternal immunity that contribute to foeto-maternal tolerance. To understand whether and how these alterations impact antiviral immunity, a detailed cross-sectional analysis of selective pressures exerted on HIV-1 envelope amino-acid sequences was performed in a group of pregnant (n = 32) and non-pregnant (n = 44) HIV-infected women in absence of treatment with antiretroviral therapy (ART). Independent of HIV-1 subtype, p-distance, dN and dS were all strongly correlated with one another but were not significantly different in pregnant as compared to non-pregnant patients. Differential levels of selective pressure applied on different Env subdomains displayed similar yet non-identical patterns between the two groups, with pressure applied on C1 being significantly lower in constant regions C1 and C2 than in V1, V2, V3 and C3. To draw a general picture of the selection applied on the envelope and compensate for inter-individual variations, we performed a binomial test on selection frequency data pooled from pregnant and non-pregnant women. This analysis uncovered 42 positions, present in both groups, exhibiting statistically-significant frequency of selection that invariably mapped to the surface of the Env protein, with the great majority located within epitopes recognized by Env-specific antibodies or sites associated with the development of cross-reactive neutralizing activity. The median frequency of occurrence of positive selection per site was significantly lower in pregnant versus non-pregnant women. Furthermore, examination of the distribution of positively selected sites using a hypergeometric test revealed that only 2 positions (D137 and S142) significantly differed between the 2 groups. Taken together, these result indicate that pregnancy is associated with subtle yet distinctive changes in selective pressures exerted on the HIV-1 Env protein that are compatible with transient modulations of maternal immunity. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Hyperspectral imaging for predicting the allicin and soluble solid content of garlic with variable selection algorithms and chemometric models.

    PubMed

    Rahman, Anisur; Faqeerzada, Mohammad A; Cho, Byoung-Kwan

    2018-03-14

    Allicin and soluble solid content (SSC) in garlic is the responsible for its pungent flavor and odor. However, current conventional methods such as the use of high-pressure liquid chromatography and a refractometer have critical drawbacks in that they are time-consuming, labor-intensive and destructive procedures. The present study aimed to predict allicin and SSC in garlic using hyperspectral imaging in combination with variable selection algorithms and calibration models. Hyperspectral images of 100 garlic cloves were acquired that covered two spectral ranges, from which the mean spectra of each clove were extracted. The calibration models included partial least squares (PLS) and least squares-support vector machine (LS-SVM) regression, as well as different spectral pre-processing techniques, from which the highest performing spectral preprocessing technique and spectral range were selected. Then, variable selection methods, such as regression coefficients, variable importance in projection (VIP) and the successive projections algorithm (SPA), were evaluated for the selection of effective wavelengths (EWs). Furthermore, PLS and LS-SVM regression methods were applied to quantitatively predict the quality attributes of garlic using the selected EWs. Of the established models, the SPA-LS-SVM model obtained an Rpred2 of 0.90 and standard error of prediction (SEP) of 1.01% for SSC prediction, whereas the VIP-LS-SVM model produced the best result with an Rpred2 of 0.83 and SEP of 0.19 mg g -1 for allicin prediction in the range 1000-1700 nm. Furthermore, chemical images of garlic were developed using the best predictive model to facilitate visualization of the spatial distributions of allicin and SSC. The present study clearly demonstrates that hyperspectral imaging combined with an appropriate chemometrics method can potentially be employed as a fast, non-invasive method to predict the allicin and SSC in garlic. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  14. Effects of replicative fitness on competing HIV strains.

    PubMed

    Chirove, Faraimunashe; Lungu, Edward M

    2013-07-01

    We develop an n-strain model to show the effects of replicative fitness of competing viral strains exerting selective density-dependant infective pressure on each other. A two strain model is used to illustrate the results. A perturbation technique and numerical simulations were used to establish the existence and stability of steady states. More than one infected steady states governed by the replicative fitness resulted from the model exhibiting either strain replacement or co-infection. We found that the presence of two or more HIV strains could result in a disease-free state that, in general, is not globally stable. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  15. Effect of nacelles on aerodynamic characteristics of an executive-jet model with simulated, partial-chord, laminar-flow-control wing glove

    NASA Technical Reports Server (NTRS)

    Campbell, R. L.

    1982-01-01

    Tests were conducted in the Langley High-Speed 7- by 10-Foot Tunnel using a 1/10-scale model of an executive jet to examine the effects of the nacelles on the wing pressures and model longitudinal aerodynamic characteristics. For the present investigation, each wing panel was modified with a simulated, partial-chord, laminar-flow-control glove. Horizontal-tail effects were also briefly examined. The tests covered a range of Mach numbers from 0.40 to 0.82 and lift coefficients from 0.20 to 0.55. Oil-flow photographs of the wing at selected conditions are included.

  16. Inhaled nitric oxide, oxygen, and alkalosis: dose-response interactions in a lamb model of pulmonary hypertension.

    PubMed

    Heidersbach, R S; Johengen, M J; Bekker, J M; Fineman, J R

    1999-07-01

    Inhaled nitric oxide (NO) is currently used as an adjuvant therapy for a variety of pulmonary hypertensive disorders. In both animal and human studies, inhaled NO induces selective, dose-dependent pulmonary vasodilation. However, its potential interactions with other simultaneously used pulmonary vasodilator therapies have not been studied. Therefore, the objective of this study was to determine the potential dose-response interactions of inhaled NO, oxygen, and alkalosis therapies. Fourteen newborn lambs (age 1-6 days) were instrumented to measure vascular pressures and left pulmonary artery blood flow. After recovery, the lambs were sedated and mechanically ventilated. During steady-state pulmonary hypertension induced by U46619 (a thromboxane A2 mimic), the lambs were exposed to the following conditions: Protocol A, inhaled NO (0, 5, 40, and 80 ppm) and inspired oxygen concentrations (FiO2) of 0.21, 0.50, and 1.00; and Protocol B, inhaled NO (0, 5, 40, and 80 ppm) and arterial pH levels of 7.30, 7.40, 7.50, and 7.60. Each condition (in randomly chosen order) was maintained for 10 min, and all variables were allowed to return to baseline between conditions. Inhaled NO, oxygen, and alkalosis produced dose-dependent decreases in mean pulmonary arterial pressures (P < 0.05). Systemic arterial pressure remained unchanged. At 5 ppm of inhaled NO, alkalosis and oxygen induced further dose-dependent decreases in mean pulmonary arterial pressures (P < 0.05). At inhaled NO doses > 5 ppm, alkalosis induced further dose-independent decreases in mean pulmonary arterial pressure, while oxygen did not. We conclude that in this animal model, oxygen, alkalosis, and inhaled NO induced selective, dose-dependent pulmonary vasodilation. However, when combined, a systemic arterial pH > 7.40 augmented inhaled NO-induced pulmonary vasodilation, while an FiO2 > 0.5 did not. Therefore, weaning high FiO2 during inhaled NO therapy should be considered, since it may not diminish the pulmonary vasodilating effects. Further studies are warranted to guide the clinical weaning strategies of these pulmonary vasodilator therapies.

  17. Measures of GCM Performance as Functions of Model Parameters Affecting Clouds and Radiation

    NASA Astrophysics Data System (ADS)

    Jackson, C.; Mu, Q.; Sen, M.; Stoffa, P.

    2002-05-01

    This abstract is one of three related presentations at this meeting dealing with several issues surrounding optimal parameter and uncertainty estimation of model predictions of climate. Uncertainty in model predictions of climate depends in part on the uncertainty produced by model approximations or parameterizations of unresolved physics. Evaluating these uncertainties is computationally expensive because one needs to evaluate how arbitrary choices for any given combination of model parameters affects model performance. Because the computational effort grows exponentially with the number of parameters being investigated, it is important to choose parameters carefully. Evaluating whether a parameter is worth investigating depends on two considerations: 1) does reasonable choices of parameter values produce a large range in model response relative to observational uncertainty? and 2) does the model response depend non-linearly on various combinations of model parameters? We have decided to narrow our attention to selecting parameters that affect clouds and radiation, as it is likely that these parameters will dominate uncertainties in model predictions of future climate. We present preliminary results of ~20 to 30 AMIPII style climate model integrations using NCAR's CCM3.10 that show model performance as functions of individual parameters controlling 1) critical relative humidity for cloud formation (RHMIN), and 2) boundary layer critical Richardson number (RICR). We also explore various definitions of model performance that include some or all observational data sources (surface air temperature and pressure, meridional and zonal winds, clouds, long and short-wave cloud forcings, etc...) and evaluate in a few select cases whether the model's response depends non-linearly on the parameter values we have selected.

  18. Evaluation of surgical procedure selection based on intraoperative free portal pressure measurement in patients with portal hypertension.

