Process Dissociation and Mixture Signal Detection Theory
ERIC Educational Resources Information Center
DeCarlo, Lawrence T.
2008-01-01
The process dissociation procedure was developed in an attempt to separate different processes involved in memory tasks. The procedure naturally lends itself to a formulation within a class of mixture signal detection models. The dual process model is shown to be a special case. The mixture signal detection model is applied to data from a widely…
Testing Signal-Detection Models of Yes/No and Two-Alternative Forced-Choice Recognition Memory
ERIC Educational Resources Information Center
Jang, Yoonhee; Wixted, John T.; Huber, David E.
2009-01-01
The current study compared 3 models of recognition memory in their ability to generalize across yes/no and 2-alternative forced-choice (2AFC) testing. The unequal-variance signal-detection model assumes a continuous memory strength process. The dual-process signal-detection model adds a thresholdlike recollection process to a continuous…
Modeling laser velocimeter signals as triply stochastic Poisson processes
NASA Technical Reports Server (NTRS)
Mayo, W. T., Jr.
1976-01-01
Previous models of laser Doppler velocimeter (LDV) systems have not adequately described dual-scatter signals in a manner useful for analysis and simulation of low-level photon-limited signals. At low photon rates, an LDV signal at the output of a photomultiplier tube is a compound nonhomogeneous filtered Poisson process, whose intensity function is another (slower) Poisson process with the nonstationary rate and frequency parameters controlled by a random flow (slowest) process. In the present paper, generalized Poisson shot noise models are developed for low-level LDV signals. Theoretical results useful in detection error analysis and simulation are presented, along with measurements of burst amplitude statistics. Computer generated simulations illustrate the difference between Gaussian and Poisson models of low-level signals.
Process dissociation and mixture signal detection theory.
DeCarlo, Lawrence T
2008-11-01
The process dissociation procedure was developed in an attempt to separate different processes involved in memory tasks. The procedure naturally lends itself to a formulation within a class of mixture signal detection models. The dual process model is shown to be a special case. The mixture signal detection model is applied to data from a widely analyzed study. The results suggest that a process other than recollection may be involved in the process dissociation procedure.
Dual-process theory and signal-detection theory of recognition memory.
Wixted, John T
2007-01-01
Two influential models of recognition memory, the unequal-variance signal-detection model and a dual-process threshold/detection model, accurately describe the receiver operating characteristic, but only the latter model can provide estimates of recollection and familiarity. Such estimates often accord with those provided by the remember-know procedure, and both methods are now widely used in the neuroscience literature to identify the brain correlates of recollection and familiarity. However, in recent years, a substantial literature has accumulated directly contrasting the signal-detection model against the threshold/detection model, and that literature is almost unanimous in its endorsement of signal-detection theory. A dual-process version of signal-detection theory implies that individual recognition decisions are not process pure, and it suggests new ways to investigate the brain correlates of recognition memory. ((c) 2007 APA, all rights reserved).
Comparing single- and dual-process models of memory development.
Hayes, Brett K; Dunn, John C; Joubert, Amy; Taylor, Robert
2017-11-01
This experiment examined single-process and dual-process accounts of the development of visual recognition memory. The participants, 6-7-year-olds, 9-10-year-olds and adults, were presented with a list of pictures which they encoded under shallow or deep conditions. They then made recognition and confidence judgments about a list containing old and new items. We replicated the main trends reported by Ghetti and Angelini () in that recognition hit rates increased from 6 to 9 years of age, with larger age changes following deep than shallow encoding. Formal versions of the dual-process high threshold signal detection model and several single-process models (equal variance signal detection, unequal variance signal detection, mixture signal detection) were fit to the developmental data. The unequal variance and mixture signal detection models gave a better account of the data than either of the other models. A state-trace analysis found evidence for only one underlying memory process across the age range tested. These results suggest that single-process memory models based on memory strength are a viable alternative to dual-process models for explaining memory development. © 2016 John Wiley & Sons Ltd.
AOD furnace splash soft-sensor in the smelting process based on improved BP neural network
NASA Astrophysics Data System (ADS)
Ma, Haitao; Wang, Shanshan; Wu, Libin; Yu, Ying
2017-11-01
In view of argon oxygen refining low carbon ferrochrome production process, in the splash of smelting process as the research object, based on splash mechanism analysis in the smelting process , using multi-sensor information fusion and BP neural network modeling techniques is proposed in this paper, using the vibration signal, the audio signal and the flame image signal in the furnace as the characteristic signal of splash, the vibration signal, the audio signal and the flame image signal in the furnace integration and modeling, and reconstruct splash signal, realize the splash soft measurement in the smelting process, the simulation results show that the method can accurately forecast splash type in the smelting process, provide a new method of measurement for forecast splash in the smelting process, provide more accurate information to control splash.
Analysis of acoustic emission signals and monitoring of machining processes
Govekar; Gradisek; Grabec
2000-03-01
Monitoring of a machining process on the basis of sensor signals requires a selection of informative inputs in order to reliably characterize and model the process. In this article, a system for selection of informative characteristics from signals of multiple sensors is presented. For signal analysis, methods of spectral analysis and methods of nonlinear time series analysis are used. With the aim of modeling relationships between signal characteristics and the corresponding process state, an adaptive empirical modeler is applied. The application of the system is demonstrated by characterization of different parameters defining the states of a turning machining process, such as: chip form, tool wear, and onset of chatter vibration. The results show that, in spite of the complexity of the turning process, the state of the process can be well characterized by just a few proper characteristics extracted from a representative sensor signal. The process characterization can be further improved by joining characteristics from multiple sensors and by application of chaotic characteristics.
SIG-VISA: Signal-based Vertically Integrated Seismic Monitoring
NASA Astrophysics Data System (ADS)
Moore, D.; Mayeda, K. M.; Myers, S. C.; Russell, S.
2013-12-01
Traditional seismic monitoring systems rely on discrete detections produced by station processing software; however, while such detections may constitute a useful summary of station activity, they discard large amounts of information present in the original recorded signal. We present SIG-VISA (Signal-based Vertically Integrated Seismic Analysis), a system for seismic monitoring through Bayesian inference on seismic signals. By directly modeling the recorded signal, our approach incorporates additional information unavailable to detection-based methods, enabling higher sensitivity and more accurate localization using techniques such as waveform matching. SIG-VISA's Bayesian forward model of seismic signal envelopes includes physically-derived models of travel times and source characteristics as well as Gaussian process (kriging) statistical models of signal properties that combine interpolation of historical data with extrapolation of learned physical trends. Applying Bayesian inference, we evaluate the model on earthquakes as well as the 2009 DPRK test event, demonstrating a waveform matching effect as part of the probabilistic inference, along with results on event localization and sensitivity. In particular, we demonstrate increased sensitivity from signal-based modeling, in which the SIGVISA signal model finds statistical evidence for arrivals even at stations for which the IMS station processing failed to register any detection.
NASA Technical Reports Server (NTRS)
Lai, Jonathan Y.
1994-01-01
This dissertation focuses on the signal processing problems associated with the detection of hazardous windshears using airborne Doppler radar when weak weather returns are in the presence of strong clutter returns. In light of the frequent inadequacy of spectral-processing oriented clutter suppression methods, we model a clutter signal as multiple sinusoids plus Gaussian noise, and propose adaptive filtering approaches that better capture the temporal characteristics of the signal process. This idea leads to two research topics in signal processing: (1) signal modeling and parameter estimation, and (2) adaptive filtering in this particular signal environment. A high-resolution, low SNR threshold maximum likelihood (ML) frequency estimation and signal modeling algorithm is devised and proves capable of delineating both the spectral and temporal nature of the clutter return. Furthermore, the Least Mean Square (LMS) -based adaptive filter's performance for the proposed signal model is investigated, and promising simulation results have testified to its potential for clutter rejection leading to more accurate estimation of windspeed thus obtaining a better assessment of the windshear hazard.
Discussion on the Modelling and Processing of Signals fom an Acousto-Optic Spectrum Analyzer.
1987-06-01
AD-AIBS 639 DISCUSSION ON THE MODELLING AND PROCESSIN OF SIGNALS 1/1 FOR RN ACOUSTO - OPTIC SPECTRUM ANALYZER(U)G DFENCE RESERCH ESTABGLISHMENT OTTANA...8217’~ AV - I National DefenseI Defence nationale DISCUSSION ON THE MODELLING AND PROCESSING OF SIGNALS FROM AN ACOUSTO - OPTIC SPECTRUM ANALYZER by Guy...signals generated by an Acousto - Optic Spectrum Analyzer (AOSA). It also shows how this calculation can be related to pulse modu- lated signals. In its
Biomedical signal and image processing.
Cerutti, Sergio; Baselli, Giuseppe; Bianchi, Anna; Caiani, Enrico; Contini, Davide; Cubeddu, Rinaldo; Dercole, Fabio; Rienzo, Luca; Liberati, Diego; Mainardi, Luca; Ravazzani, Paolo; Rinaldi, Sergio; Signorini, Maria; Torricelli, Alessandro
2011-01-01
Generally, physiological modeling and biomedical signal processing constitute two important paradigms of biomedical engineering (BME): their fundamental concepts are taught starting from undergraduate studies and are more completely dealt with in the last years of graduate curricula, as well as in Ph.D. courses. Traditionally, these two cultural aspects were separated, with the first one more oriented to physiological issues and how to model them and the second one more dedicated to the development of processing tools or algorithms to enhance useful information from clinical data. A practical consequence was that those who did models did not do signal processing and vice versa. However, in recent years,the need for closer integration between signal processing and modeling of the relevant biological systems emerged very clearly [1], [2]. This is not only true for training purposes(i.e., to properly prepare the new professional members of BME) but also for the development of newly conceived research projects in which the integration between biomedical signal and image processing (BSIP) and modeling plays a crucial role. Just to give simple examples, topics such as brain–computer machine or interfaces,neuroengineering, nonlinear dynamical analysis of the cardiovascular (CV) system,integration of sensory-motor characteristics aimed at the building of advanced prostheses and rehabilitation tools, and wearable devices for vital sign monitoring and others do require an intelligent fusion of modeling and signal processing competences that are certainly peculiar of our discipline of BME.
A simple analytical model for signal amplification by reversible exchange (SABRE) process.
Barskiy, Danila A; Pravdivtsev, Andrey N; Ivanov, Konstantin L; Kovtunov, Kirill V; Koptyug, Igor V
2016-01-07
We demonstrate an analytical model for the description of the signal amplification by reversible exchange (SABRE) process. The model relies on a combined analysis of chemical kinetics and the evolution of the nuclear spin system during the hyperpolarization process. The presented model for the first time provides rationale for deciding which system parameters (i.e. J-couplings, relaxation rates, reaction rate constants) have to be optimized in order to achieve higher signal enhancement for a substrate of interest in SABRE experiments.
Evidence for the contribution of a threshold retrieval process to semantic memory.
Kempnich, Maria; Urquhart, Josephine A; O'Connor, Akira R; Moulin, Chris J A
2017-10-01
It is widely held that episodic retrieval can recruit two processes: a threshold context retrieval process (recollection) and a continuous signal strength process (familiarity). Conversely the processes recruited during semantic retrieval are less well specified. We developed a semantic task analogous to single-item episodic recognition to interrogate semantic recognition receiver-operating characteristics (ROCs) for a marker of a threshold retrieval process. We fitted observed ROC points to three signal detection models: two models typically used in episodic recognition (unequal variance and dual-process signal detection models) and a novel dual-process recollect-to-reject (DP-RR) signal detection model that allows a threshold recollection process to aid both target identification and lure rejection. Given the nature of most semantic questions, we anticipated the DP-RR model would best fit the semantic task data. Experiment 1 (506 participants) provided evidence for a threshold retrieval process in semantic memory, with overall best fits to the DP-RR model. Experiment 2 (316 participants) found within-subjects estimates of episodic and semantic threshold retrieval to be uncorrelated. Our findings add weight to the proposal that semantic and episodic memory are served by similar dual-process retrieval systems, though the relationship between the two threshold processes needs to be more fully elucidated.
Physics-based signal processing algorithms for micromachined cantilever arrays
Candy, James V; Clague, David S; Lee, Christopher L; Rudd, Robert E; Burnham, Alan K; Tringe, Joseph W
2013-11-19
A method of using physics-based signal processing algorithms for micromachined cantilever arrays. The methods utilize deflection of a micromachined cantilever that represents the chemical, biological, or physical element being detected. One embodiment of the method comprises the steps of modeling the deflection of the micromachined cantilever producing a deflection model, sensing the deflection of the micromachined cantilever and producing a signal representing the deflection, and comparing the signal representing the deflection with the deflection model.
Pervasive randomness in physics: an introduction to its modelling and spectral characterisation
NASA Astrophysics Data System (ADS)
Howard, Roy
2017-10-01
An introduction to the modelling and spectral characterisation of random phenomena is detailed at a level consistent with a first exposure to the subject at an undergraduate level. A signal framework for defining a random process is provided and this underpins an introduction to common random processes including the Poisson point process, the random walk, the random telegraph signal, shot noise, information signalling random processes, jittered pulse trains, birth-death random processes and Markov chains. An introduction to the spectral characterisation of signals and random processes, via either an energy spectral density or a power spectral density, is detailed. The important case of defining a white noise random process concludes the paper.
Two-dimensional signal processing with application to image restoration
NASA Technical Reports Server (NTRS)
Assefi, T.
1974-01-01
A recursive technique for modeling and estimating a two-dimensional signal contaminated by noise is presented. A two-dimensional signal is assumed to be an undistorted picture, where the noise introduces the distortion. Both the signal and the noise are assumed to be wide-sense stationary processes with known statistics. Thus, to estimate the two-dimensional signal is to enhance the picture. The picture representing the two-dimensional signal is converted to one dimension by scanning the image horizontally one line at a time. The scanner output becomes a nonstationary random process due to the periodic nature of the scanner operation. Procedures to obtain a dynamical model corresponding to the autocorrelation function of the scanner output are derived. Utilizing the model, a discrete Kalman estimator is designed to enhance the image.
Dual-Process Theory and Signal-Detection Theory of Recognition Memory
ERIC Educational Resources Information Center
Wixted, John T.
2007-01-01
Two influential models of recognition memory, the unequal-variance signal-detection model and a dual-process threshold/detection model, accurately describe the receiver operating characteristic, but only the latter model can provide estimates of recollection and familiarity. Such estimates often accord with those provided by the remember-know…
Jitter model and signal processing techniques for pulse width modulation optical recording
NASA Technical Reports Server (NTRS)
Liu, Max M.-K.
1991-01-01
A jitter model and signal processing techniques are discussed for data recovery in Pulse Width Modulation (PWM) optical recording. In PWM, information is stored through modulating sizes of sequential marks alternating in magnetic polarization or in material structure. Jitter, defined as the deviation from the original mark size in the time domain, will result in error detection if it is excessively large. A new approach is taken in data recovery by first using a high speed counter clock to convert time marks to amplitude marks, and signal processing techniques are used to minimize jitter according to the jitter model. The signal processing techniques include motor speed and intersymbol interference equalization, differential and additive detection, and differential and additive modulation.
Modeling aging effects on two-choice tasks: response signal and response time data.
Ratcliff, Roger
2008-12-01
In the response signal paradigm, a test stimulus is presented, and then at one of a number of experimenter-determined times, a signal to respond is presented. Response signal, standard response time (RT), and accuracy data were collected from 19 college-age and 19 60- to 75-year-old participants in a numerosity discrimination task. The data were fit with 2 versions of the diffusion model. Response signal data were modeled by assuming a mixture of processes, those that have terminated before the signal and those that have not terminated; in the latter case, decisions are based on either partial information or guessing. The effects of aging on performance in the regular RT task were explained the same way in the models, with a 70- to 100-ms increase in the nondecision component of processing, more conservative decision criteria, and more variability across trials in drift and the nondecision component of processing, but little difference in drift rate (evidence). In the response signal task, the primary reason for a slower rise in the response signal functions for older participants was variability in the nondecision component of processing. Overall, the results were consistent with earlier fits of the diffusion model to the standard RT task for college-age participants and to the data from aging studies using this task in the standard RT procedure. Copyright (c) 2009 APA, all rights reserved.
Modeling Aging Effects on Two-Choice Tasks: Response Signal and Response Time Data
Ratcliff, Roger
2009-01-01
In the response signal paradigm, a test stimulus is presented, and then at one of a number of experimenter-determined times, a signal to respond is presented. Response signal, standard response time (RT), and accuracy data were collected from 19 college-age and 19 60- to 75-year-old participants in a numerosity discrimination task. The data were fit with 2 versions of the diffusion model. Response signal data were modeled by assuming a mixture of processes, those that have terminated before the signal and those that have not terminated; in the latter case, decisions are based on either partial information or guessing. The effects of aging on performance in the regular RT task were explained the same way in the models, with a 70- to 100-ms increase in the nondecision component of processing, more conservative decision criteria, and more variability across trials in drift and the nondecision component of processing, but little difference in drift rate (evidence). In the response signal task, the primary reason for a slower rise in the response signal functions for older participants was variability in the nondecision component of processing. Overall, the results were consistent with earlier fits of the diffusion model to the standard RT task for college-age participants and to the data from aging studies using this task in the standard RT procedure. PMID:19140659
NASA Astrophysics Data System (ADS)
Shen, Yan; Ge, Jin-ming; Zhang, Guo-qing; Yu, Wen-bin; Liu, Rui-tong; Fan, Wei; Yang, Ying-xuan
2018-01-01
This paper explores the problem of signal processing in optical current transformers (OCTs). Based on the noise characteristics of OCTs, such as overlapping signals, noise frequency bands, low signal-to-noise ratios, and difficulties in acquiring statistical features of noise power, an improved standard Kalman filtering algorithm was proposed for direct current (DC) signal processing. The state-space model of the OCT DC measurement system is first established, and then mixed noise can be processed by adding mixed noise into measurement and state parameters. According to the minimum mean squared error criterion, state predictions and update equations of the improved Kalman algorithm could be deduced based on the established model. An improved central difference Kalman filter was proposed for alternating current (AC) signal processing, which improved the sampling strategy and noise processing of colored noise. Real-time estimation and correction of noise were achieved by designing AC and DC noise recursive filters. Experimental results show that the improved signal processing algorithms had a good filtering effect on the AC and DC signals with mixed noise of OCT. Furthermore, the proposed algorithm was able to achieve real-time correction of noise during the OCT filtering process.
Strahl, Stefan; Mertins, Alfred
2008-07-18
Evidence that neurosensory systems use sparse signal representations as well as improved performance of signal processing algorithms using sparse signal models raised interest in sparse signal coding in the last years. For natural audio signals like speech and environmental sounds, gammatone atoms have been derived as expansion functions that generate a nearly optimal sparse signal model (Smith, E., Lewicki, M., 2006. Efficient auditory coding. Nature 439, 978-982). Furthermore, gammatone functions are established models for the human auditory filters. Thus far, a practical application of a sparse gammatone signal model has been prevented by the fact that deriving the sparsest representation is, in general, computationally intractable. In this paper, we applied an accelerated version of the matching pursuit algorithm for gammatone dictionaries allowing real-time and large data set applications. We show that a sparse signal model in general has advantages in audio coding and that a sparse gammatone signal model encodes speech more efficiently in terms of sparseness than a sparse modified discrete cosine transform (MDCT) signal model. We also show that the optimal gammatone parameters derived for English speech do not match the human auditory filters, suggesting for signal processing applications to derive the parameters individually for each applied signal class instead of using psychometrically derived parameters. For brain research, it means that care should be taken with directly transferring findings of optimality for technical to biological systems.
Dynamic pathway modeling of signal transduction networks: a domain-oriented approach.
Conzelmann, Holger; Gilles, Ernst-Dieter
2008-01-01
Mathematical models of biological processes become more and more important in biology. The aim is a holistic understanding of how processes such as cellular communication, cell division, regulation, homeostasis, or adaptation work, how they are regulated, and how they react to perturbations. The great complexity of most of these processes necessitates the generation of mathematical models in order to address these questions. In this chapter we provide an introduction to basic principles of dynamic modeling and highlight both problems and chances of dynamic modeling in biology. The main focus will be on modeling of s transduction pathways, which requires the application of a special modeling approach. A common pattern, especially in eukaryotic signaling systems, is the formation of multi protein signaling complexes. Even for a small number of interacting proteins the number of distinguishable molecular species can be extremely high. This combinatorial complexity is due to the great number of distinct binding domains of many receptors and scaffold proteins involved in signal transduction. However, these problems can be overcome using a new domain-oriented modeling approach, which makes it possible to handle complex and branched signaling pathways.
Transient high frequency signal estimation: A model-based processing approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barnes, F.L.
1985-03-22
By utilizing the superposition property of linear systems a method of estimating the incident signal from reflective nondispersive data is developed. One of the basic merits of this approach is that, the reflections were removed by direct application of a Weiner type estimation algorithm, after the appropriate input was synthesized. The structure of the nondispersive signal model is well documented, and thus its' credence is established. The model is stated and more effort is devoted to practical methods of estimating the model parameters. Though a general approach was developed for obtaining the reflection weights, a simpler approach was employed here,more » since a fairly good reflection model is available. The technique essentially consists of calculating ratios of the autocorrelation function at lag zero and that lag where the incident and first reflection coincide. We initially performed our processing procedure on a measurement of a single signal. Multiple application of the processing procedure was required when we applied the reflection removal technique on a measurement containing information from the interaction of two physical phenomena. All processing was performed using SIG, an interactive signal processing package. One of the many consequences of using SIG was that repetitive operations were, for the most part, automated. A custom menu was designed to perform the deconvolution process.« less
Preliminary development of digital signal processing in microwave radiometers
NASA Technical Reports Server (NTRS)
Stanley, W. D.
1980-01-01
Topics covered involve a number of closely related tasks including: the development of several control loop and dynamic noise model computer programs for simulating microwave radiometer measurements; computer modeling of an existing stepped frequency radiometer in an effort to determine its optimum operational characteristics; investigation of the classical second order analog control loop to determine its ability to reduce the estimation error in a microwave radiometer; investigation of several digital signal processing unit designs; initiation of efforts to develop required hardware and software for implementation of the digital signal processing unit; and investigation of the general characteristics and peculiarities of digital processing noiselike microwave radiometer signals.
Poplová, Michaela; Sovka, Pavel; Cifra, Michal
2017-01-01
Photonic signals are broadly exploited in communication and sensing and they typically exhibit Poisson-like statistics. In a common scenario where the intensity of the photonic signals is low and one needs to remove a nonstationary trend of the signals for any further analysis, one faces an obstacle: due to the dependence between the mean and variance typical for a Poisson-like process, information about the trend remains in the variance even after the trend has been subtracted, possibly yielding artifactual results in further analyses. Commonly available detrending or normalizing methods cannot cope with this issue. To alleviate this issue we developed a suitable pre-processing method for the signals that originate from a Poisson-like process. In this paper, a Poisson pre-processing method for nonstationary time series with Poisson distribution is developed and tested on computer-generated model data and experimental data of chemiluminescence from human neutrophils and mung seeds. The presented method transforms a nonstationary Poisson signal into a stationary signal with a Poisson distribution while preserving the type of photocount distribution and phase-space structure of the signal. The importance of the suggested pre-processing method is shown in Fano factor and Hurst exponent analysis of both computer-generated model signals and experimental photonic signals. It is demonstrated that our pre-processing method is superior to standard detrending-based methods whenever further signal analysis is sensitive to variance of the signal.
Poplová, Michaela; Sovka, Pavel
2017-01-01
Photonic signals are broadly exploited in communication and sensing and they typically exhibit Poisson-like statistics. In a common scenario where the intensity of the photonic signals is low and one needs to remove a nonstationary trend of the signals for any further analysis, one faces an obstacle: due to the dependence between the mean and variance typical for a Poisson-like process, information about the trend remains in the variance even after the trend has been subtracted, possibly yielding artifactual results in further analyses. Commonly available detrending or normalizing methods cannot cope with this issue. To alleviate this issue we developed a suitable pre-processing method for the signals that originate from a Poisson-like process. In this paper, a Poisson pre-processing method for nonstationary time series with Poisson distribution is developed and tested on computer-generated model data and experimental data of chemiluminescence from human neutrophils and mung seeds. The presented method transforms a nonstationary Poisson signal into a stationary signal with a Poisson distribution while preserving the type of photocount distribution and phase-space structure of the signal. The importance of the suggested pre-processing method is shown in Fano factor and Hurst exponent analysis of both computer-generated model signals and experimental photonic signals. It is demonstrated that our pre-processing method is superior to standard detrending-based methods whenever further signal analysis is sensitive to variance of the signal. PMID:29216207
Bayesian Inference for Signal-Based Seismic Monitoring
NASA Astrophysics Data System (ADS)
Moore, D.
2015-12-01
Traditional seismic monitoring systems rely on discrete detections produced by station processing software, discarding significant information present in the original recorded signal. SIG-VISA (Signal-based Vertically Integrated Seismic Analysis) is a system for global seismic monitoring through Bayesian inference on seismic signals. By modeling signals directly, our forward model is able to incorporate a rich representation of the physics underlying the signal generation process, including source mechanisms, wave propagation, and station response. This allows inference in the model to recover the qualitative behavior of recent geophysical methods including waveform matching and double-differencing, all as part of a unified Bayesian monitoring system that simultaneously detects and locates events from a global network of stations. We demonstrate recent progress in scaling up SIG-VISA to efficiently process the data stream of global signals recorded by the International Monitoring System (IMS), including comparisons against existing processing methods that show increased sensitivity from our signal-based model and in particular the ability to locate events (including aftershock sequences that can tax analyst processing) precisely from waveform correlation effects. We also provide a Bayesian analysis of an alleged low-magnitude event near the DPRK test site in May 2010 [1] [2], investigating whether such an event could plausibly be detected through automated processing in a signal-based monitoring system. [1] Zhang, Miao and Wen, Lianxing. "Seismological Evidence for a Low-Yield Nuclear Test on 12 May 2010 in North Korea". Seismological Research Letters, January/February 2015. [2] Richards, Paul. "A Seismic Event in North Korea on 12 May 2010". CTBTO SnT 2015 oral presentation, video at https://video-archive.ctbto.org/index.php/kmc/preview/partner_id/103/uiconf_id/4421629/entry_id/0_ymmtpps0/delivery/http
Mailloux, Shay; Halámek, Jan; Katz, Evgeny
2014-03-07
A new Sense-and-Act system was realized by the integration of a biocomputing system, performing analytical processes, with a signal-responsive electrode. A drug-mimicking release process was triggered by biomolecular signals processed by different logic networks, including three concatenated AND logic gates or a 3-input OR logic gate. Biocatalytically produced NADH, controlled by various combinations of input signals, was used to activate the electrochemical system. A biocatalytic electrode associated with signal-processing "biocomputing" systems was electrically connected to another electrode coated with a polymer film, which was dissolved upon the formation of negative potential releasing entrapped drug-mimicking species, an enzyme-antibody conjugate, operating as a model for targeted immune-delivery and consequent "prodrug" activation. The system offers great versatility for future applications in controlled drug release and personalized medicine.
Signal Processing in Periodically Forced Gradient Frequency Neural Networks
Kim, Ji Chul; Large, Edward W.
2015-01-01
Oscillatory instability at the Hopf bifurcation is a dynamical phenomenon that has been suggested to characterize active non-linear processes observed in the auditory system. Networks of oscillators poised near Hopf bifurcation points and tuned to tonotopically distributed frequencies have been used as models of auditory processing at various levels, but systematic investigation of the dynamical properties of such oscillatory networks is still lacking. Here we provide a dynamical systems analysis of a canonical model for gradient frequency neural networks driven by a periodic signal. We use linear stability analysis to identify various driven behaviors of canonical oscillators for all possible ranges of model and forcing parameters. The analysis shows that canonical oscillators exhibit qualitatively different sets of driven states and transitions for different regimes of model parameters. We classify the parameter regimes into four main categories based on their distinct signal processing capabilities. This analysis will lead to deeper understanding of the diverse behaviors of neural systems under periodic forcing and can inform the design of oscillatory network models of auditory signal processing. PMID:26733858
Incorporating signal-dependent noise for hyperspectral target detection
NASA Astrophysics Data System (ADS)
Morman, Christopher J.; Meola, Joseph
2015-05-01
The majority of hyperspectral target detection algorithms are developed from statistical data models employing stationary background statistics or white Gaussian noise models. Stationary background models are inaccurate as a result of two separate physical processes. First, varying background classes often exist in the imagery that possess different clutter statistics. Many algorithms can account for this variability through the use of subspaces or clustering techniques. The second physical process, which is often ignored, is a signal-dependent sensor noise term. For photon counting sensors that are often used in hyperspectral imaging systems, sensor noise increases as the measured signal level increases as a result of Poisson random processes. This work investigates the impact of this sensor noise on target detection performance. A linear noise model is developed describing sensor noise variance as a linear function of signal level. The linear noise model is then incorporated for detection of targets using data collected at Wright Patterson Air Force Base.
Tunney, Richard J.; Mullett, Timothy L.; Moross, Claudia J.; Gardner, Anna
2012-01-01
The butcher-on-the-bus is a rhetorical device or hypothetical phenomenon that is often used to illustrate how recognition decisions can be based on different memory processes (Mandler, 1980). The phenomenon describes a scenario in which a person is recognized but the recognition is accompanied by a sense of familiarity or knowing characterized by an absence of contextual details such as the person’s identity. We report two recognition memory experiments that use signal detection analyses to determine whether this phenomenon is evidence for a recollection plus familiarity model of recognition or is better explained by a univariate signal detection model. We conclude that there is an interaction between confidence estimates and remember-know judgments which is not explained fully by either single-process signal detection or traditional dual-process models. PMID:22745631
Digital Signal Processing and Control for the Study of Gene Networks
NASA Astrophysics Data System (ADS)
Shin, Yong-Jun
2016-04-01
Thanks to the digital revolution, digital signal processing and control has been widely used in many areas of science and engineering today. It provides practical and powerful tools to model, simulate, analyze, design, measure, and control complex and dynamic systems such as robots and aircrafts. Gene networks are also complex dynamic systems which can be studied via digital signal processing and control. Unlike conventional computational methods, this approach is capable of not only modeling but also controlling gene networks since the experimental environment is mostly digital today. The overall aim of this article is to introduce digital signal processing and control as a useful tool for the study of gene networks.
Digital Signal Processing and Control for the Study of Gene Networks.
Shin, Yong-Jun
2016-04-22
Thanks to the digital revolution, digital signal processing and control has been widely used in many areas of science and engineering today. It provides practical and powerful tools to model, simulate, analyze, design, measure, and control complex and dynamic systems such as robots and aircrafts. Gene networks are also complex dynamic systems which can be studied via digital signal processing and control. Unlike conventional computational methods, this approach is capable of not only modeling but also controlling gene networks since the experimental environment is mostly digital today. The overall aim of this article is to introduce digital signal processing and control as a useful tool for the study of gene networks.
Digital Signal Processing and Control for the Study of Gene Networks
Shin, Yong-Jun
2016-01-01
Thanks to the digital revolution, digital signal processing and control has been widely used in many areas of science and engineering today. It provides practical and powerful tools to model, simulate, analyze, design, measure, and control complex and dynamic systems such as robots and aircrafts. Gene networks are also complex dynamic systems which can be studied via digital signal processing and control. Unlike conventional computational methods, this approach is capable of not only modeling but also controlling gene networks since the experimental environment is mostly digital today. The overall aim of this article is to introduce digital signal processing and control as a useful tool for the study of gene networks. PMID:27102828
Demodulation processes in auditory perception
NASA Astrophysics Data System (ADS)
Feth, Lawrence L.
1994-08-01
The long range goal of this project is the understanding of human auditory processing of information conveyed by complex, time-varying signals such as speech, music or important environmental sounds. Our work is guided by the assumption that human auditory communication is a 'modulation - demodulation' process. That is, we assume that sound sources produce a complex stream of sound pressure waves with information encoded as variations ( modulations) of the signal amplitude and frequency. The listeners task then is one of demodulation. Much of past. psychoacoustics work has been based in what we characterize as 'spectrum picture processing.' Complex sounds are Fourier analyzed to produce an amplitude-by-frequency 'picture' and the perception process is modeled as if the listener were analyzing the spectral picture. This approach leads to studies such as 'profile analysis' and the power-spectrum model of masking. Our approach leads us to investigate time-varying, complex sounds. We refer to them as dynamic signals and we have developed auditory signal processing models to help guide our experimental work.
Signal propagation in cortical networks: a digital signal processing approach.
Rodrigues, Francisco Aparecido; da Fontoura Costa, Luciano
2009-01-01
This work reports a digital signal processing approach to representing and modeling transmission and combination of signals in cortical networks. The signal dynamics is modeled in terms of diffusion, which allows the information processing undergone between any pair of nodes to be fully characterized in terms of a finite impulse response (FIR) filter. Diffusion without and with time decay are investigated. All filters underlying the cat and macaque cortical organization are found to be of low-pass nature, allowing the cortical signal processing to be summarized in terms of the respective cutoff frequencies (a high cutoff frequency meaning little alteration of signals through their intermixing). Several findings are reported and discussed, including the fact that the incorporation of temporal activity decay tends to provide more diversified cutoff frequencies. Different filtering intensity is observed for each community in those networks. In addition, the brain regions involved in object recognition tend to present the highest cutoff frequencies for both the cat and macaque networks.
Algebraic signal processing theory: 2-D spatial hexagonal lattice.
Pünschel, Markus; Rötteler, Martin
2007-06-01
We develop the framework for signal processing on a spatial, or undirected, 2-D hexagonal lattice for both an infinite and a finite array of signal samples. This framework includes the proper notions of z-transform, boundary conditions, filtering or convolution, spectrum, frequency response, and Fourier transform. In the finite case, the Fourier transform is called discrete triangle transform. Like the hexagonal lattice, this transform is nonseparable. The derivation of the framework makes it a natural extension of the algebraic signal processing theory that we recently introduced. Namely, we construct the proper signal models, given by polynomial algebras, bottom-up from a suitable definition of hexagonal space shifts using a procedure provided by the algebraic theory. These signal models, in turn, then provide all the basic signal processing concepts. The framework developed in this paper is related to Mersereau's early work on hexagonal lattices in the same way as the discrete cosine and sine transforms are related to the discrete Fourier transform-a fact that will be made rigorous in this paper.
Research for the jamming mechanism of high-frequency laser to the laser seeker
NASA Astrophysics Data System (ADS)
Zheng, Xingyuan; Zhang, Haiyang; Wang, Yunping; Feng, Shuang; Zhao, Changming
2013-08-01
High-frequency laser will be able to enter the enemy laser signal processing systems without encoded identification and a copy. That makes it one of the research directions of new interference sources. In order to study the interference mechanism of high-frequency laser to laser guided weapons. According to the principle of high-frequency laser interference, a series of related theoretical models such as a semi-active laser seeker coded identification model, a time door model, multi-signal processing model and a interference signal modulation processing model are established. Then seeker interfere with effective 3σ criterion is proposed. Based on this, the study of the effect of multi-source interference and signal characteristics of the effect of high repetition frequency laser interference are key research. According to the simulation system testing, the results show that the multi-source interference and interference signal frequency modulation can effectively enhance the interference effect. While the interference effect of the interference signal amplitude modulation is not obvious. The research results will provide the evaluation of high-frequency laser interference effect and provide theoretical references for high-frequency laser interference system application.
Goychuk, I
2001-08-01
Stochastic resonance in a simple model of information transfer is studied for sensory neurons and ensembles of ion channels. An exact expression for the information gain is obtained for the Poisson process with the signal-modulated spiking rate. This result allows one to generalize the conventional stochastic resonance (SR) problem (with periodic input signal) to the arbitrary signals of finite duration (nonstationary SR). Moreover, in the case of a periodic signal, the rate of information gain is compared with the conventional signal-to-noise ratio. The paper establishes the general nonequivalence between both measures notwithstanding their apparent similarity in the limit of weak signals.
Acoustic Signal Processing in Photorefractive Optical Systems.
NASA Astrophysics Data System (ADS)
Zhou, Gan
This thesis discusses applications of the photorefractive effect in the context of acoustic signal processing. The devices and systems presented here illustrate the ideas and optical principles involved in holographic processing of acoustic information. The interest in optical processing stems from the similarities between holographic optical systems and contemporary models for massively parallel computation, in particular, neural networks. An initial step in acoustic processing is the transformation of acoustic signals into relevant optical forms. A fiber-optic transducer with photorefractive readout transforms acoustic signals into optical images corresponding to their short-time spectrum. The device analyzes complex sound signals and interfaces them with conventional optical correlators. The transducer consists of 130 multimode optical fibers sampling the spectral range of 100 Hz to 5 kHz logarithmically. A physical model of the human cochlea can help us understand some characteristics of human acoustic transduction and signal representation. We construct a life-sized cochlear model using elastic membranes coupled with two fluid-filled chambers, and use a photorefractive novelty filter to investigate its response. The detection sensitivity is determined to be 0.3 angstroms per root Hz at 2 kHz. Qualitative agreement is found between the model response and physiological data. Delay lines map time-domain signals into space -domain and permit holographic processing of temporal information. A parallel optical delay line using dynamic beam coupling in a rotating photorefractive crystal is presented. We experimentally demonstrate a 64 channel device with 0.5 seconds of time-delay and 167 Hz bandwidth. Acoustic signal recognition is described in a photorefractive system implementing the time-delay neural network model. The system consists of a photorefractive optical delay-line and a holographic correlator programmed in a LiNbO_3 crystal. We demonstrate the recognition of synthesized chirps as well as spoken words. A photorefractive ring resonator containing an optical delay line can learn temporal information through self-organization. We experimentally investigate a system that learns by itself and picks out the most-frequently -presented signals from the input. We also give results demonstrating the separation of two orthogonal temporal signals into two competing ring resonators.
Surveillance system and method having parameter estimation and operating mode partitioning
NASA Technical Reports Server (NTRS)
Bickford, Randall L. (Inventor)
2005-01-01
A system and method for monitoring an apparatus or process asset including creating a process model comprised of a plurality of process submodels each correlative to at least one training data subset partitioned from an unpartitioned training data set and each having an operating mode associated thereto; acquiring a set of observed signal data values from the asset; determining an operating mode of the asset for the set of observed signal data values; selecting a process submodel from the process model as a function of the determined operating mode of the asset; calculating a set of estimated signal data values from the selected process submodel for the determined operating mode; and determining asset status as a function of the calculated set of estimated signal data values for providing asset surveillance and/or control.
Fertig, Elana J; Danilova, Ludmila V; Favorov, Alexander V; Ochs, Michael F
2011-01-01
Modeling of signal driven transcriptional reprogramming is critical for understanding of organism development, human disease, and cell biology. Many current modeling techniques discount key features of the biological sub-systems when modeling multiscale, organism-level processes. We present a mechanistic hybrid model, GESSA, which integrates a novel pooled probabilistic Boolean network model of cell signaling and a stochastic simulation of transcription and translation responding to a diffusion model of extracellular signals. We apply the model to simulate the well studied cell fate decision process of the vulval precursor cells (VPCs) in C. elegans, using experimentally derived rate constants wherever possible and shared parameters to avoid overfitting. We demonstrate that GESSA recovers (1) the effects of varying scaffold protein concentration on signal strength, (2) amplification of signals in expression, (3) the relative external ligand concentration in a known geometry, and (4) feedback in biochemical networks. We demonstrate that setting model parameters based on wild-type and LIN-12 loss-of-function mutants in C. elegans leads to correct prediction of a wide variety of mutants including partial penetrance of phenotypes. Moreover, the model is relatively insensitive to parameters, retaining the wild-type phenotype for a wide range of cell signaling rate parameters.
NASA Astrophysics Data System (ADS)
Kropotov, Y. A.; Belov, A. A.; Proskuryakov, A. Y.; Kolpakov, A. A.
2018-05-01
The paper considers models and methods for estimating signals during the transmission of information messages in telecommunication systems of audio exchange. One-dimensional probability distribution functions that can be used to isolate useful signals, and acoustic noise interference are presented. An approach to the estimation of the correlation and spectral functions of the parameters of acoustic signals is proposed, based on the parametric representation of acoustic signals and the components of the noise components. The paper suggests an approach to improving the efficiency of interference cancellation and highlighting the necessary information when processing signals from telecommunications systems. In this case, the suppression of acoustic noise is based on the methods of adaptive filtering and adaptive compensation. The work also describes the models of echo signals and the structure of subscriber devices in operational command telecommunications systems.
Ontology based standardization of Petri net modeling for signaling pathways.
Takai-Igarashi, Takako
2005-01-01
Taking account of the great availability of Petri nets in modeling and analyzing large complicated signaling networks, semantics of Petri nets is in need of systematization for the purpose of consistency and reusability of the models. This paper reports on standardization of units of Petri nets on the basis of an ontology that gives an intrinsic definition to the process of signaling in signaling pathways.
Ontology based standardization of petri net modeling for signaling pathways.
Takai-Igarashi, Takako
2011-01-01
Taking account of the great availability of Petri nets in modeling and analyzing large complicated signaling networks, semantics of Petri nets is in need of systematization for the purpose of consistency and reusability of the models. This paper reports on standardization of units of Petri nets on the basis of an ontology that gives an intrinsic definition to the process of signaling in signaling pathways.
NASA Astrophysics Data System (ADS)
Li, H.; Plink-Bjorklund, P.
2017-12-01
Studies (e.g., Jerolmack and Paola, 2010) have suggested that autogenic processes act as a filter for high-frequency environmental signals, and the underlying assumption is that autogenic processes can cause fluctuations in sediment and water discharge that modify or shred the signal. This assumption, however, fails to recognize that autogenic processes and their final products are dynamic and that they can respond to allogenic forcings. We compile a database containing published field studies, physical experiments, and numerical modeling works, and analyze the data under different boundary conditions. Our analyses suggest different conclusions. Autogenic processes are intrinsic to the sedimentary system, and they possess distinct patterns under steady boundary conditions. Upon changing boundary conditions, the autogenic patterns are also likely to change (depending on the magnitude of the change in the boundary conditions). Therefore, the pattern change provides us with the opportunity to restore the high-frequency signals that may not pass through the transfer zone. Here we present the theoretical basis for using autogenic deposits to infer high-frequency signals as well as modern and ancient field examples, physical experiments, and modeling works to illustrate the autogenic response to allogenic forcings. The field studies show the potential of using autogenic deposits to restore short-term climatic variability. The experiments demonstrate that autogenic processes in rivers are closely linked to sediment and water discharge. The modeling examples reveal the counteracting effects of some autogenic processes to form a self-organized pattern under a set of specific boundary conditions. We also highlight the limitations and challenges that need more research efforts to restore high-frequency signals. Some critical issues include the magnitude of the signals, the effect of the interference between different signals, and the incompleteness of the autogenic deposits.
Processing on weak electric signals by the autoregressive model
NASA Astrophysics Data System (ADS)
Ding, Jinli; Zhao, Jiayin; Wang, Lanzhou; Li, Qiao
2008-10-01
A model of the autoregressive model of weak electric signals in two plants was set up for the first time. The result of the AR model to forecast 10 values of the weak electric signals is well. It will construct a standard set of the AR model coefficient of the plant electric signal and the environmental factor, and can be used as the preferences for the intelligent autocontrol system based on the adaptive characteristic of plants to achieve the energy saving on agricultural productions.
Surveillance system and method having parameter estimation and operating mode partitioning
NASA Technical Reports Server (NTRS)
Bickford, Randall L. (Inventor)
2003-01-01
A system and method for monitoring an apparatus or process asset including partitioning an unpartitioned training data set into a plurality of training data subsets each having an operating mode associated thereto; creating a process model comprised of a plurality of process submodels each trained as a function of at least one of the training data subsets; acquiring a current set of observed signal data values from the asset; determining an operating mode of the asset for the current set of observed signal data values; selecting a process submodel from the process model as a function of the determined operating mode of the asset; calculating a current set of estimated signal data values from the selected process submodel for the determined operating mode; and outputting the calculated current set of estimated signal data values for providing asset surveillance and/or control.
Hsieh, Chi-Hsuan; Chiu, Yu-Fang; Shen, Yi-Hsiang; Chu, Ta-Shun; Huang, Yuan-Hao
2016-02-01
This paper presents an ultra-wideband (UWB) impulse-radio radar signal processing platform used to analyze human respiratory features. Conventional radar systems used in human detection only analyze human respiration rates or the response of a target. However, additional respiratory signal information is available that has not been explored using radar detection. The authors previously proposed a modified raised cosine waveform (MRCW) respiration model and an iterative correlation search algorithm that could acquire additional respiratory features such as the inspiration and expiration speeds, respiration intensity, and respiration holding ratio. To realize real-time respiratory feature extraction by using the proposed UWB signal processing platform, this paper proposes a new four-segment linear waveform (FSLW) respiration model. This model offers a superior fit to the measured respiration signal compared with the MRCW model and decreases the computational complexity of feature extraction. In addition, an early-terminated iterative correlation search algorithm is presented, substantially decreasing the computational complexity and yielding negligible performance degradation. These extracted features can be considered the compressed signals used to decrease the amount of data storage required for use in long-term medical monitoring systems and can also be used in clinical diagnosis. The proposed respiratory feature extraction algorithm was designed and implemented using the proposed UWB radar signal processing platform including a radar front-end chip and an FPGA chip. The proposed radar system can detect human respiration rates at 0.1 to 1 Hz and facilitates the real-time analysis of the respiratory features of each respiration period.
Göthe, Katrin; Oberauer, Klaus
2008-05-01
Dual process models postulate familiarity and recollection as the basis of the recognition process. We investigated the time-course of integration of the two information sources to one recognition judgment in a working memory task. We tested 24 subjects with a response signal variant of the modified Sternberg recognition task (Oberauer, 2001) to isolate the time course of three different probe types indicating different combinations of familiarity and source information. We compared two mathematical models implementing different ways of integrating familiarity and recollection. Within each model, we tested three assumptions about the nature of the familiarity signal, with familiarity having (a) only positive values, indicating similarity of the probe with the memory list, (b) only negative values, indicating novelty, or (c) both positive and negative values. Both models provided good fits to the data. A model combining the outputs of both processes additively (Integration Model) gave an overall better fit to the data than a model based on a continuous familiarity signal and a probabilistic all-or-none recollection process (Dominance Model).
Single baseline GLONASS observations with VLBI: data processing and first results
NASA Astrophysics Data System (ADS)
Tornatore, V.; Haas, R.; Duev, D.; Pogrebenko, S.; Casey, S.; Molera Calvés, G.; Keimpema, A.
2011-07-01
Several tests to observe signals transmitted by GLONASS (GLObal NAvigation Satellite System) satellites have been performed using the geodetic VLBI (Very Long Baseline Interferometry) technique. The radio telescopes involved in these experiments were Medicina (Italy) and Onsala (Sweden), both equipped with L-band receivers. Observations at the stations were performed using the standard Mark4 VLBI data acquisition rack and Mark5A disk-based recorders. The goals of the observations were to develop and test the scheduling, signal acquisition and processing routines to verify the full tracking pipeline, foreseeing the cross-correlation of the recorded data on the baseline Onsala-Medicina. The natural radio source 3c286 was used as a calibrator before the starting of the satellite observation sessions. Delay models, including the tropospheric and ionospheric corrections, which are consistent for both far- and near-field sources are under development. Correlation of the calibrator signal has been performed using the DiFX software, while the satellite signals have been processed using the narrow band approach with the Metsaehovi software and analysed with a near-field delay model. Delay models both for the calibrator signals and the satellites signals, using the same geometrical, tropospheric and ionospheric models, are under investigation to make a correlation of the satellite signals possible.
Cancer systems biology: signal processing for cancer research
Yli-Harja, Olli; Ylipää, Antti; Nykter, Matti; Zhang, Wei
2011-01-01
In this editorial we introduce the research paradigms of signal processing in the era of systems biology. Signal processing is a field of science traditionally focused on modeling electronic and communications systems, but recently it has turned to biological applications with astounding results. The essence of signal processing is to describe the natural world by mathematical models and then, based on these models, develop efficient computational tools for solving engineering problems. Here, we underline, with examples, the endless possibilities which arise when the battle-hardened tools of engineering are applied to solve the problems that have tormented cancer researchers. Based on this approach, a new field has emerged, called cancer systems biology. Despite its short history, cancer systems biology has already produced several success stories tackling previously impracticable problems. Perhaps most importantly, it has been accepted as an integral part of the major endeavors of cancer research, such as analyzing the genomic and epigenomic data produced by The Cancer Genome Atlas (TCGA) project. Finally, we show that signal processing and cancer research, two fields that are seemingly distant from each other, have merged into a field that is indeed more than the sum of its parts. PMID:21439242
PID-based error signal modeling
NASA Astrophysics Data System (ADS)
Yohannes, Tesfay
1997-10-01
This paper introduces a PID based signal error modeling. The error modeling is based on the betterment process. The resulting iterative learning algorithm is introduced and a detailed proof is provided for both linear and nonlinear systems.
Nonparametric Simulation of Signal Transduction Networks with Semi-Synchronized Update
Nassiri, Isar; Masoudi-Nejad, Ali; Jalili, Mahdi; Moeini, Ali
2012-01-01
Simulating signal transduction in cellular signaling networks provides predictions of network dynamics by quantifying the changes in concentration and activity-level of the individual proteins. Since numerical values of kinetic parameters might be difficult to obtain, it is imperative to develop non-parametric approaches that combine the connectivity of a network with the response of individual proteins to signals which travel through the network. The activity levels of signaling proteins computed through existing non-parametric modeling tools do not show significant correlations with the observed values in experimental results. In this work we developed a non-parametric computational framework to describe the profile of the evolving process and the time course of the proportion of active form of molecules in the signal transduction networks. The model is also capable of incorporating perturbations. The model was validated on four signaling networks showing that it can effectively uncover the activity levels and trends of response during signal transduction process. PMID:22737250
ERIC Educational Resources Information Center
Starns, Jeffrey J.; Rotello, Caren M.; Hautus, Michael J.
2014-01-01
We tested the dual process and unequal variance signal detection models by jointly modeling recognition and source confidence ratings. The 2 approaches make unique predictions for the slope of the recognition memory zROC function for items with correct versus incorrect source decisions. The standard bivariate Gaussian version of the unequal…
Error Propagation in a System Model
NASA Technical Reports Server (NTRS)
Schloegel, Kirk (Inventor); Bhatt, Devesh (Inventor); Oglesby, David V. (Inventor); Madl, Gabor (Inventor)
2015-01-01
Embodiments of the present subject matter can enable the analysis of signal value errors for system models. In an example, signal value errors can be propagated through the functional blocks of a system model to analyze possible effects as the signal value errors impact incident functional blocks. This propagation of the errors can be applicable to many models of computation including avionics models, synchronous data flow, and Kahn process networks.
An Interdisciplinary Approach for Designing Kinetic Models of the Ras/MAPK Signaling Pathway.
Reis, Marcelo S; Noël, Vincent; Dias, Matheus H; Albuquerque, Layra L; Guimarães, Amanda S; Wu, Lulu; Barrera, Junior; Armelin, Hugo A
2017-01-01
We present in this article a methodology for designing kinetic models of molecular signaling networks, which was exemplarily applied for modeling one of the Ras/MAPK signaling pathways in the mouse Y1 adrenocortical cell line. The methodology is interdisciplinary, that is, it was developed in a way that both dry and wet lab teams worked together along the whole modeling process.
A Novel Signal Modeling Approach for Classification of Seizure and Seizure-Free EEG Signals.
Gupta, Anubha; Singh, Pushpendra; Karlekar, Mandar
2018-05-01
This paper presents a signal modeling-based new methodology of automatic seizure detection in EEG signals. The proposed method consists of three stages. First, a multirate filterbank structure is proposed that is constructed using the basis vectors of discrete cosine transform. The proposed filterbank decomposes EEG signals into its respective brain rhythms: delta, theta, alpha, beta, and gamma. Second, these brain rhythms are statistically modeled with the class of self-similar Gaussian random processes, namely, fractional Brownian motion and fractional Gaussian noises. The statistics of these processes are modeled using a single parameter called the Hurst exponent. In the last stage, the value of Hurst exponent and autoregressive moving average parameters are used as features to design a binary support vector machine classifier to classify pre-ictal, inter-ictal (epileptic with seizure free interval), and ictal (seizure) EEG segments. The performance of the classifier is assessed via extensive analysis on two widely used data set and is observed to provide good accuracy on both the data set. Thus, this paper proposes a novel signal model for EEG data that best captures the attributes of these signals and hence, allows to boost the classification accuracy of seizure and seizure-free epochs.
Modeling the Pulse Signal by Wave-Shape Function and Analyzing by Synchrosqueezing Transform
Wang, Chun-Li; Yang, Yueh-Lung; Wu, Wen-Hsiang; Tsai, Tung-Hu; Chang, Hen-Hong
2016-01-01
We apply the recently developed adaptive non-harmonic model based on the wave-shape function, as well as the time-frequency analysis tool called synchrosqueezing transform (SST) to model and analyze oscillatory physiological signals. To demonstrate how the model and algorithm work, we apply them to study the pulse wave signal. By extracting features called the spectral pulse signature, and based on functional regression, we characterize the hemodynamics from the radial pulse wave signals recorded by the sphygmomanometer. Analysis results suggest the potential of the proposed signal processing approach to extract health-related hemodynamics features. PMID:27304979
Modeling the Pulse Signal by Wave-Shape Function and Analyzing by Synchrosqueezing Transform.
Wu, Hau-Tieng; Wu, Han-Kuei; Wang, Chun-Li; Yang, Yueh-Lung; Wu, Wen-Hsiang; Tsai, Tung-Hu; Chang, Hen-Hong
2016-01-01
We apply the recently developed adaptive non-harmonic model based on the wave-shape function, as well as the time-frequency analysis tool called synchrosqueezing transform (SST) to model and analyze oscillatory physiological signals. To demonstrate how the model and algorithm work, we apply them to study the pulse wave signal. By extracting features called the spectral pulse signature, and based on functional regression, we characterize the hemodynamics from the radial pulse wave signals recorded by the sphygmomanometer. Analysis results suggest the potential of the proposed signal processing approach to extract health-related hemodynamics features.
Modeling Array Stations in SIG-VISA
NASA Astrophysics Data System (ADS)
Ding, N.; Moore, D.; Russell, S.
2013-12-01
We add support for array stations to SIG-VISA, a system for nuclear monitoring using probabilistic inference on seismic signals. Array stations comprise a large portion of the IMS network; they can provide increased sensitivity and more accurate directional information compared to single-component stations. Our existing model assumed that signals were independent at each station, which is false when lots of stations are close together, as in an array. The new model removes that assumption by jointly modeling signals across array elements. This is done by extending our existing Gaussian process (GP) regression models, also known as kriging, from a 3-dimensional single-component space of events to a 6-dimensional space of station-event pairs. For each array and each event attribute (including coda decay, coda height, amplitude transfer and travel time), we model the joint distribution across array elements using a Gaussian process that learns the correlation lengthscale across the array, thereby incorporating information of array stations into the probabilistic inference framework. To evaluate the effectiveness of our model, we perform ';probabilistic beamforming' on new events using our GP model, i.e., we compute the event azimuth having highest posterior probability under the model, conditioned on the signals at array elements. We compare the results from our probabilistic inference model to the beamforming currently performed by IMS station processing.
Vibration based condition monitoring of a multistage epicyclic gearbox in lifting cranes
NASA Astrophysics Data System (ADS)
Assaad, Bassel; Eltabach, Mario; Antoni, Jérôme
2014-01-01
This paper proposes a model-based technique for detecting wear in a multistage planetary gearbox used by lifting cranes. The proposed method establishes a vibration signal model which deals with cyclostationary and autoregressive models. First-order cyclostationarity is addressed by the analysis of the time synchronous average (TSA) of the angular resampled vibration signal. Then an autoregressive model (AR) is applied to the TSA part in order to extract a residual signal containing pertinent fault signatures. The paper also explores a number of methods commonly used in vibration monitoring of planetary gearboxes, in order to make comparisons. In the experimental part of this study, these techniques are applied to accelerated lifetime test bench data for the lifting winch. After processing raw signals recorded with an accelerometer mounted on the outside of the gearbox, a number of condition indicators (CIs) are derived from the TSA signal, the residual autoregressive signal and other signals derived using standard signal processing methods. The goal is to check the evolution of the CIs during the accelerated lifetime test (ALT). Clarity and fluctuation level of the historical trends are finally considered as a criteria for comparing between the extracted CIs.
Sasaki, Hiroshi
2015-12-01
During the preimplantation stage, mouse embryos establish two cell lineages by the time of early blastocyst formation: the trophectoderm (TE) and the inner cell mass (ICM). Historical models have proposed that the establishment of these two lineages depends on the cell position within the embryo (e.g., the positional model) or cell polarization along the apicobasal axis (e.g., the polarity model). Recent findings have revealed that the Hippo signaling pathway plays a central role in the cell fate-specification process: active and inactive Hippo signaling in the inner and outer cells promote ICM and TE fates, respectively. Intercellular adhesion activates, while apicobasal polarization suppresses Hippo signaling, and a combination of these processes determines the spatially regulated activation of the Hippo pathway in 32-cell-stage embryos. Therefore, there is experimental evidence in favor of both positional and polarity models. At the molecular level, phosphorylation of the Hippo-pathway component angiomotin at adherens junctions (AJs) in the inner (apolar) cells activates the Lats protein kinase and triggers Hippo signaling. In the outer cells, however, cell polarization sequesters Amot from basolateral AJs and suppresses activation of the Hippo pathway. Other mechanisms, including asymmetric cell division and Notch signaling, also play important roles in the regulation of embryonic development. In this review, I discuss how these mechanisms cooperate with the Hippo signaling pathway during cell fate-specification processes. Copyright © 2015 Elsevier Ltd. All rights reserved.
Biosignals learning and synthesis using deep neural networks.
Belo, David; Rodrigues, João; Vaz, João R; Pezarat-Correia, Pedro; Gamboa, Hugo
2017-09-25
Modeling physiological signals is a complex task both for understanding and synthesize biomedical signals. We propose a deep neural network model that learns and synthesizes biosignals, validated by the morphological equivalence of the original ones. This research could lead the creation of novel algorithms for signal reconstruction in heavily noisy data and source detection in biomedical engineering field. The present work explores the gated recurrent units (GRU) employed in the training of respiration (RESP), electromyograms (EMG) and electrocardiograms (ECG). Each signal is pre-processed, segmented and quantized in a specific number of classes, corresponding to the amplitude of each sample and fed to the model, which is composed by an embedded matrix, three GRU blocks and a softmax function. This network is trained by adjusting its internal parameters, acquiring the representation of the abstract notion of the next value based on the previous ones. The simulated signal was generated by forecasting a random value and re-feeding itself. The resulting generated signals are similar with the morphological expression of the originals. During the learning process, after a set of iterations, the model starts to grasp the basic morphological characteristics of the signal and later their cyclic characteristics. After training, these models' prediction are closer to the signals that trained them, specially the RESP and ECG. This synthesis mechanism has shown relevant results that inspire the use to characterize signals from other physiological sources.
Application of Ensemble Detection and Analysis to Modeling Uncertainty in Non Stationary Process
NASA Technical Reports Server (NTRS)
Racette, Paul
2010-01-01
Characterization of non stationary and nonlinear processes is a challenge in many engineering and scientific disciplines. Climate change modeling and projection, retrieving information from Doppler measurements of hydrometeors, and modeling calibration architectures and algorithms in microwave radiometers are example applications that can benefit from improvements in the modeling and analysis of non stationary processes. Analyses of measured signals have traditionally been limited to a single measurement series. Ensemble Detection is a technique whereby mixing calibrated noise produces an ensemble measurement set. The collection of ensemble data sets enables new methods for analyzing random signals and offers powerful new approaches to studying and analyzing non stationary processes. Derived information contained in the dynamic stochastic moments of a process will enable many novel applications.
NASA Astrophysics Data System (ADS)
Rodionov, A. A.; Turchin, V. I.
2017-06-01
We propose a new method of signal processing in antenna arrays, which is called the Maximum-Likelihood Signal Classification. The proposed method is based on the model in which interference includes a component with a rank-deficient correlation matrix. Using numerical simulation, we show that the proposed method allows one to ensure variance of the estimated arrival angle of the plane wave, which is close to the Cramer-Rao lower boundary and more efficient than the best-known MUSIC method. It is also shown that the proposed technique can be efficiently used for estimating the time dependence of the useful signal.
Skeletal metastasis: treatments, mouse models, and the Wnt signaling
Valkenburg, Kenneth C.; Steensma, Matthew R.; Williams, Bart O.; Zhong, Zhendong
2013-01-01
Skeletal metastases result in significant morbidity and mortality. This is particularly true of cancers with a strong predilection for the bone, such as breast, prostate, and lung cancers. There is currently no reliable cure for skeletal metastasis, and palliative therapy options are limited. The Wnt signaling pathway has been found to play an integral role in the process of skeletal metastasis and may be an important clinical target. Several experimental models of skeletal metastasis have been used to find new biomarkers and test new treatments. In this review, we discuss pathologic process of bone metastasis, the roles of the Wnt signaling, and the available experimental models and treatments. PMID:23327798
Ma, Cheng-Wei; Xiu, Zhi-Long; Zeng, An-Ping
2012-01-01
A novel approach to reveal intramolecular signal transduction network is proposed in this work. To this end, a new algorithm of network construction is developed, which is based on a new protein dynamics model of energy dissipation. A key feature of this approach is that direction information is specified after inferring protein residue-residue interaction network involved in the process of signal transduction. This enables fundamental analysis of the regulation hierarchy and identification of regulation hubs of the signaling network. A well-studied allosteric enzyme, E. coli aspartokinase III, is used as a model system to demonstrate the new method. Comparison with experimental results shows that the new approach is able to predict all the sites that have been experimentally proved to desensitize allosteric regulation of the enzyme. In addition, the signal transduction network shows a clear preference for specific structural regions, secondary structural types and residue conservation. Occurrence of super-hubs in the network indicates that allosteric regulation tends to gather residues with high connection ability to collectively facilitate the signaling process. Furthermore, a new parameter of propagation coefficient is defined to determine the propagation capability of residues within a signal transduction network. In conclusion, the new approach is useful for fundamental understanding of the process of intramolecular signal transduction and thus has significant impact on rational design of novel allosteric proteins. PMID:22363664
Error-Rate Estimation Based on Multi-Signal Flow Graph Model and Accelerated Radiation Tests
Wang, Yueke; Xing, Kefei; Deng, Wei; Zhang, Zelong
2016-01-01
A method of evaluating the single-event effect soft-error vulnerability of space instruments before launched has been an active research topic in recent years. In this paper, a multi-signal flow graph model is introduced to analyze the fault diagnosis and meantime to failure (MTTF) for space instruments. A model for the system functional error rate (SFER) is proposed. In addition, an experimental method and accelerated radiation testing system for a signal processing platform based on the field programmable gate array (FPGA) is presented. Based on experimental results of different ions (O, Si, Cl, Ti) under the HI-13 Tandem Accelerator, the SFER of the signal processing platform is approximately 10−3(error/particle/cm2), while the MTTF is approximately 110.7 h. PMID:27583533
Error-Rate Estimation Based on Multi-Signal Flow Graph Model and Accelerated Radiation Tests.
He, Wei; Wang, Yueke; Xing, Kefei; Deng, Wei; Zhang, Zelong
2016-01-01
A method of evaluating the single-event effect soft-error vulnerability of space instruments before launched has been an active research topic in recent years. In this paper, a multi-signal flow graph model is introduced to analyze the fault diagnosis and meantime to failure (MTTF) for space instruments. A model for the system functional error rate (SFER) is proposed. In addition, an experimental method and accelerated radiation testing system for a signal processing platform based on the field programmable gate array (FPGA) is presented. Based on experimental results of different ions (O, Si, Cl, Ti) under the HI-13 Tandem Accelerator, the SFER of the signal processing platform is approximately 10-3(error/particle/cm2), while the MTTF is approximately 110.7 h.
Software algorithms for false alarm reduction in LWIR hyperspectral chemical agent detection
NASA Astrophysics Data System (ADS)
Manolakis, D.; Model, J.; Rossacci, M.; Zhang, D.; Ontiveros, E.; Pieper, M.; Seeley, J.; Weitz, D.
2008-04-01
The long-wave infrared (LWIR) hyperpectral sensing modality is one that is often used for the problem of detection and identification of chemical warfare agents (CWA) which apply to both military and civilian situations. The inherent nature and complexity of background clutter dictates a need for sophisticated and robust statistical models which are then used in the design of optimum signal processing algorithms that then provide the best exploitation of hyperspectral data to ultimately make decisions on the absence or presence of potentially harmful CWAs. This paper describes the basic elements of an automated signal processing pipeline developed at MIT Lincoln Laboratory. In addition to describing this signal processing architecture in detail, we briefly describe the key signal models that form the foundation of these algorithms as well as some spatial processing techniques used for false alarm mitigation. Finally, we apply this processing pipeline to real data measured by the Telops FIRST hyperspectral (FIRST) sensor to demonstrate its practical utility for the user community.
Digital signal processing based on inverse scattering transform.
Turitsyna, Elena G; Turitsyn, Sergei K
2013-10-15
Through numerical modeling, we illustrate the possibility of a new approach to digital signal processing in coherent optical communications based on the application of the so-called inverse scattering transform. Considering without loss of generality a fiber link with normal dispersion and quadrature phase shift keying signal modulation, we demonstrate how an initial information pattern can be recovered (without direct backward propagation) through the calculation of nonlinear spectral data of the received optical signal.
Khrennikov, Andrei
2011-09-01
We propose a model of quantum-like (QL) processing of mental information. This model is based on quantum information theory. However, in contrast to models of "quantum physical brain" reducing mental activity (at least at the highest level) to quantum physical phenomena in the brain, our model matches well with the basic neuronal paradigm of the cognitive science. QL information processing is based (surprisingly) on classical electromagnetic signals induced by joint activity of neurons. This novel approach to quantum information is based on representation of quantum mechanics as a version of classical signal theory which was recently elaborated by the author. The brain uses the QL representation (QLR) for working with abstract concepts; concrete images are described by classical information theory. Two processes, classical and QL, are performed parallely. Moreover, information is actively transmitted from one representation to another. A QL concept given in our model by a density operator can generate a variety of concrete images given by temporal realizations of the corresponding (Gaussian) random signal. This signal has the covariance operator coinciding with the density operator encoding the abstract concept under consideration. The presence of various temporal scales in the brain plays the crucial role in creation of QLR in the brain. Moreover, in our model electromagnetic noise produced by neurons is a source of superstrong QL correlations between processes in different spatial domains in the brain; the binding problem is solved on the QL level, but with the aid of the classical background fluctuations. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Signal analysis and radioholographic methods for airborne radio occultations
NASA Astrophysics Data System (ADS)
Wang, Kuo-Nung
Global Positioning System (GPS) radio occultation (RO) is an atmospheric sounding technique utilizing the change in propagation direction and delay of the GPS signal to measure refractivity, which provides information on temperature and humidity. The GPS-RO technique is now operational on several Low Earth Orbiting (LEO) satellite missions. Nevertheless, when observing localized transient events, such as tropical storms, current LEO satellite systems cannot provide sufficiently high temporal and spatial resolution soundings. An airborne RO (ARO) system has therefore been developed for localized GPS-RO campaigns. The open-loop (OL) tracking in post-processing is used to cross-correlates the received Global Navigation Satellite System (GNSS) signal with an internally generated local carrier signal predicted from a Doppler model and extract the atmospheric refractivity information. OL tracking also allows robust processing of rising GPS signals using backward tracking, which will double the observed occultation event numbers. RO signals in the lower troposphere are adversely affected by rapid phase accelerations and severe signal power fading, however. The negative bias caused by low signal-to-noise ratio (SNR) and multipath ray propagation limits the depth of tracking in the atmosphere. Therefore, we developed a model relating the SNR to the variance in the residual phase of the observed signal produced from OL tracking, and its applicability to airborne data is demonstrated. We then apply this model to set a threshold on refractivity retrieval, based upon the cumulative unwrapping error bias, to determine the altitude limit for reliable signal tracking. To enhance the SNR and decrease the unwrapping error rate, the CIRA-Q climatological model and signal residual phase pre-filtering are utilized to process the ARO residual phase. This more accurately modeled phase and less noisy received signal are shown to greatly reduce the bias caused by unwrapping error at lower altitude. On the other hand, to process the superimposed signal in the lower troposphere with its highly variable moisture distribution, Radio-Holographic (RH) methods such as Phase Matching (PM) have been adapted for ARO platforms to untangle the bending angle of each signal path. Under the assumption of spherically symmetric atmosphere, ARO PM can identify different subsignals using the Method of the Stationary Phase (MSP) and determine the arrival angle for each impact parameter. As a result, each subsignal can be distinguished and its corresponding bending angle can be retrieved without producing a negative bias. The refractivity retrieval results using ARO PM are compared to those using the traditional Geometrical Optics (GO) method. The improvements are shown and discussed in the dissertation. We applied these new methods to the received ARO data collected by the GNSS instrument system for multistatic and occultation sensing (GISMOS) in the 2010 PREDepression Investigation of Cloud systems (PREDICT) campaign. A data set of 5 research flights with 57 occultation events during the formation stage of the Hurricane Karl are processed and analyzed. In this research, the refractivity fractional difference with ERA-I model can be maintained at an average 2% above a height of 2km with a climatological model and ARO PM. Compared to the traditional geometrical optics (GO) method without climatological method assistance, the new ARO processing can effectively decrease the refractivity negative bias and significantly improve the retrieval depth of ARO.