    PubMed

    Sun, Yong-Wei; Chen, Wei; Luo, Meng; Hua, Rong; Liu, Wei; Huo, Yan-Miao; Wu, Zhi-Yong; Cao, Hui

    2010-06-01

    Various surgical procedures can be used to treat liver cirrhosis and portal hypertension. How to select the most appropriate procedure for patients with portal hypertension has become a difficult problem. This study aimed to analyze the relationship between the value of intraoperative free portal pressure (FPP) and postoperative complications, and to explore the significance of intraoperative FPP measurement with respect to surgical procedure selection. The clinical data of 187 patients with portal hypertension who received pericardial devascularization and proximal splenorenal shunt combined with devascularization (combined operation) at the Department of General Surgery in our hospital from January 2001 to September 2008 were retrospectively analyzed. Among the patients who received pericardial devascularization, those with a postoperative FPP >or=22 mmHg were included in a high-pressure group (n=68), and those with FPP <22 mmHg were in a low-pressure group (n=49). Seventy patients who received the combined operation comprised a combined group. The intraoperative FPP measurement changes at different times, and the incidence of postoperative complications in the three groups of patients were compared. The postoperative FPP value in the high-pressure group was 27.5+/-2.3 mmHg, which was significantly higher than that of the low-pressure (20.9+/-1.8 mmHg) or combined groups (21.7+/-2.5 mmHg). The rebleeding rate in the high-pressure group was significantly higher than that in the low-pressure and combined groups. The incidence rates of postoperative hepatic encephalopathy and liver failure were not statistically different among the three groups. The mortality due to rebleeding in the low-pressure and combined groups (0.84%) was significantly lower than that of the high-pressure group. The study demonstrates that FPP is a critical measurement for surgical procedure selection in patients with portal hypertension. A FPP value >or=22 mmHg after splenectomy and devascularization alone is an important indicator that an additional proximal splenorenal shunt needs to be performed.

  19. Genomic Comparison of Indigenous African and Northern European Chickens Reveals Putative Mechanisms of Stress Tolerance Related to Environmental Selection Pressure

    PubMed Central

    Fleming, Damarius S.; Weigend, Steffen; Simianer, Henner; Weigend, Annett; Rothschild, Max; Schmidt, Carl; Ashwell, Chris; Persia, Mike; Reecy, James; Lamont, Susan J.

    2017-01-01

    Global climate change is increasing the magnitude of environmental stressors, such as temperature, pathogens, and drought, that limit the survivability and sustainability of livestock production. Poultry production and its expansion is dependent upon robust animals that are able to cope with stressors in multiple environments. Understanding the genetic strategies that indigenous, noncommercial breeds have evolved to survive in their environment could help to elucidate molecular mechanisms underlying biological traits of environmental adaptation. We examined poultry from diverse breeds and climates of Africa and Northern Europe for selection signatures that have allowed them to adapt to their indigenous environments. Selection signatures were studied using a combination of population genomic methods that employed FST, integrated haplotype score (iHS), and runs of homozygosity (ROH) procedures. All the analyses indicated differences in environment as a driver of selective pressure in both groups of populations. The analyses revealed unique differences in the genomic regions under selection pressure from the environment for each population. The African chickens showed stronger selection toward stress signaling and angiogenesis, while the Northern European chickens showed more selection pressure toward processes related to energy homeostasis. The results suggest that chromosomes 2 and 27 are the most diverged between populations and the most selected upon within the African (chromosome 27) and Northern European (chromosome 2) birds. Examination of the divergent populations has provided new insight into genes under possible selection related to tolerance of a population’s indigenous environment that may be baselines for examining the genomic contribution to tolerance adaptions. PMID:28341699

  20. Genomic Comparison of Indigenous African and Northern European Chickens Reveals Putative Mechanisms of Stress Tolerance Related to Environmental Selection Pressure.

    PubMed

    Fleming, Damarius S; Weigend, Steffen; Simianer, Henner; Weigend, Annett; Rothschild, Max; Schmidt, Carl; Ashwell, Chris; Persia, Mike; Reecy, James; Lamont, Susan J

    2017-05-05

    Global climate change is increasing the magnitude of environmental stressors, such as temperature, pathogens, and drought, that limit the survivability and sustainability of livestock production. Poultry production and its expansion is dependent upon robust animals that are able to cope with stressors in multiple environments. Understanding the genetic strategies that indigenous, noncommercial breeds have evolved to survive in their environment could help to elucidate molecular mechanisms underlying biological traits of environmental adaptation. We examined poultry from diverse breeds and climates of Africa and Northern Europe for selection signatures that have allowed them to adapt to their indigenous environments. Selection signatures were studied using a combination of population genomic methods that employed F ST , integrated haplotype score (iHS), and runs of homozygosity (ROH) procedures. All the analyses indicated differences in environment as a driver of selective pressure in both groups of populations. The analyses revealed unique differences in the genomic regions under selection pressure from the environment for each population. The African chickens showed stronger selection toward stress signaling and angiogenesis, while the Northern European chickens showed more selection pressure toward processes related to energy homeostasis. The results suggest that chromosomes 2 and 27 are the most diverged between populations and the most selected upon within the African (chromosome 27) and Northern European (chromosome 2) birds. Examination of the divergent populations has provided new insight into genes under possible selection related to tolerance of a population's indigenous environment that may be baselines for examining the genomic contribution to tolerance adaptions. Copyright © 2017 Fleming et al.

  1. Censorship in Schools: The Impact of Conservative Christian Pressure Groups.

    ERIC Educational Resources Information Center

    Dorrell, Larry D.; Busch, Anne

    2000-01-01

    Presents an historical overview of the rise of conservative pressure groups after 1980 and their association with an increase in censorship activities in schools. Discusses the influence of the Reagan administration; library materials selection; textbook selection; secular humanism; and trying to affect the curriculum rather than targeting…

  2. Surgical stent planning: simulation parameter study for models based on DICOM standards.

    PubMed

    Scherer, S; Treichel, T; Ritter, N; Triebel, G; Drossel, W G; Burgert, O

    2011-05-01

    Endovascular Aneurysm Repair (EVAR) can be facilitated by a realistic simulation model of stent-vessel-interaction. Therefore, numerical feasibility and integrability in the clinical environment was evaluated. The finite element method was used to determine necessary simulation parameters for stent-vessel-interaction in EVAR. Input variables and result data of the simulation model were examined for their standardization using DICOM supplements. The study identified four essential parameters for the stent-vessel simulation: blood pressure, intima constitution, plaque occurrence and the material properties of vessel and plaque. Output quantities such as radial force of the stent and contact pressure between stent/vessel can help the surgeon to evaluate implant fixation and sealing. The model geometry can be saved with DICOM "Surface Segmentation" objects and the upcoming "Implant Templates" supplement. Simulation results can be stored using the "Structured Report". A standards-based general simulation model for optimizing stent-graft selection may be feasible. At present, there are limitations due to specification of individual vessel material parameters and for simulating the proximal fixation of stent-grafts with hooks. Simulation data with clinical relevance for documentation and presentation can be stored using existing or new DICOM extensions.

  3. Measuring Transcription Factor–Binding Site Turnover: A Maximum Likelihood Approach Using Phylogenies

    PubMed Central

    Otto, Wolfgang; Stadler, Peter F.; López-Giraldéz, Francesc; Townsend, Jeffrey P.; Lynch, Vincent J.

    2009-01-01

    A major mode of gene expression evolution is based on changes in cis-regulatory elements (CREs) whose function critically depends on the presence of transcription factor–binding sites (TFBS). Because CREs experience extensive TFBS turnover even with conserved function, alignment-based studies of CRE sequence evolution are limited to very closely related species. Here, we propose an alternative approach based on a stochastic model of TFBS turnover. We implemented a maximum likelihood model that permits variable turnover rates in different parts of the species tree. This model can be used to detect changes in turnover rate as a proxy for differences in the selective pressures acting on TFBS in different clades. We applied this method to five TFBS in the fungi methionine biosynthesis pathway and three TFBS in the HoxA clusters of vertebrates. We find that the estimated turnover rate is generally high, with half-life ranging between ∼5 and 150 My and a mode around tens of millions of years. This rate is consistent with the finding that even functionally conserved enhancers can show very low sequence similarity. We also detect statistically significant differences in the equilibrium densities of estrogen- and progesterone-response elements in the HoxA clusters between mammal and nonmammal vertebrates. Even more extreme clade-specific differences were found in the fungal data. We conclude that stochastic models of TFBS turnover enable the detection of shifts in the selective pressures acting on CREs in different organisms. The analysis tool, called CRETO (Cis-Regulatory Element Turn-Over) can be downloaded from http://www.bioinf.uni-leipzig.de/Software/creto/. PMID:20333180

  4. Corti's organ physiology-based cochlear model: a microelectronic prosthetic implant

    NASA Astrophysics Data System (ADS)

    Rios, Francisco; Fernandez-Ramos, Raquel; Romero-Sanchez, Jorge; Martin, Jose Francisco

    2003-04-01

    Corti"s Organ is an Electro-Mechanical transducer that allows the energy coupling between acoustical stimuli and auditory nerve. Although the structure and funtionality of this organ are complex, state of the art models have been currently developed and tested. Cochlea model presented in this paper is based on the theories of Bekesy and others and concerns on the behaviour of auditory system on frequency-place domain and mechanisms of lateral inhibition. At the same time, present state of technology will permit us developing a microsystem that reproduce this phenomena applied to hearing aid prosthesis. Corti"s Organ is composed of more than 20.000 cilia excited by mean of travelling waves. These waves produce relative pressures distributed along the cochlea, exciting an specific number of cilia in a local way. Nonlinear mechanisms of local adaptation to the intensity (external cilia cells) and lateral inhibition (internal cilia cells) allow the selection of very few elements excited. These transmit a very precise intensity and frequency information. These signals are the only ones coupled to the auditory nerve. Distribution of pressure waves matches a quasilogaritmic law due to Cochlea morphology. Microsystem presented in this paper takes Bark"s law as an approximation to this behaviour consisting on grouped arbitrary elements composed of a set of selective coupled exciters (bank of filters according to Patterson"s model).These sets apply the intensity adaptation principles and lateral inhibition. Elements excited during the process generate a bioelectric signal in the same way than cilia cell. A microelectronic solution is presented for the development of an implantable prosthesis device.