Wnt and the Wnt signaling pathway in bone development and disease
Wang, Yiping; Li, Yi-Ping; Paulson, Christie; Shao, Jian-Zhong; Zhang, Xiaoling; Wu, Mengrui; Chen, Wei
2014-01-01
Wnt signaling affects both bone modeling, which occurs during development, and bone remodeling, which is a lifelong process involving tissue renewal. Wnt signals are especially known to affect the differentiation of osteoblasts. In this review, we summarize recent advances in understanding the mechanisms of Wnt signaling, which is divided into two major branches: the canonical pathway and the noncanonical pathway. The canonical pathway is also called the Wnt/β-catenin pathway. There are two major noncanonical pathways: the Wnt-planar cell polarity pathway (Wnt-PCP pathway) and the Wnt-calcium pathway (Wnt-Ca2+ pathway). This review also discusses how Wnt ligands, receptors, intracellular effectors, transcription factors, and antagonists affect both the bone modeling and bone remodeling processes. We also review the role of Wnt ligands, receptors, intracellular effectors, transcription factors, and antagonists in bone as demonstrated in mouse models. Disrupted Wnt signaling is linked to several bone diseases, including osteoporosis, van Buchem disease, and sclerosteosis. Studying the mechanism of Wnt signaling and its interactions with other signaling pathways in bone will provide potential therapeutic targets to treat these bone diseases. PMID:24389191
Testing the Race Model Inequality in Redundant Stimuli with Variable Onset Asynchrony
ERIC Educational Resources Information Center
Gondan, Matthias
2009-01-01
In speeded response tasks with redundant signals, parallel processing of the signals is tested by the race model inequality. This inequality states that given a race of two signals, the cumulative distribution of response times for redundant stimuli never exceeds the sum of the cumulative distributions of response times for the single-modality…
SIGNAL DETECTION BEHAVIOR IN HUMANS AND RATS: A COMPARISON WITH MATCHED TASKS.
Animal models of human cognitive processes are essential for studying the neurobiological mechanisms of these processes and for developing therapies for intoxication and neurodegenerative diseases. A discrete-trial signal detection task was developed for assessing sustained atten...
Defense Applications of Signal Processing
1999-08-27
class of multiscale autoregressive moving average (MARMA) processes. These are generalisations of ARMA models in time series analysis , and they contain...including the two theoretical sinusoidal components. Analysis of the amplitude and frequency time series provided some novel insight into the real...communication channels, underwater acoustic signals, radar systems , economic time series and biomedical signals [7]. The alpha stable (aS) distribution has
Updated energy budgets for neural computation in the neocortex and cerebellum
Howarth, Clare; Gleeson, Padraig; Attwell, David
2012-01-01
The brain's energy supply determines its information processing power, and generates functional imaging signals. The energy use on the different subcellular processes underlying neural information processing has been estimated previously for the grey matter of the cerebral and cerebellar cortex. However, these estimates need reevaluating following recent work demonstrating that action potentials in mammalian neurons are much more energy efficient than was previously thought. Using this new knowledge, this paper provides revised estimates for the energy expenditure on neural computation in a simple model for the cerebral cortex and a detailed model of the cerebellar cortex. In cerebral cortex, most signaling energy (50%) is used on postsynaptic glutamate receptors, 21% is used on action potentials, 20% on resting potentials, 5% on presynaptic transmitter release, and 4% on transmitter recycling. In the cerebellar cortex, excitatory neurons use 75% and inhibitory neurons 25% of the signaling energy, and most energy is used on information processing by non-principal neurons: Purkinje cells use only 15% of the signaling energy. The majority of cerebellar signaling energy use is on the maintenance of resting potentials (54%) and postsynaptic receptors (22%), while action potentials account for only 17% of the signaling energy use. PMID:22434069
Fusion of spectral models for dynamic modeling of sEMG and skeletal muscle force.
Potluri, Chandrasekhar; Anugolu, Madhavi; Chiu, Steve; Urfer, Alex; Schoen, Marco P; Naidu, D Subbaram
2012-01-01
In this paper, we present a method of combining spectral models using a Kullback Information Criterion (KIC) data fusion algorithm. Surface Electromyographic (sEMG) signals and their corresponding skeletal muscle force signals are acquired from three sensors and pre-processed using a Half-Gaussian filter and a Chebyshev Type- II filter, respectively. Spectral models - Spectral Analysis (SPA), Empirical Transfer Function Estimate (ETFE), Spectral Analysis with Frequency Dependent Resolution (SPFRD) - are extracted from sEMG signals as input and skeletal muscle force as output signal. These signals are then employed in a System Identification (SI) routine to establish the dynamic models relating the input and output. After the individual models are extracted, the models are fused by a probability based KIC fusion algorithm. The results show that the SPFRD spectral models perform better than SPA and ETFE models in modeling the frequency content of the sEMG/skeletal muscle force data.
Energy spectrum analysis - A model of echolocation processing. [in animals
NASA Technical Reports Server (NTRS)
Johnson, R. A.; Titlebaum, E. L.
1976-01-01
The paper proposes a frequency domain approach based on energy spectrum analysis of the combination of a signal and its echoes as the processing mechanism for the echolocation process used by bats and other animals. The mechanism is a generalized wide-band one and can account for the large diversity of wide-band signals used for orientation. The coherency in the spectrum of the signal-echo combination is shown to be equivalent to correlation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harris, David B.; Gibbons, Steven J.; Rodgers, Arthur J.
In this approach, small scale-length medium perturbations not modeled in the tomographic inversion might be described as random fields, characterized by particular distribution functions (e.g., normal with specified spatial covariance). Conceivably, random field parameters (scatterer density or scale length) might themselves be the targets of tomographic inversions of the scattered wave field. As a result, such augmented models may provide processing gain through the use of probabilistic signal sub spaces rather than deterministic waveforms.
Harris, David B.; Gibbons, Steven J.; Rodgers, Arthur J.; ...
2012-05-01
In this approach, small scale-length medium perturbations not modeled in the tomographic inversion might be described as random fields, characterized by particular distribution functions (e.g., normal with specified spatial covariance). Conceivably, random field parameters (scatterer density or scale length) might themselves be the targets of tomographic inversions of the scattered wave field. As a result, such augmented models may provide processing gain through the use of probabilistic signal sub spaces rather than deterministic waveforms.
Internal curvature signal and noise in low- and high-level vision
Grabowecky, Marcia; Kim, Yee Joon; Suzuki, Satoru
2011-01-01
How does internal processing contribute to visual pattern perception? By modeling visual search performance, we estimated internal signal and noise relevant to perception of curvature, a basic feature important for encoding of three-dimensional surfaces and objects. We used isolated, sparse, crowded, and face contexts to determine how internal curvature signal and noise depended on image crowding, lateral feature interactions, and level of pattern processing. Observers reported the curvature of a briefly flashed segment, which was presented alone (without lateral interaction) or among multiple straight segments (with lateral interaction). Each segment was presented with no context (engaging low-to-intermediate-level curvature processing), embedded within a face context as the mouth (engaging high-level face processing), or embedded within an inverted-scrambled-face context as a control for crowding. Using a simple, biologically plausible model of curvature perception, we estimated internal curvature signal and noise as the mean and standard deviation, respectively, of the Gaussian-distributed population activity of local curvature-tuned channels that best simulated behavioral curvature responses. Internal noise was increased by crowding but not by face context (irrespective of lateral interactions), suggesting prevention of noise accumulation in high-level pattern processing. In contrast, internal curvature signal was unaffected by crowding but modulated by lateral interactions. Lateral interactions (with straight segments) increased curvature signal when no contextual elements were added, but equivalent interactions reduced curvature signal when each segment was presented within a face. These opposing effects of lateral interactions are consistent with the phenomena of local-feature contrast in low-level processing and global-feature averaging in high-level processing. PMID:21209356
Xiao, Bo; Imel, Zac E; Georgiou, Panayiotis; Atkins, David C; Narayanan, Shrikanth S
2016-05-01
Empathy is an important psychological process that facilitates human communication and interaction. Enhancement of empathy has profound significance in a range of applications. In this paper, we review emerging directions of research on computational analysis of empathy expression and perception as well as empathic interactions, including their simulation. We summarize the work on empathic expression analysis by the targeted signal modalities (e.g., text, audio, and facial expressions). We categorize empathy simulation studies into theory-based emotion space modeling or application-driven user and context modeling. We summarize challenges in computational study of empathy including conceptual framing and understanding of empathy, data availability, appropriate use and validation of machine learning techniques, and behavior signal processing. Finally, we propose a unified view of empathy computation and offer a series of open problems for future research.
Modeling Signal-Noise Processes Supports Student Construction of a Hierarchical Image of Sample
ERIC Educational Resources Information Center
Lehrer, Richard
2017-01-01
Grade 6 (modal age 11) students invented and revised models of the variability generated as each measured the perimeter of a table in their classroom. To construct models, students represented variability as a linear composite of true measure (signal) and multiple sources of random error. Students revised models by developing sampling…
Integrating physically based simulators with Event Detection Systems: Multi-site detection approach.
Housh, Mashor; Ohar, Ziv
2017-03-01
The Fault Detection (FD) Problem in control theory concerns of monitoring a system to identify when a fault has occurred. Two approaches can be distinguished for the FD: Signal processing based FD and Model-based FD. The former concerns of developing algorithms to directly infer faults from sensors' readings, while the latter uses a simulation model of the real-system to analyze the discrepancy between sensors' readings and expected values from the simulation model. Most contamination Event Detection Systems (EDSs) for water distribution systems have followed the signal processing based FD, which relies on analyzing the signals from monitoring stations independently of each other, rather than evaluating all stations simultaneously within an integrated network. In this study, we show that a model-based EDS which utilizes a physically based water quality and hydraulics simulation models, can outperform the signal processing based EDS. We also show that the model-based EDS can facilitate the development of a Multi-Site EDS (MSEDS), which analyzes the data from all the monitoring stations simultaneously within an integrated network. The advantage of the joint analysis in the MSEDS is expressed by increased detection accuracy (higher true positive alarms and fewer false alarms) and shorter detection time. Copyright © 2016 Elsevier Ltd. All rights reserved.
Frequency domain laser velocimeter signal processor
NASA Technical Reports Server (NTRS)
Meyers, James F.; Murphy, R. Jay
1991-01-01
A new scheme for processing signals from laser velocimeter systems is described. The technique utilizes the capabilities of advanced digital electronics to yield a signal processor capable of operating in the frequency domain maximizing the information obtainable from each signal burst. This allows a sophisticated approach to signal detection and processing, with a more accurate measurement of the chirp frequency resulting in an eight-fold increase in measurable signals over the present high-speed burst counter technology. Further, the required signal-to-noise ratio is reduced by a factor of 32, allowing measurements within boundary layers of wind tunnel models. Measurement accuracy is also increased up to a factor of five.
A Volterra series-based method for extracting target echoes in the seafloor mining environment.
Zhao, Haiming; Ji, Yaqian; Hong, Yujiu; Hao, Qi; Ma, Liyong
2016-09-01
The purpose of this research was to evaluate the applicability of the Volterra adaptive method to predict the target echo of an ultrasonic signal in an underwater seafloor mining environment. There is growing interest in mining of seafloor minerals because they offer an alternative source of rare metals. Mining the minerals cause the seafloor sediments to be stirred up and suspended in sea water. In such an environment, the target signals used for seafloor mapping are unable to be detected because of the unavoidable presence of volume reverberation induced by the suspended sediments. The detection of target signals in reverberation is currently performed using a stochastic model (for example, the autoregressive (AR) model) based on the statistical characterisation of reverberation. However, we examined a new method of signal detection in volume reverberation based on the Volterra series by confirming that the reverberation is a chaotic signal and generated by a deterministic process. The advantage of this method over the stochastic model is that attributions of the specific physical process are considered in the signal detection problem. To test the Volterra series based method and its applicability to target signal detection in the volume reverberation environment derived from the seafloor mining process, we simulated the real-life conditions of seafloor mining in a water filled tank of dimensions of 5×3×1.8m. The bottom of the tank was covered with 10cm of an irregular sand layer under which 5cm of an irregular cobalt-rich crusts layer was placed. The bottom was interrogated by an acoustic wave generated as 16μs pulses of 500kHz frequency. This frequency is demonstrated to ensure a resolution on the order of one centimetre, which is adequate in exploration practice. Echo signals were collected with a data acquisition card (PCI 1714 UL, 12-bit). Detection of the target echo in these signals was performed by both the Volterra series based model and the AR model. The results obtained confirm that the Volterra series based method is more efficient in the detection of the signal in reverberation than the conventional AR model (the accuracy is 80% for the PIM-Volterra prediction model versus 40% for the AR model). Copyright © 2016 Elsevier B.V. All rights reserved.
Application of simulation models for the optimization of business processes
NASA Astrophysics Data System (ADS)
Jašek, Roman; Sedláček, Michal; Chramcov, Bronislav; Dvořák, Jiří
2016-06-01
The paper deals with the applications of modeling and simulation tools in the optimization of business processes, especially in solving an optimization of signal flow in security company. As a modeling tool was selected Simul8 software that is used to process modeling based on discrete event simulation and which enables the creation of a visual model of production and distribution processes.
Machine listening intelligence
NASA Astrophysics Data System (ADS)
Cella, C. E.
2017-05-01
This manifesto paper will introduce machine listening intelligence, an integrated research framework for acoustic and musical signals modelling, based on signal processing, deep learning and computational musicology.
The design of multi-core DSP parallel model based on message passing and multi-level pipeline
NASA Astrophysics Data System (ADS)
Niu, Jingyu; Hu, Jian; He, Wenjing; Meng, Fanrong; Li, Chuanrong
2017-10-01
Currently, the design of embedded signal processing system is often based on a specific application, but this idea is not conducive to the rapid development of signal processing technology. In this paper, a parallel processing model architecture based on multi-core DSP platform is designed, and it is mainly suitable for the complex algorithms which are composed of different modules. This model combines the ideas of multi-level pipeline parallelism and message passing, and summarizes the advantages of the mainstream model of multi-core DSP (the Master-Slave model and the Data Flow model), so that it has better performance. This paper uses three-dimensional image generation algorithm to validate the efficiency of the proposed model by comparing with the effectiveness of the Master-Slave and the Data Flow model.
A Two-Stage Process Model of Sensory Discrimination: An Alternative to Drift-Diffusion
Landy, Michael S.
2016-01-01
Discrimination of the direction of motion of a noisy stimulus is an example of sensory discrimination under uncertainty. For stimuli that are extended in time, reaction time is quicker for larger signal values (e.g., discrimination of opposite directions of motion compared with neighboring orientations) and larger signal strength (e.g., stimuli with higher contrast or motion coherence, that is, lower noise). The standard model of neural responses (e.g., in lateral intraparietal cortex) and reaction time for discrimination is drift-diffusion. This model makes two clear predictions. (1) The effects of signal strength and value on reaction time should interact multiplicatively because the diffusion process depends on the signal-to-noise ratio. (2) If the diffusion process is interrupted, as in a cued-response task, the time to decision after the cue should be independent of the strength of accumulated sensory evidence. In two experiments with human participants, we show that neither prediction holds. A simple alternative model is developed that is consistent with the results. In this estimate-then-decide model, evidence is accumulated until estimation precision reaches a threshold value. Then, a decision is made with duration that depends on the signal-to-noise ratio achieved by the first stage. SIGNIFICANCE STATEMENT Sensory decision-making under uncertainty is usually modeled as the slow accumulation of noisy sensory evidence until a threshold amount of evidence supporting one of the possible decision outcomes is reached. Furthermore, it has been suggested that this accumulation process is reflected in neural responses, e.g., in lateral intraparietal cortex. We derive two behavioral predictions of this model and show that neither prediction holds. We introduce a simple alternative model in which evidence is accumulated until a sufficiently precise estimate of the stimulus is achieved, and then that estimate is used to guide the discrimination decision. This model is consistent with the behavioral data. PMID:27807167
A Two-Stage Process Model of Sensory Discrimination: An Alternative to Drift-Diffusion.
Sun, Peng; Landy, Michael S
2016-11-02
Discrimination of the direction of motion of a noisy stimulus is an example of sensory discrimination under uncertainty. For stimuli that are extended in time, reaction time is quicker for larger signal values (e.g., discrimination of opposite directions of motion compared with neighboring orientations) and larger signal strength (e.g., stimuli with higher contrast or motion coherence, that is, lower noise). The standard model of neural responses (e.g., in lateral intraparietal cortex) and reaction time for discrimination is drift-diffusion. This model makes two clear predictions. (1) The effects of signal strength and value on reaction time should interact multiplicatively because the diffusion process depends on the signal-to-noise ratio. (2) If the diffusion process is interrupted, as in a cued-response task, the time to decision after the cue should be independent of the strength of accumulated sensory evidence. In two experiments with human participants, we show that neither prediction holds. A simple alternative model is developed that is consistent with the results. In this estimate-then-decide model, evidence is accumulated until estimation precision reaches a threshold value. Then, a decision is made with duration that depends on the signal-to-noise ratio achieved by the first stage. Sensory decision-making under uncertainty is usually modeled as the slow accumulation of noisy sensory evidence until a threshold amount of evidence supporting one of the possible decision outcomes is reached. Furthermore, it has been suggested that this accumulation process is reflected in neural responses, e.g., in lateral intraparietal cortex. We derive two behavioral predictions of this model and show that neither prediction holds. We introduce a simple alternative model in which evidence is accumulated until a sufficiently precise estimate of the stimulus is achieved, and then that estimate is used to guide the discrimination decision. This model is consistent with the behavioral data. Copyright © 2016 the authors 0270-6474/16/3611259-16$15.00/0.
The transfer function of neuron spike.
Palmieri, Igor; Monteiro, Luiz H A; Miranda, Maria D
2015-08-01
The mathematical modeling of neuronal signals is a relevant problem in neuroscience. The complexity of the neuron behavior, however, makes this problem a particularly difficult task. Here, we propose a discrete-time linear time-invariant (LTI) model with a rational function in order to represent the neuronal spike detected by an electrode located in the surroundings of the nerve cell. The model is presented as a cascade association of two subsystems: one that generates an action potential from an input stimulus, and one that represents the medium between the cell and the electrode. The suggested approach employs system identification and signal processing concepts, and is dissociated from any considerations about the biophysical processes of the neuronal cell, providing a low-complexity alternative to model the neuronal spike. The model is validated by using in vivo experimental readings of intracellular and extracellular signals. A computational simulation of the model is presented in order to assess its proximity to the neuronal signal and to observe the variability of the estimated parameters. The implications of the results are discussed in the context of spike sorting. Copyright © 2015 Elsevier Ltd. All rights reserved.
Editorial: Mathematical Methods and Modeling in Machine Fault Diagnosis
Yan, Ruqiang; Chen, Xuefeng; Li, Weihua; ...
2014-12-18
Modern mathematics has commonly been utilized as an effective tool to model mechanical equipment so that their dynamic characteristics can be studied analytically. This will help identify potential failures of mechanical equipment by observing change in the equipment’s dynamic parameters. On the other hand, dynamic signals are also important and provide reliable information about the equipment’s working status. Modern mathematics has also provided us with a systematic way to design and implement various signal processing methods, which are used to analyze these dynamic signals, and to enhance intrinsic signal components that are directly related to machine failures. This special issuemore » is aimed at stimulating not only new insights on mathematical methods for modeling but also recently developed signal processing methods, such as sparse decomposition with potential applications in machine fault diagnosis. Finally, the papers included in this special issue provide a glimpse into some of the research and applications in the field of machine fault diagnosis through applications of the modern mathematical methods.« less
1988-10-01
A statistical analysis on the output signals of an acousto - optic spectrum analyzer (AOSA) is performed for the case when the input signal is a...processing, Electronic warfare, Radar countermeasures, Acousto - optic , Spectrum analyzer, Statistical analysis, Detection, Estimation, Canada, Modelling.
2002-08-01
the measurement noise, as well as the physical model of the forward scattered electric field. The Bayesian algorithms for the Uncertain Permittivity...received at multiple sensors. In this research project a tissue- model -based signal-detection theory approach for the detection of mammary tumors in the...oriented information processors. In this research project a tissue- model - based signal detection theory approach for the detection of mammary tumors in the
NASA Technical Reports Server (NTRS)
Premkumar, A. B.; Purviance, J. E.
1990-01-01
A simplified model for the SAR imaging problem is presented. The model is based on the geometry of the SAR system. Using this model an expression for the entire phase history of the received SAR signal is formulated. From the phase history, it is shown that the range and the azimuth coordinates for a point target image can be obtained by processing the phase information during the intrapulse and interpulse periods respectively. An architecture for a VLSI implementation for the SAR signal processor is presented which generates images in real time. The architecture uses a small number of chips, a new correlation processor, and an efficient azimuth correlation process.
A Binaural Grouping Model for Predicting Speech Intelligibility in Multitalker Environments
Colburn, H. Steven
2016-01-01
Spatially separating speech maskers from target speech often leads to a large intelligibility improvement. Modeling this phenomenon has long been of interest to binaural-hearing researchers for uncovering brain mechanisms and for improving signal-processing algorithms in hearing-assistive devices. Much of the previous binaural modeling work focused on the unmasking enabled by binaural cues at the periphery, and little quantitative modeling has been directed toward the grouping or source-separation benefits of binaural processing. In this article, we propose a binaural model that focuses on grouping, specifically on the selection of time-frequency units that are dominated by signals from the direction of the target. The proposed model uses Equalization-Cancellation (EC) processing with a binary decision rule to estimate a time-frequency binary mask. EC processing is carried out to cancel the target signal and the energy change between the EC input and output is used as a feature that reflects target dominance in each time-frequency unit. The processing in the proposed model requires little computational resources and is straightforward to implement. In combination with the Coherence-based Speech Intelligibility Index, the model is applied to predict the speech intelligibility data measured by Marrone et al. The predicted speech reception threshold matches the pattern of the measured data well, even though the predicted intelligibility improvements relative to the colocated condition are larger than some of the measured data, which may reflect the lack of internal noise in this initial version of the model. PMID:27698261
A Binaural Grouping Model for Predicting Speech Intelligibility in Multitalker Environments.
Mi, Jing; Colburn, H Steven
2016-10-03
Spatially separating speech maskers from target speech often leads to a large intelligibility improvement. Modeling this phenomenon has long been of interest to binaural-hearing researchers for uncovering brain mechanisms and for improving signal-processing algorithms in hearing-assistive devices. Much of the previous binaural modeling work focused on the unmasking enabled by binaural cues at the periphery, and little quantitative modeling has been directed toward the grouping or source-separation benefits of binaural processing. In this article, we propose a binaural model that focuses on grouping, specifically on the selection of time-frequency units that are dominated by signals from the direction of the target. The proposed model uses Equalization-Cancellation (EC) processing with a binary decision rule to estimate a time-frequency binary mask. EC processing is carried out to cancel the target signal and the energy change between the EC input and output is used as a feature that reflects target dominance in each time-frequency unit. The processing in the proposed model requires little computational resources and is straightforward to implement. In combination with the Coherence-based Speech Intelligibility Index, the model is applied to predict the speech intelligibility data measured by Marrone et al. The predicted speech reception threshold matches the pattern of the measured data well, even though the predicted intelligibility improvements relative to the colocated condition are larger than some of the measured data, which may reflect the lack of internal noise in this initial version of the model. © The Author(s) 2016.
Exciting (and modulating) very-long-period seismic signals on White Island, New Zealand
NASA Astrophysics Data System (ADS)
Neuberg, Jurgen; Jolly, Art
2014-05-01
Very-long-period seismic signals (VLP) on volcanoes can be used to fill the gap between classic seismology and deformation studies. In this contribution we reiterate the principal processing steps to retrieve from a velocity seismogram 3D ground displacement with tiny amplitudes far beyond the resolution of GPS. As a case study we use several seismic and infrasonic signals of volcanic events from White Island, New Zealand. We apply particle motion analysis and deformation modelling tools to the resulting displacement signals and exam the potential link between ground displacement and the modulation of harmonic tremor, in turn linked to a hydrothermal system. In this way we want to demonstrate the full potential of VLPs in monitoring and modelling of volcanic processes.
Modeling Geodetic Processes with Levy α-Stable Distribution and FARIMA
NASA Astrophysics Data System (ADS)
Montillet, Jean-Philippe; Yu, Kegen
2015-04-01
Over the last years the scientific community has been using the auto regressive moving average (ARMA) model in the modeling of the noise in global positioning system (GPS) time series (daily solution). This work starts with the investigation of the limit of the ARMA model which is widely used in signal processing when the measurement noise is white. Since a typical GPS time series consists of geophysical signals (e.g., seasonal signal) and stochastic processes (e.g., coloured and white noise), the ARMA model may be inappropriate. Therefore, the application of the fractional auto-regressive integrated moving average (FARIMA) model is investigated. The simulation results using simulated time series as well as real GPS time series from a few selected stations around Australia show that the FARIMA model fits the time series better than other models when the coloured noise is larger than the white noise. The second fold of this work focuses on fitting the GPS time series with the family of Levy α-stable distributions. Using this distribution, a hypothesis test is developed to eliminate effectively coarse outliers from GPS time series, achieving better performance than using the rule of thumb of n standard deviations (with n chosen empirically).
Martinek, Radek; Nedoma, Jan; Fajkus, Marcel; Kahankova, Radana; Konecny, Jaromir; Janku, Petr; Kepak, Stanislav; Bilik, Petr; Nazeran, Homer
2017-04-18
This paper focuses on the design, realization, and verification of a novel phonocardiographic- based fiber-optic sensor and adaptive signal processing system for noninvasive continuous fetal heart rate (fHR) monitoring. Our proposed system utilizes two Mach-Zehnder interferometeric sensors. Based on the analysis of real measurement data, we developed a simplified dynamic model for the generation and distribution of heart sounds throughout the human body. Building on this signal model, we then designed, implemented, and verified our adaptive signal processing system by implementing two stochastic gradient-based algorithms: the Least Mean Square Algorithm (LMS), and the Normalized Least Mean Square (NLMS) Algorithm. With this system we were able to extract the fHR information from high quality fetal phonocardiograms (fPCGs), filtered from abdominal maternal phonocardiograms (mPCGs) by performing fPCG signal peak detection. Common signal processing methods such as linear filtering, signal subtraction, and others could not be used for this purpose as fPCG and mPCG signals share overlapping frequency spectra. The performance of the adaptive system was evaluated by using both qualitative (gynecological studies) and quantitative measures such as: Signal-to-Noise Ratio-SNR, Root Mean Square Error-RMSE, Sensitivity-S+, and Positive Predictive Value-PPV.
Martinek, Radek; Nedoma, Jan; Fajkus, Marcel; Kahankova, Radana; Konecny, Jaromir; Janku, Petr; Kepak, Stanislav; Bilik, Petr; Nazeran, Homer
2017-01-01
This paper focuses on the design, realization, and verification of a novel phonocardiographic- based fiber-optic sensor and adaptive signal processing system for noninvasive continuous fetal heart rate (fHR) monitoring. Our proposed system utilizes two Mach-Zehnder interferometeric sensors. Based on the analysis of real measurement data, we developed a simplified dynamic model for the generation and distribution of heart sounds throughout the human body. Building on this signal model, we then designed, implemented, and verified our adaptive signal processing system by implementing two stochastic gradient-based algorithms: the Least Mean Square Algorithm (LMS), and the Normalized Least Mean Square (NLMS) Algorithm. With this system we were able to extract the fHR information from high quality fetal phonocardiograms (fPCGs), filtered from abdominal maternal phonocardiograms (mPCGs) by performing fPCG signal peak detection. Common signal processing methods such as linear filtering, signal subtraction, and others could not be used for this purpose as fPCG and mPCG signals share overlapping frequency spectra. The performance of the adaptive system was evaluated by using both qualitative (gynecological studies) and quantitative measures such as: Signal-to-Noise Ratio—SNR, Root Mean Square Error—RMSE, Sensitivity—S+, and Positive Predictive Value—PPV. PMID:28420215
Xiao, Bo; Imel, Zac E.; Georgiou, Panayiotis; Atkins, David C.; Narayanan, Shrikanth S.
2017-01-01
Empathy is an important psychological process that facilitates human communication and interaction. Enhancement of empathy has profound significance in a range of applications. In this paper, we review emerging directions of research on computational analysis of empathy expression and perception as well as empathic interactions, including their simulation. We summarize the work on empathic expression analysis by the targeted signal modalities (e.g., text, audio, facial expressions). We categorize empathy simulation studies into theory-based emotion space modeling or application-driven user and context modeling. We summarize challenges in computational study of empathy including conceptual framing and understanding of empathy, data availability, appropriate use and validation of machine learning techniques, and behavior signal processing. Finally, we propose a unified view of empathy computation, and offer a series of open problems for future research. PMID:27017830
Modeling selective attention using a neuromorphic analog VLSI device.
Indiveri, G
2000-12-01
Attentional mechanisms are required to overcome the problem of flooding a limited processing capacity system with information. They are present in biological sensory systems and can be a useful engineering tool for artificial visual systems. In this article we present a hardware model of a selective attention mechanism implemented on a very large-scale integration (VLSI) chip, using analog neuromorphic circuits. The chip exploits a spike-based representation to receive, process, and transmit signals. It can be used as a transceiver module for building multichip neuromorphic vision systems. We describe the circuits that carry out the main processing stages of the selective attention mechanism and provide experimental data for each circuit. We demonstrate the expected behavior of the model at the system level by stimulating the chip with both artificially generated control signals and signals obtained from a saliency map, computed from an image containing several salient features.
Design and evaluation of a parametric model for cardiac sounds.
Ibarra-Hernández, Roilhi F; Alonso-Arévalo, Miguel A; Cruz-Gutiérrez, Alejandro; Licona-Chávez, Ana L; Villarreal-Reyes, Salvador
2017-10-01
Heart sound analysis plays an important role in the auscultative diagnosis process to detect the presence of cardiovascular diseases. In this paper we propose a novel parametric heart sound model that accurately represents normal and pathological cardiac audio signals, also known as phonocardiograms (PCG). The proposed model considers that the PCG signal is formed by the sum of two parts: one of them is deterministic and the other one is stochastic. The first part contains most of the acoustic energy. This part is modeled by the Matching Pursuit (MP) algorithm, which performs an analysis-synthesis procedure to represent the PCG signal as a linear combination of elementary waveforms. The second part, also called residual, is obtained after subtracting the deterministic signal from the original heart sound recording and can be accurately represented as an autoregressive process using the Linear Predictive Coding (LPC) technique. We evaluate the proposed heart sound model by performing subjective and objective tests using signals corresponding to different pathological cardiac sounds. The results of the objective evaluation show an average Percentage of Root-Mean-Square Difference of approximately 5% between the original heart sound and the reconstructed signal. For the subjective test we conducted a formal methodology for perceptual evaluation of audio quality with the assistance of medical experts. Statistical results of the subjective evaluation show that our model provides a highly accurate approximation of real heart sound signals. We are not aware of any previous heart sound model rigorously evaluated as our proposal. Copyright © 2017 Elsevier Ltd. All rights reserved.
Separate encoding of model-based and model-free valuations in the human brain.
Beierholm, Ulrik R; Anen, Cedric; Quartz, Steven; Bossaerts, Peter
2011-10-01
Behavioral studies have long shown that humans solve problems in two ways, one intuitive and fast (System 1, model-free), and the other reflective and slow (System 2, model-based). The neurobiological basis of dual process problem solving remains unknown due to challenges of separating activation in concurrent systems. We present a novel neuroeconomic task that predicts distinct subjective valuation and updating signals corresponding to these two systems. We found two concurrent value signals in human prefrontal cortex: a System 1 model-free reinforcement signal and a System 2 model-based Bayesian signal. We also found a System 1 updating signal in striatal areas and a System 2 updating signal in lateral prefrontal cortex. Further, signals in prefrontal cortex preceded choices that are optimal according to either updating principle, while signals in anterior cingulate cortex and globus pallidus preceded deviations from optimal choice for reinforcement learning. These deviations tended to occur when uncertainty regarding optimal values was highest, suggesting that disagreement between dual systems is mediated by uncertainty rather than conflict, confirming recent theoretical proposals. Copyright © 2011 Elsevier Inc. All rights reserved.
The effects of parameter variation on MSET models of the Crystal River-3 feedwater flow system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miron, A.
1998-04-01
In this paper we develop further the results reported in Reference 1 to include a systematic study of the effects of varying MSET models and model parameters for the Crystal River-3 (CR) feedwater flow system The study used archived CR process computer files from November 1-December 15, 1993 that were provided by Florida Power Corporation engineers Fairman Bockhorst and Brook Julias. The results support the conclusion that an optimal MSET model, properly trained and deriving its inputs in real-time from no more than 25 of the sensor signals normally provided to a PWR plant process computer, should be able tomore » reliably detect anomalous variations in the feedwater flow venturis of less than 0.1% and in the absence of a venturi sensor signal should be able to generate a virtual signal that will be within 0.1% of the correct value of the missing signal.« less
Henze Bancroft, Leah C; Strigel, Roberta M; Hernando, Diego; Johnson, Kevin M; Kelcz, Frederick; Kijowski, Richard; Block, Walter F
2016-03-01
Chemical shift based fat/water decomposition methods such as IDEAL are frequently used in challenging imaging environments with large B0 inhomogeneity. However, they do not account for the signal modulations introduced by a balanced steady state free precession (bSSFP) acquisition. Here we demonstrate improved performance when the bSSFP frequency response is properly incorporated into the multipeak spectral fat model used in the decomposition process. Balanced SSFP allows for rapid imaging but also introduces a characteristic frequency response featuring periodic nulls and pass bands. Fat spectral components in adjacent pass bands will experience bulk phase offsets and magnitude modulations that change the expected constructive and destructive interference between the fat spectral components. A bSSFP signal model was incorporated into the fat/water decomposition process and used to generate images of a fat phantom, and bilateral breast and knee images in four normal volunteers at 1.5 Tesla. Incorporation of the bSSFP signal model into the decomposition process improved the performance of the fat/water decomposition. Incorporation of this model allows rapid bSSFP imaging sequences to use robust fat/water decomposition methods such as IDEAL. While only one set of imaging parameters were presented, the method is compatible with any field strength or repetition time. © 2015 Wiley Periodicals, Inc.
Wind speed vector restoration algorithm
NASA Astrophysics Data System (ADS)
Baranov, Nikolay; Petrov, Gleb; Shiriaev, Ilia
2018-04-01
Impulse wind lidar (IWL) signal processing software developed by JSC «BANS» recovers full wind speed vector by radial projections and provides wind parameters information up to 2 km distance. Increasing accuracy and speed of wind parameters calculation signal processing technics have been studied in this research. Measurements results of IWL and continuous scanning lidar were compared. Also, IWL data processing modeling results have been analyzed.
BioSig: The Free and Open Source Software Library for Biomedical Signal Processing
Vidaurre, Carmen; Sander, Tilmann H.; Schlögl, Alois
2011-01-01
BioSig is an open source software library for biomedical signal processing. The aim of the BioSig project is to foster research in biomedical signal processing by providing free and open source software tools for many different application areas. Some of the areas where BioSig can be employed are neuroinformatics, brain-computer interfaces, neurophysiology, psychology, cardiovascular systems, and sleep research. Moreover, the analysis of biosignals such as the electroencephalogram (EEG), electrocorticogram (ECoG), electrocardiogram (ECG), electrooculogram (EOG), electromyogram (EMG), or respiration signals is a very relevant element of the BioSig project. Specifically, BioSig provides solutions for data acquisition, artifact processing, quality control, feature extraction, classification, modeling, and data visualization, to name a few. In this paper, we highlight several methods to help students and researchers to work more efficiently with biomedical signals. PMID:21437227
BioSig: the free and open source software library for biomedical signal processing.
Vidaurre, Carmen; Sander, Tilmann H; Schlögl, Alois
2011-01-01
BioSig is an open source software library for biomedical signal processing. The aim of the BioSig project is to foster research in biomedical signal processing by providing free and open source software tools for many different application areas. Some of the areas where BioSig can be employed are neuroinformatics, brain-computer interfaces, neurophysiology, psychology, cardiovascular systems, and sleep research. Moreover, the analysis of biosignals such as the electroencephalogram (EEG), electrocorticogram (ECoG), electrocardiogram (ECG), electrooculogram (EOG), electromyogram (EMG), or respiration signals is a very relevant element of the BioSig project. Specifically, BioSig provides solutions for data acquisition, artifact processing, quality control, feature extraction, classification, modeling, and data visualization, to name a few. In this paper, we highlight several methods to help students and researchers to work more efficiently with biomedical signals.
Effect of binding in cyclic phosphorylation-dephosphorylation process and in energy transformation.
Sarkar, A; Beard, D A; Franza, B R
2006-07-01
The effects of binding on the phosphorylation-dephosphorylation cycle (PDPC) - one of the key components of the signal transduction processes - is analyzed based on a mathematical model. The model shows that binding of proteins, forming a complex, diminishes the ultrasensitivity of the PDPC to the differences in activity between kinase and phosphatase in the cycle. It is also found that signal amplification depends upon the strength of the binding affinity of the protein (phosphorylated or dephosphorylated) to other proteins . It is also observed that the amplification of signal is not only dependent on phosphorylation potential but also on binding properties and resulting adjustments in binding energies.
NASA Astrophysics Data System (ADS)
Petrosyan, V. G.; Hovakimyan, T. H.; Yeghoyan, E. A.; Hovhannisyan, H. T.; Mayilyan, D. G.; Petrosyan, A. P.
2017-01-01
This paper is dedicated to the creation of a facility for the experimental study of a phenomenon of background acoustic emission (AE), which is detected in the main circulation loop (MCL) of WWER power units. The analysis of the operating principle and the design of a primary feed-and-blow down system (FB) deaerator of NPP as the most likely source of continuous acoustic emission is carried out. The experimental facility for the systematic study of a phenomenon of continuous AE is developed. A physical model of a thermal deaerator is designed and constructed. A thermal monitoring system is introduced. An automatic system providing acoustic signal registration in a low frequency (0.03-30 kHz) and high frequency (30-300 kHz) bands and study of its spectral characteristics is designed. Special software for recording and processing of digitized electrical sensor signals is developed. A separate and independent principle of study of the most probable processes responsible for the generation of acoustic emission signals in the deaerator is applied. Trial series of experiments and prechecks of acoustic signals in different modes of the deaerator model are conducted. Compliance of basic technological parameters with operating range of the real deaerator was provided. It is shown that the acoustic signal time-intensity curve has several typical regions. The pilot research showed an impact of various processes that come about during the operation of the deaerator physical model on the intensity of the AE signal. The experimental results suggest that the main sources of generation of the AE signals are the processes of steam condensation, turbulent flow of gas-vapor medium, and water boiling.
Self-Organization Processes at the Intracellular Level
NASA Astrophysics Data System (ADS)
Ponce Dawson, Silvina
2003-03-01
In spite of their relatively small sizes, cells are incredibly complex objects in which various sorts of self-organizing processes occur. Cell division is an example of a process that nearly all cells undergo in which a concerted sequence of events takes place. What are the signals that tell the cell to move along this sequence? Clearly, this is a self-organized process. Microtubules (long polymers that are part of the cytoskeleton) and calcium signals play a major role during cell division. In this course we will focus on some features of microtubule dynamics and calcium signals that are amenable to modeling. In both of these biological systems, behaviors at a single molecule level are key determinants of the self-organized dynamics that is observed at larger scales. Thus, the modeling of these systems presents interesting challenges which require novel strategies. Their study may not only provide answers for biologically motivated questions, but is also a natural setting in which the transition between particle-like and mean-field models can be explored. In this course we will first give a brief biological introduction on the structure of eukaryotic cells, microtubule dynamics and intracellular calcium signals. We will then describe some of the models that have been presented in the literature and discuss the spatio-temporal dynamics that they predict, comparing them with observed behaviors in vitro or in vivo. We will end with a discussion on the virtues and limitations of the various modeling strategies described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Upadhyaya, Belle; Hines, J. Wesley; Damiano, Brian
The research and development under this project was focused on the following three major objectives: Objective 1: Identification of critical in-vessel SMR components for remote monitoring and development of their low-order dynamic models, along with a simulation model of an integral pressurized water reactor (iPWR). Objective 2: Development of an experimental flow control loop with motor-driven valves and pumps, incorporating data acquisition and on-line monitoring interface. Objective 3: Development of stationary and transient signal processing methods for electrical signatures, machinery vibration, and for characterizing process variables for equipment monitoring. This objective includes the development of a data analysis toolbox. Themore » following is a summary of the technical accomplishments under this project: - A detailed literature review of various SMR types and electrical signature analysis of motor-driven systems was completed. A bibliography of literature is provided at the end of this report. Assistance was provided by ORNL in identifying some key references. - A review of literature on pump-motor modeling and digital signal processing methods was performed. - An existing flow control loop was upgraded with new instrumentation, data acquisition hardware and software. The upgrading of the experimental loop included the installation of a new submersible pump driven by a three-phase induction motor. All the sensors were calibrated before full-scale experimental runs were performed. - MATLAB-Simulink model of a three-phase induction motor and pump system was completed. The model was used to simulate normal operation and fault conditions in the motor-pump system, and to identify changes in the electrical signatures. - A simulation model of an integral PWR (iPWR) was updated and the MATLAB-Simulink model was validated for known transients. The pump-motor model was interfaced with the iPWR model for testing the impact of primary flow perturbations (upsets) on plant parameters and the pump electrical signatures. Additionally, the reactor simulation is being used to generate normal operation data and data with instrumentation faults and process anomalies. A frequency controller was interfaced with the motor power supply in order to vary the electrical supply frequency. The experimental flow control loop was used to generate operational data under varying motor performance characteristics. Coolant leakage events were simulated by varying the bypass loop flow rate. The accuracy of motor power calculation was improved by incorporating the power factor, computed from motor current and voltage in each phase of the induction motor.- A variety of experimental runs were made for steady-state and transient pump operating conditions. Process, vibration, and electrical signatures were measured using a submersible pump with variable supply frequency. High correlation was seen between motor current and pump discharge pressure signal; similar high correlation was exhibited between pump motor power and flow rate. Wide-band analysis indicated high coherence (in the frequency domain) between motor current and vibration signals. - Wide-band operational data from a PWR were acquired from AMS Corporation and used to develop time-series models, and to estimate signal spectrum and sensor time constant. All the data were from different pressure transmitters in the system, including primary and secondary loops. These signals were pre-processed using the wavelet transform for filtering both low-frequency and high-frequency bands. This technique of signal pre-processing provides minimum distortion of the data, and results in a more optimal estimation of time constants of plant sensors using time-series modeling techniques.« less
Platform for Post-Processing Waveform-Based NDE
NASA Technical Reports Server (NTRS)
Roth, Don J.
2010-01-01
Signal- and image-processing methods are commonly needed to extract information from the waves, improve resolution of, and highlight defects in an image. Since some similarity exists for all waveform-based nondestructive evaluation (NDE) methods, it would seem that a common software platform containing multiple signal- and image-processing techniques to process the waveforms and images makes sense where multiple techniques, scientists, engineers, and organizations are involved. NDE Wave & Image Processor Version 2.0 software provides a single, integrated signal- and image-processing and analysis environment for total NDE data processing and analysis. It brings some of the most useful algorithms developed for NDE over the past 20 years into a commercial-grade product. The software can import signal/spectroscopic data, image data, and image series data. This software offers the user hundreds of basic and advanced signal- and image-processing capabilities including esoteric 1D and 2D wavelet-based de-noising, de-trending, and filtering. Batch processing is included for signal- and image-processing capability so that an optimized sequence of processing operations can be applied to entire folders of signals, spectra, and images. Additionally, an extensive interactive model-based curve-fitting facility has been included to allow fitting of spectroscopy data such as from Raman spectroscopy. An extensive joint-time frequency module is included for analysis of non-stationary or transient data such as that from acoustic emission, vibration, or earthquake data.
Sequential pattern formation governed by signaling gradients
NASA Astrophysics Data System (ADS)
Jörg, David J.; Oates, Andrew C.; Jülicher, Frank
2016-10-01
Rhythmic and sequential segmentation of the embryonic body plan is a vital developmental patterning process in all vertebrate species. However, a theoretical framework capturing the emergence of dynamic patterns of gene expression from the interplay of cell oscillations with tissue elongation and shortening and with signaling gradients, is still missing. Here we show that a set of coupled genetic oscillators in an elongating tissue that is regulated by diffusing and advected signaling molecules can account for segmentation as a self-organized patterning process. This system can form a finite number of segments and the dynamics of segmentation and the total number of segments formed depend strongly on kinetic parameters describing tissue elongation and signaling molecules. The model accounts for existing experimental perturbations to signaling gradients, and makes testable predictions about novel perturbations. The variety of different patterns formed in our model can account for the variability of segmentation between different animal species.
Zelenyak, Andreea-Manuela; Schorer, Nora; Sause, Markus G R
2018-02-01
This paper presents a method for embedding realistic defect geometries of a fiber reinforced material in a finite element modeling environment in order to simulate active ultrasonic inspection. When ultrasonic inspection is used experimentally to investigate the presence of defects in composite materials, the microscopic defect geometry may cause signal characteristics that are difficult to interpret. Hence, modeling of this interaction is key to improve our understanding and way of interpreting the acquired ultrasonic signals. To model the true interaction of the ultrasonic wave field with such defect structures as pores, cracks or delamination, a realistic three dimensional geometry reconstruction is required. We present a 3D-image based reconstruction process which converts computed tomography data in adequate surface representations ready to be embedded for processing with finite element methods. Subsequent modeling using these geometries uses a multi-scale and multi-physics simulation approach which results in quantitative A-Scan ultrasonic signals which can be directly compared with experimental signals. Therefore, besides the properties of the composite material, a full transducer implementation, piezoelectric conversion and simultaneous modeling of the attached circuit is applied. Comparison between simulated and experimental signals provides very good agreement in electrical voltage amplitude and the signal arrival time and thus validates the proposed modeling approach. Simulating ultrasound wave propagation in a medium with a realistic shape of the geometry clearly shows a difference in how the disturbance of the waves takes place and finally allows more realistic modeling of A-scans. Copyright © 2017 Elsevier B.V. All rights reserved.
Adaptive filtering in biological signal processing.
Iyer, V K; Ploysongsang, Y; Ramamoorthy, P A
1990-01-01
The high dependence of conventional optimal filtering methods on the a priori knowledge of the signal and noise statistics render them ineffective in dealing with signals whose statistics cannot be predetermined accurately. Adaptive filtering methods offer a better alternative, since the a priori knowledge of statistics is less critical, real time processing is possible, and the computations are less expensive for this approach. Adaptive filtering methods compute the filter coefficients "on-line", converging to the optimal values in the least-mean square (LMS) error sense. Adaptive filtering is therefore apt for dealing with the "unknown" statistics situation and has been applied extensively in areas like communication, speech, radar, sonar, seismology, and biological signal processing and analysis for channel equalization, interference and echo canceling, line enhancement, signal detection, system identification, spectral analysis, beamforming, modeling, control, etc. In this review article adaptive filtering in the context of biological signals is reviewed. An intuitive approach to the underlying theory of adaptive filters and its applicability are presented. Applications of the principles in biological signal processing are discussed in a manner that brings out the key ideas involved. Current and potential future directions in adaptive biological signal processing are also discussed.
Maglev Train Signal Processing Architecture Based on Nonlinear Discrete Tracking Differentiator.
Wang, Zhiqiang; Li, Xiaolong; Xie, Yunde; Long, Zhiqiang
2018-05-24
In a maglev train levitation system, signal processing plays an important role for the reason that some sensor signals are prone to be corrupted by noise due to the harsh installation and operation environment of sensors and some signals cannot be acquired directly via sensors. Based on these concerns, an architecture based on a new type of nonlinear second-order discrete tracking differentiator is proposed. The function of this signal processing architecture includes filtering signal noise and acquiring needed signals for levitation purposes. The proposed tracking differentiator possesses the advantages of quick convergence, no fluttering, and simple calculation. Tracking differentiator's frequency characteristics at different parameter values are studied in this paper. The performance of this new type of tracking differentiator is tested in a MATLAB simulation and this tracking-differentiator is implemented in Very-High-Speed Integrated Circuit Hardware Description Language (VHDL). In the end, experiments are conducted separately on a test board and a maglev train model. Simulation and experiment results show that the performance of this novel signal processing architecture can fulfill the real system requirement.
Mathematical model with autoregressive process for electrocardiogram signals
NASA Astrophysics Data System (ADS)
Evaristo, Ronaldo M.; Batista, Antonio M.; Viana, Ricardo L.; Iarosz, Kelly C.; Szezech, José D., Jr.; Godoy, Moacir F. de
2018-04-01
The cardiovascular system is composed of the heart, blood and blood vessels. Regarding the heart, cardiac conditions are determined by the electrocardiogram, that is a noninvasive medical procedure. In this work, we propose autoregressive process in a mathematical model based on coupled differential equations in order to obtain the tachograms and the electrocardiogram signals of young adults with normal heartbeats. Our results are compared with experimental tachogram by means of Poincaré plot and dentrended fluctuation analysis. We verify that the results from the model with autoregressive process show good agreement with experimental measures from tachogram generated by electrical activity of the heartbeat. With the tachogram we build the electrocardiogram by means of coupled differential equations.
Digital resolver for helicopter model blade motion analysis
NASA Technical Reports Server (NTRS)
Daniels, T. S.; Berry, J. D.; Park, S.
1992-01-01
The paper reports the development and initial testing of a digital resolver to replace existing analog signal processing instrumentation. Radiometers, mounted directly on one of the fully articulated blades, are electrically connected through a slip ring to analog signal processing circuitry. The measured signals are periodic with azimuth angle and are resolved into harmonic components, with 0 deg over the tail. The periodic nature of the helicopter blade motion restricts the frequency content of each flapping and yaw signal to the fundamental and harmonics of the rotor rotational frequency. A minicomputer is employed to collect these data and then plot them graphically in real time. With this and other information generated by the instrumentation, a helicopter test pilot can then adjust the helicopter model's controls to achieve the desired aerodynamic test conditions.
Chao, Jerry; Ward, E. Sally; Ober, Raimund J.
2012-01-01
The high quantum efficiency of the charge-coupled device (CCD) has rendered it the imaging technology of choice in diverse applications. However, under extremely low light conditions where few photons are detected from the imaged object, the CCD becomes unsuitable as its readout noise can easily overwhelm the weak signal. An intended solution to this problem is the electron-multiplying charge-coupled device (EMCCD), which stochastically amplifies the acquired signal to drown out the readout noise. Here, we develop the theory for calculating the Fisher information content of the amplified signal, which is modeled as the output of a branching process. Specifically, Fisher information expressions are obtained for a general and a geometric model of amplification, as well as for two approximations of the amplified signal. All expressions pertain to the important scenario of a Poisson-distributed initial signal, which is characteristic of physical processes such as photon detection. To facilitate the investigation of different data models, a “noise coefficient” is introduced which allows the analysis and comparison of Fisher information via a scalar quantity. We apply our results to the problem of estimating the location of a point source from its image, as observed through an optical microscope and detected by an EMCCD. PMID:23049166
Towards the understanding of network information processing in biology
NASA Astrophysics Data System (ADS)
Singh, Vijay
Living organisms perform incredibly well in detecting a signal present in the environment. This information processing is achieved near optimally and quite reliably, even though the sources of signals are highly variable and complex. The work in the last few decades has given us a fair understanding of how individual signal processing units like neurons and cell receptors process signals, but the principles of collective information processing on biological networks are far from clear. Information processing in biological networks, like the brain, metabolic circuits, cellular-signaling circuits, etc., involves complex interactions among a large number of units (neurons, receptors). The combinatorially large number of states such a system can exist in makes it impossible to study these systems from the first principles, starting from the interactions between the basic units. The principles of collective information processing on such complex networks can be identified using coarse graining approaches. This could provide insights into the organization and function of complex biological networks. Here I study models of biological networks using continuum dynamics, renormalization, maximum likelihood estimation and information theory. Such coarse graining approaches identify features that are essential for certain processes performed by underlying biological networks. We find that long-range connections in the brain allow for global scale feature detection in a signal. These also suppress the noise and remove any gaps present in the signal. Hierarchical organization with long-range connections leads to large-scale connectivity at low synapse numbers. Time delays can be utilized to separate a mixture of signals with temporal scales. Our observations indicate that the rules in multivariate signal processing are quite different from traditional single unit signal processing.
Analysis and logical modeling of biological signaling transduction networks
NASA Astrophysics Data System (ADS)
Sun, Zhongyao
The study of network theory and its application span across a multitude of seemingly disparate fields of science and technology: computer science, biology, social science, linguistics, etc. It is the intrinsic similarities embedded in the entities and the way they interact with one another in these systems that link them together. In this dissertation, I present from both the aspect of theoretical analysis and the aspect of application three projects, which primarily focus on signal transduction networks in biology. In these projects, I assembled a network model through extensively perusing literature, performed model-based simulations and validation, analyzed network topology, and proposed a novel network measure. The application of network modeling to the system of stomatal opening in plants revealed a fundamental question about the process that has been left unanswered in decades. The novel measure of the redundancy of signal transduction networks with Boolean dynamics by calculating its maximum node-independent elementary signaling mode set accurately predicts the effect of single node knockout in such signaling processes. The three projects as an organic whole advance the understanding of a real system as well as the behavior of such network models, giving me an opportunity to take a glimpse at the dazzling facets of the immense world of network science.
Model of the best-of-N nest-site selection process in honeybees.
Reina, Andreagiovanni; Marshall, James A R; Trianni, Vito; Bose, Thomas
2017-05-01
The ability of a honeybee swarm to select the best nest site plays a fundamental role in determining the future colony's fitness. To date, the nest-site selection process has mostly been modeled and theoretically analyzed for the case of binary decisions. However, when the number of alternative nests is larger than two, the decision-process dynamics qualitatively change. In this work, we extend previous analyses of a value-sensitive decision-making mechanism to a decision process among N nests. First, we present the decision-making dynamics in the symmetric case of N equal-quality nests. Then, we generalize our findings to a best-of-N decision scenario with one superior nest and N-1 inferior nests, previously studied empirically in bees and ants. Whereas previous binary models highlighted the crucial role of inhibitory stop-signaling, the key parameter in our new analysis is the relative time invested by swarm members in individual discovery and in signaling behaviors. Our new analysis reveals conflicting pressures on this ratio in symmetric and best-of-N decisions, which could be solved through a time-dependent signaling strategy. Additionally, our analysis suggests how ecological factors determining the density of suitable nest sites may have led to selective pressures for an optimal stable signaling ratio.
Model of the best-of-N nest-site selection process in honeybees
NASA Astrophysics Data System (ADS)
Reina, Andreagiovanni; Marshall, James A. R.; Trianni, Vito; Bose, Thomas
2017-05-01
The ability of a honeybee swarm to select the best nest site plays a fundamental role in determining the future colony's fitness. To date, the nest-site selection process has mostly been modeled and theoretically analyzed for the case of binary decisions. However, when the number of alternative nests is larger than two, the decision-process dynamics qualitatively change. In this work, we extend previous analyses of a value-sensitive decision-making mechanism to a decision process among N nests. First, we present the decision-making dynamics in the symmetric case of N equal-quality nests. Then, we generalize our findings to a best-of-N decision scenario with one superior nest and N -1 inferior nests, previously studied empirically in bees and ants. Whereas previous binary models highlighted the crucial role of inhibitory stop-signaling, the key parameter in our new analysis is the relative time invested by swarm members in individual discovery and in signaling behaviors. Our new analysis reveals conflicting pressures on this ratio in symmetric and best-of-N decisions, which could be solved through a time-dependent signaling strategy. Additionally, our analysis suggests how ecological factors determining the density of suitable nest sites may have led to selective pressures for an optimal stable signaling ratio.
Wires in the soup: quantitative models of cell signaling
Cheong, Raymond; Levchenko, Andre
2014-01-01
Living cells are capable of extracting information from their environments and mounting appropriate responses to a variety of associated challenges. The underlying signal transduction networks enabling this can be quite complex, necessitating for their unraveling by sophisticated computational modeling coupled with precise experimentation. Although we are still at the beginning of this process, some recent examples of integrative analysis of cell signaling are very encouraging. This review highlights the case of the NF-κB pathway in order to illustrate how a quantitative model of a signaling pathway can be gradually constructed through continuous experimental validation, and what lessons one might learn from such exercises. PMID:18291655
Progress and opportunities in EELS and EDS tomography.
Collins, Sean M; Midgley, Paul A
2017-09-01
Electron tomography using energy loss and X-ray spectroscopy in the electron microscope continues to develop in rapidly evolving and diverse directions, enabling new insight into the three-dimensional chemistry and physics of nanoscale volumes. Progress has been made recently in improving reconstructions from EELS and EDS signals in electron tomography by applying compressed sensing methods, characterizing new detector technologies in detail, deriving improved models of signal generation, and exploring machine learning approaches to signal processing. These disparate threads can be brought together in a cohesive framework in terms of a model-based approach to analytical electron tomography. Models incorporate information on signal generation and detection as well as prior knowledge of structures in the spectrum image data. Many recent examples illustrate the flexibility of this approach and its feasibility for addressing challenges in non-linear or limited signals in EELS and EDS tomography. Further work in combining multiple imaging and spectroscopy modalities, developing synergistic data acquisition, processing, and reconstruction approaches, and improving the precision of quantitative spectroscopic tomography will expand the frontiers of spatial resolution, dose limits, and maximal information recovery. Copyright © 2017 Elsevier B.V. All rights reserved.
A continuous dual-process model of remember/know judgments.
Wixted, John T; Mickes, Laura
2010-10-01
The dual-process theory of recognition memory holds that recognition decisions can be based on recollection or familiarity, and the remember/know procedure is widely used to investigate those 2 processes. Dual-process theory in general and the remember/know procedure in particular have been challenged by an alternative strength-based interpretation based on signal-detection theory, which holds that remember judgments simply reflect stronger memories than do know judgments. Although supported by a considerable body of research, the signal-detection account is difficult to reconcile with G. Mandler's (1980) classic "butcher-on-the-bus" phenomenon (i.e., strong, familiarity-based recognition). In this article, a new signal-detection model is proposed that does not deny either the validity of dual-process theory or the possibility that remember/know judgments can-when used in the right way-help to distinguish between memories that are largely recollection based from those that are largely familiarity based. It does, however, agree with all prior signal-detection-based critiques of the remember/know procedure, which hold that, as it is ordinarily used, the procedure mainly distinguishes strong memories from weak memories (not recollection from familiarity).
An adaptive signal-processing approach to online adaptive tutoring.
Bergeron, Bryan; Cline, Andrew
2011-01-01
Conventional intelligent or adaptive tutoring online systems rely on domain-specific models of learner behavior based on rules, deep domain knowledge, and other resource-intensive methods. We have developed and studied a domain-independent methodology of adaptive tutoring based on domain-independent signal-processing approaches that obviate the need for the construction of explicit expert and student models. A key advantage of our method over conventional approaches is a lower barrier to entry for educators who want to develop adaptive online learning materials.
Learning Data Set Influence on Identification Accuracy of Gas Turbine Neural Network Model
NASA Astrophysics Data System (ADS)
Kuznetsov, A. V.; Makaryants, G. M.
2018-01-01
There are many gas turbine engine identification researches via dynamic neural network models. It should minimize errors between model and real object during identification process. Questions about training data set processing of neural networks are usually missed. This article presents a study about influence of data set type on gas turbine neural network model accuracy. The identification object is thermodynamic model of micro gas turbine engine. The thermodynamic model input signal is the fuel consumption and output signal is the engine rotor rotation frequency. Four types input signals was used for creating training and testing data sets of dynamic neural network models - step, fast, slow and mixed. Four dynamic neural networks were created based on these types of training data sets. Each neural network was tested via four types test data sets. In the result 16 transition processes from four neural networks and four test data sets from analogous solving results of thermodynamic model were compared. The errors comparison was made between all neural network errors in each test data set. In the comparison result it was shown error value ranges of each test data set. It is shown that error values ranges is small therefore the influence of data set types on identification accuracy is low.
Analysis of signal-dependent sensor noise on JPEG 2000-compressed Sentinel-2 multi-spectral images
NASA Astrophysics Data System (ADS)
Uss, M.; Vozel, B.; Lukin, V.; Chehdi, K.
2017-10-01
The processing chain of Sentinel-2 MultiSpectral Instrument (MSI) data involves filtering and compression stages that modify MSI sensor noise. As a result, noise in Sentinel-2 Level-1C data distributed to users becomes processed. We demonstrate that processed noise variance model is bivariate: noise variance depends on image intensity (caused by signal-dependency of photon counting detectors) and signal-to-noise ratio (SNR; caused by filtering/compression). To provide information on processed noise parameters, which is missing in Sentinel-2 metadata, we propose to use blind noise parameter estimation approach. Existing methods are restricted to univariate noise model. Therefore, we propose extension of existing vcNI+fBm blind noise parameter estimation method to multivariate noise model, mvcNI+fBm, and apply it to each band of Sentinel-2A data. Obtained results clearly demonstrate that noise variance is affected by filtering/compression for SNR less than about 15. Processed noise variance is reduced by a factor of 2 - 5 in homogeneous areas as compared to noise variance for high SNR values. Estimate of noise variance model parameters are provided for each Sentinel-2A band. Sentinel-2A MSI Level-1C noise models obtained in this paper could be useful for end users and researchers working in a variety of remote sensing applications.
The Effect of Improved Sub-Daily Earth Rotation Models on Global GPS Data Processing
NASA Astrophysics Data System (ADS)
Yoon, S.; Choi, K. K.
2017-12-01
Throughout the various International GNSS Service (IGS) products, strong periodic signals have been observed around the 14 day period. This signal is clearly visible in all IGS time-series such as those related to orbit ephemerides, Earth rotation parameters (ERP) and ground station coordinates. Recent studies show that errors in the sub-daily Earth rotation models are the main factors that induce such noise. Current IGS orbit processing standards adopted the IERS 2010 convention and its sub-daily Earth rotation model. Since the IERS convention had published, recent advances in the VLBI analysis have made contributions to update the sub-daily Earth rotation models. We have compared several proposed sub-daily Earth rotation models and show the effect of using those models on orbit ephemeris, Earth rotation parameters and ground station coordinates generated by the NGS global GPS data processing strategy.
Coactivation of response initiation processes with redundant signals.
Maslovat, Dana; Hajj, Joëlle; Carlsen, Anthony N
2018-05-14
During reaction time (RT) tasks, participants respond faster to multiple stimuli from different modalities as compared to a single stimulus, a phenomenon known as the redundant signal effect (RSE). Explanations for this effect typically include coactivation arising from the multiple stimuli, which results in enhanced processing of one or more response production stages. The current study compared empirical RT data with the predictions of a model in which initiation-related activation arising from each stimulus is additive. Participants performed a simple wrist extension RT task following either a visual go-signal, an auditory go-signal, or both stimuli with the auditory stimulus delayed between 0 and 125 ms relative to the visual stimulus. Results showed statistical equivalence between the predictions of an additive initiation model and the observed RT data, providing novel evidence that the RSE can be explained via a coactivation of initiation-related processes. It is speculated that activation summation occurs at the thalamus, leading to the observed facilitation of response initiation. Copyright © 2018 Elsevier B.V. All rights reserved.
Research on the frequency hopping bistatic sonar system
NASA Astrophysics Data System (ADS)
Liang, Guo-long; Zhang, Yao; Zhang, Guang-pu; Liu, Kai
2011-10-01
A new model for bistatic sonar system is established, in which frequency hopping (FH) signals are used for targets detection according to some rules. This model can decrease the time between adjacent signals and obtain more information in a unit time. The receiving system will receive and process the signals of different frequency respectively, according the FH pattern, for detecting and locating targets. This method can helps yield more stable and accurate outputs, using the characteristic of the FH signals, increase the ability of anti-detection and anti partial-band jamming.
A Variance Distribution Model of Surface EMG Signals Based on Inverse Gamma Distribution.
Hayashi, Hideaki; Furui, Akira; Kurita, Yuichi; Tsuji, Toshio
2017-11-01
Objective: This paper describes the formulation of a surface electromyogram (EMG) model capable of representing the variance distribution of EMG signals. Methods: In the model, EMG signals are handled based on a Gaussian white noise process with a mean of zero for each variance value. EMG signal variance is taken as a random variable that follows inverse gamma distribution, allowing the representation of noise superimposed onto this variance. Variance distribution estimation based on marginal likelihood maximization is also outlined in this paper. The procedure can be approximated using rectified and smoothed EMG signals, thereby allowing the determination of distribution parameters in real time at low computational cost. Results: A simulation experiment was performed to evaluate the accuracy of distribution estimation using artificially generated EMG signals, with results demonstrating that the proposed model's accuracy is higher than that of maximum-likelihood-based estimation. Analysis of variance distribution using real EMG data also suggested a relationship between variance distribution and signal-dependent noise. Conclusion: The study reported here was conducted to examine the performance of a proposed surface EMG model capable of representing variance distribution and a related distribution parameter estimation method. Experiments using artificial and real EMG data demonstrated the validity of the model. Significance: Variance distribution estimated using the proposed model exhibits potential in the estimation of muscle force. Objective: This paper describes the formulation of a surface electromyogram (EMG) model capable of representing the variance distribution of EMG signals. Methods: In the model, EMG signals are handled based on a Gaussian white noise process with a mean of zero for each variance value. EMG signal variance is taken as a random variable that follows inverse gamma distribution, allowing the representation of noise superimposed onto this variance. Variance distribution estimation based on marginal likelihood maximization is also outlined in this paper. The procedure can be approximated using rectified and smoothed EMG signals, thereby allowing the determination of distribution parameters in real time at low computational cost. Results: A simulation experiment was performed to evaluate the accuracy of distribution estimation using artificially generated EMG signals, with results demonstrating that the proposed model's accuracy is higher than that of maximum-likelihood-based estimation. Analysis of variance distribution using real EMG data also suggested a relationship between variance distribution and signal-dependent noise. Conclusion: The study reported here was conducted to examine the performance of a proposed surface EMG model capable of representing variance distribution and a related distribution parameter estimation method. Experiments using artificial and real EMG data demonstrated the validity of the model. Significance: Variance distribution estimated using the proposed model exhibits potential in the estimation of muscle force.
Explaining neural signals in human visual cortex with an associative learning model.
Jiang, Jiefeng; Schmajuk, Nestor; Egner, Tobias
2012-08-01
"Predictive coding" models posit a key role for associative learning in visual cognition, viewing perceptual inference as a process of matching (learned) top-down predictions (or expectations) against bottom-up sensory evidence. At the neural level, these models propose that each region along the visual processing hierarchy entails one set of processing units encoding predictions of bottom-up input, and another set computing mismatches (prediction error or surprise) between predictions and evidence. This contrasts with traditional views of visual neurons operating purely as bottom-up feature detectors. In support of the predictive coding hypothesis, a recent human neuroimaging study (Egner, Monti, & Summerfield, 2010) showed that neural population responses to expected and unexpected face and house stimuli in the "fusiform face area" (FFA) could be well-described as a summation of hypothetical face-expectation and -surprise signals, but not by feature detector responses. Here, we used computer simulations to test whether these imaging data could be formally explained within the broader framework of a mathematical neural network model of associative learning (Schmajuk, Gray, & Lam, 1996). Results show that FFA responses could be fit very closely by model variables coding for conditional predictions (and their violations) of stimuli that unconditionally activate the FFA. These data document that neural population signals in the ventral visual stream that deviate from classic feature detection responses can formally be explained by associative prediction and surprise signals.