  5. A Novel Continuous Blood Pressure Estimation Approach Based on Data Mining Techniques.

    PubMed

    Miao, Fen; Fu, Nan; Zhang, Yuan-Ting; Ding, Xiao-Rong; Hong, Xi; He, Qingyun; Li, Ye

    2017-11-01

    Continuous blood pressure (BP) estimation using pulse transit time (PTT) is a promising method for unobtrusive BP measurement. However, the accuracy of this approach must be improved for it to be viable for a wide range of applications. This study proposes a novel continuous BP estimation approach that combines data mining techniques with a traditional mechanism-driven model. First, 14 features derived from simultaneous electrocardiogram and photoplethysmogram signals were extracted for beat-to-beat BP estimation. A genetic algorithm-based feature selection method was then used to select BP indicators for each subject. Multivariate linear regression and support vector regression were employed to develop the BP model. The accuracy and robustness of the proposed approach were validated for static, dynamic, and follow-up performance. Experimental results based on 73 subjects showed that the proposed approach exhibited excellent accuracy in static BP estimation, with a correlation coefficient and mean error of 0.852 and -0.001 ± 3.102 mmHg for systolic BP, and 0.790 and -0.004 ± 2.199 mmHg for diastolic BP. Similar performance was observed for dynamic BP estimation. The robustness results indicated that the estimation accuracy was lower by a certain degree one day after model construction but was relatively stable from one day to six months after construction. The proposed approach is superior to the state-of-the-art PTT-based model for an approximately 2-mmHg reduction in the standard derivation at different time intervals, thus providing potentially novel insights for cuffless BP estimation.

  6. The September 25, 2003 Tokachi-Oki Mw 8.3 Earthquake: Rupture Process From Joint Inversion of Tsunami Waveform, GPS, and Pressure Gages Data

    NASA Astrophysics Data System (ADS)

    Romano, F.; Lorito, S.; Piatanesi, A.; Antonioli, A.; George, D. L.; Hirata, K.

    2008-12-01

    We infer the slip distribution along the rupture zone of the September 25, 2003 Hokkaido Region (Japan) from tide-gages records of the tsunami, pressure gages, and GPS measured static coseismic displacements. According to USGS, this one has been the largest earthquake in 2003. We select waveforms from 16 stations, distributed along the east coast of the Hokkaido Region and the north-east coast of the Tohoku Region. Furthermore we select more than 100 GPS stations positioned on these regions and 2 high-precision pressure gages positioned in open sea near the epicenter; indeed the seafloor measurement of the water pressure is an innovative geodetic observation because the displacement of the seafloor is directly proportional to water pressure increase. We assume the fault plane to be consistent with the geometry of the subducting plate and the slip direction with the focal mechanism solutions and previous inversions of teleseismic body waves. We subdivide the fault plane into several subfaults (both along strike and down dip) and we compute the corresponding Green's function for the coseismic displacement considering a 3D Earth's model implemented in a Finite-Element code. As for the tsunami Green's function we use the shallow water equations and a bathymetric dataset with 10 arcsec of spatial resolution. The slip distribution is determined by means of a simulated annealing technique. Synthetic checkerboard tests, using the station coverage of the available data, indicate that the main features of the rupture process may be robustly inverted with a minimum subfault area of 30x30 km. We compare our results with those obtained by previous inversions of teleseismic, GPS and tsunami data.

  7. Use of remotely sensed data to evaluate the relationship between living environment and blood pressure.

    PubMed

    Estes, Maurice G; Al-Hamdan, Mohammad Z; Crosson, William; Estes, Sue M; Quattrochi, Dale; Kent, Shia; McClure, Leslie Ain

    2009-12-01

    Urbanization has been correlated with hypertension (HTN) in developing countries undergoing rapid economic and environmental transitions. We examined the relationships among living environment (urban, suburban, and rural), day/night land surface temperatures (LST), and blood pressure in selected regions from the REasons for Geographic and Racial Differences in Stroke (REGARDS) cohort. Also, the linking of data on blood pressure from REGARDS with National Aeronautics and Space Administration (NASA) science data is relevant to NASA's strategic goals and missions, particularly as a primary focus of the agency's Applied Sciences Program. REGARDS is a national cohort of 30,228 people from the 48 contiguous United States with self-reported and measured blood pressure levels. Four metropolitan regions (Philadelphia, PA; Atlanta, GA; Minneapolis, MN; and Chicago, IL) with varying geographic and health characteristics were selected for study. Satellite remotely sensed data were used to characterize the LST and land cover/land use (LCLU) environment for each area. We developed a method for characterizing participants as living in urban, suburban, or rural living environments, using the LCLU data. These data were compiled on a 1-km grid for each region and linked with the REGARDS data via an algorithm using geocoding information. REGARDS participants in urban areas have higher systolic and diastolic blood pressure than do those in suburban or rural areas, and also a higher incidence of HTN. In univariate models, living environment is associated with HTN, but after adjustment for known HTN risk factors, the relationship was no longer present. Further study regarding the relationship between HTN and living environment should focus on additional environmental characteristics, such as air pollution. The living environment classification method using remotely sensed data has the potential to facilitate additional research linking environmental variables to public health concerns.

  8. ASK1 Inhibition Halts Disease Progression in Preclinical Models of Pulmonary Arterial Hypertension.

    PubMed

    Budas, Grant R; Boehm, Mario; Kojonazarov, Baktybek; Viswanathan, Gayathri; Tian, Xia; Veeroju, Swathi; Novoyatleva, Tatyana; Grimminger, Friedrich; Hinojosa-Kirschenbaum, Ford; Ghofrani, Hossein A; Weissmann, Norbert; Seeger, Werner; Liles, John T; Schermuly, Ralph T

    2018-02-01

    Progression of pulmonary arterial hypertension (PAH) is associated with pathological remodeling of the pulmonary vasculature and the right ventricle (RV). Oxidative stress drives the remodeling process through activation of MAPKs (mitogen-activated protein kinases), which stimulate apoptosis, inflammation, and fibrosis. We investigated whether pharmacological inhibition of the redox-sensitive apical MAPK, ASK1 (apoptosis signal-regulating kinase 1), can halt the progression of pulmonary vascular and RV remodeling. A selective, orally available ASK1 inhibitor, GS-444217, was administered to two preclinical rat models of PAH (monocrotaline and Sugen/hypoxia), a murine model of RV pressure overload induced by pulmonary artery banding, and cellular models. Oral administration of GS-444217 dose dependently reduced pulmonary arterial pressure and reduced RV hypertrophy in PAH models. The therapeutic efficacy of GS-444217 was associated with reduced ASK1 phosphorylation, reduced muscularization of the pulmonary arteries, and reduced fibrotic gene expression in the RV. Importantly, efficacy was observed when GS-444217 was administered to animals with established disease and also directly reduced cardiac fibrosis and improved cardiac function in a model of isolated RV pressure overload. In cellular models, GS-444217 reduced phosphorylation of p38 and JNK (c-Jun N-terminal kinase) induced by adenoviral overexpression of ASK1 in rat cardiomyocytes and reduced activation/migration of primary mouse cardiac fibroblasts and human pulmonary adventitial fibroblasts derived from patients with PAH. ASK1 inhibition reduced pathological remodeling of the pulmonary vasculature and the right ventricle and halted progression of pulmonary hypertension in rodent models. These preclinical data inform the first description of a causal role of ASK1 in PAH disease pathogenesis.

  9. Aridity and grazing as convergent selective forces: an experiment with an Arid Chaco bunchgrass.

    PubMed

    Quiroga, R Emiliano; Golluscio, Rodolfo A; Blanco, Lisandro J; Fernández, Roberto J

    2010-10-01

    It has been proposed that aridity and grazing are convergent selective forces: each one selects for traits conferring resistance to both. However, this conceptual model has not yet been experimentally validated. The aim of this work was to experimentally evaluate the effect of aridity and grazing, as selective forces, on drought and grazing resistance of populations of Trichloris crinita, a native perennial forage grass of the Argentinean Arid Chaco region. We collected seeds in sites with four different combinations of aridity and grazing history (semiarid/ subhumid x heavily grazed/lightly grazed), established them in pots in a common garden, and subjected the resulting plants to different combinations of drought and defoliation. Our results agreed with the convergence model. Aridity has selected T. crinita genotypes that respond better to drought and defoliation in terms of sexual reproduction and leaf growth, and that can evade grazing due to a lower shoot: root ratio and a higher resource allocation to reserves (starch) in stem bases. Similarly, grazing has selected genotypes that respond better to drought and defoliation in terms of sexual reproduction and that can evade grazing due to a lower digestibility of leaf blades. These results allow us to extend concepts of previous models in plant adaptation to herbivory to models on plant adaptation to drought. The only variable in which we obtained a result opposite to predictions was plant height, as plants from semiarid sites were taller (and with more erect tillers) than plants from subhumid sites; we hypothesize that this result might have been a consequence of the selection exerted by the high solar radiation and soil temperatures of semiarid sites. In addition, our work allows for the prediction of the effects of dry or wet growing seasons on the performance of T. crinita plants. Our results suggest that we can rely on dry environments for selecting grazing-resistant genotypes and on high grazing pressure history environments for selecting drought-resistant ones.

  10. Performance and Selectivity of Ceramic Membranes in the Ultrafiltration of Model Emulsion in Saline

    NASA Astrophysics Data System (ADS)

    Ćwirko, Konrad; Kalbarczyk-Jedynak, Agnieszka

    2017-06-01

    Oily wastewaters from different onshore and offshore installations and from maritime transport pose a serious threat to the environment so they must be treated by multistage separation also including membrane processes. The main advantages of such membranes are high performance and selectivity, high resistance for temperature and pressure, resistance for acids, bases and solvents, long service life and for application - significant reduction of industries and transport environmental impact. This work presents the results of the process of separation of oil from the emulsion with NaCl addition. Research was performed with a use of laboratory installation with ceramic 300 kDa membrane. The analysis concerned performance and selectivity of a membrane in the function of time and test results have been subsequently compared with the requirements of the IMO.

  11. Validation of the Samsung SBM-100A and Microlife BP 3BU1-5 wrist blood pressure measuring devices in adults according to the International Protocol.

    PubMed

    Altunkan, Sekip; Ilman, Nevzat; Altunkan, Erkan

    2007-04-01

    A variety of automatic blood measurement devices with diverse features have been introduced to the medical markets recently. Among these devices, models that measure at the wrist have become increasingly popular in self measurements. The objective of this study was to evaluate the accuracy of the Samsung SBM-100A and Microlife BP 3BU1-5 wrist blood pressure devices against the mercury sphygmomanometer in adults according to the International Protocol criteria. Fifty-four patients over 30 years of age were studied and classified based on the International Protocol range. Blood pressure measurements at the wrist with the Samsung SBM-100A and Microlife BP 3BU1-5 were compared with the results obtained by two trained observers using a mercury sphygmomanometer. Nine sequential blood pressure measurements were taken. A total of 33 participants with randomly distributed arm circumferences were selected for both of the validation studies. During each validation study, 99 measurements were obtained for comparison from 33 participants. The first phase was performed on 15 participants and if the device passed this phase, 18 more participants were selected. Mean discrepancies and standard deviations of the device-sphygmomanometer were 0.9+/-9.2 and -2.7+/-9.3 mmHg for systolic blood pressure and -1.4+/-8.0 mmHg and 1.4+/-5.7 for diastolic blood pressure in the Samsung and Microlife study groups, respectively. The Samsung SBM-100A passed Phase 1 in 15 participants. Despite the fact that Microlife BP 3BU1-5 passed Phase 1 for diastolic pressure, it failed according to the systolic pressure criteria. Eighteen patients were added and Phase 2 was continued, in which Samsung SBM-100A failed to meet the criteria of Phases 2.1 and 2.2 for adults in systolic and diastolic blood pressure. It was found that the Microlife BP 3BU1-5 does not meet the criteria of either of Phases 2.1 and 2.2 for systolic blood pressure and Phase 2.2 for diastolic blood pressure. In this study, Samsung SBM-100A and Microlife blood pressure 3BU1-5 wrist blood pressure monitoring devices were found to be incompetent to meet the criteria of the International Protocol and it has not been possible to suggest any one of them for clinical use in adults.

  12. Obesity-related hypertension: is there a role for selective leptin resistance?

    PubMed

    Correia, Marcelo L G; Haynes, William G

    2004-06-01

    Obesity is a risk factor for cardiovascular diseases, in particular for hypertension. Serum leptin levels and sympathetic nerve activity are both increased in obesity. Leptin has been demonstrated to increase sympathetic nerve activity. Thus, leptin-dependent sympathoactivation might contribute to obesity-related hypertension. However, leptin resistance occurs in obesity. One possibility is that leptin resistance is selective to the metabolic effects of leptin, sparing its sympathoexcitatory actions. In this article, we review experimental evidence supporting the novel concept of selective leptin resistance. We also discuss the sympathetic actions of leptin that are relevant to blood pressure modulation and potential mechanisms of leptin resistance. Disruption of leptin intracellular signaling pathways and resistance of specific leptin-responsive neural networks provide theoretic models of selective leptin resistance. However, most information about leptin-sympathetic actions and leptin-resistance mechanisms derive from in vitro and animal studies. Future research in humans is widely awaited.

  13. The incidence of pressure ulcer in patients on mechanical ventilation andeffects of selected risk factors on pressure ulcer development.

    PubMed

    Karayurt, Özgül; Akyol, Özay; Kılıçaslan, Necmiye; Akgün, Nuray; Sargın, Ümran; Kondakçı, Melike; Ekinci, Hanım; Sarı, Neslihan

    2016-11-17

    This study aimed to determine the incidence of pressure ulcers in patients on mechanical ventilation and selected risk factors likely to play a role in pressure ulcer development. The study included 110 patients recruited from an anesthesia critical care unit of a university hospital. Data were collected with a demographic and clinical characteristics form. The form was composed of questions about demographic characteristics and clinical features including diagnosis, duration of mechanical ventilation, general well-being, oxygenation, perfusion, and skin condition. The incidence of pressure ulcer was 15.5%. Duration of mechanical ventilation was longer and the body mass index was higher in patients developing pressure ulcers than in those without pressure ulcers. Additionally, 90.11% of patients with pressure ulcers had edema and 82.35% of patients with pressure ulcers received vasopressin. The patients with pressure ulcers had higher PH levels, lower PaO2 levels, higher PCO2 levels, lower SaO2 levels, and higher urine output. It can be recommended that nurses and other health professionals should be aware of factors playing a role in pressure ulcer development and should be able to conduct appropriate interventions to prevent pressure ulcers.

  14. Circulating Adipokines and Vascular Function: Cross-Sectional Associations in a Community-Based Cohort.

    PubMed

    Zachariah, Justin P; Hwang, Susan; Hamburg, Naomi M; Benjamin, Emelia J; Larson, Martin G; Levy, Daniel; Vita, Joseph A; Sullivan, Lisa M; Mitchell, Gary F; Vasan, Ramachandran S

    2016-02-01

    Adipokines may be potential mediators of the association between excess adiposity and vascular dysfunction. We assessed the cross-sectional associations of circulating adipokines with vascular stiffness in a community-based cohort of younger adults. We related circulating concentrations of leptin and leptin receptor, adiponectin, retinol-binding protein 4, and fatty acid-binding protein 4 to vascular stiffness measured by arterial tonometry in 3505 Framingham Third Generation cohort participants free of cardiovascular disease (mean age 40 years, 53% women). Separate regression models estimated the relations of each adipokine to mean arterial pressure and aortic stiffness, as carotid femoral pulse wave velocity, adjusting for age, sex, smoking, heart rate, height, antihypertensive treatment, total and high-density lipoprotein cholesterol, diabetes mellitus, alcohol consumption, estimated glomerular filtration rate, glucose, and C-reactive protein. Models evaluating aortic stiffness also were adjusted for mean arterial pressure. Mean arterial pressure was positively associated with blood retinol-binding protein 4, fatty acid-binding protein 4, and leptin concentrations (all P<0.001) and inversely with adiponectin (P=0.002). In fully adjusted models, mean arterial pressure was positively associated with retinol-binding protein 4 and leptin receptor levels (P<0.002 both). In fully adjusted models, aortic stiffness was positively associated with fatty acid-binding protein 4 concentrations (P=0.02), but inversely with leptin and leptin receptor levels (P≤0.03 both). In our large community-based sample, circulating concentrations of select adipokines were associated with vascular stiffness measures, consistent with the hypothesis that adipokines may influence vascular function and may contribute to the relation between obesity and hypertension. © 2015 American Heart Association, Inc.

  15. An experimental investigation of the unsteady response of a stator located downstream of a propeller ingesting broadband turbulence

    NASA Astrophysics Data System (ADS)

    Lynch, Denis Aloysius, III

    This experimental investigation examined the unsteady response of a stator located downstream of a four- or ten-bladed propeller encountering broadband turbulence. The response is manifested in a radiated acoustic field which can be directly attributed to the unsteady surface pressure loading on the stator by the turbulent flowfield. In order to characterize the unsteady response of the stator, a thorough analysis of the turbulent flowfield downstream of the propeller was completed. The analysis of the turbulent flowfield is organized in a manner which reflects the causal relationship between influences on the flowfield and the evolution of the flowfield itself. Mathematical models for each of these contributions, including the broadband and periodic contributions of the propeller wakes and modification of the inflow turbulence by the propeller, are presented and analyzed. A further mathematical model involving the prediction of correlation length scale aids in the accurate prediction of the radiated acoustic pressure based solely on fundamental turbulent flowfield measurements. Unsteady surface pressure measurements, originally intended to provide additional information about the response of the stator as it relates to the incoming flowfield, were found to be heavily contaminated by vibrational effects. Therefore, techniques involving cross-correlation measurements are developed to mathematically isolate the unsteady pressure signal. The success of these techniques suggests the strong possibility of future application in this area. Finally, the mathematical models developed to describe the flowfield downstream of the propeller are applied to the case of a twenty-bladed propeller. This case was selected due to the anticipated increased levels of modification of the inflow turbulence. Results provide further evidence that this complex flowfield may be fully and accurately represented using simple mathematical models supported by baseline empirical information.