Ma, Ning; Yu, Angela J
2016-01-01
Inhibitory control, the ability to stop or modify preplanned actions under changing task conditions, is an important component of cognitive functions. Two lines of models of inhibitory control have previously been proposed for human response in the classical stop-signal task, in which subjects must inhibit a default go response upon presentation of an infrequent stop signal: (1) the race model, which posits two independent go and stop processes that race to determine the behavioral outcome, go or stop; and (2) an optimal decision-making model, which posits that observers decides whether and when to go based on continually (Bayesian) updated information about both the go and stop stimuli. In this work, we probe the relationship between go and stop processing by explicitly manipulating the discrimination difficulty of the go stimulus. While the race model assumes the go and stop processes are independent, and therefore go stimulus discriminability should not affect the stop stimulus processing, we simulate the optimal model to show that it predicts harder go discrimination should result in longer go reaction time (RT), lower stop error rate, as well as faster stop-signal RT. We then present novel behavioral data that validate these model predictions. The results thus favor a fundamentally inseparable account of go and stop processing, in a manner consistent with the optimal model, and contradicting the independence assumption of the race model. More broadly, our findings contribute to the growing evidence that the computations underlying inhibitory control are systematically modulated by cognitive influences in a Bayes-optimal manner, thus opening new avenues for interpreting neural responses underlying inhibitory control.
The modeling of MMI structures for signal processing applications
NASA Astrophysics Data System (ADS)
Le, Thanh Trung; Cahill, Laurence W.
2008-02-01
Microring resonators are promising candidates for photonic signal processing applications. However, almost all resonators that have been reported so far use directional couplers or 2×2 multimode interference (MMI) couplers as the coupling element between the ring and the bus waveguides. In this paper, instead of using 2×2 couplers, novel structures for microring resonators based on 3×3 MMI couplers are proposed. The characteristics of the device are derived using the modal propagation method. The device parameters are optimized by using numerical methods. Optical switches and filters using Silicon on Insulator (SOI) then have been designed and analyzed. This device can become a new basic component for further applications in optical signal processing. The paper concludes with some further examples of photonic signal processing circuits based on MMI couplers.
George, Britta; Verma, Rakesh; Soofi, Abdulsalam A.; Garg, Puneet; Zhang, Jidong; Park, Tae-Ju; Giardino, Laura; Ryzhova, Larisa; Johnstone, Duncan B.; Wong, Hetty; Nihalani, Deepak; Salant, David J.; Hanks, Steven K.; Curran, Tom; Rastaldi, Maria Pia; Holzman, Lawrence B.
2012-01-01
The morphology of healthy podocyte foot processes is necessary for maintaining the characteristics of the kidney filtration barrier. In most forms of glomerular disease, abnormal filter barrier function results when podocytes undergo foot process spreading and retraction by remodeling their cytoskeletal architecture and intercellular junctions during a process known as effacement. The cell adhesion protein nephrin is necessary for establishing the morphology of the kidney podocyte in development by transducing from the specialized podocyte intercellular junction phosphorylation-mediated signals that regulate cytoskeletal dynamics. The present studies extend our understanding of nephrin function by showing that nephrin activation in cultured podocytes induced actin dynamics necessary for lamellipodial protrusion. This process required a PI3K-, Cas-, and Crk1/2-dependent signaling mechanism distinct from the previously described nephrin-Nck1/2 pathway necessary for assembly and polymerization of actin filaments. Our present findings also support the hypothesis that mechanisms governing lamellipodial protrusion in culture are similar to those used in vivo during foot process effacement in a subset of glomerular diseases. In mice, podocyte-specific deletion of Crk1/2 prevented foot process effacement in one model of podocyte injury and attenuated foot process effacement and associated proteinuria in a delayed fashion in a second model. In humans, focal adhesion kinase and Cas phosphorylation — markers of focal adhesion complex–mediated Crk-dependent signaling — was induced in minimal change disease and membranous nephropathy, but not focal segmental glomerulosclerosis. Together, these observations suggest that activation of a Cas-Crk1/2–dependent complex is necessary for foot process effacement observed in distinct subsets of human glomerular diseases. PMID:22251701
Minimal Network Topologies for Signal Processing during Collective Cell Chemotaxis.
Yue, Haicen; Camley, Brian A; Rappel, Wouter-Jan
2018-06-19
Cell-cell communication plays an important role in collective cell migration. However, it remains unclear how cells in a group cooperatively process external signals to determine the group's direction of motion. Although the topology of signaling pathways is vitally important in single-cell chemotaxis, the signaling topology for collective chemotaxis has not been systematically studied. Here, we combine mathematical analysis and simulations to find minimal network topologies for multicellular signal processing in collective chemotaxis. We focus on border cell cluster chemotaxis in the Drosophila egg chamber, in which responses to several experimental perturbations of the signaling network are known. Our minimal signaling network includes only four elements: a chemoattractant, the protein Rac (indicating cell activation), cell protrusion, and a hypothesized global factor responsible for cell-cell interaction. Experimental data on cell protrusion statistics allows us to systematically narrow the number of possible topologies from more than 40,000,000 to only six minimal topologies with six interactions between the four elements. This analysis does not require a specific functional form of the interactions, and only qualitative features are needed; it is thus robust to many modeling choices. Simulations of a stochastic biochemical model of border cell chemotaxis show that the qualitative selection procedure accurately determines which topologies are consistent with the experiment. We fit our model for all six proposed topologies; each produces results that are consistent with all experimentally available data. Finally, we suggest experiments to further discriminate possible pathway topologies. Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Models and signal processing for an implanted ethanol bio-sensor.
Han, Jae-Joon; Doerschuk, Peter C; Gelfand, Saul B; O'Connor, Sean J
2008-02-01
The understanding of drinking patterns leading to alcoholism has been hindered by an inability to unobtrusively measure ethanol consumption over periods of weeks to months in the community environment. An implantable ethanol sensor is under development using microelectromechanical systems technology. For safety and user acceptability issues, the sensor will be implanted subcutaneously and, therefore, measure peripheral-tissue ethanol concentration. Determining ethanol consumption and kinetics in other compartments from the time course of peripheral-tissue ethanol concentration requires sophisticated signal processing based on detailed descriptions of the relevant physiology. A statistical signal processing system based on detailed models of the physiology and using extended Kalman filtering and dynamic programming tools is described which can estimate the time series of ethanol concentration in blood, liver, and peripheral tissue and the time series of ethanol consumption based on peripheral-tissue ethanol concentration measurements.
NASA Technical Reports Server (NTRS)
Miller, Robert H. (Inventor); Ribbens, William B. (Inventor)
2003-01-01
A method and system for detecting a failure or performance degradation in a dynamic system having sensors for measuring state variables and providing corresponding output signals in response to one or more system input signals are provided. The method includes calculating estimated gains of a filter and selecting an appropriate linear model for processing the output signals based on the input signals. The step of calculating utilizes one or more models of the dynamic system to obtain estimated signals. The method further includes calculating output error residuals based on the output signals and the estimated signals. The method also includes detecting one or more hypothesized failures or performance degradations of a component or subsystem of the dynamic system based on the error residuals. The step of calculating the estimated values is performed optimally with respect to one or more of: noise, uncertainty of parameters of the models and un-modeled dynamics of the dynamic system which may be a flight vehicle or financial market or modeled financial system.
Multi-model approach to characterize human handwriting motion.
Chihi, I; Abdelkrim, A; Benrejeb, M
2016-02-01
This paper deals with characterization and modelling of human handwriting motion from two forearm muscle activity signals, called electromyography signals (EMG). In this work, an experimental approach was used to record the coordinates of a pen tip moving on the (x, y) plane and EMG signals during the handwriting act. The main purpose is to design a new mathematical model which characterizes this biological process. Based on a multi-model approach, this system was originally developed to generate letters and geometric forms written by different writers. A Recursive Least Squares algorithm is used to estimate the parameters of each sub-model of the multi-model basis. Simulations show good agreement between predicted results and the recorded data.
Terfve, Camille; Cokelaer, Thomas; Henriques, David; MacNamara, Aidan; Goncalves, Emanuel; Morris, Melody K; van Iersel, Martijn; Lauffenburger, Douglas A; Saez-Rodriguez, Julio
2012-10-18
Cells process signals using complex and dynamic networks. Studying how this is performed in a context and cell type specific way is essential to understand signaling both in physiological and diseased situations. Context-specific medium/high throughput proteomic data measured upon perturbation is now relatively easy to obtain but formalisms that can take advantage of these features to build models of signaling are still comparatively scarce. Here we present CellNOptR, an open-source R software package for building predictive logic models of signaling networks by training networks derived from prior knowledge to signaling (typically phosphoproteomic) data. CellNOptR features different logic formalisms, from Boolean models to differential equations, in a common framework. These different logic model representations accommodate state and time values with increasing levels of detail. We provide in addition an interface via Cytoscape (CytoCopteR) to facilitate use and integration with Cytoscape network-based capabilities. Models generated with this pipeline have two key features. First, they are constrained by prior knowledge about the network but trained to data. They are therefore context and cell line specific, which results in enhanced predictive and mechanistic insights. Second, they can be built using different logic formalisms depending on the richness of the available data. Models built with CellNOptR are useful tools to understand how signals are processed by cells and how this is altered in disease. They can be used to predict the effect of perturbations (individual or in combinations), and potentially to engineer therapies that have differential effects/side effects depending on the cell type or context.
2012-01-01
Background Cells process signals using complex and dynamic networks. Studying how this is performed in a context and cell type specific way is essential to understand signaling both in physiological and diseased situations. Context-specific medium/high throughput proteomic data measured upon perturbation is now relatively easy to obtain but formalisms that can take advantage of these features to build models of signaling are still comparatively scarce. Results Here we present CellNOptR, an open-source R software package for building predictive logic models of signaling networks by training networks derived from prior knowledge to signaling (typically phosphoproteomic) data. CellNOptR features different logic formalisms, from Boolean models to differential equations, in a common framework. These different logic model representations accommodate state and time values with increasing levels of detail. We provide in addition an interface via Cytoscape (CytoCopteR) to facilitate use and integration with Cytoscape network-based capabilities. Conclusions Models generated with this pipeline have two key features. First, they are constrained by prior knowledge about the network but trained to data. They are therefore context and cell line specific, which results in enhanced predictive and mechanistic insights. Second, they can be built using different logic formalisms depending on the richness of the available data. Models built with CellNOptR are useful tools to understand how signals are processed by cells and how this is altered in disease. They can be used to predict the effect of perturbations (individual or in combinations), and potentially to engineer therapies that have differential effects/side effects depending on the cell type or context. PMID:23079107
Higgs boson production in the littlest Higgs model with T-parity at the ILC
NASA Astrophysics Data System (ADS)
Han, Jinzhong; Yang, Guang; Meng, Ming; Wang, Weijian; Li, Jingyun
2018-04-01
We investigate the Higgs boson production processes e+e‑→ ZH, e+e‑→ νν¯H, e+e‑→ tt¯H, e+e‑→ ZHH and e+e‑→ νν¯HH in the littlest Higgs model with T-parity (LHT) at the International Linear Collider (ILC). We calculate the LHT model predictions on the production rate of these processes at the ILC in the case of (un)polarized beams and the signal strengths of the production processes ZH and νν¯H with Higgs decaying to bb¯(gg,γγ). In the allowed parameter space, we find that the signal strengths μgg is most likely approach to the expected precision of the ILC.
NASA Technical Reports Server (NTRS)
Pan, Jianqiang
1992-01-01
Several important problems in the fields of signal processing and model identification, such as system structure identification, frequency response determination, high order model reduction, high resolution frequency analysis, deconvolution filtering, and etc. Each of these topics involves a wide range of applications and has received considerable attention. Using the Fourier based sinusoidal modulating signals, it is shown that a discrete autoregressive model can be constructed for the least squares identification of continuous systems. Some identification algorithms are presented for both SISO and MIMO systems frequency response determination using only transient data. Also, several new schemes for model reduction were developed. Based upon the complex sinusoidal modulating signals, a parametric least squares algorithm for high resolution frequency estimation is proposed. Numerical examples show that the proposed algorithm gives better performance than the usual. Also, the problem was studied of deconvolution and parameter identification of a general noncausal nonminimum phase ARMA system driven by non-Gaussian stationary random processes. Algorithms are introduced for inverse cumulant estimation, both in the frequency domain via the FFT algorithms and in the domain via the least squares algorithm.
A neural model of motion processing and visual navigation by cortical area MST.
Grossberg, S; Mingolla, E; Pack, C
1999-12-01
Cells in the dorsal medial superior temporal cortex (MSTd) process optic flow generated by self-motion during visually guided navigation. A neural model shows how interactions between well-known neural mechanisms (log polar cortical magnification, Gaussian motion-sensitive receptive fields, spatial pooling of motion-sensitive signals and subtractive extraretinal eye movement signals) lead to emergent properties that quantitatively simulate neurophysiological data about MSTd cell properties and psychophysical data about human navigation. Model cells match MSTd neuron responses to optic flow stimuli placed in different parts of the visual field, including position invariance, tuning curves, preferred spiral directions, direction reversals, average response curves and preferred locations for stimulus motion centers. The model shows how the preferred motion direction of the most active MSTd cells can explain human judgments of self-motion direction (heading), without using complex heading templates. The model explains when extraretinal eye movement signals are needed for accurate heading perception, and when retinal input is sufficient, and how heading judgments depend on scene layouts and rotation rates.
Oschmann, Franziska; Mergenthaler, Konstantin; Jungnickel, Evelyn; Obermayer, Klaus
2017-02-01
Astrocytes integrate and process synaptic information and exhibit calcium (Ca2+) signals in response to incoming information from neighboring synapses. The generation of Ca2+ signals is mostly attributed to Ca2+ release from internal Ca2+ stores evoked by an elevated metabotropic glutamate receptor (mGluR) activity. Different experimental results associated the generation of Ca2+ signals to the activity of the glutamate transporter (GluT). The GluT itself does not influence the intracellular Ca2+ concentration, but it indirectly activates Ca2+ entry over the membrane. A closer look into Ca2+ signaling in different astrocytic compartments revealed a spatial separation of those two pathways. Ca2+ signals in the soma are mainly generated by Ca2+ release from internal Ca2+ stores (mGluR-dependent pathway). In astrocytic compartments close to the synapse most Ca2+ signals are evoked by Ca2+ entry over the plasma membrane (GluT-dependent pathway). This assumption is supported by the finding, that the volume ratio between the internal Ca2+ store and the intracellular space decreases from the soma towards the synapse. We extended a model for mGluR-dependent Ca2+ signals in astrocytes with the GluT-dependent pathway. Additionally, we included the volume ratio between the internal Ca2+ store and the intracellular compartment into the model in order to analyze Ca2+ signals either in the soma or close to the synapse. Our model results confirm the spatial separation of the mGluR- and GluT-dependent pathways along the astrocytic process. The model allows to study the binary Ca2+ response during a block of either of both pathways. Moreover, the model contributes to a better understanding of the impact of channel densities on the interaction of both pathways and on the Ca2+ signal.
Analysis of Seasonal Signal in GPS Short-Baseline Time Series
NASA Astrophysics Data System (ADS)
Wang, Kaihua; Jiang, Weiping; Chen, Hua; An, Xiangdong; Zhou, Xiaohui; Yuan, Peng; Chen, Qusen
2018-04-01
Proper modeling of seasonal signals and their quantitative analysis are of interest in geoscience applications, which are based on position time series of permanent GPS stations. Seasonal signals in GPS short-baseline (< 2 km) time series, if they exist, are mainly related to site-specific effects, such as thermal expansion of the monument (TEM). However, only part of the seasonal signal can be explained by known factors due to the limited data span, the GPS processing strategy and/or the adoption of an imperfect TEM model. In this paper, to better understand the seasonal signal in GPS short-baseline time series, we adopted and processed six different short-baselines with data span that varies from 2 to 14 years and baseline length that varies from 6 to 1100 m. To avoid seasonal signals that are overwhelmed by noise, each of the station pairs is chosen with significant differences in their height (> 5 m) or type of the monument. For comparison, we also processed an approximately zero baseline with a distance of < 1 m and identical monuments. The daily solutions show that there are apparent annual signals with annual amplitude of 1 mm (maximum amplitude of 1.86 ± 0.17 mm) on almost all of the components, which are consistent with the results from previous studies. Semi-annual signal with a maximum amplitude of 0.97 ± 0.25 mm is also present. The analysis of time-correlated noise indicates that instead of flicker (FL) or random walk (RW) noise, band-pass-filtered (BP) noise is valid for approximately 40% of the baseline components, and another 20% of the components can be best modeled by a combination of the first-order Gauss-Markov (FOGM) process plus white noise (WN). The TEM displacements are then modeled by considering the monument height of the building structure beneath the GPS antenna. The median contributions of TEM to the annual amplitude in the vertical direction are 84% and 46% with and without additional parts of the monument, respectively. Obvious annual signals with amplitude > 0.4 mm in the horizontal direction are observed in five short-baselines, and the amplitudes exceed 1 mm in four of them. These horizontal seasonal signals are likely related to the propagation of daily/sub-daily TEM displacement or other signals related to the site environment. Mismodeling of the tropospheric delay may also introduce spurious seasonal signals with annual amplitudes of 5 and 2 mm, respectively, for two short-baselines with elevation differences greater than 100 m. The results suggest that the monument height of the additional part of a typical GPS station should be considered when estimating the TEM displacement and that the tropospheric delay should be modeled cautiously, especially with station pairs with apparent elevation differences. The scheme adopted in this paper is expected to explicate more seasonal signals in GPS coordinate time series, particularly in the vertical direction.
Review of current GPS methodologies for producing accurate time series and their error sources
NASA Astrophysics Data System (ADS)
He, Xiaoxing; Montillet, Jean-Philippe; Fernandes, Rui; Bos, Machiel; Yu, Kegen; Hua, Xianghong; Jiang, Weiping
2017-05-01
The Global Positioning System (GPS) is an important tool to observe and model geodynamic processes such as plate tectonics and post-glacial rebound. In the last three decades, GPS has seen tremendous advances in the precision of the measurements, which allow researchers to study geophysical signals through a careful analysis of daily time series of GPS receiver coordinates. However, the GPS observations contain errors and the time series can be described as the sum of a real signal and noise. The signal itself can again be divided into station displacements due to geophysical causes and to disturbing factors. Examples of the latter are errors in the realization and stability of the reference frame and corrections due to ionospheric and tropospheric delays and GPS satellite orbit errors. There is an increasing demand on detecting millimeter to sub-millimeter level ground displacement signals in order to further understand regional scale geodetic phenomena hence requiring further improvements in the sensitivity of the GPS solutions. This paper provides a review spanning over 25 years of advances in processing strategies, error mitigation methods and noise modeling for the processing and analysis of GPS daily position time series. The processing of the observations is described step-by-step and mainly with three different strategies in order to explain the weaknesses and strengths of the existing methodologies. In particular, we focus on the choice of the stochastic model in the GPS time series, which directly affects the estimation of the functional model including, for example, tectonic rates, seasonal signals and co-seismic offsets. Moreover, the geodetic community continues to develop computational methods to fully automatize all phases from analysis of GPS time series. This idea is greatly motivated by the large number of GPS receivers installed around the world for diverse applications ranging from surveying small deformations of civil engineering structures (e.g., subsidence of the highway bridge) to the detection of particular geophysical signals.
Cellular Decision Making by Non-Integrative Processing of TLR Inputs.
Kellogg, Ryan A; Tian, Chengzhe; Etzrodt, Martin; Tay, Savaş
2017-04-04
Cells receive a multitude of signals from the environment, but how they process simultaneous signaling inputs is not well understood. Response to infection, for example, involves parallel activation of multiple Toll-like receptors (TLRs) that converge on the nuclear factor κB (NF-κB) pathway. Although we increasingly understand inflammatory responses for isolated signals, it is not clear how cells process multiple signals that co-occur in physiological settings. We therefore examined a bacterial infection scenario involving co-stimulation of TLR4 and TLR2. Independent stimulation of these receptors induced distinct NF-κB dynamic profiles, although surprisingly, under co-stimulation, single cells continued to show ligand-specific dynamic responses characteristic of TLR2 or TLR4 signaling rather than a mixed response, comprising a cellular decision that we term "non-integrative" processing. Iterating modeling and microfluidic experiments revealed that non-integrative processing occurred through interaction of switch-like NF-κB activation, receptor-specific processing timescales, cell-to-cell variability, and TLR cross-tolerance mediated by multilayer negative feedback. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Certification of windshear performance with RTCA class D radomes
NASA Technical Reports Server (NTRS)
Mathews, Bruce D.; Miller, Fran; Rittenhouse, Kirk; Barnett, Lee; Rowe, William
1994-01-01
Superposition testing of detection range performance forms a digital signal for input into a simulation of signal and data processing equipment and algorithms to be employed in a sensor system for advanced warning of hazardous windshear. For suitable pulse-Doppler radar, recording of the digital data at the input to the digital signal processor furnishes a realistic operational scenario and environmentally responsive clutter signal including all sidelobe clutter, ground moving target indications (GMTI), and large signal spurious due to mainbeam clutter and/or RFI respective of the urban airport clutter and aircraft scenarios (approach and landing antenna pointing). For linear radar system processes, a signal at the same point in the process from a hazard phenomena may be calculated from models of the scattering phenomena, for example, as represented in fine 3 dimensional reflectivity and velocity grid structures. Superposition testing furnishes a competing signal environment for detection and warning time performance confirmation of phenomena uncontrollable in a natural environment.
Effects of sources on time-domain finite difference models.
Botts, Jonathan; Savioja, Lauri
2014-07-01
Recent work on excitation mechanisms in acoustic finite difference models focuses primarily on physical interpretations of observed phenomena. This paper offers an alternative view by examining the properties of models from the perspectives of linear algebra and signal processing. Interpretation of a simulation as matrix exponentiation clarifies the separate roles of sources as boundaries and signals. Boundary conditions modify the matrix and thus its modal structure, and initial conditions or source signals shape the solution, but not the modal structure. Low-frequency artifacts are shown to follow from eigenvalues and eigenvectors of the matrix, and previously reported artifacts are predicted from eigenvalue estimates. The role of source signals is also briefly discussed.
Trends in Nuclear Explosion Monitoring Research & Development - A Physics Perspective
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maceira, Monica; Blom, Philip Stephen; MacCarthy, Jonathan K.
This document entitled “Trends in Nuclear Explosion Monitoring Research and Development – A Physics Perspective” reviews the accessible literature, as it relates to nuclear explosion monitoring and the Comprehensive Nuclear-Test-Ban Treaty (CTBT, 1996), for four research areas: source physics (understanding signal generation), signal propagation (accounting for changes through physical media), sensors (recording the signals), and signal analysis (processing the signal). Over 40 trends are addressed, such as moving from 1D to 3D earth models, from pick-based seismic event processing to full waveform processing, and from separate treatment of mechanical waves in different media to combined analyses. Highlighted in the documentmore » for each trend are the value and benefit to the monitoring mission, key papers that advanced the science, and promising research and development for the future.« less
Packet communications in satellites with multiple-beam antennas and signal processing
NASA Technical Reports Server (NTRS)
Davies, R.; Chethik, F.; Penick, M.
1980-01-01
A communication satellite with a multiple-beam antenna and onboard signal processing is considered for use in a 'message-switched' data relay system. The signal processor may incorporate demodulation, routing, storage, and remodulation of the data. A system user model is established and key functional elements for the signal processing are identified. With the throughput and delay requirements as the controlled variables, the hardware complexity, operational discipline, occupied bandwidth, and overall user end-to-end cost are estimated for (1) random-access packet switching; and (2) reservation-access packet switching. Other aspects of this network (eg, the adaptability to channel switched traffic requirements) are examined. For the given requirements and constraints, the reservation system appears to be the most attractive protocol.
Zenner, Hans P; Pfister, Markus; Birbaumer, Niels
2006-12-01
Acquired centralized tinnitus (ACT) is the most frequent form of chronic tinnitus. The proposed ACT sensitization (ACTS) assumes a peripheral initiation of tinnitus whereby sensitizing signals from the auditory system establish new neuronal connections in the brain. Consequently, permanent neurophysiological malfunction within the information-processing modules results. Successful treatment has to target these malfunctioning information processing. We present in this study the neurophysiological and psychophysiological aspects of a recently suggested neurophysiological model, which may explain the symptoms caused by central cognitive tinnitus sensitization. Although conditioned reflexes, as a causal agent of chronic tinnitus, respond to extinction procedures, sensitization may initiate a vicious circle of overexcitation of the auditory system, resisting extinction and habituation. We used the literature database as indicated under "References" covering English and German works. For the ACTS model we extracted neurophysiological hypotheses of the auditory stimulus processing and the neuronal connections of the central auditory system with other brain regions to explain the malfunctions of auditory information processing. The model does not assume information-processing changes specific for tinnitus but treats the processing of tinnitus signals comparable with the processing of other external stimuli. The model uses the extensive knowledge available on sensitization of perception and memory processes and highlights the similarities of tinnitus with central neuropathic pain. Quality, validity, and comparability of the extracted data were evaluated by peer reviewing. Statistical techniques were not used. According to the tinnitus sensitization model, a tinnitus signal originates (as a type I-IV tinnitus) in the cochlea. In the brain, concerned with perception and cognition, the 1) conditioned associations, as postulated by the tinnitus model of Jastreboff, and the 2) unconditioned sensitized stimulus responses, as postulated in the present ACTS model, are actively connected with and attributed to the tinnitus signal. Attention to the tinnitus constitutes a typical undesired sensitized response. Some of the tinnitus-associated attributes may be called essential, unconditioned sensitization attributes. By a process called facilitation, the tinnitus' essential attributes are suggested to activate the tinnitus response. The result is an undesired increase in responsivity, such as an increase in attentional focus to the eliciting tinnitus stimulus. The mechanisms underlying sensitization are known as a specific nonassociative learning process producing a structural fixation of long-term facilitation at the synaptic level. This sensitization model may be important for the development of a sensitization-specific treatment if extinction procedures alone do not lead to satisfactory outcome. Inasmuch as this model considers sensitization as a nonassociative learning process based on cortical plasticity, it is reasonable to assume that this learning process can be altered by counteracting learning procedures. These counteracting learning procedures may consist of tinnitus-specific cognitive and behavioral procedures.
Mastication noise reduction method for fully implantable hearing aid using piezo-electric sensor.
Na, Sung Dae; Lee, Gihyoun; Wei, Qun; Seong, Ki Woong; Cho, Jin Ho; Kim, Myoung Nam
2017-07-20
Fully implantable hearing devices (FIHDs) can be affected by generated biomechanical noise such as mastication noise. To reduce the mastication noise using a piezo-electric sensor, the mastication noise is measured with the piezo-electric sensor, and noise reduction is practiced by the energy difference. For the experiment on mastication noise, a skull model was designed using artificial skull model and a piezo-electric sensor that can measure the vibration signals better than other sensors. A 1 kHz pure-tone sound through a standard speaker was applied to the model while the lower jawbone of the model was moved in a masticatory fashion. The correlation coefficients and signal-to-noise ratio (SNR) before and after application of the proposed method were compared. It was found that the signal-to-noise ratio and correlation coefficients increased by 4.48 dB and 0.45, respectively. The mastication noise is measured by piezo-electric sensor as the mastication noise that occurred during vibration. In addition, the noise was reduced by using the proposed method in conjunction with MATLAB. In order to confirm the performance of the proposed method, the correlation coefficients and signal-to-noise ratio before and after signal processing were calculated. In the future, an implantable microphone for real-time processing will be developed.
Moving in time: Bayesian causal inference explains movement coordination to auditory beats
Elliott, Mark T.; Wing, Alan M.; Welchman, Andrew E.
2014-01-01
Many everyday skilled actions depend on moving in time with signals that are embedded in complex auditory streams (e.g. musical performance, dancing or simply holding a conversation). Such behaviour is apparently effortless; however, it is not known how humans combine auditory signals to support movement production and coordination. Here, we test how participants synchronize their movements when there are potentially conflicting auditory targets to guide their actions. Participants tapped their fingers in time with two simultaneously presented metronomes of equal tempo, but differing in phase and temporal regularity. Synchronization therefore depended on integrating the two timing cues into a single-event estimate or treating the cues as independent and thereby selecting one signal over the other. We show that a Bayesian inference process explains the situations in which participants choose to integrate or separate signals, and predicts motor timing errors. Simulations of this causal inference process demonstrate that this model provides a better description of the data than other plausible models. Our findings suggest that humans exploit a Bayesian inference process to control movement timing in situations where the origin of auditory signals needs to be resolved. PMID:24850915
Advances in Mixed Signal Processing for Regional and Teleseismic Arrays
2006-08-15
1: Mixture of signals from two earthquakes from south of Africa and the Philippines observed at USAEDS long-period seismic array in Korea. Correct...window where the detector will miss valid signals . 2 Approaches to detecting signals on arrays all focus on the basic model that expresses the observed...possible use in detecting infrasound signals . The approach is based on orthogonal- ity properties of the eigen vectors of the spectral matrix under a
Dynamics and control of the ERK signaling pathway: Sensitivity, bistability, and oscillations.
Arkun, Yaman; Yasemi, Mohammadreza
2018-01-01
Cell signaling is the process by which extracellular information is transmitted into the cell to perform useful biological functions. The ERK (extracellular-signal-regulated kinase) signaling controls several cellular processes such as cell growth, proliferation, differentiation and apoptosis. The ERK signaling pathway considered in this work starts with an extracellular stimulus and ends with activated (double phosphorylated) ERK which gets translocated into the nucleus. We model and analyze this complex pathway by decomposing it into three functional subsystems. The first subsystem spans the initial part of the pathway from the extracellular growth factor to the formation of the SOS complex, ShC-Grb2-SOS. The second subsystem includes the activation of Ras which is mediated by the SOS complex. This is followed by the MAPK subsystem (or the Raf-MEK-ERK pathway) which produces the double phosphorylated ERK upon being activated by Ras. Although separate models exist in the literature at the subsystems level, a comprehensive model for the complete system including the important regulatory feedback loops is missing. Our dynamic model combines the existing subsystem models and studies their steady-state and dynamic interactions under feedback. We establish conditions under which bistability and oscillations exist for this important pathway. In particular, we show how the negative and positive feedback loops affect the dynamic characteristics that determine the cellular outcome.
SCOUT: A Fast Monte-Carlo Modeling Tool of Scintillation Camera Output
Hunter, William C. J.; Barrett, Harrison H.; Lewellen, Thomas K.; Miyaoka, Robert S.; Muzi, John P.; Li, Xiaoli; McDougald, Wendy; MacDonald, Lawrence R.
2011-01-01
We have developed a Monte-Carlo photon-tracking and readout simulator called SCOUT to study the stochastic behavior of signals output from a simplified rectangular scintillation-camera design. SCOUT models the salient processes affecting signal generation, transport, and readout. Presently, we compare output signal statistics from SCOUT to experimental results for both a discrete and a monolithic camera. We also benchmark the speed of this simulation tool and compare it to existing simulation tools. We find this modeling tool to be relatively fast and predictive of experimental results. Depending on the modeled camera geometry, we found SCOUT to be 4 to 140 times faster than other modeling tools. PMID:22072297
SCOUT: a fast Monte-Carlo modeling tool of scintillation camera output†
Hunter, William C J; Barrett, Harrison H.; Muzi, John P.; McDougald, Wendy; MacDonald, Lawrence R.; Miyaoka, Robert S.; Lewellen, Thomas K.
2013-01-01
We have developed a Monte-Carlo photon-tracking and readout simulator called SCOUT to study the stochastic behavior of signals output from a simplified rectangular scintillation-camera design. SCOUT models the salient processes affecting signal generation, transport, and readout of a scintillation camera. Presently, we compare output signal statistics from SCOUT to experimental results for both a discrete and a monolithic camera. We also benchmark the speed of this simulation tool and compare it to existing simulation tools. We find this modeling tool to be relatively fast and predictive of experimental results. Depending on the modeled camera geometry, we found SCOUT to be 4 to 140 times faster than other modeling tools. PMID:23640136
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Ruqiang; Chen, Xuefeng; Li, Weihua
Modern mathematics has commonly been utilized as an effective tool to model mechanical equipment so that their dynamic characteristics can be studied analytically. This will help identify potential failures of mechanical equipment by observing change in the equipment’s dynamic parameters. On the other hand, dynamic signals are also important and provide reliable information about the equipment’s working status. Modern mathematics has also provided us with a systematic way to design and implement various signal processing methods, which are used to analyze these dynamic signals, and to enhance intrinsic signal components that are directly related to machine failures. This special issuemore » is aimed at stimulating not only new insights on mathematical methods for modeling but also recently developed signal processing methods, such as sparse decomposition with potential applications in machine fault diagnosis. Finally, the papers included in this special issue provide a glimpse into some of the research and applications in the field of machine fault diagnosis through applications of the modern mathematical methods.« less
NASA Astrophysics Data System (ADS)
Issiaka Traore, Oumar; Cristini, Paul; Favretto-Cristini, Nathalie; Pantera, Laurent; Viguier-Pla, Sylvie
2018-01-01
In a context of nuclear safety experiment monitoring with the non destructive testing method of acoustic emission, we study the impact of the test device on the interpretation of the recorded physical signals by using spectral finite element modeling. The numerical results are validated by comparison with real acoustic emission data obtained from previous experiments. The results show that several parameters can have significant impacts on acoustic wave propagation and then on the interpretation of the physical signals. The potential position of the source mechanism, the positions of the receivers and the nature of the coolant fluid have to be taken into account in the definition a pre-processing strategy of the real acoustic emission signals. In order to show the relevance of such an approach, we use the results to propose an optimization of the positions of the acoustic emission sensors in order to reduce the estimation bias of the time-delay and then improve the localization of the source mechanisms.
Intersymbol Interference Investigations Using a 3D Time-Dependent Traveling Wave Tube Model
NASA Technical Reports Server (NTRS)
Kory, Carol L.; Andro, Monty; Downey, Alan (Technical Monitor)
2001-01-01
For the first time, a physics based computational model has been used to provide a direct description of the effects of the TWT (Traveling Wave Tube) on modulated digital signals. The TWT model comprehensively takes into account the effects of frequency dependent AM/AM and AM/PM conversion; gain and phase ripple; drive-induced oscillations; harmonic generation; intermodulation products; and backward waves. Thus, signal integrity can be investigated in the presence of these sources of potential distortion as a function of the physical geometry of the high power amplifier and the operational digital signal. This method promises superior predictive fidelity compared to methods using TWT models based on swept amplitude and/or swept frequency data. The fully three-dimensional (3D), time-dependent, TWT interaction model using the electromagnetic code MAFIA is presented. This model is used to investigate assumptions made in TWT black box models used in communication system level simulations. In addition, digital signal performance, including intersymbol interference (ISI), is compared using direct data input into the MAFIA model and using the system level analysis tool, SPW (Signal Processing Worksystem).
Some-or-none recollection: Evidence from item and source memory.
Onyper, Serge V; Zhang, Yaofei X; Howard, Marc W
2010-05-01
Dual-process theory hypothesizes that recognition memory depends on 2 distinguishable memory signals. Recollection reflects conscious recovery of detailed information about the learning episode. Familiarity reflects a memory signal that is not accompanied by a vivid conscious experience but nonetheless enables participants to distinguish recently experienced probe items from novel ones. This dual-process explanation of recognition memory has gained wide acceptance among cognitive neuroscientists and some cognitive psychologists. Nonetheless, its difficulty in providing a quantitatively satisfactory description of performance has precluded a consensus not only regarding the theoretical structure of recognition memory but also about how to best measure recognition accuracy. In 2 experiments we show that neither the standard formulation of dual-process signal detection (DPSD) theory nor a widely used single-process model called the unequal-variance signal-detection (UVSD) model provides a satisfactory explanation of recognition memory across different types of stimuli (words and travel scenes). In the variable-recollection dual-process (VRDP) model, recollection fails for some old probe items, as in standard formulations of DPSD, but gives rise to a continuous distribution of memory strengths when it succeeds. The VRDP can approximate both the DPSD and UVSD. In both experiments it provides a consistently superior fit across materials to the superset of the DPSD and UVSD. The VRDP offers a simple explanation of the form of conjoint item-source judgments, something neither the DPSD nor UVSD accomplishes. The success of the VRDP supports the core assumptions of dual-process theory by providing an excellent quantitative description of recognition performance across materials and response criteria.
Some Memories are Odder than Others: Judgments of Episodic Oddity Violate Known Decision Rules
O’Connor, Akira R.; Guhl, Emily N.; Cox, Justin C.; Dobbins, Ian G.
2011-01-01
Current decision models of recognition memory are based almost entirely on one paradigm, single item old/new judgments accompanied by confidence ratings. This task results in receiver operating characteristics (ROCs) that are well fit by both signal-detection and dual-process models. Here we examine an entirely new recognition task, the judgment of episodic oddity, whereby participants select the mnemonically odd members of triplets (e.g., a new item hidden among two studied items). Using the only two known signal-detection rules of oddity judgment derived from the sensory perception literature, the unequal variance signal-detection model predicted that an old item among two new items would be easier to discover than a new item among two old items. In contrast, four separate empirical studies demonstrated the reverse pattern: triplets with two old items were the easiest to resolve. This finding was anticipated by the dual-process approach as the presence of two old items affords the greatest opportunity for recollection. Furthermore, a bootstrap-fed Monte Carlo procedure using two independent datasets demonstrated that the dual-process parameters typically observed during single item recognition correctly predict the current oddity findings, whereas unequal variance signal-detection parameters do not. Episodic oddity judgments represent a case where dual- and single-process predictions qualitatively diverge and the findings demonstrate that novelty is “odder” than familiarity. PMID:22833695
PKD signaling and pancreatitis
Yuan, Jingzhen; Pandol, Stephen J.
2016-01-01
Background Acute pancreatitis is a serious medical disorder with no current therapies directed to the molecular pathogenesis of the disorder. Inflammation, inappropriate intracellular activation of digestive enzymes, and parenchymal acinar cell death by necrosis are the critical pathophysiologic processes of acute pancreatitis. Thus, it is necessary to elucidate the key molecular signals that mediate these pathobiologic processes and develop new therapeutic strategies to attenuate the appropriate signaling pathways in order to improve outcomes for this disease. A novel serine/threonine protein kinase D (PKD) family has emerged as key participants in signal transduction, and this family is increasingly being implicated in the regulation of multiple cellular functions and diseases. Methods This review summarizes recent findings of our group and others regarding the signaling pathway and the biological roles of the PKD family in pancreatic acinar cells. In particular, we highlight our studies of the functions of PKD in several key pathobiologic processes associated with acute pancreatitis in experimental models. Results Our findings reveal that PKD signaling is required for NF-κB activation/inflammation, intracellular zymogen activation, and acinar cell necrosis in rodent experimental pancreatitis. Novel small-molecule PKD inhibitors attenuate the severity of pancreatitis in both in vitro and in vivo experimental models. Further, this review emphasizes our latest advances in the therapeutic application of PKD inhibitors to experimental pancreatitis after the initiation of pancreatitis. Conclusions These novel findings suggest that PKD signaling is a necessary modulator in key initiating pathobiologic processes of pancreatitis, and that it constitutes a novel therapeutic target for treatments of this disorder. PMID:26879861
NASA Astrophysics Data System (ADS)
Klos, Anna; Olivares, German; Teferle, Felix Norman; Bogusz, Janusz
2016-04-01
Station velocity uncertainties determined from a series of Global Navigation Satellite System (GNSS) position estimates depend on both the deterministic and stochastic models applied to the time series. While the deterministic model generally includes parameters for a linear and several periodic terms the stochastic model is a representation of the noise character of the time series in form of a power-law process. For both of these models the optimal model may vary from one time series to another while the models also depend, to some degree, on each other. In the past various power-law processes have been shown to fit the time series and the sources for the apparent temporally-correlated noise were attributed to, for example, mismodelling of satellites orbits, antenna phase centre variations, troposphere, Earth Orientation Parameters, mass loading effects and monument instabilities. Blewitt and Lavallée (2002) demonstrated how improperly modelled seasonal signals affected the estimates of station velocity uncertainties. However, in their study they assumed that the time series followed a white noise process with no consideration of additional temporally-correlated noise. Bos et al. (2010) empirically showed for a small number of stations that the noise character was much more important for the reliable estimation of station velocity uncertainties than the seasonal signals. In this presentation we pick up from Blewitt and Lavallée (2002) and Bos et al. (2010), and have derived formulas for the computation of the General Dilution of Precision (GDP) under presence of periodic signals and temporally-correlated noise in the time series. We show, based on simulated and real time series from globally distributed IGS (International GNSS Service) stations processed by the Jet Propulsion Laboratory (JPL), that periodic signals dominate the effect on the velocity uncertainties at short time scales while for those beyond four years, the type of noise becomes much more important. In other words, for time series long enough, the assumed periodic signals do not affect the velocity uncertainties as much as the assumed noise model. We calculated the GDP to be the ratio between two errors of velocity: without and with inclusion of seasonal terms of periods equal to one year and its overtones till 3rd. To all these cases power-law processes of white, flicker and random-walk noise were added separately. Few oscillations in GDP can be noticed for integer years, which arise from periodic terms added. Their amplitudes in GDP increase along with the increasing spectral index. Strong peaks of oscillations in GDP are indicated for short time scales, especially for random-walk processes. This means that badly monumented stations are affected the most. Local minima and maxima in GDP are also enlarged as the noise approaches random walk. We noticed that the semi-annual signal increased the local GDP minimum for white noise. This suggests that adding power-law noise to a deterministic model with annual term or adding a semi-annual term to white noise causes an increased velocity uncertainty even at the points, where determined velocity is not biased.
Vrancken, Bram; Lemey, Philippe; Rambaut, Andrew; Bedford, Trevor; Longdon, Ben; Günthard, Huldrych F.; Suchard, Marc A.
2014-01-01
Phylogenetic signal quantifies the degree to which resemblance in continuously-valued traits reflects phylogenetic relatedness. Measures of phylogenetic signal are widely used in ecological and evolutionary research, and are recently gaining traction in viral evolutionary studies. Standard estimators of phylogenetic signal frequently condition on data summary statistics of the repeated trait observations and fixed phylogenetics trees, resulting in information loss and potential bias. To incorporate the observation process and phylogenetic uncertainty in a model-based approach, we develop a novel Bayesian inference method to simultaneously estimate the evolutionary history and phylogenetic signal from molecular sequence data and repeated multivariate traits. Our approach builds upon a phylogenetic diffusion framework that model continuous trait evolution as a Brownian motion process and incorporates Pagel’s λ transformation parameter to estimate dependence among traits. We provide a computationally efficient inference implementation in the BEAST software package. We evaluate the synthetic performance of the Bayesian estimator of phylogenetic signal against standard estimators, and demonstrate the use of our coherent framework to address several virus-host evolutionary questions, including virulence heritability for HIV, antigenic evolution in influenza and HIV, and Drosophila sensitivity to sigma virus infection. Finally, we discuss model extensions that will make useful contributions to our flexible framework for simultaneously studying sequence and trait evolution. PMID:25780554
ERIC Educational Resources Information Center
Dube, Chad; Starns, Jeffrey J.; Rotello, Caren M.; Ratcliff, Roger
2012-01-01
A classic question in the recognition memory literature is whether retrieval is best described as a continuous-evidence process consistent with signal detection theory (SDT), or a threshold process consistent with many multinomial processing tree (MPT) models. Because receiver operating characteristics (ROCs) based on confidence ratings are…
Behavioral Signal Processing: Deriving Human Behavioral Informatics From Speech and Language
Narayanan, Shrikanth; Georgiou, Panayiotis G.
2013-01-01
The expression and experience of human behavior are complex and multimodal and characterized by individual and contextual heterogeneity and variability. Speech and spoken language communication cues offer an important means for measuring and modeling human behavior. Observational research and practice across a variety of domains from commerce to healthcare rely on speech- and language-based informatics for crucial assessment and diagnostic information and for planning and tracking response to an intervention. In this paper, we describe some of the opportunities as well as emerging methodologies and applications of human behavioral signal processing (BSP) technology and algorithms for quantitatively understanding and modeling typical, atypical, and distressed human behavior with a specific focus on speech- and language-based communicative, affective, and social behavior. We describe the three important BSP components of acquiring behavioral data in an ecologically valid manner across laboratory to real-world settings, extracting and analyzing behavioral cues from measured data, and developing models offering predictive and decision-making support. We highlight both the foundational speech and language processing building blocks as well as the novel processing and modeling opportunities. Using examples drawn from specific real-world applications ranging from literacy assessment and autism diagnostics to psychotherapy for addiction and marital well being, we illustrate behavioral informatics applications of these signal processing techniques that contribute to quantifying higher level, often subjectively described, human behavior in a domain-sensitive fashion. PMID:24039277
Plant hormone signaling during development: insights from computational models.
Oliva, Marina; Farcot, Etienne; Vernoux, Teva
2013-02-01
Recent years have seen an impressive increase in our knowledge of the topology of plant hormone signaling networks. The complexity of these topologies has motivated the development of models for several hormones to aid understanding of how signaling networks process hormonal inputs. Such work has generated essential insights into the mechanisms of hormone perception and of regulation of cellular responses such as transcription in response to hormones. In addition, modeling approaches have contributed significantly to exploring how spatio-temporal regulation of hormone signaling contributes to plant growth and patterning. New tools have also been developed to obtain quantitative information on hormone distribution during development and to test model predictions, opening the way for quantitative understanding of the developmental roles of hormones. Copyright © 2012 Elsevier Ltd. All rights reserved.
Zhang, Yanjun; Liu, Wen-zhe; Fu, Xing-hu; Bi, Wei-hong
2016-02-01
Given that the traditional signal processing methods can not effectively distinguish the different vibration intrusion signal, a feature extraction and recognition method of the vibration information is proposed based on EMD-AWPP and HOSA-SVM, using for high precision signal recognition of distributed fiber optic intrusion detection system. When dealing with different types of vibration, the method firstly utilizes the adaptive wavelet processing algorithm based on empirical mode decomposition effect to reduce the abnormal value influence of sensing signal and improve the accuracy of signal feature extraction. Not only the low frequency part of the signal is decomposed, but also the high frequency part the details of the signal disposed better by time-frequency localization process. Secondly, it uses the bispectrum and bicoherence spectrum to accurately extract the feature vector which contains different types of intrusion vibration. Finally, based on the BPNN reference model, the recognition parameters of SVM after the implementation of the particle swarm optimization can distinguish signals of different intrusion vibration, which endows the identification model stronger adaptive and self-learning ability. It overcomes the shortcomings, such as easy to fall into local optimum. The simulation experiment results showed that this new method can effectively extract the feature vector of sensing information, eliminate the influence of random noise and reduce the effects of outliers for different types of invasion source. The predicted category identifies with the output category and the accurate rate of vibration identification can reach above 95%. So it is better than BPNN recognition algorithm and improves the accuracy of the information analysis effectively.
Initial Evaluation of Signal-Based Bayesian Monitoring
NASA Astrophysics Data System (ADS)
Moore, D.; Russell, S.
2016-12-01
We present SIGVISA (Signal-based Vertically Integrated Seismic Analysis), a next-generation system for global seismic monitoring through Bayesian inference on seismic signals. Traditional seismic monitoring systems rely on discrete detections produced by station processing software, discarding significant information present in the original recorded signal. By modeling signals directly, our forward model is able to incorporate a rich representation of the physics underlying the signal generation process, including source mechanisms, wave propagation, and station response. This allows inference in the model to recover the qualitative behavior of geophysical methods including waveform matching and double-differencing, all as part of a unified Bayesian monitoring system that simultaneously detects and locates events from a network of stations. We report results from an evaluation of SIGVISA monitoring the western United States for a two-week period following the magnitude 6.0 event in Wells, NV in February 2008. During this period, SIGVISA detects more than twice as many events as NETVISA, and three times as many as SEL3, while operating at the same precision; at lower precisions it detects up to five times as many events as SEL3. At the same time, signal-based monitoring reduces mean location errors by a factor of four relative to detection-based systems. We provide evidence that, given only IMS data, SIGVISA detects events that are missed by regional monitoring networks, indicating that our evaluations may even underestimate its performance. Finally, SIGVISA matches or exceeds the detection rates of existing systems for de novo events - events with no nearby historical seismicity - and detects through automated processing a number of such events missed even by the human analysts generating the LEB.
Tanveer, Riffat; Gowran, Aoife; Noonan, Janis; Keating, Sinead E.; Bowie, Andrew G.; Campbell, Veronica A.
2012-01-01
Aberrant Notch signaling has recently emerged as a possible mechanism for the altered neurogenesis, cognitive impairment, and learning and memory deficits associated with Alzheimer disease (AD). Recently, targeting the endocannabinoid system in models of AD has emerged as a potential approach to slow the progression of the disease process. Although studies have identified neuroprotective roles for endocannabinoids, there is a paucity of information on modulation of the pro-survival Notch pathway by endocannabinoids. In this study the influence of the endocannabinoids, anandamide (AEA) and 2-arachidonoylglycerol, on the Notch-1 pathway and on its endogenous regulators were investigated in an in vitro model of AD. We report that AEA up-regulates Notch-1 signaling in cultured neurons. We also provide evidence that although Aβ1–42 increases expression of the endogenous inhibitor of Notch-1, numb (Nb), this can be prevented by AEA and 2-arachidonoylglycerol. Interestingly, AEA up-regulated Nct expression, a component of γ-secretase, and this was found to play a crucial role in the enhanced Notch-1 signaling mediated by AEA. The stimulatory effects of AEA on Notch-1 signaling persisted in the presence of Aβ1–42. AEA was found to induce a preferential processing of Notch-1 over amyloid precursor protein to generate Aβ1–40. Aging, a natural process of neurodegeneration, was associated with a reduction in Notch-1 signaling in rat cortex and hippocampus, and this was restored with chronic treatment with URB 597. In summary, AEA has the proclivity to enhance Notch-1 signaling in an in vitro model of AD, which may have relevance for restoring neurogenesis and cognition in AD. PMID:22891244
Model-based tomographic reconstruction
Chambers, David H; Lehman, Sean K; Goodman, Dennis M
2012-06-26
A model-based approach to estimating wall positions for a building is developed and tested using simulated data. It borrows two techniques from geophysical inversion problems, layer stripping and stacking, and combines them with a model-based estimation algorithm that minimizes the mean-square error between the predicted signal and the data. The technique is designed to process multiple looks from an ultra wideband radar array. The processed signal is time-gated and each section processed to detect the presence of a wall and estimate its position, thickness, and material parameters. The floor plan of a building is determined by moving the array around the outside of the building. In this paper we describe how the stacking and layer stripping algorithms are combined and show the results from a simple numerical example of three parallel walls.
NASA Astrophysics Data System (ADS)
Hegazy, Maha A.; Lotfy, Hayam M.; Mowaka, Shereen; Mohamed, Ekram Hany
2016-07-01
Wavelets have been adapted for a vast number of signal-processing applications due to the amount of information that can be extracted from a signal. In this work, a comparative study on the efficiency of continuous wavelet transform (CWT) as a signal processing tool in univariate regression and a pre-processing tool in multivariate analysis using partial least square (CWT-PLS) was conducted. These were applied to complex spectral signals of ternary and quaternary mixtures. CWT-PLS method succeeded in the simultaneous determination of a quaternary mixture of drotaverine (DRO), caffeine (CAF), paracetamol (PAR) and p-aminophenol (PAP, the major impurity of paracetamol). While, the univariate CWT failed to simultaneously determine the quaternary mixture components and was able to determine only PAR and PAP, the ternary mixtures of DRO, CAF, and PAR and CAF, PAR, and PAP. During the calculations of CWT, different wavelet families were tested. The univariate CWT method was validated according to the ICH guidelines. While for the development of the CWT-PLS model a calibration set was prepared by means of an orthogonal experimental design and their absorption spectra were recorded and processed by CWT. The CWT-PLS model was constructed by regression between the wavelet coefficients and concentration matrices and validation was performed by both cross validation and external validation sets. Both methods were successfully applied for determination of the studied drugs in pharmaceutical formulations.
Research to Operations of Ionospheric Scintillation Detection and Forecasting
NASA Astrophysics Data System (ADS)
Jones, J.; Scro, K.; Payne, D.; Ruhge, R.; Erickson, B.; Andorka, S.; Ludwig, C.; Karmann, J.; Ebelhar, D.
Ionospheric Scintillation refers to random fluctuations in phase and amplitude of electromagnetic waves caused by a rapidly varying refractive index due to turbulent features in the ionosphere. Scintillation of transionospheric UHF and L-Band radio frequency signals is particularly troublesome since this phenomenon can lead to degradation of signal strength and integrity that can negatively impact satellite communications and navigation, radar, or radio signals from other systems that traverse or interact with the ionosphere. Although ionospheric scintillation occurs in both the equatorial and polar regions of the Earth, the focus of this modeling effort is on equatorial scintillation. The ionospheric scintillation model is data-driven in a sense that scintillation observations are used to perform detection and characterization of scintillation structures. These structures are then propagated to future times using drift and decay models to represent the natural evolution of ionospheric scintillation. The impact on radio signals is also determined by the model and represented in graphical format to the user. A frequency scaling algorithm allows for impact analysis on frequencies other than the observation frequencies. The project began with lab-grade software and through a tailored Agile development process, deployed operational-grade code to a DoD operational center. The Agile development process promotes adaptive promote adaptive planning, evolutionary development, early delivery, continuous improvement, regular collaboration with the customer, and encourage rapid and flexible response to customer-driven changes. The Agile philosophy values individuals and interactions over processes and tools, working software over comprehensive documentation, customer collaboration over contract negotiation, and responding to change over following a rigid plan. The end result was an operational capability that met customer expectations. Details of the model and the process of operational integration are discussed as well as lessons learned to improve performance on future projects.
Haack, Fiete; Lemcke, Heiko; Ewald, Roland; Rharass, Tareck; Uhrmacher, Adelinde M.
2015-01-01
Canonical WNT/β-catenin signaling is a central pathway in embryonic development, but it is also connected to a number of cancers and developmental disorders. Here we apply a combined in-vitro and in-silico approach to investigate the spatio-temporal regulation of WNT/β-catenin signaling during the early neural differentiation process of human neural progenitors cells (hNPCs), which form a new prospect for replacement therapies in the context of neurodegenerative diseases. Experimental measurements indicate a second signal mechanism, in addition to canonical WNT signaling, being involved in the regulation of nuclear β-catenin levels during the cell fate commitment phase of neural differentiation. We find that the biphasic activation of β-catenin signaling observed experimentally can only be explained through a model that combines Reactive Oxygen Species (ROS) and raft dependent WNT/β-catenin signaling. Accordingly after initiation of differentiation endogenous ROS activates DVL in a redox-dependent manner leading to a transient activation of down-stream β-catenin signaling, followed by continuous auto/paracrine WNT signaling, which crucially depends on lipid rafts. Our simulation studies further illustrate the elaborate spatio-temporal regulation of DVL, which, depending on its concentration and localization, may either act as direct inducer of the transient ROS/β-catenin signal or as amplifier during continuous auto-/parcrine WNT/β-catenin signaling. In addition we provide the first stochastic computational model of WNT/β-catenin signaling that combines membrane-related and intracellular processes, including lipid rafts/receptor dynamics as well as WNT- and ROS-dependent β-catenin activation. The model’s predictive ability is demonstrated under a wide range of varying conditions for in-vitro and in-silico reference data sets. Our in-silico approach is realized in a multi-level rule-based language, that facilitates the extension and modification of the model. Thus, our results provide both new insights and means to further our understanding of canonical WNT/β-catenin signaling and the role of ROS as intracellular signaling mediator. PMID:25793621
Working memory, age, and hearing loss: susceptibility to hearing aid distortion.
Arehart, Kathryn H; Souza, Pamela; Baca, Rosalinda; Kates, James M
2013-01-01
Hearing aids use complex processing intended to improve speech recognition. Although many listeners benefit from such processing, it can also introduce distortion that offsets or cancels intended benefits for some individuals. The purpose of the present study was to determine the effects of cognitive ability (working memory) on individual listeners' responses to distortion caused by frequency compression applied to noisy speech. The present study analyzed a large data set of intelligibility scores for frequency-compressed speech presented in quiet and at a range of signal-to-babble ratios. The intelligibility data set was based on scores from 26 adults with hearing loss with ages ranging from 62 to 92 years. The listeners were grouped based on working memory ability. The amount of signal modification (distortion) caused by frequency compression and noise was measured using a sound quality metric. Analysis of variance and hierarchical linear modeling were used to identify meaningful differences between subject groups as a function of signal distortion caused by frequency compression and noise. Working memory was a significant factor in listeners' intelligibility of sentences presented in babble noise and processed with frequency compression based on sinusoidal modeling. At maximum signal modification (caused by both frequency compression and babble noise), the factor of working memory (when controlling for age and hearing loss) accounted for 29.3% of the variance in intelligibility scores. Combining working memory, age, and hearing loss accounted for a total of 47.5% of the variability in intelligibility scores. Furthermore, as the total amount of signal distortion increased, listeners with higher working memory performed better on the intelligibility task than listeners with lower working memory did. Working memory is a significant factor in listeners' responses to total signal distortion caused by cumulative effects of babble noise and frequency compression implemented with sinusoidal modeling. These results, together with other studies focused on wide-dynamic range compression, suggest that older listeners with hearing loss and poor working memory are more susceptible to distortions caused by at least some types of hearing aid signal-processing algorithms and by noise, and that this increased susceptibility should be considered in the hearing aid fitting process.
Coupling surface and mantle dynamics: A novel experimental approach
NASA Astrophysics Data System (ADS)
Kiraly, Agnes; Faccenna, Claudio; Funiciello, Francesca; Sembroni, Andrea
2015-05-01
Recent modeling shows that surface processes, such as erosion and deposition, may drive the deformation of the Earth's surface, interfering with deeper crustal and mantle signals. To investigate the coupling between the surface and deep process, we designed a three-dimensional laboratory apparatus, to analyze the role of erosion and sedimentation, triggered by deep mantle instability. The setup is constituted and scaled down to natural gravity field using a thin viscous sheet model, with mantle and lithosphere simulated by Newtonian viscous glucose syrup and silicon putty, respectively. The surface process is simulated assuming a simple erosion law producing the downhill flow of a thin viscous material away from high topography. The deep mantle upwelling is triggered by the rise of a buoyant sphere. The results of these models along with the parametric analysis show how surface processes influence uplift velocity and topography signals.
Empirical modeling for intelligent, real-time manufacture control
NASA Technical Reports Server (NTRS)
Xu, Xiaoshu
1994-01-01
Artificial neural systems (ANS), also known as neural networks, are an attempt to develop computer systems that emulate the neural reasoning behavior of biological neural systems (e.g. the human brain). As such, they are loosely based on biological neural networks. The ANS consists of a series of nodes (neurons) and weighted connections (axons) that, when presented with a specific input pattern, can associate specific output patterns. It is essentially a highly complex, nonlinear, mathematical relationship or transform. These constructs have two significant properties that have proven useful to the authors in signal processing and process modeling: noise tolerance and complex pattern recognition. Specifically, the authors have developed a new network learning algorithm that has resulted in the successful application of ANS's to high speed signal processing and to developing models of highly complex processes. Two of the applications, the Weld Bead Geometry Control System and the Welding Penetration Monitoring System, are discussed in the body of this paper.
NASA Astrophysics Data System (ADS)
Lee, Dong-Sup; Cho, Dae-Seung; Kim, Kookhyun; Jeon, Jae-Jin; Jung, Woo-Jin; Kang, Myeng-Hwan; Kim, Jae-Ho
2015-01-01
Independent Component Analysis (ICA), one of the blind source separation methods, can be applied for extracting unknown source signals only from received signals. This is accomplished by finding statistical independence of signal mixtures and has been successfully applied to myriad fields such as medical science, image processing, and numerous others. Nevertheless, there are inherent problems that have been reported when using this technique: instability and invalid ordering of separated signals, particularly when using a conventional ICA technique in vibratory source signal identification of complex structures. In this study, a simple iterative algorithm of the conventional ICA has been proposed to mitigate these problems. The proposed method to extract more stable source signals having valid order includes an iterative and reordering process of extracted mixing matrix to reconstruct finally converged source signals, referring to the magnitudes of correlation coefficients between the intermediately separated signals and the signals measured on or nearby sources. In order to review the problems of the conventional ICA technique and to validate the proposed method, numerical analyses have been carried out for a virtual response model and a 30 m class submarine model. Moreover, in order to investigate applicability of the proposed method to real problem of complex structure, an experiment has been carried out for a scaled submarine mockup. The results show that the proposed method could resolve the inherent problems of a conventional ICA technique.
Joint Estimation of Time-Frequency Signature and DOA Based on STFD for Multicomponent Chirp Signals
Zhao, Ziyue; Liu, Congfeng
2014-01-01
In the study of the joint estimation of time-frequency signature and direction of arrival (DOA) for multicomponent chirp signals, an estimation method based on spatial time-frequency distributions (STFDs) is proposed in this paper. Firstly, array signal model for multicomponent chirp signals is presented and then array processing is applied in time-frequency analysis to mitigate cross-terms. According to the results of the array processing, Hough transform is performed and the estimation of time-frequency signature is obtained. Subsequently, subspace method for DOA estimation based on STFD matrix is achieved. Simulation results demonstrate the validity of the proposed method. PMID:27382610
Joint Estimation of Time-Frequency Signature and DOA Based on STFD for Multicomponent Chirp Signals.
Zhao, Ziyue; Liu, Congfeng
2014-01-01
In the study of the joint estimation of time-frequency signature and direction of arrival (DOA) for multicomponent chirp signals, an estimation method based on spatial time-frequency distributions (STFDs) is proposed in this paper. Firstly, array signal model for multicomponent chirp signals is presented and then array processing is applied in time-frequency analysis to mitigate cross-terms. According to the results of the array processing, Hough transform is performed and the estimation of time-frequency signature is obtained. Subsequently, subspace method for DOA estimation based on STFD matrix is achieved. Simulation results demonstrate the validity of the proposed method.
Spaceborne synthetic aperture radar signal processing using FPGAs
NASA Astrophysics Data System (ADS)
Sugimoto, Yohei; Ozawa, Satoru; Inaba, Noriyasu
2017-10-01
Synthetic Aperture Radar (SAR) imagery requires image reproduction through successive signal processing of received data before browsing images and extracting information. The received signal data records of the ALOS-2/PALSAR-2 are stored in the onboard mission data storage and transmitted to the ground. In order to compensate the storage usage and the capacity of transmission data through the mission date communication networks, the operation duty of the PALSAR-2 is limited. This balance strongly relies on the network availability. The observation operations of the present spaceborne SAR systems are rigorously planned by simulating the mission data balance, given conflicting user demands. This problem should be solved such that we do not have to compromise the operations and the potential of the next-generation spaceborne SAR systems. One of the solutions is to compress the SAR data through onboard image reproduction and information extraction from the reproduced images. This is also beneficial for fast delivery of information products and event-driven observations by constellation. The Emergence Studio (Sōhatsu kōbō in Japanese) with Japan Aerospace Exploration Agency is developing evaluation models of FPGA-based signal processing system for onboard SAR image reproduction. The model, namely, "Fast L1 Processor (FLIP)" developed in 2016 can reproduce a 10m-resolution single look complex image (Level 1.1) from ALOS/PALSAR raw signal data (Level 1.0). The processing speed of the FLIP at 200 MHz results in twice faster than CPU-based computing at 3.7 GHz. The image processed by the FLIP is no way inferior to the image processed with 32-bit computing in MATLAB.
Picosecond time-resolved photoluminescence using picosecond excitation correlation spectroscopy
NASA Astrophysics Data System (ADS)
Johnson, M. B.; McGill, T. C.; Hunter, A. T.
1988-03-01
We present a study of the temporal decay of photoluminescence (PL) as detected by picosecond excitation correlation spectroscopy (PECS). We analyze the correlation signal that is obtained from two simple models; one where radiative recombination dominates, the other where trapping processes dominate. It is found that radiative recombination alone does not lead to a correlation signal. Parallel trapping type processes are found to be required to see a signal. To illustrate this technique, we examine the temporal decay of the PL signal for In-alloyed, semi-insulating GaAs substrates. We find that the PL signal indicates a carrier lifetime of roughly 100 ps, for excitation densities of 1×1016-5×1017 cm-3. PECS is shown to be an easy technique to measure the ultrafast temporal behavior of PL processes because it requires no ultrafast photon detection. It is particularly well suited to measuring carrier lifetimes.
Diabetes: Models, Signals and control
NASA Astrophysics Data System (ADS)
Cobelli, C.
2010-07-01
Diabetes and its complications impose significant economic consequences on individuals, families, health systems, and countries. The control of diabetes is an interdisciplinary endeavor, which includes significant components of modeling, signal processing and control. Models: first, I will discuss the minimal (coarse) models which describe the key components of the system functionality and are capable of measuring crucial processes of glucose metabolism and insulin control in health and diabetes; then, the maximal (fine-grain) models which include comprehensively all available knowledge about system functionality and are capable to simulate the glucose-insulin system in diabetes, thus making it possible to create simulation scenarios whereby cost effective experiments can be conducted in silico to assess the efficacy of various treatment strategies - in particular I will focus on the first in silico simulation model accepted by FDA as a substitute to animal trials in the quest for optimal diabetes control. Signals: I will review metabolic monitoring, with a particular emphasis on the new continuous glucose sensors, on the crucial role of models to enhance the interpretation of their time-series signals, and on the opportunities that they present for automation of diabetes control. Control: I will review control strategies that have been successfully employed in vivo or in silico, presenting a promise for the development of a future artificial pancreas and, in particular, I will discuss a modular architecture for building closed-loop control systems, including insulin delivery and patient safety supervision layers.
NASA Astrophysics Data System (ADS)
Singh, Sarabjeet; Howard, Carl Q.; Hansen, Colin H.; Köpke, Uwe G.
2018-03-01
In this paper, numerically modelled vibration response of a rolling element bearing with a localised outer raceway line spall is presented. The results were obtained from a finite element (FE) model of the defective bearing solved using an explicit dynamics FE software package, LS-DYNA. Time domain vibration signals of the bearing obtained directly from the FE modelling were processed further to estimate time-frequency and frequency domain results, such as spectrogram and power spectrum, using standard signal processing techniques pertinent to the vibration-based monitoring of rolling element bearings. A logical approach to analyses of the numerically modelled results was developed with an aim to presenting the analytical validation of the modelled results. While the time and frequency domain analyses of the results show that the FE model generates accurate bearing kinematics and defect frequencies, the time-frequency analysis highlights the simulation of distinct low- and high-frequency characteristic vibration signals associated with the unloading and reloading of the rolling elements as they move in and out of the defect, respectively. Favourable agreement of the numerical and analytical results demonstrates the validation of the results from the explicit FE modelling of the bearing.
Subspace Signal Processing in Structured Noise
1990-12-01
1.7 Motivation for the Model ....... ........................... 8 1.8 E x am p les...S). We do not require that H be orthogonal to S. * 1.7 Motivation for the Model The linear model is quite versatile in terms of the types of signals...cross terms zero, we choose . = (SHs)- mS~u’ (3.69) This implies that = Ps4 , (3.70) and S t s (3.71) : = Ps . RPs -. The last step is to maximize
ERIC Educational Resources Information Center
Schwarz, Wolf
2006-01-01
Paradigms used to study the time course of the redundant signals effect (RSE; J. O. Miller, 1986) and temporal order judgments (TOJs) share many important similarities and address related questions concerning the time course of sensory processing. The author of this article proposes and tests a new aggregate diffusion-based model to quantitatively…
Sequencing batch-reactor control using Gaussian-process models.
Kocijan, Juš; Hvala, Nadja
2013-06-01
This paper presents a Gaussian-process (GP) model for the design of sequencing batch-reactor (SBR) control for wastewater treatment. The GP model is a probabilistic, nonparametric model with uncertainty predictions. In the case of SBR control, it is used for the on-line optimisation of the batch-phases duration. The control algorithm follows the course of the indirect process variables (pH, redox potential and dissolved oxygen concentration) and recognises the characteristic patterns in their time profile. The control algorithm uses GP-based regression to smooth the signals and GP-based classification for the pattern recognition. When tested on the signals from an SBR laboratory pilot plant, the control algorithm provided a satisfactory agreement between the proposed completion times and the actual termination times of the biodegradation processes. In a set of tested batches the final ammonia and nitrate concentrations were below 1 and 0.5 mg L(-1), respectively, while the aeration time was shortened considerably. Copyright © 2013 Elsevier Ltd. All rights reserved.
Roles of Diffusion Dynamics in Stem Cell Signaling and Three-Dimensional Tissue Development.
McMurtrey, Richard J
2017-09-15
Recent advancements in the ability to construct three-dimensional (3D) tissues and organoids from stem cells and biomaterials have not only opened abundant new research avenues in disease modeling and regenerative medicine but also have ignited investigation into important aspects of molecular diffusion in 3D cellular architectures. This article describes fundamental mechanics of diffusion with equations for modeling these dynamic processes under a variety of scenarios in 3D cellular tissue constructs. The effects of these diffusion processes and resultant concentration gradients are described in the context of the major molecular signaling pathways in stem cells that both mediate and are influenced by gas and nutrient concentrations, including how diffusion phenomena can affect stem cell state, cell differentiation, and metabolic states of the cell. The application of these diffusion models and pathways is of vital importance for future studies of developmental processes, disease modeling, and tissue regeneration.
Device design and signal processing for multiple-input multiple-output multimode fiber links
NASA Astrophysics Data System (ADS)
Appaiah, Kumar; Vishwanath, Sriram; Bank, Seth R.
2012-01-01
Multimode fibers (MMFs) are limited in data rate capabilities owing to modal dispersion. However, their large core diameter simplifies alignment and packaging, and makes them attractive for short and medium length links. Recent research has shown that the use of signal processing and techniques such as multiple-input multiple-output (MIMO) can greatly improve the data rate capabilities of multimode fibers. In this paper, we review recent experimental work using MIMO and signal processing for multimode fibers, and the improvements in data rates achievable with these techniques. We then present models to design as well as simulate the performance benefits obtainable with arrays of lasers and detectors in conjunction with MIMO, using channel capacity as the metric to optimize. We also discuss some aspects related to complexity of the algorithms needed for signal processing and discuss techniques for low complexity implementation.
Srivastava, Viranjay M
2015-01-01
In the present technological expansion, the radio frequency integrated circuits in the wireless communication technologies became useful because of the replacement of increasing number of functions, traditional hardware components by modern digital signal processing. The carrier frequencies used for communication systems, now a day, shifted toward the microwave regime. The signal processing for the multiple inputs multiple output wireless communication system using the Metal- Oxide-Semiconductor Field-Effect-Transistor (MOSFET) has been done a lot. In this research the signal processing with help of nano-scaled Cylindrical Surrounding Double Gate (CSDG) MOSFET by means of Double- Pole Four-Throw Radio-Frequency (DP4T RF) switch, in terms of Insertion loss, Isolation, Reverse isolation and Inter modulation have been analyzed. In addition to this a channel model has been presented. Here, we also discussed some patents relevant to the topic.
Dual Rate Adaptive Control for an Industrial Heat Supply Process Using Signal Compensation Approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chai, Tianyou; Jia, Yao; Wang, Hong
The industrial heat supply process (HSP) is a highly nonlinear cascaded process which uses a steam valve opening as its control input, the steam flow-rate as its inner loop output and the supply water temperature as its outer loop output. The relationship between the heat exchange rate and the model parameters, such as steam density, entropy, and fouling correction factor and heat exchange efficiency are unknown and nonlinear. Moreover, these model parameters vary in line with steam pressure, ambient temperature and the residuals caused by the quality variations of the circulation water. When the steam pressure and the ambient temperaturemore » are of high values and are subjected to frequent external random disturbances, the supply water temperature and the steam flow-rate would interact with each other and fluctuate a lot. This is also true when the process exhibits unknown characteristic variations of the process dynamics caused by the unexpected changes of the heat exchange residuals. As a result, it is difficult to control the supply water temperature and the rates of changes of steam flow-rate well inside their targeted ranges. In this paper, a novel compensation signal based dual rate adaptive controller is developed by representing the unknown variations of dynamics as unmodeled dynamics. In the proposed controller design, such a compensation signal is constructed and added onto the control signal obtained from the linear deterministic model based feedback control design. Such a compensation signal aims at eliminating the unmodeled dynamics and the rate of changes of the currently sample unmodeled dynamics. A successful industrial application is carried out, where it has been shown that both the supply water temperature and the rate of the changes of the steam flow-rate can be controlled well inside their targeted ranges when the process is subjected to unknown variations of its dynamics.« less
Modeling of Receptor Tyrosine Kinase Signaling: Computational and Experimental Protocols.
Fey, Dirk; Aksamitiene, Edita; Kiyatkin, Anatoly; Kholodenko, Boris N
2017-01-01
The advent of systems biology has convincingly demonstrated that the integration of experiments and dynamic modelling is a powerful approach to understand the cellular network biology. Here we present experimental and computational protocols that are necessary for applying this integrative approach to the quantitative studies of receptor tyrosine kinase (RTK) signaling networks. Signaling by RTKs controls multiple cellular processes, including the regulation of cell survival, motility, proliferation, differentiation, glucose metabolism, and apoptosis. We describe methods of model building and training on experimentally obtained quantitative datasets, as well as experimental methods of obtaining quantitative dose-response and temporal dependencies of protein phosphorylation and activities. The presented methods make possible (1) both the fine-grained modeling of complex signaling dynamics and identification of salient, course-grained network structures (such as feedback loops) that bring about intricate dynamics, and (2) experimental validation of dynamic models.
System level analysis and control of manufacturing process variation
Hamada, Michael S.; Martz, Harry F.; Eleswarpu, Jay K.; Preissler, Michael J.
2005-05-31
A computer-implemented method is implemented for determining the variability of a manufacturing system having a plurality of subsystems. Each subsystem of the plurality of subsystems is characterized by signal factors, noise factors, control factors, and an output response, all having mean and variance values. Response models are then fitted to each subsystem to determine unknown coefficients for use in the response models that characterize the relationship between the signal factors, noise factors, control factors, and the corresponding output response having mean and variance values that are related to the signal factors, noise factors, and control factors. The response models for each subsystem are coupled to model the output of the manufacturing system as a whole. The coefficients of the fitted response models are randomly varied to propagate variances through the plurality of subsystems and values of signal factors and control factors are found to optimize the output of the manufacturing system to meet a specified criterion.
50 Years of Army Computing From ENIAC to MSRC
2000-09-01
processing capability. The scientifi c visualization program was started in 1984 to provide tools and expertise to help researchers graphically...and materials, forces modeling, nanoelectronics, electromagnetics and acoustics, signal image processing , and simulation and modeling. The ARL...mechanical and electrical calculating equipment, punch card data processing equipment, analog computers, and early digital machines. Before beginning, we
Hamker, Fred H; Wiltschut, Jan
2007-09-01
Most computational models of coding are based on a generative model according to which the feedback signal aims to reconstruct the visual scene as close as possible. We here explore an alternative model of feedback. It is derived from studies of attention and thus, probably more flexible with respect to attentive processing in higher brain areas. According to this model, feedback implements a gain increase of the feedforward signal. We use a dynamic model with presynaptic inhibition and Hebbian learning to simultaneously learn feedforward and feedback weights. The weights converge to localized, oriented, and bandpass filters similar as the ones found in V1. Due to presynaptic inhibition the model predicts the organization of receptive fields within the feedforward pathway, whereas feedback primarily serves to tune early visual processing according to the needs of the task.
Parallel Processing with Digital Signal Processing Hardware and Software
NASA Technical Reports Server (NTRS)
Swenson, Cory V.
1995-01-01
The assembling and testing of a parallel processing system is described which will allow a user to move a Digital Signal Processing (DSP) application from the design stage to the execution/analysis stage through the use of several software tools and hardware devices. The system will be used to demonstrate the feasibility of the Algorithm To Architecture Mapping Model (ATAMM) dataflow paradigm for static multiprocessor solutions of DSP applications. The individual components comprising the system are described followed by the installation procedure, research topics, and initial program development.
NASA Astrophysics Data System (ADS)
Chen, Yonghong; Bressler, Steven L.; Knuth, Kevin H.; Truccolo, Wilson A.; Ding, Mingzhou
2006-06-01
In this article we consider the stochastic modeling of neurobiological time series from cognitive experiments. Our starting point is the variable-signal-plus-ongoing-activity model. From this model a differentially variable component analysis strategy is developed from a Bayesian perspective to estimate event-related signals on a single trial basis. After subtracting out the event-related signal from recorded single trial time series, the residual ongoing activity is treated as a piecewise stationary stochastic process and analyzed by an adaptive multivariate autoregressive modeling strategy which yields power, coherence, and Granger causality spectra. Results from applying these methods to local field potential recordings from monkeys performing cognitive tasks are presented.
Tracking signal test to monitor an intelligent time series forecasting model
NASA Astrophysics Data System (ADS)
Deng, Yan; Jaraiedi, Majid; Iskander, Wafik H.
2004-03-01
Extensive research has been conducted on the subject of Intelligent Time Series forecasting, including many variations on the use of neural networks. However, investigation of model adequacy over time, after the training processes is completed, remains to be fully explored. In this paper we demonstrate a how a smoothed error tracking signals test can be incorporated into a neuro-fuzzy model to monitor the forecasting process and as a statistical measure for keeping the forecasting model up-to-date. The proposed monitoring procedure is effective in the detection of nonrandom changes, due to model inadequacy or lack of unbiasedness in the estimation of model parameters and deviations from the existing patterns. This powerful detection device will result in improved forecast accuracy in the long run. An example data set has been used to demonstrate the application of the proposed method.
2010-01-01
Background The challenge today is to develop a modeling and simulation paradigm that integrates structural, molecular and genetic data for a quantitative understanding of physiology and behavior of biological processes at multiple scales. This modeling method requires techniques that maintain a reasonable accuracy of the biological process and also reduces the computational overhead. This objective motivates the use of new methods that can transform the problem from energy and affinity based modeling to information theory based modeling. To achieve this, we transform all dynamics within the cell into a random event time, which is specified through an information domain measure like probability distribution. This allows us to use the “in silico” stochastic event based modeling approach to find the molecular dynamics of the system. Results In this paper, we present the discrete event simulation concept using the example of the signal transduction cascade triggered by extra-cellular Mg2+ concentration in the two component PhoPQ regulatory system of Salmonella Typhimurium. We also present a model to compute the information domain measure of the molecular transport process by estimating the statistical parameters of inter-arrival time between molecules/ions coming to a cell receptor as external signal. This model transforms the diffusion process into the information theory measure of stochastic event completion time to get the distribution of the Mg2+ departure events. Using these molecular transport models, we next study the in-silico effects of this external trigger on the PhoPQ system. Conclusions Our results illustrate the accuracy of the proposed diffusion models in explaining the molecular/ionic transport processes inside the cell. Also, the proposed simulation framework can incorporate the stochasticity in cellular environments to a certain degree of accuracy. We expect that this scalable simulation platform will be able to model more complex biological systems with reasonable accuracy to understand their temporal dynamics. PMID:21143785
Ghosh, Preetam; Ghosh, Samik; Basu, Kalyan; Das, Sajal K; Zhang, Chaoyang
2010-12-01
The challenge today is to develop a modeling and simulation paradigm that integrates structural, molecular and genetic data for a quantitative understanding of physiology and behavior of biological processes at multiple scales. This modeling method requires techniques that maintain a reasonable accuracy of the biological process and also reduces the computational overhead. This objective motivates the use of new methods that can transform the problem from energy and affinity based modeling to information theory based modeling. To achieve this, we transform all dynamics within the cell into a random event time, which is specified through an information domain measure like probability distribution. This allows us to use the "in silico" stochastic event based modeling approach to find the molecular dynamics of the system. In this paper, we present the discrete event simulation concept using the example of the signal transduction cascade triggered by extra-cellular Mg2+ concentration in the two component PhoPQ regulatory system of Salmonella Typhimurium. We also present a model to compute the information domain measure of the molecular transport process by estimating the statistical parameters of inter-arrival time between molecules/ions coming to a cell receptor as external signal. This model transforms the diffusion process into the information theory measure of stochastic event completion time to get the distribution of the Mg2+ departure events. Using these molecular transport models, we next study the in-silico effects of this external trigger on the PhoPQ system. Our results illustrate the accuracy of the proposed diffusion models in explaining the molecular/ionic transport processes inside the cell. Also, the proposed simulation framework can incorporate the stochasticity in cellular environments to a certain degree of accuracy. We expect that this scalable simulation platform will be able to model more complex biological systems with reasonable accuracy to understand their temporal dynamics.
The role of extra-foveal processing in 3D imaging
NASA Astrophysics Data System (ADS)
Eckstein, Miguel P.; Lago, Miguel A.; Abbey, Craig K.
2017-03-01
The field of medical image quality has relied on the assumption that metrics of image quality for simple visual detection tasks are a reliable proxy for the more clinically realistic visual search tasks. Rank order of signal detectability across conditions often generalizes from detection to search tasks. Here, we argue that search in 3D images represents a paradigm shift in medical imaging: radiologists typically cannot exhaustively scrutinize all regions of interest with the high acuity fovea requiring detection of signals with extra-foveal areas (visual periphery) of the human retina. We hypothesize that extra-foveal processing can alter the detectability of certain types of signals in medical images with important implications for search in 3D medical images. We compare visual search of two different types of signals in 2D vs. 3D images. We show that a small microcalcification-like signal is more highly detectable than a larger mass-like signal in 2D search, but its detectability largely decreases (relative to the larger signal) in the 3D search task. Utilizing measurements of observer detectability as a function retinal eccentricity and observer eye fixations we can predict the pattern of results in the 2D and 3D search studies. Our findings: 1) suggest that observer performance findings with 2D search might not always generalize to 3D search; 2) motivate the development of a new family of model observers that take into account the inhomogeneous visual processing across the retina (foveated model observers).
Kwon, Yea-Hoon; Shin, Sae-Byuk; Kim, Shin-Dug
2018-04-30
The purpose of this study is to improve human emotional classification accuracy using a convolution neural networks (CNN) model and to suggest an overall method to classify emotion based on multimodal data. We improved classification performance by combining electroencephalogram (EEG) and galvanic skin response (GSR) signals. GSR signals are preprocessed using by the zero-crossing rate. Sufficient EEG feature extraction can be obtained through CNN. Therefore, we propose a suitable CNN model for feature extraction by tuning hyper parameters in convolution filters. The EEG signal is preprocessed prior to convolution by a wavelet transform while considering time and frequency simultaneously. We use a database for emotion analysis using the physiological signals open dataset to verify the proposed process, achieving 73.4% accuracy, showing significant performance improvement over the current best practice models.
Modeling the Atmospheric Phase Effects of a Digital Antenna Array Communications System
NASA Technical Reports Server (NTRS)
Tkacenko, A.
2006-01-01
In an antenna array system such as that used in the Deep Space Network (DSN) for satellite communication, it is often necessary to account for the effects due to the atmosphere. Typically, the atmosphere induces amplitude and phase fluctuations on the transmitted downlink signal that invalidate the assumed stationarity of the signal model. The degree to which these perturbations affect the stationarity of the model depends both on parameters of the atmosphere, including wind speed and turbulence strength, and on parameters of the communication system, such as the sampling rate used. In this article, we focus on modeling the atmospheric phase fluctuations in a digital antenna array communications system. Based on a continuous-time statistical model for the atmospheric phase effects, we show how to obtain a related discrete-time model based on sampling the continuous-time process. The effects of the nonstationarity of the resulting signal model are investigated using the sample matrix inversion (SMI) algorithm for minimum mean-squared error (MMSE) equalization of the received signal
A Stochastic Detection and Retrieval Model for the Study of Metacognition
ERIC Educational Resources Information Center
Jang, Yoonhee; Wallsten, Thomas S.; Huber, David E.
2012-01-01
We present a signal detection-like model termed the stochastic detection and retrieval model (SDRM) for use in studying metacognition. Focusing on paradigms that relate retrieval (e.g., recall or recognition) and confidence judgments, the SDRM measures (1) variance in the retrieval process, (2) variance in the confidence process, (3) the extent to…
Cichy, Radoslaw Martin; Khosla, Aditya; Pantazis, Dimitrios; Oliva, Aude
2017-01-01
Human scene recognition is a rapid multistep process evolving over time from single scene image to spatial layout processing. We used multivariate pattern analyses on magnetoencephalography (MEG) data to unravel the time course of this cortical process. Following an early signal for lower-level visual analysis of single scenes at ~100 ms, we found a marker of real-world scene size, i.e. spatial layout processing, at ~250 ms indexing neural representations robust to changes in unrelated scene properties and viewing conditions. For a quantitative model of how scene size representations may arise in the brain, we compared MEG data to a deep neural network model trained on scene classification. Representations of scene size emerged intrinsically in the model, and resolved emerging neural scene size representation. Together our data provide a first description of an electrophysiological signal for layout processing in humans, and suggest that deep neural networks are a promising framework to investigate how spatial layout representations emerge in the human brain. PMID:27039703
The Paleoclimate Uncertainty Cascade: Tracking Proxy Errors Via Proxy System Models.
NASA Astrophysics Data System (ADS)
Emile-Geay, J.; Dee, S. G.; Evans, M. N.; Adkins, J. F.
2014-12-01
Paleoclimatic observations are, by nature, imperfect recorders of climate variables. Empirical approaches to their calibration are challenged by the presence of multiple sources of uncertainty, which may confound the interpretation of signals and the identifiability of the noise. In this talk, I will demonstrate the utility of proxy system models (PSMs, Evans et al, 2013, 10.1016/j.quascirev.2013.05.024) to quantify the impact of all known sources of uncertainty. PSMs explicitly encode the mechanistic knowledge of the physical, chemical, biological and geological processes from which paleoclimatic observations arise. PSMs may be divided into sensor, archive and observation components, all of which may conspire to obscure climate signals in actual paleo-observations. As an example, we couple a PSM for the δ18O of speleothem calcite to an isotope-enabled climate model (Dee et al, submitted) to analyze the potential of this measurement as a proxy for precipitation amount. A simple soil/karst model (Partin et al, 2013, 10.1130/G34718.1) is used as sensor model, while a hiatus-permitting chronological model (Haslett & Parnell, 2008, 10.1111/j.1467-9876.2008.00623.x) is used as part of the observation model. This subdivision allows us to explicitly model the transformation from precipitation amount to speleothem calcite δ18O as a multi-stage process via a physical and chemical sensor model, and a stochastic archive model. By illustrating the PSM's behavior within the context of the climate simulations, we show how estimates of climate variability may be affected by each submodel's transformation of the signal. By specifying idealized climate signals(periodic vs. episodic, slow vs. fast) to the PSM, we investigate how frequency and amplitude patterns are modulated by sensor and archive submodels. To the extent that the PSM and the climate models are representative of real world processes, then the results may help us more accurately interpret existing paleodata, characterize their uncertainties, and design sampling strategies that exploit their strengths while mitigating their weaknesses.
Remote sensing of the energetic status of plants and ecosystems: optical and odorous signals
NASA Astrophysics Data System (ADS)
Penuelas, J.; Bartrons, M.; Llusia, J.; Filella, I.
2016-12-01
The optical and odorous signals emitted by plants and ecosystems present consistent relationships. They offer promising prospects for continuous local and global monitoring of the energetic status of plants and ecosystems, and therefore of their processing of energy and matter. We will discuss how the energetic status of plants (and ecosystems) resulting from the balance between the supply and demand of reducing power can be assessed biochemically, by the cellular NADPH/NADP ratio, optically, by using the photochemical reflectance index and sun-induced fluorescence as indicators of the dissipation of excess energy and associated physiological processes, and "odorously", by the emission of volatile organic compounds such as isoprenoids, as indicators of an excess of reducing equivalents and also of enhancement of protective converging physiological processes. These signals thus provide information on the energetic status, associated health status, and the functioning of plants and ecosystems. We will present the links among the three signals and will especially discuss the possibility of remotely sense the optical signals linked to carbon uptake and VOCs exchange by plants and ecosystems. These signals and their integration may have multiple applications for environmental and agricultural monitoring, for example, by extending the spatial coverage of carbon-flux and VOCs emission observations to most places and times, and/or for improving the process-based modeling of carbon fixation and isoprenoid emissions from terrestrial vegetation on plant, ecosystemic and global scales. Considerable challenges remain for a wide-scale and routine implementation of these biochemical, optical, and odorous signals for ecosystemic and/or agronomic monitoring and modeling, but its interest for making further steps forward in global ecology, agricultural applications, global carbon cycle, atmospheric science, and earth science warrants further research efforts in this line.
NASA Astrophysics Data System (ADS)
Martinec, Zdeněk; Velímský, Jakub; Haagmans, Roger; Šachl, Libor
2018-02-01
This study deals with the analysis of Swarm vector magnetic field measurements in order to estimate the magnetic field of magnetospheric ring current. For a single Swarm satellite, the magnetic measurements are processed by along-track spectral analysis on a track-by-track basis. The main and lithospheric magnetic fields are modelled by the CHAOS-6 field model and subtracted from the along-track Swarm magnetic data. The mid-latitude residual signal is then spectrally analysed and extrapolated to the polar regions. The resulting model of the magnetosphere (model MME) is compared to the existing Swarm Level 2 magnetospheric field model (MMA_SHA_2C). The differences of up to 10 nT are found on the nightsides Swarm data from 2014 April 8 to May 10, which are due to different processing schemes used to construct the two magnetospheric magnetic field models. The forward-simulated magnetospheric magnetic field generated by the external part of model MME then demonstrates the consistency of the separation of the Swarm along-track signal into the external and internal parts by the two-step along-track spectral analysis.
Calcium as a signal integrator in developing epithelial tissues.
Brodskiy, Pavel A; Zartman, Jeremiah J
2018-05-16
Decoding how tissue properties emerge across multiple spatial and temporal scales from the integration of local signals is a grand challenge in quantitative biology. For example, the collective behavior of epithelial cells is critical for shaping developing embryos. Understanding how epithelial cells interpret a diverse range of local signals to coordinate tissue-level processes requires a systems-level understanding of development. Integration of multiple signaling pathways that specify cell signaling information requires second messengers such as calcium ions. Increasingly, specific roles have been uncovered for calcium signaling throughout development. Calcium signaling regulates many processes including division, migration, death, and differentiation. However, the pleiotropic and ubiquitous nature of calcium signaling implies that many additional functions remain to be discovered. Here we review a selection of recent studies to highlight important insights into how multiple signals are transduced by calcium transients in developing epithelial tissues. Quantitative imaging and computational modeling have provided important insights into how calcium signaling integration occurs. Reverse-engineering the conserved features of signal integration mediated by calcium signaling will enable novel approaches in regenerative medicine and synthetic control of morphogenesis.
Petri net-based method for the analysis of the dynamics of signal propagation in signaling pathways.
Hardy, Simon; Robillard, Pierre N
2008-01-15
Cellular signaling networks are dynamic systems that propagate and process information, and, ultimately, cause phenotypical responses. Understanding the circuitry of the information flow in cells is one of the keys to understanding complex cellular processes. The development of computational quantitative models is a promising avenue for attaining this goal. Not only does the analysis of the simulation data based on the concentration variations of biological compounds yields information about systemic state changes, but it is also very helpful for obtaining information about the dynamics of signal propagation. This article introduces a new method for analyzing the dynamics of signal propagation in signaling pathways using Petri net theory. The method is demonstrated with the Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) regulation network. The results constitute temporal information about signal propagation in the network, a simplified graphical representation of the network and of the signal propagation dynamics and a characterization of some signaling routes as regulation motifs.
Sparse representation of electrodermal activity with knowledge-driven dictionaries.
Chaspari, Theodora; Tsiartas, Andreas; Stein, Leah I; Cermak, Sharon A; Narayanan, Shrikanth S
2015-03-01
Biometric sensors and portable devices are being increasingly embedded into our everyday life, creating the need for robust physiological models that efficiently represent, analyze, and interpret the acquired signals. We propose a knowledge-driven method to represent electrodermal activity (EDA), a psychophysiological signal linked to stress, affect, and cognitive processing. We build EDA-specific dictionaries that accurately model both the slow varying tonic part and the signal fluctuations, called skin conductance responses (SCR), and use greedy sparse representation techniques to decompose the signal into a small number of atoms from the dictionary. Quantitative evaluation of our method considers signal reconstruction, compression rate, and information retrieval measures, that capture the ability of the model to incorporate the main signal characteristics, such as SCR occurrences. Compared to previous studies fitting a predetermined structure to the signal, results indicate that our approach provides benefits across all aforementioned criteria. This paper demonstrates the ability of appropriate dictionaries along with sparse decomposition methods to reliably represent EDA signals and provides a foundation for automatic measurement of SCR characteristics and the extraction of meaningful EDA features.
Development of a GCR Event-based Risk Model
NASA Technical Reports Server (NTRS)
Cucinotta, Francis A.; Ponomarev, Artem L.; Plante, Ianik; Carra, Claudio; Kim, Myung-Hee
2009-01-01
A goal at NASA is to develop event-based systems biology models of space radiation risks that will replace the current dose-based empirical models. Complex and varied biochemical signaling processes transmit the initial DNA and oxidative damage from space radiation into cellular and tissue responses. Mis-repaired damage or aberrant signals can lead to genomic instability, persistent oxidative stress or inflammation, which are causative of cancer and CNS risks. Protective signaling through adaptive responses or cell repopulation is also possible. We are developing a computational simulation approach to galactic cosmic ray (GCR) effects that is based on biological events rather than average quantities such as dose, fluence, or dose equivalent. The goal of the GCR Event-based Risk Model (GERMcode) is to provide a simulation tool to describe and integrate physical and biological events into stochastic models of space radiation risks. We used the quantum multiple scattering model of heavy ion fragmentation (QMSFRG) and well known energy loss processes to develop a stochastic Monte-Carlo based model of GCR transport in spacecraft shielding and tissue. We validated the accuracy of the model by comparing to physical data from the NASA Space Radiation Laboratory (NSRL). Our simulation approach allows us to time-tag each GCR proton or heavy ion interaction in tissue including correlated secondary ions often of high multiplicity. Conventional space radiation risk assessment employs average quantities, and assumes linearity and additivity of responses over the complete range of GCR charge and energies. To investigate possible deviations from these assumptions, we studied several biological response pathway models of varying induction and relaxation times including the ATM, TGF -Smad, and WNT signaling pathways. We then considered small volumes of interacting cells and the time-dependent biophysical events that the GCR would produce within these tissue volumes to estimate how GCR event rates mapped to biological signaling induction and relaxation times. We considered several hypotheses related to signaling and cancer risk, and then performed simulations for conditions where aberrant or adaptive signaling would occur on long-duration space mission. Our results do not support the conventional assumptions of dose, linearity and additivity. A discussion on how event-based systems biology models, which focus on biological signaling as the mechanism to propagate damage or adaptation, can be further developed for cancer and CNS space radiation risk projections is given.
Music Signal Processing Using Vector Product Neural Networks
NASA Astrophysics Data System (ADS)
Fan, Z. C.; Chan, T. S.; Yang, Y. H.; Jang, J. S. R.
2017-05-01
We propose a novel neural network model for music signal processing using vector product neurons and dimensionality transformations. Here, the inputs are first mapped from real values into three-dimensional vectors then fed into a three-dimensional vector product neural network where the inputs, outputs, and weights are all three-dimensional values. Next, the final outputs are mapped back to the reals. Two methods for dimensionality transformation are proposed, one via context windows and the other via spectral coloring. Experimental results on the iKala dataset for blind singing voice separation confirm the efficacy of our model.
Modeling and control parameters for GMAW, short-circuiting transfer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook, G.E.; DeLapp, D.R.; Barnett, R.J.
1996-12-31
Digital signal processing was used to analyze the electrical arc signals of the gas metal arc welding process with short-circuiting transfer. Among the features extracted were arc voltage and current (both average and peak values), short-circuiting frequency, arc period, shorting period, and the ratio of the arcing to shorting period. Additionally , a Joule heating model was derived which accurately predicted the melt-back distance during each short. The short-circuiting frequency, the ratio of the arc period to short periods, and the melt-back distance were found to be good indicators for monitoring and control of stable arc conditions.
Signal processing system for electrotherapy applications
NASA Astrophysics Data System (ADS)
Płaza, Mirosław; Szcześniak, Zbigniew
2017-08-01
The system of signal processing for electrotherapeutic applications is proposed in the paper. The system makes it possible to model the curve of threshold human sensitivity to current (Dalziel's curve) in full medium frequency range (1kHz-100kHz). The tests based on the proposed solution were conducted and their results were compared with those obtained according to the assumptions of High Tone Power Therapy method and referred to optimum values. Proposed system has high dynamics and precision of mapping the curve of threshold human sensitivity to current and can be used in all methods where threshold curves are modelled.
Reference analysis of the signal + background model in counting experiments
NASA Astrophysics Data System (ADS)
Casadei, D.
2012-01-01
The model representing two independent Poisson processes, labelled as ``signal'' and ``background'' and both contributing additively to the total number of counted events, is considered from a Bayesian point of view. This is a widely used model for the searches of rare or exotic events in presence of a background source, as for example in the searches performed by high-energy physics experiments. In the assumption of prior knowledge about the background yield, a reference prior is obtained for the signal alone and its properties are studied. Finally, the properties of the full solution, the marginal reference posterior, are illustrated with few examples.
Ranjan, Bobby; Chong, Ket Hing; Zheng, Jie
2018-04-11
Alzheimer's disease (AD) is a progressive neurological disorder, recognized as the most common cause of dementia affecting people aged 65 and above. AD is characterized by an increase in amyloid metabolism, and by the misfolding and deposition of β-amyloid oligomers in and around neurons in the brain. These processes remodel the calcium signaling mechanism in neurons, leading to cell death via apoptosis. Despite accumulating knowledge about the biological processes underlying AD, mathematical models to date are restricted to depicting only a small portion of the pathology. Here, we integrated multiple mathematical models to analyze and understand the relationship among amyloid depositions, calcium signaling and mitochondrial permeability transition pore (PTP) related cell apoptosis in AD. The model was used to simulate calcium dynamics in the absence and presence of AD. In the absence of AD, i.e. without β-amyloid deposition, mitochondrial and cytosolic calcium level remains in the low resting concentration. However, our in silico simulation of the presence of AD with the β-amyloid deposition, shows an increase in the entry of calcium ions into the cell and dysregulation of Ca 2+ channel receptors on the Endoplasmic Reticulum. This composite model enabled us to make simulation that is not possible to measure experimentally. Our mathematical model depicting the mechanisms affecting calcium signaling in neurons can help understand AD at the systems level and has potential for diagnostic and therapeutic applications.
Narayanan, Shrikanth; Georgiou, Panayiotis G
2013-02-07
The expression and experience of human behavior are complex and multimodal and characterized by individual and contextual heterogeneity and variability. Speech and spoken language communication cues offer an important means for measuring and modeling human behavior. Observational research and practice across a variety of domains from commerce to healthcare rely on speech- and language-based informatics for crucial assessment and diagnostic information and for planning and tracking response to an intervention. In this paper, we describe some of the opportunities as well as emerging methodologies and applications of human behavioral signal processing (BSP) technology and algorithms for quantitatively understanding and modeling typical, atypical, and distressed human behavior with a specific focus on speech- and language-based communicative, affective, and social behavior. We describe the three important BSP components of acquiring behavioral data in an ecologically valid manner across laboratory to real-world settings, extracting and analyzing behavioral cues from measured data, and developing models offering predictive and decision-making support. We highlight both the foundational speech and language processing building blocks as well as the novel processing and modeling opportunities. Using examples drawn from specific real-world applications ranging from literacy assessment and autism diagnostics to psychotherapy for addiction and marital well being, we illustrate behavioral informatics applications of these signal processing techniques that contribute to quantifying higher level, often subjectively described, human behavior in a domain-sensitive fashion.
NASA Astrophysics Data System (ADS)
Lu, Weizhao; Huang, Chunhui; Hou, Kun; Shi, Liting; Zhao, Huihui; Li, Zhengmei; Qiu, Jianfeng
2018-05-01
In continuous-variable quantum key distribution (CV-QKD), weak signal carrying information transmits from Alice to Bob; during this process it is easily influenced by unknown noise which reduces signal-to-noise ratio, and strongly impacts reliability and stability of the communication. Recurrent quantum neural network (RQNN) is an artificial neural network model which can perform stochastic filtering without any prior knowledge of the signal and noise. In this paper, a modified RQNN algorithm with expectation maximization algorithm is proposed to process the signal in CV-QKD, which follows the basic rule of quantum mechanics. After RQNN, noise power decreases about 15 dBm, coherent signal recognition rate of RQNN is 96%, quantum bit error rate (QBER) drops to 4%, which is 6.9% lower than original QBER, and channel capacity is notably enlarged.
Raghunath, Arathi; Sambarey, Awanti; Sharma, Neha; Mahadevan, Usha; Chandra, Nagasuma
2015-04-29
Ultraviolet radiations (UV) serve as an environmental stress for human skin, and result in melanogenesis, with the pigment melanin having protective effects against UV induced damage. This involves a dynamic and complex regulation of various biological processes that results in the expression of melanin in the outer most layers of the epidermis, where it can exert its protective effect. A comprehensive understanding of the underlying cross talk among different signalling molecules and cell types is only possible through a systems perspective. Increasing incidences of both melanoma and non-melanoma skin cancers necessitate the need to better comprehend UV mediated effects on skin pigmentation at a systems level, so as to ultimately evolve knowledge-based strategies for efficient protection and prevention of skin diseases. A network model for UV-mediated skin pigmentation in the epidermis was constructed and subjected to shortest path analysis. Virtual knock-outs were carried out to identify essential signalling components. We describe a network model for UV-mediated skin pigmentation in the epidermis. The model consists of 265 components (nodes) and 429 directed interactions among them, capturing the manner in which one component influences the other and channels information. Through shortest path analysis, we identify novel signalling pathways relevant to pigmentation. Virtual knock-outs or perturbations of specific nodes in the network have led to the identification of alternate modes of signalling as well as enabled determining essential nodes in the process. The model presented provides a comprehensive picture of UV mediated signalling manifesting in human skin pigmentation. A systems perspective helps provide a holistic purview of interconnections and complexity in the processes leading to pigmentation. The model described here is extensive yet amenable to expansion as new data is gathered. Through this study, we provide a list of important proteins essential for pigmentation which can be further explored to better understand normal pigmentation as well as its pathologies including vitiligo and melanoma, and enable therapeutic intervention.
Chen, Jiawen; Xie, Zhong-Ru; Wu, Yinghao
2016-07-01
The ligand-binding of membrane receptors on cell surfaces initiates the dynamic process of cross-membrane signal transduction. It is an indispensable part of the signaling network for cells to communicate with external environments. Recent experiments revealed that molecular components in signal transduction are not randomly mixed, but spatially organized into distinctive patterns. These patterns, such as receptor clustering and ligand oligomerization, lead to very different gene expression profiles. However, little is understood about the molecular mechanisms and functional impacts of this spatial-temporal regulation in cross-membrane signal transduction. In order to tackle this problem, we developed a hybrid computational method that decomposes a model of signaling network into two simulation modules. The physical process of binding between receptors and ligands on cell surfaces are simulated by a diffusion-reaction algorithm, while the downstream biochemical reactions are modeled by stochastic simulation of Gillespie algorithm. These two processes are coupled together by a synchronization framework. Using this method, we tested the dynamics of a simple signaling network in which the ligand binding of cell surface receptors triggers the phosphorylation of protein kinases, and in turn regulates the expression of target genes. We found that spatial aggregation of membrane receptors at cellular interfaces is able to either amplify or inhibit downstream signaling outputs, depending on the details of clustering mechanism. Moreover, by providing higher binding avidity, the co-localization of ligands into multi-valence complex modulates signaling in very different ways that are closely related to the binding affinity between ligand and receptor. We also found that the temporal oscillation of the signaling pathway that is derived from genetic feedback loops can be modified by the spatial clustering of membrane receptors. In summary, our method demonstrates the functional importance of spatial organization in cross-membrane signal transduction. The method can be applied to any specific signaling pathway in cells.
NASA Astrophysics Data System (ADS)
Tang, Jian; Qiao, Junfei; Wu, ZhiWei; Chai, Tianyou; Zhang, Jian; Yu, Wen
2018-01-01
Frequency spectral data of mechanical vibration and acoustic signals relate to difficult-to-measure production quality and quantity parameters of complex industrial processes. A selective ensemble (SEN) algorithm can be used to build a soft sensor model of these process parameters by fusing valued information selectively from different perspectives. However, a combination of several optimized ensemble sub-models with SEN cannot guarantee the best prediction model. In this study, we use several techniques to construct mechanical vibration and acoustic frequency spectra of a data-driven industrial process parameter model based on selective fusion multi-condition samples and multi-source features. Multi-layer SEN (MLSEN) strategy is used to simulate the domain expert cognitive process. Genetic algorithm and kernel partial least squares are used to construct the inside-layer SEN sub-model based on each mechanical vibration and acoustic frequency spectral feature subset. Branch-and-bound and adaptive weighted fusion algorithms are integrated to select and combine outputs of the inside-layer SEN sub-models. Then, the outside-layer SEN is constructed. Thus, "sub-sampling training examples"-based and "manipulating input features"-based ensemble construction methods are integrated, thereby realizing the selective information fusion process based on multi-condition history samples and multi-source input features. This novel approach is applied to a laboratory-scale ball mill grinding process. A comparison with other methods indicates that the proposed MLSEN approach effectively models mechanical vibration and acoustic signals.
Applications of digital processing for noise removal from plasma diagnostics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kane, R.J.; Candy, J.V.; Casper, T.A.
1985-11-11
The use of digital signal techniques for removal of noise components present in plasma diagnostic signals is discussed, particularly with reference to diamagnetic loop signals. These signals contain noise due to power supply ripple in addition to plasma characteristics. The application of noise canceling techniques, such as adaptive noise canceling and model-based estimation, will be discussed. The use of computer codes such as SIG is described. 19 refs., 5 figs.
Employment of adaptive learning techniques for the discrimination of acoustic emissions
NASA Astrophysics Data System (ADS)
Erkes, J. W.; McDonald, J. F.; Scarton, H. A.; Tam, K. C.; Kraft, R. P.
1983-11-01
The following aspects of this study on the discrimination of acoustic emissions (AE) were examined: (1) The analytical development and assessment of digital signal processing techniques for AE signal dereverberation, noise reduction, and source characterization; (2) The modeling and verification of some aspects of key selected techniques through a computer-based simulation; and (3) The study of signal propagation physics and their effect on received signal characteristics for relevant physical situations.
Seismoelectric data processing for surface surveys of shallow targets
Haines, S.S.; Guitton, A.; Biondi, B.
2007-01-01
The utility of the seismoelectric method relies on the development of methods to extract the signal of interest from background and source-generated coherent noise that may be several orders-of-magnitude stronger. We compare data processing approaches to develop a sequence of preprocessing and signal/noise separation and to quantify the noise level from which we can extract signal events. Our preferred sequence begins with the removal of power line harmonic noise and the use of frequency filters to minimize random and source-generated noise. Mapping to the linear Radon domain with an inverse process incorporating a sparseness constraint provides good separation of signal from noise, though it is ineffective on noise that shows the same dip as the signal. Similarly, the seismoelectric signal and noise do not separate cleanly in the Fourier domain, so f-k filtering can not remove all of the source-generated noise and it also disrupts signal amplitude patterns. We find that prediction-error filters provide the most effective method to separate signal and noise, while also preserving amplitude information, assuming that adequate pattern models can be determined for the signal and noise. These Radon-domain and prediction-error-filter methods successfully separate signal from <33 dB stronger noise in our test data. ?? 2007 Society of Exploration Geophysicists.
Tissue fusion during early mammalian development requires coordination of multiple cell types, the extracellular matrix, and complex signaling pathways. Fusion events during processes including heart development, neural tube closure, and palatal fusion are dependent on signaling ...
How quantitative measures unravel design principles in multi-stage phosphorylation cascades.
Frey, Simone; Millat, Thomas; Hohmann, Stefan; Wolkenhauer, Olaf
2008-09-07
We investigate design principles of linear multi-stage phosphorylation cascades by using quantitative measures for signaling time, signal duration and signal amplitude. We compare alternative pathway structures by varying the number of phosphorylations and the length of the cascade. We show that a model for a weakly activated pathway does not reflect the biological context well, unless it is restricted to certain parameter combinations. Focusing therefore on a more general model, we compare alternative structures with respect to a multivariate optimization criterion. We test the hypothesis that the structure of a linear multi-stage phosphorylation cascade is the result of an optimization process aiming for a fast response, defined by the minimum of the product of signaling time and signal duration. It is then shown that certain pathway structures minimize this criterion. Several popular models of MAPK cascades form the basis of our study. These models represent different levels of approximation, which we compare and discuss with respect to the quantitative measures.
2013-12-14
population covariance matrix with application to array signal processing; and 5) a sample covariance matrix for which a CLT is studied on linear...Applications , (01 2012): 1150004. doi: Walid Hachem, Malika Kharouf, Jamal Najim, Jack W. Silverstein. A CLT FOR INFORMATION- THEORETIC STATISTICS...for Multi-source Power Estimation, (04 2010) Malika Kharouf, Jamal Najim, Jack W. Silverstein, Walid Hachem. A CLT FOR INFORMATION- THEORETIC
Stepped-frequency GPR for utility line detection using polarization-dependent scattering
NASA Astrophysics Data System (ADS)
Jensen, Ole K.; Gregersen, Ole G.
2000-04-01
A GPR for detection of buried cables and pipes is developed by Ekko Dane Production in cooperation with Aalborg University. The appearance is a 'lawn mower' model including antennas, electronics and on-line data processing. A successful result is obtained by combining dedicated hardware and signal processing. The inherent signal to clutter ratio is bad, but making measurements at many polarization angles and subsequent signal processing improves the ratio. A simple model of the polarization dependence of the scattering from the target is used. The method is improved by combining the polarization filtering with averaging over small horizontal displacements. A stepped frequency measurement system is used. The method often implies long measurement times, but this problem is overcome by development of fast RF-electronics. Standard signal processors are used for real-time data processing. Several antenna array configurations are tested and optimized for low coupling between transmitter and receiver and for a short impulse response. A large number of tests have been made for different targets, e.g. metal cables and plastic pipes filled with air or water. Tests have been made under realistic ground conditions, including sand, wet clay, pavements and grass covered soil. The results show reliable detection even when the conditions are difficult.
Revisiting Gaussian Process Regression Modeling for Localization in Wireless Sensor Networks
Richter, Philipp; Toledano-Ayala, Manuel
2015-01-01
Signal strength-based positioning in wireless sensor networks is a key technology for seamless, ubiquitous localization, especially in areas where Global Navigation Satellite System (GNSS) signals propagate poorly. To enable wireless local area network (WLAN) location fingerprinting in larger areas while maintaining accuracy, methods to reduce the effort of radio map creation must be consolidated and automatized. Gaussian process regression has been applied to overcome this issue, also with auspicious results, but the fit of the model was never thoroughly assessed. Instead, most studies trained a readily available model, relying on the zero mean and squared exponential covariance function, without further scrutinization. This paper studies the Gaussian process regression model selection for WLAN fingerprinting in indoor and outdoor environments. We train several models for indoor/outdoor- and combined areas; we evaluate them quantitatively and compare them by means of adequate model measures, hence assessing the fit of these models directly. To illuminate the quality of the model fit, the residuals of the proposed model are investigated, as well. Comparative experiments on the positioning performance verify and conclude the model selection. In this way, we show that the standard model is not the most appropriate, discuss alternatives and present our best candidate. PMID:26370996
Application of homomorphic signal processing to stress wave factor analysis
NASA Technical Reports Server (NTRS)
Karagulle, H.; Williams, J. H., Jr.; Lee, S. S.
1985-01-01
The stress wave factor (SWF) signal, which is the output of an ultrasonic testing system where the transmitting and receiving transducers are coupled to the same face of the test structure, is analyzed in the frequency domain. The SWF signal generated in an isotropic elastic plate is modelled as the superposition of successive reflections. The reflection which is generated by the stress waves which travel p times as a longitudinal (P) wave and s times as a shear (S) wave through the plate while reflecting back and forth between the bottom and top faces of the plate is designated as the reflection with p, s. Short-time portions of the SWF signal are considered for obtaining spectral information on individual reflections. If the significant reflections are not overlapped, the short-time Fourier analysis is used. A summary of the elevant points of homomorphic signal processing, which is also called cepstrum analysis, is given. Homomorphic signal processing is applied to short-time SWF signals to obtain estimates of the log spectra of individual reflections for cases in which the reflections are overlapped. Two typical SWF signals generated in aluminum plates (overlapping and non-overlapping reflections) are analyzed.
Angelaki, Dora E
2017-01-01
Brainstem and cerebellar neurons implement an internal model to accurately estimate self-motion during externally generated (‘passive’) movements. However, these neurons show reduced responses during self-generated (‘active’) movements, indicating that predicted sensory consequences of motor commands cancel sensory signals. Remarkably, the computational processes underlying sensory prediction during active motion and their relationship to internal model computations during passive movements remain unknown. We construct a Kalman filter that incorporates motor commands into a previously established model of optimal passive self-motion estimation. The simulated sensory error and feedback signals match experimentally measured neuronal responses during active and passive head and trunk rotations and translations. We conclude that a single sensory internal model can combine motor commands with vestibular and proprioceptive signals optimally. Thus, although neurons carrying sensory prediction error or feedback signals show attenuated modulation, the sensory cues and internal model are both engaged and critically important for accurate self-motion estimation during active head movements. PMID:29043978
Hegazy, Maha A; Lotfy, Hayam M; Mowaka, Shereen; Mohamed, Ekram Hany
2016-07-05
Wavelets have been adapted for a vast number of signal-processing applications due to the amount of information that can be extracted from a signal. In this work, a comparative study on the efficiency of continuous wavelet transform (CWT) as a signal processing tool in univariate regression and a pre-processing tool in multivariate analysis using partial least square (CWT-PLS) was conducted. These were applied to complex spectral signals of ternary and quaternary mixtures. CWT-PLS method succeeded in the simultaneous determination of a quaternary mixture of drotaverine (DRO), caffeine (CAF), paracetamol (PAR) and p-aminophenol (PAP, the major impurity of paracetamol). While, the univariate CWT failed to simultaneously determine the quaternary mixture components and was able to determine only PAR and PAP, the ternary mixtures of DRO, CAF, and PAR and CAF, PAR, and PAP. During the calculations of CWT, different wavelet families were tested. The univariate CWT method was validated according to the ICH guidelines. While for the development of the CWT-PLS model a calibration set was prepared by means of an orthogonal experimental design and their absorption spectra were recorded and processed by CWT. The CWT-PLS model was constructed by regression between the wavelet coefficients and concentration matrices and validation was performed by both cross validation and external validation sets. Both methods were successfully applied for determination of the studied drugs in pharmaceutical formulations. Copyright © 2016 Elsevier B.V. All rights reserved.
Objective models of EMG signals for cyclic processes such as a human gait
NASA Astrophysics Data System (ADS)
Babska, Luiza; Selegrat, Monika; Dusza, Jacek J.
2016-09-01
EMG signals are small potentials appearing at the surface of human skin during muscle work. They arise due to changes in the physiological state of cell membranes in the muscle fibers. They are characterized by a relatively low frequency range (500 Hz) and a low amplitude signal (of the order of μV), making it difficult to record. Raw EMG signal is inherently random shape. However we can distinguish certain features related to the activation of the muscles of a deterministic or quasi-deterministic associated with the movement and its parametric description. Objective models of EMG signals were created on the base of actual data obtained from the VICON system installed at the University of Physical Education in Warsaw. The object of research (healthy woman) moved repeatedly after a fixed track. On her body 35 reflective markers to record the gait kinematics and 8 electrodes to record EMG signals were placed. We obtained research data included more than 1,000 EMG signals synchronized with the phases of gait. Test result of the work is an algorithm for obtaining the average EMG signal received from the multiple registration gait cycles carried out in the same reproducible conditions. The method described in the article is essentially a pre-finding measurement data from the two quasi-synchronous signals at different sampling frequencies for further processing. This signal is characterized by a significant reduction of high frequency noise and emphasis on the specific characteristics of individual records found in muscle activity.
Timeseries Signal Processing for Enhancing Mobile Surveys: Learning from Field Studies
NASA Astrophysics Data System (ADS)
Risk, D. A.; Lavoie, M.; Marshall, A. D.; Baillie, J.; Atherton, E. E.; Laybolt, W. D.
2015-12-01
Vehicle-based surveys using laser and other analyzers are now commonplace in research and industry. In many cases when these studies target biologically-relevant gases like methane and carbon dioxide, the minimum detection limits are often coarse (ppm) relative to the analyzer's capabilities (ppb), because of the inherent variability in the ambient background concentrations across the landscape that creates noise and uncertainty. This variation arises from localized biological sinks and sources, but also atmospheric turbulence, air pooling, and other factors. Computational processing routines are widely used in many fields to increase resolution of a target signal in temporally dense data, and offer promise for enhancing mobile surveying techniques. Signal processing routines can both help identify anomalies at very low levels, or can be used inversely to remove localized industrially-emitted anomalies from ecological data. This presentation integrates learnings from various studies in which simple signal processing routines were used successfully to isolate different temporally-varying components of 1 Hz timeseries measured with laser- and UV fluorescence-based analyzers. As illustrative datasets, we present results from industrial fugitive emission studies from across Canada's western provinces and other locations, and also an ecological study that aimed to model near-surface concentration variability across different biomes within eastern Canada. In these cases, signal processing algorithms contributed significantly to the clarity of both industrial, and ecological processes. In some instances, signal processing was too computationally intensive for real-time in-vehicle processing, but we identified workarounds for analyzer-embedded software that contributed to an improvement in real-time resolution of small anomalies. Signal processing is a natural accompaniment to these datasets, and many avenues are open to researchers who wish to enhance existing, and future datasets.
B Cell Antigen Receptor Signaling and Internalization Are Mutually Exclusive Events
Hou, Ping; Araujo, Elizabeth; Zhao, Tong; Zhang, Miao; Massenburg, Don; Veselits, Margaret; Doyle, Colleen; Dinner, Aaron R; Clark, Marcus R
2006-01-01
Engagement of the B cell antigen receptor initiates two concurrent processes, signaling and receptor internalization. While both are required for normal humoral immune responses, the relationship between these two processes is unknown. Herein, we demonstrate that following receptor ligation, a small subpopulation of B cell antigen receptors are inductively phosphorylated and selectively retained at the cell surface where they can serve as scaffolds for the assembly of signaling molecules. In contrast, the larger population of non-phosphorylated receptors is rapidly endocytosed. Each receptor can undergo only one of two mutually exclusive fates because the tyrosine-based motifs that mediate signaling when phosphorylated mediate internalization when not phosphorylated. Mathematical modeling indicates that the observed competition between receptor phosphorylation and internalization enhances signaling responses to low avidity ligands. PMID:16719564
Modern Techniques in Acoustical Signal and Image Processing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Candy, J V
2002-04-04
Acoustical signal processing problems can lead to some complex and intricate techniques to extract the desired information from noisy, sometimes inadequate, measurements. The challenge is to formulate a meaningful strategy that is aimed at performing the processing required even in the face of uncertainties. This strategy can be as simple as a transformation of the measured data to another domain for analysis or as complex as embedding a full-scale propagation model into the processor. The aims of both approaches are the same--to extract the desired information and reject the extraneous, that is, develop a signal processing scheme to achieve thismore » goal. In this paper, we briefly discuss this underlying philosophy from a ''bottom-up'' approach enabling the problem to dictate the solution rather than visa-versa.« less
Vertically Integrated Seismological Analysis I : Modeling
NASA Astrophysics Data System (ADS)
Russell, S.; Arora, N. S.; Jordan, M. I.; Sudderth, E.
2009-12-01
As part of its CTBT verification efforts, the International Data Centre (IDC) analyzes seismic and other signals collected from hundreds of stations around the world. Current processing at the IDC proceeds in a series of pipelined stages. From station processing to network processing, each decision is made on the basis of local information. This has the advantage of efficiency, and simplifies the structure of software implementations. However, this approach may reduce accuracy in the detection and phase classification of arrivals, association of detections to hypothesized events, and localization of small-magnitude events.In our work, we approach such detection and association problems as ones of probabilistic inference. In simple terms, let X be a random variable ranging over all possible collections of events, with each event defined by time, location, magnitude, and type (natural or man-made). Let Y range over all possible waveform signal recordings at all detection stations. Then Pθ(X) describes a parameterized generative prior over events, and P[|#30#|]φ(Y | X) describes how the signal is propagated and measured (including travel time, selective absorption and scattering, noise, artifacts, sensor bias, sensor failures, etc.). Given observed recordings Y = y, we are interested in the posterior P(X | Y = y), and perhaps in the value of X that maximizes it—i.e., the most likely explanation for all the sensor readings. As detailed below, an additional focus of our work is to robustly learn appropriate model parameters θ and φ from historical data. The primary advantage we expect is that decisions about arrivals, phase classifications, and associations are made with the benefit of all available evidence, not just the local signal or predefined recipes. Important phenomena—such as the successful detection of sub-threshold signals, correction of phase classifications using arrival information at other stations, and removal of false events based on the absence of signals—should all fall out of our probabilistic framework without the need for special processing rules. In our baseline model, natural events occur according to a spatially inhomogeneous Poisson process. Complex events (swarms and aftershocks) may then be captured via temporally inhomogeneous extensions. Man-made events have a uniform probability of occurring anywhere on the earth, with a tendency to occur closer to the surface. Phases are modelled via their amplitude, frequency distribution, and origin. In the simplest case, transmission times are characterized via the one-dimensional IASPEI-91 model, accounting for model errors with Gaussian uncertainty. Such homogeneous, approximate physical models can be further refined via historical data and previously developed corrections. Signal measurements are captured by station-specific models, based on sensor types and geometries, local frequency absorption characteristics, and time-varying noise models. At the conference, we expect to be able to quantitatively demonstrate the advantages of our approach, at least for simulated data. When reporting their findings, such systems can easily flag low-confidence events, unexplained arrivals, and ambiguous classifications to focus the efforts of expert analysts.
Three-dimensional laser radar modeling
NASA Astrophysics Data System (ADS)
Steinvall, Ove K.; Carlsson, Tomas
2001-09-01
Laser radars have the unique capability to give intensity and full 3-D images of an object. Doppler lidars can give velocity and vibration characteristics of an objects. These systems have many civilian and military applications such as terrain modelling, depth sounding, object detection and classification as well as object positioning. In order to derive the signal waveform from the object one has to account for the laser pulse time characteristics, media effects such as the atmospheric attenuation and turbulence effects or scattering properties, the target shape and reflection (BRDF), speckle noise together with the receiver and background noise. Finally the type of waveform processing (peak detection, leading edge etc.) is needed to model the sensor output to be compared with observations. We have developed a computer model which models performance of a 3-D laser radar. We will give examples of signal waveforms generated from model different targets calculated by integrating the laser beam profile in space and time over the target including reflection characteristics during different speckle and turbulence conditions. The result will be of help when designing and using new laser radar systems. The importance of different type of signal processing of the waveform in order to fulfil performance goals will be shown.
Intersymbol Interference Investigations Using a 3D Time-Dependent Traveling Wave Tube Model
NASA Technical Reports Server (NTRS)
Kory, Carol L.; Andro, Monty
2002-01-01
For the first time, a time-dependent, physics-based computational model has been used to provide a direct description of the effects of the traveling wave tube amplifier (TWTA) on modulated digital signals. The TWT model comprehensively takes into account the effects of frequency dependent AM/AM and AM/PM conversion; gain and phase ripple; drive-induced oscillations; harmonic generation; intermodulation products; and backward waves. Thus, signal integrity can be investigated in the presence of these sources of potential distortion as a function of the physical geometry and operating characteristics of the high power amplifier and the operational digital signal. This method promises superior predictive fidelity compared to methods using TWT models based on swept- amplitude and/or swept-frequency data. First, the TWT model using the three dimensional (3D) electromagnetic code MAFIA is presented. Then, this comprehensive model is used to investigate approximations made in conventional TWT black-box models used in communication system level simulations. To quantitatively demonstrate the effects these approximations have on digital signal performance predictions, including intersymbol interference (ISI), the MAFIA results are compared to the system level analysis tool, Signal Processing Workstation (SPW), using high order modulation schemes including 16 and 64-QAM.
Relationship Among Signal Fidelity, Hearing Loss, and Working Memory for Digital Noise Suppression.
Arehart, Kathryn; Souza, Pamela; Kates, James; Lunner, Thomas; Pedersen, Michael Syskind
2015-01-01
This study considered speech modified by additive babble combined with noise-suppression processing. The purpose was to determine the relative importance of the signal modifications, individual peripheral hearing loss, and individual cognitive capacity on speech intelligibility and speech quality. The participant group consisted of 31 individuals with moderate high-frequency hearing loss ranging in age from 51 to 89 years (mean = 69.6 years). Speech intelligibility and speech quality were measured using low-context sentences presented in babble at several signal-to-noise ratios. Speech stimuli were processed with a binary mask noise-suppression strategy with systematic manipulations of two parameters (error rate and attenuation values). The cumulative effects of signal modification produced by babble and signal processing were quantified using an envelope-distortion metric. Working memory capacity was assessed with a reading span test. Analysis of variance was used to determine the effects of signal processing parameters on perceptual scores. Hierarchical linear modeling was used to determine the role of degree of hearing loss and working memory capacity in individual listener response to the processed noisy speech. The model also considered improvements in envelope fidelity caused by the binary mask and the degradations to envelope caused by error and noise. The participants showed significant benefits in terms of intelligibility scores and quality ratings for noisy speech processed by the ideal binary mask noise-suppression strategy. This benefit was observed across a range of signal-to-noise ratios and persisted when up to a 30% error rate was introduced into the processing. Average intelligibility scores and average quality ratings were well predicted by an objective metric of envelope fidelity. Degree of hearing loss and working memory capacity were significant factors in explaining individual listener's intelligibility scores for binary mask processing applied to speech in babble. Degree of hearing loss and working memory capacity did not predict listeners' quality ratings. The results indicate that envelope fidelity is a primary factor in determining the combined effects of noise and binary mask processing for intelligibility and quality of speech presented in babble noise. Degree of hearing loss and working memory capacity are significant factors in explaining variability in listeners' speech intelligibility scores but not in quality ratings.
Signal and noise modeling in confocal laser scanning fluorescence microscopy.
Herberich, Gerlind; Windoffer, Reinhard; Leube, Rudolf E; Aach, Til
2012-01-01
Fluorescence confocal laser scanning microscopy (CLSM) has revolutionized imaging of subcellular structures in biomedical research by enabling the acquisition of 3D time-series of fluorescently-tagged proteins in living cells, hence forming the basis for an automated quantification of their morphological and dynamic characteristics. Due to the inherently weak fluorescence, CLSM images exhibit a low SNR. We present a novel model for the transfer of signal and noise in CLSM that is both theoretically sound as well as corroborated by a rigorous analysis of the pixel intensity statistics via measurement of the 3D noise power spectra, signal-dependence and distribution. Our model provides a better fit to the data than previously proposed models. Further, it forms the basis for (i) the simulation of the CLSM imaging process indispensable for the quantitative evaluation of CLSM image analysis algorithms, (ii) the application of Poisson denoising algorithms and (iii) the reconstruction of the fluorescence signal.
On the distortion of elevation dependent warming signals by quantile mapping
NASA Astrophysics Data System (ADS)
Jury, Martin W.; Mendlik, Thomas; Maraun, Douglas
2017-04-01
Elevation dependent warming (EDW), the amplification of warming under climate change with elevation, is likely to accelerate changes in e.g. cryospheric and hydrological systems. Responsible for EDW is a mixture of processes including snow albedo feedback, cloud formations or the location of aerosols. The degree of incorporation of this processes varies across state of the art climate models. In a recent study we were preparing bias corrected model output of CMIP5 GCMs and CORDEX RCMs over the Himalayan region for the glacier modelling community. In a first attempt we used quantile mapping (QM) to generate this data. A beforehand model evaluation showed that more than two third of the 49 included climate models were able to reproduce positive trend differences between areas of higher and lower elevations in winter, clearly visible in all of our five observational datasets used. Regrettably, we noticed that height dependent trend signals provided by models were distorted, most of the time in the direction of less EDW, sometimes even reversing EDW signals present in the models before the bias correction. As a consequence, we refrained from using quantile mapping for our task, as EDW poses one important factor influencing the climate in high altitudes for the nearer and more distant future, and used a climate change signal preserving bias correction approach. Here we present our findings of the distortion of the EDW temperature change by QM and discuss the influence of QM on different statistical properties as well as their modifications.
Real-time processing of radar return on a parallel computer
NASA Technical Reports Server (NTRS)
Aalfs, David D.
1992-01-01
NASA is working with the FAA to demonstrate the feasibility of pulse Doppler radar as a candidate airborne sensor to detect low altitude windshears. The need to provide the pilot with timely information about possible hazards has motivated a demand for real-time processing of a radar return. Investigated here is parallel processing as a means of accommodating the high data rates required. A PC based parallel computer, called the transputer, is used to investigate issues in real time concurrent processing of radar signals. A transputer network is made up of an array of single instruction stream processors that can be networked in a variety of ways. They are easily reconfigured and software development is largely independent of the particular network topology. The performance of the transputer is evaluated in light of the computational requirements. A number of algorithms have been implemented on the transputers in OCCAM, a language specially designed for parallel processing. These include signal processing algorithms such as the Fast Fourier Transform (FFT), pulse-pair, and autoregressive modelling, as well as routing software to support concurrency. The most computationally intensive task is estimating the spectrum. Two approaches have been taken on this problem, the first and most conventional of which is to use the FFT. By using table look-ups for the basis function and other optimizing techniques, an algorithm has been developed that is sufficient for real time. The other approach is to model the signal as an autoregressive process and estimate the spectrum based on the model coefficients. This technique is attractive because it does not suffer from the spectral leakage problem inherent in the FFT. Benchmark tests indicate that autoregressive modeling is feasible in real time.
Modularized Smad-regulated TGFβ signaling pathway.
Li, Yongfeng; Wang, Minli; Carra, Claudio; Cucinotta, Francis A
2012-12-01
The transforming Growth Factor β (TGFβ) signaling pathway is a prominent regulatory signaling pathway controlling various important cellular processes. TGFβ signaling can be induced by several factors including ionizing radiation. The pathway is regulated in a negative feedback loop through promoting the nuclear import of the regulatory Smads and a subsequent expression of inhibitory Smad7, that forms ubiquitin ligase with Smurf2, targeting active TGFβ receptors for degradation. In this work, we proposed a mathematical model to study the Smad-regulated TGFβ signaling pathway. By modularization, we are able to analyze mathematically each component subsystem and recover the nonlinear dynamics of the entire network system. Meanwhile the excitability, a common feature observed in the biological systems, in the TGFβ signaling pathway is discussed and supported as well by numerical simulation, indicating the robustness of the model. Published by Elsevier Inc.
Jiang, Junfeng; Liu, Tiegen; Zhang, Yimo; Liu, Lina; Zha, Ying; Zhang, Fan; Wang, Yunxin; Long, Pin
2005-03-15
A parallel demodulation system for extrinsic Fabry-Perot interferometer (EFPI) and fiber Bragg grating (FBG) sensors is presented that is based on a Michelson interferometer and combines the methods of low-coherence interference and Fourier transform spectrum. Signals from EFPI and FBG sensors are obtained simultaneously by scanning one arm of a Michelson interferometer, and an algorithm model is established to process the signals and retrieve both the wavelength of the FBG and the cavity length of the EFPI at the same time, which are then used to determine the strain and temperature.
Modeling of low-finesse, extrinsic fiber optic Fabry-Perot white light interferometers
NASA Astrophysics Data System (ADS)
Ma, Cheng; Tian, Zhipeng; Wang, Anbo
2012-06-01
This article introduces an approach for modeling the fiber optic low-finesse extrinsic Fabry-Pérot Interferometers (EFPI), aiming to address signal processing problems in EFPI demodulation algorithms based on white light interferometry. The main goal is to seek physical interpretations to correlate the sensor spectrum with the interferometer geometry (most importantly, the optical path difference). Because the signal demodulation quality and reliability hinge heavily on the understanding of such relationships, the model sheds light on optimizing the sensor performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pierre, John W.; Wies, Richard; Trudnowski, Daniel
Time-synchronized measurements provide rich information for estimating a power-system's electromechanical modal properties via advanced signal processing. This information is becoming critical for the improved operational reliability of interconnected grids. A given mode's properties are described by its frequency, damping, and shape. Modal frequencies and damping are useful indicators of power-system stress, usually declining with increased load or reduced grid capacity. Mode shape provides critical information for operational control actions. This project investigated many advanced techniques for power system identification from measured data focusing on mode frequency and damping ratio estimation. Investigators from the three universities coordinated their effort with Pacificmore » Northwest National Laboratory (PNNL). Significant progress was made on developing appropriate techniques for system identification with confidence intervals and testing those techniques on field measured data and through simulation. Experimental data from the western area power system was provided by PNNL and Bonneville Power Administration (BPA) for both ambient conditions and for signal injection tests. Three large-scale tests were conducted for the western area in 2005 and 2006. Measured field PMU (Phasor Measurement Unit) data was provided to the three universities. A 19-machine simulation model was enhanced for testing the system identification algorithms. Extensive simulations were run with this model to test the performance of the algorithms. University of Wyoming researchers participated in four primary activities: (1) Block and adaptive processing techniques for mode estimation from ambient signals and probing signals, (2) confidence interval estimation, (3) probing signal design and injection method analysis, and (4) performance assessment and validation from simulated and field measured data. Subspace based methods have been use to improve previous results from block processing techniques. Bootstrap techniques have been developed to estimate confidence intervals for the electromechanical modes from field measured data. Results were obtained using injected signal data provided by BPA. A new probing signal was designed that puts more strength into the signal for a given maximum peak to peak swing. Further simulations were conducted on a model based on measured data and with the modifications of the 19-machine simulation model. Montana Tech researchers participated in two primary activities: (1) continued development of the 19-machine simulation test system to include a DC line; and (2) extensive simulation analysis of the various system identification algorithms and bootstrap techniques using the 19 machine model. Researchers at the University of Alaska-Fairbanks focused on the development and testing of adaptive filter algorithms for mode estimation using data generated from simulation models and on data provided in collaboration with BPA and PNNL. There efforts consist of pre-processing field data, testing and refining adaptive filter techniques (specifically the Least Mean Squares (LMS), the Adaptive Step-size LMS (ASLMS), and Error Tracking (ET) algorithms). They also improved convergence of the adaptive algorithms by using an initial estimate from block processing AR method to initialize the weight vector for LMS. Extensive testing was performed on simulated data from the 19 machine model. This project was also extensively involved in the WECC (Western Electricity Coordinating Council) system wide tests carried out in 2005 and 2006. These tests involved injecting known probing signals into the western power grid. One of the primary goals of these tests was the reliable estimation of electromechanical mode properties from measured PMU data. Applied to the system were three types of probing inputs: (1) activation of the Chief Joseph Dynamic Brake, (2) mid-level probing at the Pacific DC Intertie (PDCI), and (3) low-level probing on the PDCI. The Chief Joseph Dynamic Brake is a 1400 MW disturbance to the system and is injected for a half of a second. For the mid and low-level probing, the Celilo terminal of the PDCI is modulated with a known probing signal. Similar but less extensive tests were conducted in June of 2000. The low-level probing signals were designed at the University of Wyoming. A number of important design factors are considered. The designed low-level probing signal used in the tests is a multi-sine signal. Its frequency content is focused in the range of the inter-area electromechanical modes. The most frequently used of these low-level multi-sine signals had a period of over two minutes, a root-mean-square (rms) value of 14 MW, and a peak magnitude of 20 MW. Up to 15 cycles of this probing signal were injected into the system resulting in a processing gain of 15. The resulting measured response at points throughout the system was not much larger than the ambient noise present in the measurements.« less
Sensor, signal, and image informatics - state of the art and current topics.