  16. Development of a component design tool for metal hydride heat pumps

    NASA Astrophysics Data System (ADS)

    Waters, Essene L.

    Given current demands for more efficient and environmentally friendly energy sources, hydrogen based energy systems are an increasingly popular field of interest. Within the field, metal hydrides have become a prominent focus of research due to their large hydrogen storage capacity and relative system simplicity and safety. Metal hydride heat pumps constitute one such application, in which heat and hydrogen are transferred to and from metal hydrides. While a significant amount of work has been done to study such systems, the scope of materials selection has been quite limited. Typical studies compare only a few metal hydride materials and provide limited justification for the choice of those few. In this work, a metal hydride component design tool has been developed to enable the targeted down-selection of an extensive database of metal hydrides to identify the most promising materials for use in metal hydride thermal systems. The material database contains over 300 metal hydrides with various physical and thermodynamic properties included for each material. Sub-models for equilibrium pressure, thermophysical data, and default properties are used to predict the behavior of each material within the given system. For a given thermal system, this tool can be used to identify optimal materials out of over 100,000 possible hydride combinations. The selection tool described herein has been applied to a stationary combined heat and power system containing a high-temperature proton exchange membrane (PEM) fuel cell, a hot water tank, and two metal hydride beds used as a heat pump. A variety of factors can be used to select materials including efficiency, maximum and minimum system pressures, pressure difference, coefficient of performance (COP), and COP sensitivity. The targeted down-selection of metal hydrides for this system focuses on the system's COP for each potential pair. The values of COP and COP sensitivity have been used to identify pairs of highest interest for use in this application. The metal hydride component design tool developed in this work selects between metal hydride materials on an unprecedented scale. It can be easily applied to other hydrogen-based thermal systems, making it a powerful and versatile tool.

  17. Stiffness and relaxation components of the exponential and logistic time constants may be used to derive a load-independent index of isovolumic pressure decay.

    PubMed

    Shmuylovich, Leonid; Kovács, Sándor J

    2008-12-01

    In current practice, empirical parameters such as the monoexponential time constant tau or the logistic model time constant tauL are used to quantitate isovolumic relaxation. Previous work indicates that tau and tauL are load dependent. A load-independent index of isovolumic pressure decline (LIIIVPD) does not exist. In this study, we derive and validate a LIIIVPD. Recently, we have derived and validated a kinematic model of isovolumic pressure decay (IVPD), where IVPD is accurately predicted by the solution to an equation of motion parameterized by stiffness (Ek), relaxation (tauc), and pressure asymptote (Pinfinity) parameters. In this study, we use this kinematic model to predict, derive, and validate the load-independent index MLIIIVPD. We predict that the plot of lumped recoil effects [Ek.(P*max-Pinfinity)] versus resistance effects [tauc.(dP/dtmin)], defined by a set of load-varying IVPD contours, where P*max is maximum pressure and dP/dtmin is the minimum first derivative of pressure, yields a linear relation with a constant (i.e., load independent) slope MLIIIVPD. To validate the load independence, we analyzed an average of 107 IVPD contours in 25 subjects (2,669 beats total) undergoing diagnostic catheterization. For the group as a whole, we found the Ek.(P*max-Pinfinity) versus tauc.(dP/dtmin) relation to be highly linear, with the average slope MLIIIVPD=1.107+/-0.044 and the average r2=0.993+/-0.006. For all subjects, MLIIIVPD was found to be linearly correlated to the subject averaged tau (r2=0.65), tauL(r2=0.50), and dP/dtmin (r2=0.63), as well as to ejection fraction (r2=0.52). We conclude that MLIIIVPD is a LIIIVPD because it is load independent and correlates with conventional IVPD parameters. Further validation of MLIIIVPD in selected pathophysiological settings is warranted.

  18. An automated pressure data acquisition system for evaluation of pressure sensitive paint chemistries

    NASA Technical Reports Server (NTRS)

    Sealey, Bradley S.; Mitchell, Michael; Burkett, Cecil G.; Oglesby, Donald M.

    1993-01-01

    An automated pressure data acquisition system for testing of pressure sensitive phosphorescent paints was designed, assembled, and tested. The purpose of the calibration system is the evaluation and selection of pressure sensitive paint chemistries that could be used to obtain global aerodynamic pressure distribution measurements. The test apparatus and setup used for pressure sensitive paint characterizations is described. The pressure calibrations, thermal sensitivity effects, and photodegradation properties are discussed.

  19. What Physical Fitness Component Is Most Closely Associated With Adolescents' Blood Pressure?

    PubMed

    Nunes, Heloyse E G; Alves, Carlos A S; Gonçalves, Eliane C A; Silva, Diego A S

    2017-12-01

    This study aimed to determine which of four selected physical fitness variables, would be most associated with blood pressure changes (systolic and diastolic) in a large sample of adolescents. This was a descriptive and cross-sectional, epidemiological study of 1,117 adolescents aged 14-19 years from southern Brazil. Systolic and diastolic blood pressure were measured by a digital pressure device, and the selected physical fitness variables were body composition (body mass index), flexibility (sit-and-reach test), muscle strength/resistance (manual dynamometer), and aerobic fitness (Modified Canadian Aerobic Fitness Test). Simple and multiple linear regression analyses revealed that aerobic fitness and muscle strength/resistance best explained variations in systolic blood pressure for boys (17.3% and 7.4% of variance) and girls (7.4% of variance). Aerobic fitness, body composition, and muscle strength/resistance are all important indicators of blood pressure control, but aerobic fitness was a stronger predictor of systolic blood pressure in boys and of diastolic blood pressure in both sexes.

  20. Effect of high hydrostatic pressure and high dynamic pressure on stability and rheological properties of model oil-in-water emulsions

    NASA Astrophysics Data System (ADS)

    Bigikocin, Erman; Mert, Behic; Alpas, Hami

    2011-09-01

    Both static and dynamic high pressure applications provide interesting modifications in food structures which lead to new product formulations. In this study, the effects of two different treatments, high hydrostatic pressure (HHP) and high dynamic pressure (HDP), on oil-in-water emulsions were identified and compared. Microfluidization was selected from among the HDP homogenization techniques. The performance of each process was analyzed in terms of rheological modifications and emulsion stability improvements compared with the coarse emulsions. The stability of the emulsions was determined comparatively by using an analytical photo-centrifuge device employing novel analysis technology. Whey protein isolate (WPI) in combination with a food polysaccharide (xanthan gum, guar gum or locust bean gum) were used as emulsifying and stabilizing ingredients. The effective disruption of oil droplets and the degradation of polysaccharides by the shear forces under high pressure in HDP microfluidization yielded finer emulsions with lower viscosities, leading to distinctive improvements in emulsion stability. On the other hand, improvements in stability obtained with HHP treatment were due to the thickening of the emulsions mainly induced by protein unfolding. The corresponding increases in viscosity were intensified in emulsion formulations containing higher oil content. Apart from these, HHP treatment was found to be relatively more contributive to the enhancements in viscoelastic properties.

  1. KC-135 wing and winglet flight pressure distributions, loads, and wing deflection results with some wind tunnel comparisons

    NASA Technical Reports Server (NTRS)

    Montoya, L. C.; Jacobs, P.; Flechner, S.; Sims, R.

    1982-01-01

    A full-scale winglet flight test on a KC-135 airplane with an upper winglet was conducted. Data were taken at Mach numbers from 0.70 to 0.82 at altitudes from 34,000 feet to 39,000 feet at stabilized flight conditions for wing/winglet configurations of basic wing tip, 15/-4 deg, 15/-2 deg, and 0/-4 deg winglet cant/incidence. An analysis of selected pressure distribution and data showed that with the basic wing tip, the flight and wind tunnel wing pressure distribution data showed good agreement. With winglets installed, the effects on the wing pressure distribution were mainly near the tip. Also, the flight and wind tunnel winglet pressure distributions had some significant differences primarily due to the oilcanning in flight. However, in general, the agreement was good. For the winglet cant and incidence configuration presented, the incidence had the largest effect on the winglet pressure distributions. The incremental flight wing deflection data showed that the semispan wind tunnel model did a reasonable job of simulating the aeroelastic effects at the wing tip. The flight loads data showed good agreement with predictions at the design point and also substantiated the predicted structural penalty (load increase) of the 15 deg cant/-2 deg incidence winglet configuration.

  2. Nondestructive equipment study

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Identification of existing nondestructive Evaluation (NDE) methods that could be used in a low Earth orbit environment; evaluation of each method with respect to the set of criteria called out in the statement of work; selection of the most promising NDE methods for further evaluation; use of selected NDE methods to test samples of pressure vessel materials in a vacuum; pressure testing of a complex monolythic pressure vessel with known flaws using acoustic emissions in a vacuum; and recommendations for further studies based on analysis and testing are covered.

  3. Phase Equilibrium Investigation on 2-Phenylethanol in Binary and Ternary Systems: Influence of High Pressure on Density and Solid-Liquid Phase Equilibrium.