Lehmann, T M; Aach, T; Witte, H
2006-01-01
The number of articles published annually in the fields of biomedical signal and image acquisition and processing is increasing. Based on selected examples, this survey aims at comprehensively demonstrating the recent trends and developments. Four articles are selected for biomedical data acquisition covering topics such as dose saving in CT, C-arm X-ray imaging systems for volume imaging, and the replacement of dose-intensive CT-based diagnostic with harmonic ultrasound imaging. Regarding biomedical signal analysis (BSA), the four selected articles discuss the equivalence of different time-frequency approaches for signal analysis, an application to Cochlea implants, where time-frequency analysis is applied for controlling the replacement system, recent trends for fusion of different modalities, and the role of BSA as part of a brain machine interfaces. To cover the broad spectrum of publications in the field of biomedical image processing, six papers are focused. Important topics are content-based image retrieval in medical applications, automatic classification of tongue photographs from traditional Chinese medicine, brain perfusion analysis in single photon emission computed tomography (SPECT), model-based visualization of vascular trees, and virtual surgery, where enhanced visualization and haptic feedback techniques are combined with a sphere-filled model of the organ. The selected papers emphasize the five fields forming the chain of biomedical data processing: (1) data acquisition, (2) data reconstruction and pre-processing, (3) data handling, (4) data analysis, and (5) data visualization. Fields 1 and 2 form the sensor informatics, while fields 2 to 5 form signal or image informatics with respect to the nature of the data considered. Biomedical data acquisition and pre-processing, as well as data handling, analysis and visualization aims at providing reliable tools for decision support that improve the quality of health care. Comprehensive evaluation of the processing methods and their reliable integration in routine applications are future challenges in the field of sensor, signal and image informatics.
P-code enhanced method for processing encrypted GPS signals without knowledge of the encryption code
NASA Technical Reports Server (NTRS)
Young, Lawrence E. (Inventor); Meehan, Thomas K. (Inventor); Thomas, Jr., Jess Brooks (Inventor)
2000-01-01
In the preferred embodiment, an encrypted GPS signal is down-converted from RF to baseband to generate two quadrature components for each RF signal (L1 and L2). Separately and independently for each RF signal and each quadrature component, the four down-converted signals are counter-rotated with a respective model phase, correlated with a respective model P code, and then successively summed and dumped over presum intervals substantially coincident with chips of the respective encryption code. Without knowledge of the encryption-code signs, the effect of encryption-code sign flips is then substantially reduced by selected combinations of the resulting presums between associated quadrature components for each RF signal, separately and independently for the L1 and L2 signals. The resulting combined presums are then summed and dumped over longer intervals and further processed to extract amplitude, phase and delay for each RF signal. Precision of the resulting phase and delay values is approximately four times better than that obtained from straight cross-correlation of L1 and L2. This improved method provides the following options: separate and independent tracking of the L1-Y and L2-Y channels; separate and independent measurement of amplitude, phase and delay L1-Y channel; and removal of the half-cycle ambiguity in L1-Y and L2-Y carrier phase.
Zhang, Jian-Hua; Böhme, Johann F
2007-11-01
In this paper we report an adaptive regularization network (ARN) approach to realizing fast blind separation of cerebral evoked potentials (EPs) from background electroencephalogram (EEG) activity with no need to make any explicit assumption on the statistical (or deterministic) signal model. The ARNs are proposed to construct nonlinear EEG and EP signal models. A novel adaptive regularization training (ART) algorithm is proposed to improve the generalization performance of the ARN. Two adaptive neural modeling methods based on the ARN are developed and their implementation and performance analysis are also presented. The computer experiments using simulated and measured visual evoked potential (VEP) data have shown that the proposed ARN modeling paradigm yields computationally efficient and more accurate VEP signal estimation owing to its intrinsic model-free and nonlinear processing characteristics.
Neural networks for continuous online learning and control.
Choy, Min Chee; Srinivasan, Dipti; Cheu, Ruey Long
2006-11-01
This paper proposes a new hybrid neural network (NN) model that employs a multistage online learning process to solve the distributed control problem with an infinite horizon. Various techniques such as reinforcement learning and evolutionary algorithm are used to design the multistage online learning process. For this paper, the infinite horizon distributed control problem is implemented in the form of real-time distributed traffic signal control for intersections in a large-scale traffic network. The hybrid neural network model is used to design each of the local traffic signal controllers at the respective intersections. As the state of the traffic network changes due to random fluctuation of traffic volumes, the NN-based local controllers will need to adapt to the changing dynamics in order to provide effective traffic signal control and to prevent the traffic network from becoming overcongested. Such a problem is especially challenging if the local controllers are used for an infinite horizon problem where online learning has to take place continuously once the controllers are implemented into the traffic network. A comprehensive simulation model of a section of the Central Business District (CBD) of Singapore has been developed using PARAMICS microscopic simulation program. As the complexity of the simulation increases, results show that the hybrid NN model provides significant improvement in traffic conditions when evaluated against an existing traffic signal control algorithm as well as a new, continuously updated simultaneous perturbation stochastic approximation-based neural network (SPSA-NN). Using the hybrid NN model, the total mean delay of each vehicle has been reduced by 78% and the total mean stoppage time of each vehicle has been reduced by 84% compared to the existing traffic signal control algorithm. This shows the efficacy of the hybrid NN model in solving large-scale traffic signal control problem in a distributed manner. Also, it indicates the possibility of using the hybrid NN model for other applications that are similar in nature as the infinite horizon distributed control problem.
Morris, Melody K.; Saez-Rodriguez, Julio; Lauffenburger, Douglas A.; Alexopoulos, Leonidas G.
2012-01-01
Modeling of signal transduction pathways plays a major role in understanding cells' function and predicting cellular response. Mathematical formalisms based on a logic formalism are relatively simple but can describe how signals propagate from one protein to the next and have led to the construction of models that simulate the cells response to environmental or other perturbations. Constrained fuzzy logic was recently introduced to train models to cell specific data to result in quantitative pathway models of the specific cellular behavior. There are two major issues in this pathway optimization: i) excessive CPU time requirements and ii) loosely constrained optimization problem due to lack of data with respect to large signaling pathways. Herein, we address both issues: the former by reformulating the pathway optimization as a regular nonlinear optimization problem; and the latter by enhanced algorithms to pre/post-process the signaling network to remove parts that cannot be identified given the experimental conditions. As a case study, we tackle the construction of cell type specific pathways in normal and transformed hepatocytes using medium and large-scale functional phosphoproteomic datasets. The proposed Non Linear Programming (NLP) formulation allows for fast optimization of signaling topologies by combining the versatile nature of logic modeling with state of the art optimization algorithms. PMID:23226239
Mitsos, Alexander; Melas, Ioannis N; Morris, Melody K; Saez-Rodriguez, Julio; Lauffenburger, Douglas A; Alexopoulos, Leonidas G
2012-01-01
Modeling of signal transduction pathways plays a major role in understanding cells' function and predicting cellular response. Mathematical formalisms based on a logic formalism are relatively simple but can describe how signals propagate from one protein to the next and have led to the construction of models that simulate the cells response to environmental or other perturbations. Constrained fuzzy logic was recently introduced to train models to cell specific data to result in quantitative pathway models of the specific cellular behavior. There are two major issues in this pathway optimization: i) excessive CPU time requirements and ii) loosely constrained optimization problem due to lack of data with respect to large signaling pathways. Herein, we address both issues: the former by reformulating the pathway optimization as a regular nonlinear optimization problem; and the latter by enhanced algorithms to pre/post-process the signaling network to remove parts that cannot be identified given the experimental conditions. As a case study, we tackle the construction of cell type specific pathways in normal and transformed hepatocytes using medium and large-scale functional phosphoproteomic datasets. The proposed Non Linear Programming (NLP) formulation allows for fast optimization of signaling topologies by combining the versatile nature of logic modeling with state of the art optimization algorithms.
An improved PSO-SVM model for online recognition defects in eddy current testing
NASA Astrophysics Data System (ADS)
Liu, Baoling; Hou, Dibo; Huang, Pingjie; Liu, Banteng; Tang, Huayi; Zhang, Wubo; Chen, Peihua; Zhang, Guangxin
2013-12-01
Accurate and rapid recognition of defects is essential for structural integrity and health monitoring of in-service device using eddy current (EC) non-destructive testing. This paper introduces a novel model-free method that includes three main modules: a signal pre-processing module, a classifier module and an optimisation module. In the signal pre-processing module, a kind of two-stage differential structure is proposed to suppress the lift-off fluctuation that could contaminate the EC signal. In the classifier module, multi-class support vector machine (SVM) based on one-against-one strategy is utilised for its good accuracy. In the optimisation module, the optimal parameters of classifier are obtained by an improved particle swarm optimisation (IPSO) algorithm. The proposed IPSO technique can improve convergence performance of the primary PSO through the following strategies: nonlinear processing of inertia weight, introductions of the black hole and simulated annealing model with extremum disturbance. The good generalisation ability of the IPSO-SVM model has been validated through adding additional specimen into the testing set. Experiments show that the proposed algorithm can achieve higher recognition accuracy and efficiency than other well-known classifiers and the superiorities are more obvious with less training set, which contributes to online application.
Wet tropospheric delays forecast based on Vienna Mapping Function time series analysis
NASA Astrophysics Data System (ADS)
Rzepecka, Zofia; Kalita, Jakub
2016-04-01
It is well known that the dry part of the zenith tropospheric delay (ZTD) is much easier to model than the wet part (ZTW). The aim of the research is applying stochastic modeling and prediction of ZTW using time series analysis tools. Application of time series analysis enables closer understanding of ZTW behavior as well as short-term prediction of future ZTW values. The ZTW data used for the studies were obtained from the GGOS service hold by Vienna technical University. The resolution of the data is six hours. ZTW for the years 2010 -2013 were adopted for the study. The International GNSS Service (IGS) permanent stations LAMA and GOPE, located in mid-latitudes, were admitted for the investigations. Initially the seasonal part was separated and modeled using periodic signals and frequency analysis. The prominent annual and semi-annual signals were removed using sines and consines functions. The autocorrelation of the resulting signal is significant for several days (20-30 samples). The residuals of this fitting were further analyzed and modeled with ARIMA processes. For both the stations optimal ARMA processes based on several criterions were obtained. On this basis predicted ZTW values were computed for one day ahead, leaving the white process residuals. Accuracy of the prediction can be estimated at about 3 cm.
Doubly stochastic Poisson processes in artificial neural learning.
Card, H C
1998-01-01
This paper investigates neuron activation statistics in artificial neural networks employing stochastic arithmetic. It is shown that a doubly stochastic Poisson process is an appropriate model for the signals in these circuits.
NASA Technical Reports Server (NTRS)
Berman, A. L.; Wackley, J. A.; Rockwell, S. T.
1976-01-01
Observed Doppler noise (rms phase jitter) from the 1976 solar conjunctions of the Helios 1 and 2 and the Pioneer 10 and 11 spacecraft was processed with a recently developed Doppler noise model ISEDB. Good agreement is obtained between the observed data and the model. Correlation is shown between deviations from the ISEDB model and sunspot activity, but it is insufficient to be modeled. Correlation is also shown between ISEDB model deviations for (spacecraft) signal paths on the same side of the sun.
Brain signal complexity rises with repetition suppression in visual learning.
Lafontaine, Marc Philippe; Lacourse, Karine; Lina, Jean-Marc; McIntosh, Anthony R; Gosselin, Frédéric; Théoret, Hugo; Lippé, Sarah
2016-06-21
Neuronal activity associated with visual processing of an unfamiliar face gradually diminishes when it is viewed repeatedly. This process, known as repetition suppression (RS), is involved in the acquisition of familiarity. Current models suggest that RS results from interactions between visual information processing areas located in the occipito-temporal cortex and higher order areas, such as the dorsolateral prefrontal cortex (DLPFC). Brain signal complexity, which reflects information dynamics of cortical networks, has been shown to increase as unfamiliar faces become familiar. However, the complementarity of RS and increases in brain signal complexity have yet to be demonstrated within the same measurements. We hypothesized that RS and brain signal complexity increase occur simultaneously during learning of unfamiliar faces. Further, we expected alteration of DLPFC function by transcranial direct current stimulation (tDCS) to modulate RS and brain signal complexity over the occipito-temporal cortex. Participants underwent three tDCS conditions in random order: right anodal/left cathodal, right cathodal/left anodal and sham. Following tDCS, participants learned unfamiliar faces, while an electroencephalogram (EEG) was recorded. Results revealed RS over occipito-temporal electrode sites during learning, reflected by a decrease in signal energy, a measure of amplitude. Simultaneously, as signal energy decreased, brain signal complexity, as estimated with multiscale entropy (MSE), increased. In addition, prefrontal tDCS modulated brain signal complexity over the right occipito-temporal cortex during the first presentation of faces. These results suggest that although RS may reflect a brain mechanism essential to learning, complementary processes reflected by increases in brain signal complexity, may be instrumental in the acquisition of novel visual information. Such processes likely involve long-range coordinated activity between prefrontal and lower order visual areas. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.
Characteristics of traffic flow at a non-signalized intersection in the framework of game theory
NASA Astrophysics Data System (ADS)
Fan, Hongqiang; Jia, Bin; Tian, Junfang; Yun, Lifen
2014-12-01
At a non-signalized intersection, some vehicles violate the traffic rules to pass the intersection as soon as possible. These behaviors may cause many traffic conflicts even traffic accidents. In this paper, a simulation model is proposed to research the effects of these behaviors at a non-signalized intersection. Vehicle’s movement is simulated by the cellular automaton (CA) model. The game theory is introduced for simulating the intersection dynamics. Two types of driver participate the game process: cooperator (C) and defector (D). The cooperator obey the traffic rules, but the defector does not. A transition process may occur when the cooperator is waiting before the intersection. The critical value of waiting time follows the Weibull distribution. One transition regime is found in the phase diagram. The simulation results illustrate the applicability of the proposed model and reveal a number of interesting insights into the intersection management, including that the existence of defectors is benefit for the capacity of intersection, but also reduce the safety of intersection.
Sequential Adaptive Multi-Modality Target Detection and Classification Using Physics Based Models
2006-09-01
estimation," R. Raghuram, R. Raich and A.O. Hero, IEEE Intl. Conf. on Acoustics, Speech , and Signal Processing, Toulouse France, June 2006, <http...can then be solved using off-the-shelf classifiers such as radial basis functions, SVM, or kNN classifier structures. When applied to mine detection we...stage waveform selection for adaptive resource constrained state estimation," 2006 IEEE Intl. Conf. on Acoustics, Speech , and Signal Processing
Rehm, Markus; Prehn, Jochen H M
2013-06-01
Systems biology and systems medicine, i.e. the application of systems biology in a clinical context, is becoming of increasing importance in biology, drug discovery and health care. Systems biology incorporates knowledge and methods that are applied in mathematics, physics and engineering, but may not be part of classical training in biology. We here provide an introduction to basic concepts and methods relevant to the construction and application of systems models for apoptosis research. We present the key methods relevant to the representation of biochemical processes in signal transduction models, with a particular reference to apoptotic processes. We demonstrate how such models enable a quantitative and temporal analysis of changes in molecular entities in response to an apoptosis-inducing stimulus, and provide information on cell survival and cell death decisions. We introduce methods for analyzing the spatial propagation of cell death signals, and discuss the concepts of sensitivity analyses that enable a prediction of network responses to disturbances of single or multiple parameters. Copyright © 2013 Elsevier Inc. All rights reserved.
Electromagnetic Test-Facility characterization: an identification approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zicker, J.E.; Candy, J.V.
The response of an object subjected to high energy, transient electromagnetic (EM) fields sometimes called electromagnetic pulses (EMP), is an important issue in the survivability of electronic systems (e.g., aircraft), especially when the field has been generated by a high altitude nuclear burst. The characterization of transient response information is a matter of national concern. In this report we discuss techniques to: (1) improve signal processing at a test facility; and (2) parameterize a particular object response. First, we discuss the application of identification-based signal processing techniques to improve signal levels at the Lawrence Livermore National Laboratory (LLNL) EM Transientmore » Test Facility. We identify models of test equipment and then use these models to deconvolve the input/output sequences for the object under test. A parametric model of the object is identified from this data. The model can be used to extrapolate the response to these threat level EMP. Also discussed is the development of a facility simulator (EMSIM) useful for experimental design and calibration and a deconvolution algorithm (DECONV) useful for removing probe effects from the measured data.« less
NASA Astrophysics Data System (ADS)
Shubitidze, Fridon; Barrowes, Benjamin E.; Shamatava, Irma; Sigman, John; O'Neill, Kevin A.
2018-05-01
Processing electromagnetic induction signals from subsurface targets, for purposes of discrimination, requires accurate physical models. To date, successful approaches for on-land cases have entailed advanced modeling of responses by the targets themselves, with quite adequate treatment of instruments as well. Responses from the environment were typically slight and/or were treated very simply. When objects are immersed in saline solutions, however, more sophisticated modeling of the diffusive EMI physics in the environment is required. One needs to account for the response of the environment itself as well as the environment's frequency and time-dependent effects on both primary and secondary fields, from sensors and targets, respectively. Here we explicate the requisite physics and identify its effects quantitatively via analytical, numerical, and experimental investigations. Results provide a path for addressing the quandaries posed by previous underwater measurements and indicate how the environmental physics may be included in more successful processing.
Research on key technologies of LADAR echo signal simulator
NASA Astrophysics Data System (ADS)
Xu, Rui; Shi, Rui; Ye, Jiansen; Wang, Xin; Li, Zhuo
2015-10-01
LADAR echo signal simulator is one of the most significant components of hardware-in-the-loop (HWIL) simulation systems for LADAR, which is designed to simulate the LADAR return signal in laboratory conditions. The device can provide the laser echo signal of target and background for imaging LADAR systems to test whether it is of good performance. Some key technologies are investigated in this paper. Firstly, the 3D model of typical target is built, and transformed to the data of the target echo signal based on ranging equation and targets reflection characteristics. Then, system model and time series model of LADAR echo signal simulator are established. Some influential factors which could induce fixed delay error and random delay error on the simulated return signals are analyzed. In the simulation system, the signal propagating delay of circuits and the response time of pulsed lasers are belong to fixed delay error. The counting error of digital delay generator, the jitter of system clock and the desynchronized between trigger signal and clock signal are a part of random delay error. Furthermore, these system insertion delays are analyzed quantitatively, and the noisy data are obtained. The target echo signals are got by superimposing of the noisy data and the pure target echo signal. In order to overcome these disadvantageous factors, a method of adjusting the timing diagram of the simulation system is proposed. Finally, the simulated echo signals are processed by using a detection algorithm to complete the 3D model reconstruction of object. The simulation results reveal that the range resolution can be better than 8 cm.
Modeling of the ground-to-SSFMB link networking features using SPW
NASA Technical Reports Server (NTRS)
Watson, John C.
1993-01-01
This report describes the modeling and simulation of the networking features of the ground-to-Space Station Freedom manned base (SSFMB) link using COMDISCO signal processing work-system (SPW). The networking features modeled include the implementation of Consultative Committee for Space Data Systems (CCSDS) protocols in the multiplexing of digitized audio and core data into virtual channel data units (VCDU's) in the control center complex and the demultiplexing of VCDU's in the onboard baseband signal processor. The emphasis of this work has been placed on techniques for modeling the CCSDS networking features using SPW. The objectives for developing the SPW models are to test the suitability of SPW for modeling networking features and to develop SPW simulation models of the control center complex and space station baseband signal processor for use in end-to-end testing of the ground-to-SSFMB S-band single access forward (SSAF) link.
Optimization of MLS receivers for multipath environments
NASA Technical Reports Server (NTRS)
Mcalpine, G. A.; Highfill, J. H., III
1976-01-01
The design of a microwave landing system (MLS) aircraft receiver, capable of optimal performance in multipath environments found in air terminal areas, is reported. Special attention was given to the angle tracking problem of the receiver and includes tracking system design considerations, study and application of locally optimum estimation involving multipath adaptive reception and then envelope processing, and microcomputer system design. Results show processing is competitive in this application with i-f signal processing performance-wise and is much more simple and cheaper. A summary of the signal model is given.
Brain Signal Variability is Parametrically Modifiable
Garrett, Douglas D.; McIntosh, Anthony R.; Grady, Cheryl L.
2014-01-01
Moment-to-moment brain signal variability is a ubiquitous neural characteristic, yet remains poorly understood. Evidence indicates that heightened signal variability can index and aid efficient neural function, but it is not known whether signal variability responds to precise levels of environmental demand, or instead whether variability is relatively static. Using multivariate modeling of functional magnetic resonance imaging-based parametric face processing data, we show here that within-person signal variability level responds to incremental adjustments in task difficulty, in a manner entirely distinct from results produced by examining mean brain signals. Using mixed modeling, we also linked parametric modulations in signal variability with modulations in task performance. We found that difficulty-related reductions in signal variability predicted reduced accuracy and longer reaction times within-person; mean signal changes were not predictive. We further probed the various differences between signal variance and signal means by examining all voxels, subjects, and conditions; this analysis of over 2 million data points failed to reveal any notable relations between voxel variances and means. Our results suggest that brain signal variability provides a systematic task-driven signal of interest from which we can understand the dynamic function of the human brain, and in a way that mean signals cannot capture. PMID:23749875
Strauss, G; Strauss, M; Lüders, C; Stopp, S; Shi, J; Dietz, A; Lüth, T
2008-10-01
PROBLEM DEFINITION: The goal of this work is the integration of the information of the intraoperative EMG monitoring of the facial nerve into the radiological data of the petrous bone. The following hypotheses are to be examined: (I) the N. VII can be determined intraoperatively with a high reliability by the stimulation-probe. A computer program is able to discriminate true-positive EMG signals from false-positive artifacts. (II) The course of the facial nerve can be registered in a three-dimensional area by EMG signals at a nerve model in the lab test. The individual items of the nerve can be combined into a route model. The route model can be integrated into the data of digital volume tomography (DVT). (I) Intraoperative EMG signals of the facial nerve were classified at 128 measurements by an automatic software. The results were correlated with the actual intraoperative situation. (II) The nerve phantom was designed and a DVT data set was provided. Phantom was registered with a navigation system (Karl Storz NPU, Tuttlingen, Germany). The stimulation probe of the EMG-system was tracked by the navigation system. The navigation system was extended by a processing unit (MiMed, Technische Universität München, Germany). Thus the classified EMG parameters of the facial route can be received, processed and be generated to a model of the facial nerve route. The operability was examined at 120 (10 x 12) measuring points. The evaluation of the examined algorithm for classification EMG-signals of the facial nerve resulted as correct in all measuring events. In all 10 attempts it succeeded to visualize the nerve route as three-dimensional model. The different sizes of the individual measuring points reflect the appropriate values of Istim and UEMG correctly. This work proves the feasibility of an automatic classification of an intraoperative EMG signal of the facial nerve by a processing unit. Furthermore the work shows the feasibility of tracking of the position of the stimulation probe and its integration into amodel of the route of the facial nerve (e. g. DVT). The rediability, with which the position of the nerve can be seized by the stimulation probe, is also included into the resulting route model.
Toward a model for lexical access based on acoustic landmarks and distinctive features
NASA Astrophysics Data System (ADS)
Stevens, Kenneth N.
2002-04-01
This article describes a model in which the acoustic speech signal is processed to yield a discrete representation of the speech stream in terms of a sequence of segments, each of which is described by a set (or bundle) of binary distinctive features. These distinctive features specify the phonemic contrasts that are used in the language, such that a change in the value of a feature can potentially generate a new word. This model is a part of a more general model that derives a word sequence from this feature representation, the words being represented in a lexicon by sequences of feature bundles. The processing of the signal proceeds in three steps: (1) Detection of peaks, valleys, and discontinuities in particular frequency ranges of the signal leads to identification of acoustic landmarks. The type of landmark provides evidence for a subset of distinctive features called articulator-free features (e.g., [vowel], [consonant], [continuant]). (2) Acoustic parameters are derived from the signal near the landmarks to provide evidence for the actions of particular articulators, and acoustic cues are extracted by sampling selected attributes of these parameters in these regions. The selection of cues that are extracted depends on the type of landmark and on the environment in which it occurs. (3) The cues obtained in step (2) are combined, taking context into account, to provide estimates of ``articulator-bound'' features associated with each landmark (e.g., [lips], [high], [nasal]). These articulator-bound features, combined with the articulator-free features in (1), constitute the sequence of feature bundles that forms the output of the model. Examples of cues that are used, and justification for this selection, are given, as well as examples of the process of inferring the underlying features for a segment when there is variability in the signal due to enhancement gestures (recruited by a speaker to make a contrast more salient) or due to overlap of gestures from neighboring segments.
Using EEG/MEG Data of Cognitive Processes in Brain-Computer Interfaces
NASA Astrophysics Data System (ADS)
Gutiérrez, David
2008-08-01
Brain-computer interfaces (BCIs) aim at providing a non-muscular channel for sending commands to the external world using electroencephalographic (EEG) and, more recently, magnetoencephalographic (MEG) measurements of the brain function. Most of the current implementations of BCIs rely on EEG/MEG data of motor activities as such neural processes are well characterized, while the use of data related to cognitive activities has been neglected due to its intrinsic complexity. However, cognitive data usually has larger amplitude, lasts longer and, in some cases, cognitive brain signals are easier to control at will than motor signals. This paper briefy reviews the use of EEG/MEG data of cognitive processes in the implementation of BCIs. Specifically, this paper reviews some of the neuromechanisms, signal features, and processing methods involved. This paper also refers to some of the author's work in the area of detection and classifcation of cognitive signals for BCIs using variability enhancement, parametric modeling, and spatial fltering, as well as recent developments in BCI performance evaluation.
Using EEG/MEG Data of Cognitive Processes in Brain-Computer Interfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gutierrez, David
2008-08-11
Brain-computer interfaces (BCIs) aim at providing a non-muscular channel for sending commands to the external world using electroencephalographic (EEG) and, more recently, magnetoencephalographic (MEG) measurements of the brain function. Most of the current implementations of BCIs rely on EEG/MEG data of motor activities as such neural processes are well characterized, while the use of data related to cognitive activities has been neglected due to its intrinsic complexity. However, cognitive data usually has larger amplitude, lasts longer and, in some cases, cognitive brain signals are easier to control at will than motor signals. This paper briefy reviews the use of EEG/MEGmore » data of cognitive processes in the implementation of BCIs. Specifically, this paper reviews some of the neuromechanisms, signal features, and processing methods involved. This paper also refers to some of the author's work in the area of detection and classifcation of cognitive signals for BCIs using variability enhancement, parametric modeling, and spatial fltering, as well as recent developments in BCI performance evaluation.« less
Cellular level models as tools for cytokine design.
Radhakrishnan, Mala L; Tidor, Bruce
2010-01-01
Cytokines and growth factors are critical regulators that connect intracellular and extracellular environments through binding to specific cell-surface receptors. They regulate a wide variety of immunological, growth, and inflammatory response processes. The overall signal initiated by a population of cytokine molecules over long time periods is controlled by the subtle interplay of binding, signaling, and trafficking kinetics. Building on the work of others, we abstract a simple kinetic model that captures relevant features from cytokine systems as well as related growth factor systems. We explore a large range of potential biochemical behaviors, through systematic examination of the model's parameter space. Different rates for the same reaction topology lead to a dramatic range of biochemical network properties and outcomes. Evolution might productively explore varied and different portions of parameter space to create beneficial behaviors, and effective human therapeutic intervention might be achieved through altering network kinetic properties. Quantitative analysis of the results reveals the basis for tensions among a number of different network characteristics. For example, strong binding of cytokine to receptor can increase short-term receptor activation and signal initiation but decrease long-term signaling due to internalization and degradation. Further analysis reveals the role of specific biochemical processes in modulating such tensions. For instance, the kinetics of cytokine binding and receptor activation modulate whether ligand-receptor dissociation can generally occur before signal initiation or receptor internalization. Beyond analysis, the same models and model behaviors provide an important basis for the design of more potent cytokine therapeutics by providing insight into how binding kinetics affect ligand potency. (c) 2010 American Institute of Chemical Engineers
Challenges in horizontal model integration.
Kolczyk, Katrin; Conradi, Carsten
2016-03-11
Systems Biology has motivated dynamic models of important intracellular processes at the pathway level, for example, in signal transduction and cell cycle control. To answer important biomedical questions, however, one has to go beyond the study of isolated pathways towards the joint study of interacting signaling pathways or the joint study of signal transduction and cell cycle control. Thereby the reuse of established models is preferable, as it will generally reduce the modeling effort and increase the acceptance of the combined model in the field. Obtaining a combined model can be challenging, especially if the submodels are large and/or come from different working groups (as is generally the case, when models stored in established repositories are used). To support this task, we describe a semi-automatic workflow based on established software tools. In particular, two frequent challenges are described: identification of the overlap and subsequent (re)parameterization of the integrated model. The reparameterization step is crucial, if the goal is to obtain a model that can reproduce the data explained by the individual models. For demonstration purposes we apply our workflow to integrate two signaling pathways (EGF and NGF) from the BioModels Database.
Perceptual Plasticity for Auditory Object Recognition
Heald, Shannon L. M.; Van Hedger, Stephen C.; Nusbaum, Howard C.
2017-01-01
In our auditory environment, we rarely experience the exact acoustic waveform twice. This is especially true for communicative signals that have meaning for listeners. In speech and music, the acoustic signal changes as a function of the talker (or instrument), speaking (or playing) rate, and room acoustics, to name a few factors. Yet, despite this acoustic variability, we are able to recognize a sentence or melody as the same across various kinds of acoustic inputs and determine meaning based on listening goals, expectations, context, and experience. The recognition process relates acoustic signals to prior experience despite variability in signal-relevant and signal-irrelevant acoustic properties, some of which could be considered as “noise” in service of a recognition goal. However, some acoustic variability, if systematic, is lawful and can be exploited by listeners to aid in recognition. Perceivable changes in systematic variability can herald a need for listeners to reorganize perception and reorient their attention to more immediately signal-relevant cues. This view is not incorporated currently in many extant theories of auditory perception, which traditionally reduce psychological or neural representations of perceptual objects and the processes that act on them to static entities. While this reduction is likely done for the sake of empirical tractability, such a reduction may seriously distort the perceptual process to be modeled. We argue that perceptual representations, as well as the processes underlying perception, are dynamically determined by an interaction between the uncertainty of the auditory signal and constraints of context. This suggests that the process of auditory recognition is highly context-dependent in that the identity of a given auditory object may be intrinsically tied to its preceding context. To argue for the flexible neural and psychological updating of sound-to-meaning mappings across speech and music, we draw upon examples of perceptual categories that are thought to be highly stable. This framework suggests that the process of auditory recognition cannot be divorced from the short-term context in which an auditory object is presented. Implications for auditory category acquisition and extant models of auditory perception, both cognitive and neural, are discussed. PMID:28588524
Upgrading a high-throughput spectrometer for high-frequency (<400 kHz) measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nishizawa, T., E-mail: nishizawa@wisc.edu; Nornberg, M. D.; Den Hartog, D. J.
2016-11-15
The upgraded spectrometer used for charge exchange recombination spectroscopy on the Madison Symmetric Torus resolves emission fluctuations up to 400 kHz. The transimpedance amplifier’s cutoff frequency was increased based upon simulations comparing the change in the measured photon counts for time-dynamic signals. We modeled each signal-processing stage of the diagnostic and scanned the filtering frequency to quantify the uncertainty in the photon counting rate. This modeling showed that uncertainties can be calculated based on assuming each amplification stage is a Poisson process and by calibrating the photon counting rate with a DC light source to address additional variation.
Upgrading a high-throughput spectrometer for high-frequency (<400 kHz) measurements
NASA Astrophysics Data System (ADS)
Nishizawa, T.; Nornberg, M. D.; Den Hartog, D. J.; Craig, D.
2016-11-01
The upgraded spectrometer used for charge exchange recombination spectroscopy on the Madison Symmetric Torus resolves emission fluctuations up to 400 kHz. The transimpedance amplifier's cutoff frequency was increased based upon simulations comparing the change in the measured photon counts for time-dynamic signals. We modeled each signal-processing stage of the diagnostic and scanned the filtering frequency to quantify the uncertainty in the photon counting rate. This modeling showed that uncertainties can be calculated based on assuming each amplification stage is a Poisson process and by calibrating the photon counting rate with a DC light source to address additional variation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dmitriev, A K; Konovalov, A N; Ul'yanov, V A
2015-12-31
The autodyne signal arising in an Er fibre laser in the course of evaporating biological models of different types is studied and the possibility of recognising the biotissue type using the method of autodyne detection of the backscattered Doppler signal is assessed. In the experiments we modelled the process of surgical intervention using the contact (hole perforation with the Er laser fibre) and noncontact (surface evaporation with the focused radiation) regimes of impact on different biological models. The amplitude – frequency characteristic of the autodyne detection for the Er fibre laser is measured and the initial spectra of the backscatteredmore » Doppler signal arising under the action of laser radiation on the samples of biological models are obtained. The experiments have shown that the spectra of the backscattered Doppler signal, arising in the course of the contact and noncontact action of the Er fibre laser on different biological models, demonstrate clear-cut distinctions. (control of laser radiation parameters)« less
Smad Signaling Dynamics: Insights from a Parsimonious Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiley, H. S.; Shankaran, Harish
2008-09-09
The molecular mechanisms that transmit information from cell surface receptors to the nucleus are exceedingly complex; thus, much effort has been expended in developing computational models to understand these processes. A recent study on modeling the nuclear-cytoplasmic shuttling of Smad2-Smad4 complexes in response to transforming growth factor β (TGF-β) receptor activation has provided substantial insight into how this signaling network translates the degree of TGF-β receptor activation (input) into the amount of nuclear Smad2-Smad4 complexes (output). The study addressed this question by combining a simple, mechanistic model with targeted experiments, an approach that proved particularly powerful for exploring the fundamentalmore » properties of a complex signaling network. The mathematical model revealed that Smad nuclear-cytoplasmic dynamics enables a proportional, but time-delayed coupling between the input and the output. As a result, the output can faithfully track gradual changes in the input, while the rapid input fluctuations that constitute signaling noise are dampened out.« less
Higher Order Modulation Intersymbol Interference Caused by Traveling-wave Tube Amplifiers
NASA Technical Reports Server (NTRS)
Kory, Carol L.; Andro, Monty; Williams, W. D. (Technical Monitor)
2002-01-01
For the first time, a time-dependent, physics-based computational model has been used to provide a direct description of the effects of the traveling wave tube amplifier (TWTA) on modulated digital signals. The TWT model comprehensively takes into account the effects of frequency dependent AM/AM and AM/PM conversion; gain and phase ripple; drive-induced oscillations; harmonic generation; intermodulation products; and backward waves, Thus, signal integrity can be investigated in the presence of these sources of potential distortion as a function of the physical geometry and operating characteristics of the high power amplifier and the operational digital signal. This method promises superior predictive fidelity compared to methods using TWT models based on swept-amplitude and/or swept-frequency data. First, the TWT model using the three dimensional (3D) electromagnetic code MAFIA is presented. Then, this comprehensive model is used to investigate approximations made in conventional TWT black-box models used in communication system level simulations, To quantitatively demonstrate the effects these approximations have on digital signal performance predictions, including intersymbol interference (ISI), the MAFIA results are compared to the system level analysis tool, Signal Processing, Workstation (SPW), using high order modulation schemes including 16 and 64-QAM.
Non-parallel coevolution of sender and receiver in the acoustic communication system of treefrogs.
Schul, Johannes; Bush, Sarah L
2002-09-07
Advertisement calls of closely related species often differ in quantitative features such as the repetition rate of signal units. These differences are important in species recognition. Current models of signal-receiver coevolution predict two possible patterns in the evolution of the mechanism used by receivers to recognize the call: (i) classical sexual selection models (Fisher process, good genes/indirect benefits, direct benefits models) predict that close relatives use qualitatively similar signal recognition mechanisms tuned to different values of a call parameter; and (ii) receiver bias models (hidden preference, pre-existing bias models) predict that if different signal recognition mechanisms are used by sibling species, evidence of an ancestral mechanism will persist in the derived species, and evidence of a pre-existing bias will be detectable in the ancestral species. We describe qualitatively different call recognition mechanisms in sibling species of treefrogs. Whereas Hyla chrysoscelis uses pulse rate to recognize male calls, Hyla versicolor uses absolute measurements of pulse duration and interval duration. We found no evidence of either hidden preferences or pre-existing biases. The results are compared with similar data from katydids (Tettigonia sp.). In both taxa, the data are not adequately explained by current models of signal-receiver coevolution.
Huang, Ming-Xiong; Anderson, Bill; Huang, Charles W.; Kunde, Gerd J.; Vreeland, Erika C.; Huang, Jeffrey W.; Matlashov, Andrei N.; Karaulanov, Todor; Nettles, Christopher P.; Gomez, Andrew; Minser, Kayla; Weldon, Caroline; Paciotti, Giulio; Harsh, Michael; Lee, Roland R.; Flynn, Edward R.
2017-01-01
Superparamagnetic Relaxometry (SPMR) is a highly sensitive technique for the in vivo detection of tumor cells and may improve early stage detection of cancers. SPMR employs superparamagnetic iron oxide nanoparticles (SPION). After a brief magnetizing pulse is used to align the SPION, SPMR measures the time decay of SPION using Super-conducting Quantum Interference Device (SQUID) sensors. Substantial research has been carried out in developing the SQUID hardware and in improving the properties of the SPION. However, little research has been done in the pre-processing of sensor signals and post-processing source modeling in SPMR. In the present study, we illustrate new pre-processing tools that were developed to: 1) remove trials contaminated with artifacts, 2) evaluate and ensure that a single decay process associated with bounded SPION exists in the data, 3) automatically detect and correct flux jumps, and 4) accurately fit the sensor signals with different decay models. Furthermore, we developed an automated approach based on multi-start dipole imaging technique to obtain the locations and magnitudes of multiple magnetic sources, without initial guesses from the users. A regularization process was implemented to solve the ambiguity issue related to the SPMR source variables. A procedure based on reduced chi-square cost-function was introduced to objectively obtain the adequate number of dipoles that describe the data. The new pre-processing tools and multi-start source imaging approach have been successfully evaluated using phantom data. In conclusion, these tools and multi-start source modeling approach substantially enhance the accuracy and sensitivity in detecting and localizing sources from the SPMR signals. Furthermore, multi-start approach with regularization provided robust and accurate solutions for a poor SNR condition similar to the SPMR detection sensitivity in the order of 1000 cells. We believe such algorithms will help establishing the industrial standards for SPMR when applying the technique in pre-clinical and clinical settings. PMID:28072579
NASA Astrophysics Data System (ADS)
Mohammad-Djafari, Ali
2015-01-01
The main object of this tutorial article is first to review the main inference tools using Bayesian approach, Entropy, Information theory and their corresponding geometries. This review is focused mainly on the ways these tools have been used in data, signal and image processing. After a short introduction of the different quantities related to the Bayes rule, the entropy and the Maximum Entropy Principle (MEP), relative entropy and the Kullback-Leibler divergence, Fisher information, we will study their use in different fields of data and signal processing such as: entropy in source separation, Fisher information in model order selection, different Maximum Entropy based methods in time series spectral estimation and finally, general linear inverse problems.
A neural model of figure-ground organization.
Craft, Edward; Schütze, Hartmut; Niebur, Ernst; von der Heydt, Rüdiger
2007-06-01
Psychophysical studies suggest that figure-ground organization is a largely autonomous process that guides--and thus precedes--allocation of attention and object recognition. The discovery of border-ownership representation in single neurons of early visual cortex has confirmed this view. Recent theoretical studies have demonstrated that border-ownership assignment can be modeled as a process of self-organization by lateral interactions within V2 cortex. However, the mechanism proposed relies on propagation of signals through horizontal fibers, which would result in increasing delays of the border-ownership signal with increasing size of the visual stimulus, in contradiction with experimental findings. It also remains unclear how the resulting border-ownership representation would interact with attention mechanisms to guide further processing. Here we present a model of border-ownership coding based on dedicated neural circuits for contour grouping that produce border-ownership assignment and also provide handles for mechanisms of selective attention. The results are consistent with neurophysiological and psychophysical findings. The model makes predictions about the hypothetical grouping circuits and the role of feedback between cortical areas.
Biased Competition in Visual Processing Hierarchies: A Learning Approach Using Multiple Cues.
Gepperth, Alexander R T; Rebhan, Sven; Hasler, Stephan; Fritsch, Jannik
2011-03-01
In this contribution, we present a large-scale hierarchical system for object detection fusing bottom-up (signal-driven) processing results with top-down (model or task-driven) attentional modulation. Specifically, we focus on the question of how the autonomous learning of invariant models can be embedded into a performing system and how such models can be used to define object-specific attentional modulation signals. Our system implements bi-directional data flow in a processing hierarchy. The bottom-up data flow proceeds from a preprocessing level to the hypothesis level where object hypotheses created by exhaustive object detection algorithms are represented in a roughly retinotopic way. A competitive selection mechanism is used to determine the most confident hypotheses, which are used on the system level to train multimodal models that link object identity to invariant hypothesis properties. The top-down data flow originates at the system level, where the trained multimodal models are used to obtain space- and feature-based attentional modulation signals, providing biases for the competitive selection process at the hypothesis level. This results in object-specific hypothesis facilitation/suppression in certain image regions which we show to be applicable to different object detection mechanisms. In order to demonstrate the benefits of this approach, we apply the system to the detection of cars in a variety of challenging traffic videos. Evaluating our approach on a publicly available dataset containing approximately 3,500 annotated video images from more than 1 h of driving, we can show strong increases in performance and generalization when compared to object detection in isolation. Furthermore, we compare our results to a late hypothesis rejection approach, showing that early coupling of top-down and bottom-up information is a favorable approach especially when processing resources are constrained.
NASA Technical Reports Server (NTRS)
Boonsirichai, K.; Guan, C.; Chen, R.; Masson, P. H.
2002-01-01
The ability of plant organs to use gravity as a guide for growth, named gravitropism, has been recognized for over two centuries. This growth response to the environment contributes significantly to the upward growth of shoots and the downward growth of roots commonly observed throughout the plant kingdom. Root gravitropism has received a great deal of attention because there is a physical separation between the primary site for gravity sensing, located in the root cap, and the site of differential growth response, located in the elongation zones (EZs). Hence, this system allows identification and characterization of different phases of gravitropism, including gravity perception, signal transduction, signal transmission, and curvature response. Recent studies support some aspects of an old model for gravity sensing, which postulates that root-cap columellar amyloplasts constitute the susceptors for gravity perception. Such studies have also allowed the identification of several molecules that appear to function as second messengers in gravity signal transduction and of potential signal transducers. Auxin has been implicated as a probable component of the signal that carries the gravitropic information between the gravity-sensing cap and the gravity-responding EZs. This has allowed the identification and characterization of important molecular processes underlying auxin transport and response in plants. New molecular models can be elaborated to explain how the gravity signal transduction pathway might regulate the polarity of auxin transport in roots. Further studies are required to test these models, as well as to study the molecular mechanisms underlying a poorly characterized phase of gravitropism that is independent of an auxin gradient.
Reconfigurable nanoscale spin-wave directional coupler
Wang, Qi; Pirro, Philipp; Verba, Roman; Slavin, Andrei; Hillebrands, Burkard; Chumak, Andrii V.
2018-01-01
Spin waves, and their quanta magnons, are prospective data carriers in future signal processing systems because Gilbert damping associated with the spin-wave propagation can be made substantially lower than the Joule heat losses in electronic devices. Although individual spin-wave signal processing devices have been successfully developed, the challenging contemporary problem is the formation of two-dimensional planar integrated spin-wave circuits. Using both micromagnetic modeling and analytical theory, we present an effective solution of this problem based on the dipolar interaction between two laterally adjacent nanoscale spin-wave waveguides. The developed device based on this principle can work as a multifunctional and dynamically reconfigurable signal directional coupler performing the functions of a waveguide crossing element, tunable power splitter, frequency separator, or multiplexer. The proposed design of a spin-wave directional coupler can be used both in digital logic circuits intended for spin-wave computing and in analog microwave signal processing devices. PMID:29376117
Reconfigurable nanoscale spin-wave directional coupler.
Wang, Qi; Pirro, Philipp; Verba, Roman; Slavin, Andrei; Hillebrands, Burkard; Chumak, Andrii V
2018-01-01
Spin waves, and their quanta magnons, are prospective data carriers in future signal processing systems because Gilbert damping associated with the spin-wave propagation can be made substantially lower than the Joule heat losses in electronic devices. Although individual spin-wave signal processing devices have been successfully developed, the challenging contemporary problem is the formation of two-dimensional planar integrated spin-wave circuits. Using both micromagnetic modeling and analytical theory, we present an effective solution of this problem based on the dipolar interaction between two laterally adjacent nanoscale spin-wave waveguides. The developed device based on this principle can work as a multifunctional and dynamically reconfigurable signal directional coupler performing the functions of a waveguide crossing element, tunable power splitter, frequency separator, or multiplexer. The proposed design of a spin-wave directional coupler can be used both in digital logic circuits intended for spin-wave computing and in analog microwave signal processing devices.
Davis, Tyler; Love, Bradley C.; Preston, Alison R.
2012-01-01
Category learning is a complex phenomenon that engages multiple cognitive processes, many of which occur simultaneously and unfold dynamically over time. For example, as people encounter objects in the world, they simultaneously engage processes to determine their fit with current knowledge structures, gather new information about the objects, and adjust their representations to support behavior in future encounters. Many techniques that are available to understand the neural basis of category learning assume that the multiple processes that subserve it can be neatly separated between different trials of an experiment. Model-based functional magnetic resonance imaging offers a promising tool to separate multiple, simultaneously occurring processes and bring the analysis of neuroimaging data more in line with category learning’s dynamic and multifaceted nature. We use model-based imaging to explore the neural basis of recognition and entropy signals in the medial temporal lobe and striatum that are engaged while participants learn to categorize novel stimuli. Consistent with theories suggesting a role for the anterior hippocampus and ventral striatum in motivated learning in response to uncertainty, we find that activation in both regions correlates with a model-based measure of entropy. Simultaneously, separate subregions of the hippocampus and striatum exhibit activation correlated with a model-based recognition strength measure. Our results suggest that model-based analyses are exceptionally useful for extracting information about cognitive processes from neuroimaging data. Models provide a basis for identifying the multiple neural processes that contribute to behavior, and neuroimaging data can provide a powerful test bed for constraining and testing model predictions. PMID:22746951
Processing oscillatory signals by incoherent feedforward loops
NASA Astrophysics Data System (ADS)
Zhang, Carolyn; Wu, Feilun; Tsoi, Ryan; Shats, Igor; You, Lingchong
From the timing of amoeba development to the maintenance of stem cell pluripotency,many biological signaling pathways exhibit the ability to differentiate between pulsatile and sustained signals in the regulation of downstream gene expression.While networks underlying this signal decoding are diverse,many are built around a common motif, the incoherent feedforward loop (IFFL),where an input simultaneously activates an output and an inhibitor of the output.With appropriate parameters,this motif can generate temporal adaptation,where the system is desensitized to a sustained input.This property serves as the foundation for distinguishing signals with varying temporal profiles.Here,we use quantitative modeling to examine another property of IFFLs,the ability to process oscillatory signals.Our results indicate that the system's ability to translate pulsatile dynamics is limited by two constraints.The kinetics of IFFL components dictate the input range for which the network can decode pulsatile dynamics.In addition,a match between the network parameters and signal characteristics is required for optimal ``counting''.We elucidate one potential mechanism by which information processing occurs in natural networks with implications in the design of synthetic gene circuits for this purpose. This work was partially supported by the National Science Foundation Graduate Research Fellowship (CZ).
Processing Oscillatory Signals by Incoherent Feedforward Loops
Zhang, Carolyn; You, Lingchong
2016-01-01
From the timing of amoeba development to the maintenance of stem cell pluripotency, many biological signaling pathways exhibit the ability to differentiate between pulsatile and sustained signals in the regulation of downstream gene expression. While the networks underlying this signal decoding are diverse, many are built around a common motif, the incoherent feedforward loop (IFFL), where an input simultaneously activates an output and an inhibitor of the output. With appropriate parameters, this motif can exhibit temporal adaptation, where the system is desensitized to a sustained input. This property serves as the foundation for distinguishing input signals with varying temporal profiles. Here, we use quantitative modeling to examine another property of IFFLs—the ability to process oscillatory signals. Our results indicate that the system’s ability to translate pulsatile dynamics is limited by two constraints. The kinetics of the IFFL components dictate the input range for which the network is able to decode pulsatile dynamics. In addition, a match between the network parameters and input signal characteristics is required for optimal “counting”. We elucidate one potential mechanism by which information processing occurs in natural networks, and our work has implications in the design of synthetic gene circuits for this purpose. PMID:27623175
Computer algorithm for analyzing and processing borehole strainmeter data
Langbein, John O.
2010-01-01
The newly installed Plate Boundary Observatory (PBO) strainmeters record signals from tectonic activity, Earth tides, and atmospheric pressure. Important information about tectonic processes may occur at amplitudes at and below tidal strains and pressure loading. If incorrect assumptions are made regarding the background noise in the strain data, then the estimates of tectonic signal amplitudes may be incorrect. Furthermore, the use of simplifying assumptions that data are uncorrelated can lead to incorrect results and pressure loading and tides may not be completely removed from the raw data. Instead, any algorithm used to process strainmeter data must incorporate the strong temporal correlations that are inherent with these data. The technique described here uses least squares but employs data covariance that describes the temporal correlation of strainmeter data. There are several advantages to this method since many parameters are estimated simultaneously. These parameters include: (1) functional terms that describe the underlying error model, (2) the tidal terms, (3) the pressure loading term(s), (4) amplitudes of offsets, either those from earthquakes or from the instrument, (5) rate and changes in rate, and (6) the amplitudes and time constants of either logarithmic or exponential curves that can characterize postseismic deformation or diffusion of fluids near the strainmeter. With the proper error model, realistic estimates of the standard errors of the various parameters are obtained; this is especially critical in determining the statistical significance of a suspected, tectonic strain signal. The program also provides a method of tracking the various adjustments required to process strainmeter data. In addition, the program provides several plots to assist with identifying either tectonic signals or other signals that may need to be removed before any geophysical signal can be identified.
Driver performance modelling and its practical application to railway safety.
Hamilton, W Ian; Clarke, Theresa
2005-11-01
This paper reports on the development and main features of a model of driver information processing. The work was conducted on behalf of Network Rail to meet a requirement to understand and manage the driver's interaction with the infrastructure through lineside reminder appliances. The model utilises cognitive theory and modelling techniques to describe driver performance in relation to infrastructure features and operational conditions. The model is capable of predicting the performance time, workload and error consequences of different operational conditions. The utility of the model is demonstrated through reports of its application to the following studies: Research on the effect of line speed on driver interaction with signals and signs. Calculation of minimum reading times for signals. Development of a human factors signals passed at danger (SPAD) hazard checklist, and a method to resolve conflicts between signal sighting solutions. Research on the demands imposed on drivers by European train control system (ETCS) driving in a UK context. The paper also reports on a validation of the model's utility as a tool for assessing cab and infrastructure drivability.
NMR signal enhancement by effective SABRE labeling of oligopeptides.
Ratajczyk, Tomasz; Gutmann, Torsten; Bernatowicz, Piotr; Buntkowsky, Gerd; Frydel, Jaroslaw; Fedorczyk, Bartlomiej
2015-09-01
Signal amplification by reversible exchange (SABRE) can enhance nuclear magnetic resonance signals by several orders of magnitude. However, until now this was limited to a small number of model target molecules. Here, a new convenient method for SABRE activation applicable to a variety of synthetic model oligopeptides is demonstrated. For the first time, a highly SABRE-active pyridine-based biocompatible molecular framework is incorporated into synthetic oligopeptides. The SABRE activity is preserved, demonstrating the importance of such earmarking. Finally, a crucial exchange process responsible for SABRE activity is identified and discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Palit, Sourav; Chakrabarti, Sandip Kumar; Pal, Sujay; Basak, Tamal
Extra ionization by X-rays during solar flares affects VLF signal propagation through D-region ionosphere. Ionization produced in the lower ionosphere due to X-ray spectra of solar flares are simulated with an efficient detector simulation program, GEANT4. The balancing between the ionization and loss processes, causing the lower ionosphere to settle back to its undisturbed state is handled with a simple chemical model consisting of four broad species of ion densities. Using the electron densities, modified VLF signal amplitude is then computed with LWPC code. VLF signal along NWC (Australia) to IERC/ICSP (India) propagation path is examined during a M and a X-type solar flares and observational deviations are compared with simulated results. The agreement is found to be excellent.
Benyamini, Miri; Zacksenhouse, Miriam
2015-01-01
Recent experiments with brain-machine-interfaces (BMIs) indicate that the extent of neural modulations increased abruptly upon starting to operate the interface, and especially after the monkey stopped moving its hand. In contrast, neural modulations that are correlated with the kinematics of the movement remained relatively unchanged. Here we demonstrate that similar changes are produced by simulated neurons that encode the relevant signals generated by an optimal feedback controller during simulated BMI experiments. The optimal feedback controller relies on state estimation that integrates both visual and proprioceptive feedback with prior estimations from an internal model. The processing required for optimal state estimation and control were conducted in the state-space, and neural recording was simulated by modeling two populations of neurons that encode either only the estimated state or also the control signal. Spike counts were generated as realizations of doubly stochastic Poisson processes with linear tuning curves. The model successfully reconstructs the main features of the kinematics and neural activity during regular reaching movements. Most importantly, the activity of the simulated neurons successfully reproduces the observed changes in neural modulations upon switching to brain control. Further theoretical analysis and simulations indicate that increasing the process noise during normal reaching movement results in similar changes in neural modulations. Thus, we conclude that the observed changes in neural modulations during BMI experiments can be attributed to increasing process noise associated with the imperfect BMI filter, and, more directly, to the resulting increase in the variance of the encoded signals associated with state estimation and the required control signal.
Benyamini, Miri; Zacksenhouse, Miriam
2015-01-01
Recent experiments with brain-machine-interfaces (BMIs) indicate that the extent of neural modulations increased abruptly upon starting to operate the interface, and especially after the monkey stopped moving its hand. In contrast, neural modulations that are correlated with the kinematics of the movement remained relatively unchanged. Here we demonstrate that similar changes are produced by simulated neurons that encode the relevant signals generated by an optimal feedback controller during simulated BMI experiments. The optimal feedback controller relies on state estimation that integrates both visual and proprioceptive feedback with prior estimations from an internal model. The processing required for optimal state estimation and control were conducted in the state-space, and neural recording was simulated by modeling two populations of neurons that encode either only the estimated state or also the control signal. Spike counts were generated as realizations of doubly stochastic Poisson processes with linear tuning curves. The model successfully reconstructs the main features of the kinematics and neural activity during regular reaching movements. Most importantly, the activity of the simulated neurons successfully reproduces the observed changes in neural modulations upon switching to brain control. Further theoretical analysis and simulations indicate that increasing the process noise during normal reaching movement results in similar changes in neural modulations. Thus, we conclude that the observed changes in neural modulations during BMI experiments can be attributed to increasing process noise associated with the imperfect BMI filter, and, more directly, to the resulting increase in the variance of the encoded signals associated with state estimation and the required control signal. PMID:26042002
Formation of the image on the receiver of thermal radiation
NASA Astrophysics Data System (ADS)
Akimenko, Tatiana A.
2018-04-01
The formation of the thermal picture of the observed scene with the verification of the quality of the thermal images obtained is one of the important stages of the technological process that determine the quality of the thermal imaging observation system. In this article propose to consider a model for the formation of a thermal picture of a scene, which must take into account: the features of the object of observation as the source of the signal; signal transmission through the physical elements of the thermal imaging system that produce signal processing at the optical, photoelectronic and electronic stages, which determines the final parameters of the signal and its compliance with the requirements for thermal information and measurement systems.
The Dopamine Prediction Error: Contributions to Associative Models of Reward Learning
Nasser, Helen M.; Calu, Donna J.; Schoenbaum, Geoffrey; Sharpe, Melissa J.
2017-01-01
Phasic activity of midbrain dopamine neurons is currently thought to encapsulate the prediction-error signal described in Sutton and Barto’s (1981) model-free reinforcement learning algorithm. This phasic signal is thought to contain information about the quantitative value of reward, which transfers to the reward-predictive cue after learning. This is argued to endow the reward-predictive cue with the value inherent in the reward, motivating behavior toward cues signaling the presence of reward. Yet theoretical and empirical research has implicated prediction-error signaling in learning that extends far beyond a transfer of quantitative value to a reward-predictive cue. Here, we review the research which demonstrates the complexity of how dopaminergic prediction errors facilitate learning. After briefly discussing the literature demonstrating that phasic dopaminergic signals can act in the manner described by Sutton and Barto (1981), we consider how these signals may also influence attentional processing across multiple attentional systems in distinct brain circuits. Then, we discuss how prediction errors encode and promote the development of context-specific associations between cues and rewards. Finally, we consider recent evidence that shows dopaminergic activity contains information about causal relationships between cues and rewards that reflect information garnered from rich associative models of the world that can be adapted in the absence of direct experience. In discussing this research we hope to support the expansion of how dopaminergic prediction errors are thought to contribute to the learning process beyond the traditional concept of transferring quantitative value. PMID:28275359
Dynamic decomposition of spatiotemporal neural signals
2017-01-01
Neural signals are characterized by rich temporal and spatiotemporal dynamics that reflect the organization of cortical networks. Theoretical research has shown how neural networks can operate at different dynamic ranges that correspond to specific types of information processing. Here we present a data analysis framework that uses a linearized model of these dynamic states in order to decompose the measured neural signal into a series of components that capture both rhythmic and non-rhythmic neural activity. The method is based on stochastic differential equations and Gaussian process regression. Through computer simulations and analysis of magnetoencephalographic data, we demonstrate the efficacy of the method in identifying meaningful modulations of oscillatory signals corrupted by structured temporal and spatiotemporal noise. These results suggest that the method is particularly suitable for the analysis and interpretation of complex temporal and spatiotemporal neural signals. PMID:28558039
Creep and slip: Seismic precursors to the Nuugaatsiaq landslide (Greenland)
NASA Astrophysics Data System (ADS)
Poli, Piero
2017-09-01
Precursory signals to material's failure are predicted by numerical models and observed in laboratory experiments or using field data. These precursory signals are a marker of slip acceleration on weak regions, such as crustal faults. Observation of these precursory signals of catastrophic natural events, such as earthquakes and landslides, is necessary for improving our knowledge about the physics of the nucleation process. Furthermore, observing such precursory signals may help to forecast these catastrophic events or reduce their hazard. I report here the observation of seismic precursors to the Nuugaatsiaq landslide in Greenland. Time evolution of the detected precursors implies that an aseismic slip event is taking place for hours before the landslide, with an exponential increase of slip velocity. Furthermore, time evolution of the precursory signals' amplitude sheds light on the evolution of the fault physics during the nucleation process.
Animal and human models to understand ageing.
Lees, Hayley; Walters, Hannah; Cox, Lynne S
2016-11-01
Human ageing is the gradual decline in organ and tissue function with increasing chronological time, leading eventually to loss of function and death. To study the processes involved over research-relevant timescales requires the use of accessible model systems that share significant similarities with humans. In this review, we assess the usefulness of various models, including unicellular yeasts, invertebrate worms and flies, mice and primates including humans, and highlight the benefits and possible drawbacks of each model system in its ability to illuminate human ageing mechanisms. We describe the strong evolutionary conservation of molecular pathways that govern cell responses to extracellular and intracellular signals and which are strongly implicated in ageing. Such pathways centre around insulin-like growth factor signalling and integration of stress and nutritional signals through mTOR kinase. The process of cellular senescence is evaluated as a possible underlying cause for many of the frailties and diseases of human ageing. Also considered is ageing arising from systemic changes that cannot be modelled in lower organisms and instead require studies either in small mammals or in primates. We also touch briefly on novel therapeutic options arising from a better understanding of the biology of ageing. Copyright © 2016. Published by Elsevier Ireland Ltd.
Automated smoother for the numerical decoupling of dynamics models.
Vilela, Marco; Borges, Carlos C H; Vinga, Susana; Vasconcelos, Ana Tereza R; Santos, Helena; Voit, Eberhard O; Almeida, Jonas S
2007-08-21
Structure identification of dynamic models for complex biological systems is the cornerstone of their reverse engineering. Biochemical Systems Theory (BST) offers a particularly convenient solution because its parameters are kinetic-order coefficients which directly identify the topology of the underlying network of processes. We have previously proposed a numerical decoupling procedure that allows the identification of multivariate dynamic models of complex biological processes. While described here within the context of BST, this procedure has a general applicability to signal extraction. Our original implementation relied on artificial neural networks (ANN), which caused slight, undesirable bias during the smoothing of the time courses. As an alternative, we propose here an adaptation of the Whittaker's smoother and demonstrate its role within a robust, fully automated structure identification procedure. In this report we propose a robust, fully automated solution for signal extraction from time series, which is the prerequisite for the efficient reverse engineering of biological systems models. The Whittaker's smoother is reformulated within the context of information theory and extended by the development of adaptive signal segmentation to account for heterogeneous noise structures. The resulting procedure can be used on arbitrary time series with a nonstationary noise process; it is illustrated here with metabolic profiles obtained from in-vivo NMR experiments. The smoothed solution that is free of parametric bias permits differentiation, which is crucial for the numerical decoupling of systems of differential equations. The method is applicable in signal extraction from time series with nonstationary noise structure and can be applied in the numerical decoupling of system of differential equations into algebraic equations, and thus constitutes a rather general tool for the reverse engineering of mechanistic model descriptions from multivariate experimental time series.
NASA Astrophysics Data System (ADS)
Equeter, Lucas; Ducobu, François; Rivière-Lorphèvre, Edouard; Abouridouane, Mustapha; Klocke, Fritz; Dehombreux, Pierre
2018-05-01
Industrial concerns arise regarding the significant cost of cutting tools in machining process. In particular, their improper replacement policy can lead either to scraps, or to early tool replacements, which would waste fine tools. ISO 3685 provides the flank wear end-of-life criterion. Flank wear is also the nominal type of wear for longest tool lifetimes in optimal cutting conditions. Its consequences include bad surface roughness and dimensional discrepancies. In order to aid the replacement decision process, several tool condition monitoring techniques are suggested. Force signals were shown in the literature to be strongly linked with tools flank wear. It can therefore be assumed that force signals are highly relevant for monitoring the condition of cutting tools and providing decision-aid information in the framework of their maintenance and replacement. The objective of this work is to correlate tools flank wear with numerically computed force signals. The present work uses a Finite Element Model with a Coupled Eulerian-Lagrangian approach. The geometry of the tool is changed for different runs of the model, in order to obtain results that are specific to a certain level of wear. The model is assessed by comparison with experimental data gathered earlier on fresh tools. Using the model at constant cutting parameters, force signals under different tool wear states are computed and provide force signals for each studied tool geometry. These signals are qualitatively compared with relevant data from the literature. At this point, no quantitative comparison could be performed on worn tools because the reviewed literature failed to provide similar studies in this material, either numerical or experimental. Therefore, further development of this work should include experimental campaigns aiming at collecting cutting forces signals and assessing the numerical results that were achieved through this work.
Martin Cichy, Radoslaw; Khosla, Aditya; Pantazis, Dimitrios; Oliva, Aude
2017-06-01
Human scene recognition is a rapid multistep process evolving over time from single scene image to spatial layout processing. We used multivariate pattern analyses on magnetoencephalography (MEG) data to unravel the time course of this cortical process. Following an early signal for lower-level visual analysis of single scenes at ~100ms, we found a marker of real-world scene size, i.e. spatial layout processing, at ~250ms indexing neural representations robust to changes in unrelated scene properties and viewing conditions. For a quantitative model of how scene size representations may arise in the brain, we compared MEG data to a deep neural network model trained on scene classification. Representations of scene size emerged intrinsically in the model, and resolved emerging neural scene size representation. Together our data provide a first description of an electrophysiological signal for layout processing in humans, and suggest that deep neural networks are a promising framework to investigate how spatial layout representations emerge in the human brain. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Cell-Cell Contact Area Affects Notch Signaling and Notch-Dependent Patterning.
Shaya, Oren; Binshtok, Udi; Hersch, Micha; Rivkin, Dmitri; Weinreb, Sheila; Amir-Zilberstein, Liat; Khamaisi, Bassma; Oppenheim, Olya; Desai, Ravi A; Goodyear, Richard J; Richardson, Guy P; Chen, Christopher S; Sprinzak, David
2017-03-13
During development, cells undergo dramatic changes in their morphology. By affecting contact geometry, these morphological changes could influence cellular communication. However, it has remained unclear whether and how signaling depends on contact geometry. This question is particularly relevant for Notch signaling, which coordinates neighboring cell fates through direct cell-cell signaling. Using micropatterning with a receptor trans-endocytosis assay, we show that signaling between pairs of cells correlates with their contact area. This relationship extends across contact diameters ranging from micrometers to tens of micrometers. Mathematical modeling predicts that dependence of signaling on contact area can bias cellular differentiation in Notch-mediated lateral inhibition processes, such that smaller cells are more likely to differentiate into signal-producing cells. Consistent with this prediction, analysis of developing chick inner ear revealed that ligand-producing hair cell precursors have smaller apical footprints than non-hair cells. Together, these results highlight the influence of cell morphology on fate determination processes. Copyright © 2017 Elsevier Inc. All rights reserved.
Cell-cell contact area affects Notch signaling and Notch-dependent patterning
Shaya, Oren; Binshtok, Udi; Hersch, Micha; Rivkin, Dmitri; Weinreb, Sheila; Amir-Zilberstein, Liat; Khamaisi, Bassma; Oppenheim, Olya; Desai, Ravi A.; Goodyear, Richard J.; Richardson, Guy P.; Chen, Christopher S.; Sprinzak, David
2017-01-01
Summary During development, cells undergo dramatic changes in their morphology. By affecting contact geometry, these morphological changes could influence cellular communication. However, it has remained unclear whether and how signaling depends on contact geometry. This question is particularly relevant for Notch signaling, which coordinates neighboring cell fates through direct cell-cell signaling. Using micropatterning with a receptor trans-endocytosis assay, we show that signaling between pairs of cells correlates with their contact area. This relationship extends across contact diameters ranging from microns to tens of microns. Mathematical modeling predicts that dependence of signaling on contact area can bias cellular differentiation in Notch-mediated lateral inhibition processes, such that smaller cells are more likely to differentiate into signal-producing cells. Consistent with this prediction, analysis of developing chick inner ear revealed that ligand-producing hair cell precursors have smaller apical footprints than non-hair cells. Together, these results highlight the influence of cell morphology on fate determination processes. PMID:28292428
Shankle, William R; Pooley, James P; Steyvers, Mark; Hara, Junko; Mangrola, Tushar; Reisberg, Barry; Lee, Michael D
2013-01-01
Determining how cognition affects functional abilities is important in Alzheimer disease and related disorders. A total of 280 patients (normal or Alzheimer disease and related disorders) received a total of 1514 assessments using the functional assessment staging test (FAST) procedure and the MCI Screen. A hierarchical Bayesian cognitive processing model was created by embedding a signal detection theory model of the MCI Screen-delayed recognition memory task into a hierarchical Bayesian framework. The signal detection theory model used latent parameters of discriminability (memory process) and response bias (executive function) to predict, simultaneously, recognition memory performance for each patient and each FAST severity group. The observed recognition memory data did not distinguish the 6 FAST severity stages, but the latent parameters completely separated them. The latent parameters were also used successfully to transform the ordinal FAST measure into a continuous measure reflecting the underlying continuum of functional severity. Hierarchical Bayesian cognitive processing models applied to recognition memory data from clinical practice settings accurately translated a latent measure of cognition into a continuous measure of functional severity for both individuals and FAST groups. Such a translation links 2 levels of brain information processing and may enable more accurate correlations with other levels, such as those characterized by biomarkers.
Nonuniform sampling theorems for random signals in the linear canonical transform domain
NASA Astrophysics Data System (ADS)
Shuiqing, Xu; Congmei, Jiang; Yi, Chai; Youqiang, Hu; Lei, Huang
2018-06-01
Nonuniform sampling can be encountered in various practical processes because of random events or poor timebase. The analysis and applications of the nonuniform sampling for deterministic signals related to the linear canonical transform (LCT) have been well considered and researched, but up to now no papers have been published regarding the various nonuniform sampling theorems for random signals related to the LCT. The aim of this article is to explore the nonuniform sampling and reconstruction of random signals associated with the LCT. First, some special nonuniform sampling models are briefly introduced. Second, based on these models, some reconstruction theorems for random signals from various nonuniform samples associated with the LCT have been derived. Finally, the simulation results are made to prove the accuracy of the sampling theorems. In addition, the latent real practices of the nonuniform sampling for random signals have been also discussed.
Wide-band array signal processing via spectral smoothing
NASA Technical Reports Server (NTRS)
Xu, Guanghan; Kailath, Thomas
1989-01-01
A novel algorithm for the estimation of direction-of-arrivals (DOA) of multiple wide-band sources via spectral smoothing is presented. The proposed algorithm does not require an initial DOA estimate or a specific signal model. The advantages of replacing the MUSIC search with an ESPRIT search are discussed.
Amphetamine sensitization alters reward processing in the human striatum and amygdala.
O'Daly, Owen G; Joyce, Daniel; Tracy, Derek K; Azim, Adnan; Stephan, Klaas E; Murray, Robin M; Shergill, Sukhwinder S
2014-01-01
Dysregulation of mesolimbic dopamine transmission is implicated in a number of psychiatric illnesses characterised by disruption of reward processing and goal-directed behaviour, including schizophrenia, drug addiction and impulse control disorders associated with chronic use of dopamine agonists. Amphetamine sensitization (AS) has been proposed to model the development of this aberrant dopamine signalling and the subsequent dysregulation of incentive motivational processes. However, in humans the effects of AS on the dopamine-sensitive neural circuitry associated with reward processing remains unclear. Here we describe the effects of acute amphetamine administration, following a sensitising dosage regime, on blood oxygen level dependent (BOLD) signal in dopaminoceptive brain regions during a rewarded gambling task performed by healthy volunteers. Using a randomised, double-blind, parallel-groups design, we found clear evidence for sensitization to the subjective effects of the drug, while rewarded reaction times were unchanged. Repeated amphetamine exposure was associated with reduced dorsal striatal BOLD signal during decision making, but enhanced ventromedial caudate activity during reward anticipation. The amygdala BOLD response to reward outcomes was blunted following repeated amphetamine exposure. Positive correlations between subjective sensitization and changes in anticipation- and outcome-related BOLD signal were seen for the caudate nucleus and amygdala, respectively. These data show for the first time in humans that AS changes the functional impact of acute stimulant exposure on the processing of reward-related information within dopaminoceptive regions. Our findings accord with pathophysiological models which implicate aberrant dopaminergic modulation of striatal and amygdala activity in psychosis and drug-related compulsive disorders.
Ecological prediction with nonlinear multivariate time-frequency functional data models
Yang, Wen-Hsi; Wikle, Christopher K.; Holan, Scott H.; Wildhaber, Mark L.
2013-01-01
Time-frequency analysis has become a fundamental component of many scientific inquiries. Due to improvements in technology, the amount of high-frequency signals that are collected for ecological and other scientific processes is increasing at a dramatic rate. In order to facilitate the use of these data in ecological prediction, we introduce a class of nonlinear multivariate time-frequency functional models that can identify important features of each signal as well as the interaction of signals corresponding to the response variable of interest. Our methodology is of independent interest and utilizes stochastic search variable selection to improve model selection and performs model averaging to enhance prediction. We illustrate the effectiveness of our approach through simulation and by application to predicting spawning success of shovelnose sturgeon in the Lower Missouri River.
Genomic Analysis of ATP Efflux in Saccharomyces cerevisiae
Peters, Theodore W.; Miller, Aaron W.; Tourette, Cendrine; Agren, Hannah; Hubbard, Alan; Hughes, Robert E.
2015-01-01
Adenosine triphosphate (ATP) plays an important role as a primary molecule for the transfer of chemical energy to drive biological processes. ATP also functions as an extracellular signaling molecule in a diverse array of eukaryotic taxa in a conserved process known as purinergic signaling. Given the important roles of extracellular ATP in cell signaling, we sought to comprehensively elucidate the pathways and mechanisms governing ATP efflux from eukaryotic cells. Here, we present results of a genomic analysis of ATP efflux from Saccharomyces cerevisiae by measuring extracellular ATP levels in cultures of 4609 deletion mutants. This screen revealed key cellular processes that regulate extracellular ATP levels, including mitochondrial translation and vesicle sorting in the late endosome, indicating that ATP production and transport through vesicles are required for efflux. We also observed evidence for altered ATP efflux in strains deleted for genes involved in amino acid signaling, and mitochondrial retrograde signaling. Based on these results, we propose a model in which the retrograde signaling pathway potentiates amino acid signaling to promote mitochondrial respiration. This study advances our understanding of the mechanism of ATP secretion in eukaryotes and implicates TOR complex 1 (TORC1) and nutrient signaling pathways in the regulation of ATP efflux. These results will facilitate analysis of ATP efflux mechanisms in higher eukaryotes. PMID:26585826
Analysis of a dynamic model of guard cell signaling reveals the stability of signal propagation
NASA Astrophysics Data System (ADS)
Gan, Xiao; Albert, RéKa
Analyzing the long-term behaviors (attractors) of dynamic models of biological systems can provide valuable insight into biological phenotypes and their stability. We identified the long-term behaviors of a multi-level, 70-node discrete dynamic model of the stomatal opening process in plants. We reduce the model's huge state space by reducing unregulated nodes and simple mediator nodes, and by simplifying the regulatory functions of selected nodes while keeping the model consistent with experimental observations. We perform attractor analysis on the resulting 32-node reduced model by two methods: 1. converting it into a Boolean model, then applying two attractor-finding algorithms; 2. theoretical analysis of the regulatory functions. We conclude that all nodes except two in the reduced model have a single attractor; and only two nodes can admit oscillations. The multistability or oscillations do not affect the stomatal opening level in any situation. This conclusion applies to the original model as well in all the biologically meaningful cases. We further demonstrate the robustness of signal propagation by showing that a large percentage of single-node knockouts does not affect the stomatal opening level. Thus, we conclude that the complex structure of this signal transduction network provides multiple information propagation pathways while not allowing extensive multistability or oscillations, resulting in robust signal propagation. Our innovative combination of methods offers a promising way to analyze multi-level models.
Orbital component extraction by time-variant sinusoidal modeling.
NASA Astrophysics Data System (ADS)
Sinnesael, Matthias; Zivanovic, Miroslav; De Vleeschouwer, David; Claeys, Philippe; Schoukens, Johan
2016-04-01
Accurately deciphering periodic variations in paleoclimate proxy signals is essential for cyclostratigraphy. Classical spectral analysis often relies on methods based on the (Fast) Fourier Transformation. This technique has no unique solution separating variations in amplitude and frequency. This characteristic makes it difficult to correctly interpret a proxy's power spectrum or to accurately evaluate simultaneous changes in amplitude and frequency in evolutionary analyses. Here, we circumvent this drawback by using a polynomial approach to estimate instantaneous amplitude and frequency in orbital components. This approach has been proven useful to characterize audio signals (music and speech), which are non-stationary in nature (Zivanovic and Schoukens, 2010, 2012). Paleoclimate proxy signals and audio signals have in nature similar dynamics; the only difference is the frequency relationship between the different components. A harmonic frequency relationship exists in audio signals, whereas this relation is non-harmonic in paleoclimate signals. However, the latter difference is irrelevant for the problem at hand. Using a sliding window approach, the model captures time variations of an orbital component by modulating a stationary sinusoid centered at its mean frequency, with a single polynomial. Hence, the parameters that determine the model are the mean frequency of the orbital component and the polynomial coefficients. The first parameter depends on geologic interpretation, whereas the latter are estimated by means of linear least-squares. As an output, the model provides the orbital component waveform, either in the depth or time domain. Furthermore, it allows for a unique decomposition of the signal into its instantaneous amplitude and frequency. Frequency modulation patterns can be used to reconstruct changes in accumulation rate, whereas amplitude modulation can be used to reconstruct e.g. eccentricity-modulated precession. The time-variant sinusoidal model is applied to well-established Pleistocene benthic isotope records to evaluate its performance. Zivanovic M. and Schoukens J. (2010) On The Polynomial Approximation for Time-Variant Harmonic Signal Modeling. IEEE Transactions On Audio, Speech, and Language Processing vol. 19, no. 3, pp. 458-467. Doi: 10.1109/TASL.2010.2049673. Zivanovic M. and Schoukens J. (2012) Single and Piecewise Polynomials for Modeling of Pitched Sounds. IEEE Transactions On Audio, Speech, and Language Processing vol. 20, no. 4, pp. 1270-1281. Doi: 10.1109/TASL.2011.2174228.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Little, K; Lu, Z; MacMahon, H
Purpose: To investigate the effect of varying system image processing parameters on lung nodule detectability in digital radiography. Methods: An anthropomorphic chest phantom was imaged in the posterior-anterior position using a GE Discovery XR656 digital radiography system. To simulate lung nodules, a polystyrene board with 6.35mm diameter PMMA spheres was placed adjacent to the phantom (into the x-ray path). Due to magnification, the projected simulated nodules had a diameter in the radiographs of approximately 7.5 mm. The images were processed using one of GE’s default chest settings (Factory3) and reprocessed by varying the “Edge” and “Tissue Contrast” processing parameters, whichmore » were the two user-configurable parameters for a single edge and contrast enhancement algorithm. For each parameter setting, the nodule signals were calculated by subtracting the chest-only image from the image with simulated nodules. Twenty nodule signals were averaged, Gaussian filtered, and radially averaged in order to generate an approximately noiseless signal. For each processing parameter setting, this noise-free signal and 180 background samples from across the lung were used to estimate ideal observer performance in a signal-known-exactly detection task. Performance was estimated using a channelized Hotelling observer with 10 Laguerre-Gauss channel functions. Results: The “Edge” and “Tissue Contrast” parameters each had an effect on the detectability as calculated by the model observer. The CHO-estimated signal detectability ranged from 2.36 to 2.93 and was highest for “Edge” = 4 and “Tissue Contrast” = −0.15. In general, detectability tended to decrease as “Edge” was increased and as “Tissue Contrast” was increased. A human observer study should be performed to validate the relation to human detection performance. Conclusion: Image processing parameters can affect lung nodule detection performance in radiography. While validation with a human observer study is needed, model observer detectability for common tasks could provide a means for optimizing image processing parameters.« less
Stockley, Peter G; Twarock, Reidun; Bakker, Saskia E; Barker, Amy M; Borodavka, Alexander; Dykeman, Eric; Ford, Robert J; Pearson, Arwen R; Phillips, Simon E V; Ranson, Neil A; Tuma, Roman
2013-03-01
The formation of a protective protein container is an essential step in the life-cycle of most viruses. In the case of single-stranded (ss)RNA viruses, this step occurs in parallel with genome packaging in a co-assembly process. Previously, it had been thought that this process can be explained entirely by electrostatics. Inspired by recent single-molecule fluorescence experiments that recapitulate the RNA packaging specificity seen in vivo for two model viruses, we present an alternative theory, which recognizes the important cooperative roles played by RNA-coat protein interactions, at sites we have termed packaging signals. The hypothesis is that multiple copies of packaging signals, repeated according to capsid symmetry, aid formation of the required capsid protein conformers at defined positions, resulting in significantly enhanced assembly efficiency. The precise mechanistic roles of packaging signal interactions may vary between viruses, as we have demonstrated for MS2 and STNV. We quantify the impact of packaging signals on capsid assembly efficiency using a dodecahedral model system, showing that heterogeneous affinity distributions of packaging signals for capsid protein out-compete those of homogeneous affinities. These insights pave the way to a new anti-viral therapy, reducing capsid assembly efficiency by targeting of the vital roles of the packaging signals, and opens up new avenues for the efficient construction of protein nanocontainers in bionanotechnology.
Sequential Bayesian geoacoustic inversion for mobile and compact source-receiver configuration.
Carrière, Olivier; Hermand, Jean-Pierre
2012-04-01
Geoacoustic characterization of wide areas through inversion requires easily deployable configurations including free-drifting platforms, underwater gliders and autonomous vehicles, typically performing repeated transmissions during their course. In this paper, the inverse problem is formulated as sequential Bayesian filtering to take advantage of repeated transmission measurements. Nonlinear Kalman filters implement a random-walk model for geometry and environment and an acoustic propagation code in the measurement model. Data from MREA/BP07 sea trials are tested consisting of multitone and frequency-modulated signals (bands: 0.25-0.8 and 0.8-1.6 kHz) received on a shallow vertical array of four hydrophones 5-m spaced drifting over 0.7-1.6 km range. Space- and time-coherent processing are applied to the respective signal types. Kalman filter outputs are compared to a sequence of global optimizations performed independently on each received signal. For both signal types, the sequential approach is more accurate but also more efficient. Due to frequency diversity, the processing of modulated signals produces a more stable tracking. Although an extended Kalman filter provides comparable estimates of the tracked parameters, the ensemble Kalman filter is necessary to properly assess uncertainty. In spite of mild range dependence and simplified bottom model, all tracked geoacoustic parameters are consistent with high-resolution seismic profiling, core logging P-wave velocity, and previous inversion results with fixed geometries.
Shin, Sung-Young; Nguyen, Lan K
2017-01-01
The past three decades have witnessed an enormous progress in the elucidation of the ERK/MAPK signaling pathway and its involvement in various cellular processes. Because of its importance and complex wiring, the ERK pathway has been an intensive subject for mathematical modeling, which facilitates the unraveling of key dynamic properties and behaviors of the pathway. Recently, however, it became evident that the pathway does not act in isolation but closely interacts with many other pathways to coordinate various cellular outcomes under different pathophysiological contexts. This has led to an increasing number of integrated, large-scale models that link the ERK pathway to other functionally important pathways. In this chapter, we first discuss the essential steps in model development and notable models of the ERK pathway. We then use three examples of integrated, multipathway models to investigate how crosstalk of ERK signaling with other pathways regulates cell-fate decision-making in various physiological and disease contexts. Specifically, we focus on ERK interactions with the phosphoinositide-3 kinase (PI3K), c-Jun N-terminal kinase (JNK), and β-adrenergic receptor (β-AR) signaling pathways. We conclude that integrated modeling in combination with wet-lab experimentation have been and will be instrumental in gaining an in-depth understanding of ERK signaling in multiple biological contexts.
Cárdenas-García, Maura; González-Pérez, Pedro Pablo
2013-03-01
Apoptotic cell death plays a crucial role in development and homeostasis. This process is driven by mitochondrial permeabilization and activation of caspases. In this paper we adopt a tuple spaces-based modelling and simulation approach, and show how it can be applied to the simulation of this intracellular signalling pathway. Specifically, we are working to explore and to understand the complex interaction patterns of the caspases apoptotic and the mitochondrial role. As a first approximation, using the tuple spacesbased in silico approach, we model and simulate both the extrinsic and intrinsic apoptotic signalling pathways and the interactions between them. During apoptosis, mitochondrial proteins, released from mitochondria to cytosol are decisively involved in the process. If the decision is to die, from this point there is normally no return, cancer cells offer resistance to the mitochondrial induction.
Cárdenas-García, Maura; González-Pérez, Pedro Pablo
2013-04-11
Apoptotic cell death plays a crucial role in development and homeostasis. This process is driven by mitochondrial permeabilization and activation of caspases. In this paper we adopt a tuple spaces-based modelling and simulation approach, and show how it can be applied to the simulation of this intracellular signalling pathway. Specifically, we are working to explore and to understand the complex interaction patterns of the caspases apoptotic and the mitochondrial role. As a first approximation, using the tuple spaces-based in silico approach, we model and simulate both the extrinsic and intrinsic apoptotic signalling pathways and the interactions between them. During apoptosis, mitochondrial proteins, released from mitochondria to cytosol are decisively involved in the process. If the decision is to die, from this point there is normally no return, cancer cells offer resistance to the mitochondrial induction.
NASA Astrophysics Data System (ADS)
Ambrose, Jesse L.
2017-12-01
Atmospheric Hg measurements are commonly carried out using Tekran® Instruments Corporation's model 2537 Hg vapor analyzers, which employ gold amalgamation preconcentration sampling and detection by thermal desorption (TD) and atomic fluorescence spectrometry (AFS). A generally overlooked and poorly characterized source of analytical uncertainty in those measurements is the method by which the raw Hg atomic fluorescence (AF) signal is processed. Here I describe new software-based methods for processing the raw signal from the Tekran® 2537 instruments, and I evaluate the performances of those methods together with the standard Tekran® internal signal processing method. For test datasets from two Tekran® instruments (one 2537A and one 2537B), I estimate that signal processing uncertainties in Hg loadings determined with the Tekran® method are within ±[1 % + 1.2 pg] and ±[6 % + 0.21 pg], respectively. I demonstrate that the Tekran® method can produce significant low biases (≥ 5 %) not only at low Hg sample loadings (< 5 pg) but also at tropospheric background concentrations of gaseous elemental mercury (GEM) and total mercury (THg) (˜ 1 to 2 ng m-3) under typical operating conditions (sample loadings of 5-10 pg). Signal processing uncertainties associated with the Tekran® method can therefore represent a significant unaccounted for addition to the overall ˜ 10 to 15 % uncertainty previously estimated for Tekran®-based GEM and THg measurements. Signal processing bias can also add significantly to uncertainties in Tekran®-based gaseous oxidized mercury (GOM) and particle-bound mercury (PBM) measurements, which often derive from Hg sample loadings < 5 pg. In comparison, estimated signal processing uncertainties associated with the new methods described herein are low, ranging from within ±0.053 pg, when the Hg thermal desorption peaks are defined manually, to within ±[2 % + 0.080 pg] when peak definition is automated. Mercury limits of detection (LODs) decrease by 31 to 88 % when the new methods are used in place of the Tekran® method. I recommend that signal processing uncertainties be quantified in future applications of the Tekran® 2537 instruments.
Differential coactivation in a redundant signals task with weak and strong go/no-go stimuli.
Minakata, Katsumi; Gondan, Matthias
2018-05-01
When participants respond to stimuli of two sources, response times (RTs) are often faster when both stimuli are presented together relative to the RTs obtained when presented separately (redundant signals effect [RSE]). Race models and coactivation models can explain the RSE. In race models, separate channels process the two stimulus components, and the faster processing time determines the overall RT. In audiovisual experiments, the RSE is often higher than predicted by race models, and coactivation models have been proposed that assume integrated processing of the two stimuli. Where does coactivation occur? We implemented a go/no-go task with randomly intermixed weak and strong auditory, visual, and audiovisual stimuli. In one experimental session, participants had to respond to strong stimuli and withhold their response to weak stimuli. In the other session, these roles were reversed. Interestingly, coactivation was only observed in the experimental session in which participants had to respond to strong stimuli. If weak stimuli served as targets, results were widely consistent with the race model prediction. The pattern of results contradicts the inverse effectiveness law. We present two models that explain the result in terms of absolute and relative thresholds.
Compensatory neurofuzzy model for discrete data classification in biomedical
NASA Astrophysics Data System (ADS)
Ceylan, Rahime
2015-03-01
Biomedical data is separated to two main sections: signals and discrete data. So, studies in this area are about biomedical signal classification or biomedical discrete data classification. There are artificial intelligence models which are relevant to classification of ECG, EMG or EEG signals. In same way, in literature, many models exist for classification of discrete data taken as value of samples which can be results of blood analysis or biopsy in medical process. Each algorithm could not achieve high accuracy rate on classification of signal and discrete data. In this study, compensatory neurofuzzy network model is presented for classification of discrete data in biomedical pattern recognition area. The compensatory neurofuzzy network has a hybrid and binary classifier. In this system, the parameters of fuzzy systems are updated by backpropagation algorithm. The realized classifier model is conducted to two benchmark datasets (Wisconsin Breast Cancer dataset and Pima Indian Diabetes dataset). Experimental studies show that compensatory neurofuzzy network model achieved 96.11% accuracy rate in classification of breast cancer dataset and 69.08% accuracy rate was obtained in experiments made on diabetes dataset with only 10 iterations.
Coherent broadband sonar signal processing with the environmentally corrected matched filter
NASA Astrophysics Data System (ADS)
Camin, Henry John, III
The matched filter is the standard approach for coherently processing active sonar signals, where knowledge of the transmitted waveform is used in the detection and parameter estimation of received echoes. Matched filtering broadband signals provides higher levels of range resolution and reverberation noise suppression than can be realized through narrowband processing. Since theoretical processing gains are proportional to the signal bandwidth, it is typically desirable to utilize the widest band signals possible. However, as signal bandwidth increases, so do environmental effects that tend to decrease correlation between the received echo and the transmitted waveform. This is especially true for ultra wideband signals, where the bandwidth exceeds an octave or approximately 70% fractional bandwidth. This loss of coherence often results in processing gains and range resolution much lower than theoretically predicted. Wiener filtering, commonly used in image processing to improve distorted and noisy photos, is investigated in this dissertation as an approach to correct for these environmental effects. This improved signal processing, Environmentally Corrected Matched Filter (ECMF), first uses a Wiener filter to estimate the environmental transfer function and then again to correct the received signal using this estimate. This process can be viewed as a smarter inverse or whitening filter that adjusts behavior according to the signal to noise ratio across the spectrum. Though the ECMF is independent of bandwidth, it is expected that ultra wideband signals will see the largest improvement, since they tend to be more impacted by environmental effects. The development of the ECMF and demonstration of improved parameter estimation with its use are the primary emphases in this dissertation. Additionally, several new contributions to the field of sonar signal processing made in conjunction with the development of the ECMF are described. A new, nondimensional wideband ambiguity function is presented as a way to view the behavior of the matched filter with and without the decorrelating environmental effects; a new, integrated phase broadband angle estimation method is developed and compared to existing methods; and a new, asymptotic offset phase angle variance model is presented. Several data sets are used to demonstrate these new contributions. High fidelity Sonar Simulation Toolset (SST) synthetic data is used to characterize the theoretical performance. Two in-water data sets were used to verify assumptions that were made during the development of the ECMF. Finally, a newly collected in-air data set containing ultra wideband signals was used in lieu of a cost prohibitive underwater experiment to demonstrate the effectiveness of the ECMF at improving parameter estimates.
NASA Technical Reports Server (NTRS)
1988-01-01
Sunrise Geodetic Surveys are setting up their equipment for a town survey. Their equipment differs from conventional surveying systems that employ transit rod and chain to measure angles and distances. They are using ISTAC Inc.'s Model 2002 positioning system, which offers fast accurate surveying with exceptional signals from orbiting satellites. The special utility of the ISTAC Model 2002 is that it can provide positioning of the highest accuracy from Navstar PPS signals because it requires no knowledge of secret codes. It operates by comparing the frequency and time phase of a Navstar signal arriving at one ISTAC receiver with the reception of the same set of signals by another receiver. Data is computer processed and translated into three dimensional position data - latitude, longitude and elevation.
Layover and shadow detection based on distributed spaceborne single-baseline InSAR
NASA Astrophysics Data System (ADS)
Huanxin, Zou; Bin, Cai; Changzhou, Fan; Yun, Ren
2014-03-01
Distributed spaceborne single-baseline InSAR is an effective technique to get high quality Digital Elevation Model. Layover and Shadow are ubiquitous phenomenon in SAR images because of geometric relation of SAR imaging. In the signal processing of single-baseline InSAR, the phase singularity of Layover and Shadow leads to the phase difficult to filtering and unwrapping. This paper analyzed the geometric and signal model of the Layover and Shadow fields. Based on the interferometric signal autocorrelation matrix, the paper proposed the signal number estimation method based on information theoretic criteria, to distinguish Layover and Shadow from normal InSAR fields. The effectiveness and practicability of the method proposed in the paper are validated in the simulation experiments and theoretical analysis.
Nonlinear Estimation of Discrete-Time Signals Under Random Observation Delay
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caballero-Aguila, R.; Jimenez-Lopez, J. D.; Hermoso-Carazo, A.
2008-11-06
This paper presents an approximation to the nonlinear least-squares estimation problem of discrete-time stochastic signals using nonlinear observations with additive white noise which can be randomly delayed by one sampling time. The observation delay is modelled by a sequence of independent Bernoulli random variables whose values, zero or one, indicate that the real observation arrives on time or it is delayed and, hence, the available measurement to estimate the signal is not up-to-date. Assuming that the state-space model generating the signal is unknown and only the covariance functions of the processes involved in the observation equation are ready for use,more » a filtering algorithm based on linear approximations of the real observations is proposed.« less
NASA Astrophysics Data System (ADS)
Okutani, Iwao; Mitsui, Tatsuro; Nakada, Yusuke
In this paper put forward are neuron-type models, i.e., neural network model, wavelet neuron model and three layered wavelet neuron model(WV3), for estimating traveling time between signalized intersections in order to facilitate adaptive setting of traffic signal parameters such as green time and offset. Model validation tests using simulated data reveal that compared to other models, WV3 model works very fast in learning process and can produce more accurate estimates of travel time. Also, it is exhibited that up-link information obtainable from optical beacons, i.e., travel time observed during the former cycle time in this case, makes a crucial input variable to the models in that there isn't any substantial difference between the change of estimated and simulated travel time with the change of green time or offset when up-link information is employed as input while there appears big discrepancy between them when not employed.
Deriving Differential Equations from Process Algebra Models in Reagent-Centric Style
NASA Astrophysics Data System (ADS)
Hillston, Jane; Duguid, Adam
The reagent-centric style of modeling allows stochastic process algebra models of biochemical signaling pathways to be developed in an intuitive way. Furthermore, once constructed, the models are amenable to analysis by a number of different mathematical approaches including both stochastic simulation and coupled ordinary differential equations. In this chapter, we give a tutorial introduction to the reagent-centric style, in PEPA and Bio-PEPA, and the way in which such models can be used to generate systems of ordinary differential equations.
Optimal filtering and Bayesian detection for friction-based diagnostics in machines.
Ray, L R; Townsend, J R; Ramasubramanian, A
2001-01-01
Non-model-based diagnostic methods typically rely on measured signals that must be empirically related to process behavior or incipient faults. The difficulty in interpreting a signal that is indirectly related to the fundamental process behavior is significant. This paper presents an integrated non-model and model-based approach to detecting when process behavior varies from a proposed model. The method, which is based on nonlinear filtering combined with maximum likelihood hypothesis testing, is applicable to dynamic systems whose constitutive model is well known, and whose process inputs are poorly known. Here, the method is applied to friction estimation and diagnosis during motion control in a rotating machine. A nonlinear observer estimates friction torque in a machine from shaft angular position measurements and the known input voltage to the motor. The resulting friction torque estimate can be analyzed directly for statistical abnormalities, or it can be directly compared to friction torque outputs of an applicable friction process model in order to diagnose faults or model variations. Nonlinear estimation of friction torque provides a variable on which to apply diagnostic methods that is directly related to model variations or faults. The method is evaluated experimentally by its ability to detect normal load variations in a closed-loop controlled motor driven inertia with bearing friction and an artificially-induced external line contact. Results show an ability to detect statistically significant changes in friction characteristics induced by normal load variations over a wide range of underlying friction behaviors.
Moment-Based Physical Models of Broadband Clutter due to Aggregations of Fish
2013-09-30
statistical models for signal-processing algorithm development. These in turn will help to develop a capability to statistically forecast the impact of...aggregations of fish based on higher-order statistical measures describable in terms of physical and system parameters. Environmentally , these models...processing. In this experiment, we had good ground truth on (1) and (2), and had control over (3) and (4) except for environmentally -imposed restrictions
NASA Astrophysics Data System (ADS)
Changqing, Zhao; Kai, Liu; Tong, Zhao; Takei, Masahiro; Weian, Ren
2014-04-01
The mud-pulse logging instrument is an advanced measurement-while-drilling (MWD) tool and widely used by the industry in the world. In order to improve the signal transmission rate, ensure the accurate transmission of information and address the issue of the weak signal on the ground of oil and gas wells, the signal generator should send out the strong mud-pulse signals with the maximum amplitude. With the rotary valve pulse generator as the study object, the three-dimensional Reynolds NS equations and standard k - ɛ turbulent model were used as a mathematical model. The speed and pressure coupling calculation was done by simple algorithms to get the amplitudes of different rates of flow and axial clearances. Tests were done to verify the characteristics of the pressure signals. The pressure signal was captured by the standpiece pressure monitoring system. The study showed that the axial clearances grew bigger as the pressure wave amplitude value decreased and caused the weakening of the pulse signal. As the rate of flow got larger, the pressure wave amplitude would increase and the signal would be enhanced.
NASA Astrophysics Data System (ADS)
Dijk, J.; Bijl, P.; Oppeneer, M.; ten Hove, R. J. M.; van Iersel, M.
2017-10-01
The Electro-Optical Signal Transmission and Ranging (EOSTAR) model is an image-based Tactical Decision Aid (TDA) for thermal imaging systems (MWIR/LWIR) developed for a sea environment with an extensive atmosphere model. The Triangle Orientation Discrimination (TOD) Target Acquisition model calculates the sensor and signal processing effects on a set of input triangle test pattern images, judges their orientation using humans or a Human Visual System (HVS) model and derives the system image quality and operational field performance from the correctness of the responses. Combination of the TOD model and EOSTAR, basically provides the possibility to model Target Acquisition (TA) performance over the exact path from scene to observer. In this method ship representative TOD test patterns are placed at the position of the real target, subsequently the combined effects of the environment (atmosphere, background, etc.), sensor and signal processing on the image are calculated using EOSTAR and finally the results are judged by humans. The thresholds are converted into Detection-Recognition-Identification (DRI) ranges of the real target. In experiments is shown that combination of the TOD model and the EOSTAR model is indeed possible. The resulting images look natural and provide insight in the possibilities of combining the two models. The TOD observation task can be done well by humans, and the measured TOD is consistent with analytical TOD predictions for the same camera that was modeled in the ECOMOS project.
Chan, Kai Xun; Crisp, Peter Alexander; Estavillo, Gonzalo Martin; Pogson, Barry James
2010-12-01
In order for plant cells to function efficiently under different environmental conditions, chloroplastic processes have to be tightly regulated by the nucleus. It is widely believed that there is inter-organelle communication from the chloroplast to the nucleus, called retrograde signaling. Although some pathways of communication have been identified, the actual signals that move between the two cellular compartments are largely unknown. This review provides an overview of retrograde signaling including its importance to the cell, candidate signals, recent advances, and current experimental systems. In addition, we highlight the potential of using drought stress as a model for studying retrograde signaling.
Mandarin Chinese Tone Identification in Cochlear Implants: Predictions from Acoustic Models
Morton, Kenneth D.; Torrione, Peter A.; Throckmorton, Chandra S.; Collins, Leslie M.
2015-01-01
It has been established that current cochlear implants do not supply adequate spectral information for perception of tonal languages. Comprehension of a tonal language, such as Mandarin Chinese, requires recognition of lexical tones. New strategies of cochlear stimulation such as variable stimulation rate and current steering may provide the means of delivering more spectral information and thus may provide the auditory fine structure required for tone recognition. Several cochlear implant signal processing strategies are examined in this study, the continuous interleaved sampling (CIS) algorithm, the frequency amplitude modulation encoding (FAME) algorithm, and the multiple carrier frequency algorithm (MCFA). These strategies provide different types and amounts of spectral information. Pattern recognition techniques can be applied to data from Mandarin Chinese tone recognition tasks using acoustic models as a means of testing the abilities of these algorithms to transmit the changes in fundamental frequency indicative of the four lexical tones. The ability of processed Mandarin Chinese tones to be correctly classified may predict trends in the effectiveness of different signal processing algorithms in cochlear implants. The proposed techniques can predict trends in performance of the signal processing techniques in quiet conditions but fail to do so in noise. PMID:18706497
Coate, Thomas M.; Swanson, Tracy L.; Copenhaver, Philip F.
2011-01-01
Reverse signaling via GPI-linked Ephrins may help control cell proliferation and outgrowth within the nervous system, but the mechanisms underlying this process remain poorly understood. In the embryonic enteric nervous system (ENS) of the moth Manduca sexta, migratory neurons forming the enteric plexus (EP cells) express a single Ephrin ligand (GPI-linked MsEphrin), while adjacent midline cells that are inhibitory to migration express the cognate receptor (MsEph). Knocking down MsEph receptor expression in cultured embryos with antisense morpholino oligonucleotides allowed the EP cells to cross the midline inappropriately, consistent with the model that reverse signaling via MsEphrin mediates a repulsive response in the ENS. Src family kinases have been implicated in reverse signaling by type-A Ephrins in other contexts, and MsEphrin colocalizes with activated forms of endogenous Src in the leading processes of the EP cells. Pharmacological inhibition of Src within the developing ENS induced aberrant midline crossovers, similar to the effect of blocking MsEphrin reverse signaling. Hyperstimulating MsEphrin reverse signaling with MsEph-Fc fusion proteins induced the rapid activation of endogenous Src specifically within the EP cells, as assayed by Western blots of single embryonic gut explants and by whole-mount immunostaining of cultured embryos. In longer cultures, treatment with MsEph-Fc caused a global inhibition of EP cell migration and outgrowth, an effect that was prevented by inhibiting Src activation. These results support the model that MsEphrin reverse signaling induces the Src-dependent retraction of EP cell processes away from the enteric midline, thereby helping to confine the neurons to their appropriate pathways. PMID:19295147
Non linear processes modulated by low doses of radiation exposure
NASA Astrophysics Data System (ADS)
Mariotti, Luca; Ottolenghi, Andrea; Alloni, Daniele; Babini, Gabriele; Morini, Jacopo; Baiocco, Giorgio
The perturbation induced by radiation impinging on biological targets can stimulate the activation of several different pathways, spanning from the DNA damage processing to intra/extra -cellular signalling. In the mechanistic investigation of radiobiological damage this complex “system” response (e.g. omics, signalling networks, micro-environmental modifications, etc.) has to be taken into account, shifting from a focus on the DNA molecule solely to a systemic/collective view. An additional complication comes from the finding that the individual response of each of the involved processes is often not linear as a function of the dose. In this context, a systems biology approach to investigate the effects of low dose irradiations on intra/extra-cellular signalling will be presented, where low doses of radiation act as a mild perturbation of a robustly interconnected network. Results obtained through a multi-level investigation of both DNA damage repair processes (e.g. gamma-H2AX response) and of the activation kinetics for intra/extra cellular signalling pathways (e.g. NFkB activation) show that the overall cell response is dominated by non-linear processes - such as negative feedbacks - leading to possible non equilibrium steady states and to a poor signal-to-noise ratio. Together with experimental data of radiation perturbed pathways, different modelling approaches will be also discussed.
NASA Astrophysics Data System (ADS)
Donlon, Kevan; Ninkov, Zoran; Baum, Stefi
2016-08-01
Interpixel capacitance (IPC) is a deterministic electronic coupling by which signal generated in one pixel is measured in neighboring pixels. Examination of dark frames from test NIRcam arrays corroborates earlier results and simulations illustrating a signal dependent coupling. When the signal on an individual pixel is larger, the fractional coupling to nearest neighbors is lesser than when the signal is lower. Frames from test arrays indicate a drop in average coupling from approximately 1.0% at low signals down to approximately 0.65% at high signals depending on the particular array in question. The photometric ramifications for this non-uniformity are not fully understood. This non-uniformity intro-duces a non-linearity in the current mathematical model for IPC coupling. IPC coupling has been mathematically formalized as convolution by a blur kernel. Signal dependence requires that the blur kernel be locally defined as a function of signal intensity. Through application of a signal dependent coupling kernel, the IPC coupling can be modeled computationally. This method allows for simultaneous knowledge of the intrinsic parameters of the image scene, the result of applying a constant IPC, and the result of a signal dependent IPC. In the age of sub-pixel precision in astronomy these effects must be properly understood and accounted for in order for the data to accurately represent the object of observation. Implementation of this method is done through python scripted processing of images. The introduction of IPC into simulated frames is accomplished through convolution of the image with a blur kernel whose parameters are themselves locally defined functions of the image. These techniques can be used to enhance the data processing pipeline for NIRcam.
Effects of multiple enzyme-substrate interactions in basic units of cellular signal processing
NASA Astrophysics Data System (ADS)
Seaton, D. D.; Krishnan, J.
2012-08-01
Covalent modification cycles are a ubiquitous feature of cellular signalling networks. In these systems, the interaction of an active enzyme with the unmodified form of its substrate is essential for signalling to occur. However, this interaction is not necessarily the only enzyme-substrate interaction possible. In this paper, we analyse the behaviour of a basic model of signalling in which additional, non-essential enzyme-substrate interactions are possible. These interactions include those between the inactive form of an enzyme and its substrate, and between the active form of an enzyme and its product. We find that these additional interactions can result in increased sensitivity and biphasic responses, respectively. The dynamics of the responses are also significantly altered by the presence of additional interactions. Finally, we evaluate the consequences of these interactions in two variations of our basic model, involving double modification of substrate and scaffold-mediated signalling, respectively. We conclude that the molecular details of protein-protein interactions are important in determining the signalling properties of enzymatic signalling pathways.
Distributed delays in a hybrid model of tumor-immune system interplay.
Caravagna, Giulio; Graudenzi, Alex; d'Onofrio, Alberto
2013-02-01
A tumor is kinetically characterized by the presence of multiple spatio-temporal scales in which its cells interplay with, for instance, endothelial cells or Immune system effectors, exchanging various chemical signals. By its nature, tumor growth is an ideal object of hybrid modeling where discrete stochastic processes model low-numbers entities, and mean-field equations model abundant chemical signals. Thus, we follow this approach to model tumor cells, effector cells and Interleukin-2, in order to capture the Immune surveillance effect. We here present a hybrid model with a generic delay kernel accounting that, due to many complex phenomena such as chemical transportation and cellular differentiation, the tumor-induced recruitment of effectors exhibits a lag period. This model is a Stochastic Hybrid Automata and its semantics is a Piecewise Deterministic Markov process where a two-dimensional stochastic process is interlinked to a multi-dimensional mean-field system. We instantiate the model with two well-known weak and strong delay kernels and perform simulations by using an algorithm to generate trajectories of this process. Via simulations and parametric sensitivity analysis techniques we (i) relate tumor mass growth with the two kernels, we (ii) measure the strength of the Immune surveillance in terms of probability distribution of the eradication times, and (iii) we prove, in the oscillatory regime, the existence of a stochastic bifurcation resulting in delay-induced tumor eradication.
A Bayesian model for visual space perception
NASA Technical Reports Server (NTRS)
Curry, R. E.
1972-01-01
A model for visual space perception is proposed that contains desirable features in the theories of Gibson and Brunswik. This model is a Bayesian processor of proximal stimuli which contains three important elements: an internal model of the Markov process describing the knowledge of the distal world, the a priori distribution of the state of the Markov process, and an internal model relating state to proximal stimuli. The universality of the model is discussed and it is compared with signal detection theory models. Experimental results of Kinchla are used as a special case.
Diversity and specificity: auxin perception and signaling through the TIR1/AFB pathway
Wang, Renhou; Estelle, Mark
2014-07-15
Auxin is a versatile plant hormone that plays an essential role in most aspects of plant growth and development. Auxin regulates various growth processes by modulating gene transcription through a SCF TIR1/AFB-Aux/IAA-ARF nuclear signaling module. Recent work has generated clues as to how multiple layers of regulation of the auxin signaling components may result in diverse and specific response outputs. Finally, in particular, interaction and structural studies of key auxin signaling proteins have produced novel insights into the molecular basis of auxin-regulated transcription and may lead to a refined auxin signaling model.
Chloroplast-to-nucleus communication
Chan, Kai Xun; Crisp, Peter Alexander; Estavillo, Gonzalo Martin
2010-01-01
In order for plant cells to function efficiently under different environmental conditions, chloroplastic processes have to be tightly regulated by the nucleus. It is widely believed that there is inter-organelle communication from the chloroplast to the nucleus, called retrograde signaling. Although some pathways of communication have been identified, the actual signals that move between the two cellular compartments are largely unknown. This review provides an overview of retrograde signaling including its importance to the cell, candidate signals, recent advances and current experimental systems. In addition, we highlight the potential of using drought stress as a model for studying retrograde signaling. PMID:21512326
Hutka, Stefanie; Bidelman, Gavin M.; Moreno, Sylvain
2013-01-01
There is convincing empirical evidence for bidirectional transfer between music and language, such that experience in either domain can improve mental processes required by the other. This music-language relationship has been studied using linear models (e.g., comparing mean neural activity) that conceptualize brain activity as a static entity. The linear approach limits how we can understand the brain’s processing of music and language because the brain is a nonlinear system. Furthermore, there is evidence that the networks supporting music and language processing interact in a nonlinear manner. We therefore posit that the neural processing and transfer between the domains of language and music are best viewed through the lens of a nonlinear framework. Nonlinear analysis of neurophysiological activity may yield new insight into the commonalities, differences, and bidirectionality between these two cognitive domains not measurable in the local output of a cortical patch. We thus propose a novel application of brain signal variability (BSV) analysis, based on mutual information and signal entropy, to better understand the bidirectionality of music-to-language transfer in the context of a nonlinear framework. This approach will extend current methods by offering a nuanced, network-level understanding of the brain complexity involved in music-language transfer. PMID:24454295
Hutka, Stefanie; Bidelman, Gavin M; Moreno, Sylvain
2013-12-30
There is convincing empirical evidence for bidirectional transfer between music and language, such that experience in either domain can improve mental processes required by the other. This music-language relationship has been studied using linear models (e.g., comparing mean neural activity) that conceptualize brain activity as a static entity. The linear approach limits how we can understand the brain's processing of music and language because the brain is a nonlinear system. Furthermore, there is evidence that the networks supporting music and language processing interact in a nonlinear manner. We therefore posit that the neural processing and transfer between the domains of language and music are best viewed through the lens of a nonlinear framework. Nonlinear analysis of neurophysiological activity may yield new insight into the commonalities, differences, and bidirectionality between these two cognitive domains not measurable in the local output of a cortical patch. We thus propose a novel application of brain signal variability (BSV) analysis, based on mutual information and signal entropy, to better understand the bidirectionality of music-to-language transfer in the context of a nonlinear framework. This approach will extend current methods by offering a nuanced, network-level understanding of the brain complexity involved in music-language transfer.
The Neural Representations Underlying Human Episodic Memory.
Xue, Gui
2018-06-01
A fundamental question of human episodic memory concerns the cognitive and neural representations and processes that give rise to the neural signals of memory. By integrating behavioral tests, formal computational models, and neural measures of brain activity patterns, recent studies suggest that memory signals not only depend on the neural processes and representations during encoding and retrieval, but also on the interaction between encoding and retrieval (e.g., transfer-appropriate processing), as well as on the interaction between the tested events and all other events in the episodic memory space (e.g., global matching). In addition, memory signals are also influenced by the compatibility of the event with the existing long-term knowledge (e.g., schema matching). These studies highlight the interactive nature of human episodic memory. Copyright © 2018 Elsevier Ltd. All rights reserved.
Modeling Sonar Responses of Targets Deployed On or In the Seafloor
2011-09-30
example considered here is a filter recently suggested by Bucaro et al . [8], which essentially time delays unwanted signals till they line up at a...signals to gain insight on what effects the filtering process can have. To illustrate, the filter used by Bucaro et al . is applied to the complex...at NURC (A. Tesei, M. Zampolli, Finn Jensen, et al .) are also testing acoustic propagation and scattering models by comparing predictions with data
1976-04-09
of the signal and noise remain HH ***^-^*--~ 53 h, to r(Mc) h2(r» r(we) Figure 3-2 Sy&toetric Impulse Response for Two FIR Linear Phase...Inputs x,y and Outputs x.j. , 15 2-2 Linear System with Impulse Response h("r) 23 2-3 Model of Error Resulting from Linearly Filtering x(t) to...Corrupted with Additive Noise 42 2-6 Model of Directional Signal Corrupted with Additive Noise and Processed .... 45 2-7 Source Driving Two
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kanemoto, S.; Andoh, Y.; Sandoz, S.A.
1984-10-01
A method for evaluating reactor stability in boiling water reactors has been developed. The method is based on multivariate autoregressive (M-AR) modeling of steady-state neutron and process noise signals. In this method, two kinds of power spectral densities (PSDs) for the measured neutron signal and the corresponding noise source signal are separately identified by the M-AR modeling. The closed- and open-loop stability parameters are evaluated from these PSDs. The method is applied to actual plant noise data that were measured together with artificial perturbation test data. Stability parameters identified from noise data are compared to those from perturbation test data,more » and it is shown that both results are in good agreement. In addition to these stability estimations, driving noise sources for the neutron signal are evaluated by the M-AR modeling. Contributions from void, core flow, and pressure noise sources are quantitatively evaluated, and the void noise source is shown to be the most dominant.« less
Method and apparatus for obtaining complete speech signals for speech recognition applications
NASA Technical Reports Server (NTRS)
Abrash, Victor (Inventor); Cesari, Federico (Inventor); Franco, Horacio (Inventor); George, Christopher (Inventor); Zheng, Jing (Inventor)
2009-01-01
The present invention relates to a method and apparatus for obtaining complete speech signals for speech recognition applications. In one embodiment, the method continuously records an audio stream comprising a sequence of frames to a circular buffer. When a user command to commence or terminate speech recognition is received, the method obtains a number of frames of the audio stream occurring before or after the user command in order to identify an augmented audio signal for speech recognition processing. In further embodiments, the method analyzes the augmented audio signal in order to locate starting and ending speech endpoints that bound at least a portion of speech to be processed for recognition. At least one of the speech endpoints is located using a Hidden Markov Model.
Epithelial Patterning, Morphogenesis, and Evolution: Drosophila Eggshell as a Model.
Osterfield, Miriam; Berg, Celeste A; Shvartsman, Stanislav Y
2017-05-22
Understanding the mechanisms driving tissue and organ formation requires knowledge across scales. How do signaling pathways specify distinct tissue types? How does the patterning system control morphogenesis? How do these processes evolve? The Drosophila egg chamber, where EGF and BMP signaling intersect to specify unique cell types that construct epithelial tubes for specialized eggshell structures, has provided a tractable system to ask these questions. Work there has elucidated connections between scales of development, including across evolutionary scales, and fostered the development of quantitative modeling tools. These tools and general principles can be applied to the understanding of other developmental processes across organisms. Copyright © 2017 Elsevier Inc. All rights reserved.
The influence of polarization on millimeter wave propagation through rain. [radio signals
NASA Technical Reports Server (NTRS)
Bostian, C. W.; Stutzman, W. L.; Wiley, P. H.; Marshall, R. E.
1973-01-01
The measurement and analysis of the depolarization and attenuation that occur when millimeter wave radio signals propagate through rain are described. Progress was made in three major areas: the processing of recorded 1972 data, acquisition and processing of a large amount of 1973 data, and the development of a new theoretical model to predict rain cross polarization and attenuation. Each of these topics is described in detail along with radio frequency system design for cross polarization measurements.
On the bandwidth of the plenoptic function.
Do, Minh N; Marchand-Maillet, Davy; Vetterli, Martin
2012-02-01
The plenoptic function (POF) provides a powerful conceptual tool for describing a number of problems in image/video processing, vision, and graphics. For example, image-based rendering is shown as sampling and interpolation of the POF. In such applications, it is important to characterize the bandwidth of the POF. We study a simple but representative model of the scene where band-limited signals (e.g., texture images) are "painted" on smooth surfaces (e.g., of objects or walls). We show that, in general, the POF is not band limited unless the surfaces are flat. We then derive simple rules to estimate the essential bandwidth of the POF for this model. Our analysis reveals that, in addition to the maximum and minimum depths and the maximum frequency of painted signals, the bandwidth of the POF also depends on the maximum surface slope. With a unifying formalism based on multidimensional signal processing, we can verify several key results in POF processing, such as induced filtering in space and depth-corrected interpolation, and quantify the necessary sampling rates. © 2011 IEEE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carena, Marcela; Liu, Zhen
Heavy scalar and pseudoscalar resonance searches through themore » $$gg\\rightarrow S\\rightarrow t\\bar t$$ process are challenging due to the peculiar behavior of the large interference effects with the standard model $$t\\bar t$$ background. Such effects generate non-trivial lineshapes from additional relative phases between the signal and background amplitudes. We provide the analytic expressions for the differential cross sections to understand the interference effects in the heavy scalar signal lineshapes. We extend our study to the case of CP-violation and further consider the effect of bottom quarks in the production and decay processes. We also evaluate the contributions from additional particles to the gluon fusion production process, such as stops and vector-like quarks, that could lead to significant changes in the behavior of the signal lineshapes. Taking into account the large interference effects, we perform lineshape searches at the LHC and discuss the importance of the systematic uncertainties and smearing effects. Lastly, we present projected sensitivities for two LHC performance scenarios to probe the $$gg\\rightarrow S \\rightarrow t\\bar t$$ channel in various models.« less
Death wins against life in a spatially extended model of the caspase-3/8 feedback loop.
Daub, M; Waldherr, S; Allgöwer, F; Scheurich, P; Schneider, G
2012-01-01
Apoptosis is an important physiological process which enables organisms to remove unwanted or damaged cells. A mathematical model of the extrinsic pro-apoptotic signaling pathway has been introduced by Eissing et al. (2007) and a bistable behavior with a stable death state and a stable life state of the reaction system has been established. In this paper, we consider a spatial extension of the extrinsic pro-apoptotic signaling pathway incorporating diffusion terms and make a model-based, numerical analysis of the apoptotic switch in the spatial dimension. For the parameter regimes under consideration it turns out that for this model diffusion homogenizes rapidly the concentrations which afterward are governed by the original reaction system. The activation of effector-caspase 3 depends on the space averaged initial concentration of pro-caspase 8 and pro-caspase 3 at the beginning of the process. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Simulator of human visual perception
NASA Astrophysics Data System (ADS)
Bezzubik, Vitalii V.; Belashenkov, Nickolai R.
2016-04-01
Difference of Circs (DoC) model allowing to simulate the response of neurons - ganglion cells as a reaction to stimuli is represented and studied in relation with representation of receptive fields of human retina. According to this model the response of neurons is reduced to execution of simple arithmetic operations and the results of these calculations well correlate with experimental data in wide range of stimuli parameters. The simplicity of the model and reliability of reproducing of responses allow to propose the conception of a device which can simulate the signals generated by ganglion cells as a reaction to presented stimuli. The signals produced according to DoC model are considered as a result of primary processing of information received from receptors independently of their type and may be sent to higher levels of nervous system of living creatures for subsequent processing. Such device may be used as a prosthesis for disabled organ.
Bounding filter - A simple solution to lack of exact a priori statistics.
NASA Technical Reports Server (NTRS)
Nahi, N. E.; Weiss, I. M.
1972-01-01
Wiener and Kalman-Bucy estimation problems assume that models describing the signal and noise stochastic processes are exactly known. When this modeling information, i.e., the signal and noise spectral densities for Wiener filter and the signal and noise dynamic system and disturbing noise representations for Kalman-Bucy filtering, is inexactly known, then the filter's performance is suboptimal and may even exhibit apparent divergence. In this paper a system is designed whereby the actual estimation error covariance is bounded by the covariance calculated by the estimator. Therefore, the estimator obtains a bound on the actual error covariance which is not available, and also prevents its apparent divergence.
Computational models of human vision with applications
NASA Technical Reports Server (NTRS)
Wandell, B. A.
1985-01-01
Perceptual problems in aeronautics were studied. The mechanism by which color constancy is achieved in human vision was examined. A computable algorithm was developed to model the arrangement of retinal cones in spatial vision. The spatial frequency spectra are similar to the spectra of actual cone mosaics. The Hartley transform as a tool of image processing was evaluated and it is suggested that it could be used in signal processing applications, GR image processing.
Digital audio watermarking using moment-preserving thresholding
NASA Astrophysics Data System (ADS)
Choi, DooSeop; Jung, Hae Kyung; Choi, Hyuk; Kim, Taejeong
2007-09-01
The Moment-Preserving Thresholding technique for digital images has been used in digital image processing for decades, especially in image binarization and image compression. Its main strength lies in that the binary values that the MPT produces as a result, called representative values, are usually unaffected when the signal being thresholded goes through a signal processing operation. The two representative values in MPT together with the threshold value are obtained by solving the system of the preservation equations for the first, second, and third moment. Relying on this robustness of the representative values to various signal processing attacks considered in the watermarking context, this paper proposes a new watermarking scheme for audio signals. The watermark is embedded in the root-sum-square (RSS) of the two representative values of each signal block using the quantization technique. As a result, the RSS values are modified by scaling the signal according to the watermark bit sequence under the constraint of inaudibility relative to the human psycho-acoustic model. We also address and suggest solutions to the problem of synchronization and power scaling attacks. Experimental results show that the proposed scheme maintains high audio quality and robustness to various attacks including MP3 compression, re-sampling, jittering, and, DA/AD conversion.
NASA Astrophysics Data System (ADS)
Lischeid, G.; Hohenbrink, T.; Schindler, U.
2012-04-01
Hydrology is based on the observation that catchments process input signals, e.g., precipitation, in a highly deterministic way. Thus, the Darcy or the Richards equation can be applied to model water fluxes in the saturated or vadose zone, respectively. Soils and aquifers usually exhibit substantial spatial heterogeneities at different scales that can, in principle, be represented by corresponding parameterisations of the models. In practice, however, data are hardly available at the required spatial resolution, and accounting for observed heterogeneities of soil and aquifer structure renders models very time and CPU consuming. We hypothesize that the intrinsic dimensionality of soil hydrological processes, which is induced by spatial heterogeneities, actually is very low and that soil hydrological processes in heterogeneous soils follow approximately the same trajectory. That means, the way how the soil transforms any hydrological input signals is the same for different soil textures and structures. Different soils differ only with respect to the extent of transformation of input signals. In a first step, we analysed the output of a soil hydrological model, based on the Richards equation, for homogeneous soils down to 5 m depth for different soil textures. A matrix of time series of soil matrix potential and soil water content at 10 cm depth intervals was set up. The intrinsic dimensionality of that matrix was assessed using the Correlation Dimension and a non-linear principal component approach. The latter provided a metrics for the extent of transformation ("damping") of the input signal. In a second step, model outputs for heterogeneous soils were analysed. In a last step, the same approaches were applied to 55 time series of observed soil water content from 15 sites and different depths. In all cases, the intrinsic dimensionality in fact was very close to unity, confirming our hypothesis. The metrics provided a very efficient tool to quantify the observed behaviour, depending on depth and soil heterogeneity: Different soils differed primarily with respect to the extent of damping per depth interval rather than to the kind of damping. We will show how that metrics can be used in a very efficient way for representing soil heterogeneities in simulation models.
Reconstruction of audio waveforms from spike trains of artificial cochlea models
Zai, Anja T.; Bhargava, Saurabh; Mesgarani, Nima; Liu, Shih-Chii
2015-01-01
Spiking cochlea models describe the analog processing and spike generation process within the biological cochlea. Reconstructing the audio input from the artificial cochlea spikes is therefore useful for understanding the fidelity of the information preserved in the spikes. The reconstruction process is challenging particularly for spikes from the mixed signal (analog/digital) integrated circuit (IC) cochleas because of multiple non-linearities in the model and the additional variance caused by random transistor mismatch. This work proposes an offline method for reconstructing the audio input from spike responses of both a particular spike-based hardware model called the AEREAR2 cochlea and an equivalent software cochlea model. This method was previously used to reconstruct the auditory stimulus based on the peri-stimulus histogram of spike responses recorded in the ferret auditory cortex. The reconstructed audio from the hardware cochlea is evaluated against an analogous software model using objective measures of speech quality and intelligibility; and further tested in a word recognition task. The reconstructed audio under low signal-to-noise (SNR) conditions (SNR < –5 dB) gives a better classification performance than the original SNR input in this word recognition task. PMID:26528113
Analysis of bacterial migration. 2: Studies with multiple attractant gradients
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strauss, I.; Frymier, P.D.; Hahn, C.M.
1995-02-01
Many motile bacteria exhibit chemotaxis, the ability to bias their random motion toward or away from increasing concentrations of chemical substances which benefit or inhibit their survival, respectively. Since bacteria encounter numerous chemical concentration gradients simultaneously in natural surroundings, it is necessary to know quantitatively how a bacterial population responds in the presence of more than one chemical stimulus to develop predictive mathematical models describing bacterial migration in natural systems. This work evaluates three hypothetical models describing the integration of chemical signals from multiple stimuli: high sensitivity, maximum signal, and simple additivity. An expression for the tumbling probability for individualmore » stimuli is modified according to the proposed models and incorporated into the cell balance equation for a 1-D attractant gradient. Random motility and chemotactic sensitivity coefficients, required input parameters for the model, are measured for single stimulus responses. Theoretical predictions with the three signal integration models are compared to the net chemotactic response of Escherichia coli to co- and antidirectional gradients of D-fucose and [alpha]-methylaspartate in the stopped-flow diffusion chamber assay. Results eliminate the high-sensitivity model and favor the simple additivity over the maximum signal. None of the simple models, however, accurately predict the observed behavior, suggesting a more complex model with more steps in the signal processing mechanism is required to predict responses to multiple stimuli.« less
Variables and potential models for the bleaching of luminescence signals in fluvial environments
Gray, Harrison J.; Mahan, Shannon
2015-01-01
Luminescence dating of fluvial sediments rests on the assumption that sufficient sunlight is available to remove a previously obtained signal in a process deemed bleaching. However, luminescence signals obtained from sediment in the active channels of rivers often contain residual signals. This paper explores and attempts to build theoretical models for the bleaching of luminescence signals in fluvial settings. We present two models, one for sediment transported in an episodic manner, such as flood-driven washes in arid environments, and one for sediment transported in a continuous manner, such as in large continental scale rivers. The episodic flow model assumes that the majority of sediment is bleached while exposed to sunlight at the near surface between flood events and predicts a power-law decay in luminescence signal with downstream transport distance. The continuous flow model is developed by combining the Beer–Lambert law for the attenuation of light through a water column with a general-order kinetics equation to produce an equation with the form of a double negative exponential. The inflection point of this equation is compared with the sediment concentration from a Rouse profile to derive a non-dimensional number capable of assessing the likely extent of bleaching for a given set of luminescence and fluvial parameters. Although these models are theoretically based and not yet necessarily applicable to real-world fluvial systems, we introduce these ideas to stimulate discussion and encourage the development of comprehensive bleaching models with predictive power.
NASA Astrophysics Data System (ADS)
Vermeulen, A.; Verheggen, B.; Pieterse, G.; Haszpra, L.
2007-12-01
Tall towers allow us to observe the integrated influence of carbon exchange processes from large areas on the concentrations of CO2. The signal received shows a large variability at diurnal and synoptic timescales. The question remains how high resolutions and how accurate transport models need to be, in order to discriminate the relevant source terms from the atmospheric signal. We will examine the influence of the resolution of (ECMWF) meteorological fields, antropogenic and biogenic fluxes when going from resolutions of 2° to 0.2° lat-lon, using a simple Lagrangian 2D transport model. Model results will be compared to other Eulerian model results and observations at the CHIOTTO/CarboEurope tall tower network in Europe. Biogenic fluxes taken into account are from the FACEM model (Pieterse et al, 2006). Results show that the relative influence of the different CO2 exchange processes is very different at each tower and that higher model resolution clearly pays off in better model performance.
NASA Astrophysics Data System (ADS)
Strehlow, Karen; Gottsmann, Jo
2014-05-01
Aquifers respond to and modify the surface expressions of magmatic activity, and they can also become agents of unrest themselves. Therefore, monitoring the hydrology can provide a valuable window into subsurface processes in volcanic areas. Interpretations of unrest signals as groundwater responses to changes in the magmatic system can be found for many volcanoes. Changes in temperature and strain conditions, seismic excitation or the injection of magmatic fluids into hydrothermal systems are just a few of the proposed processes induced by magmatic activity that affect the local hydrology. Aquifer responses are described to include changes in water table levels, changes in temperature or composition of hydrothermal waters and pore pressure-induced ground deformation. We can observe these effects at the surface via geophysical and geochemical signals. To fully to utilise these indicators as monitoring and forecasting tools, however, it is necessary to improve our still poor understanding of the ongoing mechanisms in the interactions of hydrological and magmatic systems. An extensive literature research provided an overview on reported effects, which we investigate in detail using numerical modelling. The hydrogeophysical study uses finite element analysis to quantitatively test proposed mechanisms of aquifer excitation and the resultant geophysical signals. We present a set of generic models for two typical volcanic landforms - a stratovolcano and a caldera - that simulate the interaction between deeper magmatic systems with shallow-seated aquifers, focusing on strain and temperature effects. They predict pore pressure induced hydraulic head changes in the aquifer as well as changing groundwater temperatures and strain induced fluid migration. Volcano observatories can track these hydrological effects for example with potential field investigations or the monitoring of wells. The models allow us to explore the parameter space, contributing to a better understanding of the coupling of these two highly complex systems. Our results provide further insight into the subsurface processes at volcanic systems and will aid the evaluation of unrest signals with potential for improved eruption forecasting.
A silicon avalanche photodiode detector circuit for Nd:YAG laser scattering
NASA Astrophysics Data System (ADS)
Hsieh, C.-L.; Haskovec, J.; Carlstrom, T. N.; Deboo, J. C.; Greenfield, C. M.; Snider, R. T.; Trost, P.
1990-06-01
A silicon avalanche photodiode with an internal gain of about 50 to 100 is used in a temperature controlled environment to measure the Nd:YAG laser Thomson scattered spectrum in the wavelength range from 700 to 1150 nm. A charge sensitive preamplifier was developed for minimizing the noise contribution from the detector electronics. Signal levels as low as 20 photoelectrons (S/N = 1) can be detected. Measurements show that both the signal and the variance of the signal vary linearly with the input light level over the range of interest, indicating Poisson statistics. The signal is processed using a 100 ns delay line and a differential amplifier which subtracts the low frequency background light component. The background signal is amplified with a computer controlled variable gain amplifier and is used for an estimate of the measurement error, calibration, and Z sub eff measurements of the plasma. The signal processing was analyzed using a theoretical model to aid the system design and establish the procedure for data error analysis.
Silicon avalanche photodiode detector circuit for Nd:YAG laser scattering
NASA Astrophysics Data System (ADS)
Hsieh, C. L.; Haskovec, J.; Carlstrom, T. N.; DeBoo, J. C.; Greenfield, C. M.; Snider, R. T.; Trost, P.
1990-10-01
A silicon avalanche photodiode with an internal gain of about 50 to 100 is used in a temperature-controlled environment to measure the Nd:YAG laser Thomson scattered spectrum in the wavelength range from 700 to 1150 nm. A charge-sensitive preamplifier has been developed for minimizing the noise contribution from the detector electronics. Signal levels as low as 20 photoelectrons (S/N=1) can be detected. Measurements show that both the signal and the variance of the signal vary linearly with the input light level over the range of interest, indicating Poisson statistics. The signal is processed using a 100 ns delay line and a differential amplifier which subtracts the low-frequency background light component. The background signal is amplified with a computer-controlled variable gain amplifier and is used for an estimate of the measurement error, calibration, and Zeff measurements of the plasma. The signal processing has been analyzed using a theoretical model to aid the system design and establish the procedure for data error analysis.
NASA Astrophysics Data System (ADS)
Ben Salem, N.; Salizzoni, P.; Soulhac, L.
2017-01-01
We present an inverse atmospheric model to estimate the mass flow rate of an impulsive source of pollutant, whose position is known, from concentration signals registered at receptors placed downwind of the source. The originality of this study is twofold. Firstly, the inversion is performed using high-frequency fluctuating, i.e. turbulent, concentration signals. Secondly, the inverse algorithm is applied to a dispersion process within a dense urban canopy, at the district scale, and a street network model, SIRANERISK, is adopted. The model, which is tested against wind tunnel experiments, simulates the dispersion of short-duration releases of pollutant in different typologies of idealised urban geometries. Results allow us to discuss the reliability of the inverse model as an operational tool for crisis management and the risk assessments related to the accidental release of toxic and flammable substances.
Linear Mathematical Model for Seam Tracking with an Arc Sensor in P-GMAW Processes
Liu, Wenji; Li, Liangyu; Hong, Ying; Yue, Jianfeng
2017-01-01
Arc sensors have been used in seam tracking and widely studied since the 80s and commercial arc sensing products for T and V shaped grooves have been developed. However, it is difficult to use these arc sensors in narrow gap welding because the arc stability and sensing accuracy are not satisfactory. Pulse gas melting arc welding (P-GMAW) has been successfully applied in narrow gap welding and all position welding processes, so it is worthwhile to research P-GMAW arc sensing technology. In this paper, we derived a linear mathematical P-GMAW model for arc sensing, and the assumptions for the model are verified through experiments and finite element methods. Finally, the linear characteristics of the mathematical model were investigated. In torch height changing experiments, uphill experiments, and groove angle changing experiments the P-GMAW arc signals all satisfied the linear rules. In addition, the faster the welding speed, the higher the arc signal sensitivities; the smaller the groove angle, the greater the arc sensitivities. The arc signal variation rate needs to be modified according to the welding power, groove angles, and weaving or rotate speed. PMID:28335425
Linear Mathematical Model for Seam Tracking with an Arc Sensor in P-GMAW Processes.
Liu, Wenji; Li, Liangyu; Hong, Ying; Yue, Jianfeng
2017-03-14
Arc sensors have been used in seam tracking and widely studied since the 80s and commercial arc sensing products for T and V shaped grooves have been developed. However, it is difficult to use these arc sensors in narrow gap welding because the arc stability and sensing accuracy are not satisfactory. Pulse gas melting arc welding (P-GMAW) has been successfully applied in narrow gap welding and all position welding processes, so it is worthwhile to research P-GMAW arc sensing technology. In this paper, we derived a linear mathematical P-GMAW model for arc sensing, and the assumptions for the model are verified through experiments and finite element methods. Finally, the linear characteristics of the mathematical model were investigated. In torch height changing experiments, uphill experiments, and groove angle changing experiments the P-GMAW arc signals all satisfied the linear rules. In addition, the faster the welding speed, the higher the arc signal sensitivities; the smaller the groove angle, the greater the arc sensitivities. The arc signal variation rate needs to be modified according to the welding power, groove angles, and weaving or rotate speed.
Characterization of electroencephalography signals for estimating saliency features in videos.
Liang, Zhen; Hamada, Yasuyuki; Oba, Shigeyuki; Ishii, Shin
2018-05-12
Understanding the functions of the visual system has been one of the major targets in neuroscience formany years. However, the relation between spontaneous brain activities and visual saliency in natural stimuli has yet to be elucidated. In this study, we developed an optimized machine learning-based decoding model to explore the possible relationships between the electroencephalography (EEG) characteristics and visual saliency. The optimal features were extracted from the EEG signals and saliency map which was computed according to an unsupervised saliency model ( Tavakoli and Laaksonen, 2017). Subsequently, various unsupervised feature selection/extraction techniques were examined using different supervised regression models. The robustness of the presented model was fully verified by means of ten-fold or nested cross validation procedure, and promising results were achieved in the reconstruction of saliency features based on the selected EEG characteristics. Through the successful demonstration of using EEG characteristics to predict the real-time saliency distribution in natural videos, we suggest the feasibility of quantifying visual content through measuring brain activities (EEG signals) in real environments, which would facilitate the understanding of cortical involvement in the processing of natural visual stimuli and application developments motivated by human visual processing. Copyright © 2018 Elsevier Ltd. All rights reserved.
An energy- and depth-dependent model for x-ray imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gallas, Brandon D.; Boswell, Jonathan S.; Badano, Aldo
In this paper, we model an x-ray imaging system, paying special attention to the energy- and depth-dependent characteristics of the inputs and interactions: x rays are polychromatic, interaction depth and conversion to optical photons is energy-dependent, optical scattering and the collection efficiency depend on the depth of interaction. The model we construct is a random function of the point process that begins with the distribution of x rays incident on the phosphor and ends with optical photons being detected by the active area of detector pixels to form an image. We show how the point-process representation can be used tomore » calculate the characteristic statistics of the model. We then simulate a Gd{sub 2}O{sub 2}S:Tb phosphor, estimate its characteristic statistics, and proceed with a signal-detection experiment to investigate the impact of the pixel fill factor on detecting spherical calcifications (the signal). The two extremes possible from this experiment are that SNR{sup 2} does not change with fill factor or changes in proportion to fill factor. In our results, the impact of fill factor is between these extremes, and depends on the diameter of the signal.« less
Porter, Katie; Day, Brad
2016-04-01
The eukaryotic actin cytoskeleton is required for numerous cellular processes, including cell shape, development and movement, gene expression and signal transduction, and response to biotic and abiotic stress. In recent years, research in both plants and animal systems have described a function for actin as the ideal surveillance platform, linking the function and activity of primary physiological processes to the immune system. In this review, we will highlight recent advances that have defined the regulation and breadth of function of the actin cytoskeleton as a network required for defense signaling following pathogen infection. Coupled with an overview of recent work demonstrating specific targeting of the plant actin cytoskeleton by a diversity of pathogens, including bacteria, fungi and viruses, we will highlight the importance of actin as a key signaling hub in plants, one that mediates surveillance of cellular homeostasis and the activation of specific signaling responses following pathogen perception. Based on the studies highlighted herein, we propose a working model that posits changes in actin filament organization is in and of itself a highly specific signal, which induces, regulates and physically directs stimulus-specific signaling processes, most importantly, those associated with response to pathogens. © 2015 Institute of Botany, Chinese Academy of Sciences.