    PubMed

    Domańska, Urszula; Królikowski, Marek; Wlazło, Michał; Więckowski, Mikołaj

    2018-05-30

    Ionic liquids (ILs) are important new solvents proposed for applications in different separation processes. Herein, an idea of possible use of high pressure in a general strategy of production of 2-phenylethanol (PEA) is discussed. In this work, we present the influence of pressure on the density in binary systems of {1-hexyl-1-methylpyrrolidynium bis{(trifluoromethyl)sulfonyl}imide, [HMPYR][NTf 2 ], or 1-dodecyl-3-methylimidazolium bis{(trifluoromethyl)sulfonyl}imide, [DoMIM][NTf 2 ] + PEA} in a wide range of temperatures (298.15-348.15 K) and pressures (0.1-40 MPa). The densities at ambient and high pressures are measured to present the physicochemical properties of the ILs used in the process of separation of PEA from aqueous phase. The Tait equation was used for the correlation of density of one-component and two-component systems as a function of mole fraction, temperature, and pressure. The influence of pressure is not significant. These systems exhibit mainly negative molar excess volumes, V E . The solid-liquid phase equilibrium (SLE) of [DoMIM][NTf 2 ] in PEA at atmospheric pressure was measured and compared to the SLE high-pressure results. Additionally, the ternary liquid-liquid phase equilibrium (LLE) at ambient pressure in the {[DoMIM][NTf 2 ] (1) + PEA (2) + water (3)} at temperature T = 308.15 K was investigated. The solubility of water in the [DoMIM][NTf 2 ] is quite high in comparison with that measured by us earlier for ILs ( x 3 = 0.403) at T = 308.15 K, which results in not very successful average selectivity of extraction of PEA from the aqueous phase. The [DoMIM][NTf 2 ] has shown strong interaction with PEA without the immiscibility region. The ternary system revealed Treybal's type phase equilibrium in which two partially miscible binaries ([DoMIM][NTf 2 ] + water) and (PEA + water) exist. From the results of LLE in the ternary system, the selectivity and the solute distribution ratio of separation of water/PEA were calculated and compared to the results obtained for the ILs measured earlier by us. The popular NRTL model was used to correlate the experimental tie-lines in ternary LLE. These results may help in a new technological project of "in situ" extraction of PEA from aqueous phase during the biosynthesis.

  4. Selected Gravity Models in Terms of the fit to the GOCE Kinematic Orbit in the Dynamic Orbit Determination Process

    NASA Astrophysics Data System (ADS)

    Bobojć, Andrzej; Drożyner, Andrzej; Rzepecka, Zofia

    2017-04-01

    The work includes the comparison of performance of selected geopotential models in the dynamic orbit estimation of the satellite of the Gravity Field and Steady-State Ocean Circulation Explorer (GOCE) mission. This was realized by fitting estimated orbital arcs to the official centimeter-accuracy GOCE kinematic orbit which is provided by the European Space Agency. The Cartesian coordinates of kinematic orbit were treated as observations in the orbit estimation. The initial satellite state vector components were corrected in an iterative process with respect to the J2000.0 inertial reference frame using the given geopotential model, the models describing the remaining gravitational perturbations and the solar radiation pressure. Taking the obtained solutions into account, the RMS values of orbital residuals were computed. These residuals result from the difference between the determined orbit and the reference one - the GOCE kinematic orbit. The performance of selected gravity models was also determined using various orbital arc lengths. Additionally, the RMS fit values were obtained for some gravity models truncated at given degree and order of spherical harmonic coefficients. The advantage of using the kinematic orbit is its independence from any a priori dynamical models. For the research such GOCE-independent gravity models as HUST-Grace2016s, ITU_GRACE16, ITSG-Grace2014s, ITSG-Grace2014k, GGM05S, Tongji-GRACE01, ULUX_CHAMP2013S, ITG-GRACE2010S, EIGEN-51C, EIGEN5S, EGM2008 and EGM96 were adopted.

  5. Genetic diversity in the interference selection limit.

    PubMed

    Good, Benjamin H; Walczak, Aleksandra M; Neher, Richard A; Desai, Michael M

    2014-03-01

    Pervasive natural selection can strongly influence observed patterns of genetic variation, but these effects remain poorly understood when multiple selected variants segregate in nearby regions of the genome. Classical population genetics fails to account for interference between linked mutations, which grows increasingly severe as the density of selected polymorphisms increases. Here, we describe a simple limit that emerges when interference is common, in which the fitness effects of individual mutations play a relatively minor role. Instead, similar to models of quantitative genetics, molecular evolution is determined by the variance in fitness within the population, defined over an effectively asexual segment of the genome (a "linkage block"). We exploit this insensitivity in a new "coarse-grained" coalescent framework, which approximates the effects of many weakly selected mutations with a smaller number of strongly selected mutations that create the same variance in fitness. This approximation generates accurate and efficient predictions for silent site variability when interference is common. However, these results suggest that there is reduced power to resolve individual selection pressures when interference is sufficiently widespread, since a broad range of parameters possess nearly identical patterns of silent site variability.

  6. Hydrogen generation in CSP plants and maintenance of DPO/BP heat transfer fluids - A simulation approach

    NASA Astrophysics Data System (ADS)

    Kuckelkorn, Thomas; Jung, Christian; Gnädig, Tim; Lang, Christoph; Schall, Christina

    2016-05-01

    The ageing of diphenyl oxide/ biphenyl (DPO/BP) Heat Transfer Fluids (HTFs) implies challenging tasks for operators of parabolic trough power plants in order to find the economic optimum between plant performance and O&M costs. Focusing on the generation of hydrogen, which is effecting from the HTF ageing process, the balance of hydrogen pressure in the HTF is simulated for different operation scenarios. Accelerated build-up of hydrogen pressure in the HTF is causing increased permeation into the annular vacuum space of the installed receivers and must be avoided in order to maintain the performance of these components. Therefore, the effective hydrogen partial pressure in the HTF has to be controlled and limited according to the specified values so that the vacuum lifetime of the receivers and the overall plant performance can be ensured. In order to simulate and visualize the hydrogen balance of a typical parabolic trough plant, initially a simple model is used to calculate the balance of hydrogen in the system and this is described. As input data for the simulation, extrapolated hydrogen generation rates have been used, which were calculated from results of lab tests performed by DLR in Cologne, Germany. Hourly weather data, surface temperatures of the tubing system calculated by using the simulation tool from NREL, and hydrogen permeation rates for stainless steel and carbon steel grades taken from literature have been added to the model. In a first step the effect of HTF ageing, build-up of hydrogen pressure in the HTF and hydrogen loss rates through piping and receiver components have been modeled. In a second step a selective hydrogen removal process has been added to the model. The simulation results are confirming the need of active monitoring and controlling the effective hydrogen partial pressure in parabolic trough solar thermal power plants with DPO/BP HTF. Following the results of the simulation, the expected plant performance can only be achieved over lifetime, if the hydrogen partial pressure is actively controlled and limited.

  7. Modelling of nectarine drying under near infrared - Vacuum conditions.

    PubMed

    Alaei, Behnam; Chayjan, Reza Amiri

    2015-01-01

    Drying of nectarine slices was performed to determine the thermal and physical properties in order to reduce product deterioration due to chemical reactions, facilitate storage and lower transportation costs. Because nectarine slices are sensitive to heat with long drying period, the selection of a suitable drying approach is a challenging task. Infrared-vacuum drying can be used as an appropriate method for susceptible materials with high moisture content such as nectarine slices. Modelling of nectarine slices drying was carried out in a thin layer near infraredvacuum conditions. Drying of the samples was implemented at the absolute pressures of 20, 40 and 60 kPa and drying temperatures of 50, 60 and 70°C. Drying behaviour of nectarine slices, as well as the effect of drying conditions on moisture loss trend, drying rate, effective diffusion coefficient, activation energy, shrinkage, colour and energy consumption of nectarine slices, dried in near infrared-vacuum dryer are discussed in this study. Six mathematical models were used to predict the moisture ratio of the samples in thin layer drying. The Midilli model had supremacy in prediction of nectarine slices drying behaviour. The maximum drying rates of the samples were between 0.014-0.047 gwater/gdry material·min. Effective moisture diffusivity of the samples was estimated in the ranges of 2.46·10-10 to 6.48·10-10 m2/s. Activation energy were computed between 31.28 and 35.23 kJ/mol. Minimum shrinkage (48.4%) and total colour difference (15.1) were achieved at temperature of 50°C and absolute pressure of 20 kPa. Energy consumption of the tests was estimated in the ranges of 0.129 to 0.247 kWh. Effective moisture diffusivity was increased with decrease of vacuum pressure and increase of drying temperature but effect of drying temperature on effective moisture diffusivity of nectarine slices was more than vacuum pressure. Activation energy was decreased with decrease in absolute pressure. Total colour difference and shrinkage of nectarine slices on near infrared-vacuum drying was decreased with decrease of vacuum pressure and decrease of drying temperature.

  8. Influence of harvesting pressure on demographic tactics: Implications for wildlife management

    USGS Publications Warehouse

    Servanty, S.; Gaillard, J.-M.; Ronchi, F.; Focardi, S.; Baubet, E.; Gimenez, O.