Verschuur, Carl
2009-03-01
Difficulties in speech recognition experienced by cochlear implant users may be attributed both to information loss caused by signal processing and to information loss associated with the interface between the electrode array and auditory nervous system, including cross-channel interaction. The objective of the work reported here was to attempt to partial out the relative contribution of these different factors to consonant recognition. This was achieved by comparing patterns of consonant feature recognition as a function of channel number and presence/absence of background noise in users of the Nucleus 24 device with normal hearing subjects listening to acoustic models that mimicked processing of that device. Additionally, in the acoustic model experiment, a simulation of cross-channel spread of excitation, or "channel interaction," was varied. Results showed that acoustic model experiments were highly correlated with patterns of performance in better-performing cochlear implant users. Deficits to consonant recognition in this subgroup could be attributed to cochlear implant processing, whereas channel interaction played a much smaller role in determining performance errors. The study also showed that large changes to channel number in the Advanced Combination Encoder signal processing strategy led to no substantial changes in performance.
Comparative Endocrinology of Aging and Longevity Regulation
Allard, John B.; Duan, Cunming
2011-01-01
Hormones regulate growth, development, metabolism, and other complex processes in multicellular animals. For many years it has been suggested that hormones may also influence the rate of the aging process. Aging is a multifactorial process that causes biological systems to break down and cease to function in adult organisms as time passes, eventually leading to death. The exact underlying causes of the aging process remain a topic for debate, and clues that may shed light on these causes are eagerly sought after. In the last two decades, gene mutations that result in delayed aging and extended longevity have been discovered, and many of the affected genes have been components of endocrine signaling pathways. In this review we summarize the current knowledge on the roles of endocrine signaling in the regulation of aging and longevity in various animals. We begin by discussing the notion that conserved systems, including endocrine signaling pathways, “regulate” the aging process. Findings from the major model organisms: worms, flies, and rodents, are then outlined. Unique lessons from studies of non-traditional models: bees, salmon, and naked mole rats, are also discussed. Finally, we summarize the endocrinology of aging in humans, including changes in hormone levels with age, and the involvement of hormones in aging-related diseases. The most well studied and widely conserved endocrine pathway that affects aging is the insulin/insulin-like growth factor system. Mutations in genes of this pathway increase the lifespan of worms, flies, and mice. Population genetic evidence also suggests this pathway’s involvement in human aging. Other hormones including steroids have been linked to aging only in a subset of the models studied. Because of the value of comparative studies, it is suggested that the aging field could benefit from adoption of additional model organisms. PMID:22654825
Base of the Measles Virus Fusion Trimer Head Receives the Signal That Triggers Membrane Fusion*
Apte-Sengupta, Swapna; Negi, Surendra; Leonard, Vincent H. J.; Oezguen, Numan; Navaratnarajah, Chanakha K.; Braun, Werner; Cattaneo, Roberto
2012-01-01
The measles virus (MV) fusion (F) protein trimer executes membrane fusion after receiving a signal elicited by receptor binding to the hemagglutinin (H) tetramer. Where and how this signal is received is understood neither for MV nor for other paramyxoviruses. Because only the prefusion structure of the parainfluenza virus 5 (PIV5) F-trimer is available, to study signal receipt by the MV F-trimer, we generated and energy-refined a homology model. We used two approaches to predict surface residues of the model interacting with other proteins. Both approaches measured interface propensity values for patches of residues. The second approach identified, in addition, individual residues based on the conservation of physical chemical properties among F-proteins. Altogether, about 50 candidate interactive residues were identified. Through iterative cycles of mutagenesis and functional analysis, we characterized six residues that are required specifically for signal transmission; their mutation interferes with fusion, although still allowing efficient F-protein processing and cell surface transport. One residue is located adjacent to the fusion peptide, four line a cavity in the base of the F-trimer head, while the sixth residue is located near this cavity. Hydrophobic interactions in the cavity sustain the fusion process and contacts with H. The cavity is flanked by two different subunits of the F-trimer. Tetrameric H-stalks may be lodged in apposed cavities of two F-trimers. Because these insights are based on a PIV5 homology model, the signal receipt mechanism may be conserved among paramyxoviruses. PMID:22859308
NASA Astrophysics Data System (ADS)
García Plaza, E.; Núñez López, P. J.
2018-01-01
On-line monitoring of surface finish in machining processes has proven to be a substantial advancement over traditional post-process quality control techniques by reducing inspection times and costs and by avoiding the manufacture of defective products. This study applied techniques for processing cutting force signals based on the wavelet packet transform (WPT) method for the monitoring of surface finish in computer numerical control (CNC) turning operations. The behaviour of 40 mother wavelets was analysed using three techniques: global packet analysis (G-WPT), and the application of two packet reduction criteria: maximum energy (E-WPT) and maximum entropy (SE-WPT). The optimum signal decomposition level (Lj) was determined to eliminate noise and to obtain information correlated to surface finish. The results obtained with the G-WPT method provided an in-depth analysis of cutting force signals, and frequency ranges and signal characteristics were correlated to surface finish with excellent results in the accuracy and reliability of the predictive models. The radial and tangential cutting force components at low frequency provided most of the information for the monitoring of surface finish. The E-WPT and SE-WPT packet reduction criteria substantially reduced signal processing time, but at the expense of discarding packets with relevant information, which impoverished the results. The G-WPT method was observed to be an ideal procedure for processing cutting force signals applied to the real-time monitoring of surface finish, and was estimated to be highly accurate and reliable at a low analytical-computational cost.
NF-κB dynamics show digital activation and analog information processing in cells
NASA Astrophysics Data System (ADS)
Tay, Savas; Hughey, Jake; Lee, Timothy; Lipniacki, Tomasz; Covert, Markus; Quake, Stephen
2010-03-01
Cells operate in ever changing environments using extraordinary communication capabilities. Cell-to-cell communication is mediated by signaling molecules that form spatiotemporal concentration gradients, which requires cells to respond to a wide range of signal intensities. We used high-throughput microfluidic cell culture, quantitative gene expression analysis and mathematical modeling to investigate how single mammalian cells respond to different concentrations of the signaling molecule TNF-α via the transcription factor NF-κB. We measured NF-κB activity in thousands of live cells under TNF-α doses covering four orders of magnitude. In contrast to population studies, the activation is a stochastic, switch-like process at the single cell level with fewer cells responding at lower doses. The activated cells respond fully and express early genes independent of the TNF-α concentration, while only high dose stimulation results in the expression of late genes. Cells also encode a set of analog parameters such as the NF-κB peak intensity, response time and number of oscillations to modulate the outcome. We developed a stochastic model that reproduces both the digital and analog dynamics as well as the gene expression profiles at all measured conditions, constituting a broadly applicable model for TNF-α induced NF-κB signaling in various types of cells.
Untangling climatic and autogenic signals in peat records
NASA Astrophysics Data System (ADS)
Morris, Paul J.; Baird, Andrew J.; Young, Dylan M.; Swindles, Graeme T.
2016-04-01
Raised bogs contain potentially valuable information about Holocene climate change. However, autogenic processes may disconnect peatland hydrological behaviour from climate, and overwrite and degrade climatic signals in peat records. How can genuine climate signals be separated from autogenic changes? What level of detail of climatic information should we expect to be able to recover from peat-based reconstructions? We used an updated version of the DigiBog model to simulate peatland development and response to reconstructed Holocene rainfall and temperature reconstructions. The model represents key processes that are influential in peatland development and climate signal preservation, and includes a network of feedbacks between peat accumulation, decomposition, hydraulic structure and hydrological processes. It also incorporates the effects of temperature upon evapotranspiration, plant (litter) productivity and peat decomposition. Negative feedbacks in the model cause simulated water-table depths and peat humification records to exhibit homeostatic recovery from prescribed changes in rainfall, chiefly through changes in drainage. However, the simulated bogs show less resilience to changes in temperature, which cause lasting alterations to peatland structure and function and may therefore be more readily detectable in peat records. The network of feedbacks represented in DigiBog also provide both high- and low-pass filters for climatic information, meaning that the fidelity with which climate signals are preserved in simulated peatlands is determined by both the magnitude and the rate of climate change. Large-magnitude climatic events of an intermediate frequency (i.e., multi-decadal to centennial) are best preserved in the simulated bogs. We found that simulated humification records are further degraded by a phenomenon known as secondary decomposition. Decomposition signals are consistently offset from the climatic events that generate them, and decomposition records of dry-wet-dry climate sequences appear to be particularly vulnerable to overwriting. Our findings have direct implications not only for the interpretation of peat-based records of past climates, but also for understanding the likely vulnerability of peatland ecosystems and carbon stocks to future climate change.
Sánchez, Lucas; Chaouiya, Claudine
2016-05-26
Primary sex determination in placental mammals is a very well studied developmental process. Here, we aim to investigate the currently established scenario and to assess its adequacy to fully recover the observed phenotypes, in the wild type and perturbed situations. Computational modelling allows clarifying network dynamics, elucidating crucial temporal constrains as well as interplay between core regulatory modules. Relying on a comprehensive revision of the literature, we define a logical model that integrates the current knowledge of the regulatory network controlling this developmental process. Our analysis indicates the necessity for some genes to operate at distinct functional thresholds and for specific developmental conditions to ensure the reproducibility of the sexual pathways followed by bi-potential gonads developing into either testes or ovaries. Our model thus allows studying the dynamics of wild type and mutant XX and XY gonads. Furthermore, the model analysis reveals that the gonad sexual fate results from the operation of two sub-networks associated respectively with an initiation and a maintenance phases. At the core of the process is the resolution of two connected feedback loops: the mutual inhibition of Sox9 and ß-catenin at the initiation phase, which in turn affects the mutual inhibition between Dmrt1 and Foxl2, at the maintenance phase. Three developmental signals related to the temporal activity of those sub-networks are required: a signal that determines Sry activation, marking the beginning of the initiation phase, and two further signals that define the transition from the initiation to the maintenance phases, by inhibiting the Wnt4 signalling pathway on the one hand, and by activating Foxl2 on the other hand. Our model reproduces a wide range of experimental data reported for the development of wild type and mutant gonads. It also provides a formal support to crucial aspects of the gonad sexual development and predicts gonadal phenotypes for mutations not tested yet.
Envelope filter sequence to delete blinks and overshoots.
Merino, Manuel; Gómez, Isabel María; Molina, Alberto J
2015-05-30
Eye movements have been used in control interfaces and as indicators of somnolence, workload and concentration. Different techniques can be used to detect them: we focus on the electrooculogram (EOG) in which two kinds of interference occur: blinks and overshoots. While they both draw bell-shaped waveforms, blinks are caused by the eyelid, whereas overshoots occur due to target localization error and are placed on saccade. They need to be extracted from the EOG to increase processing effectiveness. This paper describes off- and online processing implementations based on lower envelope for removing bell-shaped noise; they are compared with a 300-ms-median filter. Techniques were analyzed using two kinds of EOG data: those modeled from our own design, and real signals. Using a model signal allowed to compare filtered outputs with ideal data, so that it was possible to quantify processing precision to remove noise caused by blinks, overshoots, and general interferences. We analyzed the ability to delete blinks and overshoots, and waveform preservation. Our technique had a high capacity for reducing interference amplitudes (>97%), even exceeding median filter (MF) results. However, the MF obtained better waveform preservation, with a smaller dependence on fixation width. The proposed technique is better at deleting blinks and overshoots than the MF in model and real EOG signals.
Phillips, Holly N; Blenkmann, Alejandro; Hughes, Laura E; Kochen, Silvia; Bekinschtein, Tristan A; Cam-Can; Rowe, James B
2016-09-01
We propose that sensory inputs are processed in terms of optimised predictions and prediction error signals within hierarchical neurocognitive models. The combination of non-invasive brain imaging and generative network models has provided support for hierarchical frontotemporal interactions in oddball tasks, including recent identification of a temporal expectancy signal acting on prefrontal cortex. However, these studies are limited by the need to invert magnetoencephalographic or electroencephalographic sensor signals to localise activity from cortical 'nodes' in the network, or to infer neural responses from indirect measures such as the fMRI BOLD signal. To overcome this limitation, we examined frontotemporal interactions estimated from direct cortical recordings from two human participants with cortical electrode grids (electrocorticography - ECoG). Their frontotemporal network dynamics were compared to those identified by magnetoencephalography (MEG) in forty healthy adults. All participants performed the same auditory oddball task with standard tones interspersed with five deviant tone types. We normalised post-operative electrode locations to standardised anatomic space, to compare across modalities, and inverted the MEG to cortical sources using the estimated lead field from subject-specific head models. A mismatch negativity signal in frontal and temporal cortex was identified in all subjects. Generative models of the electrocorticographic and magnetoencephalographic data were separately compared using the free-energy estimate of the model evidence. Model comparison confirmed the same critical features of hierarchical frontotemporal networks in each patient as in the group-wise MEG analysis. These features included bilateral, feedforward and feedback frontotemporal modulated connectivity, in addition to an asymmetric expectancy driving input on left frontal cortex. The invasive ECoG provides an important step in construct validation of the use of neural generative models of MEG, which in turn enables generalisation to larger populations. Together, they give convergent evidence for the hierarchical interactions in frontotemporal networks for expectation and processing of sensory inputs. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.
Real-Time Prediction of Temperature Elevation During Robotic Bone Drilling Using the Torque Signal.
Feldmann, Arne; Gavaghan, Kate; Stebinger, Manuel; Williamson, Tom; Weber, Stefan; Zysset, Philippe
2017-09-01
Bone drilling is a surgical procedure commonly required in many surgical fields, particularly orthopedics, dentistry and head and neck surgeries. While the long-term effects of thermal bone necrosis are unknown, the thermal damage to nerves in spinal or otolaryngological surgeries might lead to partial paralysis. Previous models to predict the temperature elevation have been suggested, but were not validated or have the disadvantages of computation time and complexity which does not allow real time predictions. Within this study, an analytical temperature prediction model is proposed which uses the torque signal of the drilling process to model the heat production of the drill bit. A simple Green's disk source function is used to solve the three dimensional heat equation along the drilling axis. Additionally, an extensive experimental study was carried out to validate the model. A custom CNC-setup with a load cell and a thermal camera was used to measure the axial drilling torque and force as well as temperature elevations. Bones with different sets of bone volume fraction were drilled with two drill bits ([Formula: see text]1.8 mm and [Formula: see text]2.5 mm) and repeated eight times. The model was calibrated with 5 of 40 measurements and successfully validated with the rest of the data ([Formula: see text]C). It was also found that the temperature elevation can be predicted using only the torque signal of the drilling process. In the future, the model could be used to monitor and control the drilling process of surgeries close to vulnerable structures.
Computational Modeling and Analysis of Insulin Induced Eukaryotic Translation Initiation
Lequieu, Joshua; Chakrabarti, Anirikh; Nayak, Satyaprakash; Varner, Jeffrey D.
2011-01-01
Insulin, the primary hormone regulating the level of glucose in the bloodstream, modulates a variety of cellular and enzymatic processes in normal and diseased cells. Insulin signals are processed by a complex network of biochemical interactions which ultimately induce gene expression programs or other processes such as translation initiation. Surprisingly, despite the wealth of literature on insulin signaling, the relative importance of the components linking insulin with translation initiation remains unclear. We addressed this question by developing and interrogating a family of mathematical models of insulin induced translation initiation. The insulin network was modeled using mass-action kinetics within an ordinary differential equation (ODE) framework. A family of model parameters was estimated, starting from an initial best fit parameter set, using 24 experimental data sets taken from literature. The residual between model simulations and each of the experimental constraints were simultaneously minimized using multiobjective optimization. Interrogation of the model population, using sensitivity and robustness analysis, identified an insulin-dependent switch that controlled translation initiation. Our analysis suggested that without insulin, a balance between the pro-initiation activity of the GTP-binding protein Rheb and anti-initiation activity of PTEN controlled basal initiation. On the other hand, in the presence of insulin a combination of PI3K and Rheb activity controlled inducible initiation, where PI3K was only critical in the presence of insulin. Other well known regulatory mechanisms governing insulin action, for example IRS-1 negative feedback, modulated the relative importance of PI3K and Rheb but did not fundamentally change the signal flow. PMID:22102801
A design of energy detector for ArF excimer lasers
NASA Astrophysics Data System (ADS)
Feng, Zebin; Han, Xiaoquan; Zhou, Yi; Bai, Lujun
2017-08-01
ArF excimer lasers with short wavelength and high photon energy are widely applied in the field of integrated circuit lithography, material processing, laser medicine, and so on. Excimer laser single pulse energy is a very important parameter in the application. In order to detect the single pulse energy on-line, one energy detector based on photodiode was designed. The signal processing circuit connected to the photodiode was designed so that the signal obtained by the photodiode was amplified and the pulse width was broadened. The amplified signal was acquired by a data acquisition card and stored in the computer for subsequent data processing. The peak of the pulse signal is used to characterize the single pulse energy of ArF excimer laser. In every condition of deferent pulse energy value levels, a series of data about laser pulses energy were acquired synchronously using the Ophir energy meter and the energy detector. A data set about the relationship between laser pulse energy and the peak of the pulse signal was acquired. Then, by using the data acquired, a model characterizing the functional relationship between the energy value and the peak value of the pulse was trained based on an algorithm of machine learning, Support Vector Regression (SVR). By using the model, the energy value can be obtained directly from the energy detector designed in this project. The result shows that the relative error between the energy obtained by the energy detector and by the Ophir energy meter is less than 2%.
Klumpp, Heide; Fitzgerald, Daniel A; Phan, K Luan
2013-08-01
Cognitive behavioral therapy (CBT) is "gold standard" psychotherapy for social anxiety disorder (SAD). Cognitive models posit that preferential processing of threat mediates excessive forms of anxiety, which is supported by exaggerated amygdala, insula, and cortical reactivity to threatening socio-emotional signals in SAD. However, little is known about neural predictors of CBT success or the mechanisms by which CBT exerts its therapeutic effects. Functional magnetic resonance imaging (fMRI) was conducted during responses to social signals of threat (fearful/angry faces) against positive signals (happy faces) in 14 patients with SAD before and after 12 weeks of CBT. For comparison, 14 healthy control (HC) participants also underwent two fMRI scans, 12 weeks apart. Whole-brain voxel-wise analyses showed therapeutic success was predicted by enhanced pre-treatment activation to threatening faces in higher-order visual (superior and middle temporal gyrus), cognitive, and emotion processing areas (dorsal anterior cingulate cortex, dorsomedial prefrontal cortex). Moreover, a group by time interaction was revealed in prefrontal regions (dorsomedial, medial gyrus) and insula. The interaction was driven by relatively greater activity during threat processing in SAD, which significantly reduced after CBT but did not significantly predict response to CBT. Therefore, pre-treatment cortical hyperactivity to social threat signals may serve as a prognostic indicator of CBT success in SAD. Collectively, CBT-related brain changes involved a reduction in activity in insula, prefrontal, and extrastriate regions. Results are consistent with cognitive models, which associate decreases in threat processing bias with recovery. Copyright © 2013 Elsevier Inc. All rights reserved.
In situ sensing and modeling of molecular events at the cellular level
NASA Astrophysics Data System (ADS)
Yang, Ruiguo
We developed the Atomic Force Microscopy (AFM) based nanorobot in combination with other nanomechanical sensors for the investigation of cell signaling pathways. The AFM nanorobotics hinge on the superior spatial resolution of AFM in imaging and extends it into the measurement of biological processes and manipulation of biological matters. A multiple input single output control system was designed and implemented to solve the issues of nanomanipulation of biological materials, feedback, response frequency and nonlinearity. The AFM nanorobotic system therefore provide the human-directed position, velocity and force control with high frequency feedback, and more importantly it can feed the operator with the real-time imaging of manipulation result from the fast-imaging based local scanning. The use of the system has taken the study of cellular process at the molecular scale into a new level. The cellular response to the physiological conditions can be significantly manifested in cellular mechanics. Dynamic mechanical property has been regarded as biomarkers, sometimes even regulators of the signaling and physiological processes, thus the name mechanobiology. We sought to characterize the relationship between the structural dynamics and the molecular dynamics and the role of them in the regulation of cell behavior. We used the AFM nanorobotics to investigate the mechanical properties in real-time of cells that are stimulated by different chemical species. These reagents could result in similar ion channel responses but distinctive mechanical behaviors. We applied these measurement results to establish a model that describes the cellular stimulation and the mechanical property change, a "two-hit" model that comprises the loss of cell adhesion and the initiation of cell apoptosis. The first hit was verified by functional experiments: depletion of Calcium and nanosurgery to disrupt the cellular adhesion. The second hit was tested by a labeling of apoptotic markers that were revealed by flow cytometry. The model would then be able to decipher qualitatively the molecular dynamics infolded in the regulation of cell behavior. To decipher the signaling pathway quantitatively, we employed a nanomechanical sensor at the bottom of the cell, quartz crystal microbalance with energy dissipation monitoring (QCM-D) to monitor the change at the basal area of the cell. This would provide the real time focal adhesion information and would be used in accordance with the AFM measurement data on the top of the cell to build a more complete mechanical profile during the antibody induced signaling process. We developed a model from a systematic control perspective that considers the signaling cascade at certain stimulation as the controller and the mechanical and structural interaction of the cell as the plant. We firstly derived the plant model based on QCM-D and AFM measurement processes. A signaling pathway model was built on a grey box approach where part of the pathway map was delineated in detail while others were condensed into a single reaction. The model parameters were obtained by extracting the mechanical response from the experiment. The model refinements were conducted by testing a series of inhibition mechanisms and comparing the simulation data with the experimental data. The model was then used to predict the existences of certain reactions that are qualitatively reported in the literature.
Analysis of the reflection of a micro drop fiber sensor
NASA Astrophysics Data System (ADS)
Sun, Weimin; Liu, Qiang; Zhao, Lei; Li, Yingjuan; Yuan, Libo
2005-01-01
Micro drop fiber sensors are effective tools for measuring characters of liquids. These types of sensors are wildly used in biotechnology, beverage and food markets. For a fiber micro drop sensor, the signal of the output light is wavy with two peaks, normally. Carefully analyzing the wavy process can identify the liquid components. Understanding the reason of forming this wavy signal is important to design a suitable sensing head and to choose a suitable signal-processing method. The dripping process of a type of liquids is relative to the characters of the liquid and the shape of the sensing head. The quasi-Gauss model of the light field from the input-fiber end is used to analyse the distribution of the light field in the liquid drop. In addition, considering the characters of the liquid to be measured, the dripping process of the optical signal from the output-fiber end can be expected. The reflection surface of the micro drop varies as serials of spheres with different radiuses and global centers. The intensity of the reflection light changes with the shape of the surface. The varying process of the intensity relates to the tense, refractive index, transmission et al. To support the analyse above, an experimental system is established. In the system, LED is chosen as the light source and the PIN transform the light signal to the electrical signal, which is collected by a data acquisition card. An on-line testing system is made to check the theory discussed above.
HIDE & SEEK: End-to-end packages to simulate and process radio survey data
NASA Astrophysics Data System (ADS)
Akeret, J.; Seehars, S.; Chang, C.; Monstein, C.; Amara, A.; Refregier, A.
2017-01-01
As several large single-dish radio surveys begin operation within the coming decade, a wealth of radio data will become available and provide a new window to the Universe. In order to fully exploit the potential of these datasets, it is important to understand the systematic effects associated with the instrument and the analysis pipeline. A common approach to tackle this is to forward-model the entire system-from the hardware to the analysis of the data products. For this purpose, we introduce two newly developed, open-source Python packages: the HI Data Emulator (HIDE) and the Signal Extraction and Emission Kartographer (SEEK) for simulating and processing single-dish radio survey data. HIDE forward-models the process of collecting astronomical radio signals in a single-dish radio telescope instrument and outputs pixel-level time-ordered-data. SEEK processes the time-ordered-data, removes artifacts from Radio Frequency Interference (RFI), automatically applies flux calibration, and aims to recover the astronomical radio signal. The two packages can be used separately or together depending on the application. Their modular and flexible nature allows easy adaptation to other instruments and datasets. We describe the basic architecture of the two packages and examine in detail the noise and RFI modeling in HIDE, as well as the implementation of gain calibration and RFI mitigation in SEEK. We then apply HIDE &SEEK to forward-model a Galactic survey in the frequency range 990-1260 MHz based on data taken at the Bleien Observatory. For this survey, we expect to cover 70% of the full sky and achieve a median signal-to-noise ratio of approximately 5-6 in the cleanest channels including systematic uncertainties. However, we also point out the potential challenges of high RFI contamination and baseline removal when examining the early data from the Bleien Observatory. The fully documented HIDE &SEEK packages are available at http://hideseek.phys.ethz.ch/ and are published under the GPLv3 license on GitHub.
Wang, Danny J J; Jann, Kay; Fan, Chang; Qiao, Yang; Zang, Yu-Feng; Lu, Hanbing; Yang, Yihong
2018-01-01
Recently, non-linear statistical measures such as multi-scale entropy (MSE) have been introduced as indices of the complexity of electrophysiology and fMRI time-series across multiple time scales. In this work, we investigated the neurophysiological underpinnings of complexity (MSE) of electrophysiology and fMRI signals and their relations to functional connectivity (FC). MSE and FC analyses were performed on simulated data using neural mass model based brain network model with the Brain Dynamics Toolbox, on animal models with concurrent recording of fMRI and electrophysiology in conjunction with pharmacological manipulations, and on resting-state fMRI data from the Human Connectome Project. Our results show that the complexity of regional electrophysiology and fMRI signals is positively correlated with network FC. The associations between MSE and FC are dependent on the temporal scales or frequencies, with higher associations between MSE and FC at lower temporal frequencies. Our results from theoretical modeling, animal experiment and human fMRI indicate that (1) Regional neural complexity and network FC may be two related aspects of brain's information processing: the more complex regional neural activity, the higher FC this region has with other brain regions; (2) MSE at high and low frequencies may represent local and distributed information processing across brain regions. Based on literature and our data, we propose that the complexity of regional neural signals may serve as an index of the brain's capacity of information processing-increased complexity may indicate greater transition or exploration between different states of brain networks, thereby a greater propensity for information processing.
NASA Astrophysics Data System (ADS)
García, Constantino A.; Otero, Abraham; Félix, Paulo; Presedo, Jesús; Márquez, David G.
2018-07-01
In the past few decades, it has been recognized that 1 / f fluctuations are ubiquitous in nature. The most widely used mathematical models to capture the long-term memory properties of 1 / f fluctuations have been stochastic fractal models. However, physical systems do not usually consist of just stochastic fractal dynamics, but they often also show some degree of deterministic behavior. The present paper proposes a model based on fractal stochastic and deterministic components that can provide a valuable basis for the study of complex systems with long-term correlations. The fractal stochastic component is assumed to be a fractional Brownian motion process and the deterministic component is assumed to be a band-limited signal. We also provide a method that, under the assumptions of this model, is able to characterize the fractal stochastic component and to provide an estimate of the deterministic components present in a given time series. The method is based on a Bayesian wavelet shrinkage procedure that exploits the self-similar properties of the fractal processes in the wavelet domain. This method has been validated over simulated signals and over real signals with economical and biological origin. Real examples illustrate how our model may be useful for exploring the deterministic-stochastic duality of complex systems, and uncovering interesting patterns present in time series.
Fractal dimension and nonlinear dynamical processes
NASA Astrophysics Data System (ADS)
McCarty, Robert C.; Lindley, John P.
1993-11-01
Mandelbrot, Falconer and others have demonstrated the existence of dimensionally invariant geometrical properties of non-linear dynamical processes known as fractals. Barnsley defines fractal geometry as an extension of classical geometry. Such an extension, however, is not mathematically trivial Of specific interest to those engaged in signal processing is the potential use of fractal geometry to facilitate the analysis of non-linear signal processes often referred to as non-linear time series. Fractal geometry has been used in the modeling of non- linear time series represented by radar signals in the presence of ground clutter or interference generated by spatially distributed reflections around the target or a radar system. It was recognized by Mandelbrot that the fractal geometries represented by man-made objects had different dimensions than the geometries of the familiar objects that abound in nature such as leaves, clouds, ferns, trees, etc. The invariant dimensional property of non-linear processes suggests that in the case of acoustic signals (active or passive) generated within a dispersive medium such as the ocean environment, there exists much rich structure that will aid in the detection and classification of various objects, man-made or natural, within the medium.
A Self-Calibrating Radar Sensor System for Measuring Vital Signs.
Huang, Ming-Chun; Liu, Jason J; Xu, Wenyao; Gu, Changzhan; Li, Changzhi; Sarrafzadeh, Majid
2016-04-01
Vital signs (i.e., heartbeat and respiration) are crucial physiological signals that are useful in numerous medical applications. The process of measuring these signals should be simple, reliable, and comfortable for patients. In this paper, a noncontact self-calibrating vital signs monitoring system based on the Doppler radar is presented. The system hardware and software were designed with a four-tiered layer structure. To enable accurate vital signs measurement, baseband signals in the radar sensor were modeled and a framework for signal demodulation was proposed. Specifically, a signal model identification method was formulated into a quadratically constrained l1 minimization problem and solved using the upper bound and linear matrix inequality (LMI) relaxations. The performance of the proposed system was comprehensively evaluated using three experimental sets, and the results indicated that this system can be used to effectively measure human vital signs.
Computer model of a reverberant and parallel circuit coupling
NASA Astrophysics Data System (ADS)
Kalil, Camila de Andrade; de Castro, Maria Clícia Stelling; Cortez, Célia Martins
2017-11-01
The objective of the present study was to deepen the knowledge about the functioning of the neural circuits by implementing a signal transmission model using the Graph Theory in a small network of neurons composed of an interconnected reverberant and parallel circuit, in order to investigate the processing of the signals in each of them and the effects on the output of the network. For this, a program was developed in C language and simulations were done using neurophysiological data obtained in the literature.
Attentional Control in Visual Signal Detection: Effects of Abrupt-Onset and No-Onset Stimuli
ERIC Educational Resources Information Center
Sewell, David K.; Smith, Philip L.
2012-01-01
The attention literature distinguishes two general mechanisms by which attention can benefit performance: gain (or resource) models and orienting (or switching) models. In gain models, processing efficiency is a function of a spatial distribution of capacity or resources; in orienting models, an attentional spotlight must be aligned with the…
Studies of acoustic emission from point and extended sources
NASA Technical Reports Server (NTRS)
Sachse, W.; Kim, K. Y.; Chen, C. P.
1986-01-01
The use of simulated and controlled acoustic emission signals forms the basis of a powerful tool for the detailed study of various deformation and wave interaction processes in materials. The results of experiments and signal analyses of acoustic emission resulting from point sources such as various types of indentation-produced cracks in brittle materials and the growth of fatigue cracks in 7075-T6 aluminum panels are discussed. Recent work dealing with the modeling and subsequent signal processing of an extended source of emission in a material is reviewed. Results of the forward problem and the inverse problem are presented with the example of a source distributed through the interior of a specimen.
Elementary signaling modes predict the essentiality of signal transduction network components
2011-01-01
Background Understanding how signals propagate through signaling pathways and networks is a central goal in systems biology. Quantitative dynamic models help to achieve this understanding, but are difficult to construct and validate because of the scarcity of known mechanistic details and kinetic parameters. Structural and qualitative analysis is emerging as a feasible and useful alternative for interpreting signal transduction. Results In this work, we present an integrative computational method for evaluating the essentiality of components in signaling networks. This approach expands an existing signaling network to a richer representation that incorporates the positive or negative nature of interactions and the synergistic behaviors among multiple components. Our method simulates both knockout and constitutive activation of components as node disruptions, and takes into account the possible cascading effects of a node's disruption. We introduce the concept of elementary signaling mode (ESM), as the minimal set of nodes that can perform signal transduction independently. Our method ranks the importance of signaling components by the effects of their perturbation on the ESMs of the network. Validation on several signaling networks describing the immune response of mammals to bacteria, guard cell abscisic acid signaling in plants, and T cell receptor signaling shows that this method can effectively uncover the essentiality of components mediating a signal transduction process and results in strong agreement with the results of Boolean (logical) dynamic models and experimental observations. Conclusions This integrative method is an efficient procedure for exploratory analysis of large signaling and regulatory networks where dynamic modeling or experimental tests are impractical. Its results serve as testable predictions, provide insights into signal transduction and regulatory mechanisms and can guide targeted computational or experimental follow-up studies. The source codes for the algorithms developed in this study can be found at http://www.phys.psu.edu/~ralbert/ESM. PMID:21426566
Sahoo, Satya S.; Wei, Annan; Valdez, Joshua; Wang, Li; Zonjy, Bilal; Tatsuoka, Curtis; Loparo, Kenneth A.; Lhatoo, Samden D.
2016-01-01
The recent advances in neurological imaging and sensing technologies have led to rapid increase in the volume, rate of data generation, and variety of neuroscience data. This “neuroscience Big data” represents a significant opportunity for the biomedical research community to design experiments using data with greater timescale, large number of attributes, and statistically significant data size. The results from these new data-driven research techniques can advance our understanding of complex neurological disorders, help model long-term effects of brain injuries, and provide new insights into dynamics of brain networks. However, many existing neuroinformatics data processing and analysis tools were not built to manage large volume of data, which makes it difficult for researchers to effectively leverage this available data to advance their research. We introduce a new toolkit called NeuroPigPen that was developed using Apache Hadoop and Pig data flow language to address the challenges posed by large-scale electrophysiological signal data. NeuroPigPen is a modular toolkit that can process large volumes of electrophysiological signal data, such as Electroencephalogram (EEG), Electrocardiogram (ECG), and blood oxygen levels (SpO2), using a new distributed storage model called Cloudwave Signal Format (CSF) that supports easy partitioning and storage of signal data on commodity hardware. NeuroPigPen was developed with three design principles: (a) Scalability—the ability to efficiently process increasing volumes of data; (b) Adaptability—the toolkit can be deployed across different computing configurations; and (c) Ease of programming—the toolkit can be easily used to compose multi-step data processing pipelines using high-level programming constructs. The NeuroPigPen toolkit was evaluated using 750 GB of electrophysiological signal data over a variety of Hadoop cluster configurations ranging from 3 to 30 Data nodes. The evaluation results demonstrate that the toolkit is highly scalable and adaptable, which makes it suitable for use in neuroscience applications as a scalable data processing toolkit. As part of the ongoing extension of NeuroPigPen, we are developing new modules to support statistical functions to analyze signal data for brain connectivity research. In addition, the toolkit is being extended to allow integration with scientific workflow systems. NeuroPigPen is released under BSD license at: https://sites.google.com/a/case.edu/neuropigpen/. PMID:27375472
Sahoo, Satya S; Wei, Annan; Valdez, Joshua; Wang, Li; Zonjy, Bilal; Tatsuoka, Curtis; Loparo, Kenneth A; Lhatoo, Samden D
2016-01-01
The recent advances in neurological imaging and sensing technologies have led to rapid increase in the volume, rate of data generation, and variety of neuroscience data. This "neuroscience Big data" represents a significant opportunity for the biomedical research community to design experiments using data with greater timescale, large number of attributes, and statistically significant data size. The results from these new data-driven research techniques can advance our understanding of complex neurological disorders, help model long-term effects of brain injuries, and provide new insights into dynamics of brain networks. However, many existing neuroinformatics data processing and analysis tools were not built to manage large volume of data, which makes it difficult for researchers to effectively leverage this available data to advance their research. We introduce a new toolkit called NeuroPigPen that was developed using Apache Hadoop and Pig data flow language to address the challenges posed by large-scale electrophysiological signal data. NeuroPigPen is a modular toolkit that can process large volumes of electrophysiological signal data, such as Electroencephalogram (EEG), Electrocardiogram (ECG), and blood oxygen levels (SpO2), using a new distributed storage model called Cloudwave Signal Format (CSF) that supports easy partitioning and storage of signal data on commodity hardware. NeuroPigPen was developed with three design principles: (a) Scalability-the ability to efficiently process increasing volumes of data; (b) Adaptability-the toolkit can be deployed across different computing configurations; and (c) Ease of programming-the toolkit can be easily used to compose multi-step data processing pipelines using high-level programming constructs. The NeuroPigPen toolkit was evaluated using 750 GB of electrophysiological signal data over a variety of Hadoop cluster configurations ranging from 3 to 30 Data nodes. The evaluation results demonstrate that the toolkit is highly scalable and adaptable, which makes it suitable for use in neuroscience applications as a scalable data processing toolkit. As part of the ongoing extension of NeuroPigPen, we are developing new modules to support statistical functions to analyze signal data for brain connectivity research. In addition, the toolkit is being extended to allow integration with scientific workflow systems. NeuroPigPen is released under BSD license at: https://sites.google.com/a/case.edu/neuropigpen/.
Logical Modeling and Dynamical Analysis of Cellular Networks
Abou-Jaoudé, Wassim; Traynard, Pauline; Monteiro, Pedro T.; Saez-Rodriguez, Julio; Helikar, Tomáš; Thieffry, Denis; Chaouiya, Claudine
2016-01-01
The logical (or logic) formalism is increasingly used to model regulatory and signaling networks. Complementing these applications, several groups contributed various methods and tools to support the definition and analysis of logical models. After an introduction to the logical modeling framework and to several of its variants, we review here a number of recent methodological advances to ease the analysis of large and intricate networks. In particular, we survey approaches to determine model attractors and their reachability properties, to assess the dynamical impact of variations of external signals, and to consistently reduce large models. To illustrate these developments, we further consider several published logical models for two important biological processes, namely the differentiation of T helper cells and the control of mammalian cell cycle. PMID:27303434
Williams, Richard J; Boorman, David B
2012-04-15
The River Kennet in southern England shows a clear diurnal signal in both water temperature and dissolved oxygen concentrations through the summer months. The water quality model QUESTOR was applied in a stepwise manner (adding modelled processes or additional data) to simulate the flow, water temperature and dissolved oxygen concentrations along a 14 km reach. The aim of the stepwise model building was to find the simplest process-based model which simulated the observed behaviour accurately. The upstream boundary used was a diurnal signal of hourly measurements of water temperature and dissolved oxygen. In the initial simulations, the amplitude of the signal quickly reduced to zero as it was routed through the model; a behaviour not seen in the observed data. In order to keep the correct timing and amplitude of water temperature a heating term had to be introduced into the model. For dissolved oxygen, primary production from macrophytes was introduced to better simulate the oxygen pattern. Following the modifications an excellent simulation of both water temperature and dissolved oxygen was possible at an hourly resolution. It is interesting to note that it was not necessary to include nutrient limitation to the primary production model. The resulting model is not sufficiently proven to support river management but suggests that the approach has some validity and merits further development. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.
Systematic analysis of signaling pathways using an integrative environment.
Visvanathan, Mahesh; Breit, Marc; Pfeifer, Bernhard; Baumgartner, Christian; Modre-Osprian, Robert; Tilg, Bernhard
2007-01-01
Understanding the biological processes of signaling pathways as a whole system requires an integrative software environment that has comprehensive capabilities. The environment should include tools for pathway design, visualization, simulation and a knowledge base concerning signaling pathways as one. In this paper we introduce a new integrative environment for the systematic analysis of signaling pathways. This system includes environments for pathway design, visualization, simulation and a knowledge base that combines biological and modeling information concerning signaling pathways that provides the basic understanding of the biological system, its structure and functioning. The system is designed with a client-server architecture. It contains a pathway designing environment and a simulation environment as upper layers with a relational knowledge base as the underlying layer. The TNFa-mediated NF-kB signal trans-duction pathway model was designed and tested using our integrative framework. It was also useful to define the structure of the knowledge base. Sensitivity analysis of this specific pathway was performed providing simulation data. Then the model was extended showing promising initial results. The proposed system offers a holistic view of pathways containing biological and modeling data. It will help us to perform biological interpretation of the simulation results and thus contribute to a better understanding of the biological system for drug identification.
Using signals associated with safety in avoidance learning: computational model of sex differences
Beck, Kevin D.; Pang, Kevin C.H.; Myers, Catherine E.
2015-01-01
Avoidance behavior involves learning responses that prevent upcoming aversive events; these responses typically extinguish when the aversive events stop materializing. Stimuli that signal safety from aversive events can paradoxically inhibit extinction of avoidance behavior. In animals, males and females process safety signals differently. These differences help explain why women are more likely to be diagnosed with an anxiety disorder and exhibit differences in symptom presentation and course compared to men. In the current study, we extend an existing model of strain differences in avoidance behavior to simulate sex differences in rats. The model successfully replicates data showing that the omission of a signal associated with a period of safety can facilitate extinction in females, but not males, and makes novel predictions that this effect should depend on the duration of the period, the duration of the signal itself, and its occurrence within that period. Non-reinforced responses during the safe period were also found to be important in the expression of these patterns. The model also allowed us to explore underlying mechanisms for the observed sex effects, such as whether safety signals serve as occasion setters for aversive events, to determine why removing them can facilitate extinction of avoidance. The simulation results argue against this account, and instead suggest the signal may serve as a conditioned reinforcer of avoidance behavior. PMID:26213650
Guz, Nataliia; Halámek, Jan; Rusling, James F.; Katz, Evgeny
2014-01-01
The biocatalytic cascade based on enzyme-catalyzed reactions activated by several biomolecular input signals and producing output signal after each reaction step was developed as an example of a logically reversible information processing system. The model system was designed to mimic the operation of concatenated AND logic gates with optically readable output signals generated at each step of the logic operation. Implications include concurrent bioanalyses and data interpretation for medical diagnostics. PMID:24748446
Weak signal amplification and detection by higher-order sensory neurons
Longtin, Andre; Maler, Leonard
2016-01-01
Sensory systems must extract behaviorally relevant information and therefore often exhibit a very high sensitivity. How the nervous system reaches such high sensitivity levels is an outstanding question in neuroscience. Weakly electric fish (Apteronotus leptorhynchus/albifrons) are an excellent model system to address this question because detailed background knowledge is available regarding their behavioral performance and its underlying neuronal substrate. Apteronotus use their electrosense to detect prey objects. Therefore, they must be able to detect electrical signals as low as 1 μV while using a sensory integration time of <200 ms. How these very weak signals are extracted and amplified by the nervous system is not yet understood. We studied the responses of cells in the early sensory processing areas, namely, the electroreceptor afferents (EAs) and pyramidal cells (PCs) of the electrosensory lobe (ELL), the first-order electrosensory processing area. In agreement with previous work we found that EAs cannot encode very weak signals with a spike count code. However, PCs can encode prey mimic signals by their firing rate, revealing a huge signal amplification between EAs and PCs and also suggesting differences in their stimulus encoding properties. Using a simple leaky integrate-and-fire (LIF) model we predict that the target neurons of PCs in the midbrain torus semicircularis (TS) are able to detect very weak signals. In particular, TS neurons could do so by assuming biologically plausible convergence rates as well as very simple decoding strategies such as temporal integration, threshold crossing, and combining the inputs of PCs. PMID:26843601
MacNamara, Shev; Baker, Ruth E; Maini, Philip K
2011-09-21
Recently, signalling gradients in cascades of two-state reaction-diffusion systems were described as a model for understanding key biochemical mechanisms that underlie development and differentiation processes in the Drosophila embryo. Diffusion-trapping at the exterior of the cell membrane triggers the mitogen-activated protein kinase (MAPK) cascade to relay an appropriate signal from the membrane to the inner part of the cytosol, whereupon another diffusion-trapping mechanism involving the nucleus reads out this signal to trigger appropriate changes in gene expression. Proposed mathematical models exhibit equilibrium distributions consistent with experimental measurements of key spatial gradients in these processes. A significant property of the formulation is that the signal is assumed to be relayed from one system to the next in a linear fashion. However, the MAPK cascade often exhibits nonlinear dose-response properties and the final remark of Berezhkovskii et al. (2009) is that this assumption remains an important property to be tested experimentally, perhaps via a new quantitative assay across multiple genetic backgrounds. In anticipation of the need to be able to sensibly interpret data from such experiments, here we provide a complementary analysis that recovers existing formulae as a special case but is also capable of handling nonlinear functional forms. Predictions of linear and nonlinear signal relays and, in particular, graded and ultrasensitive MAPK kinetics, are compared. Copyright © 2011 Elsevier Ltd. All rights reserved.
A speech processing study using an acoustic model of a multiple-channel cochlear implant
NASA Astrophysics Data System (ADS)
Xu, Ying
1998-10-01
A cochlear implant is an electronic device designed to provide sound information for adults and children who have bilateral profound hearing loss. The task of representing speech signals as electrical stimuli is central to the design and performance of cochlear implants. Studies have shown that the current speech- processing strategies provide significant benefits to cochlear implant users. However, the evaluation and development of speech-processing strategies have been complicated by hardware limitations and large variability in user performance. To alleviate these problems, an acoustic model of a cochlear implant with the SPEAK strategy is implemented in this study, in which a set of acoustic stimuli whose psychophysical characteristics are as close as possible to those produced by a cochlear implant are presented on normal-hearing subjects. To test the effectiveness and feasibility of this acoustic model, a psychophysical experiment was conducted to match the performance of a normal-hearing listener using model- processed signals to that of a cochlear implant user. Good agreement was found between an implanted patient and an age-matched normal-hearing subject in a dynamic signal discrimination experiment, indicating that this acoustic model is a reasonably good approximation of a cochlear implant with the SPEAK strategy. The acoustic model was then used to examine the potential of the SPEAK strategy in terms of its temporal and frequency encoding of speech. It was hypothesized that better temporal and frequency encoding of speech can be accomplished by higher stimulation rates and a larger number of activated channels. Vowel and consonant recognition tests were conducted on normal-hearing subjects using speech tokens processed by the acoustic model, with different combinations of stimulation rate and number of activated channels. The results showed that vowel recognition was best at 600 pps and 8 activated channels, but further increases in stimulation rate and channel numbers were not beneficial. Manipulations of stimulation rate and number of activated channels did not appreciably affect consonant recognition. These results suggest that overall speech performance may improve by appropriately increasing stimulation rate and number of activated channels. Future revision of this acoustic model is necessary to provide more accurate amplitude representation of speech.
Eum, Hyung-Il; Gachon, Philippe; Laprise, René
2016-01-01
This study examined the impact of model biases on climate change signals for daily precipitation and for minimum and maximum temperatures. Through the use of multiple climate scenarios from 12 regional climate model simulations, the ensemble mean, and three synthetic simulations generated by a weighting procedure, we investigated intermodel seasonal climate change signals between current and future periods, for both median and extreme precipitation/temperature values. A significant dependence of seasonal climate change signals on the model biases over southern Québec in Canada was detected for temperatures, but not for precipitation. This suggests that the regional temperature change signal is affectedmore » by local processes. Seasonally, model bias affects future mean and extreme values in winter and summer. In addition, potentially large increases in future extremes of temperature and precipitation values were projected. For three synthetic scenarios, systematically less bias and a narrow range of mean change for all variables were projected compared to those of climate model simulations. In addition, synthetic scenarios were found to better capture the spatial variability of extreme cold temperatures than the ensemble mean scenario. Finally, these results indicate that the synthetic scenarios have greater potential to reduce the uncertainty of future climate projections and capture the spatial variability of extreme climate events.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eum, Hyung-Il; Gachon, Philippe; Laprise, René
This study examined the impact of model biases on climate change signals for daily precipitation and for minimum and maximum temperatures. Through the use of multiple climate scenarios from 12 regional climate model simulations, the ensemble mean, and three synthetic simulations generated by a weighting procedure, we investigated intermodel seasonal climate change signals between current and future periods, for both median and extreme precipitation/temperature values. A significant dependence of seasonal climate change signals on the model biases over southern Québec in Canada was detected for temperatures, but not for precipitation. This suggests that the regional temperature change signal is affectedmore » by local processes. Seasonally, model bias affects future mean and extreme values in winter and summer. In addition, potentially large increases in future extremes of temperature and precipitation values were projected. For three synthetic scenarios, systematically less bias and a narrow range of mean change for all variables were projected compared to those of climate model simulations. In addition, synthetic scenarios were found to better capture the spatial variability of extreme cold temperatures than the ensemble mean scenario. Finally, these results indicate that the synthetic scenarios have greater potential to reduce the uncertainty of future climate projections and capture the spatial variability of extreme climate events.« less
A multi-level model accounting for the effects of JAK2-STAT5 signal modulation in erythropoiesis.
Lai, Xin; Nikolov, Svetoslav; Wolkenhauer, Olaf; Vera, Julio
2009-08-01
We develop a multi-level model, using ordinary differential equations, based on quantitative experimental data, accounting for murine erythropoiesis. At the sub-cellular level, the model includes a description of the regulation of red blood cell differentiation through Epo-stimulated JAK2-STAT5 signalling activation, while at the cell population level the model describes the dynamics of (STAT5-mediated) red blood cell differentiation from their progenitors. Furthermore, the model includes equations depicting the hypoxia-mediated regulation of hormone erythropoietin blood levels. Take all together, the model constitutes a multi-level, feedback loop-regulated biological system, involving processes in different organs and at different organisational levels. We use our model to investigate the effect of deregulation in the proteins involved in the JAK2-STAT5 signalling pathway in red blood cells. Our analysis results suggest that down-regulation in any of the three signalling system components affects the hematocrit level in an individual considerably. In addition, our analysis predicts that exogenous Epo injection (an already existing treatment for several blood diseases) may compensate the effects of single down-regulation of Epo hormone level, STAT5 or EpoR/JAK2 expression level, and that it may be insufficient to counterpart a combined down-regulation of all the elements in the JAK2-STAT5 signalling cascade.
Construction and Experimental Validation of a Petri Net Model of Wnt/β-Catenin Signaling.
Jacobsen, Annika; Heijmans, Nika; Verkaar, Folkert; Smit, Martine J; Heringa, Jaap; van Amerongen, Renée; Feenstra, K Anton
2016-01-01
The Wnt/β-catenin signaling pathway is important for multiple developmental processes and tissue maintenance in adults. Consequently, deregulated signaling is involved in a range of human diseases including cancer and developmental defects. A better understanding of the intricate regulatory mechanism and effect of physiological (active) and pathophysiological (hyperactive) WNT signaling is important for predicting treatment response and developing novel therapies. The constitutively expressed CTNNB1 (commonly and hereafter referred to as β-catenin) is degraded by a destruction complex, composed of amongst others AXIN1 and GSK3. The destruction complex is inhibited during active WNT signaling, leading to β-catenin stabilization and induction of β-catenin/TCF target genes. In this study we investigated the mechanism and effect of β-catenin stabilization during active and hyperactive WNT signaling in a combined in silico and in vitro approach. We constructed a Petri net model of Wnt/β-catenin signaling including main players from the plasma membrane (WNT ligands and receptors), cytoplasmic effectors and the downstream negative feedback target gene AXIN2. We validated that our model can be used to simulate both active (WNT stimulation) and hyperactive (GSK3 inhibition) signaling by comparing our simulation and experimental data. We used this experimentally validated model to get further insights into the effect of the negative feedback regulator AXIN2 upon WNT stimulation and observed an attenuated β-catenin stabilization. We furthermore simulated the effect of APC inactivating mutations, yielding a stabilization of β-catenin levels comparable to the Wnt-pathway activities observed in colorectal and breast cancer. Our model can be used for further investigation and viable predictions of the role of Wnt/β-catenin signaling in oncogenesis and development.
Construction and Experimental Validation of a Petri Net Model of Wnt/β-Catenin Signaling
Heijmans, Nika; Verkaar, Folkert; Smit, Martine J.; Heringa, Jaap
2016-01-01
The Wnt/β-catenin signaling pathway is important for multiple developmental processes and tissue maintenance in adults. Consequently, deregulated signaling is involved in a range of human diseases including cancer and developmental defects. A better understanding of the intricate regulatory mechanism and effect of physiological (active) and pathophysiological (hyperactive) WNT signaling is important for predicting treatment response and developing novel therapies. The constitutively expressed CTNNB1 (commonly and hereafter referred to as β-catenin) is degraded by a destruction complex, composed of amongst others AXIN1 and GSK3. The destruction complex is inhibited during active WNT signaling, leading to β-catenin stabilization and induction of β-catenin/TCF target genes. In this study we investigated the mechanism and effect of β-catenin stabilization during active and hyperactive WNT signaling in a combined in silico and in vitro approach. We constructed a Petri net model of Wnt/β-catenin signaling including main players from the plasma membrane (WNT ligands and receptors), cytoplasmic effectors and the downstream negative feedback target gene AXIN2. We validated that our model can be used to simulate both active (WNT stimulation) and hyperactive (GSK3 inhibition) signaling by comparing our simulation and experimental data. We used this experimentally validated model to get further insights into the effect of the negative feedback regulator AXIN2 upon WNT stimulation and observed an attenuated β-catenin stabilization. We furthermore simulated the effect of APC inactivating mutations, yielding a stabilization of β-catenin levels comparable to the Wnt-pathway activities observed in colorectal and breast cancer. Our model can be used for further investigation and viable predictions of the role of Wnt/β-catenin signaling in oncogenesis and development. PMID:27218469
NASA Astrophysics Data System (ADS)
Wang, Y. S.; Shen, G. Q.; Guo, H.; Tang, X. L.; Hamade, T.
2013-08-01
In this paper, a roughness model, which is based on human auditory perception (HAP) and known as HAP-RM, is developed for the sound quality evaluation (SQE) of vehicle noise. First, the interior noise signals are measured for a sample vehicle and prepared for roughness modelling. The HAP-RM model is based on the process of sound transfer and perception in the human auditory system by combining the structural filtering function and nonlinear perception characteristics of the ear. The HAP-RM model is applied to the measured vehicle interior noise signals by considering the factors that affect hearing, such as the modulation and carrier frequencies, the time and frequency maskings and the correlations of the critical bands. The HAP-RM model is validated by jury tests. An anchor-scaled scoring method (ASM) is used for subjective evaluations in the jury tests. The verification results show that the novel developed model can accurately calculate vehicle noise roughness below 0.6 asper. Further investigation shows that the total roughness of the vehicle interior noise can mainly be attributed to frequency components below 12 Bark. The time masking effects of the modelling procedure enable the application of the HAP-RM model to stationary and nonstationary vehicle noise signals and the SQE of other sound-related signals in engineering problems.
An acoustic glottal source for vocal tract physical models
NASA Astrophysics Data System (ADS)
Hannukainen, Antti; Kuortti, Juha; Malinen, Jarmo; Ojalammi, Antti
2017-11-01
A sound source is proposed for the acoustic measurement of physical models of the human vocal tract. The physical models are produced by fast prototyping, based on magnetic resonance imaging during prolonged vowel production. The sound source, accompanied by custom signal processing algorithms, is used for two kinds of measurements from physical models of the vocal tract: (i) amplitude frequency response and resonant frequency measurements, and (ii) signal reconstructions at the source output according to a target pressure waveform with measurements at the mouth position. The proposed source and the software are validated by computational acoustics experiments and measurements on a physical model of the vocal tract corresponding to the vowels [] of a male speaker.
A first approach to the distortion analysis of nonlinear analog circuits utilizing X-parameters
NASA Astrophysics Data System (ADS)
Weber, H.; Widemann, C.; Mathis, W.
2013-07-01
In this contribution a first approach to the distortion analysis of nonlinear 2-port-networks with X-parameters1 is presented. The X-parameters introduced by Verspecht and Root (2006) offer the possibility to describe nonlinear microwave 2-port-networks under large signal conditions. On the basis of X-parameter measurements with a nonlinear network analyzer (NVNA) behavioral models can be extracted for the networks. These models can be used to consider the nonlinear behavior during the design process of microwave circuits. The idea of the present work is to extract the behavioral models in order to describe the influence of interfering signals on the output behavior of the nonlinear circuits. Hereby, a simulator is used instead of a NVNA to extract the X-parameters. Assuming that the interfering signals are relatively small compared to the nominal input signal, the output signal can be described as a superposition of the effects of each input signal. In order to determine the functional correlation between the scattering variables, a polynomial dependency is assumed. The required datasets for the approximation of the describing functions are simulated by a directional coupler model in Cadence Design Framework. The polynomial coefficients are obtained by a least-square method. The resulting describing functions can be used to predict the system's behavior under certain conditions as well as the effects of the interfering signal on the output signal. 1 X-parameter is a registered trademark of Agilent Technologies, Inc.
Study of photon correlation techniques for processing of laser velocimeter signals
NASA Technical Reports Server (NTRS)
Mayo, W. T., Jr.
1977-01-01
The objective was to provide the theory and a system design for a new type of photon counting processor for low level dual scatter laser velocimeter (LV) signals which would be capable of both the first order measurements of mean flow and turbulence intensity and also the second order time statistics: cross correlation auto correlation, and related spectra. A general Poisson process model for low level LV signals and noise which is valid from the photon-resolved regime all the way to the limiting case of nonstationary Gaussian noise was used. Computer simulation algorithms and higher order statistical moment analysis of Poisson processes were derived and applied to the analysis of photon correlation techniques. A system design using a unique dual correlate and subtract frequency discriminator technique is postulated and analyzed. Expectation analysis indicates that the objective measurements are feasible.
Sensors, Volume 1, Fundamentals and General Aspects
NASA Astrophysics Data System (ADS)
Grandke, Thomas; Ko, Wen H.
1996-12-01
'Sensors' is the first self-contained series to deal with the whole area of sensors. It describes general aspects, technical and physical fundamentals, construction, function, applications and developments of the various types of sensors. This volume deals with the fundamentals and common principles of sensors and covers the wide areas of principles, technologies, signal processing, and applications. Contents include: Sensor Fundamentals, e.g. Sensor Parameters, Modeling, Design and Packaging; Basic Sensor Technologies, e.g. Thin and Thick Films, Integrated Magnetic Sensors, Optical Fibres and Intergrated Optics, Ceramics and Oxides; Sensor Interfaces, e.g. Signal Processing, Multisensor Signal Processing, Smart Sensors, Interface Systems; Sensor Applications, e.g. Automotive: On-board Sensors, Traffic Surveillance and Control, Home Appliances, Environmental Monitoring, etc. This volume is an indispensable reference work and text book for both specialits and newcomers, researchers and developers.
Integration of local motion is normal in amblyopia
NASA Astrophysics Data System (ADS)
Hess, Robert F.; Mansouri, Behzad; Dakin, Steven C.; Allen, Harriet A.
2006-05-01
We investigate the global integration of local motion direction signals in amblyopia, in a task where performance is equated between normal and amblyopic eyes at the single element level. We use an equivalent noise model to derive the parameters of internal noise and number of samples, both of which we show are normal in amblyopia for this task. This result is in apparent conflict with a previous study in amblyopes showing that global motion processing is defective in global coherence tasks [Vision Res. 43, 729 (2003)]. A similar discrepancy between the normalcy of signal integration [Vision Res. 44, 2955 (2004)] and anomalous global coherence form processing has also been reported [Vision Res. 45, 449 (2005)]. We suggest that these discrepancies for form and motion processing in amblyopia point to a selective problem in separating signal from noise in the typical global coherence task.
NASA Astrophysics Data System (ADS)
Ohno, M.; Kawano, T.; Edahiro, I.; Shirakawa, H.; Ohashi, N.; Okada, C.; Habata, S.; Katsuta, J.; Tanaka, Y.; Takahashi, H.; Mizuno, T.; Fukazawa, Y.; Murakami, H.; Kobayashi, S.; Miyake, K.; Ono, K.; Kato, Y.; Furuta, Y.; Murota, Y.; Okuda, K.; Wada, Y.; Nakazawa, K.; Mimura, T.; Kataoka, J.; Ichinohe, Y.; Uchida, Y.; Katsuragawa, M.; Yoneda, H.; Sato, G.; Sato, R.; Kawaharada, M.; Harayama, A.; Odaka, H.; Hayashi, K.; Ohta, M.; Watanabe, S.; Kokubun, M.; Takahashi, T.; Takeda, S.; Kinoshita, M.; Yamaoka, K.; Tajima, H.; Yatsu, Y.; Uchiyama, H.; Saito, S.; Yuasa, T.; Makishima, K.; ASTRO-H HXI/SGD Team
2016-09-01
The hard X-ray Imager and Soft Gamma-ray Detector onboard ASTRO-H demonstrate high sensitivity to hard X-ray (5-80 keV) and soft gamma-rays (60-600 keV), respectively. To reduce the background, both instruments are actively shielded by large, thick Bismuth Germanate scintillators. We have developed the signal processing system of the avalanche photodiode in the BGO active shields and have demonstrated its effectiveness after assembly in the flight model of the HXI/SGD sensor and after integration into the satellite. The energy threshold achieved is about 150 keV and anti-coincidence efficiency for cosmic-ray events is almost 100%. Installed in the BGO active shield, the developed signal processing system successfully reduces the room background level of the main detector.
Automated speech understanding: the next generation
NASA Astrophysics Data System (ADS)
Picone, J.; Ebel, W. J.; Deshmukh, N.
1995-04-01
Modern speech understanding systems merge interdisciplinary technologies from Signal Processing, Pattern Recognition, Natural Language, and Linguistics into a unified statistical framework. These systems, which have applications in a wide range of signal processing problems, represent a revolution in Digital Signal Processing (DSP). Once a field dominated by vector-oriented processors and linear algebra-based mathematics, the current generation of DSP-based systems rely on sophisticated statistical models implemented using a complex software paradigm. Such systems are now capable of understanding continuous speech input for vocabularies of several thousand words in operational environments. The current generation of deployed systems, based on small vocabularies of isolated words, will soon be replaced by a new technology offering natural language access to vast information resources such as the Internet, and provide completely automated voice interfaces for mundane tasks such as travel planning and directory assistance.
Statistical 21-cm Signal Separation via Gaussian Process Regression Analysis
NASA Astrophysics Data System (ADS)
Mertens, F. G.; Ghosh, A.; Koopmans, L. V. E.
2018-05-01
Detecting and characterizing the Epoch of Reionization and Cosmic Dawn via the redshifted 21-cm hyperfine line of neutral hydrogen will revolutionize the study of the formation of the first stars, galaxies, black holes and intergalactic gas in the infant Universe. The wealth of information encoded in this signal is, however, buried under foregrounds that are many orders of magnitude brighter. These must be removed accurately and precisely in order to reveal the feeble 21-cm signal. This requires not only the modeling of the Galactic and extra-galactic emission, but also of the often stochastic residuals due to imperfect calibration of the data caused by ionospheric and instrumental distortions. To stochastically model these effects, we introduce a new method based on `Gaussian Process Regression' (GPR) which is able to statistically separate the 21-cm signal from most of the foregrounds and other contaminants. Using simulated LOFAR-EoR data that include strong instrumental mode-mixing, we show that this method is capable of recovering the 21-cm signal power spectrum across the entire range k = 0.07 - 0.3 {h cMpc^{-1}}. The GPR method is most optimal, having minimal and controllable impact on the 21-cm signal, when the foregrounds are correlated on frequency scales ≳ 3 MHz and the rms of the signal has σ21cm ≳ 0.1 σnoise. This signal separation improves the 21-cm power-spectrum sensitivity by a factor ≳ 3 compared to foreground avoidance strategies and enables the sensitivity of current and future 21-cm instruments such as the Square Kilometre Array to be fully exploited.
Binaural signal detection - Equalization and cancellation theory.
NASA Technical Reports Server (NTRS)
Durlach, N. I.
1972-01-01
The improvement in masked-signal detection afforded by two ears (i.e., binaural unmasking) is explained on the basis of a descriptive model of the processing of binaural stimuli by a system consisting of two bandpass filters, an equalization and cancellation mechanism, and a decision device. The main ideas of the model are initially explained, and a general equation is derived for the purpose of making quantitative predictions. Comparisons are then made between various special cases of this equation and experimental data. Failures of the preliminary model in predicting the data are considered, and possible revisions are discussed.
Tsukiura, Takashi
2012-01-01
In our daily lives, we form some impressions of other people. Although those impressions are affected by many factors, face-based affective signals such as facial expression, facial attractiveness, or trustworthiness are important. Previous psychological studies have demonstrated the impact of facial impressions on remembering other people, but little is known about the neural mechanisms underlying this psychological process. The purpose of this article is to review recent functional MRI (fMRI) studies to investigate the effects of face-based affective signals including facial expression, facial attractiveness, and trustworthiness on memory for faces, and to propose a tentative concept for understanding this affective-cognitive interaction. On the basis of the aforementioned research, three brain regions are potentially involved in the processing of face-based affective signals. The first candidate is the amygdala, where activity is generally modulated by both affectively positive and negative signals from faces. Activity in the orbitofrontal cortex (OFC), as the second candidate, increases as a function of perceived positive signals from faces; whereas activity in the insular cortex, as the third candidate, reflects a function of face-based negative signals. In addition, neuroscientific studies have reported that the three regions are functionally connected to the memory-related hippocampal regions. These findings suggest that the effects of face-based affective signals on memory for faces could be modulated by interactions between the regions associated with the processing of face-based affective signals and the hippocampus as a memory-related region. PMID:22837740
Models of crk adaptor proteins in cancer.
Bell, Emily S; Park, Morag
2012-05-01
The Crk family of adaptor proteins (CrkI, CrkII, and CrkL), originally discovered as the oncogene fusion product, v-Crk, of the CT10 chicken retrovirus, lacks catalytic activity but engages with multiple signaling pathways through their SH2 and SH3 domains. Crk proteins link upstream tyrosine kinase and integrin-dependent signals to downstream effectors, acting as adaptors in diverse signaling pathways and cellular processes. Crk proteins are now recognized to play a role in the malignancy of many human cancers, stimulating renewed interest in their mechanism of action in cancer progression. The contribution of Crk signaling to malignancy has been predominantly studied in fibroblasts and in hematopoietic models and more recently in epithelial models. A mechanistic understanding of Crk proteins in cancer progression in vivo is still poorly understood in part due to the highly pleiotropic nature of Crk signaling. Recent advances in the structural organization of Crk domains, new roles in kinase regulation, and increased knowledge of the mechanisms and frequency of Crk overexpression in human cancers have provided an incentive for further study in in vivo models. An understanding of the mechanisms through which Crk proteins act as oncogenic drivers could have important implications in therapeutic targeting.
Implementation and optimization of ultrasound signal processing algorithms on mobile GPU
NASA Astrophysics Data System (ADS)
Kong, Woo Kyu; Lee, Wooyoul; Kim, Kyu Cheol; Yoo, Yangmo; Song, Tai-Kyong
2014-03-01
A general-purpose graphics processing unit (GPGPU) has been used for improving computing power in medical ultrasound imaging systems. Recently, a mobile GPU becomes powerful to deal with 3D games and videos at high frame rates on Full HD or HD resolution displays. This paper proposes the method to implement ultrasound signal processing on a mobile GPU available in the high-end smartphone (Galaxy S4, Samsung Electronics, Seoul, Korea) with programmable shaders on the OpenGL ES 2.0 platform. To maximize the performance of the mobile GPU, the optimization of shader design and load sharing between vertex and fragment shader was performed. The beamformed data were captured from a tissue mimicking phantom (Model 539 Multipurpose Phantom, ATS Laboratories, Inc., Bridgeport, CT, USA) by using a commercial ultrasound imaging system equipped with a research package (Ultrasonix Touch, Ultrasonix, Richmond, BC, Canada). The real-time performance is evaluated by frame rates while varying the range of signal processing blocks. The implementation method of ultrasound signal processing on OpenGL ES 2.0 was verified by analyzing PSNR with MATLAB gold standard that has the same signal path. CNR was also analyzed to verify the method. From the evaluations, the proposed mobile GPU-based processing method has no significant difference with the processing using MATLAB (i.e., PSNR<52.51 dB). The comparable results of CNR were obtained from both processing methods (i.e., 11.31). From the mobile GPU implementation, the frame rates of 57.6 Hz were achieved. The total execution time was 17.4 ms that was faster than the acquisition time (i.e., 34.4 ms). These results indicate that the mobile GPU-based processing method can support real-time ultrasound B-mode processing on the smartphone.
Novel multireceiver communication systems configurations based on optimal estimation theory
NASA Technical Reports Server (NTRS)
Kumar, Rajendra
1992-01-01
A novel multireceiver configuration for carrier arraying and/or signal arraying is presented. The proposed configuration is obtained by formulating the carrier and/or signal arraying problem as an optimal estimation problem, and it consists of two stages. The first stage optimally estimates various phase processes received at different receivers with coupled phase-locked loops wherein the individual loops acquire and track their respective receivers' phase processes but are aided by each other in an optimal manner via LF error signals. The proposed configuration results in the minimization of the the effective radio loss at the combiner output, and thus maximization of energy per bit to noise power spectral density ratio is achieved. A novel adaptive algorithm for the estimator of the signal model parameters when these are not known a priori is also presented.
Recollection is a continuous process: implications for dual-process theories of recognition memory.
Mickes, Laura; Wais, Peter E; Wixted, John T
2009-04-01
Dual-process theory, which holds that recognition decisions can be based on recollection or familiarity, has long seemed incompatible with signal detection theory, which holds that recognition decisions are based on a singular, continuous memory-strength variable. Formal dual-process models typically regard familiarity as a continuous process (i.e., familiarity comes in degrees), but they construe recollection as a categorical process (i.e., recollection either occurs or does not occur). A continuous process is characterized by a graded relationship between confidence and accuracy, whereas a categorical process is characterized by a binary relationship such that high confidence is associated with high accuracy but all lower degrees of confidence are associated with chance accuracy. Using a source-memory procedure, we found that the relationship between confidence and source-recollection accuracy was graded. Because recollection, like familiarity, is a continuous process, dual-process theory is more compatible with signal detection theory than previously thought.
Testing Theories of Recognition Memory by Predicting Performance Across Paradigms
ERIC Educational Resources Information Center
Smith, David G.; Duncan, Matthew J. J.
2004-01-01
Signal-detection theory (SDT) accounts of recognition judgments depend on the assumption that recognition decisions result from a single familiarity-based process. However, fits of a hybrid SDT model, called dual-process theory (DPT), have provided evidence for the existence of a second, recollection-based process. In 2 experiments, the authors…
Kepler AutoRegressive Planet Search: Motivation & Methodology
NASA Astrophysics Data System (ADS)
Caceres, Gabriel; Feigelson, Eric; Jogesh Babu, G.; Bahamonde, Natalia; Bertin, Karine; Christen, Alejandra; Curé, Michel; Meza, Cristian
2015-08-01
The Kepler AutoRegressive Planet Search (KARPS) project uses statistical methodology associated with autoregressive (AR) processes to model Kepler lightcurves in order to improve exoplanet transit detection in systems with high stellar variability. We also introduce a planet-search algorithm to detect transits in time-series residuals after application of the AR models. One of the main obstacles in detecting faint planetary transits is the intrinsic stellar variability of the host star. The variability displayed by many stars may have autoregressive properties, wherein later flux values are correlated with previous ones in some manner. Auto-Regressive Moving-Average (ARMA) models, Generalized Auto-Regressive Conditional Heteroskedasticity (GARCH), and related models are flexible, phenomenological methods used with great success to model stochastic temporal behaviors in many fields of study, particularly econometrics. Powerful statistical methods are implemented in the public statistical software environment R and its many packages. Modeling involves maximum likelihood fitting, model selection, and residual analysis. These techniques provide a useful framework to model stellar variability and are used in KARPS with the objective of reducing stellar noise to enhance opportunities to find as-yet-undiscovered planets. Our analysis procedure consisting of three steps: pre-processing of the data to remove discontinuities, gaps and outliers; ARMA-type model selection and fitting; and transit signal search of the residuals using a new Transit Comb Filter (TCF) that replaces traditional box-finding algorithms. We apply the procedures to simulated Kepler-like time series with known stellar and planetary signals to evaluate the effectiveness of the KARPS procedures. The ARMA-type modeling is effective at reducing stellar noise, but also reduces and transforms the transit signal into ingress/egress spikes. A periodogram based on the TCF is constructed to concentrate the signal of these periodic spikes. When a periodic transit is found, the model is displayed on a standard period-folded averaged light curve. We also illustrate the efficient coding in R.
Feeney, Daniel F; Meyer, François G; Noone, Nicholas; Enoka, Roger M
2017-10-01
Motor neurons appear to be activated with a common input signal that modulates the discharge activity of all neurons in the motor nucleus. It has proven difficult for neurophysiologists to quantify the variability in a common input signal, but characterization of such a signal may improve our understanding of how the activation signal varies across motor tasks. Contemporary methods of quantifying the common input to motor neurons rely on compiling discrete action potentials into continuous time series, assuming the motor pool acts as a linear filter, and requiring signals to be of sufficient duration for frequency analysis. We introduce a space-state model in which the discharge activity of motor neurons is modeled as inhomogeneous Poisson processes and propose a method to quantify an abstract latent trajectory that represents the common input received by motor neurons. The approach also approximates the variation in synaptic noise in the common input signal. The model is validated with four data sets: a simulation of 120 motor units, a pair of integrate-and-fire neurons with a Renshaw cell providing inhibitory feedback, the discharge activity of 10 integrate-and-fire neurons, and the discharge times of concurrently active motor units during an isometric voluntary contraction. The simulations revealed that a latent state-space model is able to quantify the trajectory and variability of the common input signal across all four conditions. When compared with the cumulative spike train method of characterizing common input, the state-space approach was more sensitive to the details of the common input current and was less influenced by the duration of the signal. The state-space approach appears to be capable of detecting rather modest changes in common input signals across conditions. NEW & NOTEWORTHY We propose a state-space model that explicitly delineates a common input signal sent to motor neurons and the physiological noise inherent in synaptic signal transmission. This is the first application of a deterministic state-space model to represent the discharge characteristics of motor units during voluntary contractions. Copyright © 2017 the American Physiological Society.
Lignet, Floriane; Calvez, Vincent; Grenier, Emmanuel; Ribba, Benjamin
2013-02-01
The vascular endothelial growth factor (VEGF) is known as one of the main promoter of angiogenesis - the process of blood vessel formation. Angiogenesis has been recognized as a key stage for cancer development and metastasis. In this paper, we propose a structural model of the main molecular pathways involved in the endothelial cells response to VEGF stimuli. The model, built on qualitative information from knowledge databases, is composed of 38 ordinary differential equations with 78 parameters and focuses on the signalling driving endothelial cell proliferation, migration and resistance to apoptosis. Following a VEGF stimulus, the model predicts an increase of proliferation and migration capability, and a decrease in the apoptosis activity. Model simulations and sensitivity analysis highlight the emergence of robustness and redundancy properties of the pathway. If further calibrated and validated, this model could serve as tool to analyse and formulate new hypothesis on th e VEGF signalling cascade and its role in cancer development and treatment.
Fundamental Mechanisms of NeuroInformation Processing: Inverse Problems and Spike Processing
2016-08-04
platform called Neurokernel for collaborative development of comprehensive models of the brain of the fruit fly Drosophila melanogaster and their execution...example. We investigated the following nonlinear identification problem: given both the input signal u and the time sequence (tk)k2Z at the output of...from a time sequence is to be contrasted with existing methods for rate-based models in neuroscience. In such models the output of the system is taken
Noise shaping in populations of coupled model neurons.
Mar, D J; Chow, C C; Gerstner, W; Adams, R W; Collins, J J
1999-08-31
Biological information-processing systems, such as populations of sensory and motor neurons, may use correlations between the firings of individual elements to obtain lower noise levels and a systemwide performance improvement in the dynamic range or the signal-to-noise ratio. Here, we implement such correlations in networks of coupled integrate-and-fire neurons using inhibitory coupling and demonstrate that this can improve the system dynamic range and the signal-to-noise ratio in a population rate code. The improvement can surpass that expected for simple averaging of uncorrelated elements. A theory that predicts the resulting power spectrum is developed in terms of a stochastic point-process model in which the instantaneous population firing rate is modulated by the coupling between elements.
Monitoring temperatures in coal conversion and combustion processes via ultrasound
NASA Astrophysics Data System (ADS)
Gopalsami, N.; Raptis, A. C.; Mulcahey, T. P.
1980-02-01
The state of the art of instrumentation for monitoring temperatures in coal conversion and combustion systems is examined. The instrumentation types studied include thermocouples, radiation pyrometers, and acoustical thermometers. The capabilities and limitations of each type are reviewed. A feasibility study of the ultrasonic thermometry is described. A mathematical model of a pulse-echo ultrasonic temperature measurement system is developed using linear system theory. The mathematical model lends itself to the adaptation of generalized correlation techniques for the estimation of propagation delays. Computer simulations are made to test the efficacy of the signal processing techniques for noise-free as well as noisy signals. Based on the theoretical study, acoustic techniques to measure temperature in reactors and combustors are feasible.
Virtual head rotation reveals a process of route reconstruction from human vestibular signals
Day, Brian L; Fitzpatrick, Richard C
2005-01-01
The vestibular organs can feed perceptual processes that build a picture of our route as we move about in the world. However, raw vestibular signals do not define the path taken because, during travel, the head can undergo accelerations unrelated to the route and also be orientated in any direction to vary the signal. This study investigated the computational process by which the brain transforms raw vestibular signals for the purpose of route reconstruction. We electrically stimulated the vestibular nerves of human subjects to evoke a virtual head rotation fixed in skull co-ordinates and measure its perceptual effect. The virtual head rotation caused subjects to perceive an illusory whole-body rotation that was a cyclic function of head-pitch angle. They perceived whole-body yaw rotation in one direction with the head pitched forwards, the opposite direction with the head pitched backwards, and no rotation with the head in an intermediate position. A model based on vector operations and the anatomy and firing properties of semicircular canals precisely predicted these perceptions. In effect, a neural process computes the vector dot product between the craniocentric vestibular vector of head rotation and the gravitational unit vector. This computation yields the signal of body rotation in the horizontal plane that feeds our perception of the route travelled. PMID:16002439
Excitatory signal flow and connectivity in a cortical column: focus on barrel cortex.
Lübke, Joachim; Feldmeyer, Dirk
2007-07-01
A basic feature of the neocortex is its organization in functional, vertically oriented columns, recurring modules of signal processing and a system of transcolumnar long-range horizontal connections. These columns, together with their network of neurons, present in all sensory cortices, are the cellular substrate for sensory perception in the brain. Cortical columns contain thousands of neurons and span all cortical layers. They receive input from other cortical areas and subcortical brain regions and in turn their neurons provide output to various areas of the brain. The modular concept presumes that the neuronal network in a cortical column performs basic signal transformations, which are then integrated with the activity in other networks and more extended brain areas. To understand how sensory signals from the periphery are transformed into electrical activity in the neocortex it is essential to elucidate the spatial-temporal dynamics of cortical signal processing and the underlying neuronal 'microcircuits'. In the last decade the 'barrel' field in the rodent somatosensory cortex, which processes sensory information arriving from the mysticial vibrissae, has become a quite attractive model system because here the columnar structure is clearly visible. In the neocortex and in particular the barrel cortex, numerous neuronal connections within or between cortical layers have been studied both at the functional and structural level. Besides similarities, clear differences with respect to both physiology and morphology of synaptic transmission and connectivity were found. It is therefore necessary to investigate each neuronal connection individually, in order to develop a realistic model of neuronal connectivity and organization of a cortical column. This review attempts to summarize recent advances in the study of individual microcircuits and their functional relevance within the framework of a cortical column, with emphasis on excitatory signal flow.
NASA Astrophysics Data System (ADS)
Mohan, T. S.; Annamalai, H.; Marx, Larry; Huang, Bohua; Kinter, James
2018-02-01
In the present study, we analyze 30-years output from free run solutions of CFSv2 coupled model to assess the model’s representation of extended (>7 days) active and break monsoon episodes over south Asia. Process based diagnostics is applied to the individual and composite events to identify precursor signals in both ocean and atmospheric variables. Our examination suggests that CFSv2, like most coupled models, depict systematic biases in variables important for ocean-atmosphere interactions. Nevertheless, model solutions capture many aspects of monsoon extended break and active episodes realistically, encouraging us to apply process-based diagnostics. Diagnostics reveal that sea surface temperature (SST) variations over the northern Bay of Bengal where the climatological mixed-layer is thin, lead the in-situ precipitation anomalies by about 8 (10) days during extended active (break) episodes, and the precipitation anomalies over central India by 10-14 days. Mixed-layer heat budget analysis indicates for a close correspondence between SST tendency and net surface heat flux (Q_net). MSE budgets indicate that horizontal moisture advection to be a coherent precursor signal ( 10 days) during both extended break (dry advection) and active (moist advection) events. The lead timings in these precursor signals in CFSv2 solutions will be of potential use to monitor and predict extended monsoon episodes. Diagnostics, however, also indicate that for about 1/3 of the identified extended break and active episodes, inconsistencies in budget terms suggest precursor signals could lead to false alarms. Apart from false alarms, compared to observations, CFSv2 systematically simulates a greater number of extended monsoon active episodes.
Kalman Orbit Optimized Loop Tracking
NASA Technical Reports Server (NTRS)
Young, Lawrence E.; Meehan, Thomas K.
2011-01-01
Under certain conditions of low signal power and/or high noise, there is insufficient signal to noise ratio (SNR) to close tracking loops with individual signals on orbiting Global Navigation Satellite System (GNSS) receivers. In addition, the processing power available from flight computers is not great enough to implement a conventional ultra-tight coupling tracking loop. This work provides a method to track GNSS signals at very low SNR without the penalty of requiring very high processor throughput to calculate the loop parameters. The Kalman Orbit-Optimized Loop (KOOL) tracking approach constitutes a filter with a dynamic model and using the aggregate of information from all tracked GNSS signals to close the tracking loop for each signal. For applications where there is not a good dynamic model, such as very low orbits where atmospheric drag models may not be adequate to achieve the required accuracy, aiding from an IMU (inertial measurement unit) or other sensor will be added. The KOOL approach is based on research JPL has done to allow signal recovery from weak and scintillating signals observed during the use of GPS signals for limb sounding of the Earth s atmosphere. That approach uses the onboard PVT (position, velocity, time) solution to generate predictions for the range, range rate, and acceleration of the low-SNR signal. The low- SNR signal data are captured by a directed open loop. KOOL builds on the previous open loop tracking by including feedback and observable generation from the weak-signal channels so that the MSR receiver will continue to track and provide PVT, range, and Doppler data, even when all channels have low SNR.
Bone Morphogenetic Protein (BMP) signaling in animal reproductive system development and function.
Lochab, Amaneet K; Extavour, Cassandra G
2017-07-15
In multicellular organisms, the specification, maintenance, and transmission of the germ cell lineage to subsequent generations are critical processes that ensure species survival. A number of studies suggest that the Bone Morphogenetic Protein (BMP) pathway plays multiple roles in this cell lineage. We wished to use a comparative framework to examine the role of BMP signaling in regulating these processes, to determine if patterns would emerge that might shed light on the evolution of molecular mechanisms that may play germ cell-specific or other reproductive roles across species. To this end, here we review evidence to date from the literature supporting a role for BMP signaling in reproductive processes across Metazoa. We focus on germ line-specific processes, and separately consider somatic reproductive processes. We find that from primordial germ cell (PGC) induction to maintenance of PGC identity and gametogenesis, BMP signaling regulates these processes throughout embryonic development and adult life in multiple deuterostome and protostome clades. In well-studied model organisms, functional genetic evidence suggests that BMP signaling is required in the germ line across all life stages, with the exception of PGC specification in species that do not use inductive signaling to induce germ cell formation. The current evidence is consistent with the hypothesis that BMP signaling is ancestral in bilaterian inductive PGC specification. While BMP4 appears to be the most broadly employed ligand for the reproductive processes considered herein, we also noted evidence for sex-specific usage of different BMP ligands. In gametogenesis, BMP6 and BMP15 seem to have roles restricted to oogenesis, while BMP8 is restricted to spermatogenesis. We hypothesize that a BMP-based mechanism may have been recruited early in metazoan evolution to specify the germ line, and was subsequently co-opted for use in other germ line-specific and somatic reproductive processes. We suggest that if future studies assessing the function of the BMP pathway across extant species were to include a reproductive focus, that we would be likely to find continued evidence in favor of an ancient association between BMP signaling and the reproductive cell lineage in animals. Copyright © 2017 Elsevier Inc. All rights reserved.
Brain signal variability is parametrically modifiable.
Garrett, Douglas D; McIntosh, Anthony R; Grady, Cheryl L
2014-11-01
Moment-to-moment brain signal variability is a ubiquitous neural characteristic, yet remains poorly understood. Evidence indicates that heightened signal variability can index and aid efficient neural function, but it is not known whether signal variability responds to precise levels of environmental demand, or instead whether variability is relatively static. Using multivariate modeling of functional magnetic resonance imaging-based parametric face processing data, we show here that within-person signal variability level responds to incremental adjustments in task difficulty, in a manner entirely distinct from results produced by examining mean brain signals. Using mixed modeling, we also linked parametric modulations in signal variability with modulations in task performance. We found that difficulty-related reductions in signal variability predicted reduced accuracy and longer reaction times within-person; mean signal changes were not predictive. We further probed the various differences between signal variance and signal means by examining all voxels, subjects, and conditions; this analysis of over 2 million data points failed to reveal any notable relations between voxel variances and means. Our results suggest that brain signal variability provides a systematic task-driven signal of interest from which we can understand the dynamic function of the human brain, and in a way that mean signals cannot capture. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Direction selectivity of blowfly motion-sensitive neurons is computed in a two-stage process.
Borst, A; Egelhaaf, M
1990-01-01
Direction selectivity of motion-sensitive neurons is generally thought to result from the nonlinear interaction between the signals derived from adjacent image points. Modeling of motion-sensitive networks, however, reveals that such elements may still respond to motion in a rather poor directionally selective way. Direction selectivity can be significantly enhanced if the nonlinear interaction is followed by another processing stage in which the signals of elements with opposite preferred directions are subtracted from each other. Our electrophysiological experiments in the fly visual system suggest that here direction selectivity is acquired in such a two-stage process. Images PMID:2251278
NASA Astrophysics Data System (ADS)
Zhang, Hongjie; Hou, Yanyan; Yang, Tao; Zhang, Qian; Zhao, Jian
2018-05-01
In the spot welding process, a high alternating current is applied, resulting in a time-varying electromagnetic field surrounding the welder. When measuring the welding voltage signal, the impedance of the measuring circuit consists of two parts: dynamic resistance relating to weld nugget nucleation event and inductive reactance caused by mutual inductance. The aim of this study is to develop a method to acquire the dynamic reactance signal and to discuss the possibility of using this signal to evaluate the weld quality. For this purpose, a series of experiments were carried out. The reactance signals under different welding conditions were compared and the results showed that the morphological feature of the reactance signal was closely related to the welding current and it was also significantly influenced by some abnormal welding conditions. Some features were extracted from the reactance signal and combined to construct weld nugget strength and diameter prediction models based on the radial basis function (RBF) neural network. In addition, several features were also used to monitor the expulsion in the welding process by using Fisher linear discriminant analysis. The results indicated that using the dynamic reactance signal to evaluate weld quality is possible and feasible.
Computer model for harmonic ultrasound imaging.
Li, Y; Zagzebski, J A
2000-01-01
Harmonic ultrasound imaging has received great attention from ultrasound scanner manufacturers and researchers. In this paper, we present a computer model that can generate realistic harmonic images. In this model, the incident ultrasound is modeled after the "KZK" equation, and the echo signal is modeled using linear propagation theory because the echo signal is much weaker than the incident pulse. Both time domain and frequency domain numerical solutions to the "KZK" equation were studied. Realistic harmonic images of spherical lesion phantoms were generated for scans by a circular transducer. This model can be a very useful tool for studying the harmonic buildup and dissipation processes in a nonlinear medium, and it can be used to investigate a wide variety of topics related to B-mode harmonic imaging.
Computer model for harmonic ultrasound imaging.
Li, Y; Zagzebski, J A
2000-01-01
Harmonic ultrasound imaging has received great attention from ultrasound scanner manufacturers and researchers. Here, the authors present a computer model that can generate realistic harmonic images. In this model, the incident ultrasound is modeled after the "KZK" equation, and the echo signal is modeled using linear propagation theory because the echo signal is much weaker than the incident pulse. Both time domain and frequency domain numerical solutions to the "KZK" equation were studied. Realistic harmonic images of spherical lesion phantoms were generated for scans by a circular transducer. This model can be a very useful tool for studying the harmonic buildup and dissipation processes in a nonlinear medium, and it can be used to investigate a wide variety of topics related to B-mode harmonic imaging.
Multivariate Analysis of Ladle Vibration
NASA Astrophysics Data System (ADS)
Yenus, Jaefer; Brooks, Geoffrey; Dunn, Michelle
2016-08-01
The homogeneity of composition and uniformity of temperature of the steel melt before it is transferred to the tundish are crucial in making high-quality steel product. The homogenization process is performed by stirring the melt using inert gas in ladles. Continuous monitoring of this process is important to make sure the action of stirring is constant throughout the ladle. Currently, the stirring process is monitored by process operators who largely rely on visual and acoustic phenomena from the ladle. However, due to lack of measurable signals, the accuracy and suitability of this manual monitoring are problematic. The actual flow of argon gas to the ladle may not be same as the flow gage reading due to leakage along the gas line components. As a result, the actual degree of stirring may not be correctly known. Various researchers have used one-dimensional vibration, and sound and image signals measured from the ladle to predict the degree of stirring inside. They developed online sensors which are indeed to monitor the online stirring phenomena. In this investigation, triaxial vibration signals have been measured from a cold water model which is a model of an industrial ladle. Three flow rate ranges and varying bath heights were used to collect vibration signals. The Fast Fourier Transform was applied to the dataset before it has been analyzed using principal component analysis (PCA) and partial least squares (PLS). PCA was used to unveil the structure in the experimental data. PLS was mainly applied to predict the stirring from the vibration response. It was found that for each flow rate range considered in this study, the informative signals reside in different frequency ranges. The first latent variables in these frequency ranges explain more than 95 pct of the variation in the stirring process for the entire single layer and the double layer data collected from the cold model. PLS analysis in these identified frequency ranges demonstrated that the latent variables of the response and predictor variables are highly correlated. The predicted variable has shown linear relationship with the stirring energy and bath recirculation speed. This outcome can improve the predictability of the mixing status in ladle metallurgy and make the online control of the process easier. Industrial testing of this input will follow.
Foveated model observers to predict human performance in 3D images
NASA Astrophysics Data System (ADS)
Lago, Miguel A.; Abbey, Craig K.; Eckstein, Miguel P.
2017-03-01
We evaluate 3D search requires model observers that take into account the peripheral human visual processing (foveated models) to predict human observer performance. We show that two different 3D tasks, free search and location-known detection, influence the relative human visual detectability of two signals of different sizes in synthetic backgrounds mimicking the noise found in 3D digital breast tomosynthesis. One of the signals resembled a microcalcification (a small and bright sphere), while the other one was designed to look like a mass (a larger Gaussian blob). We evaluated current standard models observers (Hotelling; Channelized Hotelling; non-prewhitening matched filter with eye filter, NPWE; and non-prewhitening matched filter model, NPW) and showed that they incorrectly predict the relative detectability of the two signals in 3D search. We propose a new model observer (3D Foveated Channelized Hotelling Observer) that incorporates the properties of the visual system over a large visual field (fovea and periphery). We show that the foveated model observer can accurately predict the rank order of detectability of the signals in 3D images for each task. Together, these results motivate the use of a new generation of foveated model observers for predicting image quality for search tasks in 3D imaging modalities such as digital breast tomosynthesis or computed tomography.
Chiron: translating nanopore raw signal directly into nucleotide sequence using deep learning.
Teng, Haotian; Cao, Minh Duc; Hall, Michael B; Duarte, Tania; Wang, Sheng; Coin, Lachlan J M
2018-05-01
Sequencing by translocating DNA fragments through an array of nanopores is a rapidly maturing technology that offers faster and cheaper sequencing than other approaches. However, accurately deciphering the DNA sequence from the noisy and complex electrical signal is challenging. Here, we report Chiron, the first deep learning model to achieve end-to-end basecalling and directly translate the raw signal to DNA sequence without the error-prone segmentation step. Trained with only a small set of 4,000 reads, we show that our model provides state-of-the-art basecalling accuracy, even on previously unseen species. Chiron achieves basecalling speeds of more than 2,000 bases per second using desktop computer graphics processing units.
Distributed Peer-to-Peer Target Tracking in Wireless Sensor Networks
Wang, Xue; Wang, Sheng; Bi, Dao-Wei; Ma, Jun-Jie
2007-01-01
Target tracking is usually a challenging application for wireless sensor networks (WSNs) because it is always computation-intensive and requires real-time processing. This paper proposes a practical target tracking system based on the auto regressive moving average (ARMA) model in a distributed peer-to-peer (P2P) signal processing framework. In the proposed framework, wireless sensor nodes act as peers that perform target detection, feature extraction, classification and tracking, whereas target localization requires the collaboration between wireless sensor nodes for improving the accuracy and robustness. For carrying out target tracking under the constraints imposed by the limited capabilities of the wireless sensor nodes, some practically feasible algorithms, such as the ARMA model and the 2-D integer lifting wavelet transform, are adopted in single wireless sensor nodes due to their outstanding performance and light computational burden. Furthermore, a progressive multi-view localization algorithm is proposed in distributed P2P signal processing framework considering the tradeoff between the accuracy and energy consumption. Finally, a real world target tracking experiment is illustrated. Results from experimental implementations have demonstrated that the proposed target tracking system based on a distributed P2P signal processing framework can make efficient use of scarce energy and communication resources and achieve target tracking successfully.
Marmarelis, Vasilis Z.; Berger, Theodore W.
2009-01-01
Parametric and non-parametric modeling methods are combined to study the short-term plasticity (STP) of synapses in the central nervous system (CNS). The nonlinear dynamics of STP are modeled by means: (1) previously proposed parametric models based on mechanistic hypotheses and/or specific dynamical processes, and (2) non-parametric models (in the form of Volterra kernels) that transforms the presynaptic signals into postsynaptic signals. In order to synergistically use the two approaches, we estimate the Volterra kernels of the parametric models of STP for four types of synapses using synthetic broadband input–output data. Results show that the non-parametric models accurately and efficiently replicate the input–output transformations of the parametric models. Volterra kernels provide a general and quantitative representation of the STP. PMID:18506609
Benzy, V K; Jasmin, E A; Koshy, Rachel Cherian; Amal, Frank; Indiradevi, K P
2018-01-01
The advancement in medical research and intelligent modeling techniques has lead to the developments in anaesthesia management. The present study is targeted to estimate the depth of anaesthesia using cognitive signal processing and intelligent modeling techniques. The neurophysiological signal that reflects cognitive state of anaesthetic drugs is the electroencephalogram signal. The information available on electroencephalogram signals during anaesthesia are drawn by extracting relative wave energy features from the anaesthetic electroencephalogram signals. Discrete wavelet transform is used to decomposes the electroencephalogram signals into four levels and then relative wave energy is computed from approximate and detail coefficients of sub-band signals. Relative wave energy is extracted to find out the degree of importance of different electroencephalogram frequency bands associated with different anaesthetic phases awake, induction, maintenance and recovery. The Kruskal-Wallis statistical test is applied on the relative wave energy features to check the discriminating capability of relative wave energy features as awake, light anaesthesia, moderate anaesthesia and deep anaesthesia. A novel depth of anaesthesia index is generated by implementing a Adaptive neuro-fuzzy inference system based fuzzy c-means clustering algorithm which uses relative wave energy features as inputs. Finally, the generated depth of anaesthesia index is compared with a commercially available depth of anaesthesia monitor Bispectral index.
NASA Astrophysics Data System (ADS)
Lebiedz, Dirk; Brandt-Pollmann, Ulrich
2004-09-01
Specific external control of chemical reaction systems and both dynamic control and signal processing as central functions in biochemical reaction systems are important issues of modern nonlinear science. For example nonlinear input-output behavior and its regulation are crucial for the maintainance of the life process that requires extensive communication between cells and their environment. An important question is how the dynamical behavior of biochemical systems is controlled and how they process information transmitted by incoming signals. But also from a general point of view external forcing of complex chemical reaction processes is important in many application areas ranging from chemical engineering to biomedicine. In order to study such control issues numerically, here, we choose a well characterized chemical system, the CO oxidation on Pt(110), which is interesting per se as an externally forced chemical oscillator model. We show numerically that tuning of temporal self-organization by input signals in this simple nonlinear chemical reaction exhibiting oscillatory behavior can in principle be exploited for both specific external control of dynamical system behavior and processing of complex information.
Tsunami process: From upper mantle to atmosphere
NASA Astrophysics Data System (ADS)
Ershov, S.; Mikhaylovskaya, I.; Novik, O.
Earthquakes in near sea regions and/or tsunamis are manifestations of powerful geodynamic processes beneath the Ocean floor (75 % of the Earth' surface). An effective monitoring of these large-scale processes is not possible without satellites as well as without understanding of physical nature of signals accompanying these processes, e.g. connection between parameters of a seismic excitation in ocean lithosphere and electromagnetic (EM) signals in atmosphere. Basing on the theory of elasticity, electrodynamics, fluid dynamics and geophysical data we formulate a nonlinear mathematical model of generation and propagation of seismo-EM signals in the basin of a marginal sea including transfer of seismic and EM energy from upper mantle to hydrosphere and EM emission into atmosphere up to ionosphere domain D. For a model basin approximately similar to the central part of the Sea of Japan, we calculate signals caused by moderate elastic displacements (EDs): the ampl of a few cm, the main freq. 0.01-10 Hz and duration up to 10 sec (by runs with different acceptable data) which are supposed to be arising at the moment t=0 at the bottom of the upper mantle layer M. The EM signal appears near the bottom of the conductive (0.02 S/m) layer M and reaches for the sea bottom by t=3.5 sec with the ampl. Of 50 pT. This signal propagate in sea water (4 S/m) rather slowly and seems to be "frozen": its front is located near the sea bottom and is replicating the bottom's configuration up to the moment (t=5.2 sec) of the seismic P wave (from M) arrival at the sea bottom. The EM field is generated in seismically disturbed sea water in presence of the geomagnetic field" a specific structure of a seismo-hydrodynamic flow, a spatial break of the diffusive magnetic field, joining of its contours, and other details of the seismo-hydro-EM tsunami process are shown to clear out the out the physical nature of its signals. By the moderate EDs (above), the magnetic signal (freq. 0.01-10 Hz, i.e. the same as the EDs' freq.) is of order of a few hundreds of pT at the ocean-atmosphere interface and of order of a few tens of hydrodynamic wave's amplitude far from the shore is too small (20 cm) and EM observations are needed to discover this threatening wave. The computed signals' characteristics are of orders observed. The recommendations for the EM monitoring (at a sea bottom, surface, and atmosphere) of seismic excitations in ocean lithosphere and tsunamis are given.
Conserved Insulin Signaling in the Regulation of Oocyte Growth, Development, and Maturation
DAS, DEBABRATA; ARUR, SWATHI
2017-01-01
Insulin signaling regulates various aspects of physiology, such as glucose homeostasis and aging, and is a key determinant of female reproduction in metazoans. That insulin signaling is crucial for female reproductive health is clear from clinical data linking hyperinsulinemic and hypoinsulinemic condition with certain types of ovarian dysfunction, such as altered steroidogenesis, polycystic ovary syndrome, and infertility. Thus, understanding the signaling mechanisms that underlie the control of insulin-mediated ovarian development is important for the accurate diagnosis of and intervention for female infertility. Studies of invertebrate and vertebrate model systems have revealed the molecular determinants that transduce insulin signaling as well as which biological processes are regulated by the insulin-signaling pathway. The molecular determinants of the insulin-signaling pathway, from the insulin receptor to its downstream signaling components, are structurally and functionally conserved across evolution, from worms to mammals – yet, physiological differences in signaling still exist. Insulin signaling acts cooperatively with gonadotropins in mammals and lower vertebrates to mediate various aspects of ovarian development, mainly owing to evolution of the endocrine system in vertebrates. In contrast, insulin signaling in Drosophila and Caenorhabditis elegans directly regulates oocyte growth and maturation. In this review, we compare and contrast insulin-mediated regulation of ovarian functions in mammals, lower vertebrates, C. elegans, and Drosophila, and highlight conserved signaling pathways and regulatory mechanisms in general while illustrating insulin’s unique role in specific reproductive processes. PMID:28379636
NASA Astrophysics Data System (ADS)
Schmidt, S.; Heyns, P. S.; de Villiers, J. P.
2018-02-01
In this paper, a fault diagnostic methodology is developed which is able to detect, locate and trend gear faults under fluctuating operating conditions when only vibration data from a single transducer, measured on a healthy gearbox are available. A two-phase feature extraction and modelling process is proposed to infer the operating condition and based on the operating condition, to detect changes in the machine condition. Information from optimised machine and operating condition hidden Markov models are statistically combined to generate a discrepancy signal which is post-processed to infer the condition of the gearbox. The discrepancy signal is processed and combined with statistical methods for automatic fault detection and localisation and to perform fault trending over time. The proposed methodology is validated on experimental data and a tacholess order tracking methodology is used to enhance the cost-effectiveness of the diagnostic methodology.
Turbulent Statistics From Time-Resolved PIV Measurements of a Jet Using Empirical Mode Decomposition
NASA Technical Reports Server (NTRS)
Dahl, Milo D.
2013-01-01
Empirical mode decomposition is an adaptive signal processing method that when applied to a broadband signal, such as that generated by turbulence, acts as a set of band-pass filters. This process was applied to data from time-resolved, particle image velocimetry measurements of subsonic jets prior to computing the second-order, two-point, space-time correlations from which turbulent phase velocities and length and time scales could be determined. The application of this method to large sets of simultaneous time histories is new. In this initial study, the results are relevant to acoustic analogy source models for jet noise prediction. The high frequency portion of the results could provide the turbulent values for subgrid scale models for noise that is missed in large-eddy simulations. The results are also used to infer that the cross-correlations between different components of the decomposed signals at two points in space, neglected in this initial study, are important.
Turbulent Statistics from Time-Resolved PIV Measurements of a Jet Using Empirical Mode Decomposition
NASA Technical Reports Server (NTRS)
Dahl, Milo D.
2012-01-01
Empirical mode decomposition is an adaptive signal processing method that when applied to a broadband signal, such as that generated by turbulence, acts as a set of band-pass filters. This process was applied to data from time-resolved, particle image velocimetry measurements of subsonic jets prior to computing the second-order, two-point, space-time correlations from which turbulent phase velocities and length and time scales could be determined. The application of this method to large sets of simultaneous time histories is new. In this initial study, the results are relevant to acoustic analogy source models for jet noise prediction. The high frequency portion of the results could provide the turbulent values for subgrid scale models for noise that is missed in large-eddy simulations. The results are also used to infer that the cross-correlations between different components of the decomposed signals at two points in space, neglected in this initial study, are important.
Long period seismic source characterization at Popocatépetl volcano, Mexico
Arciniega-Ceballos, Alejandra; Dawson, Phillip; Chouet, Bernard A.
2012-01-01
The seismicity of Popocatépetl is dominated by long-period and very-long period signals associated with hydrothermal processes and magmatic degassing. We model the source mechanism of repetitive long-period signals in the 0.4–2 s band from a 15-station broadband network by stacking long-period events with similar waveforms to improve the signal-to-noise ratio. The data are well fitted by a point source located within the summit crater ~250 m below the crater floor and ~200 m from the inferred magma conduit. The inferred source includes a volumetric component that can be modeled as resonance of a horizontal steam-filled crack and a vertical single force component. The long-period events are thought to be related to the interaction between the magmatic system and a perched hydrothermal system. Repetitive injection of fluid into the horizontal fracture and subsequent sudden discharge when a critical pressure threshold is met provides a non-destructive source process.
Mathematical models utilized in the retrieval of displacement information encoded in fringe patterns
NASA Astrophysics Data System (ADS)
Sciammarella, Cesar A.; Lamberti, Luciano
2016-02-01
All the techniques that measure displacements, whether in the range of visible optics or any other form of field methods, require the presence of a carrier signal. A carrier signal is a wave form modulated (modified) by an input, deformation of the medium. A carrier is tagged to the medium under analysis and deforms with the medium. The wave form must be known both in the unmodulated and the modulated conditions. There are two basic mathematical models that can be utilized to decode the information contained in the carrier, phase modulation or frequency modulation, both are closely connected. Basic problems connected to the detection and recovery of displacement information that are common to all optical techniques will be analyzed in this paper, focusing on the general theory common to all the methods independently of the type of signal utilized. The aspects discussed are those that have practical impact in the process of data gathering and data processing.
A robust nonlinear filter for image restoration.
Koivunen, V
1995-01-01
A class of nonlinear regression filters based on robust estimation theory is introduced. The goal of the filtering is to recover a high-quality image from degraded observations. Models for desired image structures and contaminating processes are employed, but deviations from strict assumptions are allowed since the assumptions on signal and noise are typically only approximately true. The robustness of filters is usually addressed only in a distributional sense, i.e., the actual error distribution deviates from the nominal one. In this paper, the robustness is considered in a broad sense since the outliers may also be due to inappropriate signal model, or there may be more than one statistical population present in the processing window, causing biased estimates. Two filtering algorithms minimizing a least trimmed squares criterion are provided. The design of the filters is simple since no scale parameters or context-dependent threshold values are required. Experimental results using both real and simulated data are presented. The filters effectively attenuate both impulsive and nonimpulsive noise while recovering the signal structure and preserving interesting details.
Enhancing speech recognition using improved particle swarm optimization based hidden Markov model.
Selvaraj, Lokesh; Ganesan, Balakrishnan
2014-01-01
Enhancing speech recognition is the primary intention of this work. In this paper a novel speech recognition method based on vector quantization and improved particle swarm optimization (IPSO) is suggested. The suggested methodology contains four stages, namely, (i) denoising, (ii) feature mining (iii), vector quantization, and (iv) IPSO based hidden Markov model (HMM) technique (IP-HMM). At first, the speech signals are denoised using median filter. Next, characteristics such as peak, pitch spectrum, Mel frequency Cepstral coefficients (MFCC), mean, standard deviation, and minimum and maximum of the signal are extorted from the denoised signal. Following that, to accomplish the training process, the extracted characteristics are given to genetic algorithm based codebook generation in vector quantization. The initial populations are created by selecting random code vectors from the training set for the codebooks for the genetic algorithm process and IP-HMM helps in doing the recognition. At this point the creativeness will be done in terms of one of the genetic operation crossovers. The proposed speech recognition technique offers 97.14% accuracy.
Pipeline Processing with an Iterative, Context-based Detection Model
2014-04-19
stripping the incoming data stream of repeating and irrelevant signals prior to running primary detectors , adaptive beamforming and matched field processing...framework, pattern detectors , correlation detectors , subspace detectors , matched field detectors , nuclear explosion monitoring 16. SECURITY CLASSIFICATION...10 5. Teleseismic paths from earthquakes in
Design and Verification of a Digital Controller for a 2-Piece Hemispherical Resonator Gyroscope.
Lee, Jungshin; Yun, Sung Wook; Rhim, Jaewook
2016-04-20
A Hemispherical Resonator Gyro (HRG) is the Coriolis Vibratory Gyro (CVG) that measures rotation angle or angular velocity using Coriolis force acting the vibrating mass. A HRG can be used as a rate gyro or integrating gyro without structural modification by simply changing the control scheme. In this paper, differential control algorithms are designed for a 2-piece HRG. To design a precision controller, the electromechanical modelling and signal processing must be pre-performed accurately. Therefore, the equations of motion for the HRG resonator with switched harmonic excitations are derived with the Duhamel Integral method. Electromechanical modeling of the resonator, electric module and charge amplifier is performed by considering the mode shape of a thin hemispherical shell. Further, signal processing and control algorithms are designed. The multi-flexing scheme of sensing, driving cycles and x, y-axis switching cycles is appropriate for high precision and low maneuverability systems. The differential control scheme is easily capable of rejecting the common mode errors of x, y-axis signals and changing the rate integrating mode on basis of these studies. In the rate gyro mode the controller is composed of Phase-Locked Loop (PLL), amplitude, quadrature and rate control loop. All controllers are designed on basis of a digital PI controller. The signal processing and control algorithms are verified through Matlab/Simulink simulations. Finally, a FPGA and DSP board with these algorithms is verified through experiments.
Vascular signaling abnormalities in Alzheimer disease.
Grammas, Paula; Sanchez, Alma; Tripathy, Debjani; Luo, Ester; Martinez, Joseph
2011-08-01
Our laboratory has documented that brain microvessels derived from patients with Alzheimer disease (AD) express or release a myriad of factors that have been implicated in vascular activation and angiogenesis. In addition, we have documented that signaling cascades associated with vascular activation and angiogenesis are upregulated in AD-derived brain microvessels. These results are consistent with emerging data suggesting that factors and processes characteristic of vascular activation and angiogenesis are found in the AD brain. Despite increases in proangiogenic factors and signals in the AD brain, however, evidence for increased vascularity in AD is lacking. Cerebral hypoperfusion/hypoxia, a potent stimulus for vascular activation and angiogenesis, triggers hypometabolic, cognitive, and degenerative changes in the brain. In our working model, hypoxia stimulates the angiogenic process; yet, there is no new vessel growth. Therefore, there are no feedback signals to shut off vascular activation, and endothelial cells become irreversibly activated. This activation results in release of a large number of proteases, inflammatory proteins, and other gene products with biologic activity that can injure or kill neurons. Pathologic activation of brain vasculature may contribute noxious mediators that lead to neuronal injury and disease processes in AD brains. This concept is supported by preliminary experiments in our laboratory, which show that pharmacologic blockade of vascular activation improves cognitive function in an animal model of AD. Thus, "vascular activation" could be a novel, unexplored therapeutic target in AD.
Worthmann, Brian M; Song, H C; Dowling, David R
2015-12-01
Matched field processing (MFP) is an established technique for source localization in known multipath acoustic environments. Unfortunately, in many situations, particularly those involving high frequency signals, imperfect knowledge of the actual propagation environment prevents accurate propagation modeling and source localization via MFP fails. For beamforming applications, this actual-to-model mismatch problem was mitigated through a frequency downshift, made possible by a nonlinear array-signal-processing technique called frequency difference beamforming [Abadi, Song, and Dowling (2012). J. Acoust. Soc. Am. 132, 3018-3029]. Here, this technique is extended to conventional (Bartlett) MFP using simulations and measurements from the 2011 Kauai Acoustic Communications MURI experiment (KAM11) to produce ambiguity surfaces at frequencies well below the signal bandwidth where the detrimental effects of mismatch are reduced. Both the simulation and experimental results suggest that frequency difference MFP can be more robust against environmental mismatch than conventional MFP. In particular, signals of frequency 11.2 kHz-32.8 kHz were broadcast 3 km through a 106-m-deep shallow ocean sound channel to a sparse 16-element vertical receiving array. Frequency difference MFP unambiguously localized the source in several experimental data sets with average peak-to-side-lobe ratio of 0.9 dB, average absolute-value range error of 170 m, and average absolute-value depth error of 10 m.
Identification of gene regulation models from single-cell data
NASA Astrophysics Data System (ADS)
Weber, Lisa; Raymond, William; Munsky, Brian
2018-09-01
In quantitative analyses of biological processes, one may use many different scales of models (e.g. spatial or non-spatial, deterministic or stochastic, time-varying or at steady-state) or many different approaches to match models to experimental data (e.g. model fitting or parameter uncertainty/sloppiness quantification with different experiment designs). These different analyses can lead to surprisingly different results, even when applied to the same data and the same model. We use a simplified gene regulation model to illustrate many of these concerns, especially for ODE analyses of deterministic processes, chemical master equation and finite state projection analyses of heterogeneous processes, and stochastic simulations. For each analysis, we employ MATLAB and PYTHON software to consider a time-dependent input signal (e.g. a kinase nuclear translocation) and several model hypotheses, along with simulated single-cell data. We illustrate different approaches (e.g. deterministic and stochastic) to identify the mechanisms and parameters of the same model from the same simulated data. For each approach, we explore how uncertainty in parameter space varies with respect to the chosen analysis approach or specific experiment design. We conclude with a discussion of how our simulated results relate to the integration of experimental and computational investigations to explore signal-activated gene expression models in yeast (Neuert et al 2013 Science 339 584–7) and human cells (Senecal et al 2014 Cell Rep. 8 75–83)5.
Gkigkitzis, Ioannis
2013-01-01
The aim of this report is to provide a mathematical model of the mechanism for making binary fate decisions about cell death or survival, during and after Photodynamic Therapy (PDT) treatment, and to supply the logical design for this decision mechanism as an application of rate distortion theory to the biochemical processing of information by the physical system of a cell. Based on system biology models of the molecular interactions involved in the PDT processes previously established, and regarding a cellular decision-making system as a noisy communication channel, we use rate distortion theory to design a time dependent Blahut-Arimoto algorithm where the input is a stimulus vector composed of the time dependent concentrations of three PDT related cell death signaling molecules and the output is a cell fate decision. The molecular concentrations are determined by a group of rate equations. The basic steps are: initialize the probability of the cell fate decision, compute the conditional probability distribution that minimizes the mutual information between input and output, compute the cell probability of cell fate decision that minimizes the mutual information and repeat the last two steps until the probabilities converge. Advance to the next discrete time point and repeat the process. Based on the model from communication theory described in this work, and assuming that the activation of the death signal processing occurs when any of the molecular stimulants increases higher than a predefined threshold (50% of the maximum concentrations), for 1800s of treatment, the cell undergoes necrosis within the first 30 minutes with probability range 90.0%-99.99% and in the case of repair/survival, it goes through apoptosis within 3-4 hours with probability range 90.00%-99.00%. Although, there is no experimental validation of the model at this moment, it reproduces some patterns of survival ratios of predicted experimental data. Analytical modeling based on cell death signaling molecules has been shown to be an independent and useful tool for prediction of cell surviving response to PDT. The model can be adjusted to provide important insights for cellular response to other treatments such as hyperthermia, and diseases such as neurodegeneration.
Xu, Tiantian; Feng, Yuanjing; Wu, Ye; Zeng, Qingrun; Zhang, Jun; He, Jianzhong; Zhuge, Qichuan
2017-01-01
Diffusion-weighted magnetic resonance imaging is a non-invasive imaging method that has been increasingly used in neuroscience imaging over the last decade. Partial volume effects (PVEs) exist in sampling signal for many physical and actual reasons, which lead to inaccurate fiber imaging. We overcome the influence of PVEs by separating isotropic signal from diffusion-weighted signal, which can provide more accurate estimation of fiber orientations. In this work, we use a novel response function (RF) and the correspondent fiber orientation distribution function (fODF) to construct different signal models, in which case the fODF is represented using dictionary basis function. We then put forward a new index Piso, which is a part of fODF to quantify white and gray matter. The classic Richardson-Lucy (RL) model is usually used in the field of digital image processing to solve the problem of spherical deconvolution caused by highly ill-posed least-squares algorithm. In this case, we propose an innovative model integrating RL model with spatial regularization to settle the suggested double-models, which improve noise resistance and accuracy of imaging. Experimental results of simulated and real data show that the proposal method, which we call iRL, can robustly reconstruct a more accurate fODF and the quantitative index Piso performs better than fractional anisotropy and general fractional anisotropy.
Feng, Yuanjing; Wu, Ye; Zeng, Qingrun; Zhang, Jun; He, Jianzhong; Zhuge, Qichuan
2017-01-01
Diffusion-weighted magnetic resonance imaging is a non-invasive imaging method that has been increasingly used in neuroscience imaging over the last decade. Partial volume effects (PVEs) exist in sampling signal for many physical and actual reasons, which lead to inaccurate fiber imaging. We overcome the influence of PVEs by separating isotropic signal from diffusion-weighted signal, which can provide more accurate estimation of fiber orientations. In this work, we use a novel response function (RF) and the correspondent fiber orientation distribution function (fODF) to construct different signal models, in which case the fODF is represented using dictionary basis function. We then put forward a new index Piso, which is a part of fODF to quantify white and gray matter. The classic Richardson-Lucy (RL) model is usually used in the field of digital image processing to solve the problem of spherical deconvolution caused by highly ill-posed least-squares algorithm. In this case, we propose an innovative model integrating RL model with spatial regularization to settle the suggested double-models, which improve noise resistance and accuracy of imaging. Experimental results of simulated and real data show that the proposal method, which we call iRL, can robustly reconstruct a more accurate fODF and the quantitative index Piso performs better than fractional anisotropy and general fractional anisotropy. PMID:28081561
Terry, Alan J.; Sturrock, Marc; Dale, J. Kim; Maroto, Miguel; Chaplain, Mark A. J.
2011-01-01
In the vertebrate embryo, tissue blocks called somites are laid down in head-to-tail succession, a process known as somitogenesis. Research into somitogenesis has been both experimental and mathematical. For zebrafish, there is experimental evidence for oscillatory gene expression in cells in the presomitic mesoderm (PSM) as well as evidence that Notch signalling synchronises the oscillations in neighbouring PSM cells. A biological mechanism has previously been proposed to explain these phenomena. Here we have converted this mechanism into a mathematical model of partial differential equations in which the nuclear and cytoplasmic diffusion of protein and mRNA molecules is explictly considered. By performing simulations, we have found ranges of values for the model parameters (such as diffusion and degradation rates) that yield oscillatory dynamics within PSM cells and that enable Notch signalling to synchronise the oscillations in two touching cells. Our model contains a Hill coefficient that measures the co-operativity between two proteins (Her1, Her7) and three genes (her1, her7, deltaC) which they inhibit. This coefficient appears to be bounded below by the requirement for oscillations in individual cells and bounded above by the requirement for synchronisation. Consistent with experimental data and a previous spatially non-explicit mathematical model, we have found that signalling can increase the average level of Her1 protein. Biological pattern formation would be impossible without a certain robustness to variety in cell shape and size; our results possess such robustness. Our spatially-explicit modelling approach, together with new imaging technologies that can measure intracellular protein diffusion rates, is likely to yield significant new insight into somitogenesis and other biological processes. PMID:21386903
Terry, Alan J; Sturrock, Marc; Dale, J Kim; Maroto, Miguel; Chaplain, Mark A J
2011-02-28
In the vertebrate embryo, tissue blocks called somites are laid down in head-to-tail succession, a process known as somitogenesis. Research into somitogenesis has been both experimental and mathematical. For zebrafish, there is experimental evidence for oscillatory gene expression in cells in the presomitic mesoderm (PSM) as well as evidence that Notch signalling synchronises the oscillations in neighbouring PSM cells. A biological mechanism has previously been proposed to explain these phenomena. Here we have converted this mechanism into a mathematical model of partial differential equations in which the nuclear and cytoplasmic diffusion of protein and mRNA molecules is explicitly considered. By performing simulations, we have found ranges of values for the model parameters (such as diffusion and degradation rates) that yield oscillatory dynamics within PSM cells and that enable Notch signalling to synchronise the oscillations in two touching cells. Our model contains a Hill coefficient that measures the co-operativity between two proteins (Her1, Her7) and three genes (her1, her7, deltaC) which they inhibit. This coefficient appears to be bounded below by the requirement for oscillations in individual cells and bounded above by the requirement for synchronisation. Consistent with experimental data and a previous spatially non-explicit mathematical model, we have found that signalling can increase the average level of Her1 protein. Biological pattern formation would be impossible without a certain robustness to variety in cell shape and size; our results possess such robustness. Our spatially-explicit modelling approach, together with new imaging technologies that can measure intracellular protein diffusion rates, is likely to yield significant new insight into somitogenesis and other biological processes.
NASA Astrophysics Data System (ADS)
Hao, Hongliang; Xiao, Wen; Chen, Zonghui; Ma, Lan; Pan, Feng
2018-01-01
Heterodyne interferometric vibration metrology is a useful technique for dynamic displacement and velocity measurement as it can provide a synchronous full-field output signal. With the advent of cost effective, high-speed real-time signal processing systems and software, processing of the complex signals encountered in interferometry has become more feasible. However, due to the coherent nature of the laser sources, the sequence of heterodyne interferogram are corrupted by a mixture of coherent speckle and incoherent additive noise, which can severely degrade the accuracy of the demodulated signal and the optical display. In this paper, a new heterodyne interferometric demodulation method by combining auto-correlation analysis and spectral filtering is described leading to an expression for the dynamic displacement and velocity of the object under test that is significantly more accurate in both the amplitude and frequency of the vibrating waveform. We present a mathematical model of the signals obtained from interferograms that contain both vibration information of the measured objects and the noise. A simulation of the signal demodulation process is presented and used to investigate the noise from the system and external factors. The experimental results show excellent agreement with measurements from a commercial Laser Doppler Velocimetry (LDV).
Fractional motion model for characterization of anomalous diffusion from NMR signals.
Fan, Yang; Gao, Jia-Hong
2015-07-01
Measuring molecular diffusion has been used to characterize the properties of living organisms and porous materials. NMR is able to detect the diffusion process in vivo and noninvasively. The fractional motion (FM) model is appropriate to describe anomalous diffusion phenomenon in crowded environments, such as living cells. However, no FM-based NMR theory has yet been established. Here, we present a general formulation of the FM-based NMR signal under the influence of arbitrary magnetic field gradient waveforms. An explicit analytic solution of the stretched exponential decay format for NMR signals with finite-width Stejskal-Tanner bipolar pulse magnetic field gradients is presented. Signals from a numerical simulation matched well with the theoretical prediction. In vivo diffusion-weighted brain images were acquired and analyzed using the proposed theory, and the resulting parametric maps exhibit remarkable contrasts between different brain tissues.
Fractional motion model for characterization of anomalous diffusion from NMR signals
NASA Astrophysics Data System (ADS)
Fan, Yang; Gao, Jia-Hong
2015-07-01
Measuring molecular diffusion has been used to characterize the properties of living organisms and porous materials. NMR is able to detect the diffusion process in vivo and noninvasively. The fractional motion (FM) model is appropriate to describe anomalous diffusion phenomenon in crowded environments, such as living cells. However, no FM-based NMR theory has yet been established. Here, we present a general formulation of the FM-based NMR signal under the influence of arbitrary magnetic field gradient waveforms. An explicit analytic solution of the stretched exponential decay format for NMR signals with finite-width Stejskal-Tanner bipolar pulse magnetic field gradients is presented. Signals from a numerical simulation matched well with the theoretical prediction. In vivo diffusion-weighted brain images were acquired and analyzed using the proposed theory, and the resulting parametric maps exhibit remarkable contrasts between different brain tissues.
Normative evidence accumulation in unpredictable environments
Glaze, Christopher M; Kable, Joseph W; Gold, Joshua I
2015-01-01
In our dynamic world, decisions about noisy stimuli can require temporal accumulation of evidence to identify steady signals, differentiation to detect unpredictable changes in those signals, or both. Normative models can account for learning in these environments but have not yet been applied to faster decision processes. We present a novel, normative formulation of adaptive learning models that forms decisions by acting as a leaky accumulator with non-absorbing bounds. These dynamics, derived for both discrete and continuous cases, depend on the expected rate of change of the statistics of the evidence and balance signal identification and change detection. We found that, for two different tasks, human subjects learned these expectations, albeit imperfectly, then used them to make decisions in accordance with the normative model. The results represent a unified, empirically supported account of decision-making in unpredictable environments that provides new insights into the expectation-driven dynamics of the underlying neural signals. DOI: http://dx.doi.org/10.7554/eLife.08825.001 PMID:26322383
Thermo-elastic wave model of the photothermal and photoacoustic signal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meja, P.; Steiger, B.; Delsanto, P.P.
1996-12-31
By means of the thermo-elastic wave equation the dynamical propagation of mechanical stress and temperature can be described and applied to model the photothermal and photoacoustic signal. Analytical solutions exist only in particular cases. Using massively parallel computers it is possible to simulate the photothermal and photoacoustic signal in a most sufficient way. In this paper the method of local interaction simulation approach (LISA) is presented and selected examples of its application are given. The advantages of this method, which is particularly suitable for parallel processing, consist in reduced computation time and simple description of the photoacoustic signal in opticalmore » materials. The present contribution introduces the authors model, the formalism and some results in the 1 D case for homogeneous nonattenuative materials. The photoacoustic wave can be understood as a wave with locally limited displacement. This displacement corresponds to a temperature variation. Both variables are usually measured in photoacoustics and photothermal measurements. Therefore the temperature and displacement dependence on optical, elastic and thermal constants is analysed.« less
Syntactic sequencing in Hebbian cell assemblies.
Wennekers, Thomas; Palm, Günther
2009-12-01
Hebbian cell assemblies provide a theoretical framework for the modeling of cognitive processes that grounds them in the underlying physiological neural circuits. Recently we have presented an extension of cell assemblies by operational components which allows to model aspects of language, rules, and complex behaviour. In the present work we study the generation of syntactic sequences using operational cell assemblies timed by unspecific trigger signals. Syntactic patterns are implemented in terms of hetero-associative transition graphs in attractor networks which cause a directed flow of activity through the neural state space. We provide regimes for parameters that enable an unspecific excitatory control signal to switch reliably between attractors in accordance with the implemented syntactic rules. If several target attractors are possible in a given state, noise in the system in conjunction with a winner-takes-all mechanism can randomly choose a target. Disambiguation can also be guided by context signals or specific additional external signals. Given a permanently elevated level of external excitation the model can enter an autonomous mode, where it generates temporal grammatical patterns continuously.
NASA Astrophysics Data System (ADS)
Solazzo, E.; Galmarini, S.
2015-07-01
A more sensible use of monitoring data for the evaluation and development of regional-scale atmospheric models is proposed. The motivation stems from observing current practices in this realm where the quality of monitoring data is seldom questioned and model-to-data deviation is uniquely attributed to model deficiency. Efforts are spent to quantify the uncertainty intrinsic to the measurement process, but aspects connected to model evaluation and development have recently emerged that remain obscure, such as the spatial representativeness and the homogeneity of signals subjects of our investigation. By using time series of hourly records of ozone for a whole year (2006) collected by the European AirBase network the area of representativeness is firstly analysed showing, for similar class of stations (urban, suburban, rural), large heterogeneity and high sensitivity to the density of the network and to the noise of the signal, suggesting the mere station classification to be not a suitable candidate to help select the pool of stations used in model evaluation. Therefore a novel, more robust technique is developed based on the spatial properties of the associativity of the spectral components of the ozone time series, in an attempt to determine the level of homogeneity. The spatial structure of the associativity among stations is informative of the spatial representativeness of that specific component and automatically tells about spatial anisotropy. Time series of ozone data from North American networks have also been analysed to support the methodology. We find that the low energy components (especially the intra-day signal) suffer from a too strong influence of country-level network set-up in Europe, and different networks in North America, showing spatial heterogeneity exactly at the administrative border that separates countries in Europe and at areas separating different networks in North America. For model evaluation purposes these elements should be treated as purely stochastic and discarded, while retaining the portion of the signal useful to the evaluation process. Trans-boundary discontinuity of the intra-day signal along with cross-network grouping has been found to be predominant. Skills of fifteen regional chemical-transport modelling systems have been assessed in light of this result, finding an improved accuracy of up to 5% when the intra-day signal is removed with respect to the case where all components are analysed.
Cell-type-specific modelling of intracellular calcium signalling: a urothelial cell model.
Appleby, Peter A; Shabir, Saqib; Southgate, Jennifer; Walker, Dawn
2013-09-06
Calcium signalling plays a central role in regulating a wide variety of cell processes. A number of calcium signalling models exist in the literature that are capable of reproducing a variety of experimentally observed calcium transients. These models have been used to examine in more detail the mechanisms underlying calcium transients, but very rarely has a model been directly linked to a particular cell type and experimentally verified. It is important to show that this can be achieved within the general theoretical framework adopted by these models. Here, we develop a framework designed specifically for modelling cytosolic calcium transients in urothelial cells. Where possible, we draw upon existing calcium signalling models, integrating descriptions of components known to be important in this cell type from a number of studies in the literature. We then add descriptions of several additional pathways that play a specific role in urothelial cell signalling, including an explicit ionic influx term and an active pumping mechanism that drives the cytosolic calcium concentration to a target equilibrium. The resulting one-pool model of endoplasmic reticulum (ER)-dependent calcium signalling relates the cytosolic, extracellular and ER calcium concentrations and can generate a wide range of calcium transients, including spikes, bursts, oscillations and sustained elevations in the cytosolic calcium concentration. Using single-variate robustness and multivariate sensitivity analyses, we quantify how varying each of the parameters of the model leads to changes in key features of the calcium transient, such as initial peak amplitude and the frequency of bursting or spiking, and in the transitions between bursting- and plateau-dominated modes. We also show that, novel to our urothelial cell model, the ionic and purinergic P2Y pathways make distinct contributions to the calcium transient. We then validate the model using human bladder epithelial cells grown in monolayer cell culture and show that the model robustly captures the key features of the experimental data in a way that is not possible using more generic calcium models from the literature.
Cheng, Yougan; Othmer, Hans
2016-01-01
Chemotaxis is a dynamic cellular process, comprised of direction sensing, polarization and locomotion, that leads to the directed movement of eukaryotic cells along extracellular gradients. As a primary step in the response of an individual cell to a spatial stimulus, direction sensing has attracted numerous theoretical treatments aimed at explaining experimental observations in a variety of cell types. Here we propose a new model of direction sensing based on experiments using Dictyostelium discoideum (Dicty). The model is built around a reaction-diffusion-translocation system that involves three main component processes: a signal detection step based on G-protein-coupled receptors (GPCR) for cyclic AMP (cAMP), a transduction step based on a heterotrimetic G protein Gα2βγ, and an activation step of a monomeric G-protein Ras. The model can predict the experimentally-observed response of cells treated with latrunculin A, which removes feedback from downstream processes, under a variety of stimulus protocols. We show that Gα2βγ cycling modulated by Ric8, a nonreceptor guanine exchange factor for Gα2 in Dicty, drives multiple phases of Ras activation and leads to direction sensing and signal amplification in cAMP gradients. The model predicts that both Gα2 and Gβγ are essential for direction sensing, in that membrane-localized Gα2*, the activated GTP-bearing form of Gα2, leads to asymmetrical recruitment of RasGEF and Ric8, while globally-diffusing Gβγ mediates their activation. We show that the predicted response at the level of Ras activation encodes sufficient ‘memory’ to eliminate the ‘back-of-the wave’ problem, and the effects of diffusion and cell shape on direction sensing are also investigated. In contrast with existing LEGI models of chemotaxis, the results do not require a disparity between the diffusion coefficients of the Ras activator GEF and the Ras inhibitor GAP. Since the signal pathways we study are highly conserved between Dicty and mammalian leukocytes, the model can serve as a generic one for direction sensing. PMID:27152956
Designing Experiments to Discriminate Families of Logic Models.
Videla, Santiago; Konokotina, Irina; Alexopoulos, Leonidas G; Saez-Rodriguez, Julio; Schaub, Torsten; Siegel, Anne; Guziolowski, Carito
2015-01-01
Logic models of signaling pathways are a promising way of building effective in silico functional models of a cell, in particular of signaling pathways. The automated learning of Boolean logic models describing signaling pathways can be achieved by training to phosphoproteomics data, which is particularly useful if it is measured upon different combinations of perturbations in a high-throughput fashion. However, in practice, the number and type of allowed perturbations are not exhaustive. Moreover, experimental data are unavoidably subjected to noise. As a result, the learning process results in a family of feasible logical networks rather than in a single model. This family is composed of logic models implementing different internal wirings for the system and therefore the predictions of experiments from this family may present a significant level of variability, and hence uncertainty. In this paper, we introduce a method based on Answer Set Programming to propose an optimal experimental design that aims to narrow down the variability (in terms of input-output behaviors) within families of logical models learned from experimental data. We study how the fitness with respect to the data can be improved after an optimal selection of signaling perturbations and how we learn optimal logic models with minimal number of experiments. The methods are applied on signaling pathways in human liver cells and phosphoproteomics experimental data. Using 25% of the experiments, we obtained logical models with fitness scores (mean square error) 15% close to the ones obtained using all experiments, illustrating the impact that our approach can have on the design of experiments for efficient model calibration.
ERIC Educational Resources Information Center
Huh, Kyu Hwan; Guzman, Yomayra F.; Tronson, Natalie C.; Guedea, Anita L.; Gao, Can; Radulovic, Jelena
2009-01-01
Extinction of fear requires learning that anticipated aversive events no longer occur. Animal models reveal that sustained phosphorylation of the extracellular signal-regulated kinase (Erk) in hippocampal CA1 neurons plays an important role in this process. However, the key signals triggering and regulating the activity of Erk are not known. By…
Liao, Yuxi; Li, Hongbao; Zhang, Qiaosheng; Fan, Gong; Wang, Yiwen; Zheng, Xiaoxiang
2014-01-01
Decoding algorithm in motor Brain Machine Interfaces translates the neural signals to movement parameters. They usually assume the connection between the neural firings and movements to be stationary, which is not true according to the recent studies that observe the time-varying neuron tuning property. This property results from the neural plasticity and motor learning etc., which leads to the degeneration of the decoding performance when the model is fixed. To track the non-stationary neuron tuning during decoding, we propose a dual model approach based on Monte Carlo point process filtering method that enables the estimation also on the dynamic tuning parameters. When applied on both simulated neural signal and in vivo BMI data, the proposed adaptive method performs better than the one with static tuning parameters, which raises a promising way to design a long-term-performing model for Brain Machine Interfaces decoder.
NASA Astrophysics Data System (ADS)
Li, Ying-jun; Ai, Chang-sheng; Men, Xiu-hua; Zhang, Cheng-liang; Zhang, Qi
2013-04-01
This paper presents a novel on-line monitoring technology to obtain forming quality in steel ball's forming process based on load signal analysis method, in order to reveal the bottom die's load characteristic in initial cold heading forging process of steel balls. A mechanical model of the cold header producing process is established and analyzed by using finite element method. The maximum cold heading force is calculated. The results prove that the monitoring on the cold heading process with upsetting force is reasonable and feasible. The forming defects are inflected on the three feature points of the bottom die signals, which are the initial point, infection point, and peak point. A novel PVDF piezoelectric force sensor which is simple on construction and convenient on installation is designed. The sensitivity of the PVDF force sensor is calculated. The characteristics of PVDF force sensor are analyzed by FEM. The PVDF piezoelectric force sensor is fabricated to acquire the actual load signals in the cold heading process, and calibrated by a special device. The measuring system of on-line monitoring is built. The characteristics of the actual signals recognized by learning and identification algorithm are in consistence with simulation results. Identification of actual signals shows that the timing difference values of all feature points for qualified products are not exceed ±6 ms, and amplitude difference values are less than ±3%. The calibration and application experiments show that PVDF force sensor has good static and dynamic performances, and is competent at dynamic measuring on upsetting force. It greatly improves automatic level and machining precision. Equipment capacity factor with damages identification method depends on grade of steel has been improved to 90%.
Model-based ultrasound temperature visualization during and following HIFU exposure.
Ye, Guoliang; Smith, Penny Probert; Noble, J Alison
2010-02-01
This paper describes the application of signal processing techniques to improve the robustness of ultrasound feedback for displaying changes in temperature distribution in treatment using high-intensity focused ultrasound (HIFU), especially at the low signal-to-noise ratios that might be expected in in vivo abdominal treatment. Temperature estimation is based on the local displacements in ultrasound images taken during HIFU treatment, and a method to improve robustness to outliers is introduced. The main contribution of the paper is in the application of a Kalman filter, a statistical signal processing technique, which uses a simple analytical temperature model of heat dispersion to improve the temperature estimation from the ultrasound measurements during and after HIFU exposure. To reduce the sensitivity of the method to previous assumptions on the material homogeneity and signal-to-noise ratio, an adaptive form is introduced. The method is illustrated using data from HIFU exposure of ex vivo bovine liver. A particular advantage of the stability it introduces is that the temperature can be visualized not only in the intervals between HIFU exposure but also, for some configurations, during the exposure itself. 2010 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Wavelet-based study of valence-arousal model of emotions on EEG signals with LabVIEW.
Guzel Aydin, Seda; Kaya, Turgay; Guler, Hasan
2016-06-01
This paper illustrates the wavelet-based feature extraction for emotion assessment using electroencephalogram (EEG) signal through graphical coding design. Two-dimensional (valence-arousal) emotion model was studied. Different emotions (happy, joy, melancholy, and disgust) were studied for assessment. These emotions were stimulated by video clips. EEG signals obtained from four subjects were decomposed into five frequency bands (gamma, beta, alpha, theta, and delta) using "db5" wavelet function. Relative features were calculated to obtain further information. Impact of the emotions according to valence value was observed to be optimal on power spectral density of gamma band. The main objective of this work is not only to investigate the influence of the emotions on different frequency bands but also to overcome the difficulties in the text-based program. This work offers an alternative approach for emotion evaluation through EEG processing. There are a number of methods for emotion recognition such as wavelet transform-based, Fourier transform-based, and Hilbert-Huang transform-based methods. However, the majority of these methods have been applied with the text-based programming languages. In this study, we proposed and implemented an experimental feature extraction with graphics-based language, which provides great convenience in bioelectrical signal processing.