    2011-01-01

    Demographic tactics within animal populations are shaped by selective pressures. Exploitation exerts additional pressures so that differing demographic tactics might be expected among populations with differences in levels of exploitation. Yet little has been done so far to assess the possible consequences of exploitation on the demographic tactics of mammals, even though such information could influence the choice of effective management strategies. Compared with similar-sized ungulate species, wild boar Sus scrofa has high reproductive capabilities, which complicates population management. Using a perturbation analysis, we investigated how population growth rates (??) and critical life-history stages differed between two wild boar populations monitored for several years, one of which was heavily harvested and the other lightly harvested. Asymptotic ?? was 1??242 in the lightly hunted population and 1??115 in the heavily hunted population, while the ratio between the elasticity of adult survival and juvenile survival was 2??63 and 1??27, respectively. A comparative analysis including 21 other ungulate species showed that the elasticity ratio in the heavily hunted population was the lowest ever observed. Compared with expected generation times of similar-sized ungulates (more than 6years), wild boar has a fast life-history speed, especially when facing high hunting pressure. This is well illustrated by our results, where generation times were 3??6years in the lightly hunted population and only 2??3years in the heavily hunted population. High human-induced mortality combined with non-limiting food resources accounted for the accelerated life history of the hunted population because of earlier reproduction. Synthesis and applications. For wild boar, we show that when a population is facing a high hunting pressure, increasing the mortality in only one age-class (e.g. adults or juveniles) may not allow managers to limit population growth. We suggest that simulations of management strategies based on context-specific demographic models are useful for selecting interventions for population control. This type of approach allows the assessment of population response to exploitation by considering a range of plausible scenarios, improving the chance of selecting appropriate management actions. ?? 2011 The Authors. Journal of Applied Ecology ?? 2011 British Ecological Society.

  9. Quantitative Characterization of Spurious Gibbs Waves in 45 CMIP5 Models

    NASA Astrophysics Data System (ADS)

    Geil, K. L.; Zeng, X.

    2014-12-01

    Gibbs oscillations appear in global climate models when representing fields, such as orography, that contain discontinuities or sharp gradients. It has been known for decades that the oscillations are associated with the transformation of the truncated spectral representation of a field to physical space and that the oscillations can also be present in global models that do not use spectral methods. The spurious oscillations are potentially detrimental to model simulations (e.g., over ocean) and this work provides a quantitative characterization of the Gibbs oscillations that appear across the Coupled Model Intercomparison Project Phase 5 (CMIP5) models. An ocean transect running through the South Pacific High toward the Andes is used to characterize the oscillations in ten different variables. These oscillations are found to be stationary and hence are not caused by (physical) waves in the atmosphere. We quantify the oscillation amplitude using the root mean square difference (RMSD) between the transect of a variable and its running mean (rather than the constant mean across the transect). We also compute the RMSD to interannual variability (IAV) ratio, which provides a relative measure of the oscillation amplitude. Of the variables examined, the largest RMSD values exist in the surface pressure field of spectral models, while the smallest RMSD values within the surface pressure field come from models that use finite difference (FD) techniques. Many spectral models have a surface pressure RMSD that is 2 to 15 times greater than IAV over the transect and an RMSD:IAV ratio greater than one for many other variables including surface temperature, incoming shortwave radiation at the surface, incoming longwave radiation at the surface, and total cloud fraction. In general, the FD models out-perform the spectral models, but not all the spectral models have large amplitude oscillations and there are a few FD models where the oscillations do appear. Finally, we present a brief comparison of the numerical methods of a select few models to better understand their Gibbs oscillations.

  10. Population dynamics in the presence of quasispecies effects and changing environments

    NASA Astrophysics Data System (ADS)

    Forster, Robert Burke

    2006-12-01

    This thesis explores how natural selection acts on organisms such as viruses that have either highly error-prone reproduction or face variable environmental conditions or both. By modeling population dynamics under these conditions, we gain a better understanding of the selective forces at work, both in our simulations and hopefully also in real organisms. With an understanding of the important factors in natural selection we can forecast not only the immediate fate of an existing population but also in what directions such a population might evolve in the future. We demonstrate that the concept of a quasispecies is relevant to evolution in a neutral fitness landscape. Motivated by RNA viruses such as HIV, we use RNA secondary structure as our model system and find that quasispecies effects arise both rapidly and in realistically small populations. We discover that the evolutionary effects of neutral drift, punctuated equilibrium and the selection for mutational robustness extend to the concept of a quasispecies. In our study of periodic environments, we consider the tradeoffs faced by quasispecies in adapting to environmental change. We develop an analytical model to predict whether evolution favors short-term or long-term adaptation and validate our model through simulation. Our results bear directly on the population dynamics of viruses such as West Nile that alternate between two host species. More generally, we discover that a selective pressure exists under these conditions to fuse or split genes with complementary environmental functions. Lastly, we study the general effects of frequency-dependent selection on two strains competing in a periodic environment. Under very general assumptions, we prove that stable coexistence rather than extinction is the likely outcome. The population dynamics of this system may be as simple as stable equilibrium or as complex as deterministic chaos.

  11. Selection dynamic of Escherichia coli host in M13 combinatorial peptide phage display libraries.

    PubMed

    Zanconato, Stefano; Minervini, Giovanni; Poli, Irene; De Lucrezia, Davide

    2011-01-01

    Phage display relies on an iterative cycle of selection and amplification of random combinatorial libraries to enrich the initial population of those peptides that satisfy a priori chosen criteria. The effectiveness of any phage display protocol depends directly on library amino acid sequence diversity and the strength of the selection procedure. In this study we monitored the dynamics of the selective pressure exerted by the host organism on a random peptide library in the absence of any additional selection pressure. The results indicate that sequence censorship exerted by Escherichia coli dramatically reduces library diversity and can significantly impair phage display effectiveness.

  12. Evaluation of Gritting Strategies for High Angle of Attack Using Wind Tunnel and Flight Test Data for the F/A-18

    NASA Technical Reports Server (NTRS)

    Hall, Robert M.; Erickson, Gary E.; Fox, Charles H., Jr.; Banks, Daniel W.; Fisher, David F.

    1998-01-01

    A subsonic study of high-angle-of-attack gritting strategies was undertaken with a 0.06-scale model of the F/A-18, which was assumed to be typical of airplanes with smooth-sided forebodies. This study was conducted in the Langley 7- by 10-Foot High-Speed Tunnel and was intended to more accurately simulate flight boundary layer characteristics on the model in the wind tunnel than would be possible by using classical, low-angle-of-attack gritting on the fuselage. Six-component force and moment data were taken with an internally mounted strain-gauge balance, while pressure data were acquired by using electronically scanned pressure transducers. Data were taken at zero sideslip over an angle-of-attack range from 0 deg to 40 deg and, at selected angles of attack, over sideslip angles from -10 deg to 10 deg. Free-stream Mach number was fixed at 0.30, which resulted in a Reynolds number, based on mean aerodynamic chord, of 1.4 x 10(exp 6). Pressure data measured over the forebody and leading-edge extensions are compared to similar pressure data taken by a related NASA flight research program by using a specially instrumented F/A-18, the High-Alpha Research Vehicle (HARV). Preliminary guidelines for high-angle-of-attack gritting strategies are given.

  13. Theoretical and experimental evaluation of the effects of an argon gas mixture on the pressure drop through adult tracheobronchial airway replicas.

    PubMed

    Litwin, Patrick D; Reis Dib, Anna Luisa; Chen, John; Noga, Michelle; Finlay, Warren H; Martin, Andrew R

    2017-06-14

    Argon has the potential to be a novel inhaled therapeutic agent, owing to the neuroprotective and organoprotective properties demonstrated in preclinical studies. Before human trials are performed, an understanding of varying gas properties on airway resistance during inhalation is essential. This study predicts the effect of an 80% argon/20% oxygen gas mixture on the pressure drop through conducting airways, and by extension the airway resistance, and then verifies these predictions experimentally using 3-D printed adult tracheobronchial airway replicas. The predicted pressure drop was calculated using established analytical models of airway resistance, incorporating the change in viscosity and density of the 80% argon/20% oxygen mixture versus that of air. Predicted pressure drop for the argon mixture increased by approximately 29% compared to that for air. The experimental results were consistent with this prediction for inspiratory flows ranging from 15 to 90slpm. These results indicate that established analytical models may be used to predict increases in conducting airway resistance for argon/oxygen mixtures, compared with air. Such predictions are valuable in predicting average patient response to breathing argon/oxygen mixtures, and in selecting or designing delivery systems for use in administration of argon/oxygen mixtures to critically ill or injured patients. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Evaluation of AHRQ's on-time pressure ulcer prevention program: a facilitator-assisted clinical decision support intervention for nursing homes.

    PubMed

    Olsho, Lauren E W; Spector, William D; Williams, Christianna S; Rhodes, William; Fink, Rebecca V; Limcangco, Rhona; Hurd, Donna

    2014-03-01

    Pressure ulcers present serious health and economic consequences for nursing home residents. The Agency for Healthcare Research & Quality, in partnership with the New York State Department of Health, implemented the pressure ulcer module of On-Time Quality Improvement for Long Term Care (On-Time), a clinical decision support intervention to reduce pressure ulcer incidence rates. To evaluate the effectiveness of the On-Time program in reducing the rate of in-house-acquired pressure ulcers among nursing home residents. We employed an interrupted time-series design to identify impacts of 4 core On-Time program components on resident pressure ulcer incidence in 12 New York State nursing homes implementing the intervention (n=3463 residents). The sample was purposively selected to include nursing homes with high baseline prevalence and incidence of pressure ulcers and high motivation to reduce pressure ulcers. Differential timing and sequencing of 4 core On-Time components across intervention nursing homes and units enabled estimation of separate impacts for each component. Inclusion of a nonequivalent comparison group of 13 nursing homes not implementing On-Time (n=2698 residents) accounts for potential mean-reversion bias. Impacts were estimated via a random-effects Poisson model including resident-level and facility-level covariates. We find a large and statistically significant reduction in pressure ulcer incidence associated with the joint implementation of 4 core On-Time components (incidence rate ratio=0.409; P=0.035). Impacts vary with implementation of specific component combinations. On-Time implementation is associated with sizable reductions in pressure ulcer incidence.

  15. Micromechanics of pressure-induced grain crushing in porous rocks

    NASA Astrophysics Data System (ADS)

    Davis, Daniel M.

    1990-01-01

    The hydrostatic compaction behavior of a suite of porous sandstones was investigated at confining pressures up to 600 MPa and constant pore pressures ranging up to 50 MPa. These five sandstones (Boise, Kayenta, St. Peter, Berea, and Weber) were selected because of their wide range of porosity (5-35%) and grain size (60-460 μm). We tested the law of effective stress for the porosity change as a function of pressure. Except for Weber sandstone (which has the lowest porosity and smallest grain size), the hydrostat of each sandstone shows an inflection point corresponding to a critical effective pressure beyond which an accelerated, irrecoverable compaction occurs. Our microstructural observations show that brittle grain crushing initiates at this critical pressure. We also observed distributed cleavage cracking in calcite and intensive kinking in mica. The critical pressures for grain crushing in our sandstones range from 75 to 380 MPa. In general, a sandstone with higher porosity and larger grain size has a critical pressure which is lower than that of a sandstone with lower porosity and smaller grain size. We formulate a Hertzian fracture model to analyze the micromechanics of grain crushing. Assuming that the solid grains have preexisting microcracks with dimensions which scale with grain size, we derive an expression for the critical pressure which depends on the porosity, grain size, and fracture toughness of the solid matrix. The theoretical prediction is in reasonable agreement with our experimental data as well as other data from soil and rock mechanics studies for which the critical pressures range over 3 orders of magnitude.

  16. Relationship between propagule pressure and colonization pressure in invasion ecology: a test with ships' ballast.

    PubMed

    Briski, Elizabeta; Bailey, Sarah A; Casas-Monroy, Oscar; DiBacco, Claudio; Kaczmarska, Irena; Levings, Colin; MacGillivary, Michael L; McKindsey, Christopher W; Nasmith, Leslie E; Parenteau, Marie; Piercey, Grace E; Rochon, André; Roy, Suzanne; Simard, Nathalie; Villac, Maria C; Weise, Andréa M; MacIsaac, Hugh J

    2012-08-07

    Increasing empirical evidence indicates the number of released individuals (i.e. propagule pressure) and number of released species (i.e. colonization pressure) are key determinants of the number of species that successfully invade new habitats. In view of these relationships, and the possibility that ships transport whole communities of organisms, we collected 333 ballast water and sediment samples to investigate the relationship between propagule and colonization pressure for a variety of diverse taxonomic groups (diatoms, dinoflagellates and invertebrates). We also reviewed the scientific literature to compare the number of species transported by ships to those reported in nature. Here, we show that even though ships transport nearly entire local communities, a strong relationship between propagule and colonization pressure exists only for dinoflagellates. Our study provides evidence that colonization pressure of invertebrates and diatoms may fluctuate widely irrespective of propagule pressure. We suggest that the lack of correspondence is explained by reduced uptake of invertebrates into the transport vector and the sensitivity of invertebrates and diatoms to selective pressures during transportation. Selection during transportation is initially evident through decreases in propagule pressure, followed by decreased colonization pressure in the most sensitive taxa.

  17. Relationship between propagule pressure and colonization pressure in invasion ecology: a test with ships' ballast

    PubMed Central

    Briski, Elizabeta; Bailey, Sarah A.; Casas-Monroy, Oscar; DiBacco, Claudio; Kaczmarska, Irena; Levings, Colin; MacGillivary, Michael L.; McKindsey, Christopher W.; Nasmith, Leslie E.; Parenteau, Marie; Piercey, Grace E.; Rochon, André; Roy, Suzanne; Simard, Nathalie; Villac, Maria C.; Weise, Andréa M.; MacIsaac, Hugh J.

    2012-01-01

    Increasing empirical evidence indicates the number of released individuals (i.e. propagule pressure) and number of released species (i.e. colonization pressure) are key determinants of the number of species that successfully invade new habitats. In view of these relationships, and the possibility that ships transport whole communities of organisms, we collected 333 ballast water and sediment samples to investigate the relationship between propagule and colonization pressure for a variety of diverse taxonomic groups (diatoms, dinoflagellates and invertebrates). We also reviewed the scientific literature to compare the number of species transported by ships to those reported in nature. Here, we show that even though ships transport nearly entire local communities, a strong relationship between propagule and colonization pressure exists only for dinoflagellates. Our study provides evidence that colonization pressure of invertebrates and diatoms may fluctuate widely irrespective of propagule pressure. We suggest that the lack of correspondence is explained by reduced uptake of invertebrates into the transport vector and the sensitivity of invertebrates and diatoms to selective pressures during transportation. Selection during transportation is initially evident through decreases in propagule pressure, followed by decreased colonization pressure in the most sensitive taxa. PMID:22456877

  18. High pressure enhances the effect of hyperthermia in intraperitoneal chemotherapy with oxaliplatin: an experimental study.

    PubMed

    Facy, Olivier; Al Samman, Sophie; Magnin, Guy; Ghiringhelli, Francois; Ladoire, Sylvain; Chauffert, Bruno; Rat, Patrick; Ortega-Deballon, Pablo

    2012-12-01

    Cytoreductive surgery and hyperthermic intraperitoneal chemotherapy (HIPEC) achieve good results in selected patients with peritoneal carcinomatosis. High intra-abdominal pressure could enhance the penetration of chemotherapy drugs. The aim of this study was to compare the effects of high pressure and hyperthermia when used separately and when combined in terms of blood and tissue absorption of oxaliplatin in a swine model of intraperitoneal chemotherapy. Four groups of 5 pigs each underwent laparotomy and open intraperitoneal chemotherapy with oxaliplatin at a constant concentration (150 mg/L) for 30 minutes in normothermia and atmospheric pressure (group 1), or hyperthermia (42°C) and atmospheric pressure (group 2), or normothermia and high pressure (25 cm H2O) (group 3), or hyperthermia and high pressure (group 4). High pressure was achieved thorough a water column over the abdomen. Systemic absorption and abdominal tissue mapping of the penetration of oxaliplatin in each group were studied. Blood concentrations of oxaliplatin were similar in the different groups. Hyperthermia achieved higher concentrations in visceral surfaces (P = 0.0014), but not in parietal surfaces. High pressure enhanced diffusion of the drug in both the visceral and parietal peritoneum (P = 0.0058 and P = 0.0044, respectively). The combination of hyperthermia and high pressure significantly increased the penetration of oxaliplatin and achieved the highest tissue concentrations (10.39 mg/kg vs 5.48 mg/kg; P = 0.00001 in the visceral peritoneum, and 66.16 mg/kg vs 35.62 mg/kg; P = 0.0003 in the parietal peritoneum). Open high-pressure HIPEC with oxaliplatin is feasible in the pig. Hyperthermia enhances diffusion in the visceral peritoneum, whereas high pressure is effective in the visceral and parietal peritoneum. The combination of the two achieves the highest tissue concentrations of oxaliplatin.

  19. A boundary element model of the transport of a semi-infinite bubble through a microvessel bifurcation

    NASA Astrophysics Data System (ADS)

    Calderon, Andres J.; Eshpuniyani, Brijesh; Fowlkes, J. Brian; Bull, Joseph L.

    2010-06-01

    Motivated by a developmental gas embolotherapy technique for selective occlusion of blood flow to tumors, we examined the transport of a pressure-driven semi-infinite bubble through a liquid-filled bifurcating channel. Homogeneity of bubble splitting as the bubble passes through a vessel bifurcation affects the degree to which the vascular network near the tumor can be uniformly occluded. The homogeneity of bubble splitting was found to increase with bubble driving pressure and to decrease with increased bifurcation angle. Viscous losses at the bifurcation were observed to affect the bubble speed significantly. The potential for oscillating bubble interfaces to induce flow recirculation and impart high stresses on the vessel endothelium was also observed.

  20. Additional flow field studies of the GA(W)-1 airfoil with 30-percent chord Fowler flap including slot-gap variations and cove shape modifications

    NASA Technical Reports Server (NTRS)

    Wentz, W. H., Jr.; Ostowari, C.

    1983-01-01

    Experimental measurements were made to determine the effects of slot gap opening and flap cove shape on flap and airfoil flow fields. Test model was the GA(W)-1 airfoil with 0.30c Fowler flap deflected 35 degrees. Tests were conducted with optimum, wide and narrow gaps, and with three cove shapes. Three test angles were selected, corresponding to pre-stall and post-stall conditions. Reynolds number was 2,200,000 and Mach number was 0.13. Force, surface pressure, total pressure, and split-film turbulence measurements were made. Results were compared with theory for those parameters for which theoretical values were available.

Top